X86ISelLowering.cpp revision 558cc5a914118bba0e7843f1878f6137fea88d91
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  // We may not have a libcall for MEMBARRIER so we should lower this.
453  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929
930    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
931    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
932    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
933
934    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
935    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
936  }
937
938  if (Subtarget->hasSSE42())
939    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
940
941  if (!UseSoftFloat && Subtarget->hasAVX()) {
942    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
943    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
944    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
948
949    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
950    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
952
953    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
954    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
958    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
959
960    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
966
967    // Custom lower several nodes for 256-bit types.
968    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
969                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
970      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
971      EVT VT = SVT;
972
973      // Extract subvector is special because the value type
974      // (result) is 128-bit but the source is 256-bit wide.
975      if (VT.is128BitVector())
976        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
977
978      // Do not attempt to custom lower other non-256-bit vectors
979      if (!VT.is256BitVector())
980        continue;
981
982      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
983      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
984      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
985      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
986      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
987    }
988
989    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
990    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
991      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
992      EVT VT = SVT;
993
994      // Do not attempt to promote non-256-bit vectors
995      if (!VT.is256BitVector())
996        continue;
997
998      setOperationAction(ISD::AND,    SVT, Promote);
999      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1000      setOperationAction(ISD::OR,     SVT, Promote);
1001      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1002      setOperationAction(ISD::XOR,    SVT, Promote);
1003      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1004      setOperationAction(ISD::LOAD,   SVT, Promote);
1005      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1006      setOperationAction(ISD::SELECT, SVT, Promote);
1007      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1008    }
1009  }
1010
1011  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1012  // of this type with custom code.
1013  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1014         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1015    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1016  }
1017
1018  // We want to custom lower some of our intrinsics.
1019  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1020
1021
1022  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1023  // handle type legalization for these operations here.
1024  //
1025  // FIXME: We really should do custom legalization for addition and
1026  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1027  // than generic legalization for 64-bit multiplication-with-overflow, though.
1028  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1029    // Add/Sub/Mul with overflow operations are custom lowered.
1030    MVT VT = IntVTs[i];
1031    setOperationAction(ISD::SADDO, VT, Custom);
1032    setOperationAction(ISD::UADDO, VT, Custom);
1033    setOperationAction(ISD::SSUBO, VT, Custom);
1034    setOperationAction(ISD::USUBO, VT, Custom);
1035    setOperationAction(ISD::SMULO, VT, Custom);
1036    setOperationAction(ISD::UMULO, VT, Custom);
1037  }
1038
1039  // There are no 8-bit 3-address imul/mul instructions
1040  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1041  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1042
1043  if (!Subtarget->is64Bit()) {
1044    // These libcalls are not available in 32-bit.
1045    setLibcallName(RTLIB::SHL_I128, 0);
1046    setLibcallName(RTLIB::SRL_I128, 0);
1047    setLibcallName(RTLIB::SRA_I128, 0);
1048  }
1049
1050  // We have target-specific dag combine patterns for the following nodes:
1051  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1052  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1053  setTargetDAGCombine(ISD::BUILD_VECTOR);
1054  setTargetDAGCombine(ISD::SELECT);
1055  setTargetDAGCombine(ISD::SHL);
1056  setTargetDAGCombine(ISD::SRA);
1057  setTargetDAGCombine(ISD::SRL);
1058  setTargetDAGCombine(ISD::OR);
1059  setTargetDAGCombine(ISD::AND);
1060  setTargetDAGCombine(ISD::ADD);
1061  setTargetDAGCombine(ISD::SUB);
1062  setTargetDAGCombine(ISD::STORE);
1063  setTargetDAGCombine(ISD::ZERO_EXTEND);
1064  setTargetDAGCombine(ISD::SINT_TO_FP);
1065  if (Subtarget->is64Bit())
1066    setTargetDAGCombine(ISD::MUL);
1067
1068  computeRegisterProperties();
1069
1070  // On Darwin, -Os means optimize for size without hurting performance,
1071  // do not reduce the limit.
1072  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1073  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1074  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1075  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1076  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1077  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1078  setPrefLoopAlignment(16);
1079  benefitFromCodePlacementOpt = true;
1080
1081  setPrefFunctionAlignment(4);
1082}
1083
1084
1085MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1086  return MVT::i8;
1087}
1088
1089
1090/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1091/// the desired ByVal argument alignment.
1092static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1093  if (MaxAlign == 16)
1094    return;
1095  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1096    if (VTy->getBitWidth() == 128)
1097      MaxAlign = 16;
1098  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1099    unsigned EltAlign = 0;
1100    getMaxByValAlign(ATy->getElementType(), EltAlign);
1101    if (EltAlign > MaxAlign)
1102      MaxAlign = EltAlign;
1103  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1104    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1105      unsigned EltAlign = 0;
1106      getMaxByValAlign(STy->getElementType(i), EltAlign);
1107      if (EltAlign > MaxAlign)
1108        MaxAlign = EltAlign;
1109      if (MaxAlign == 16)
1110        break;
1111    }
1112  }
1113  return;
1114}
1115
1116/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1117/// function arguments in the caller parameter area. For X86, aggregates
1118/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1119/// are at 4-byte boundaries.
1120unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1121  if (Subtarget->is64Bit()) {
1122    // Max of 8 and alignment of type.
1123    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1124    if (TyAlign > 8)
1125      return TyAlign;
1126    return 8;
1127  }
1128
1129  unsigned Align = 4;
1130  if (Subtarget->hasXMM())
1131    getMaxByValAlign(Ty, Align);
1132  return Align;
1133}
1134
1135/// getOptimalMemOpType - Returns the target specific optimal type for load
1136/// and store operations as a result of memset, memcpy, and memmove
1137/// lowering. If DstAlign is zero that means it's safe to destination
1138/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1139/// means there isn't a need to check it against alignment requirement,
1140/// probably because the source does not need to be loaded. If
1141/// 'NonScalarIntSafe' is true, that means it's safe to return a
1142/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1143/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1144/// constant so it does not need to be loaded.
1145/// It returns EVT::Other if the type should be determined using generic
1146/// target-independent logic.
1147EVT
1148X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1149                                       unsigned DstAlign, unsigned SrcAlign,
1150                                       bool NonScalarIntSafe,
1151                                       bool MemcpyStrSrc,
1152                                       MachineFunction &MF) const {
1153  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1154  // linux.  This is because the stack realignment code can't handle certain
1155  // cases like PR2962.  This should be removed when PR2962 is fixed.
1156  const Function *F = MF.getFunction();
1157  if (NonScalarIntSafe &&
1158      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1159    if (Size >= 16 &&
1160        (Subtarget->isUnalignedMemAccessFast() ||
1161         ((DstAlign == 0 || DstAlign >= 16) &&
1162          (SrcAlign == 0 || SrcAlign >= 16))) &&
1163        Subtarget->getStackAlignment() >= 16) {
1164      if (Subtarget->hasSSE2())
1165        return MVT::v4i32;
1166      if (Subtarget->hasSSE1())
1167        return MVT::v4f32;
1168    } else if (!MemcpyStrSrc && Size >= 8 &&
1169               !Subtarget->is64Bit() &&
1170               Subtarget->getStackAlignment() >= 8 &&
1171               Subtarget->hasXMMInt()) {
1172      // Do not use f64 to lower memcpy if source is string constant. It's
1173      // better to use i32 to avoid the loads.
1174      return MVT::f64;
1175    }
1176  }
1177  if (Subtarget->is64Bit() && Size >= 8)
1178    return MVT::i64;
1179  return MVT::i32;
1180}
1181
1182/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1183/// current function.  The returned value is a member of the
1184/// MachineJumpTableInfo::JTEntryKind enum.
1185unsigned X86TargetLowering::getJumpTableEncoding() const {
1186  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1187  // symbol.
1188  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1189      Subtarget->isPICStyleGOT())
1190    return MachineJumpTableInfo::EK_Custom32;
1191
1192  // Otherwise, use the normal jump table encoding heuristics.
1193  return TargetLowering::getJumpTableEncoding();
1194}
1195
1196const MCExpr *
1197X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1198                                             const MachineBasicBlock *MBB,
1199                                             unsigned uid,MCContext &Ctx) const{
1200  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1201         Subtarget->isPICStyleGOT());
1202  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1203  // entries.
1204  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1205                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1206}
1207
1208/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1209/// jumptable.
1210SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1211                                                    SelectionDAG &DAG) const {
1212  if (!Subtarget->is64Bit())
1213    // This doesn't have DebugLoc associated with it, but is not really the
1214    // same as a Register.
1215    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1216  return Table;
1217}
1218
1219/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1220/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1221/// MCExpr.
1222const MCExpr *X86TargetLowering::
1223getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1224                             MCContext &Ctx) const {
1225  // X86-64 uses RIP relative addressing based on the jump table label.
1226  if (Subtarget->isPICStyleRIPRel())
1227    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1228
1229  // Otherwise, the reference is relative to the PIC base.
1230  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1231}
1232
1233// FIXME: Why this routine is here? Move to RegInfo!
1234std::pair<const TargetRegisterClass*, uint8_t>
1235X86TargetLowering::findRepresentativeClass(EVT VT) const{
1236  const TargetRegisterClass *RRC = 0;
1237  uint8_t Cost = 1;
1238  switch (VT.getSimpleVT().SimpleTy) {
1239  default:
1240    return TargetLowering::findRepresentativeClass(VT);
1241  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1242    RRC = (Subtarget->is64Bit()
1243           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1244    break;
1245  case MVT::x86mmx:
1246    RRC = X86::VR64RegisterClass;
1247    break;
1248  case MVT::f32: case MVT::f64:
1249  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1250  case MVT::v4f32: case MVT::v2f64:
1251  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1252  case MVT::v4f64:
1253    RRC = X86::VR128RegisterClass;
1254    break;
1255  }
1256  return std::make_pair(RRC, Cost);
1257}
1258
1259bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1260                                               unsigned &Offset) const {
1261  if (!Subtarget->isTargetLinux())
1262    return false;
1263
1264  if (Subtarget->is64Bit()) {
1265    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1266    Offset = 0x28;
1267    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1268      AddressSpace = 256;
1269    else
1270      AddressSpace = 257;
1271  } else {
1272    // %gs:0x14 on i386
1273    Offset = 0x14;
1274    AddressSpace = 256;
1275  }
1276  return true;
1277}
1278
1279
1280//===----------------------------------------------------------------------===//
1281//               Return Value Calling Convention Implementation
1282//===----------------------------------------------------------------------===//
1283
1284#include "X86GenCallingConv.inc"
1285
1286bool
1287X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1288				  MachineFunction &MF, bool isVarArg,
1289                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1290                        LLVMContext &Context) const {
1291  SmallVector<CCValAssign, 16> RVLocs;
1292  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1293                 RVLocs, Context);
1294  return CCInfo.CheckReturn(Outs, RetCC_X86);
1295}
1296
1297SDValue
1298X86TargetLowering::LowerReturn(SDValue Chain,
1299                               CallingConv::ID CallConv, bool isVarArg,
1300                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1301                               const SmallVectorImpl<SDValue> &OutVals,
1302                               DebugLoc dl, SelectionDAG &DAG) const {
1303  MachineFunction &MF = DAG.getMachineFunction();
1304  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1305
1306  SmallVector<CCValAssign, 16> RVLocs;
1307  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1308                 RVLocs, *DAG.getContext());
1309  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1310
1311  // Add the regs to the liveout set for the function.
1312  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1313  for (unsigned i = 0; i != RVLocs.size(); ++i)
1314    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1315      MRI.addLiveOut(RVLocs[i].getLocReg());
1316
1317  SDValue Flag;
1318
1319  SmallVector<SDValue, 6> RetOps;
1320  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1321  // Operand #1 = Bytes To Pop
1322  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1323                   MVT::i16));
1324
1325  // Copy the result values into the output registers.
1326  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1327    CCValAssign &VA = RVLocs[i];
1328    assert(VA.isRegLoc() && "Can only return in registers!");
1329    SDValue ValToCopy = OutVals[i];
1330    EVT ValVT = ValToCopy.getValueType();
1331
1332    // If this is x86-64, and we disabled SSE, we can't return FP values,
1333    // or SSE or MMX vectors.
1334    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1335         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1336          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1337      report_fatal_error("SSE register return with SSE disabled");
1338    }
1339    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1340    // llvm-gcc has never done it right and no one has noticed, so this
1341    // should be OK for now.
1342    if (ValVT == MVT::f64 &&
1343        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1344      report_fatal_error("SSE2 register return with SSE2 disabled");
1345
1346    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1347    // the RET instruction and handled by the FP Stackifier.
1348    if (VA.getLocReg() == X86::ST0 ||
1349        VA.getLocReg() == X86::ST1) {
1350      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1351      // change the value to the FP stack register class.
1352      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1353        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1354      RetOps.push_back(ValToCopy);
1355      // Don't emit a copytoreg.
1356      continue;
1357    }
1358
1359    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1360    // which is returned in RAX / RDX.
1361    if (Subtarget->is64Bit()) {
1362      if (ValVT == MVT::x86mmx) {
1363        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1364          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1365          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1366                                  ValToCopy);
1367          // If we don't have SSE2 available, convert to v4f32 so the generated
1368          // register is legal.
1369          if (!Subtarget->hasSSE2())
1370            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1371        }
1372      }
1373    }
1374
1375    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1376    Flag = Chain.getValue(1);
1377  }
1378
1379  // The x86-64 ABI for returning structs by value requires that we copy
1380  // the sret argument into %rax for the return. We saved the argument into
1381  // a virtual register in the entry block, so now we copy the value out
1382  // and into %rax.
1383  if (Subtarget->is64Bit() &&
1384      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1385    MachineFunction &MF = DAG.getMachineFunction();
1386    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1387    unsigned Reg = FuncInfo->getSRetReturnReg();
1388    assert(Reg &&
1389           "SRetReturnReg should have been set in LowerFormalArguments().");
1390    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1391
1392    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1393    Flag = Chain.getValue(1);
1394
1395    // RAX now acts like a return value.
1396    MRI.addLiveOut(X86::RAX);
1397  }
1398
1399  RetOps[0] = Chain;  // Update chain.
1400
1401  // Add the flag if we have it.
1402  if (Flag.getNode())
1403    RetOps.push_back(Flag);
1404
1405  return DAG.getNode(X86ISD::RET_FLAG, dl,
1406                     MVT::Other, &RetOps[0], RetOps.size());
1407}
1408
1409bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1410  if (N->getNumValues() != 1)
1411    return false;
1412  if (!N->hasNUsesOfValue(1, 0))
1413    return false;
1414
1415  SDNode *Copy = *N->use_begin();
1416  if (Copy->getOpcode() != ISD::CopyToReg &&
1417      Copy->getOpcode() != ISD::FP_EXTEND)
1418    return false;
1419
1420  bool HasRet = false;
1421  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1422       UI != UE; ++UI) {
1423    if (UI->getOpcode() != X86ISD::RET_FLAG)
1424      return false;
1425    HasRet = true;
1426  }
1427
1428  return HasRet;
1429}
1430
1431EVT
1432X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1433                                            ISD::NodeType ExtendKind) const {
1434  MVT ReturnMVT;
1435  // TODO: Is this also valid on 32-bit?
1436  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1437    ReturnMVT = MVT::i8;
1438  else
1439    ReturnMVT = MVT::i32;
1440
1441  EVT MinVT = getRegisterType(Context, ReturnMVT);
1442  return VT.bitsLT(MinVT) ? MinVT : VT;
1443}
1444
1445/// LowerCallResult - Lower the result values of a call into the
1446/// appropriate copies out of appropriate physical registers.
1447///
1448SDValue
1449X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1450                                   CallingConv::ID CallConv, bool isVarArg,
1451                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1452                                   DebugLoc dl, SelectionDAG &DAG,
1453                                   SmallVectorImpl<SDValue> &InVals) const {
1454
1455  // Assign locations to each value returned by this call.
1456  SmallVector<CCValAssign, 16> RVLocs;
1457  bool Is64Bit = Subtarget->is64Bit();
1458  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1459		 getTargetMachine(), RVLocs, *DAG.getContext());
1460  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1461
1462  // Copy all of the result registers out of their specified physreg.
1463  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1464    CCValAssign &VA = RVLocs[i];
1465    EVT CopyVT = VA.getValVT();
1466
1467    // If this is x86-64, and we disabled SSE, we can't return FP values
1468    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1469        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1470      report_fatal_error("SSE register return with SSE disabled");
1471    }
1472
1473    SDValue Val;
1474
1475    // If this is a call to a function that returns an fp value on the floating
1476    // point stack, we must guarantee the the value is popped from the stack, so
1477    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1478    // if the return value is not used. We use the FpPOP_RETVAL instruction
1479    // instead.
1480    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1481      // If we prefer to use the value in xmm registers, copy it out as f80 and
1482      // use a truncate to move it from fp stack reg to xmm reg.
1483      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1484      SDValue Ops[] = { Chain, InFlag };
1485      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1486                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1487      Val = Chain.getValue(0);
1488
1489      // Round the f80 to the right size, which also moves it to the appropriate
1490      // xmm register.
1491      if (CopyVT != VA.getValVT())
1492        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1493                          // This truncation won't change the value.
1494                          DAG.getIntPtrConstant(1));
1495    } else {
1496      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1497                                 CopyVT, InFlag).getValue(1);
1498      Val = Chain.getValue(0);
1499    }
1500    InFlag = Chain.getValue(2);
1501    InVals.push_back(Val);
1502  }
1503
1504  return Chain;
1505}
1506
1507
1508//===----------------------------------------------------------------------===//
1509//                C & StdCall & Fast Calling Convention implementation
1510//===----------------------------------------------------------------------===//
1511//  StdCall calling convention seems to be standard for many Windows' API
1512//  routines and around. It differs from C calling convention just a little:
1513//  callee should clean up the stack, not caller. Symbols should be also
1514//  decorated in some fancy way :) It doesn't support any vector arguments.
1515//  For info on fast calling convention see Fast Calling Convention (tail call)
1516//  implementation LowerX86_32FastCCCallTo.
1517
1518/// CallIsStructReturn - Determines whether a call uses struct return
1519/// semantics.
1520static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1521  if (Outs.empty())
1522    return false;
1523
1524  return Outs[0].Flags.isSRet();
1525}
1526
1527/// ArgsAreStructReturn - Determines whether a function uses struct
1528/// return semantics.
1529static bool
1530ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1531  if (Ins.empty())
1532    return false;
1533
1534  return Ins[0].Flags.isSRet();
1535}
1536
1537/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1538/// by "Src" to address "Dst" with size and alignment information specified by
1539/// the specific parameter attribute. The copy will be passed as a byval
1540/// function parameter.
1541static SDValue
1542CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1543                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1544                          DebugLoc dl) {
1545  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1546
1547  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1548                       /*isVolatile*/false, /*AlwaysInline=*/true,
1549                       MachinePointerInfo(), MachinePointerInfo());
1550}
1551
1552/// IsTailCallConvention - Return true if the calling convention is one that
1553/// supports tail call optimization.
1554static bool IsTailCallConvention(CallingConv::ID CC) {
1555  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1556}
1557
1558bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1559  if (!CI->isTailCall())
1560    return false;
1561
1562  CallSite CS(CI);
1563  CallingConv::ID CalleeCC = CS.getCallingConv();
1564  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1565    return false;
1566
1567  return true;
1568}
1569
1570/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1571/// a tailcall target by changing its ABI.
1572static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1573  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1574}
1575
1576SDValue
1577X86TargetLowering::LowerMemArgument(SDValue Chain,
1578                                    CallingConv::ID CallConv,
1579                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1580                                    DebugLoc dl, SelectionDAG &DAG,
1581                                    const CCValAssign &VA,
1582                                    MachineFrameInfo *MFI,
1583                                    unsigned i) const {
1584  // Create the nodes corresponding to a load from this parameter slot.
1585  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1586  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1587  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1588  EVT ValVT;
1589
1590  // If value is passed by pointer we have address passed instead of the value
1591  // itself.
1592  if (VA.getLocInfo() == CCValAssign::Indirect)
1593    ValVT = VA.getLocVT();
1594  else
1595    ValVT = VA.getValVT();
1596
1597  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1598  // changed with more analysis.
1599  // In case of tail call optimization mark all arguments mutable. Since they
1600  // could be overwritten by lowering of arguments in case of a tail call.
1601  if (Flags.isByVal()) {
1602    unsigned Bytes = Flags.getByValSize();
1603    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1604    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1605    return DAG.getFrameIndex(FI, getPointerTy());
1606  } else {
1607    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1608                                    VA.getLocMemOffset(), isImmutable);
1609    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1610    return DAG.getLoad(ValVT, dl, Chain, FIN,
1611                       MachinePointerInfo::getFixedStack(FI),
1612                       false, false, 0);
1613  }
1614}
1615
1616SDValue
1617X86TargetLowering::LowerFormalArguments(SDValue Chain,
1618                                        CallingConv::ID CallConv,
1619                                        bool isVarArg,
1620                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1621                                        DebugLoc dl,
1622                                        SelectionDAG &DAG,
1623                                        SmallVectorImpl<SDValue> &InVals)
1624                                          const {
1625  MachineFunction &MF = DAG.getMachineFunction();
1626  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1627
1628  const Function* Fn = MF.getFunction();
1629  if (Fn->hasExternalLinkage() &&
1630      Subtarget->isTargetCygMing() &&
1631      Fn->getName() == "main")
1632    FuncInfo->setForceFramePointer(true);
1633
1634  MachineFrameInfo *MFI = MF.getFrameInfo();
1635  bool Is64Bit = Subtarget->is64Bit();
1636  bool IsWin64 = Subtarget->isTargetWin64();
1637
1638  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1639         "Var args not supported with calling convention fastcc or ghc");
1640
1641  // Assign locations to all of the incoming arguments.
1642  SmallVector<CCValAssign, 16> ArgLocs;
1643  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1644                 ArgLocs, *DAG.getContext());
1645
1646  // Allocate shadow area for Win64
1647  if (IsWin64) {
1648    CCInfo.AllocateStack(32, 8);
1649  }
1650
1651  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1652
1653  unsigned LastVal = ~0U;
1654  SDValue ArgValue;
1655  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1656    CCValAssign &VA = ArgLocs[i];
1657    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1658    // places.
1659    assert(VA.getValNo() != LastVal &&
1660           "Don't support value assigned to multiple locs yet");
1661    LastVal = VA.getValNo();
1662
1663    if (VA.isRegLoc()) {
1664      EVT RegVT = VA.getLocVT();
1665      TargetRegisterClass *RC = NULL;
1666      if (RegVT == MVT::i32)
1667        RC = X86::GR32RegisterClass;
1668      else if (Is64Bit && RegVT == MVT::i64)
1669        RC = X86::GR64RegisterClass;
1670      else if (RegVT == MVT::f32)
1671        RC = X86::FR32RegisterClass;
1672      else if (RegVT == MVT::f64)
1673        RC = X86::FR64RegisterClass;
1674      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1675        RC = X86::VR256RegisterClass;
1676      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1677        RC = X86::VR128RegisterClass;
1678      else if (RegVT == MVT::x86mmx)
1679        RC = X86::VR64RegisterClass;
1680      else
1681        llvm_unreachable("Unknown argument type!");
1682
1683      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1684      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1685
1686      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1687      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1688      // right size.
1689      if (VA.getLocInfo() == CCValAssign::SExt)
1690        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1691                               DAG.getValueType(VA.getValVT()));
1692      else if (VA.getLocInfo() == CCValAssign::ZExt)
1693        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1694                               DAG.getValueType(VA.getValVT()));
1695      else if (VA.getLocInfo() == CCValAssign::BCvt)
1696        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1697
1698      if (VA.isExtInLoc()) {
1699        // Handle MMX values passed in XMM regs.
1700        if (RegVT.isVector()) {
1701          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1702                                 ArgValue);
1703        } else
1704          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1705      }
1706    } else {
1707      assert(VA.isMemLoc());
1708      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1709    }
1710
1711    // If value is passed via pointer - do a load.
1712    if (VA.getLocInfo() == CCValAssign::Indirect)
1713      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1714                             MachinePointerInfo(), false, false, 0);
1715
1716    InVals.push_back(ArgValue);
1717  }
1718
1719  // The x86-64 ABI for returning structs by value requires that we copy
1720  // the sret argument into %rax for the return. Save the argument into
1721  // a virtual register so that we can access it from the return points.
1722  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1723    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1724    unsigned Reg = FuncInfo->getSRetReturnReg();
1725    if (!Reg) {
1726      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1727      FuncInfo->setSRetReturnReg(Reg);
1728    }
1729    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1730    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1731  }
1732
1733  unsigned StackSize = CCInfo.getNextStackOffset();
1734  // Align stack specially for tail calls.
1735  if (FuncIsMadeTailCallSafe(CallConv))
1736    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1737
1738  // If the function takes variable number of arguments, make a frame index for
1739  // the start of the first vararg value... for expansion of llvm.va_start.
1740  if (isVarArg) {
1741    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1742                    CallConv != CallingConv::X86_ThisCall)) {
1743      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1744    }
1745    if (Is64Bit) {
1746      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1747
1748      // FIXME: We should really autogenerate these arrays
1749      static const unsigned GPR64ArgRegsWin64[] = {
1750        X86::RCX, X86::RDX, X86::R8,  X86::R9
1751      };
1752      static const unsigned GPR64ArgRegs64Bit[] = {
1753        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1754      };
1755      static const unsigned XMMArgRegs64Bit[] = {
1756        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1757        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1758      };
1759      const unsigned *GPR64ArgRegs;
1760      unsigned NumXMMRegs = 0;
1761
1762      if (IsWin64) {
1763        // The XMM registers which might contain var arg parameters are shadowed
1764        // in their paired GPR.  So we only need to save the GPR to their home
1765        // slots.
1766        TotalNumIntRegs = 4;
1767        GPR64ArgRegs = GPR64ArgRegsWin64;
1768      } else {
1769        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1770        GPR64ArgRegs = GPR64ArgRegs64Bit;
1771
1772        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1773      }
1774      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1775                                                       TotalNumIntRegs);
1776
1777      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1778      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1779             "SSE register cannot be used when SSE is disabled!");
1780      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1781             "SSE register cannot be used when SSE is disabled!");
1782      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1783        // Kernel mode asks for SSE to be disabled, so don't push them
1784        // on the stack.
1785        TotalNumXMMRegs = 0;
1786
1787      if (IsWin64) {
1788        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1789        // Get to the caller-allocated home save location.  Add 8 to account
1790        // for the return address.
1791        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1792        FuncInfo->setRegSaveFrameIndex(
1793          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1794        // Fixup to set vararg frame on shadow area (4 x i64).
1795        if (NumIntRegs < 4)
1796          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1797      } else {
1798        // For X86-64, if there are vararg parameters that are passed via
1799        // registers, then we must store them to their spots on the stack so they
1800        // may be loaded by deferencing the result of va_next.
1801        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1802        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1803        FuncInfo->setRegSaveFrameIndex(
1804          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1805                               false));
1806      }
1807
1808      // Store the integer parameter registers.
1809      SmallVector<SDValue, 8> MemOps;
1810      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1811                                        getPointerTy());
1812      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1813      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1814        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1815                                  DAG.getIntPtrConstant(Offset));
1816        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1817                                     X86::GR64RegisterClass);
1818        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1819        SDValue Store =
1820          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1821                       MachinePointerInfo::getFixedStack(
1822                         FuncInfo->getRegSaveFrameIndex(), Offset),
1823                       false, false, 0);
1824        MemOps.push_back(Store);
1825        Offset += 8;
1826      }
1827
1828      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1829        // Now store the XMM (fp + vector) parameter registers.
1830        SmallVector<SDValue, 11> SaveXMMOps;
1831        SaveXMMOps.push_back(Chain);
1832
1833        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1834        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1835        SaveXMMOps.push_back(ALVal);
1836
1837        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1838                               FuncInfo->getRegSaveFrameIndex()));
1839        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1840                               FuncInfo->getVarArgsFPOffset()));
1841
1842        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1843          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1844                                       X86::VR128RegisterClass);
1845          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1846          SaveXMMOps.push_back(Val);
1847        }
1848        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1849                                     MVT::Other,
1850                                     &SaveXMMOps[0], SaveXMMOps.size()));
1851      }
1852
1853      if (!MemOps.empty())
1854        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1855                            &MemOps[0], MemOps.size());
1856    }
1857  }
1858
1859  // Some CCs need callee pop.
1860  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1861    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1862  } else {
1863    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1864    // If this is an sret function, the return should pop the hidden pointer.
1865    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1866      FuncInfo->setBytesToPopOnReturn(4);
1867  }
1868
1869  if (!Is64Bit) {
1870    // RegSaveFrameIndex is X86-64 only.
1871    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1872    if (CallConv == CallingConv::X86_FastCall ||
1873        CallConv == CallingConv::X86_ThisCall)
1874      // fastcc functions can't have varargs.
1875      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1876  }
1877
1878  return Chain;
1879}
1880
1881SDValue
1882X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1883                                    SDValue StackPtr, SDValue Arg,
1884                                    DebugLoc dl, SelectionDAG &DAG,
1885                                    const CCValAssign &VA,
1886                                    ISD::ArgFlagsTy Flags) const {
1887  unsigned LocMemOffset = VA.getLocMemOffset();
1888  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1889  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1890  if (Flags.isByVal())
1891    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1892
1893  return DAG.getStore(Chain, dl, Arg, PtrOff,
1894                      MachinePointerInfo::getStack(LocMemOffset),
1895                      false, false, 0);
1896}
1897
1898/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1899/// optimization is performed and it is required.
1900SDValue
1901X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1902                                           SDValue &OutRetAddr, SDValue Chain,
1903                                           bool IsTailCall, bool Is64Bit,
1904                                           int FPDiff, DebugLoc dl) const {
1905  // Adjust the Return address stack slot.
1906  EVT VT = getPointerTy();
1907  OutRetAddr = getReturnAddressFrameIndex(DAG);
1908
1909  // Load the "old" Return address.
1910  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1911                           false, false, 0);
1912  return SDValue(OutRetAddr.getNode(), 1);
1913}
1914
1915/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1916/// optimization is performed and it is required (FPDiff!=0).
1917static SDValue
1918EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1919                         SDValue Chain, SDValue RetAddrFrIdx,
1920                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1921  // Store the return address to the appropriate stack slot.
1922  if (!FPDiff) return Chain;
1923  // Calculate the new stack slot for the return address.
1924  int SlotSize = Is64Bit ? 8 : 4;
1925  int NewReturnAddrFI =
1926    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1927  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1928  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1929  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1930                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1931                       false, false, 0);
1932  return Chain;
1933}
1934
1935SDValue
1936X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1937                             CallingConv::ID CallConv, bool isVarArg,
1938                             bool &isTailCall,
1939                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1940                             const SmallVectorImpl<SDValue> &OutVals,
1941                             const SmallVectorImpl<ISD::InputArg> &Ins,
1942                             DebugLoc dl, SelectionDAG &DAG,
1943                             SmallVectorImpl<SDValue> &InVals) const {
1944  MachineFunction &MF = DAG.getMachineFunction();
1945  bool Is64Bit        = Subtarget->is64Bit();
1946  bool IsWin64        = Subtarget->isTargetWin64();
1947  bool IsStructRet    = CallIsStructReturn(Outs);
1948  bool IsSibcall      = false;
1949
1950  if (isTailCall) {
1951    // Check if it's really possible to do a tail call.
1952    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1953                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1954                                                   Outs, OutVals, Ins, DAG);
1955
1956    // Sibcalls are automatically detected tailcalls which do not require
1957    // ABI changes.
1958    if (!GuaranteedTailCallOpt && isTailCall)
1959      IsSibcall = true;
1960
1961    if (isTailCall)
1962      ++NumTailCalls;
1963  }
1964
1965  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1966         "Var args not supported with calling convention fastcc or ghc");
1967
1968  // Analyze operands of the call, assigning locations to each operand.
1969  SmallVector<CCValAssign, 16> ArgLocs;
1970  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1971                 ArgLocs, *DAG.getContext());
1972
1973  // Allocate shadow area for Win64
1974  if (IsWin64) {
1975    CCInfo.AllocateStack(32, 8);
1976  }
1977
1978  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1979
1980  // Get a count of how many bytes are to be pushed on the stack.
1981  unsigned NumBytes = CCInfo.getNextStackOffset();
1982  if (IsSibcall)
1983    // This is a sibcall. The memory operands are available in caller's
1984    // own caller's stack.
1985    NumBytes = 0;
1986  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1987    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1988
1989  int FPDiff = 0;
1990  if (isTailCall && !IsSibcall) {
1991    // Lower arguments at fp - stackoffset + fpdiff.
1992    unsigned NumBytesCallerPushed =
1993      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1994    FPDiff = NumBytesCallerPushed - NumBytes;
1995
1996    // Set the delta of movement of the returnaddr stackslot.
1997    // But only set if delta is greater than previous delta.
1998    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1999      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2000  }
2001
2002  if (!IsSibcall)
2003    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2004
2005  SDValue RetAddrFrIdx;
2006  // Load return address for tail calls.
2007  if (isTailCall && FPDiff)
2008    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2009                                    Is64Bit, FPDiff, dl);
2010
2011  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2012  SmallVector<SDValue, 8> MemOpChains;
2013  SDValue StackPtr;
2014
2015  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2016  // of tail call optimization arguments are handle later.
2017  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2018    CCValAssign &VA = ArgLocs[i];
2019    EVT RegVT = VA.getLocVT();
2020    SDValue Arg = OutVals[i];
2021    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2022    bool isByVal = Flags.isByVal();
2023
2024    // Promote the value if needed.
2025    switch (VA.getLocInfo()) {
2026    default: llvm_unreachable("Unknown loc info!");
2027    case CCValAssign::Full: break;
2028    case CCValAssign::SExt:
2029      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2030      break;
2031    case CCValAssign::ZExt:
2032      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2033      break;
2034    case CCValAssign::AExt:
2035      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2036        // Special case: passing MMX values in XMM registers.
2037        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2038        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2039        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2040      } else
2041        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2042      break;
2043    case CCValAssign::BCvt:
2044      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2045      break;
2046    case CCValAssign::Indirect: {
2047      // Store the argument.
2048      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2049      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2050      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2051                           MachinePointerInfo::getFixedStack(FI),
2052                           false, false, 0);
2053      Arg = SpillSlot;
2054      break;
2055    }
2056    }
2057
2058    if (VA.isRegLoc()) {
2059      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2060      if (isVarArg && IsWin64) {
2061        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2062        // shadow reg if callee is a varargs function.
2063        unsigned ShadowReg = 0;
2064        switch (VA.getLocReg()) {
2065        case X86::XMM0: ShadowReg = X86::RCX; break;
2066        case X86::XMM1: ShadowReg = X86::RDX; break;
2067        case X86::XMM2: ShadowReg = X86::R8; break;
2068        case X86::XMM3: ShadowReg = X86::R9; break;
2069        }
2070        if (ShadowReg)
2071          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2072      }
2073    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2074      assert(VA.isMemLoc());
2075      if (StackPtr.getNode() == 0)
2076        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2077      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2078                                             dl, DAG, VA, Flags));
2079    }
2080  }
2081
2082  if (!MemOpChains.empty())
2083    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2084                        &MemOpChains[0], MemOpChains.size());
2085
2086  // Build a sequence of copy-to-reg nodes chained together with token chain
2087  // and flag operands which copy the outgoing args into registers.
2088  SDValue InFlag;
2089  // Tail call byval lowering might overwrite argument registers so in case of
2090  // tail call optimization the copies to registers are lowered later.
2091  if (!isTailCall)
2092    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2093      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2094                               RegsToPass[i].second, InFlag);
2095      InFlag = Chain.getValue(1);
2096    }
2097
2098  if (Subtarget->isPICStyleGOT()) {
2099    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2100    // GOT pointer.
2101    if (!isTailCall) {
2102      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2103                               DAG.getNode(X86ISD::GlobalBaseReg,
2104                                           DebugLoc(), getPointerTy()),
2105                               InFlag);
2106      InFlag = Chain.getValue(1);
2107    } else {
2108      // If we are tail calling and generating PIC/GOT style code load the
2109      // address of the callee into ECX. The value in ecx is used as target of
2110      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2111      // for tail calls on PIC/GOT architectures. Normally we would just put the
2112      // address of GOT into ebx and then call target@PLT. But for tail calls
2113      // ebx would be restored (since ebx is callee saved) before jumping to the
2114      // target@PLT.
2115
2116      // Note: The actual moving to ECX is done further down.
2117      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2118      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2119          !G->getGlobal()->hasProtectedVisibility())
2120        Callee = LowerGlobalAddress(Callee, DAG);
2121      else if (isa<ExternalSymbolSDNode>(Callee))
2122        Callee = LowerExternalSymbol(Callee, DAG);
2123    }
2124  }
2125
2126  if (Is64Bit && isVarArg && !IsWin64) {
2127    // From AMD64 ABI document:
2128    // For calls that may call functions that use varargs or stdargs
2129    // (prototype-less calls or calls to functions containing ellipsis (...) in
2130    // the declaration) %al is used as hidden argument to specify the number
2131    // of SSE registers used. The contents of %al do not need to match exactly
2132    // the number of registers, but must be an ubound on the number of SSE
2133    // registers used and is in the range 0 - 8 inclusive.
2134
2135    // Count the number of XMM registers allocated.
2136    static const unsigned XMMArgRegs[] = {
2137      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2138      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2139    };
2140    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2141    assert((Subtarget->hasXMM() || !NumXMMRegs)
2142           && "SSE registers cannot be used when SSE is disabled");
2143
2144    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2145                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2146    InFlag = Chain.getValue(1);
2147  }
2148
2149
2150  // For tail calls lower the arguments to the 'real' stack slot.
2151  if (isTailCall) {
2152    // Force all the incoming stack arguments to be loaded from the stack
2153    // before any new outgoing arguments are stored to the stack, because the
2154    // outgoing stack slots may alias the incoming argument stack slots, and
2155    // the alias isn't otherwise explicit. This is slightly more conservative
2156    // than necessary, because it means that each store effectively depends
2157    // on every argument instead of just those arguments it would clobber.
2158    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2159
2160    SmallVector<SDValue, 8> MemOpChains2;
2161    SDValue FIN;
2162    int FI = 0;
2163    // Do not flag preceding copytoreg stuff together with the following stuff.
2164    InFlag = SDValue();
2165    if (GuaranteedTailCallOpt) {
2166      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2167        CCValAssign &VA = ArgLocs[i];
2168        if (VA.isRegLoc())
2169          continue;
2170        assert(VA.isMemLoc());
2171        SDValue Arg = OutVals[i];
2172        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2173        // Create frame index.
2174        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2175        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2176        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2177        FIN = DAG.getFrameIndex(FI, getPointerTy());
2178
2179        if (Flags.isByVal()) {
2180          // Copy relative to framepointer.
2181          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2182          if (StackPtr.getNode() == 0)
2183            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2184                                          getPointerTy());
2185          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2186
2187          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2188                                                           ArgChain,
2189                                                           Flags, DAG, dl));
2190        } else {
2191          // Store relative to framepointer.
2192          MemOpChains2.push_back(
2193            DAG.getStore(ArgChain, dl, Arg, FIN,
2194                         MachinePointerInfo::getFixedStack(FI),
2195                         false, false, 0));
2196        }
2197      }
2198    }
2199
2200    if (!MemOpChains2.empty())
2201      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2202                          &MemOpChains2[0], MemOpChains2.size());
2203
2204    // Copy arguments to their registers.
2205    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2206      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2207                               RegsToPass[i].second, InFlag);
2208      InFlag = Chain.getValue(1);
2209    }
2210    InFlag =SDValue();
2211
2212    // Store the return address to the appropriate stack slot.
2213    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2214                                     FPDiff, dl);
2215  }
2216
2217  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2218    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2219    // In the 64-bit large code model, we have to make all calls
2220    // through a register, since the call instruction's 32-bit
2221    // pc-relative offset may not be large enough to hold the whole
2222    // address.
2223  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2224    // If the callee is a GlobalAddress node (quite common, every direct call
2225    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2226    // it.
2227
2228    // We should use extra load for direct calls to dllimported functions in
2229    // non-JIT mode.
2230    const GlobalValue *GV = G->getGlobal();
2231    if (!GV->hasDLLImportLinkage()) {
2232      unsigned char OpFlags = 0;
2233      bool ExtraLoad = false;
2234      unsigned WrapperKind = ISD::DELETED_NODE;
2235
2236      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2237      // external symbols most go through the PLT in PIC mode.  If the symbol
2238      // has hidden or protected visibility, or if it is static or local, then
2239      // we don't need to use the PLT - we can directly call it.
2240      if (Subtarget->isTargetELF() &&
2241          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2242          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2243        OpFlags = X86II::MO_PLT;
2244      } else if (Subtarget->isPICStyleStubAny() &&
2245                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2246                 (!Subtarget->getTargetTriple().isMacOSX() ||
2247                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2248        // PC-relative references to external symbols should go through $stub,
2249        // unless we're building with the leopard linker or later, which
2250        // automatically synthesizes these stubs.
2251        OpFlags = X86II::MO_DARWIN_STUB;
2252      } else if (Subtarget->isPICStyleRIPRel() &&
2253                 isa<Function>(GV) &&
2254                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2255        // If the function is marked as non-lazy, generate an indirect call
2256        // which loads from the GOT directly. This avoids runtime overhead
2257        // at the cost of eager binding (and one extra byte of encoding).
2258        OpFlags = X86II::MO_GOTPCREL;
2259        WrapperKind = X86ISD::WrapperRIP;
2260        ExtraLoad = true;
2261      }
2262
2263      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2264                                          G->getOffset(), OpFlags);
2265
2266      // Add a wrapper if needed.
2267      if (WrapperKind != ISD::DELETED_NODE)
2268        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2269      // Add extra indirection if needed.
2270      if (ExtraLoad)
2271        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2272                             MachinePointerInfo::getGOT(),
2273                             false, false, 0);
2274    }
2275  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2276    unsigned char OpFlags = 0;
2277
2278    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2279    // external symbols should go through the PLT.
2280    if (Subtarget->isTargetELF() &&
2281        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2282      OpFlags = X86II::MO_PLT;
2283    } else if (Subtarget->isPICStyleStubAny() &&
2284               (!Subtarget->getTargetTriple().isMacOSX() ||
2285                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2286      // PC-relative references to external symbols should go through $stub,
2287      // unless we're building with the leopard linker or later, which
2288      // automatically synthesizes these stubs.
2289      OpFlags = X86II::MO_DARWIN_STUB;
2290    }
2291
2292    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2293                                         OpFlags);
2294  }
2295
2296  // Returns a chain & a flag for retval copy to use.
2297  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2298  SmallVector<SDValue, 8> Ops;
2299
2300  if (!IsSibcall && isTailCall) {
2301    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2302                           DAG.getIntPtrConstant(0, true), InFlag);
2303    InFlag = Chain.getValue(1);
2304  }
2305
2306  Ops.push_back(Chain);
2307  Ops.push_back(Callee);
2308
2309  if (isTailCall)
2310    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2311
2312  // Add argument registers to the end of the list so that they are known live
2313  // into the call.
2314  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2315    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2316                                  RegsToPass[i].second.getValueType()));
2317
2318  // Add an implicit use GOT pointer in EBX.
2319  if (!isTailCall && Subtarget->isPICStyleGOT())
2320    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2321
2322  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2323  if (Is64Bit && isVarArg && !IsWin64)
2324    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2325
2326  if (InFlag.getNode())
2327    Ops.push_back(InFlag);
2328
2329  if (isTailCall) {
2330    // We used to do:
2331    //// If this is the first return lowered for this function, add the regs
2332    //// to the liveout set for the function.
2333    // This isn't right, although it's probably harmless on x86; liveouts
2334    // should be computed from returns not tail calls.  Consider a void
2335    // function making a tail call to a function returning int.
2336    return DAG.getNode(X86ISD::TC_RETURN, dl,
2337                       NodeTys, &Ops[0], Ops.size());
2338  }
2339
2340  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2341  InFlag = Chain.getValue(1);
2342
2343  // Create the CALLSEQ_END node.
2344  unsigned NumBytesForCalleeToPush;
2345  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2346    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2347  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2348    // If this is a call to a struct-return function, the callee
2349    // pops the hidden struct pointer, so we have to push it back.
2350    // This is common for Darwin/X86, Linux & Mingw32 targets.
2351    NumBytesForCalleeToPush = 4;
2352  else
2353    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2354
2355  // Returns a flag for retval copy to use.
2356  if (!IsSibcall) {
2357    Chain = DAG.getCALLSEQ_END(Chain,
2358                               DAG.getIntPtrConstant(NumBytes, true),
2359                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2360                                                     true),
2361                               InFlag);
2362    InFlag = Chain.getValue(1);
2363  }
2364
2365  // Handle result values, copying them out of physregs into vregs that we
2366  // return.
2367  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2368                         Ins, dl, DAG, InVals);
2369}
2370
2371
2372//===----------------------------------------------------------------------===//
2373//                Fast Calling Convention (tail call) implementation
2374//===----------------------------------------------------------------------===//
2375
2376//  Like std call, callee cleans arguments, convention except that ECX is
2377//  reserved for storing the tail called function address. Only 2 registers are
2378//  free for argument passing (inreg). Tail call optimization is performed
2379//  provided:
2380//                * tailcallopt is enabled
2381//                * caller/callee are fastcc
2382//  On X86_64 architecture with GOT-style position independent code only local
2383//  (within module) calls are supported at the moment.
2384//  To keep the stack aligned according to platform abi the function
2385//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2386//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2387//  If a tail called function callee has more arguments than the caller the
2388//  caller needs to make sure that there is room to move the RETADDR to. This is
2389//  achieved by reserving an area the size of the argument delta right after the
2390//  original REtADDR, but before the saved framepointer or the spilled registers
2391//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2392//  stack layout:
2393//    arg1
2394//    arg2
2395//    RETADDR
2396//    [ new RETADDR
2397//      move area ]
2398//    (possible EBP)
2399//    ESI
2400//    EDI
2401//    local1 ..
2402
2403/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2404/// for a 16 byte align requirement.
2405unsigned
2406X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2407                                               SelectionDAG& DAG) const {
2408  MachineFunction &MF = DAG.getMachineFunction();
2409  const TargetMachine &TM = MF.getTarget();
2410  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2411  unsigned StackAlignment = TFI.getStackAlignment();
2412  uint64_t AlignMask = StackAlignment - 1;
2413  int64_t Offset = StackSize;
2414  uint64_t SlotSize = TD->getPointerSize();
2415  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2416    // Number smaller than 12 so just add the difference.
2417    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2418  } else {
2419    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2420    Offset = ((~AlignMask) & Offset) + StackAlignment +
2421      (StackAlignment-SlotSize);
2422  }
2423  return Offset;
2424}
2425
2426/// MatchingStackOffset - Return true if the given stack call argument is
2427/// already available in the same position (relatively) of the caller's
2428/// incoming argument stack.
2429static
2430bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2431                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2432                         const X86InstrInfo *TII) {
2433  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2434  int FI = INT_MAX;
2435  if (Arg.getOpcode() == ISD::CopyFromReg) {
2436    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2437    if (!TargetRegisterInfo::isVirtualRegister(VR))
2438      return false;
2439    MachineInstr *Def = MRI->getVRegDef(VR);
2440    if (!Def)
2441      return false;
2442    if (!Flags.isByVal()) {
2443      if (!TII->isLoadFromStackSlot(Def, FI))
2444        return false;
2445    } else {
2446      unsigned Opcode = Def->getOpcode();
2447      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2448          Def->getOperand(1).isFI()) {
2449        FI = Def->getOperand(1).getIndex();
2450        Bytes = Flags.getByValSize();
2451      } else
2452        return false;
2453    }
2454  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2455    if (Flags.isByVal())
2456      // ByVal argument is passed in as a pointer but it's now being
2457      // dereferenced. e.g.
2458      // define @foo(%struct.X* %A) {
2459      //   tail call @bar(%struct.X* byval %A)
2460      // }
2461      return false;
2462    SDValue Ptr = Ld->getBasePtr();
2463    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2464    if (!FINode)
2465      return false;
2466    FI = FINode->getIndex();
2467  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2468    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2469    FI = FINode->getIndex();
2470    Bytes = Flags.getByValSize();
2471  } else
2472    return false;
2473
2474  assert(FI != INT_MAX);
2475  if (!MFI->isFixedObjectIndex(FI))
2476    return false;
2477  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2478}
2479
2480/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2481/// for tail call optimization. Targets which want to do tail call
2482/// optimization should implement this function.
2483bool
2484X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2485                                                     CallingConv::ID CalleeCC,
2486                                                     bool isVarArg,
2487                                                     bool isCalleeStructRet,
2488                                                     bool isCallerStructRet,
2489                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2490                                    const SmallVectorImpl<SDValue> &OutVals,
2491                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2492                                                     SelectionDAG& DAG) const {
2493  if (!IsTailCallConvention(CalleeCC) &&
2494      CalleeCC != CallingConv::C)
2495    return false;
2496
2497  // If -tailcallopt is specified, make fastcc functions tail-callable.
2498  const MachineFunction &MF = DAG.getMachineFunction();
2499  const Function *CallerF = DAG.getMachineFunction().getFunction();
2500  CallingConv::ID CallerCC = CallerF->getCallingConv();
2501  bool CCMatch = CallerCC == CalleeCC;
2502
2503  if (GuaranteedTailCallOpt) {
2504    if (IsTailCallConvention(CalleeCC) && CCMatch)
2505      return true;
2506    return false;
2507  }
2508
2509  // Look for obvious safe cases to perform tail call optimization that do not
2510  // require ABI changes. This is what gcc calls sibcall.
2511
2512  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2513  // emit a special epilogue.
2514  if (RegInfo->needsStackRealignment(MF))
2515    return false;
2516
2517  // Also avoid sibcall optimization if either caller or callee uses struct
2518  // return semantics.
2519  if (isCalleeStructRet || isCallerStructRet)
2520    return false;
2521
2522  // An stdcall caller is expected to clean up its arguments; the callee
2523  // isn't going to do that.
2524  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2525    return false;
2526
2527  // Do not sibcall optimize vararg calls unless all arguments are passed via
2528  // registers.
2529  if (isVarArg && !Outs.empty()) {
2530
2531    // Optimizing for varargs on Win64 is unlikely to be safe without
2532    // additional testing.
2533    if (Subtarget->isTargetWin64())
2534      return false;
2535
2536    SmallVector<CCValAssign, 16> ArgLocs;
2537    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2538		   getTargetMachine(), ArgLocs, *DAG.getContext());
2539
2540    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2541    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2542      if (!ArgLocs[i].isRegLoc())
2543        return false;
2544  }
2545
2546  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2547  // Therefore if it's not used by the call it is not safe to optimize this into
2548  // a sibcall.
2549  bool Unused = false;
2550  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2551    if (!Ins[i].Used) {
2552      Unused = true;
2553      break;
2554    }
2555  }
2556  if (Unused) {
2557    SmallVector<CCValAssign, 16> RVLocs;
2558    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2559		   getTargetMachine(), RVLocs, *DAG.getContext());
2560    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2561    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2562      CCValAssign &VA = RVLocs[i];
2563      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2564        return false;
2565    }
2566  }
2567
2568  // If the calling conventions do not match, then we'd better make sure the
2569  // results are returned in the same way as what the caller expects.
2570  if (!CCMatch) {
2571    SmallVector<CCValAssign, 16> RVLocs1;
2572    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2573		    getTargetMachine(), RVLocs1, *DAG.getContext());
2574    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2575
2576    SmallVector<CCValAssign, 16> RVLocs2;
2577    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2578		    getTargetMachine(), RVLocs2, *DAG.getContext());
2579    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2580
2581    if (RVLocs1.size() != RVLocs2.size())
2582      return false;
2583    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2584      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2585        return false;
2586      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2587        return false;
2588      if (RVLocs1[i].isRegLoc()) {
2589        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2590          return false;
2591      } else {
2592        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2593          return false;
2594      }
2595    }
2596  }
2597
2598  // If the callee takes no arguments then go on to check the results of the
2599  // call.
2600  if (!Outs.empty()) {
2601    // Check if stack adjustment is needed. For now, do not do this if any
2602    // argument is passed on the stack.
2603    SmallVector<CCValAssign, 16> ArgLocs;
2604    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2605		   getTargetMachine(), ArgLocs, *DAG.getContext());
2606
2607    // Allocate shadow area for Win64
2608    if (Subtarget->isTargetWin64()) {
2609      CCInfo.AllocateStack(32, 8);
2610    }
2611
2612    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2613    if (CCInfo.getNextStackOffset()) {
2614      MachineFunction &MF = DAG.getMachineFunction();
2615      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2616        return false;
2617
2618      // Check if the arguments are already laid out in the right way as
2619      // the caller's fixed stack objects.
2620      MachineFrameInfo *MFI = MF.getFrameInfo();
2621      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2622      const X86InstrInfo *TII =
2623        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2624      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2625        CCValAssign &VA = ArgLocs[i];
2626        SDValue Arg = OutVals[i];
2627        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2628        if (VA.getLocInfo() == CCValAssign::Indirect)
2629          return false;
2630        if (!VA.isRegLoc()) {
2631          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2632                                   MFI, MRI, TII))
2633            return false;
2634        }
2635      }
2636    }
2637
2638    // If the tailcall address may be in a register, then make sure it's
2639    // possible to register allocate for it. In 32-bit, the call address can
2640    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2641    // callee-saved registers are restored. These happen to be the same
2642    // registers used to pass 'inreg' arguments so watch out for those.
2643    if (!Subtarget->is64Bit() &&
2644        !isa<GlobalAddressSDNode>(Callee) &&
2645        !isa<ExternalSymbolSDNode>(Callee)) {
2646      unsigned NumInRegs = 0;
2647      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2648        CCValAssign &VA = ArgLocs[i];
2649        if (!VA.isRegLoc())
2650          continue;
2651        unsigned Reg = VA.getLocReg();
2652        switch (Reg) {
2653        default: break;
2654        case X86::EAX: case X86::EDX: case X86::ECX:
2655          if (++NumInRegs == 3)
2656            return false;
2657          break;
2658        }
2659      }
2660    }
2661  }
2662
2663  return true;
2664}
2665
2666FastISel *
2667X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2668  return X86::createFastISel(funcInfo);
2669}
2670
2671
2672//===----------------------------------------------------------------------===//
2673//                           Other Lowering Hooks
2674//===----------------------------------------------------------------------===//
2675
2676static bool MayFoldLoad(SDValue Op) {
2677  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2678}
2679
2680static bool MayFoldIntoStore(SDValue Op) {
2681  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2682}
2683
2684static bool isTargetShuffle(unsigned Opcode) {
2685  switch(Opcode) {
2686  default: return false;
2687  case X86ISD::PSHUFD:
2688  case X86ISD::PSHUFHW:
2689  case X86ISD::PSHUFLW:
2690  case X86ISD::SHUFPD:
2691  case X86ISD::PALIGN:
2692  case X86ISD::SHUFPS:
2693  case X86ISD::MOVLHPS:
2694  case X86ISD::MOVLHPD:
2695  case X86ISD::MOVHLPS:
2696  case X86ISD::MOVLPS:
2697  case X86ISD::MOVLPD:
2698  case X86ISD::MOVSHDUP:
2699  case X86ISD::MOVSLDUP:
2700  case X86ISD::MOVDDUP:
2701  case X86ISD::MOVSS:
2702  case X86ISD::MOVSD:
2703  case X86ISD::UNPCKLPS:
2704  case X86ISD::UNPCKLPD:
2705  case X86ISD::VUNPCKLPSY:
2706  case X86ISD::VUNPCKLPDY:
2707  case X86ISD::PUNPCKLWD:
2708  case X86ISD::PUNPCKLBW:
2709  case X86ISD::PUNPCKLDQ:
2710  case X86ISD::PUNPCKLQDQ:
2711  case X86ISD::UNPCKHPS:
2712  case X86ISD::UNPCKHPD:
2713  case X86ISD::PUNPCKHWD:
2714  case X86ISD::PUNPCKHBW:
2715  case X86ISD::PUNPCKHDQ:
2716  case X86ISD::PUNPCKHQDQ:
2717  case X86ISD::VPERMIL:
2718    return true;
2719  }
2720  return false;
2721}
2722
2723static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2724                                               SDValue V1, SelectionDAG &DAG) {
2725  switch(Opc) {
2726  default: llvm_unreachable("Unknown x86 shuffle node");
2727  case X86ISD::MOVSHDUP:
2728  case X86ISD::MOVSLDUP:
2729  case X86ISD::MOVDDUP:
2730    return DAG.getNode(Opc, dl, VT, V1);
2731  }
2732
2733  return SDValue();
2734}
2735
2736static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2737                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2738  switch(Opc) {
2739  default: llvm_unreachable("Unknown x86 shuffle node");
2740  case X86ISD::PSHUFD:
2741  case X86ISD::PSHUFHW:
2742  case X86ISD::PSHUFLW:
2743  case X86ISD::VPERMIL:
2744    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2745  }
2746
2747  return SDValue();
2748}
2749
2750static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2751               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2752  switch(Opc) {
2753  default: llvm_unreachable("Unknown x86 shuffle node");
2754  case X86ISD::PALIGN:
2755  case X86ISD::SHUFPD:
2756  case X86ISD::SHUFPS:
2757    return DAG.getNode(Opc, dl, VT, V1, V2,
2758                       DAG.getConstant(TargetMask, MVT::i8));
2759  }
2760  return SDValue();
2761}
2762
2763static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2764                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2765  switch(Opc) {
2766  default: llvm_unreachable("Unknown x86 shuffle node");
2767  case X86ISD::MOVLHPS:
2768  case X86ISD::MOVLHPD:
2769  case X86ISD::MOVHLPS:
2770  case X86ISD::MOVLPS:
2771  case X86ISD::MOVLPD:
2772  case X86ISD::MOVSS:
2773  case X86ISD::MOVSD:
2774  case X86ISD::UNPCKLPS:
2775  case X86ISD::UNPCKLPD:
2776  case X86ISD::VUNPCKLPSY:
2777  case X86ISD::VUNPCKLPDY:
2778  case X86ISD::PUNPCKLWD:
2779  case X86ISD::PUNPCKLBW:
2780  case X86ISD::PUNPCKLDQ:
2781  case X86ISD::PUNPCKLQDQ:
2782  case X86ISD::UNPCKHPS:
2783  case X86ISD::UNPCKHPD:
2784  case X86ISD::PUNPCKHWD:
2785  case X86ISD::PUNPCKHBW:
2786  case X86ISD::PUNPCKHDQ:
2787  case X86ISD::PUNPCKHQDQ:
2788    return DAG.getNode(Opc, dl, VT, V1, V2);
2789  }
2790  return SDValue();
2791}
2792
2793SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2794  MachineFunction &MF = DAG.getMachineFunction();
2795  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2796  int ReturnAddrIndex = FuncInfo->getRAIndex();
2797
2798  if (ReturnAddrIndex == 0) {
2799    // Set up a frame object for the return address.
2800    uint64_t SlotSize = TD->getPointerSize();
2801    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2802                                                           false);
2803    FuncInfo->setRAIndex(ReturnAddrIndex);
2804  }
2805
2806  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2807}
2808
2809
2810bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2811                                       bool hasSymbolicDisplacement) {
2812  // Offset should fit into 32 bit immediate field.
2813  if (!isInt<32>(Offset))
2814    return false;
2815
2816  // If we don't have a symbolic displacement - we don't have any extra
2817  // restrictions.
2818  if (!hasSymbolicDisplacement)
2819    return true;
2820
2821  // FIXME: Some tweaks might be needed for medium code model.
2822  if (M != CodeModel::Small && M != CodeModel::Kernel)
2823    return false;
2824
2825  // For small code model we assume that latest object is 16MB before end of 31
2826  // bits boundary. We may also accept pretty large negative constants knowing
2827  // that all objects are in the positive half of address space.
2828  if (M == CodeModel::Small && Offset < 16*1024*1024)
2829    return true;
2830
2831  // For kernel code model we know that all object resist in the negative half
2832  // of 32bits address space. We may not accept negative offsets, since they may
2833  // be just off and we may accept pretty large positive ones.
2834  if (M == CodeModel::Kernel && Offset > 0)
2835    return true;
2836
2837  return false;
2838}
2839
2840/// isCalleePop - Determines whether the callee is required to pop its
2841/// own arguments. Callee pop is necessary to support tail calls.
2842bool X86::isCalleePop(CallingConv::ID CallingConv,
2843                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2844  if (IsVarArg)
2845    return false;
2846
2847  switch (CallingConv) {
2848  default:
2849    return false;
2850  case CallingConv::X86_StdCall:
2851    return !is64Bit;
2852  case CallingConv::X86_FastCall:
2853    return !is64Bit;
2854  case CallingConv::X86_ThisCall:
2855    return !is64Bit;
2856  case CallingConv::Fast:
2857    return TailCallOpt;
2858  case CallingConv::GHC:
2859    return TailCallOpt;
2860  }
2861}
2862
2863/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2864/// specific condition code, returning the condition code and the LHS/RHS of the
2865/// comparison to make.
2866static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2867                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2868  if (!isFP) {
2869    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2870      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2871        // X > -1   -> X == 0, jump !sign.
2872        RHS = DAG.getConstant(0, RHS.getValueType());
2873        return X86::COND_NS;
2874      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2875        // X < 0   -> X == 0, jump on sign.
2876        return X86::COND_S;
2877      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2878        // X < 1   -> X <= 0
2879        RHS = DAG.getConstant(0, RHS.getValueType());
2880        return X86::COND_LE;
2881      }
2882    }
2883
2884    switch (SetCCOpcode) {
2885    default: llvm_unreachable("Invalid integer condition!");
2886    case ISD::SETEQ:  return X86::COND_E;
2887    case ISD::SETGT:  return X86::COND_G;
2888    case ISD::SETGE:  return X86::COND_GE;
2889    case ISD::SETLT:  return X86::COND_L;
2890    case ISD::SETLE:  return X86::COND_LE;
2891    case ISD::SETNE:  return X86::COND_NE;
2892    case ISD::SETULT: return X86::COND_B;
2893    case ISD::SETUGT: return X86::COND_A;
2894    case ISD::SETULE: return X86::COND_BE;
2895    case ISD::SETUGE: return X86::COND_AE;
2896    }
2897  }
2898
2899  // First determine if it is required or is profitable to flip the operands.
2900
2901  // If LHS is a foldable load, but RHS is not, flip the condition.
2902  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2903      !ISD::isNON_EXTLoad(RHS.getNode())) {
2904    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2905    std::swap(LHS, RHS);
2906  }
2907
2908  switch (SetCCOpcode) {
2909  default: break;
2910  case ISD::SETOLT:
2911  case ISD::SETOLE:
2912  case ISD::SETUGT:
2913  case ISD::SETUGE:
2914    std::swap(LHS, RHS);
2915    break;
2916  }
2917
2918  // On a floating point condition, the flags are set as follows:
2919  // ZF  PF  CF   op
2920  //  0 | 0 | 0 | X > Y
2921  //  0 | 0 | 1 | X < Y
2922  //  1 | 0 | 0 | X == Y
2923  //  1 | 1 | 1 | unordered
2924  switch (SetCCOpcode) {
2925  default: llvm_unreachable("Condcode should be pre-legalized away");
2926  case ISD::SETUEQ:
2927  case ISD::SETEQ:   return X86::COND_E;
2928  case ISD::SETOLT:              // flipped
2929  case ISD::SETOGT:
2930  case ISD::SETGT:   return X86::COND_A;
2931  case ISD::SETOLE:              // flipped
2932  case ISD::SETOGE:
2933  case ISD::SETGE:   return X86::COND_AE;
2934  case ISD::SETUGT:              // flipped
2935  case ISD::SETULT:
2936  case ISD::SETLT:   return X86::COND_B;
2937  case ISD::SETUGE:              // flipped
2938  case ISD::SETULE:
2939  case ISD::SETLE:   return X86::COND_BE;
2940  case ISD::SETONE:
2941  case ISD::SETNE:   return X86::COND_NE;
2942  case ISD::SETUO:   return X86::COND_P;
2943  case ISD::SETO:    return X86::COND_NP;
2944  case ISD::SETOEQ:
2945  case ISD::SETUNE:  return X86::COND_INVALID;
2946  }
2947}
2948
2949/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2950/// code. Current x86 isa includes the following FP cmov instructions:
2951/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2952static bool hasFPCMov(unsigned X86CC) {
2953  switch (X86CC) {
2954  default:
2955    return false;
2956  case X86::COND_B:
2957  case X86::COND_BE:
2958  case X86::COND_E:
2959  case X86::COND_P:
2960  case X86::COND_A:
2961  case X86::COND_AE:
2962  case X86::COND_NE:
2963  case X86::COND_NP:
2964    return true;
2965  }
2966}
2967
2968/// isFPImmLegal - Returns true if the target can instruction select the
2969/// specified FP immediate natively. If false, the legalizer will
2970/// materialize the FP immediate as a load from a constant pool.
2971bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2972  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2973    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2974      return true;
2975  }
2976  return false;
2977}
2978
2979/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2980/// the specified range (L, H].
2981static bool isUndefOrInRange(int Val, int Low, int Hi) {
2982  return (Val < 0) || (Val >= Low && Val < Hi);
2983}
2984
2985/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2986/// specified value.
2987static bool isUndefOrEqual(int Val, int CmpVal) {
2988  if (Val < 0 || Val == CmpVal)
2989    return true;
2990  return false;
2991}
2992
2993/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2994/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2995/// the second operand.
2996static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2997  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2998    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2999  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3000    return (Mask[0] < 2 && Mask[1] < 2);
3001  return false;
3002}
3003
3004bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3005  SmallVector<int, 8> M;
3006  N->getMask(M);
3007  return ::isPSHUFDMask(M, N->getValueType(0));
3008}
3009
3010/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3011/// is suitable for input to PSHUFHW.
3012static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3013  if (VT != MVT::v8i16)
3014    return false;
3015
3016  // Lower quadword copied in order or undef.
3017  for (int i = 0; i != 4; ++i)
3018    if (Mask[i] >= 0 && Mask[i] != i)
3019      return false;
3020
3021  // Upper quadword shuffled.
3022  for (int i = 4; i != 8; ++i)
3023    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3024      return false;
3025
3026  return true;
3027}
3028
3029bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3030  SmallVector<int, 8> M;
3031  N->getMask(M);
3032  return ::isPSHUFHWMask(M, N->getValueType(0));
3033}
3034
3035/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3036/// is suitable for input to PSHUFLW.
3037static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3038  if (VT != MVT::v8i16)
3039    return false;
3040
3041  // Upper quadword copied in order.
3042  for (int i = 4; i != 8; ++i)
3043    if (Mask[i] >= 0 && Mask[i] != i)
3044      return false;
3045
3046  // Lower quadword shuffled.
3047  for (int i = 0; i != 4; ++i)
3048    if (Mask[i] >= 4)
3049      return false;
3050
3051  return true;
3052}
3053
3054bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3055  SmallVector<int, 8> M;
3056  N->getMask(M);
3057  return ::isPSHUFLWMask(M, N->getValueType(0));
3058}
3059
3060/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3061/// is suitable for input to PALIGNR.
3062static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3063                          bool hasSSSE3) {
3064  int i, e = VT.getVectorNumElements();
3065
3066  // Do not handle v2i64 / v2f64 shuffles with palignr.
3067  if (e < 4 || !hasSSSE3)
3068    return false;
3069
3070  for (i = 0; i != e; ++i)
3071    if (Mask[i] >= 0)
3072      break;
3073
3074  // All undef, not a palignr.
3075  if (i == e)
3076    return false;
3077
3078  // Determine if it's ok to perform a palignr with only the LHS, since we
3079  // don't have access to the actual shuffle elements to see if RHS is undef.
3080  bool Unary = Mask[i] < (int)e;
3081  bool NeedsUnary = false;
3082
3083  int s = Mask[i] - i;
3084
3085  // Check the rest of the elements to see if they are consecutive.
3086  for (++i; i != e; ++i) {
3087    int m = Mask[i];
3088    if (m < 0)
3089      continue;
3090
3091    Unary = Unary && (m < (int)e);
3092    NeedsUnary = NeedsUnary || (m < s);
3093
3094    if (NeedsUnary && !Unary)
3095      return false;
3096    if (Unary && m != ((s+i) & (e-1)))
3097      return false;
3098    if (!Unary && m != (s+i))
3099      return false;
3100  }
3101  return true;
3102}
3103
3104bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3105  SmallVector<int, 8> M;
3106  N->getMask(M);
3107  return ::isPALIGNRMask(M, N->getValueType(0), true);
3108}
3109
3110/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3111/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3112static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3113  int NumElems = VT.getVectorNumElements();
3114  if (NumElems != 2 && NumElems != 4)
3115    return false;
3116
3117  int Half = NumElems / 2;
3118  for (int i = 0; i < Half; ++i)
3119    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3120      return false;
3121  for (int i = Half; i < NumElems; ++i)
3122    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3123      return false;
3124
3125  return true;
3126}
3127
3128bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3129  SmallVector<int, 8> M;
3130  N->getMask(M);
3131  return ::isSHUFPMask(M, N->getValueType(0));
3132}
3133
3134/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3135/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3136/// half elements to come from vector 1 (which would equal the dest.) and
3137/// the upper half to come from vector 2.
3138static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3139  int NumElems = VT.getVectorNumElements();
3140
3141  if (NumElems != 2 && NumElems != 4)
3142    return false;
3143
3144  int Half = NumElems / 2;
3145  for (int i = 0; i < Half; ++i)
3146    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3147      return false;
3148  for (int i = Half; i < NumElems; ++i)
3149    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3150      return false;
3151  return true;
3152}
3153
3154static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3155  SmallVector<int, 8> M;
3156  N->getMask(M);
3157  return isCommutedSHUFPMask(M, N->getValueType(0));
3158}
3159
3160/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3161/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3162bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3163  if (N->getValueType(0).getVectorNumElements() != 4)
3164    return false;
3165
3166  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3167  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3168         isUndefOrEqual(N->getMaskElt(1), 7) &&
3169         isUndefOrEqual(N->getMaskElt(2), 2) &&
3170         isUndefOrEqual(N->getMaskElt(3), 3);
3171}
3172
3173/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3174/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3175/// <2, 3, 2, 3>
3176bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3177  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3178
3179  if (NumElems != 4)
3180    return false;
3181
3182  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3183  isUndefOrEqual(N->getMaskElt(1), 3) &&
3184  isUndefOrEqual(N->getMaskElt(2), 2) &&
3185  isUndefOrEqual(N->getMaskElt(3), 3);
3186}
3187
3188/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3189/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3190bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3191  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3192
3193  if (NumElems != 2 && NumElems != 4)
3194    return false;
3195
3196  for (unsigned i = 0; i < NumElems/2; ++i)
3197    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3198      return false;
3199
3200  for (unsigned i = NumElems/2; i < NumElems; ++i)
3201    if (!isUndefOrEqual(N->getMaskElt(i), i))
3202      return false;
3203
3204  return true;
3205}
3206
3207/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3208/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3209bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3210  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3211
3212  if ((NumElems != 2 && NumElems != 4)
3213      || N->getValueType(0).getSizeInBits() > 128)
3214    return false;
3215
3216  for (unsigned i = 0; i < NumElems/2; ++i)
3217    if (!isUndefOrEqual(N->getMaskElt(i), i))
3218      return false;
3219
3220  for (unsigned i = 0; i < NumElems/2; ++i)
3221    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3222      return false;
3223
3224  return true;
3225}
3226
3227/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3228/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3229static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3230                         bool V2IsSplat = false) {
3231  int NumElts = VT.getVectorNumElements();
3232  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3233    return false;
3234
3235  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3236  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3237  // sections.
3238  unsigned NumSections = VT.getSizeInBits() / 128;
3239  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3240  unsigned NumSectionElts = NumElts / NumSections;
3241
3242  unsigned Start = 0;
3243  unsigned End = NumSectionElts;
3244  for (unsigned s = 0; s < NumSections; ++s) {
3245    for (unsigned i = Start, j = s * NumSectionElts;
3246         i != End;
3247         i += 2, ++j) {
3248      int BitI  = Mask[i];
3249      int BitI1 = Mask[i+1];
3250      if (!isUndefOrEqual(BitI, j))
3251        return false;
3252      if (V2IsSplat) {
3253        if (!isUndefOrEqual(BitI1, NumElts))
3254          return false;
3255      } else {
3256        if (!isUndefOrEqual(BitI1, j + NumElts))
3257          return false;
3258      }
3259    }
3260    // Process the next 128 bits.
3261    Start += NumSectionElts;
3262    End += NumSectionElts;
3263  }
3264
3265  return true;
3266}
3267
3268bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3269  SmallVector<int, 8> M;
3270  N->getMask(M);
3271  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3272}
3273
3274/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3275/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3276static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3277                         bool V2IsSplat = false) {
3278  int NumElts = VT.getVectorNumElements();
3279  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3280    return false;
3281
3282  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3283    int BitI  = Mask[i];
3284    int BitI1 = Mask[i+1];
3285    if (!isUndefOrEqual(BitI, j + NumElts/2))
3286      return false;
3287    if (V2IsSplat) {
3288      if (isUndefOrEqual(BitI1, NumElts))
3289        return false;
3290    } else {
3291      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3292        return false;
3293    }
3294  }
3295  return true;
3296}
3297
3298bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3299  SmallVector<int, 8> M;
3300  N->getMask(M);
3301  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3302}
3303
3304/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3305/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3306/// <0, 0, 1, 1>
3307static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3308  int NumElems = VT.getVectorNumElements();
3309  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3310    return false;
3311
3312  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3313  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3314  // sections.
3315  unsigned NumSections = VT.getSizeInBits() / 128;
3316  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3317  unsigned NumSectionElts = NumElems / NumSections;
3318
3319  for (unsigned s = 0; s < NumSections; ++s) {
3320    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3321         i != NumSectionElts * (s + 1);
3322         i += 2, ++j) {
3323      int BitI  = Mask[i];
3324      int BitI1 = Mask[i+1];
3325
3326      if (!isUndefOrEqual(BitI, j))
3327        return false;
3328      if (!isUndefOrEqual(BitI1, j))
3329        return false;
3330    }
3331  }
3332
3333  return true;
3334}
3335
3336bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3337  SmallVector<int, 8> M;
3338  N->getMask(M);
3339  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3340}
3341
3342/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3343/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3344/// <2, 2, 3, 3>
3345static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3346  int NumElems = VT.getVectorNumElements();
3347  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3348    return false;
3349
3350  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3351    int BitI  = Mask[i];
3352    int BitI1 = Mask[i+1];
3353    if (!isUndefOrEqual(BitI, j))
3354      return false;
3355    if (!isUndefOrEqual(BitI1, j))
3356      return false;
3357  }
3358  return true;
3359}
3360
3361bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3362  SmallVector<int, 8> M;
3363  N->getMask(M);
3364  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3365}
3366
3367/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3368/// specifies a shuffle of elements that is suitable for input to MOVSS,
3369/// MOVSD, and MOVD, i.e. setting the lowest element.
3370static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3371  if (VT.getVectorElementType().getSizeInBits() < 32)
3372    return false;
3373
3374  int NumElts = VT.getVectorNumElements();
3375
3376  if (!isUndefOrEqual(Mask[0], NumElts))
3377    return false;
3378
3379  for (int i = 1; i < NumElts; ++i)
3380    if (!isUndefOrEqual(Mask[i], i))
3381      return false;
3382
3383  return true;
3384}
3385
3386bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3387  SmallVector<int, 8> M;
3388  N->getMask(M);
3389  return ::isMOVLMask(M, N->getValueType(0));
3390}
3391
3392/// isVPERMILMask - Return true if the specified VECTOR_SHUFFLE operand
3393/// specifies a shuffle of elements that is suitable for input to VPERMIL*.
3394static bool isVPERMILMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3395  unsigned NumElts = VT.getVectorNumElements();
3396  unsigned NumLanes = VT.getSizeInBits()/128;
3397
3398  // Match any permutation of 128-bit vector with 32/64-bit types
3399  if (NumLanes == 1) {
3400    if (NumElts == 4 || NumElts == 2)
3401      return true;
3402    return false;
3403  }
3404
3405  // Only match 256-bit with 32/64-bit types
3406  if (NumElts != 8 && NumElts != 4)
3407    return false;
3408
3409  // The mask on the high lane should be the same as the low. Actually,
3410  // they can differ if any of the corresponding index in a lane is undef.
3411  int LaneSize = NumElts/NumLanes;
3412  for (int i = 0; i < LaneSize; ++i) {
3413    int HighElt = i+LaneSize;
3414    if (Mask[i] < 0 || Mask[HighElt] < 0)
3415      continue;
3416
3417    if (Mask[HighElt]-Mask[i] != LaneSize)
3418      return false;
3419  }
3420
3421  return true;
3422}
3423
3424/// getShuffleVPERMILImmediateediate - Return the appropriate immediate to shuffle
3425/// the specified VECTOR_MASK mask with VPERMIL* instructions.
3426static unsigned getShuffleVPERMILImmediate(SDNode *N) {
3427  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3428  EVT VT = SVOp->getValueType(0);
3429
3430  int NumElts = VT.getVectorNumElements();
3431  int NumLanes = VT.getSizeInBits()/128;
3432
3433  unsigned Mask = 0;
3434  for (int i = 0; i < NumElts/NumLanes /* lane size */; ++i)
3435    Mask |= SVOp->getMaskElt(i) << (i*2);
3436
3437  return Mask;
3438}
3439
3440/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3441/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3442/// element of vector 2 and the other elements to come from vector 1 in order.
3443static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3444                               bool V2IsSplat = false, bool V2IsUndef = false) {
3445  int NumOps = VT.getVectorNumElements();
3446  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3447    return false;
3448
3449  if (!isUndefOrEqual(Mask[0], 0))
3450    return false;
3451
3452  for (int i = 1; i < NumOps; ++i)
3453    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3454          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3455          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3456      return false;
3457
3458  return true;
3459}
3460
3461static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3462                           bool V2IsUndef = false) {
3463  SmallVector<int, 8> M;
3464  N->getMask(M);
3465  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3466}
3467
3468/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3469/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3470bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3471  if (N->getValueType(0).getVectorNumElements() != 4)
3472    return false;
3473
3474  // Expect 1, 1, 3, 3
3475  for (unsigned i = 0; i < 2; ++i) {
3476    int Elt = N->getMaskElt(i);
3477    if (Elt >= 0 && Elt != 1)
3478      return false;
3479  }
3480
3481  bool HasHi = false;
3482  for (unsigned i = 2; i < 4; ++i) {
3483    int Elt = N->getMaskElt(i);
3484    if (Elt >= 0 && Elt != 3)
3485      return false;
3486    if (Elt == 3)
3487      HasHi = true;
3488  }
3489  // Don't use movshdup if it can be done with a shufps.
3490  // FIXME: verify that matching u, u, 3, 3 is what we want.
3491  return HasHi;
3492}
3493
3494/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3495/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3496bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3497  if (N->getValueType(0).getVectorNumElements() != 4)
3498    return false;
3499
3500  // Expect 0, 0, 2, 2
3501  for (unsigned i = 0; i < 2; ++i)
3502    if (N->getMaskElt(i) > 0)
3503      return false;
3504
3505  bool HasHi = false;
3506  for (unsigned i = 2; i < 4; ++i) {
3507    int Elt = N->getMaskElt(i);
3508    if (Elt >= 0 && Elt != 2)
3509      return false;
3510    if (Elt == 2)
3511      HasHi = true;
3512  }
3513  // Don't use movsldup if it can be done with a shufps.
3514  return HasHi;
3515}
3516
3517/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3518/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3519bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3520  int e = N->getValueType(0).getVectorNumElements() / 2;
3521
3522  for (int i = 0; i < e; ++i)
3523    if (!isUndefOrEqual(N->getMaskElt(i), i))
3524      return false;
3525  for (int i = 0; i < e; ++i)
3526    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3527      return false;
3528  return true;
3529}
3530
3531/// isVEXTRACTF128Index - Return true if the specified
3532/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3533/// suitable for input to VEXTRACTF128.
3534bool X86::isVEXTRACTF128Index(SDNode *N) {
3535  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3536    return false;
3537
3538  // The index should be aligned on a 128-bit boundary.
3539  uint64_t Index =
3540    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3541
3542  unsigned VL = N->getValueType(0).getVectorNumElements();
3543  unsigned VBits = N->getValueType(0).getSizeInBits();
3544  unsigned ElSize = VBits / VL;
3545  bool Result = (Index * ElSize) % 128 == 0;
3546
3547  return Result;
3548}
3549
3550/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3551/// operand specifies a subvector insert that is suitable for input to
3552/// VINSERTF128.
3553bool X86::isVINSERTF128Index(SDNode *N) {
3554  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3555    return false;
3556
3557  // The index should be aligned on a 128-bit boundary.
3558  uint64_t Index =
3559    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3560
3561  unsigned VL = N->getValueType(0).getVectorNumElements();
3562  unsigned VBits = N->getValueType(0).getSizeInBits();
3563  unsigned ElSize = VBits / VL;
3564  bool Result = (Index * ElSize) % 128 == 0;
3565
3566  return Result;
3567}
3568
3569/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3570/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3571unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3572  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3573  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3574
3575  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3576  unsigned Mask = 0;
3577  for (int i = 0; i < NumOperands; ++i) {
3578    int Val = SVOp->getMaskElt(NumOperands-i-1);
3579    if (Val < 0) Val = 0;
3580    if (Val >= NumOperands) Val -= NumOperands;
3581    Mask |= Val;
3582    if (i != NumOperands - 1)
3583      Mask <<= Shift;
3584  }
3585  return Mask;
3586}
3587
3588/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3589/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3590unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3591  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3592  unsigned Mask = 0;
3593  // 8 nodes, but we only care about the last 4.
3594  for (unsigned i = 7; i >= 4; --i) {
3595    int Val = SVOp->getMaskElt(i);
3596    if (Val >= 0)
3597      Mask |= (Val - 4);
3598    if (i != 4)
3599      Mask <<= 2;
3600  }
3601  return Mask;
3602}
3603
3604/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3605/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3606unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3607  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3608  unsigned Mask = 0;
3609  // 8 nodes, but we only care about the first 4.
3610  for (int i = 3; i >= 0; --i) {
3611    int Val = SVOp->getMaskElt(i);
3612    if (Val >= 0)
3613      Mask |= Val;
3614    if (i != 0)
3615      Mask <<= 2;
3616  }
3617  return Mask;
3618}
3619
3620/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3621/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3622unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3623  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3624  EVT VVT = N->getValueType(0);
3625  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3626  int Val = 0;
3627
3628  unsigned i, e;
3629  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3630    Val = SVOp->getMaskElt(i);
3631    if (Val >= 0)
3632      break;
3633  }
3634  return (Val - i) * EltSize;
3635}
3636
3637/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3638/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3639/// instructions.
3640unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3641  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3642    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3643
3644  uint64_t Index =
3645    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3646
3647  EVT VecVT = N->getOperand(0).getValueType();
3648  EVT ElVT = VecVT.getVectorElementType();
3649
3650  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3651  return Index / NumElemsPerChunk;
3652}
3653
3654/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3655/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3656/// instructions.
3657unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3658  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3659    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3660
3661  uint64_t Index =
3662    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3663
3664  EVT VecVT = N->getValueType(0);
3665  EVT ElVT = VecVT.getVectorElementType();
3666
3667  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3668  return Index / NumElemsPerChunk;
3669}
3670
3671/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3672/// constant +0.0.
3673bool X86::isZeroNode(SDValue Elt) {
3674  return ((isa<ConstantSDNode>(Elt) &&
3675           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3676          (isa<ConstantFPSDNode>(Elt) &&
3677           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3678}
3679
3680/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3681/// their permute mask.
3682static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3683                                    SelectionDAG &DAG) {
3684  EVT VT = SVOp->getValueType(0);
3685  unsigned NumElems = VT.getVectorNumElements();
3686  SmallVector<int, 8> MaskVec;
3687
3688  for (unsigned i = 0; i != NumElems; ++i) {
3689    int idx = SVOp->getMaskElt(i);
3690    if (idx < 0)
3691      MaskVec.push_back(idx);
3692    else if (idx < (int)NumElems)
3693      MaskVec.push_back(idx + NumElems);
3694    else
3695      MaskVec.push_back(idx - NumElems);
3696  }
3697  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3698                              SVOp->getOperand(0), &MaskVec[0]);
3699}
3700
3701/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3702/// the two vector operands have swapped position.
3703static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3704  unsigned NumElems = VT.getVectorNumElements();
3705  for (unsigned i = 0; i != NumElems; ++i) {
3706    int idx = Mask[i];
3707    if (idx < 0)
3708      continue;
3709    else if (idx < (int)NumElems)
3710      Mask[i] = idx + NumElems;
3711    else
3712      Mask[i] = idx - NumElems;
3713  }
3714}
3715
3716/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3717/// match movhlps. The lower half elements should come from upper half of
3718/// V1 (and in order), and the upper half elements should come from the upper
3719/// half of V2 (and in order).
3720static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3721  if (Op->getValueType(0).getVectorNumElements() != 4)
3722    return false;
3723  for (unsigned i = 0, e = 2; i != e; ++i)
3724    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3725      return false;
3726  for (unsigned i = 2; i != 4; ++i)
3727    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3728      return false;
3729  return true;
3730}
3731
3732/// isScalarLoadToVector - Returns true if the node is a scalar load that
3733/// is promoted to a vector. It also returns the LoadSDNode by reference if
3734/// required.
3735static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3736  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3737    return false;
3738  N = N->getOperand(0).getNode();
3739  if (!ISD::isNON_EXTLoad(N))
3740    return false;
3741  if (LD)
3742    *LD = cast<LoadSDNode>(N);
3743  return true;
3744}
3745
3746/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3747/// match movlp{s|d}. The lower half elements should come from lower half of
3748/// V1 (and in order), and the upper half elements should come from the upper
3749/// half of V2 (and in order). And since V1 will become the source of the
3750/// MOVLP, it must be either a vector load or a scalar load to vector.
3751static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3752                               ShuffleVectorSDNode *Op) {
3753  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3754    return false;
3755  // Is V2 is a vector load, don't do this transformation. We will try to use
3756  // load folding shufps op.
3757  if (ISD::isNON_EXTLoad(V2))
3758    return false;
3759
3760  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3761
3762  if (NumElems != 2 && NumElems != 4)
3763    return false;
3764  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3765    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3766      return false;
3767  for (unsigned i = NumElems/2; i != NumElems; ++i)
3768    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3769      return false;
3770  return true;
3771}
3772
3773/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3774/// all the same.
3775static bool isSplatVector(SDNode *N) {
3776  if (N->getOpcode() != ISD::BUILD_VECTOR)
3777    return false;
3778
3779  SDValue SplatValue = N->getOperand(0);
3780  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3781    if (N->getOperand(i) != SplatValue)
3782      return false;
3783  return true;
3784}
3785
3786/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3787/// to an zero vector.
3788/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3789static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3790  SDValue V1 = N->getOperand(0);
3791  SDValue V2 = N->getOperand(1);
3792  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3793  for (unsigned i = 0; i != NumElems; ++i) {
3794    int Idx = N->getMaskElt(i);
3795    if (Idx >= (int)NumElems) {
3796      unsigned Opc = V2.getOpcode();
3797      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3798        continue;
3799      if (Opc != ISD::BUILD_VECTOR ||
3800          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3801        return false;
3802    } else if (Idx >= 0) {
3803      unsigned Opc = V1.getOpcode();
3804      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3805        continue;
3806      if (Opc != ISD::BUILD_VECTOR ||
3807          !X86::isZeroNode(V1.getOperand(Idx)))
3808        return false;
3809    }
3810  }
3811  return true;
3812}
3813
3814/// getZeroVector - Returns a vector of specified type with all zero elements.
3815///
3816static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3817                             DebugLoc dl) {
3818  assert(VT.isVector() && "Expected a vector type");
3819
3820  // Always build SSE zero vectors as <4 x i32> bitcasted
3821  // to their dest type. This ensures they get CSE'd.
3822  SDValue Vec;
3823  if (VT.getSizeInBits() == 128) {  // SSE
3824    if (HasSSE2) {  // SSE2
3825      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3826      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3827    } else { // SSE1
3828      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3829      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3830    }
3831  } else if (VT.getSizeInBits() == 256) { // AVX
3832    // 256-bit logic and arithmetic instructions in AVX are
3833    // all floating-point, no support for integer ops. Default
3834    // to emitting fp zeroed vectors then.
3835    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3836    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3837    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3838  }
3839  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3840}
3841
3842/// getOnesVector - Returns a vector of specified type with all bits set.
3843/// Always build ones vectors as <4 x i32> or <8 x i32> bitcasted to
3844/// their original type, ensuring they get CSE'd.
3845static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3846  assert(VT.isVector() && "Expected a vector type");
3847  assert((VT.is128BitVector() || VT.is256BitVector())
3848         && "Expected a 128-bit or 256-bit vector type");
3849
3850  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3851
3852  SDValue Vec;
3853  if (VT.is256BitVector()) {
3854    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3855    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
3856  } else
3857    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3858  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3859}
3860
3861/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3862/// that point to V2 points to its first element.
3863static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3864  EVT VT = SVOp->getValueType(0);
3865  unsigned NumElems = VT.getVectorNumElements();
3866
3867  bool Changed = false;
3868  SmallVector<int, 8> MaskVec;
3869  SVOp->getMask(MaskVec);
3870
3871  for (unsigned i = 0; i != NumElems; ++i) {
3872    if (MaskVec[i] > (int)NumElems) {
3873      MaskVec[i] = NumElems;
3874      Changed = true;
3875    }
3876  }
3877  if (Changed)
3878    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3879                                SVOp->getOperand(1), &MaskVec[0]);
3880  return SDValue(SVOp, 0);
3881}
3882
3883/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3884/// operation of specified width.
3885static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3886                       SDValue V2) {
3887  unsigned NumElems = VT.getVectorNumElements();
3888  SmallVector<int, 8> Mask;
3889  Mask.push_back(NumElems);
3890  for (unsigned i = 1; i != NumElems; ++i)
3891    Mask.push_back(i);
3892  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3893}
3894
3895/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3896static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3897                          SDValue V2) {
3898  unsigned NumElems = VT.getVectorNumElements();
3899  SmallVector<int, 8> Mask;
3900  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3901    Mask.push_back(i);
3902    Mask.push_back(i + NumElems);
3903  }
3904  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3905}
3906
3907/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
3908static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3909                          SDValue V2) {
3910  unsigned NumElems = VT.getVectorNumElements();
3911  unsigned Half = NumElems/2;
3912  SmallVector<int, 8> Mask;
3913  for (unsigned i = 0; i != Half; ++i) {
3914    Mask.push_back(i + Half);
3915    Mask.push_back(i + NumElems + Half);
3916  }
3917  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3918}
3919
3920// PromoteSplatv8v16 - All i16 and i8 vector types can't be used directly by
3921// a generic shuffle instruction because the target has no such instructions.
3922// Generate shuffles which repeat i16 and i8 several times until they can be
3923// represented by v4f32 and then be manipulated by target suported shuffles.
3924static SDValue PromoteSplatv8v16(SDValue V, SelectionDAG &DAG, int &EltNo) {
3925  EVT VT = V.getValueType();
3926  int NumElems = VT.getVectorNumElements();
3927  DebugLoc dl = V.getDebugLoc();
3928
3929  while (NumElems > 4) {
3930    if (EltNo < NumElems/2) {
3931      V = getUnpackl(DAG, dl, VT, V, V);
3932    } else {
3933      V = getUnpackh(DAG, dl, VT, V, V);
3934      EltNo -= NumElems/2;
3935    }
3936    NumElems >>= 1;
3937  }
3938  return V;
3939}
3940
3941/// getLegalSplat - Generate a legal splat with supported x86 shuffles
3942static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
3943  EVT VT = V.getValueType();
3944  DebugLoc dl = V.getDebugLoc();
3945  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
3946         && "Vector size not supported");
3947
3948  bool Is128 = VT.getSizeInBits() == 128;
3949  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
3950  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
3951
3952  if (Is128) {
3953    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3954    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
3955  } else {
3956    // The second half of indicies refer to the higher part, which is a
3957    // duplication of the lower one. This makes this shuffle a perfect match
3958    // for the VPERM instruction.
3959    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
3960                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
3961    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
3962  }
3963
3964  return DAG.getNode(ISD::BITCAST, dl, VT, V);
3965}
3966
3967/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
3968/// v8i32, v16i16 or v32i8 to v8f32.
3969static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3970  EVT SrcVT = SV->getValueType(0);
3971  SDValue V1 = SV->getOperand(0);
3972  DebugLoc dl = SV->getDebugLoc();
3973
3974  int EltNo = SV->getSplatIndex();
3975  int NumElems = SrcVT.getVectorNumElements();
3976  unsigned Size = SrcVT.getSizeInBits();
3977
3978  // Extract the 128-bit part containing the splat element and update
3979  // the splat element index when it refers to the higher register.
3980  if (Size == 256) {
3981    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
3982    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
3983    if (Idx > 0)
3984      EltNo -= NumElems/2;
3985  }
3986
3987  // Make this 128-bit vector duplicate i8 and i16 elements
3988  if (NumElems > 4)
3989    V1 = PromoteSplatv8v16(V1, DAG, EltNo);
3990
3991  // Recreate the 256-bit vector and place the same 128-bit vector
3992  // into the low and high part. This is necessary because we want
3993  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
3994  // inside each separate v4f32 lane.
3995  if (Size == 256) {
3996    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
3997                         DAG.getConstant(0, MVT::i32), DAG, dl);
3998    V1 = Insert128BitVector(InsV, V1,
3999               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4000  }
4001
4002  return getLegalSplat(DAG, V1, EltNo);
4003}
4004
4005/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4006/// vector of zero or undef vector.  This produces a shuffle where the low
4007/// element of V2 is swizzled into the zero/undef vector, landing at element
4008/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4009static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4010                                             bool isZero, bool HasSSE2,
4011                                             SelectionDAG &DAG) {
4012  EVT VT = V2.getValueType();
4013  SDValue V1 = isZero
4014    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4015  unsigned NumElems = VT.getVectorNumElements();
4016  SmallVector<int, 16> MaskVec;
4017  for (unsigned i = 0; i != NumElems; ++i)
4018    // If this is the insertion idx, put the low elt of V2 here.
4019    MaskVec.push_back(i == Idx ? NumElems : i);
4020  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4021}
4022
4023/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4024/// element of the result of the vector shuffle.
4025static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4026                                   unsigned Depth) {
4027  if (Depth == 6)
4028    return SDValue();  // Limit search depth.
4029
4030  SDValue V = SDValue(N, 0);
4031  EVT VT = V.getValueType();
4032  unsigned Opcode = V.getOpcode();
4033
4034  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4035  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4036    Index = SV->getMaskElt(Index);
4037
4038    if (Index < 0)
4039      return DAG.getUNDEF(VT.getVectorElementType());
4040
4041    int NumElems = VT.getVectorNumElements();
4042    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4043    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4044  }
4045
4046  // Recurse into target specific vector shuffles to find scalars.
4047  if (isTargetShuffle(Opcode)) {
4048    int NumElems = VT.getVectorNumElements();
4049    SmallVector<unsigned, 16> ShuffleMask;
4050    SDValue ImmN;
4051
4052    switch(Opcode) {
4053    case X86ISD::SHUFPS:
4054    case X86ISD::SHUFPD:
4055      ImmN = N->getOperand(N->getNumOperands()-1);
4056      DecodeSHUFPSMask(NumElems,
4057                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4058                       ShuffleMask);
4059      break;
4060    case X86ISD::PUNPCKHBW:
4061    case X86ISD::PUNPCKHWD:
4062    case X86ISD::PUNPCKHDQ:
4063    case X86ISD::PUNPCKHQDQ:
4064      DecodePUNPCKHMask(NumElems, ShuffleMask);
4065      break;
4066    case X86ISD::UNPCKHPS:
4067    case X86ISD::UNPCKHPD:
4068      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4069      break;
4070    case X86ISD::PUNPCKLBW:
4071    case X86ISD::PUNPCKLWD:
4072    case X86ISD::PUNPCKLDQ:
4073    case X86ISD::PUNPCKLQDQ:
4074      DecodePUNPCKLMask(VT, ShuffleMask);
4075      break;
4076    case X86ISD::UNPCKLPS:
4077    case X86ISD::UNPCKLPD:
4078    case X86ISD::VUNPCKLPSY:
4079    case X86ISD::VUNPCKLPDY:
4080      DecodeUNPCKLPMask(VT, ShuffleMask);
4081      break;
4082    case X86ISD::MOVHLPS:
4083      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4084      break;
4085    case X86ISD::MOVLHPS:
4086      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4087      break;
4088    case X86ISD::PSHUFD:
4089      ImmN = N->getOperand(N->getNumOperands()-1);
4090      DecodePSHUFMask(NumElems,
4091                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4092                      ShuffleMask);
4093      break;
4094    case X86ISD::PSHUFHW:
4095      ImmN = N->getOperand(N->getNumOperands()-1);
4096      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4097                        ShuffleMask);
4098      break;
4099    case X86ISD::PSHUFLW:
4100      ImmN = N->getOperand(N->getNumOperands()-1);
4101      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4102                        ShuffleMask);
4103      break;
4104    case X86ISD::MOVSS:
4105    case X86ISD::MOVSD: {
4106      // The index 0 always comes from the first element of the second source,
4107      // this is why MOVSS and MOVSD are used in the first place. The other
4108      // elements come from the other positions of the first source vector.
4109      unsigned OpNum = (Index == 0) ? 1 : 0;
4110      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4111                                 Depth+1);
4112    }
4113    case X86ISD::VPERMIL:
4114      ImmN = N->getOperand(N->getNumOperands()-1);
4115      DecodeVPERMILMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4116                        ShuffleMask);
4117    default:
4118      assert("not implemented for target shuffle node");
4119      return SDValue();
4120    }
4121
4122    Index = ShuffleMask[Index];
4123    if (Index < 0)
4124      return DAG.getUNDEF(VT.getVectorElementType());
4125
4126    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4127    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4128                               Depth+1);
4129  }
4130
4131  // Actual nodes that may contain scalar elements
4132  if (Opcode == ISD::BITCAST) {
4133    V = V.getOperand(0);
4134    EVT SrcVT = V.getValueType();
4135    unsigned NumElems = VT.getVectorNumElements();
4136
4137    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4138      return SDValue();
4139  }
4140
4141  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4142    return (Index == 0) ? V.getOperand(0)
4143                          : DAG.getUNDEF(VT.getVectorElementType());
4144
4145  if (V.getOpcode() == ISD::BUILD_VECTOR)
4146    return V.getOperand(Index);
4147
4148  return SDValue();
4149}
4150
4151/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4152/// shuffle operation which come from a consecutively from a zero. The
4153/// search can start in two different directions, from left or right.
4154static
4155unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4156                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4157  int i = 0;
4158
4159  while (i < NumElems) {
4160    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4161    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4162    if (!(Elt.getNode() &&
4163         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4164      break;
4165    ++i;
4166  }
4167
4168  return i;
4169}
4170
4171/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4172/// MaskE correspond consecutively to elements from one of the vector operands,
4173/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4174static
4175bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4176                              int OpIdx, int NumElems, unsigned &OpNum) {
4177  bool SeenV1 = false;
4178  bool SeenV2 = false;
4179
4180  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4181    int Idx = SVOp->getMaskElt(i);
4182    // Ignore undef indicies
4183    if (Idx < 0)
4184      continue;
4185
4186    if (Idx < NumElems)
4187      SeenV1 = true;
4188    else
4189      SeenV2 = true;
4190
4191    // Only accept consecutive elements from the same vector
4192    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4193      return false;
4194  }
4195
4196  OpNum = SeenV1 ? 0 : 1;
4197  return true;
4198}
4199
4200/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4201/// logical left shift of a vector.
4202static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4203                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4204  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4205  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4206              false /* check zeros from right */, DAG);
4207  unsigned OpSrc;
4208
4209  if (!NumZeros)
4210    return false;
4211
4212  // Considering the elements in the mask that are not consecutive zeros,
4213  // check if they consecutively come from only one of the source vectors.
4214  //
4215  //               V1 = {X, A, B, C}     0
4216  //                         \  \  \    /
4217  //   vector_shuffle V1, V2 <1, 2, 3, X>
4218  //
4219  if (!isShuffleMaskConsecutive(SVOp,
4220            0,                   // Mask Start Index
4221            NumElems-NumZeros-1, // Mask End Index
4222            NumZeros,            // Where to start looking in the src vector
4223            NumElems,            // Number of elements in vector
4224            OpSrc))              // Which source operand ?
4225    return false;
4226
4227  isLeft = false;
4228  ShAmt = NumZeros;
4229  ShVal = SVOp->getOperand(OpSrc);
4230  return true;
4231}
4232
4233/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4234/// logical left shift of a vector.
4235static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4236                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4237  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4238  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4239              true /* check zeros from left */, DAG);
4240  unsigned OpSrc;
4241
4242  if (!NumZeros)
4243    return false;
4244
4245  // Considering the elements in the mask that are not consecutive zeros,
4246  // check if they consecutively come from only one of the source vectors.
4247  //
4248  //                           0    { A, B, X, X } = V2
4249  //                          / \    /  /
4250  //   vector_shuffle V1, V2 <X, X, 4, 5>
4251  //
4252  if (!isShuffleMaskConsecutive(SVOp,
4253            NumZeros,     // Mask Start Index
4254            NumElems-1,   // Mask End Index
4255            0,            // Where to start looking in the src vector
4256            NumElems,     // Number of elements in vector
4257            OpSrc))       // Which source operand ?
4258    return false;
4259
4260  isLeft = true;
4261  ShAmt = NumZeros;
4262  ShVal = SVOp->getOperand(OpSrc);
4263  return true;
4264}
4265
4266/// isVectorShift - Returns true if the shuffle can be implemented as a
4267/// logical left or right shift of a vector.
4268static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4269                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4270  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4271      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4272    return true;
4273
4274  return false;
4275}
4276
4277/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4278///
4279static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4280                                       unsigned NumNonZero, unsigned NumZero,
4281                                       SelectionDAG &DAG,
4282                                       const TargetLowering &TLI) {
4283  if (NumNonZero > 8)
4284    return SDValue();
4285
4286  DebugLoc dl = Op.getDebugLoc();
4287  SDValue V(0, 0);
4288  bool First = true;
4289  for (unsigned i = 0; i < 16; ++i) {
4290    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4291    if (ThisIsNonZero && First) {
4292      if (NumZero)
4293        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4294      else
4295        V = DAG.getUNDEF(MVT::v8i16);
4296      First = false;
4297    }
4298
4299    if ((i & 1) != 0) {
4300      SDValue ThisElt(0, 0), LastElt(0, 0);
4301      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4302      if (LastIsNonZero) {
4303        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4304                              MVT::i16, Op.getOperand(i-1));
4305      }
4306      if (ThisIsNonZero) {
4307        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4308        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4309                              ThisElt, DAG.getConstant(8, MVT::i8));
4310        if (LastIsNonZero)
4311          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4312      } else
4313        ThisElt = LastElt;
4314
4315      if (ThisElt.getNode())
4316        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4317                        DAG.getIntPtrConstant(i/2));
4318    }
4319  }
4320
4321  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4322}
4323
4324/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4325///
4326static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4327                                     unsigned NumNonZero, unsigned NumZero,
4328                                     SelectionDAG &DAG,
4329                                     const TargetLowering &TLI) {
4330  if (NumNonZero > 4)
4331    return SDValue();
4332
4333  DebugLoc dl = Op.getDebugLoc();
4334  SDValue V(0, 0);
4335  bool First = true;
4336  for (unsigned i = 0; i < 8; ++i) {
4337    bool isNonZero = (NonZeros & (1 << i)) != 0;
4338    if (isNonZero) {
4339      if (First) {
4340        if (NumZero)
4341          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4342        else
4343          V = DAG.getUNDEF(MVT::v8i16);
4344        First = false;
4345      }
4346      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4347                      MVT::v8i16, V, Op.getOperand(i),
4348                      DAG.getIntPtrConstant(i));
4349    }
4350  }
4351
4352  return V;
4353}
4354
4355/// getVShift - Return a vector logical shift node.
4356///
4357static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4358                         unsigned NumBits, SelectionDAG &DAG,
4359                         const TargetLowering &TLI, DebugLoc dl) {
4360  EVT ShVT = MVT::v2i64;
4361  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4362  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4363  return DAG.getNode(ISD::BITCAST, dl, VT,
4364                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4365                             DAG.getConstant(NumBits,
4366                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4367}
4368
4369SDValue
4370X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4371                                          SelectionDAG &DAG) const {
4372
4373  // Check if the scalar load can be widened into a vector load. And if
4374  // the address is "base + cst" see if the cst can be "absorbed" into
4375  // the shuffle mask.
4376  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4377    SDValue Ptr = LD->getBasePtr();
4378    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4379      return SDValue();
4380    EVT PVT = LD->getValueType(0);
4381    if (PVT != MVT::i32 && PVT != MVT::f32)
4382      return SDValue();
4383
4384    int FI = -1;
4385    int64_t Offset = 0;
4386    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4387      FI = FINode->getIndex();
4388      Offset = 0;
4389    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4390               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4391      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4392      Offset = Ptr.getConstantOperandVal(1);
4393      Ptr = Ptr.getOperand(0);
4394    } else {
4395      return SDValue();
4396    }
4397
4398    SDValue Chain = LD->getChain();
4399    // Make sure the stack object alignment is at least 16.
4400    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4401    if (DAG.InferPtrAlignment(Ptr) < 16) {
4402      if (MFI->isFixedObjectIndex(FI)) {
4403        // Can't change the alignment. FIXME: It's possible to compute
4404        // the exact stack offset and reference FI + adjust offset instead.
4405        // If someone *really* cares about this. That's the way to implement it.
4406        return SDValue();
4407      } else {
4408        MFI->setObjectAlignment(FI, 16);
4409      }
4410    }
4411
4412    // (Offset % 16) must be multiple of 4. Then address is then
4413    // Ptr + (Offset & ~15).
4414    if (Offset < 0)
4415      return SDValue();
4416    if ((Offset % 16) & 3)
4417      return SDValue();
4418    int64_t StartOffset = Offset & ~15;
4419    if (StartOffset)
4420      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4421                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4422
4423    int EltNo = (Offset - StartOffset) >> 2;
4424    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4425    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4426    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4427                             LD->getPointerInfo().getWithOffset(StartOffset),
4428                             false, false, 0);
4429    // Canonicalize it to a v4i32 shuffle.
4430    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4431    return DAG.getNode(ISD::BITCAST, dl, VT,
4432                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4433                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4434  }
4435
4436  return SDValue();
4437}
4438
4439/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4440/// vector of type 'VT', see if the elements can be replaced by a single large
4441/// load which has the same value as a build_vector whose operands are 'elts'.
4442///
4443/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4444///
4445/// FIXME: we'd also like to handle the case where the last elements are zero
4446/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4447/// There's even a handy isZeroNode for that purpose.
4448static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4449                                        DebugLoc &DL, SelectionDAG &DAG) {
4450  EVT EltVT = VT.getVectorElementType();
4451  unsigned NumElems = Elts.size();
4452
4453  LoadSDNode *LDBase = NULL;
4454  unsigned LastLoadedElt = -1U;
4455
4456  // For each element in the initializer, see if we've found a load or an undef.
4457  // If we don't find an initial load element, or later load elements are
4458  // non-consecutive, bail out.
4459  for (unsigned i = 0; i < NumElems; ++i) {
4460    SDValue Elt = Elts[i];
4461
4462    if (!Elt.getNode() ||
4463        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4464      return SDValue();
4465    if (!LDBase) {
4466      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4467        return SDValue();
4468      LDBase = cast<LoadSDNode>(Elt.getNode());
4469      LastLoadedElt = i;
4470      continue;
4471    }
4472    if (Elt.getOpcode() == ISD::UNDEF)
4473      continue;
4474
4475    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4476    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4477      return SDValue();
4478    LastLoadedElt = i;
4479  }
4480
4481  // If we have found an entire vector of loads and undefs, then return a large
4482  // load of the entire vector width starting at the base pointer.  If we found
4483  // consecutive loads for the low half, generate a vzext_load node.
4484  if (LastLoadedElt == NumElems - 1) {
4485    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4486      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4487                         LDBase->getPointerInfo(),
4488                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4489    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4490                       LDBase->getPointerInfo(),
4491                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4492                       LDBase->getAlignment());
4493  } else if (NumElems == 4 && LastLoadedElt == 1) {
4494    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4495    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4496    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4497                                              Ops, 2, MVT::i32,
4498                                              LDBase->getMemOperand());
4499    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4500  }
4501  return SDValue();
4502}
4503
4504SDValue
4505X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4506  DebugLoc dl = Op.getDebugLoc();
4507
4508  EVT VT = Op.getValueType();
4509  EVT ExtVT = VT.getVectorElementType();
4510  unsigned NumElems = Op.getNumOperands();
4511
4512  // All zero's:
4513  //  - pxor (SSE2), xorps (SSE1), vpxor (128 AVX), xorp[s|d] (256 AVX)
4514  // All one's:
4515  //  - pcmpeqd (SSE2 and 128 AVX), fallback to constant pools (256 AVX)
4516  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4517      ISD::isBuildVectorAllOnes(Op.getNode())) {
4518    // Canonicalize this to <4 x i32> or <8 x 32> (SSE) to
4519    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4520    // eliminated on x86-32 hosts.
4521    if (Op.getValueType() == MVT::v4i32 ||
4522        Op.getValueType() == MVT::v8i32)
4523      return Op;
4524
4525    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4526      return getOnesVector(Op.getValueType(), DAG, dl);
4527    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4528  }
4529
4530  unsigned EVTBits = ExtVT.getSizeInBits();
4531
4532  unsigned NumZero  = 0;
4533  unsigned NumNonZero = 0;
4534  unsigned NonZeros = 0;
4535  bool IsAllConstants = true;
4536  SmallSet<SDValue, 8> Values;
4537  for (unsigned i = 0; i < NumElems; ++i) {
4538    SDValue Elt = Op.getOperand(i);
4539    if (Elt.getOpcode() == ISD::UNDEF)
4540      continue;
4541    Values.insert(Elt);
4542    if (Elt.getOpcode() != ISD::Constant &&
4543        Elt.getOpcode() != ISD::ConstantFP)
4544      IsAllConstants = false;
4545    if (X86::isZeroNode(Elt))
4546      NumZero++;
4547    else {
4548      NonZeros |= (1 << i);
4549      NumNonZero++;
4550    }
4551  }
4552
4553  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4554  if (NumNonZero == 0)
4555    return DAG.getUNDEF(VT);
4556
4557  // Special case for single non-zero, non-undef, element.
4558  if (NumNonZero == 1) {
4559    unsigned Idx = CountTrailingZeros_32(NonZeros);
4560    SDValue Item = Op.getOperand(Idx);
4561
4562    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4563    // the value are obviously zero, truncate the value to i32 and do the
4564    // insertion that way.  Only do this if the value is non-constant or if the
4565    // value is a constant being inserted into element 0.  It is cheaper to do
4566    // a constant pool load than it is to do a movd + shuffle.
4567    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4568        (!IsAllConstants || Idx == 0)) {
4569      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4570        // Handle SSE only.
4571        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4572        EVT VecVT = MVT::v4i32;
4573        unsigned VecElts = 4;
4574
4575        // Truncate the value (which may itself be a constant) to i32, and
4576        // convert it to a vector with movd (S2V+shuffle to zero extend).
4577        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4578        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4579        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4580                                           Subtarget->hasSSE2(), DAG);
4581
4582        // Now we have our 32-bit value zero extended in the low element of
4583        // a vector.  If Idx != 0, swizzle it into place.
4584        if (Idx != 0) {
4585          SmallVector<int, 4> Mask;
4586          Mask.push_back(Idx);
4587          for (unsigned i = 1; i != VecElts; ++i)
4588            Mask.push_back(i);
4589          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4590                                      DAG.getUNDEF(Item.getValueType()),
4591                                      &Mask[0]);
4592        }
4593        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4594      }
4595    }
4596
4597    // If we have a constant or non-constant insertion into the low element of
4598    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4599    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4600    // depending on what the source datatype is.
4601    if (Idx == 0) {
4602      if (NumZero == 0) {
4603        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4604      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4605          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4606        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4607        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4608        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4609                                           DAG);
4610      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4611        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4612        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4613        EVT MiddleVT = MVT::v4i32;
4614        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4615        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4616                                           Subtarget->hasSSE2(), DAG);
4617        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4618      }
4619    }
4620
4621    // Is it a vector logical left shift?
4622    if (NumElems == 2 && Idx == 1 &&
4623        X86::isZeroNode(Op.getOperand(0)) &&
4624        !X86::isZeroNode(Op.getOperand(1))) {
4625      unsigned NumBits = VT.getSizeInBits();
4626      return getVShift(true, VT,
4627                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4628                                   VT, Op.getOperand(1)),
4629                       NumBits/2, DAG, *this, dl);
4630    }
4631
4632    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4633      return SDValue();
4634
4635    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4636    // is a non-constant being inserted into an element other than the low one,
4637    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4638    // movd/movss) to move this into the low element, then shuffle it into
4639    // place.
4640    if (EVTBits == 32) {
4641      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4642
4643      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4644      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4645                                         Subtarget->hasSSE2(), DAG);
4646      SmallVector<int, 8> MaskVec;
4647      for (unsigned i = 0; i < NumElems; i++)
4648        MaskVec.push_back(i == Idx ? 0 : 1);
4649      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4650    }
4651  }
4652
4653  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4654  if (Values.size() == 1) {
4655    if (EVTBits == 32) {
4656      // Instead of a shuffle like this:
4657      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4658      // Check if it's possible to issue this instead.
4659      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4660      unsigned Idx = CountTrailingZeros_32(NonZeros);
4661      SDValue Item = Op.getOperand(Idx);
4662      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4663        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4664    }
4665    return SDValue();
4666  }
4667
4668  // A vector full of immediates; various special cases are already
4669  // handled, so this is best done with a single constant-pool load.
4670  if (IsAllConstants)
4671    return SDValue();
4672
4673  // For AVX-length vectors, build the individual 128-bit pieces and use
4674  // shuffles to put them in place.
4675  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4676    SmallVector<SDValue, 32> V;
4677    for (unsigned i = 0; i < NumElems; ++i)
4678      V.push_back(Op.getOperand(i));
4679
4680    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4681
4682    // Build both the lower and upper subvector.
4683    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4684    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4685                                NumElems/2);
4686
4687    // Recreate the wider vector with the lower and upper part.
4688    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
4689                                DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4690    return Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32),
4691                              DAG, dl);
4692  }
4693
4694  // Let legalizer expand 2-wide build_vectors.
4695  if (EVTBits == 64) {
4696    if (NumNonZero == 1) {
4697      // One half is zero or undef.
4698      unsigned Idx = CountTrailingZeros_32(NonZeros);
4699      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4700                                 Op.getOperand(Idx));
4701      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4702                                         Subtarget->hasSSE2(), DAG);
4703    }
4704    return SDValue();
4705  }
4706
4707  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4708  if (EVTBits == 8 && NumElems == 16) {
4709    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4710                                        *this);
4711    if (V.getNode()) return V;
4712  }
4713
4714  if (EVTBits == 16 && NumElems == 8) {
4715    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4716                                      *this);
4717    if (V.getNode()) return V;
4718  }
4719
4720  // If element VT is == 32 bits, turn it into a number of shuffles.
4721  SmallVector<SDValue, 8> V;
4722  V.resize(NumElems);
4723  if (NumElems == 4 && NumZero > 0) {
4724    for (unsigned i = 0; i < 4; ++i) {
4725      bool isZero = !(NonZeros & (1 << i));
4726      if (isZero)
4727        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4728      else
4729        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4730    }
4731
4732    for (unsigned i = 0; i < 2; ++i) {
4733      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4734        default: break;
4735        case 0:
4736          V[i] = V[i*2];  // Must be a zero vector.
4737          break;
4738        case 1:
4739          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4740          break;
4741        case 2:
4742          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4743          break;
4744        case 3:
4745          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4746          break;
4747      }
4748    }
4749
4750    SmallVector<int, 8> MaskVec;
4751    bool Reverse = (NonZeros & 0x3) == 2;
4752    for (unsigned i = 0; i < 2; ++i)
4753      MaskVec.push_back(Reverse ? 1-i : i);
4754    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4755    for (unsigned i = 0; i < 2; ++i)
4756      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4757    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4758  }
4759
4760  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4761    // Check for a build vector of consecutive loads.
4762    for (unsigned i = 0; i < NumElems; ++i)
4763      V[i] = Op.getOperand(i);
4764
4765    // Check for elements which are consecutive loads.
4766    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4767    if (LD.getNode())
4768      return LD;
4769
4770    // For SSE 4.1, use insertps to put the high elements into the low element.
4771    if (getSubtarget()->hasSSE41()) {
4772      SDValue Result;
4773      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4774        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4775      else
4776        Result = DAG.getUNDEF(VT);
4777
4778      for (unsigned i = 1; i < NumElems; ++i) {
4779        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4780        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4781                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4782      }
4783      return Result;
4784    }
4785
4786    // Otherwise, expand into a number of unpckl*, start by extending each of
4787    // our (non-undef) elements to the full vector width with the element in the
4788    // bottom slot of the vector (which generates no code for SSE).
4789    for (unsigned i = 0; i < NumElems; ++i) {
4790      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4791        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4792      else
4793        V[i] = DAG.getUNDEF(VT);
4794    }
4795
4796    // Next, we iteratively mix elements, e.g. for v4f32:
4797    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4798    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4799    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4800    unsigned EltStride = NumElems >> 1;
4801    while (EltStride != 0) {
4802      for (unsigned i = 0; i < EltStride; ++i) {
4803        // If V[i+EltStride] is undef and this is the first round of mixing,
4804        // then it is safe to just drop this shuffle: V[i] is already in the
4805        // right place, the one element (since it's the first round) being
4806        // inserted as undef can be dropped.  This isn't safe for successive
4807        // rounds because they will permute elements within both vectors.
4808        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4809            EltStride == NumElems/2)
4810          continue;
4811
4812        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4813      }
4814      EltStride >>= 1;
4815    }
4816    return V[0];
4817  }
4818  return SDValue();
4819}
4820
4821SDValue
4822X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4823  // We support concatenate two MMX registers and place them in a MMX
4824  // register.  This is better than doing a stack convert.
4825  DebugLoc dl = Op.getDebugLoc();
4826  EVT ResVT = Op.getValueType();
4827  assert(Op.getNumOperands() == 2);
4828  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4829         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4830  int Mask[2];
4831  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4832  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4833  InVec = Op.getOperand(1);
4834  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4835    unsigned NumElts = ResVT.getVectorNumElements();
4836    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4837    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4838                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4839  } else {
4840    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4841    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4842    Mask[0] = 0; Mask[1] = 2;
4843    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4844  }
4845  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4846}
4847
4848// v8i16 shuffles - Prefer shuffles in the following order:
4849// 1. [all]   pshuflw, pshufhw, optional move
4850// 2. [ssse3] 1 x pshufb
4851// 3. [ssse3] 2 x pshufb + 1 x por
4852// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4853SDValue
4854X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4855                                            SelectionDAG &DAG) const {
4856  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4857  SDValue V1 = SVOp->getOperand(0);
4858  SDValue V2 = SVOp->getOperand(1);
4859  DebugLoc dl = SVOp->getDebugLoc();
4860  SmallVector<int, 8> MaskVals;
4861
4862  // Determine if more than 1 of the words in each of the low and high quadwords
4863  // of the result come from the same quadword of one of the two inputs.  Undef
4864  // mask values count as coming from any quadword, for better codegen.
4865  SmallVector<unsigned, 4> LoQuad(4);
4866  SmallVector<unsigned, 4> HiQuad(4);
4867  BitVector InputQuads(4);
4868  for (unsigned i = 0; i < 8; ++i) {
4869    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4870    int EltIdx = SVOp->getMaskElt(i);
4871    MaskVals.push_back(EltIdx);
4872    if (EltIdx < 0) {
4873      ++Quad[0];
4874      ++Quad[1];
4875      ++Quad[2];
4876      ++Quad[3];
4877      continue;
4878    }
4879    ++Quad[EltIdx / 4];
4880    InputQuads.set(EltIdx / 4);
4881  }
4882
4883  int BestLoQuad = -1;
4884  unsigned MaxQuad = 1;
4885  for (unsigned i = 0; i < 4; ++i) {
4886    if (LoQuad[i] > MaxQuad) {
4887      BestLoQuad = i;
4888      MaxQuad = LoQuad[i];
4889    }
4890  }
4891
4892  int BestHiQuad = -1;
4893  MaxQuad = 1;
4894  for (unsigned i = 0; i < 4; ++i) {
4895    if (HiQuad[i] > MaxQuad) {
4896      BestHiQuad = i;
4897      MaxQuad = HiQuad[i];
4898    }
4899  }
4900
4901  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4902  // of the two input vectors, shuffle them into one input vector so only a
4903  // single pshufb instruction is necessary. If There are more than 2 input
4904  // quads, disable the next transformation since it does not help SSSE3.
4905  bool V1Used = InputQuads[0] || InputQuads[1];
4906  bool V2Used = InputQuads[2] || InputQuads[3];
4907  if (Subtarget->hasSSSE3()) {
4908    if (InputQuads.count() == 2 && V1Used && V2Used) {
4909      BestLoQuad = InputQuads.find_first();
4910      BestHiQuad = InputQuads.find_next(BestLoQuad);
4911    }
4912    if (InputQuads.count() > 2) {
4913      BestLoQuad = -1;
4914      BestHiQuad = -1;
4915    }
4916  }
4917
4918  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4919  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4920  // words from all 4 input quadwords.
4921  SDValue NewV;
4922  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4923    SmallVector<int, 8> MaskV;
4924    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4925    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4926    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4927                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4928                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4929    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4930
4931    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4932    // source words for the shuffle, to aid later transformations.
4933    bool AllWordsInNewV = true;
4934    bool InOrder[2] = { true, true };
4935    for (unsigned i = 0; i != 8; ++i) {
4936      int idx = MaskVals[i];
4937      if (idx != (int)i)
4938        InOrder[i/4] = false;
4939      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4940        continue;
4941      AllWordsInNewV = false;
4942      break;
4943    }
4944
4945    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4946    if (AllWordsInNewV) {
4947      for (int i = 0; i != 8; ++i) {
4948        int idx = MaskVals[i];
4949        if (idx < 0)
4950          continue;
4951        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4952        if ((idx != i) && idx < 4)
4953          pshufhw = false;
4954        if ((idx != i) && idx > 3)
4955          pshuflw = false;
4956      }
4957      V1 = NewV;
4958      V2Used = false;
4959      BestLoQuad = 0;
4960      BestHiQuad = 1;
4961    }
4962
4963    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4964    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4965    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4966      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4967      unsigned TargetMask = 0;
4968      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4969                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4970      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4971                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4972      V1 = NewV.getOperand(0);
4973      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4974    }
4975  }
4976
4977  // If we have SSSE3, and all words of the result are from 1 input vector,
4978  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4979  // is present, fall back to case 4.
4980  if (Subtarget->hasSSSE3()) {
4981    SmallVector<SDValue,16> pshufbMask;
4982
4983    // If we have elements from both input vectors, set the high bit of the
4984    // shuffle mask element to zero out elements that come from V2 in the V1
4985    // mask, and elements that come from V1 in the V2 mask, so that the two
4986    // results can be OR'd together.
4987    bool TwoInputs = V1Used && V2Used;
4988    for (unsigned i = 0; i != 8; ++i) {
4989      int EltIdx = MaskVals[i] * 2;
4990      if (TwoInputs && (EltIdx >= 16)) {
4991        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4992        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4993        continue;
4994      }
4995      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4996      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4997    }
4998    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4999    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5000                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5001                                 MVT::v16i8, &pshufbMask[0], 16));
5002    if (!TwoInputs)
5003      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5004
5005    // Calculate the shuffle mask for the second input, shuffle it, and
5006    // OR it with the first shuffled input.
5007    pshufbMask.clear();
5008    for (unsigned i = 0; i != 8; ++i) {
5009      int EltIdx = MaskVals[i] * 2;
5010      if (EltIdx < 16) {
5011        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5012        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5013        continue;
5014      }
5015      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5016      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5017    }
5018    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5019    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5020                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5021                                 MVT::v16i8, &pshufbMask[0], 16));
5022    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5023    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5024  }
5025
5026  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5027  // and update MaskVals with new element order.
5028  BitVector InOrder(8);
5029  if (BestLoQuad >= 0) {
5030    SmallVector<int, 8> MaskV;
5031    for (int i = 0; i != 4; ++i) {
5032      int idx = MaskVals[i];
5033      if (idx < 0) {
5034        MaskV.push_back(-1);
5035        InOrder.set(i);
5036      } else if ((idx / 4) == BestLoQuad) {
5037        MaskV.push_back(idx & 3);
5038        InOrder.set(i);
5039      } else {
5040        MaskV.push_back(-1);
5041      }
5042    }
5043    for (unsigned i = 4; i != 8; ++i)
5044      MaskV.push_back(i);
5045    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5046                                &MaskV[0]);
5047
5048    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5049      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5050                               NewV.getOperand(0),
5051                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5052                               DAG);
5053  }
5054
5055  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5056  // and update MaskVals with the new element order.
5057  if (BestHiQuad >= 0) {
5058    SmallVector<int, 8> MaskV;
5059    for (unsigned i = 0; i != 4; ++i)
5060      MaskV.push_back(i);
5061    for (unsigned i = 4; i != 8; ++i) {
5062      int idx = MaskVals[i];
5063      if (idx < 0) {
5064        MaskV.push_back(-1);
5065        InOrder.set(i);
5066      } else if ((idx / 4) == BestHiQuad) {
5067        MaskV.push_back((idx & 3) + 4);
5068        InOrder.set(i);
5069      } else {
5070        MaskV.push_back(-1);
5071      }
5072    }
5073    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5074                                &MaskV[0]);
5075
5076    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5077      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5078                              NewV.getOperand(0),
5079                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5080                              DAG);
5081  }
5082
5083  // In case BestHi & BestLo were both -1, which means each quadword has a word
5084  // from each of the four input quadwords, calculate the InOrder bitvector now
5085  // before falling through to the insert/extract cleanup.
5086  if (BestLoQuad == -1 && BestHiQuad == -1) {
5087    NewV = V1;
5088    for (int i = 0; i != 8; ++i)
5089      if (MaskVals[i] < 0 || MaskVals[i] == i)
5090        InOrder.set(i);
5091  }
5092
5093  // The other elements are put in the right place using pextrw and pinsrw.
5094  for (unsigned i = 0; i != 8; ++i) {
5095    if (InOrder[i])
5096      continue;
5097    int EltIdx = MaskVals[i];
5098    if (EltIdx < 0)
5099      continue;
5100    SDValue ExtOp = (EltIdx < 8)
5101    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5102                  DAG.getIntPtrConstant(EltIdx))
5103    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5104                  DAG.getIntPtrConstant(EltIdx - 8));
5105    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5106                       DAG.getIntPtrConstant(i));
5107  }
5108  return NewV;
5109}
5110
5111// v16i8 shuffles - Prefer shuffles in the following order:
5112// 1. [ssse3] 1 x pshufb
5113// 2. [ssse3] 2 x pshufb + 1 x por
5114// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5115static
5116SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5117                                 SelectionDAG &DAG,
5118                                 const X86TargetLowering &TLI) {
5119  SDValue V1 = SVOp->getOperand(0);
5120  SDValue V2 = SVOp->getOperand(1);
5121  DebugLoc dl = SVOp->getDebugLoc();
5122  SmallVector<int, 16> MaskVals;
5123  SVOp->getMask(MaskVals);
5124
5125  // If we have SSSE3, case 1 is generated when all result bytes come from
5126  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5127  // present, fall back to case 3.
5128  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5129  bool V1Only = true;
5130  bool V2Only = true;
5131  for (unsigned i = 0; i < 16; ++i) {
5132    int EltIdx = MaskVals[i];
5133    if (EltIdx < 0)
5134      continue;
5135    if (EltIdx < 16)
5136      V2Only = false;
5137    else
5138      V1Only = false;
5139  }
5140
5141  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5142  if (TLI.getSubtarget()->hasSSSE3()) {
5143    SmallVector<SDValue,16> pshufbMask;
5144
5145    // If all result elements are from one input vector, then only translate
5146    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5147    //
5148    // Otherwise, we have elements from both input vectors, and must zero out
5149    // elements that come from V2 in the first mask, and V1 in the second mask
5150    // so that we can OR them together.
5151    bool TwoInputs = !(V1Only || V2Only);
5152    for (unsigned i = 0; i != 16; ++i) {
5153      int EltIdx = MaskVals[i];
5154      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5155        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5156        continue;
5157      }
5158      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5159    }
5160    // If all the elements are from V2, assign it to V1 and return after
5161    // building the first pshufb.
5162    if (V2Only)
5163      V1 = V2;
5164    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5165                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5166                                 MVT::v16i8, &pshufbMask[0], 16));
5167    if (!TwoInputs)
5168      return V1;
5169
5170    // Calculate the shuffle mask for the second input, shuffle it, and
5171    // OR it with the first shuffled input.
5172    pshufbMask.clear();
5173    for (unsigned i = 0; i != 16; ++i) {
5174      int EltIdx = MaskVals[i];
5175      if (EltIdx < 16) {
5176        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5177        continue;
5178      }
5179      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5180    }
5181    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5182                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5183                                 MVT::v16i8, &pshufbMask[0], 16));
5184    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5185  }
5186
5187  // No SSSE3 - Calculate in place words and then fix all out of place words
5188  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5189  // the 16 different words that comprise the two doublequadword input vectors.
5190  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5191  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5192  SDValue NewV = V2Only ? V2 : V1;
5193  for (int i = 0; i != 8; ++i) {
5194    int Elt0 = MaskVals[i*2];
5195    int Elt1 = MaskVals[i*2+1];
5196
5197    // This word of the result is all undef, skip it.
5198    if (Elt0 < 0 && Elt1 < 0)
5199      continue;
5200
5201    // This word of the result is already in the correct place, skip it.
5202    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5203      continue;
5204    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5205      continue;
5206
5207    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5208    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5209    SDValue InsElt;
5210
5211    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5212    // using a single extract together, load it and store it.
5213    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5214      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5215                           DAG.getIntPtrConstant(Elt1 / 2));
5216      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5217                        DAG.getIntPtrConstant(i));
5218      continue;
5219    }
5220
5221    // If Elt1 is defined, extract it from the appropriate source.  If the
5222    // source byte is not also odd, shift the extracted word left 8 bits
5223    // otherwise clear the bottom 8 bits if we need to do an or.
5224    if (Elt1 >= 0) {
5225      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5226                           DAG.getIntPtrConstant(Elt1 / 2));
5227      if ((Elt1 & 1) == 0)
5228        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5229                             DAG.getConstant(8,
5230                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5231      else if (Elt0 >= 0)
5232        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5233                             DAG.getConstant(0xFF00, MVT::i16));
5234    }
5235    // If Elt0 is defined, extract it from the appropriate source.  If the
5236    // source byte is not also even, shift the extracted word right 8 bits. If
5237    // Elt1 was also defined, OR the extracted values together before
5238    // inserting them in the result.
5239    if (Elt0 >= 0) {
5240      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5241                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5242      if ((Elt0 & 1) != 0)
5243        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5244                              DAG.getConstant(8,
5245                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5246      else if (Elt1 >= 0)
5247        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5248                             DAG.getConstant(0x00FF, MVT::i16));
5249      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5250                         : InsElt0;
5251    }
5252    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5253                       DAG.getIntPtrConstant(i));
5254  }
5255  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5256}
5257
5258/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5259/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5260/// done when every pair / quad of shuffle mask elements point to elements in
5261/// the right sequence. e.g.
5262/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5263static
5264SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5265                                 SelectionDAG &DAG, DebugLoc dl) {
5266  EVT VT = SVOp->getValueType(0);
5267  SDValue V1 = SVOp->getOperand(0);
5268  SDValue V2 = SVOp->getOperand(1);
5269  unsigned NumElems = VT.getVectorNumElements();
5270  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5271  EVT NewVT;
5272  switch (VT.getSimpleVT().SimpleTy) {
5273  default: assert(false && "Unexpected!");
5274  case MVT::v4f32: NewVT = MVT::v2f64; break;
5275  case MVT::v4i32: NewVT = MVT::v2i64; break;
5276  case MVT::v8i16: NewVT = MVT::v4i32; break;
5277  case MVT::v16i8: NewVT = MVT::v4i32; break;
5278  }
5279
5280  int Scale = NumElems / NewWidth;
5281  SmallVector<int, 8> MaskVec;
5282  for (unsigned i = 0; i < NumElems; i += Scale) {
5283    int StartIdx = -1;
5284    for (int j = 0; j < Scale; ++j) {
5285      int EltIdx = SVOp->getMaskElt(i+j);
5286      if (EltIdx < 0)
5287        continue;
5288      if (StartIdx == -1)
5289        StartIdx = EltIdx - (EltIdx % Scale);
5290      if (EltIdx != StartIdx + j)
5291        return SDValue();
5292    }
5293    if (StartIdx == -1)
5294      MaskVec.push_back(-1);
5295    else
5296      MaskVec.push_back(StartIdx / Scale);
5297  }
5298
5299  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5300  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5301  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5302}
5303
5304/// getVZextMovL - Return a zero-extending vector move low node.
5305///
5306static SDValue getVZextMovL(EVT VT, EVT OpVT,
5307                            SDValue SrcOp, SelectionDAG &DAG,
5308                            const X86Subtarget *Subtarget, DebugLoc dl) {
5309  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5310    LoadSDNode *LD = NULL;
5311    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5312      LD = dyn_cast<LoadSDNode>(SrcOp);
5313    if (!LD) {
5314      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5315      // instead.
5316      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5317      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5318          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5319          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5320          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5321        // PR2108
5322        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5323        return DAG.getNode(ISD::BITCAST, dl, VT,
5324                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5325                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5326                                                   OpVT,
5327                                                   SrcOp.getOperand(0)
5328                                                          .getOperand(0))));
5329      }
5330    }
5331  }
5332
5333  return DAG.getNode(ISD::BITCAST, dl, VT,
5334                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5335                                 DAG.getNode(ISD::BITCAST, dl,
5336                                             OpVT, SrcOp)));
5337}
5338
5339/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5340/// which could not be matched by any known target speficic shuffle
5341static SDValue
5342LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5343  return SDValue();
5344}
5345
5346/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5347/// 4 elements, and match them with several different shuffle types.
5348static SDValue
5349LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5350  SDValue V1 = SVOp->getOperand(0);
5351  SDValue V2 = SVOp->getOperand(1);
5352  DebugLoc dl = SVOp->getDebugLoc();
5353  EVT VT = SVOp->getValueType(0);
5354
5355  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5356
5357  SmallVector<std::pair<int, int>, 8> Locs;
5358  Locs.resize(4);
5359  SmallVector<int, 8> Mask1(4U, -1);
5360  SmallVector<int, 8> PermMask;
5361  SVOp->getMask(PermMask);
5362
5363  unsigned NumHi = 0;
5364  unsigned NumLo = 0;
5365  for (unsigned i = 0; i != 4; ++i) {
5366    int Idx = PermMask[i];
5367    if (Idx < 0) {
5368      Locs[i] = std::make_pair(-1, -1);
5369    } else {
5370      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5371      if (Idx < 4) {
5372        Locs[i] = std::make_pair(0, NumLo);
5373        Mask1[NumLo] = Idx;
5374        NumLo++;
5375      } else {
5376        Locs[i] = std::make_pair(1, NumHi);
5377        if (2+NumHi < 4)
5378          Mask1[2+NumHi] = Idx;
5379        NumHi++;
5380      }
5381    }
5382  }
5383
5384  if (NumLo <= 2 && NumHi <= 2) {
5385    // If no more than two elements come from either vector. This can be
5386    // implemented with two shuffles. First shuffle gather the elements.
5387    // The second shuffle, which takes the first shuffle as both of its
5388    // vector operands, put the elements into the right order.
5389    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5390
5391    SmallVector<int, 8> Mask2(4U, -1);
5392
5393    for (unsigned i = 0; i != 4; ++i) {
5394      if (Locs[i].first == -1)
5395        continue;
5396      else {
5397        unsigned Idx = (i < 2) ? 0 : 4;
5398        Idx += Locs[i].first * 2 + Locs[i].second;
5399        Mask2[i] = Idx;
5400      }
5401    }
5402
5403    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5404  } else if (NumLo == 3 || NumHi == 3) {
5405    // Otherwise, we must have three elements from one vector, call it X, and
5406    // one element from the other, call it Y.  First, use a shufps to build an
5407    // intermediate vector with the one element from Y and the element from X
5408    // that will be in the same half in the final destination (the indexes don't
5409    // matter). Then, use a shufps to build the final vector, taking the half
5410    // containing the element from Y from the intermediate, and the other half
5411    // from X.
5412    if (NumHi == 3) {
5413      // Normalize it so the 3 elements come from V1.
5414      CommuteVectorShuffleMask(PermMask, VT);
5415      std::swap(V1, V2);
5416    }
5417
5418    // Find the element from V2.
5419    unsigned HiIndex;
5420    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5421      int Val = PermMask[HiIndex];
5422      if (Val < 0)
5423        continue;
5424      if (Val >= 4)
5425        break;
5426    }
5427
5428    Mask1[0] = PermMask[HiIndex];
5429    Mask1[1] = -1;
5430    Mask1[2] = PermMask[HiIndex^1];
5431    Mask1[3] = -1;
5432    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5433
5434    if (HiIndex >= 2) {
5435      Mask1[0] = PermMask[0];
5436      Mask1[1] = PermMask[1];
5437      Mask1[2] = HiIndex & 1 ? 6 : 4;
5438      Mask1[3] = HiIndex & 1 ? 4 : 6;
5439      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5440    } else {
5441      Mask1[0] = HiIndex & 1 ? 2 : 0;
5442      Mask1[1] = HiIndex & 1 ? 0 : 2;
5443      Mask1[2] = PermMask[2];
5444      Mask1[3] = PermMask[3];
5445      if (Mask1[2] >= 0)
5446        Mask1[2] += 4;
5447      if (Mask1[3] >= 0)
5448        Mask1[3] += 4;
5449      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5450    }
5451  }
5452
5453  // Break it into (shuffle shuffle_hi, shuffle_lo).
5454  Locs.clear();
5455  Locs.resize(4);
5456  SmallVector<int,8> LoMask(4U, -1);
5457  SmallVector<int,8> HiMask(4U, -1);
5458
5459  SmallVector<int,8> *MaskPtr = &LoMask;
5460  unsigned MaskIdx = 0;
5461  unsigned LoIdx = 0;
5462  unsigned HiIdx = 2;
5463  for (unsigned i = 0; i != 4; ++i) {
5464    if (i == 2) {
5465      MaskPtr = &HiMask;
5466      MaskIdx = 1;
5467      LoIdx = 0;
5468      HiIdx = 2;
5469    }
5470    int Idx = PermMask[i];
5471    if (Idx < 0) {
5472      Locs[i] = std::make_pair(-1, -1);
5473    } else if (Idx < 4) {
5474      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5475      (*MaskPtr)[LoIdx] = Idx;
5476      LoIdx++;
5477    } else {
5478      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5479      (*MaskPtr)[HiIdx] = Idx;
5480      HiIdx++;
5481    }
5482  }
5483
5484  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5485  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5486  SmallVector<int, 8> MaskOps;
5487  for (unsigned i = 0; i != 4; ++i) {
5488    if (Locs[i].first == -1) {
5489      MaskOps.push_back(-1);
5490    } else {
5491      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5492      MaskOps.push_back(Idx);
5493    }
5494  }
5495  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5496}
5497
5498static bool MayFoldVectorLoad(SDValue V) {
5499  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5500    V = V.getOperand(0);
5501  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5502    V = V.getOperand(0);
5503  if (MayFoldLoad(V))
5504    return true;
5505  return false;
5506}
5507
5508// FIXME: the version above should always be used. Since there's
5509// a bug where several vector shuffles can't be folded because the
5510// DAG is not updated during lowering and a node claims to have two
5511// uses while it only has one, use this version, and let isel match
5512// another instruction if the load really happens to have more than
5513// one use. Remove this version after this bug get fixed.
5514// rdar://8434668, PR8156
5515static bool RelaxedMayFoldVectorLoad(SDValue V) {
5516  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5517    V = V.getOperand(0);
5518  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5519    V = V.getOperand(0);
5520  if (ISD::isNormalLoad(V.getNode()))
5521    return true;
5522  return false;
5523}
5524
5525/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5526/// a vector extract, and if both can be later optimized into a single load.
5527/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5528/// here because otherwise a target specific shuffle node is going to be
5529/// emitted for this shuffle, and the optimization not done.
5530/// FIXME: This is probably not the best approach, but fix the problem
5531/// until the right path is decided.
5532static
5533bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5534                                         const TargetLowering &TLI) {
5535  EVT VT = V.getValueType();
5536  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5537
5538  // Be sure that the vector shuffle is present in a pattern like this:
5539  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5540  if (!V.hasOneUse())
5541    return false;
5542
5543  SDNode *N = *V.getNode()->use_begin();
5544  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5545    return false;
5546
5547  SDValue EltNo = N->getOperand(1);
5548  if (!isa<ConstantSDNode>(EltNo))
5549    return false;
5550
5551  // If the bit convert changed the number of elements, it is unsafe
5552  // to examine the mask.
5553  bool HasShuffleIntoBitcast = false;
5554  if (V.getOpcode() == ISD::BITCAST) {
5555    EVT SrcVT = V.getOperand(0).getValueType();
5556    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5557      return false;
5558    V = V.getOperand(0);
5559    HasShuffleIntoBitcast = true;
5560  }
5561
5562  // Select the input vector, guarding against out of range extract vector.
5563  unsigned NumElems = VT.getVectorNumElements();
5564  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5565  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5566  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5567
5568  // Skip one more bit_convert if necessary
5569  if (V.getOpcode() == ISD::BITCAST)
5570    V = V.getOperand(0);
5571
5572  if (ISD::isNormalLoad(V.getNode())) {
5573    // Is the original load suitable?
5574    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5575
5576    // FIXME: avoid the multi-use bug that is preventing lots of
5577    // of foldings to be detected, this is still wrong of course, but
5578    // give the temporary desired behavior, and if it happens that
5579    // the load has real more uses, during isel it will not fold, and
5580    // will generate poor code.
5581    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5582      return false;
5583
5584    if (!HasShuffleIntoBitcast)
5585      return true;
5586
5587    // If there's a bitcast before the shuffle, check if the load type and
5588    // alignment is valid.
5589    unsigned Align = LN0->getAlignment();
5590    unsigned NewAlign =
5591      TLI.getTargetData()->getABITypeAlignment(
5592                                    VT.getTypeForEVT(*DAG.getContext()));
5593
5594    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5595      return false;
5596  }
5597
5598  return true;
5599}
5600
5601static
5602SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5603  EVT VT = Op.getValueType();
5604
5605  // Canonizalize to v2f64.
5606  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5607  return DAG.getNode(ISD::BITCAST, dl, VT,
5608                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5609                                          V1, DAG));
5610}
5611
5612static
5613SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5614                        bool HasSSE2) {
5615  SDValue V1 = Op.getOperand(0);
5616  SDValue V2 = Op.getOperand(1);
5617  EVT VT = Op.getValueType();
5618
5619  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5620
5621  if (HasSSE2 && VT == MVT::v2f64)
5622    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5623
5624  // v4f32 or v4i32
5625  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5626}
5627
5628static
5629SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5630  SDValue V1 = Op.getOperand(0);
5631  SDValue V2 = Op.getOperand(1);
5632  EVT VT = Op.getValueType();
5633
5634  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5635         "unsupported shuffle type");
5636
5637  if (V2.getOpcode() == ISD::UNDEF)
5638    V2 = V1;
5639
5640  // v4i32 or v4f32
5641  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5642}
5643
5644static
5645SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5646  SDValue V1 = Op.getOperand(0);
5647  SDValue V2 = Op.getOperand(1);
5648  EVT VT = Op.getValueType();
5649  unsigned NumElems = VT.getVectorNumElements();
5650
5651  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5652  // operand of these instructions is only memory, so check if there's a
5653  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5654  // same masks.
5655  bool CanFoldLoad = false;
5656
5657  // Trivial case, when V2 comes from a load.
5658  if (MayFoldVectorLoad(V2))
5659    CanFoldLoad = true;
5660
5661  // When V1 is a load, it can be folded later into a store in isel, example:
5662  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5663  //    turns into:
5664  //  (MOVLPSmr addr:$src1, VR128:$src2)
5665  // So, recognize this potential and also use MOVLPS or MOVLPD
5666  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5667    CanFoldLoad = true;
5668
5669  // Both of them can't be memory operations though.
5670  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5671    CanFoldLoad = false;
5672
5673  if (CanFoldLoad) {
5674    if (HasSSE2 && NumElems == 2)
5675      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5676
5677    if (NumElems == 4)
5678      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5679  }
5680
5681  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5682  // movl and movlp will both match v2i64, but v2i64 is never matched by
5683  // movl earlier because we make it strict to avoid messing with the movlp load
5684  // folding logic (see the code above getMOVLP call). Match it here then,
5685  // this is horrible, but will stay like this until we move all shuffle
5686  // matching to x86 specific nodes. Note that for the 1st condition all
5687  // types are matched with movsd.
5688  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5689    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5690  else if (HasSSE2)
5691    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5692
5693
5694  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5695
5696  // Invert the operand order and use SHUFPS to match it.
5697  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5698                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5699}
5700
5701static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5702  switch(VT.getSimpleVT().SimpleTy) {
5703  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5704  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5705  case MVT::v4f32: return X86ISD::UNPCKLPS;
5706  case MVT::v2f64: return X86ISD::UNPCKLPD;
5707  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5708  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5709  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5710  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5711  default:
5712    llvm_unreachable("Unknown type for unpckl");
5713  }
5714  return 0;
5715}
5716
5717static inline unsigned getUNPCKHOpcode(EVT VT) {
5718  switch(VT.getSimpleVT().SimpleTy) {
5719  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5720  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5721  case MVT::v4f32: return X86ISD::UNPCKHPS;
5722  case MVT::v2f64: return X86ISD::UNPCKHPD;
5723  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5724  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5725  default:
5726    llvm_unreachable("Unknown type for unpckh");
5727  }
5728  return 0;
5729}
5730
5731static
5732SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5733                               const TargetLowering &TLI,
5734                               const X86Subtarget *Subtarget) {
5735  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5736  EVT VT = Op.getValueType();
5737  DebugLoc dl = Op.getDebugLoc();
5738  SDValue V1 = Op.getOperand(0);
5739  SDValue V2 = Op.getOperand(1);
5740
5741  if (isZeroShuffle(SVOp))
5742    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5743
5744  // Handle splat operations
5745  if (SVOp->isSplat()) {
5746    unsigned NumElem = VT.getVectorNumElements();
5747    // Special case, this is the only place now where it's allowed to return
5748    // a vector_shuffle operation without using a target specific node, because
5749    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
5750    // this be moved to DAGCombine instead?
5751    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5752      return Op;
5753
5754    // Handle splats by matching through known masks
5755    if ((VT.is128BitVector() && NumElem <= 4) ||
5756        (VT.is256BitVector() && NumElem <= 8))
5757      return SDValue();
5758
5759    // All i16 and i8 vector types can't be used directly by a generic shuffle
5760    // instruction because the target has no such instruction. Generate shuffles
5761    // which repeat i16 and i8 several times until they fit in i32, and then can
5762    // be manipulated by target suported shuffles. After the insertion of the
5763    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
5764    return PromoteSplat(SVOp, DAG);
5765  }
5766
5767  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5768  // do it!
5769  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5770    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5771    if (NewOp.getNode())
5772      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5773  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5774    // FIXME: Figure out a cleaner way to do this.
5775    // Try to make use of movq to zero out the top part.
5776    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5777      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5778      if (NewOp.getNode()) {
5779        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5780          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5781                              DAG, Subtarget, dl);
5782      }
5783    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5784      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5785      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5786        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5787                            DAG, Subtarget, dl);
5788    }
5789  }
5790  return SDValue();
5791}
5792
5793SDValue
5794X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5795  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5796  SDValue V1 = Op.getOperand(0);
5797  SDValue V2 = Op.getOperand(1);
5798  EVT VT = Op.getValueType();
5799  DebugLoc dl = Op.getDebugLoc();
5800  unsigned NumElems = VT.getVectorNumElements();
5801  bool isMMX = VT.getSizeInBits() == 64;
5802  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5803  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5804  bool V1IsSplat = false;
5805  bool V2IsSplat = false;
5806  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5807  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5808  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5809  MachineFunction &MF = DAG.getMachineFunction();
5810  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5811
5812  // Shuffle operations on MMX not supported.
5813  if (isMMX)
5814    return Op;
5815
5816  // Vector shuffle lowering takes 3 steps:
5817  //
5818  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5819  //    narrowing and commutation of operands should be handled.
5820  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5821  //    shuffle nodes.
5822  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5823  //    so the shuffle can be broken into other shuffles and the legalizer can
5824  //    try the lowering again.
5825  //
5826  // The general ideia is that no vector_shuffle operation should be left to
5827  // be matched during isel, all of them must be converted to a target specific
5828  // node here.
5829
5830  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5831  // narrowing and commutation of operands should be handled. The actual code
5832  // doesn't include all of those, work in progress...
5833  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5834  if (NewOp.getNode())
5835    return NewOp;
5836
5837  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5838  // unpckh_undef). Only use pshufd if speed is more important than size.
5839  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5840    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5841      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5842  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5843    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5844      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5845
5846  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5847      RelaxedMayFoldVectorLoad(V1))
5848    return getMOVDDup(Op, dl, V1, DAG);
5849
5850  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5851    return getMOVHighToLow(Op, dl, DAG);
5852
5853  // Use to match splats
5854  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5855      (VT == MVT::v2f64 || VT == MVT::v2i64))
5856    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5857
5858  if (X86::isPSHUFDMask(SVOp)) {
5859    // The actual implementation will match the mask in the if above and then
5860    // during isel it can match several different instructions, not only pshufd
5861    // as its name says, sad but true, emulate the behavior for now...
5862    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5863        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5864
5865    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5866
5867    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5868      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5869
5870    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5871      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5872                                  TargetMask, DAG);
5873
5874    if (VT == MVT::v4f32)
5875      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5876                                  TargetMask, DAG);
5877  }
5878
5879  // Check if this can be converted into a logical shift.
5880  bool isLeft = false;
5881  unsigned ShAmt = 0;
5882  SDValue ShVal;
5883  bool isShift = getSubtarget()->hasSSE2() &&
5884    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5885  if (isShift && ShVal.hasOneUse()) {
5886    // If the shifted value has multiple uses, it may be cheaper to use
5887    // v_set0 + movlhps or movhlps, etc.
5888    EVT EltVT = VT.getVectorElementType();
5889    ShAmt *= EltVT.getSizeInBits();
5890    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5891  }
5892
5893  if (X86::isMOVLMask(SVOp)) {
5894    if (V1IsUndef)
5895      return V2;
5896    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5897      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5898    if (!X86::isMOVLPMask(SVOp)) {
5899      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5900        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5901
5902      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5903        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5904    }
5905  }
5906
5907  // FIXME: fold these into legal mask.
5908  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5909    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5910
5911  if (X86::isMOVHLPSMask(SVOp))
5912    return getMOVHighToLow(Op, dl, DAG);
5913
5914  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5915    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5916
5917  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5918    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5919
5920  if (X86::isMOVLPMask(SVOp))
5921    return getMOVLP(Op, dl, DAG, HasSSE2);
5922
5923  if (ShouldXformToMOVHLPS(SVOp) ||
5924      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5925    return CommuteVectorShuffle(SVOp, DAG);
5926
5927  if (isShift) {
5928    // No better options. Use a vshl / vsrl.
5929    EVT EltVT = VT.getVectorElementType();
5930    ShAmt *= EltVT.getSizeInBits();
5931    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5932  }
5933
5934  bool Commuted = false;
5935  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5936  // 1,1,1,1 -> v8i16 though.
5937  V1IsSplat = isSplatVector(V1.getNode());
5938  V2IsSplat = isSplatVector(V2.getNode());
5939
5940  // Canonicalize the splat or undef, if present, to be on the RHS.
5941  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5942    Op = CommuteVectorShuffle(SVOp, DAG);
5943    SVOp = cast<ShuffleVectorSDNode>(Op);
5944    V1 = SVOp->getOperand(0);
5945    V2 = SVOp->getOperand(1);
5946    std::swap(V1IsSplat, V2IsSplat);
5947    std::swap(V1IsUndef, V2IsUndef);
5948    Commuted = true;
5949  }
5950
5951  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5952    // Shuffling low element of v1 into undef, just return v1.
5953    if (V2IsUndef)
5954      return V1;
5955    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5956    // the instruction selector will not match, so get a canonical MOVL with
5957    // swapped operands to undo the commute.
5958    return getMOVL(DAG, dl, VT, V2, V1);
5959  }
5960
5961  if (X86::isUNPCKLMask(SVOp))
5962    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5963                                dl, VT, V1, V2, DAG);
5964
5965  if (X86::isUNPCKHMask(SVOp))
5966    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5967
5968  if (V2IsSplat) {
5969    // Normalize mask so all entries that point to V2 points to its first
5970    // element then try to match unpck{h|l} again. If match, return a
5971    // new vector_shuffle with the corrected mask.
5972    SDValue NewMask = NormalizeMask(SVOp, DAG);
5973    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5974    if (NSVOp != SVOp) {
5975      if (X86::isUNPCKLMask(NSVOp, true)) {
5976        return NewMask;
5977      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5978        return NewMask;
5979      }
5980    }
5981  }
5982
5983  if (Commuted) {
5984    // Commute is back and try unpck* again.
5985    // FIXME: this seems wrong.
5986    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5987    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5988
5989    if (X86::isUNPCKLMask(NewSVOp))
5990      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5991                                  dl, VT, V2, V1, DAG);
5992
5993    if (X86::isUNPCKHMask(NewSVOp))
5994      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5995  }
5996
5997  // Normalize the node to match x86 shuffle ops if needed
5998  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5999    return CommuteVectorShuffle(SVOp, DAG);
6000
6001  // The checks below are all present in isShuffleMaskLegal, but they are
6002  // inlined here right now to enable us to directly emit target specific
6003  // nodes, and remove one by one until they don't return Op anymore.
6004  SmallVector<int, 16> M;
6005  SVOp->getMask(M);
6006
6007  if (isPALIGNRMask(M, VT, HasSSSE3))
6008    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6009                                X86::getShufflePALIGNRImmediate(SVOp),
6010                                DAG);
6011
6012  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6013      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6014    if (VT == MVT::v2f64)
6015      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6016    if (VT == MVT::v2i64)
6017      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6018  }
6019
6020  if (isPSHUFHWMask(M, VT))
6021    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6022                                X86::getShufflePSHUFHWImmediate(SVOp),
6023                                DAG);
6024
6025  if (isPSHUFLWMask(M, VT))
6026    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6027                                X86::getShufflePSHUFLWImmediate(SVOp),
6028                                DAG);
6029
6030  if (isSHUFPMask(M, VT)) {
6031    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6032    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6033      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6034                                  TargetMask, DAG);
6035    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6036      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6037                                  TargetMask, DAG);
6038  }
6039
6040  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6041    if (VT != MVT::v2i64 && VT != MVT::v2f64)
6042      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
6043                                  dl, VT, V1, V1, DAG);
6044  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6045    if (VT != MVT::v2i64 && VT != MVT::v2f64)
6046      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6047
6048  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6049  if (VT == MVT::v8i16) {
6050    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6051    if (NewOp.getNode())
6052      return NewOp;
6053  }
6054
6055  if (VT == MVT::v16i8) {
6056    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6057    if (NewOp.getNode())
6058      return NewOp;
6059  }
6060
6061  // Handle all 128-bit wide vectors with 4 elements, and match them with
6062  // several different shuffle types.
6063  if (NumElems == 4 && VT.getSizeInBits() == 128)
6064    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6065
6066  //===--------------------------------------------------------------------===//
6067  //  Custom lower or generate target specific nodes for 256-bit shuffles.
6068
6069  // Handle VPERMIL permutations
6070  if (isVPERMILMask(M, VT)) {
6071    unsigned TargetMask = getShuffleVPERMILImmediate(SVOp);
6072    if (VT == MVT::v8f32)
6073      return getTargetShuffleNode(X86ISD::VPERMIL, dl, VT, V1, TargetMask, DAG);
6074  }
6075
6076  // Handle general 256-bit shuffles
6077  if (VT.is256BitVector())
6078    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6079
6080  return SDValue();
6081}
6082
6083SDValue
6084X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6085                                                SelectionDAG &DAG) const {
6086  EVT VT = Op.getValueType();
6087  DebugLoc dl = Op.getDebugLoc();
6088  if (VT.getSizeInBits() == 8) {
6089    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6090                                    Op.getOperand(0), Op.getOperand(1));
6091    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6092                                    DAG.getValueType(VT));
6093    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6094  } else if (VT.getSizeInBits() == 16) {
6095    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6096    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6097    if (Idx == 0)
6098      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6099                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6100                                     DAG.getNode(ISD::BITCAST, dl,
6101                                                 MVT::v4i32,
6102                                                 Op.getOperand(0)),
6103                                     Op.getOperand(1)));
6104    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6105                                    Op.getOperand(0), Op.getOperand(1));
6106    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6107                                    DAG.getValueType(VT));
6108    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6109  } else if (VT == MVT::f32) {
6110    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6111    // the result back to FR32 register. It's only worth matching if the
6112    // result has a single use which is a store or a bitcast to i32.  And in
6113    // the case of a store, it's not worth it if the index is a constant 0,
6114    // because a MOVSSmr can be used instead, which is smaller and faster.
6115    if (!Op.hasOneUse())
6116      return SDValue();
6117    SDNode *User = *Op.getNode()->use_begin();
6118    if ((User->getOpcode() != ISD::STORE ||
6119         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6120          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6121        (User->getOpcode() != ISD::BITCAST ||
6122         User->getValueType(0) != MVT::i32))
6123      return SDValue();
6124    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6125                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6126                                              Op.getOperand(0)),
6127                                              Op.getOperand(1));
6128    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6129  } else if (VT == MVT::i32) {
6130    // ExtractPS works with constant index.
6131    if (isa<ConstantSDNode>(Op.getOperand(1)))
6132      return Op;
6133  }
6134  return SDValue();
6135}
6136
6137
6138SDValue
6139X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6140                                           SelectionDAG &DAG) const {
6141  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6142    return SDValue();
6143
6144  SDValue Vec = Op.getOperand(0);
6145  EVT VecVT = Vec.getValueType();
6146
6147  // If this is a 256-bit vector result, first extract the 128-bit
6148  // vector and then extract from the 128-bit vector.
6149  if (VecVT.getSizeInBits() > 128) {
6150    DebugLoc dl = Op.getNode()->getDebugLoc();
6151    unsigned NumElems = VecVT.getVectorNumElements();
6152    SDValue Idx = Op.getOperand(1);
6153
6154    if (!isa<ConstantSDNode>(Idx))
6155      return SDValue();
6156
6157    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6158    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6159
6160    // Get the 128-bit vector.
6161    bool Upper = IdxVal >= ExtractNumElems;
6162    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6163
6164    // Extract from it.
6165    SDValue ScaledIdx = Idx;
6166    if (Upper)
6167      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6168                              DAG.getConstant(ExtractNumElems,
6169                                              Idx.getValueType()));
6170    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6171                       ScaledIdx);
6172  }
6173
6174  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6175
6176  if (Subtarget->hasSSE41()) {
6177    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6178    if (Res.getNode())
6179      return Res;
6180  }
6181
6182  EVT VT = Op.getValueType();
6183  DebugLoc dl = Op.getDebugLoc();
6184  // TODO: handle v16i8.
6185  if (VT.getSizeInBits() == 16) {
6186    SDValue Vec = Op.getOperand(0);
6187    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6188    if (Idx == 0)
6189      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6190                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6191                                     DAG.getNode(ISD::BITCAST, dl,
6192                                                 MVT::v4i32, Vec),
6193                                     Op.getOperand(1)));
6194    // Transform it so it match pextrw which produces a 32-bit result.
6195    EVT EltVT = MVT::i32;
6196    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6197                                    Op.getOperand(0), Op.getOperand(1));
6198    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6199                                    DAG.getValueType(VT));
6200    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6201  } else if (VT.getSizeInBits() == 32) {
6202    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6203    if (Idx == 0)
6204      return Op;
6205
6206    // SHUFPS the element to the lowest double word, then movss.
6207    int Mask[4] = { Idx, -1, -1, -1 };
6208    EVT VVT = Op.getOperand(0).getValueType();
6209    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6210                                       DAG.getUNDEF(VVT), Mask);
6211    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6212                       DAG.getIntPtrConstant(0));
6213  } else if (VT.getSizeInBits() == 64) {
6214    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6215    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6216    //        to match extract_elt for f64.
6217    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6218    if (Idx == 0)
6219      return Op;
6220
6221    // UNPCKHPD the element to the lowest double word, then movsd.
6222    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6223    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6224    int Mask[2] = { 1, -1 };
6225    EVT VVT = Op.getOperand(0).getValueType();
6226    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6227                                       DAG.getUNDEF(VVT), Mask);
6228    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6229                       DAG.getIntPtrConstant(0));
6230  }
6231
6232  return SDValue();
6233}
6234
6235SDValue
6236X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6237                                               SelectionDAG &DAG) const {
6238  EVT VT = Op.getValueType();
6239  EVT EltVT = VT.getVectorElementType();
6240  DebugLoc dl = Op.getDebugLoc();
6241
6242  SDValue N0 = Op.getOperand(0);
6243  SDValue N1 = Op.getOperand(1);
6244  SDValue N2 = Op.getOperand(2);
6245
6246  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6247      isa<ConstantSDNode>(N2)) {
6248    unsigned Opc;
6249    if (VT == MVT::v8i16)
6250      Opc = X86ISD::PINSRW;
6251    else if (VT == MVT::v16i8)
6252      Opc = X86ISD::PINSRB;
6253    else
6254      Opc = X86ISD::PINSRB;
6255
6256    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6257    // argument.
6258    if (N1.getValueType() != MVT::i32)
6259      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6260    if (N2.getValueType() != MVT::i32)
6261      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6262    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6263  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6264    // Bits [7:6] of the constant are the source select.  This will always be
6265    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6266    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6267    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6268    // Bits [5:4] of the constant are the destination select.  This is the
6269    //  value of the incoming immediate.
6270    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6271    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6272    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6273    // Create this as a scalar to vector..
6274    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6275    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6276  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6277    // PINSR* works with constant index.
6278    return Op;
6279  }
6280  return SDValue();
6281}
6282
6283SDValue
6284X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6285  EVT VT = Op.getValueType();
6286  EVT EltVT = VT.getVectorElementType();
6287
6288  DebugLoc dl = Op.getDebugLoc();
6289  SDValue N0 = Op.getOperand(0);
6290  SDValue N1 = Op.getOperand(1);
6291  SDValue N2 = Op.getOperand(2);
6292
6293  // If this is a 256-bit vector result, first insert into a 128-bit
6294  // vector and then insert into the 256-bit vector.
6295  if (VT.getSizeInBits() > 128) {
6296    if (!isa<ConstantSDNode>(N2))
6297      return SDValue();
6298
6299    // Get the 128-bit vector.
6300    unsigned NumElems = VT.getVectorNumElements();
6301    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6302    bool Upper = IdxVal >= NumElems / 2;
6303
6304    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6305
6306    // Insert into it.
6307    SDValue ScaledN2 = N2;
6308    if (Upper)
6309      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6310                             DAG.getConstant(NumElems /
6311                                             (VT.getSizeInBits() / 128),
6312                                             N2.getValueType()));
6313    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6314                     N1, ScaledN2);
6315
6316    // Insert the 128-bit vector
6317    // FIXME: Why UNDEF?
6318    return Insert128BitVector(N0, Op, N2, DAG, dl);
6319  }
6320
6321  if (Subtarget->hasSSE41())
6322    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6323
6324  if (EltVT == MVT::i8)
6325    return SDValue();
6326
6327  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6328    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6329    // as its second argument.
6330    if (N1.getValueType() != MVT::i32)
6331      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6332    if (N2.getValueType() != MVT::i32)
6333      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6334    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6335  }
6336  return SDValue();
6337}
6338
6339SDValue
6340X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6341  DebugLoc dl = Op.getDebugLoc();
6342  EVT OpVT = Op.getValueType();
6343
6344  if (Op.getValueType() == MVT::v1i64 &&
6345      Op.getOperand(0).getValueType() == MVT::i64)
6346    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6347
6348  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6349  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6350         "Expected an SSE type!");
6351  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6352                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6353}
6354
6355// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6356// a simple subregister reference or explicit instructions to grab
6357// upper bits of a vector.
6358SDValue
6359X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6360  if (Subtarget->hasAVX()) {
6361    DebugLoc dl = Op.getNode()->getDebugLoc();
6362    SDValue Vec = Op.getNode()->getOperand(0);
6363    SDValue Idx = Op.getNode()->getOperand(1);
6364
6365    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6366        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6367        return Extract128BitVector(Vec, Idx, DAG, dl);
6368    }
6369  }
6370  return SDValue();
6371}
6372
6373// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6374// simple superregister reference or explicit instructions to insert
6375// the upper bits of a vector.
6376SDValue
6377X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6378  if (Subtarget->hasAVX()) {
6379    DebugLoc dl = Op.getNode()->getDebugLoc();
6380    SDValue Vec = Op.getNode()->getOperand(0);
6381    SDValue SubVec = Op.getNode()->getOperand(1);
6382    SDValue Idx = Op.getNode()->getOperand(2);
6383
6384    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6385        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6386      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6387    }
6388  }
6389  return SDValue();
6390}
6391
6392// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6393// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6394// one of the above mentioned nodes. It has to be wrapped because otherwise
6395// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6396// be used to form addressing mode. These wrapped nodes will be selected
6397// into MOV32ri.
6398SDValue
6399X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6400  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6401
6402  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6403  // global base reg.
6404  unsigned char OpFlag = 0;
6405  unsigned WrapperKind = X86ISD::Wrapper;
6406  CodeModel::Model M = getTargetMachine().getCodeModel();
6407
6408  if (Subtarget->isPICStyleRIPRel() &&
6409      (M == CodeModel::Small || M == CodeModel::Kernel))
6410    WrapperKind = X86ISD::WrapperRIP;
6411  else if (Subtarget->isPICStyleGOT())
6412    OpFlag = X86II::MO_GOTOFF;
6413  else if (Subtarget->isPICStyleStubPIC())
6414    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6415
6416  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6417                                             CP->getAlignment(),
6418                                             CP->getOffset(), OpFlag);
6419  DebugLoc DL = CP->getDebugLoc();
6420  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6421  // With PIC, the address is actually $g + Offset.
6422  if (OpFlag) {
6423    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6424                         DAG.getNode(X86ISD::GlobalBaseReg,
6425                                     DebugLoc(), getPointerTy()),
6426                         Result);
6427  }
6428
6429  return Result;
6430}
6431
6432SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6433  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6434
6435  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6436  // global base reg.
6437  unsigned char OpFlag = 0;
6438  unsigned WrapperKind = X86ISD::Wrapper;
6439  CodeModel::Model M = getTargetMachine().getCodeModel();
6440
6441  if (Subtarget->isPICStyleRIPRel() &&
6442      (M == CodeModel::Small || M == CodeModel::Kernel))
6443    WrapperKind = X86ISD::WrapperRIP;
6444  else if (Subtarget->isPICStyleGOT())
6445    OpFlag = X86II::MO_GOTOFF;
6446  else if (Subtarget->isPICStyleStubPIC())
6447    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6448
6449  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6450                                          OpFlag);
6451  DebugLoc DL = JT->getDebugLoc();
6452  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6453
6454  // With PIC, the address is actually $g + Offset.
6455  if (OpFlag)
6456    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6457                         DAG.getNode(X86ISD::GlobalBaseReg,
6458                                     DebugLoc(), getPointerTy()),
6459                         Result);
6460
6461  return Result;
6462}
6463
6464SDValue
6465X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6466  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6467
6468  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6469  // global base reg.
6470  unsigned char OpFlag = 0;
6471  unsigned WrapperKind = X86ISD::Wrapper;
6472  CodeModel::Model M = getTargetMachine().getCodeModel();
6473
6474  if (Subtarget->isPICStyleRIPRel() &&
6475      (M == CodeModel::Small || M == CodeModel::Kernel))
6476    WrapperKind = X86ISD::WrapperRIP;
6477  else if (Subtarget->isPICStyleGOT())
6478    OpFlag = X86II::MO_GOTOFF;
6479  else if (Subtarget->isPICStyleStubPIC())
6480    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6481
6482  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6483
6484  DebugLoc DL = Op.getDebugLoc();
6485  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6486
6487
6488  // With PIC, the address is actually $g + Offset.
6489  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6490      !Subtarget->is64Bit()) {
6491    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6492                         DAG.getNode(X86ISD::GlobalBaseReg,
6493                                     DebugLoc(), getPointerTy()),
6494                         Result);
6495  }
6496
6497  return Result;
6498}
6499
6500SDValue
6501X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6502  // Create the TargetBlockAddressAddress node.
6503  unsigned char OpFlags =
6504    Subtarget->ClassifyBlockAddressReference();
6505  CodeModel::Model M = getTargetMachine().getCodeModel();
6506  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6507  DebugLoc dl = Op.getDebugLoc();
6508  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6509                                       /*isTarget=*/true, OpFlags);
6510
6511  if (Subtarget->isPICStyleRIPRel() &&
6512      (M == CodeModel::Small || M == CodeModel::Kernel))
6513    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6514  else
6515    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6516
6517  // With PIC, the address is actually $g + Offset.
6518  if (isGlobalRelativeToPICBase(OpFlags)) {
6519    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6520                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6521                         Result);
6522  }
6523
6524  return Result;
6525}
6526
6527SDValue
6528X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6529                                      int64_t Offset,
6530                                      SelectionDAG &DAG) const {
6531  // Create the TargetGlobalAddress node, folding in the constant
6532  // offset if it is legal.
6533  unsigned char OpFlags =
6534    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6535  CodeModel::Model M = getTargetMachine().getCodeModel();
6536  SDValue Result;
6537  if (OpFlags == X86II::MO_NO_FLAG &&
6538      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6539    // A direct static reference to a global.
6540    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6541    Offset = 0;
6542  } else {
6543    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6544  }
6545
6546  if (Subtarget->isPICStyleRIPRel() &&
6547      (M == CodeModel::Small || M == CodeModel::Kernel))
6548    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6549  else
6550    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6551
6552  // With PIC, the address is actually $g + Offset.
6553  if (isGlobalRelativeToPICBase(OpFlags)) {
6554    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6555                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6556                         Result);
6557  }
6558
6559  // For globals that require a load from a stub to get the address, emit the
6560  // load.
6561  if (isGlobalStubReference(OpFlags))
6562    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6563                         MachinePointerInfo::getGOT(), false, false, 0);
6564
6565  // If there was a non-zero offset that we didn't fold, create an explicit
6566  // addition for it.
6567  if (Offset != 0)
6568    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6569                         DAG.getConstant(Offset, getPointerTy()));
6570
6571  return Result;
6572}
6573
6574SDValue
6575X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6576  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6577  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6578  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6579}
6580
6581static SDValue
6582GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6583           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6584           unsigned char OperandFlags) {
6585  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6586  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6587  DebugLoc dl = GA->getDebugLoc();
6588  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6589                                           GA->getValueType(0),
6590                                           GA->getOffset(),
6591                                           OperandFlags);
6592  if (InFlag) {
6593    SDValue Ops[] = { Chain,  TGA, *InFlag };
6594    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6595  } else {
6596    SDValue Ops[]  = { Chain, TGA };
6597    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6598  }
6599
6600  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6601  MFI->setAdjustsStack(true);
6602
6603  SDValue Flag = Chain.getValue(1);
6604  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6605}
6606
6607// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6608static SDValue
6609LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6610                                const EVT PtrVT) {
6611  SDValue InFlag;
6612  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6613  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6614                                     DAG.getNode(X86ISD::GlobalBaseReg,
6615                                                 DebugLoc(), PtrVT), InFlag);
6616  InFlag = Chain.getValue(1);
6617
6618  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6619}
6620
6621// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6622static SDValue
6623LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6624                                const EVT PtrVT) {
6625  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6626                    X86::RAX, X86II::MO_TLSGD);
6627}
6628
6629// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6630// "local exec" model.
6631static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6632                                   const EVT PtrVT, TLSModel::Model model,
6633                                   bool is64Bit) {
6634  DebugLoc dl = GA->getDebugLoc();
6635
6636  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6637  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6638                                                         is64Bit ? 257 : 256));
6639
6640  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6641                                      DAG.getIntPtrConstant(0),
6642                                      MachinePointerInfo(Ptr), false, false, 0);
6643
6644  unsigned char OperandFlags = 0;
6645  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6646  // initialexec.
6647  unsigned WrapperKind = X86ISD::Wrapper;
6648  if (model == TLSModel::LocalExec) {
6649    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6650  } else if (is64Bit) {
6651    assert(model == TLSModel::InitialExec);
6652    OperandFlags = X86II::MO_GOTTPOFF;
6653    WrapperKind = X86ISD::WrapperRIP;
6654  } else {
6655    assert(model == TLSModel::InitialExec);
6656    OperandFlags = X86II::MO_INDNTPOFF;
6657  }
6658
6659  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6660  // exec)
6661  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6662                                           GA->getValueType(0),
6663                                           GA->getOffset(), OperandFlags);
6664  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6665
6666  if (model == TLSModel::InitialExec)
6667    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6668                         MachinePointerInfo::getGOT(), false, false, 0);
6669
6670  // The address of the thread local variable is the add of the thread
6671  // pointer with the offset of the variable.
6672  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6673}
6674
6675SDValue
6676X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6677
6678  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6679  const GlobalValue *GV = GA->getGlobal();
6680
6681  if (Subtarget->isTargetELF()) {
6682    // TODO: implement the "local dynamic" model
6683    // TODO: implement the "initial exec"model for pic executables
6684
6685    // If GV is an alias then use the aliasee for determining
6686    // thread-localness.
6687    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6688      GV = GA->resolveAliasedGlobal(false);
6689
6690    TLSModel::Model model
6691      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6692
6693    switch (model) {
6694      case TLSModel::GeneralDynamic:
6695      case TLSModel::LocalDynamic: // not implemented
6696        if (Subtarget->is64Bit())
6697          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6698        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6699
6700      case TLSModel::InitialExec:
6701      case TLSModel::LocalExec:
6702        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6703                                   Subtarget->is64Bit());
6704    }
6705  } else if (Subtarget->isTargetDarwin()) {
6706    // Darwin only has one model of TLS.  Lower to that.
6707    unsigned char OpFlag = 0;
6708    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6709                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6710
6711    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6712    // global base reg.
6713    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6714                  !Subtarget->is64Bit();
6715    if (PIC32)
6716      OpFlag = X86II::MO_TLVP_PIC_BASE;
6717    else
6718      OpFlag = X86II::MO_TLVP;
6719    DebugLoc DL = Op.getDebugLoc();
6720    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6721                                                GA->getValueType(0),
6722                                                GA->getOffset(), OpFlag);
6723    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6724
6725    // With PIC32, the address is actually $g + Offset.
6726    if (PIC32)
6727      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6728                           DAG.getNode(X86ISD::GlobalBaseReg,
6729                                       DebugLoc(), getPointerTy()),
6730                           Offset);
6731
6732    // Lowering the machine isd will make sure everything is in the right
6733    // location.
6734    SDValue Chain = DAG.getEntryNode();
6735    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6736    SDValue Args[] = { Chain, Offset };
6737    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6738
6739    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6740    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6741    MFI->setAdjustsStack(true);
6742
6743    // And our return value (tls address) is in the standard call return value
6744    // location.
6745    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6746    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6747  }
6748
6749  assert(false &&
6750         "TLS not implemented for this target.");
6751
6752  llvm_unreachable("Unreachable");
6753  return SDValue();
6754}
6755
6756
6757/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6758/// take a 2 x i32 value to shift plus a shift amount.
6759SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6760  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6761  EVT VT = Op.getValueType();
6762  unsigned VTBits = VT.getSizeInBits();
6763  DebugLoc dl = Op.getDebugLoc();
6764  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6765  SDValue ShOpLo = Op.getOperand(0);
6766  SDValue ShOpHi = Op.getOperand(1);
6767  SDValue ShAmt  = Op.getOperand(2);
6768  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6769                                     DAG.getConstant(VTBits - 1, MVT::i8))
6770                       : DAG.getConstant(0, VT);
6771
6772  SDValue Tmp2, Tmp3;
6773  if (Op.getOpcode() == ISD::SHL_PARTS) {
6774    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6775    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6776  } else {
6777    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6778    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6779  }
6780
6781  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6782                                DAG.getConstant(VTBits, MVT::i8));
6783  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6784                             AndNode, DAG.getConstant(0, MVT::i8));
6785
6786  SDValue Hi, Lo;
6787  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6788  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6789  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6790
6791  if (Op.getOpcode() == ISD::SHL_PARTS) {
6792    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6793    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6794  } else {
6795    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6796    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6797  }
6798
6799  SDValue Ops[2] = { Lo, Hi };
6800  return DAG.getMergeValues(Ops, 2, dl);
6801}
6802
6803SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6804                                           SelectionDAG &DAG) const {
6805  EVT SrcVT = Op.getOperand(0).getValueType();
6806
6807  if (SrcVT.isVector())
6808    return SDValue();
6809
6810  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6811         "Unknown SINT_TO_FP to lower!");
6812
6813  // These are really Legal; return the operand so the caller accepts it as
6814  // Legal.
6815  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6816    return Op;
6817  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6818      Subtarget->is64Bit()) {
6819    return Op;
6820  }
6821
6822  DebugLoc dl = Op.getDebugLoc();
6823  unsigned Size = SrcVT.getSizeInBits()/8;
6824  MachineFunction &MF = DAG.getMachineFunction();
6825  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6826  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6827  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6828                               StackSlot,
6829                               MachinePointerInfo::getFixedStack(SSFI),
6830                               false, false, 0);
6831  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6832}
6833
6834SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6835                                     SDValue StackSlot,
6836                                     SelectionDAG &DAG) const {
6837  // Build the FILD
6838  DebugLoc DL = Op.getDebugLoc();
6839  SDVTList Tys;
6840  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6841  if (useSSE)
6842    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6843  else
6844    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6845
6846  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6847
6848  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
6849  MachineMemOperand *MMO;
6850  if (FI) {
6851    int SSFI = FI->getIndex();
6852    MMO =
6853      DAG.getMachineFunction()
6854      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6855                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
6856  } else {
6857    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
6858    StackSlot = StackSlot.getOperand(1);
6859  }
6860  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6861  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6862                                           X86ISD::FILD, DL,
6863                                           Tys, Ops, array_lengthof(Ops),
6864                                           SrcVT, MMO);
6865
6866  if (useSSE) {
6867    Chain = Result.getValue(1);
6868    SDValue InFlag = Result.getValue(2);
6869
6870    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6871    // shouldn't be necessary except that RFP cannot be live across
6872    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6873    MachineFunction &MF = DAG.getMachineFunction();
6874    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6875    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6876    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6877    Tys = DAG.getVTList(MVT::Other);
6878    SDValue Ops[] = {
6879      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6880    };
6881    MachineMemOperand *MMO =
6882      DAG.getMachineFunction()
6883      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6884                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6885
6886    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6887                                    Ops, array_lengthof(Ops),
6888                                    Op.getValueType(), MMO);
6889    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6890                         MachinePointerInfo::getFixedStack(SSFI),
6891                         false, false, 0);
6892  }
6893
6894  return Result;
6895}
6896
6897// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6898SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6899                                               SelectionDAG &DAG) const {
6900  // This algorithm is not obvious. Here it is in C code, more or less:
6901  /*
6902    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6903      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6904      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6905
6906      // Copy ints to xmm registers.
6907      __m128i xh = _mm_cvtsi32_si128( hi );
6908      __m128i xl = _mm_cvtsi32_si128( lo );
6909
6910      // Combine into low half of a single xmm register.
6911      __m128i x = _mm_unpacklo_epi32( xh, xl );
6912      __m128d d;
6913      double sd;
6914
6915      // Merge in appropriate exponents to give the integer bits the right
6916      // magnitude.
6917      x = _mm_unpacklo_epi32( x, exp );
6918
6919      // Subtract away the biases to deal with the IEEE-754 double precision
6920      // implicit 1.
6921      d = _mm_sub_pd( (__m128d) x, bias );
6922
6923      // All conversions up to here are exact. The correctly rounded result is
6924      // calculated using the current rounding mode using the following
6925      // horizontal add.
6926      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6927      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6928                                // store doesn't really need to be here (except
6929                                // maybe to zero the other double)
6930      return sd;
6931    }
6932  */
6933
6934  DebugLoc dl = Op.getDebugLoc();
6935  LLVMContext *Context = DAG.getContext();
6936
6937  // Build some magic constants.
6938  std::vector<Constant*> CV0;
6939  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6940  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6941  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6942  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6943  Constant *C0 = ConstantVector::get(CV0);
6944  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6945
6946  std::vector<Constant*> CV1;
6947  CV1.push_back(
6948    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6949  CV1.push_back(
6950    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6951  Constant *C1 = ConstantVector::get(CV1);
6952  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6953
6954  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6955                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6956                                        Op.getOperand(0),
6957                                        DAG.getIntPtrConstant(1)));
6958  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6959                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6960                                        Op.getOperand(0),
6961                                        DAG.getIntPtrConstant(0)));
6962  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6963  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6964                              MachinePointerInfo::getConstantPool(),
6965                              false, false, 16);
6966  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6967  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6968  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6969                              MachinePointerInfo::getConstantPool(),
6970                              false, false, 16);
6971  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6972
6973  // Add the halves; easiest way is to swap them into another reg first.
6974  int ShufMask[2] = { 1, -1 };
6975  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6976                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6977  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6978  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6979                     DAG.getIntPtrConstant(0));
6980}
6981
6982// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6983SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6984                                               SelectionDAG &DAG) const {
6985  DebugLoc dl = Op.getDebugLoc();
6986  // FP constant to bias correct the final result.
6987  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6988                                   MVT::f64);
6989
6990  // Load the 32-bit value into an XMM register.
6991  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6992                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6993                                         Op.getOperand(0),
6994                                         DAG.getIntPtrConstant(0)));
6995
6996  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6997                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6998                     DAG.getIntPtrConstant(0));
6999
7000  // Or the load with the bias.
7001  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7002                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7003                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7004                                                   MVT::v2f64, Load)),
7005                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7006                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7007                                                   MVT::v2f64, Bias)));
7008  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7009                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7010                   DAG.getIntPtrConstant(0));
7011
7012  // Subtract the bias.
7013  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7014
7015  // Handle final rounding.
7016  EVT DestVT = Op.getValueType();
7017
7018  if (DestVT.bitsLT(MVT::f64)) {
7019    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7020                       DAG.getIntPtrConstant(0));
7021  } else if (DestVT.bitsGT(MVT::f64)) {
7022    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7023  }
7024
7025  // Handle final rounding.
7026  return Sub;
7027}
7028
7029SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7030                                           SelectionDAG &DAG) const {
7031  SDValue N0 = Op.getOperand(0);
7032  DebugLoc dl = Op.getDebugLoc();
7033
7034  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7035  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7036  // the optimization here.
7037  if (DAG.SignBitIsZero(N0))
7038    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7039
7040  EVT SrcVT = N0.getValueType();
7041  EVT DstVT = Op.getValueType();
7042  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7043    return LowerUINT_TO_FP_i64(Op, DAG);
7044  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7045    return LowerUINT_TO_FP_i32(Op, DAG);
7046
7047  // Make a 64-bit buffer, and use it to build an FILD.
7048  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7049  if (SrcVT == MVT::i32) {
7050    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7051    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7052                                     getPointerTy(), StackSlot, WordOff);
7053    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7054                                  StackSlot, MachinePointerInfo(),
7055                                  false, false, 0);
7056    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7057                                  OffsetSlot, MachinePointerInfo(),
7058                                  false, false, 0);
7059    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7060    return Fild;
7061  }
7062
7063  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7064  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7065                                StackSlot, MachinePointerInfo(),
7066                               false, false, 0);
7067  // For i64 source, we need to add the appropriate power of 2 if the input
7068  // was negative.  This is the same as the optimization in
7069  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7070  // we must be careful to do the computation in x87 extended precision, not
7071  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7072  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7073  MachineMemOperand *MMO =
7074    DAG.getMachineFunction()
7075    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7076                          MachineMemOperand::MOLoad, 8, 8);
7077
7078  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7079  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7080  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7081                                         MVT::i64, MMO);
7082
7083  APInt FF(32, 0x5F800000ULL);
7084
7085  // Check whether the sign bit is set.
7086  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7087                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7088                                 ISD::SETLT);
7089
7090  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7091  SDValue FudgePtr = DAG.getConstantPool(
7092                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7093                                         getPointerTy());
7094
7095  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7096  SDValue Zero = DAG.getIntPtrConstant(0);
7097  SDValue Four = DAG.getIntPtrConstant(4);
7098  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7099                               Zero, Four);
7100  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7101
7102  // Load the value out, extending it from f32 to f80.
7103  // FIXME: Avoid the extend by constructing the right constant pool?
7104  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7105                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7106                                 MVT::f32, false, false, 4);
7107  // Extend everything to 80 bits to force it to be done on x87.
7108  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7109  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7110}
7111
7112std::pair<SDValue,SDValue> X86TargetLowering::
7113FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7114  DebugLoc DL = Op.getDebugLoc();
7115
7116  EVT DstTy = Op.getValueType();
7117
7118  if (!IsSigned) {
7119    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7120    DstTy = MVT::i64;
7121  }
7122
7123  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7124         DstTy.getSimpleVT() >= MVT::i16 &&
7125         "Unknown FP_TO_SINT to lower!");
7126
7127  // These are really Legal.
7128  if (DstTy == MVT::i32 &&
7129      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7130    return std::make_pair(SDValue(), SDValue());
7131  if (Subtarget->is64Bit() &&
7132      DstTy == MVT::i64 &&
7133      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7134    return std::make_pair(SDValue(), SDValue());
7135
7136  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7137  // stack slot.
7138  MachineFunction &MF = DAG.getMachineFunction();
7139  unsigned MemSize = DstTy.getSizeInBits()/8;
7140  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7141  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7142
7143
7144
7145  unsigned Opc;
7146  switch (DstTy.getSimpleVT().SimpleTy) {
7147  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7148  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7149  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7150  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7151  }
7152
7153  SDValue Chain = DAG.getEntryNode();
7154  SDValue Value = Op.getOperand(0);
7155  EVT TheVT = Op.getOperand(0).getValueType();
7156  if (isScalarFPTypeInSSEReg(TheVT)) {
7157    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7158    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7159                         MachinePointerInfo::getFixedStack(SSFI),
7160                         false, false, 0);
7161    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7162    SDValue Ops[] = {
7163      Chain, StackSlot, DAG.getValueType(TheVT)
7164    };
7165
7166    MachineMemOperand *MMO =
7167      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7168                              MachineMemOperand::MOLoad, MemSize, MemSize);
7169    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7170                                    DstTy, MMO);
7171    Chain = Value.getValue(1);
7172    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7173    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7174  }
7175
7176  MachineMemOperand *MMO =
7177    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7178                            MachineMemOperand::MOStore, MemSize, MemSize);
7179
7180  // Build the FP_TO_INT*_IN_MEM
7181  SDValue Ops[] = { Chain, Value, StackSlot };
7182  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7183                                         Ops, 3, DstTy, MMO);
7184
7185  return std::make_pair(FIST, StackSlot);
7186}
7187
7188SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7189                                           SelectionDAG &DAG) const {
7190  if (Op.getValueType().isVector())
7191    return SDValue();
7192
7193  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7194  SDValue FIST = Vals.first, StackSlot = Vals.second;
7195  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7196  if (FIST.getNode() == 0) return Op;
7197
7198  // Load the result.
7199  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7200                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7201}
7202
7203SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7204                                           SelectionDAG &DAG) const {
7205  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7206  SDValue FIST = Vals.first, StackSlot = Vals.second;
7207  assert(FIST.getNode() && "Unexpected failure");
7208
7209  // Load the result.
7210  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7211                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7212}
7213
7214SDValue X86TargetLowering::LowerFABS(SDValue Op,
7215                                     SelectionDAG &DAG) const {
7216  LLVMContext *Context = DAG.getContext();
7217  DebugLoc dl = Op.getDebugLoc();
7218  EVT VT = Op.getValueType();
7219  EVT EltVT = VT;
7220  if (VT.isVector())
7221    EltVT = VT.getVectorElementType();
7222  std::vector<Constant*> CV;
7223  if (EltVT == MVT::f64) {
7224    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7225    CV.push_back(C);
7226    CV.push_back(C);
7227  } else {
7228    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7229    CV.push_back(C);
7230    CV.push_back(C);
7231    CV.push_back(C);
7232    CV.push_back(C);
7233  }
7234  Constant *C = ConstantVector::get(CV);
7235  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7236  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7237                             MachinePointerInfo::getConstantPool(),
7238                             false, false, 16);
7239  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7240}
7241
7242SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7243  LLVMContext *Context = DAG.getContext();
7244  DebugLoc dl = Op.getDebugLoc();
7245  EVT VT = Op.getValueType();
7246  EVT EltVT = VT;
7247  if (VT.isVector())
7248    EltVT = VT.getVectorElementType();
7249  std::vector<Constant*> CV;
7250  if (EltVT == MVT::f64) {
7251    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7252    CV.push_back(C);
7253    CV.push_back(C);
7254  } else {
7255    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7256    CV.push_back(C);
7257    CV.push_back(C);
7258    CV.push_back(C);
7259    CV.push_back(C);
7260  }
7261  Constant *C = ConstantVector::get(CV);
7262  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7263  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7264                             MachinePointerInfo::getConstantPool(),
7265                             false, false, 16);
7266  if (VT.isVector()) {
7267    return DAG.getNode(ISD::BITCAST, dl, VT,
7268                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7269                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7270                                Op.getOperand(0)),
7271                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7272  } else {
7273    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7274  }
7275}
7276
7277SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7278  LLVMContext *Context = DAG.getContext();
7279  SDValue Op0 = Op.getOperand(0);
7280  SDValue Op1 = Op.getOperand(1);
7281  DebugLoc dl = Op.getDebugLoc();
7282  EVT VT = Op.getValueType();
7283  EVT SrcVT = Op1.getValueType();
7284
7285  // If second operand is smaller, extend it first.
7286  if (SrcVT.bitsLT(VT)) {
7287    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7288    SrcVT = VT;
7289  }
7290  // And if it is bigger, shrink it first.
7291  if (SrcVT.bitsGT(VT)) {
7292    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7293    SrcVT = VT;
7294  }
7295
7296  // At this point the operands and the result should have the same
7297  // type, and that won't be f80 since that is not custom lowered.
7298
7299  // First get the sign bit of second operand.
7300  std::vector<Constant*> CV;
7301  if (SrcVT == MVT::f64) {
7302    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7303    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7304  } else {
7305    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7306    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7307    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7308    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7309  }
7310  Constant *C = ConstantVector::get(CV);
7311  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7312  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7313                              MachinePointerInfo::getConstantPool(),
7314                              false, false, 16);
7315  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7316
7317  // Shift sign bit right or left if the two operands have different types.
7318  if (SrcVT.bitsGT(VT)) {
7319    // Op0 is MVT::f32, Op1 is MVT::f64.
7320    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7321    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7322                          DAG.getConstant(32, MVT::i32));
7323    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7324    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7325                          DAG.getIntPtrConstant(0));
7326  }
7327
7328  // Clear first operand sign bit.
7329  CV.clear();
7330  if (VT == MVT::f64) {
7331    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7332    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7333  } else {
7334    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7335    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7336    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7337    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7338  }
7339  C = ConstantVector::get(CV);
7340  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7341  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7342                              MachinePointerInfo::getConstantPool(),
7343                              false, false, 16);
7344  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7345
7346  // Or the value with the sign bit.
7347  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7348}
7349
7350SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7351  SDValue N0 = Op.getOperand(0);
7352  DebugLoc dl = Op.getDebugLoc();
7353  EVT VT = Op.getValueType();
7354
7355  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7356  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7357                                  DAG.getConstant(1, VT));
7358  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7359}
7360
7361/// Emit nodes that will be selected as "test Op0,Op0", or something
7362/// equivalent.
7363SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7364                                    SelectionDAG &DAG) const {
7365  DebugLoc dl = Op.getDebugLoc();
7366
7367  // CF and OF aren't always set the way we want. Determine which
7368  // of these we need.
7369  bool NeedCF = false;
7370  bool NeedOF = false;
7371  switch (X86CC) {
7372  default: break;
7373  case X86::COND_A: case X86::COND_AE:
7374  case X86::COND_B: case X86::COND_BE:
7375    NeedCF = true;
7376    break;
7377  case X86::COND_G: case X86::COND_GE:
7378  case X86::COND_L: case X86::COND_LE:
7379  case X86::COND_O: case X86::COND_NO:
7380    NeedOF = true;
7381    break;
7382  }
7383
7384  // See if we can use the EFLAGS value from the operand instead of
7385  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7386  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7387  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7388    // Emit a CMP with 0, which is the TEST pattern.
7389    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7390                       DAG.getConstant(0, Op.getValueType()));
7391
7392  unsigned Opcode = 0;
7393  unsigned NumOperands = 0;
7394  switch (Op.getNode()->getOpcode()) {
7395  case ISD::ADD:
7396    // Due to an isel shortcoming, be conservative if this add is likely to be
7397    // selected as part of a load-modify-store instruction. When the root node
7398    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7399    // uses of other nodes in the match, such as the ADD in this case. This
7400    // leads to the ADD being left around and reselected, with the result being
7401    // two adds in the output.  Alas, even if none our users are stores, that
7402    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7403    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7404    // climbing the DAG back to the root, and it doesn't seem to be worth the
7405    // effort.
7406    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7407           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7408      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7409        goto default_case;
7410
7411    if (ConstantSDNode *C =
7412        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7413      // An add of one will be selected as an INC.
7414      if (C->getAPIntValue() == 1) {
7415        Opcode = X86ISD::INC;
7416        NumOperands = 1;
7417        break;
7418      }
7419
7420      // An add of negative one (subtract of one) will be selected as a DEC.
7421      if (C->getAPIntValue().isAllOnesValue()) {
7422        Opcode = X86ISD::DEC;
7423        NumOperands = 1;
7424        break;
7425      }
7426    }
7427
7428    // Otherwise use a regular EFLAGS-setting add.
7429    Opcode = X86ISD::ADD;
7430    NumOperands = 2;
7431    break;
7432  case ISD::AND: {
7433    // If the primary and result isn't used, don't bother using X86ISD::AND,
7434    // because a TEST instruction will be better.
7435    bool NonFlagUse = false;
7436    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7437           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7438      SDNode *User = *UI;
7439      unsigned UOpNo = UI.getOperandNo();
7440      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7441        // Look pass truncate.
7442        UOpNo = User->use_begin().getOperandNo();
7443        User = *User->use_begin();
7444      }
7445
7446      if (User->getOpcode() != ISD::BRCOND &&
7447          User->getOpcode() != ISD::SETCC &&
7448          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7449        NonFlagUse = true;
7450        break;
7451      }
7452    }
7453
7454    if (!NonFlagUse)
7455      break;
7456  }
7457    // FALL THROUGH
7458  case ISD::SUB:
7459  case ISD::OR:
7460  case ISD::XOR:
7461    // Due to the ISEL shortcoming noted above, be conservative if this op is
7462    // likely to be selected as part of a load-modify-store instruction.
7463    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7464           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7465      if (UI->getOpcode() == ISD::STORE)
7466        goto default_case;
7467
7468    // Otherwise use a regular EFLAGS-setting instruction.
7469    switch (Op.getNode()->getOpcode()) {
7470    default: llvm_unreachable("unexpected operator!");
7471    case ISD::SUB: Opcode = X86ISD::SUB; break;
7472    case ISD::OR:  Opcode = X86ISD::OR;  break;
7473    case ISD::XOR: Opcode = X86ISD::XOR; break;
7474    case ISD::AND: Opcode = X86ISD::AND; break;
7475    }
7476
7477    NumOperands = 2;
7478    break;
7479  case X86ISD::ADD:
7480  case X86ISD::SUB:
7481  case X86ISD::INC:
7482  case X86ISD::DEC:
7483  case X86ISD::OR:
7484  case X86ISD::XOR:
7485  case X86ISD::AND:
7486    return SDValue(Op.getNode(), 1);
7487  default:
7488  default_case:
7489    break;
7490  }
7491
7492  if (Opcode == 0)
7493    // Emit a CMP with 0, which is the TEST pattern.
7494    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7495                       DAG.getConstant(0, Op.getValueType()));
7496
7497  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7498  SmallVector<SDValue, 4> Ops;
7499  for (unsigned i = 0; i != NumOperands; ++i)
7500    Ops.push_back(Op.getOperand(i));
7501
7502  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7503  DAG.ReplaceAllUsesWith(Op, New);
7504  return SDValue(New.getNode(), 1);
7505}
7506
7507/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7508/// equivalent.
7509SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7510                                   SelectionDAG &DAG) const {
7511  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7512    if (C->getAPIntValue() == 0)
7513      return EmitTest(Op0, X86CC, DAG);
7514
7515  DebugLoc dl = Op0.getDebugLoc();
7516  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7517}
7518
7519/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7520/// if it's possible.
7521SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7522                                     DebugLoc dl, SelectionDAG &DAG) const {
7523  SDValue Op0 = And.getOperand(0);
7524  SDValue Op1 = And.getOperand(1);
7525  if (Op0.getOpcode() == ISD::TRUNCATE)
7526    Op0 = Op0.getOperand(0);
7527  if (Op1.getOpcode() == ISD::TRUNCATE)
7528    Op1 = Op1.getOperand(0);
7529
7530  SDValue LHS, RHS;
7531  if (Op1.getOpcode() == ISD::SHL)
7532    std::swap(Op0, Op1);
7533  if (Op0.getOpcode() == ISD::SHL) {
7534    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7535      if (And00C->getZExtValue() == 1) {
7536        // If we looked past a truncate, check that it's only truncating away
7537        // known zeros.
7538        unsigned BitWidth = Op0.getValueSizeInBits();
7539        unsigned AndBitWidth = And.getValueSizeInBits();
7540        if (BitWidth > AndBitWidth) {
7541          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7542          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7543          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7544            return SDValue();
7545        }
7546        LHS = Op1;
7547        RHS = Op0.getOperand(1);
7548      }
7549  } else if (Op1.getOpcode() == ISD::Constant) {
7550    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7551    SDValue AndLHS = Op0;
7552    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7553      LHS = AndLHS.getOperand(0);
7554      RHS = AndLHS.getOperand(1);
7555    }
7556  }
7557
7558  if (LHS.getNode()) {
7559    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7560    // instruction.  Since the shift amount is in-range-or-undefined, we know
7561    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7562    // the encoding for the i16 version is larger than the i32 version.
7563    // Also promote i16 to i32 for performance / code size reason.
7564    if (LHS.getValueType() == MVT::i8 ||
7565        LHS.getValueType() == MVT::i16)
7566      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7567
7568    // If the operand types disagree, extend the shift amount to match.  Since
7569    // BT ignores high bits (like shifts) we can use anyextend.
7570    if (LHS.getValueType() != RHS.getValueType())
7571      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7572
7573    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7574    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7575    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7576                       DAG.getConstant(Cond, MVT::i8), BT);
7577  }
7578
7579  return SDValue();
7580}
7581
7582SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7583  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7584  SDValue Op0 = Op.getOperand(0);
7585  SDValue Op1 = Op.getOperand(1);
7586  DebugLoc dl = Op.getDebugLoc();
7587  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7588
7589  // Optimize to BT if possible.
7590  // Lower (X & (1 << N)) == 0 to BT(X, N).
7591  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7592  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7593  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7594      Op1.getOpcode() == ISD::Constant &&
7595      cast<ConstantSDNode>(Op1)->isNullValue() &&
7596      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7597    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7598    if (NewSetCC.getNode())
7599      return NewSetCC;
7600  }
7601
7602  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7603  // these.
7604  if (Op1.getOpcode() == ISD::Constant &&
7605      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7606       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7607      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7608
7609    // If the input is a setcc, then reuse the input setcc or use a new one with
7610    // the inverted condition.
7611    if (Op0.getOpcode() == X86ISD::SETCC) {
7612      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7613      bool Invert = (CC == ISD::SETNE) ^
7614        cast<ConstantSDNode>(Op1)->isNullValue();
7615      if (!Invert) return Op0;
7616
7617      CCode = X86::GetOppositeBranchCondition(CCode);
7618      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7619                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7620    }
7621  }
7622
7623  bool isFP = Op1.getValueType().isFloatingPoint();
7624  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7625  if (X86CC == X86::COND_INVALID)
7626    return SDValue();
7627
7628  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7629  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7630                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7631}
7632
7633SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7634  SDValue Cond;
7635  SDValue Op0 = Op.getOperand(0);
7636  SDValue Op1 = Op.getOperand(1);
7637  SDValue CC = Op.getOperand(2);
7638  EVT VT = Op.getValueType();
7639  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7640  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7641  DebugLoc dl = Op.getDebugLoc();
7642
7643  if (isFP) {
7644    unsigned SSECC = 8;
7645    EVT VT0 = Op0.getValueType();
7646    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7647    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7648    bool Swap = false;
7649
7650    switch (SetCCOpcode) {
7651    default: break;
7652    case ISD::SETOEQ:
7653    case ISD::SETEQ:  SSECC = 0; break;
7654    case ISD::SETOGT:
7655    case ISD::SETGT: Swap = true; // Fallthrough
7656    case ISD::SETLT:
7657    case ISD::SETOLT: SSECC = 1; break;
7658    case ISD::SETOGE:
7659    case ISD::SETGE: Swap = true; // Fallthrough
7660    case ISD::SETLE:
7661    case ISD::SETOLE: SSECC = 2; break;
7662    case ISD::SETUO:  SSECC = 3; break;
7663    case ISD::SETUNE:
7664    case ISD::SETNE:  SSECC = 4; break;
7665    case ISD::SETULE: Swap = true;
7666    case ISD::SETUGE: SSECC = 5; break;
7667    case ISD::SETULT: Swap = true;
7668    case ISD::SETUGT: SSECC = 6; break;
7669    case ISD::SETO:   SSECC = 7; break;
7670    }
7671    if (Swap)
7672      std::swap(Op0, Op1);
7673
7674    // In the two special cases we can't handle, emit two comparisons.
7675    if (SSECC == 8) {
7676      if (SetCCOpcode == ISD::SETUEQ) {
7677        SDValue UNORD, EQ;
7678        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7679        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7680        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7681      }
7682      else if (SetCCOpcode == ISD::SETONE) {
7683        SDValue ORD, NEQ;
7684        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7685        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7686        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7687      }
7688      llvm_unreachable("Illegal FP comparison");
7689    }
7690    // Handle all other FP comparisons here.
7691    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7692  }
7693
7694  // We are handling one of the integer comparisons here.  Since SSE only has
7695  // GT and EQ comparisons for integer, swapping operands and multiple
7696  // operations may be required for some comparisons.
7697  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7698  bool Swap = false, Invert = false, FlipSigns = false;
7699
7700  switch (VT.getSimpleVT().SimpleTy) {
7701  default: break;
7702  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7703  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7704  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7705  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7706  }
7707
7708  switch (SetCCOpcode) {
7709  default: break;
7710  case ISD::SETNE:  Invert = true;
7711  case ISD::SETEQ:  Opc = EQOpc; break;
7712  case ISD::SETLT:  Swap = true;
7713  case ISD::SETGT:  Opc = GTOpc; break;
7714  case ISD::SETGE:  Swap = true;
7715  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7716  case ISD::SETULT: Swap = true;
7717  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7718  case ISD::SETUGE: Swap = true;
7719  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7720  }
7721  if (Swap)
7722    std::swap(Op0, Op1);
7723
7724  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7725  // bits of the inputs before performing those operations.
7726  if (FlipSigns) {
7727    EVT EltVT = VT.getVectorElementType();
7728    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7729                                      EltVT);
7730    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7731    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7732                                    SignBits.size());
7733    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7734    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7735  }
7736
7737  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7738
7739  // If the logical-not of the result is required, perform that now.
7740  if (Invert)
7741    Result = DAG.getNOT(dl, Result, VT);
7742
7743  return Result;
7744}
7745
7746// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7747static bool isX86LogicalCmp(SDValue Op) {
7748  unsigned Opc = Op.getNode()->getOpcode();
7749  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7750    return true;
7751  if (Op.getResNo() == 1 &&
7752      (Opc == X86ISD::ADD ||
7753       Opc == X86ISD::SUB ||
7754       Opc == X86ISD::ADC ||
7755       Opc == X86ISD::SBB ||
7756       Opc == X86ISD::SMUL ||
7757       Opc == X86ISD::UMUL ||
7758       Opc == X86ISD::INC ||
7759       Opc == X86ISD::DEC ||
7760       Opc == X86ISD::OR ||
7761       Opc == X86ISD::XOR ||
7762       Opc == X86ISD::AND))
7763    return true;
7764
7765  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7766    return true;
7767
7768  return false;
7769}
7770
7771static bool isZero(SDValue V) {
7772  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7773  return C && C->isNullValue();
7774}
7775
7776static bool isAllOnes(SDValue V) {
7777  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7778  return C && C->isAllOnesValue();
7779}
7780
7781SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7782  bool addTest = true;
7783  SDValue Cond  = Op.getOperand(0);
7784  SDValue Op1 = Op.getOperand(1);
7785  SDValue Op2 = Op.getOperand(2);
7786  DebugLoc DL = Op.getDebugLoc();
7787  SDValue CC;
7788
7789  if (Cond.getOpcode() == ISD::SETCC) {
7790    SDValue NewCond = LowerSETCC(Cond, DAG);
7791    if (NewCond.getNode())
7792      Cond = NewCond;
7793  }
7794
7795  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7796  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7797  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7798  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7799  if (Cond.getOpcode() == X86ISD::SETCC &&
7800      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7801      isZero(Cond.getOperand(1).getOperand(1))) {
7802    SDValue Cmp = Cond.getOperand(1);
7803
7804    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7805
7806    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7807        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7808      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7809
7810      SDValue CmpOp0 = Cmp.getOperand(0);
7811      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7812                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7813
7814      SDValue Res =   // Res = 0 or -1.
7815        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7816                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7817
7818      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7819        Res = DAG.getNOT(DL, Res, Res.getValueType());
7820
7821      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7822      if (N2C == 0 || !N2C->isNullValue())
7823        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7824      return Res;
7825    }
7826  }
7827
7828  // Look past (and (setcc_carry (cmp ...)), 1).
7829  if (Cond.getOpcode() == ISD::AND &&
7830      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7831    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7832    if (C && C->getAPIntValue() == 1)
7833      Cond = Cond.getOperand(0);
7834  }
7835
7836  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7837  // setting operand in place of the X86ISD::SETCC.
7838  if (Cond.getOpcode() == X86ISD::SETCC ||
7839      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7840    CC = Cond.getOperand(0);
7841
7842    SDValue Cmp = Cond.getOperand(1);
7843    unsigned Opc = Cmp.getOpcode();
7844    EVT VT = Op.getValueType();
7845
7846    bool IllegalFPCMov = false;
7847    if (VT.isFloatingPoint() && !VT.isVector() &&
7848        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7849      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7850
7851    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7852        Opc == X86ISD::BT) { // FIXME
7853      Cond = Cmp;
7854      addTest = false;
7855    }
7856  }
7857
7858  if (addTest) {
7859    // Look pass the truncate.
7860    if (Cond.getOpcode() == ISD::TRUNCATE)
7861      Cond = Cond.getOperand(0);
7862
7863    // We know the result of AND is compared against zero. Try to match
7864    // it to BT.
7865    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7866      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7867      if (NewSetCC.getNode()) {
7868        CC = NewSetCC.getOperand(0);
7869        Cond = NewSetCC.getOperand(1);
7870        addTest = false;
7871      }
7872    }
7873  }
7874
7875  if (addTest) {
7876    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7877    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7878  }
7879
7880  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7881  // a <  b ?  0 : -1 -> RES = setcc_carry
7882  // a >= b ? -1 :  0 -> RES = setcc_carry
7883  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7884  if (Cond.getOpcode() == X86ISD::CMP) {
7885    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7886
7887    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7888        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7889      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7890                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7891      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7892        return DAG.getNOT(DL, Res, Res.getValueType());
7893      return Res;
7894    }
7895  }
7896
7897  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7898  // condition is true.
7899  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7900  SDValue Ops[] = { Op2, Op1, CC, Cond };
7901  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7902}
7903
7904// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7905// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7906// from the AND / OR.
7907static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7908  Opc = Op.getOpcode();
7909  if (Opc != ISD::OR && Opc != ISD::AND)
7910    return false;
7911  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7912          Op.getOperand(0).hasOneUse() &&
7913          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7914          Op.getOperand(1).hasOneUse());
7915}
7916
7917// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7918// 1 and that the SETCC node has a single use.
7919static bool isXor1OfSetCC(SDValue Op) {
7920  if (Op.getOpcode() != ISD::XOR)
7921    return false;
7922  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7923  if (N1C && N1C->getAPIntValue() == 1) {
7924    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7925      Op.getOperand(0).hasOneUse();
7926  }
7927  return false;
7928}
7929
7930SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7931  bool addTest = true;
7932  SDValue Chain = Op.getOperand(0);
7933  SDValue Cond  = Op.getOperand(1);
7934  SDValue Dest  = Op.getOperand(2);
7935  DebugLoc dl = Op.getDebugLoc();
7936  SDValue CC;
7937
7938  if (Cond.getOpcode() == ISD::SETCC) {
7939    SDValue NewCond = LowerSETCC(Cond, DAG);
7940    if (NewCond.getNode())
7941      Cond = NewCond;
7942  }
7943#if 0
7944  // FIXME: LowerXALUO doesn't handle these!!
7945  else if (Cond.getOpcode() == X86ISD::ADD  ||
7946           Cond.getOpcode() == X86ISD::SUB  ||
7947           Cond.getOpcode() == X86ISD::SMUL ||
7948           Cond.getOpcode() == X86ISD::UMUL)
7949    Cond = LowerXALUO(Cond, DAG);
7950#endif
7951
7952  // Look pass (and (setcc_carry (cmp ...)), 1).
7953  if (Cond.getOpcode() == ISD::AND &&
7954      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7955    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7956    if (C && C->getAPIntValue() == 1)
7957      Cond = Cond.getOperand(0);
7958  }
7959
7960  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7961  // setting operand in place of the X86ISD::SETCC.
7962  if (Cond.getOpcode() == X86ISD::SETCC ||
7963      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7964    CC = Cond.getOperand(0);
7965
7966    SDValue Cmp = Cond.getOperand(1);
7967    unsigned Opc = Cmp.getOpcode();
7968    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7969    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7970      Cond = Cmp;
7971      addTest = false;
7972    } else {
7973      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7974      default: break;
7975      case X86::COND_O:
7976      case X86::COND_B:
7977        // These can only come from an arithmetic instruction with overflow,
7978        // e.g. SADDO, UADDO.
7979        Cond = Cond.getNode()->getOperand(1);
7980        addTest = false;
7981        break;
7982      }
7983    }
7984  } else {
7985    unsigned CondOpc;
7986    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7987      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7988      if (CondOpc == ISD::OR) {
7989        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7990        // two branches instead of an explicit OR instruction with a
7991        // separate test.
7992        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7993            isX86LogicalCmp(Cmp)) {
7994          CC = Cond.getOperand(0).getOperand(0);
7995          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7996                              Chain, Dest, CC, Cmp);
7997          CC = Cond.getOperand(1).getOperand(0);
7998          Cond = Cmp;
7999          addTest = false;
8000        }
8001      } else { // ISD::AND
8002        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8003        // two branches instead of an explicit AND instruction with a
8004        // separate test. However, we only do this if this block doesn't
8005        // have a fall-through edge, because this requires an explicit
8006        // jmp when the condition is false.
8007        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8008            isX86LogicalCmp(Cmp) &&
8009            Op.getNode()->hasOneUse()) {
8010          X86::CondCode CCode =
8011            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8012          CCode = X86::GetOppositeBranchCondition(CCode);
8013          CC = DAG.getConstant(CCode, MVT::i8);
8014          SDNode *User = *Op.getNode()->use_begin();
8015          // Look for an unconditional branch following this conditional branch.
8016          // We need this because we need to reverse the successors in order
8017          // to implement FCMP_OEQ.
8018          if (User->getOpcode() == ISD::BR) {
8019            SDValue FalseBB = User->getOperand(1);
8020            SDNode *NewBR =
8021              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8022            assert(NewBR == User);
8023            (void)NewBR;
8024            Dest = FalseBB;
8025
8026            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8027                                Chain, Dest, CC, Cmp);
8028            X86::CondCode CCode =
8029              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8030            CCode = X86::GetOppositeBranchCondition(CCode);
8031            CC = DAG.getConstant(CCode, MVT::i8);
8032            Cond = Cmp;
8033            addTest = false;
8034          }
8035        }
8036      }
8037    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8038      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8039      // It should be transformed during dag combiner except when the condition
8040      // is set by a arithmetics with overflow node.
8041      X86::CondCode CCode =
8042        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8043      CCode = X86::GetOppositeBranchCondition(CCode);
8044      CC = DAG.getConstant(CCode, MVT::i8);
8045      Cond = Cond.getOperand(0).getOperand(1);
8046      addTest = false;
8047    }
8048  }
8049
8050  if (addTest) {
8051    // Look pass the truncate.
8052    if (Cond.getOpcode() == ISD::TRUNCATE)
8053      Cond = Cond.getOperand(0);
8054
8055    // We know the result of AND is compared against zero. Try to match
8056    // it to BT.
8057    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8058      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8059      if (NewSetCC.getNode()) {
8060        CC = NewSetCC.getOperand(0);
8061        Cond = NewSetCC.getOperand(1);
8062        addTest = false;
8063      }
8064    }
8065  }
8066
8067  if (addTest) {
8068    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8069    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8070  }
8071  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8072                     Chain, Dest, CC, Cond);
8073}
8074
8075
8076// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8077// Calls to _alloca is needed to probe the stack when allocating more than 4k
8078// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8079// that the guard pages used by the OS virtual memory manager are allocated in
8080// correct sequence.
8081SDValue
8082X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8083                                           SelectionDAG &DAG) const {
8084  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8085         "This should be used only on Windows targets");
8086  assert(!Subtarget->isTargetEnvMacho());
8087  DebugLoc dl = Op.getDebugLoc();
8088
8089  // Get the inputs.
8090  SDValue Chain = Op.getOperand(0);
8091  SDValue Size  = Op.getOperand(1);
8092  // FIXME: Ensure alignment here
8093
8094  SDValue Flag;
8095
8096  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8097  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8098
8099  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8100  Flag = Chain.getValue(1);
8101
8102  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8103
8104  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8105  Flag = Chain.getValue(1);
8106
8107  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8108
8109  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8110  return DAG.getMergeValues(Ops1, 2, dl);
8111}
8112
8113SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8114  MachineFunction &MF = DAG.getMachineFunction();
8115  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8116
8117  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8118  DebugLoc DL = Op.getDebugLoc();
8119
8120  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8121    // vastart just stores the address of the VarArgsFrameIndex slot into the
8122    // memory location argument.
8123    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8124                                   getPointerTy());
8125    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8126                        MachinePointerInfo(SV), false, false, 0);
8127  }
8128
8129  // __va_list_tag:
8130  //   gp_offset         (0 - 6 * 8)
8131  //   fp_offset         (48 - 48 + 8 * 16)
8132  //   overflow_arg_area (point to parameters coming in memory).
8133  //   reg_save_area
8134  SmallVector<SDValue, 8> MemOps;
8135  SDValue FIN = Op.getOperand(1);
8136  // Store gp_offset
8137  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8138                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8139                                               MVT::i32),
8140                               FIN, MachinePointerInfo(SV), false, false, 0);
8141  MemOps.push_back(Store);
8142
8143  // Store fp_offset
8144  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8145                    FIN, DAG.getIntPtrConstant(4));
8146  Store = DAG.getStore(Op.getOperand(0), DL,
8147                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8148                                       MVT::i32),
8149                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8150  MemOps.push_back(Store);
8151
8152  // Store ptr to overflow_arg_area
8153  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8154                    FIN, DAG.getIntPtrConstant(4));
8155  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8156                                    getPointerTy());
8157  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8158                       MachinePointerInfo(SV, 8),
8159                       false, false, 0);
8160  MemOps.push_back(Store);
8161
8162  // Store ptr to reg_save_area.
8163  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8164                    FIN, DAG.getIntPtrConstant(8));
8165  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8166                                    getPointerTy());
8167  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8168                       MachinePointerInfo(SV, 16), false, false, 0);
8169  MemOps.push_back(Store);
8170  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8171                     &MemOps[0], MemOps.size());
8172}
8173
8174SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8175  assert(Subtarget->is64Bit() &&
8176         "LowerVAARG only handles 64-bit va_arg!");
8177  assert((Subtarget->isTargetLinux() ||
8178          Subtarget->isTargetDarwin()) &&
8179          "Unhandled target in LowerVAARG");
8180  assert(Op.getNode()->getNumOperands() == 4);
8181  SDValue Chain = Op.getOperand(0);
8182  SDValue SrcPtr = Op.getOperand(1);
8183  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8184  unsigned Align = Op.getConstantOperandVal(3);
8185  DebugLoc dl = Op.getDebugLoc();
8186
8187  EVT ArgVT = Op.getNode()->getValueType(0);
8188  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8189  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8190  uint8_t ArgMode;
8191
8192  // Decide which area this value should be read from.
8193  // TODO: Implement the AMD64 ABI in its entirety. This simple
8194  // selection mechanism works only for the basic types.
8195  if (ArgVT == MVT::f80) {
8196    llvm_unreachable("va_arg for f80 not yet implemented");
8197  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8198    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8199  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8200    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8201  } else {
8202    llvm_unreachable("Unhandled argument type in LowerVAARG");
8203  }
8204
8205  if (ArgMode == 2) {
8206    // Sanity Check: Make sure using fp_offset makes sense.
8207    assert(!UseSoftFloat &&
8208           !(DAG.getMachineFunction()
8209                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8210           Subtarget->hasXMM());
8211  }
8212
8213  // Insert VAARG_64 node into the DAG
8214  // VAARG_64 returns two values: Variable Argument Address, Chain
8215  SmallVector<SDValue, 11> InstOps;
8216  InstOps.push_back(Chain);
8217  InstOps.push_back(SrcPtr);
8218  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8219  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8220  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8221  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8222  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8223                                          VTs, &InstOps[0], InstOps.size(),
8224                                          MVT::i64,
8225                                          MachinePointerInfo(SV),
8226                                          /*Align=*/0,
8227                                          /*Volatile=*/false,
8228                                          /*ReadMem=*/true,
8229                                          /*WriteMem=*/true);
8230  Chain = VAARG.getValue(1);
8231
8232  // Load the next argument and return it
8233  return DAG.getLoad(ArgVT, dl,
8234                     Chain,
8235                     VAARG,
8236                     MachinePointerInfo(),
8237                     false, false, 0);
8238}
8239
8240SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8241  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8242  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8243  SDValue Chain = Op.getOperand(0);
8244  SDValue DstPtr = Op.getOperand(1);
8245  SDValue SrcPtr = Op.getOperand(2);
8246  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8247  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8248  DebugLoc DL = Op.getDebugLoc();
8249
8250  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8251                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8252                       false,
8253                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8254}
8255
8256SDValue
8257X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8258  DebugLoc dl = Op.getDebugLoc();
8259  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8260  switch (IntNo) {
8261  default: return SDValue();    // Don't custom lower most intrinsics.
8262  // Comparison intrinsics.
8263  case Intrinsic::x86_sse_comieq_ss:
8264  case Intrinsic::x86_sse_comilt_ss:
8265  case Intrinsic::x86_sse_comile_ss:
8266  case Intrinsic::x86_sse_comigt_ss:
8267  case Intrinsic::x86_sse_comige_ss:
8268  case Intrinsic::x86_sse_comineq_ss:
8269  case Intrinsic::x86_sse_ucomieq_ss:
8270  case Intrinsic::x86_sse_ucomilt_ss:
8271  case Intrinsic::x86_sse_ucomile_ss:
8272  case Intrinsic::x86_sse_ucomigt_ss:
8273  case Intrinsic::x86_sse_ucomige_ss:
8274  case Intrinsic::x86_sse_ucomineq_ss:
8275  case Intrinsic::x86_sse2_comieq_sd:
8276  case Intrinsic::x86_sse2_comilt_sd:
8277  case Intrinsic::x86_sse2_comile_sd:
8278  case Intrinsic::x86_sse2_comigt_sd:
8279  case Intrinsic::x86_sse2_comige_sd:
8280  case Intrinsic::x86_sse2_comineq_sd:
8281  case Intrinsic::x86_sse2_ucomieq_sd:
8282  case Intrinsic::x86_sse2_ucomilt_sd:
8283  case Intrinsic::x86_sse2_ucomile_sd:
8284  case Intrinsic::x86_sse2_ucomigt_sd:
8285  case Intrinsic::x86_sse2_ucomige_sd:
8286  case Intrinsic::x86_sse2_ucomineq_sd: {
8287    unsigned Opc = 0;
8288    ISD::CondCode CC = ISD::SETCC_INVALID;
8289    switch (IntNo) {
8290    default: break;
8291    case Intrinsic::x86_sse_comieq_ss:
8292    case Intrinsic::x86_sse2_comieq_sd:
8293      Opc = X86ISD::COMI;
8294      CC = ISD::SETEQ;
8295      break;
8296    case Intrinsic::x86_sse_comilt_ss:
8297    case Intrinsic::x86_sse2_comilt_sd:
8298      Opc = X86ISD::COMI;
8299      CC = ISD::SETLT;
8300      break;
8301    case Intrinsic::x86_sse_comile_ss:
8302    case Intrinsic::x86_sse2_comile_sd:
8303      Opc = X86ISD::COMI;
8304      CC = ISD::SETLE;
8305      break;
8306    case Intrinsic::x86_sse_comigt_ss:
8307    case Intrinsic::x86_sse2_comigt_sd:
8308      Opc = X86ISD::COMI;
8309      CC = ISD::SETGT;
8310      break;
8311    case Intrinsic::x86_sse_comige_ss:
8312    case Intrinsic::x86_sse2_comige_sd:
8313      Opc = X86ISD::COMI;
8314      CC = ISD::SETGE;
8315      break;
8316    case Intrinsic::x86_sse_comineq_ss:
8317    case Intrinsic::x86_sse2_comineq_sd:
8318      Opc = X86ISD::COMI;
8319      CC = ISD::SETNE;
8320      break;
8321    case Intrinsic::x86_sse_ucomieq_ss:
8322    case Intrinsic::x86_sse2_ucomieq_sd:
8323      Opc = X86ISD::UCOMI;
8324      CC = ISD::SETEQ;
8325      break;
8326    case Intrinsic::x86_sse_ucomilt_ss:
8327    case Intrinsic::x86_sse2_ucomilt_sd:
8328      Opc = X86ISD::UCOMI;
8329      CC = ISD::SETLT;
8330      break;
8331    case Intrinsic::x86_sse_ucomile_ss:
8332    case Intrinsic::x86_sse2_ucomile_sd:
8333      Opc = X86ISD::UCOMI;
8334      CC = ISD::SETLE;
8335      break;
8336    case Intrinsic::x86_sse_ucomigt_ss:
8337    case Intrinsic::x86_sse2_ucomigt_sd:
8338      Opc = X86ISD::UCOMI;
8339      CC = ISD::SETGT;
8340      break;
8341    case Intrinsic::x86_sse_ucomige_ss:
8342    case Intrinsic::x86_sse2_ucomige_sd:
8343      Opc = X86ISD::UCOMI;
8344      CC = ISD::SETGE;
8345      break;
8346    case Intrinsic::x86_sse_ucomineq_ss:
8347    case Intrinsic::x86_sse2_ucomineq_sd:
8348      Opc = X86ISD::UCOMI;
8349      CC = ISD::SETNE;
8350      break;
8351    }
8352
8353    SDValue LHS = Op.getOperand(1);
8354    SDValue RHS = Op.getOperand(2);
8355    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8356    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8357    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8358    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8359                                DAG.getConstant(X86CC, MVT::i8), Cond);
8360    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8361  }
8362  // ptest and testp intrinsics. The intrinsic these come from are designed to
8363  // return an integer value, not just an instruction so lower it to the ptest
8364  // or testp pattern and a setcc for the result.
8365  case Intrinsic::x86_sse41_ptestz:
8366  case Intrinsic::x86_sse41_ptestc:
8367  case Intrinsic::x86_sse41_ptestnzc:
8368  case Intrinsic::x86_avx_ptestz_256:
8369  case Intrinsic::x86_avx_ptestc_256:
8370  case Intrinsic::x86_avx_ptestnzc_256:
8371  case Intrinsic::x86_avx_vtestz_ps:
8372  case Intrinsic::x86_avx_vtestc_ps:
8373  case Intrinsic::x86_avx_vtestnzc_ps:
8374  case Intrinsic::x86_avx_vtestz_pd:
8375  case Intrinsic::x86_avx_vtestc_pd:
8376  case Intrinsic::x86_avx_vtestnzc_pd:
8377  case Intrinsic::x86_avx_vtestz_ps_256:
8378  case Intrinsic::x86_avx_vtestc_ps_256:
8379  case Intrinsic::x86_avx_vtestnzc_ps_256:
8380  case Intrinsic::x86_avx_vtestz_pd_256:
8381  case Intrinsic::x86_avx_vtestc_pd_256:
8382  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8383    bool IsTestPacked = false;
8384    unsigned X86CC = 0;
8385    switch (IntNo) {
8386    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8387    case Intrinsic::x86_avx_vtestz_ps:
8388    case Intrinsic::x86_avx_vtestz_pd:
8389    case Intrinsic::x86_avx_vtestz_ps_256:
8390    case Intrinsic::x86_avx_vtestz_pd_256:
8391      IsTestPacked = true; // Fallthrough
8392    case Intrinsic::x86_sse41_ptestz:
8393    case Intrinsic::x86_avx_ptestz_256:
8394      // ZF = 1
8395      X86CC = X86::COND_E;
8396      break;
8397    case Intrinsic::x86_avx_vtestc_ps:
8398    case Intrinsic::x86_avx_vtestc_pd:
8399    case Intrinsic::x86_avx_vtestc_ps_256:
8400    case Intrinsic::x86_avx_vtestc_pd_256:
8401      IsTestPacked = true; // Fallthrough
8402    case Intrinsic::x86_sse41_ptestc:
8403    case Intrinsic::x86_avx_ptestc_256:
8404      // CF = 1
8405      X86CC = X86::COND_B;
8406      break;
8407    case Intrinsic::x86_avx_vtestnzc_ps:
8408    case Intrinsic::x86_avx_vtestnzc_pd:
8409    case Intrinsic::x86_avx_vtestnzc_ps_256:
8410    case Intrinsic::x86_avx_vtestnzc_pd_256:
8411      IsTestPacked = true; // Fallthrough
8412    case Intrinsic::x86_sse41_ptestnzc:
8413    case Intrinsic::x86_avx_ptestnzc_256:
8414      // ZF and CF = 0
8415      X86CC = X86::COND_A;
8416      break;
8417    }
8418
8419    SDValue LHS = Op.getOperand(1);
8420    SDValue RHS = Op.getOperand(2);
8421    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8422    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8423    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8424    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8425    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8426  }
8427
8428  // Fix vector shift instructions where the last operand is a non-immediate
8429  // i32 value.
8430  case Intrinsic::x86_sse2_pslli_w:
8431  case Intrinsic::x86_sse2_pslli_d:
8432  case Intrinsic::x86_sse2_pslli_q:
8433  case Intrinsic::x86_sse2_psrli_w:
8434  case Intrinsic::x86_sse2_psrli_d:
8435  case Intrinsic::x86_sse2_psrli_q:
8436  case Intrinsic::x86_sse2_psrai_w:
8437  case Intrinsic::x86_sse2_psrai_d:
8438  case Intrinsic::x86_mmx_pslli_w:
8439  case Intrinsic::x86_mmx_pslli_d:
8440  case Intrinsic::x86_mmx_pslli_q:
8441  case Intrinsic::x86_mmx_psrli_w:
8442  case Intrinsic::x86_mmx_psrli_d:
8443  case Intrinsic::x86_mmx_psrli_q:
8444  case Intrinsic::x86_mmx_psrai_w:
8445  case Intrinsic::x86_mmx_psrai_d: {
8446    SDValue ShAmt = Op.getOperand(2);
8447    if (isa<ConstantSDNode>(ShAmt))
8448      return SDValue();
8449
8450    unsigned NewIntNo = 0;
8451    EVT ShAmtVT = MVT::v4i32;
8452    switch (IntNo) {
8453    case Intrinsic::x86_sse2_pslli_w:
8454      NewIntNo = Intrinsic::x86_sse2_psll_w;
8455      break;
8456    case Intrinsic::x86_sse2_pslli_d:
8457      NewIntNo = Intrinsic::x86_sse2_psll_d;
8458      break;
8459    case Intrinsic::x86_sse2_pslli_q:
8460      NewIntNo = Intrinsic::x86_sse2_psll_q;
8461      break;
8462    case Intrinsic::x86_sse2_psrli_w:
8463      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8464      break;
8465    case Intrinsic::x86_sse2_psrli_d:
8466      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8467      break;
8468    case Intrinsic::x86_sse2_psrli_q:
8469      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8470      break;
8471    case Intrinsic::x86_sse2_psrai_w:
8472      NewIntNo = Intrinsic::x86_sse2_psra_w;
8473      break;
8474    case Intrinsic::x86_sse2_psrai_d:
8475      NewIntNo = Intrinsic::x86_sse2_psra_d;
8476      break;
8477    default: {
8478      ShAmtVT = MVT::v2i32;
8479      switch (IntNo) {
8480      case Intrinsic::x86_mmx_pslli_w:
8481        NewIntNo = Intrinsic::x86_mmx_psll_w;
8482        break;
8483      case Intrinsic::x86_mmx_pslli_d:
8484        NewIntNo = Intrinsic::x86_mmx_psll_d;
8485        break;
8486      case Intrinsic::x86_mmx_pslli_q:
8487        NewIntNo = Intrinsic::x86_mmx_psll_q;
8488        break;
8489      case Intrinsic::x86_mmx_psrli_w:
8490        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8491        break;
8492      case Intrinsic::x86_mmx_psrli_d:
8493        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8494        break;
8495      case Intrinsic::x86_mmx_psrli_q:
8496        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8497        break;
8498      case Intrinsic::x86_mmx_psrai_w:
8499        NewIntNo = Intrinsic::x86_mmx_psra_w;
8500        break;
8501      case Intrinsic::x86_mmx_psrai_d:
8502        NewIntNo = Intrinsic::x86_mmx_psra_d;
8503        break;
8504      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8505      }
8506      break;
8507    }
8508    }
8509
8510    // The vector shift intrinsics with scalars uses 32b shift amounts but
8511    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8512    // to be zero.
8513    SDValue ShOps[4];
8514    ShOps[0] = ShAmt;
8515    ShOps[1] = DAG.getConstant(0, MVT::i32);
8516    if (ShAmtVT == MVT::v4i32) {
8517      ShOps[2] = DAG.getUNDEF(MVT::i32);
8518      ShOps[3] = DAG.getUNDEF(MVT::i32);
8519      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8520    } else {
8521      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8522// FIXME this must be lowered to get rid of the invalid type.
8523    }
8524
8525    EVT VT = Op.getValueType();
8526    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8527    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8528                       DAG.getConstant(NewIntNo, MVT::i32),
8529                       Op.getOperand(1), ShAmt);
8530  }
8531  }
8532}
8533
8534SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8535                                           SelectionDAG &DAG) const {
8536  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8537  MFI->setReturnAddressIsTaken(true);
8538
8539  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8540  DebugLoc dl = Op.getDebugLoc();
8541
8542  if (Depth > 0) {
8543    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8544    SDValue Offset =
8545      DAG.getConstant(TD->getPointerSize(),
8546                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8547    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8548                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8549                                   FrameAddr, Offset),
8550                       MachinePointerInfo(), false, false, 0);
8551  }
8552
8553  // Just load the return address.
8554  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8555  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8556                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8557}
8558
8559SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8560  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8561  MFI->setFrameAddressIsTaken(true);
8562
8563  EVT VT = Op.getValueType();
8564  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8565  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8566  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8567  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8568  while (Depth--)
8569    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8570                            MachinePointerInfo(),
8571                            false, false, 0);
8572  return FrameAddr;
8573}
8574
8575SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8576                                                     SelectionDAG &DAG) const {
8577  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8578}
8579
8580SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8581  MachineFunction &MF = DAG.getMachineFunction();
8582  SDValue Chain     = Op.getOperand(0);
8583  SDValue Offset    = Op.getOperand(1);
8584  SDValue Handler   = Op.getOperand(2);
8585  DebugLoc dl       = Op.getDebugLoc();
8586
8587  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8588                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8589                                     getPointerTy());
8590  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8591
8592  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8593                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8594  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8595  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8596                       false, false, 0);
8597  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8598  MF.getRegInfo().addLiveOut(StoreAddrReg);
8599
8600  return DAG.getNode(X86ISD::EH_RETURN, dl,
8601                     MVT::Other,
8602                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8603}
8604
8605SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8606                                             SelectionDAG &DAG) const {
8607  SDValue Root = Op.getOperand(0);
8608  SDValue Trmp = Op.getOperand(1); // trampoline
8609  SDValue FPtr = Op.getOperand(2); // nested function
8610  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8611  DebugLoc dl  = Op.getDebugLoc();
8612
8613  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8614
8615  if (Subtarget->is64Bit()) {
8616    SDValue OutChains[6];
8617
8618    // Large code-model.
8619    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8620    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8621
8622    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8623    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8624
8625    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8626
8627    // Load the pointer to the nested function into R11.
8628    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8629    SDValue Addr = Trmp;
8630    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8631                                Addr, MachinePointerInfo(TrmpAddr),
8632                                false, false, 0);
8633
8634    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8635                       DAG.getConstant(2, MVT::i64));
8636    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8637                                MachinePointerInfo(TrmpAddr, 2),
8638                                false, false, 2);
8639
8640    // Load the 'nest' parameter value into R10.
8641    // R10 is specified in X86CallingConv.td
8642    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8643    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8644                       DAG.getConstant(10, MVT::i64));
8645    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8646                                Addr, MachinePointerInfo(TrmpAddr, 10),
8647                                false, false, 0);
8648
8649    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8650                       DAG.getConstant(12, MVT::i64));
8651    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8652                                MachinePointerInfo(TrmpAddr, 12),
8653                                false, false, 2);
8654
8655    // Jump to the nested function.
8656    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8657    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8658                       DAG.getConstant(20, MVT::i64));
8659    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8660                                Addr, MachinePointerInfo(TrmpAddr, 20),
8661                                false, false, 0);
8662
8663    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8664    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8665                       DAG.getConstant(22, MVT::i64));
8666    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8667                                MachinePointerInfo(TrmpAddr, 22),
8668                                false, false, 0);
8669
8670    SDValue Ops[] =
8671      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8672    return DAG.getMergeValues(Ops, 2, dl);
8673  } else {
8674    const Function *Func =
8675      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8676    CallingConv::ID CC = Func->getCallingConv();
8677    unsigned NestReg;
8678
8679    switch (CC) {
8680    default:
8681      llvm_unreachable("Unsupported calling convention");
8682    case CallingConv::C:
8683    case CallingConv::X86_StdCall: {
8684      // Pass 'nest' parameter in ECX.
8685      // Must be kept in sync with X86CallingConv.td
8686      NestReg = X86::ECX;
8687
8688      // Check that ECX wasn't needed by an 'inreg' parameter.
8689      FunctionType *FTy = Func->getFunctionType();
8690      const AttrListPtr &Attrs = Func->getAttributes();
8691
8692      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8693        unsigned InRegCount = 0;
8694        unsigned Idx = 1;
8695
8696        for (FunctionType::param_iterator I = FTy->param_begin(),
8697             E = FTy->param_end(); I != E; ++I, ++Idx)
8698          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8699            // FIXME: should only count parameters that are lowered to integers.
8700            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8701
8702        if (InRegCount > 2) {
8703          report_fatal_error("Nest register in use - reduce number of inreg"
8704                             " parameters!");
8705        }
8706      }
8707      break;
8708    }
8709    case CallingConv::X86_FastCall:
8710    case CallingConv::X86_ThisCall:
8711    case CallingConv::Fast:
8712      // Pass 'nest' parameter in EAX.
8713      // Must be kept in sync with X86CallingConv.td
8714      NestReg = X86::EAX;
8715      break;
8716    }
8717
8718    SDValue OutChains[4];
8719    SDValue Addr, Disp;
8720
8721    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8722                       DAG.getConstant(10, MVT::i32));
8723    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8724
8725    // This is storing the opcode for MOV32ri.
8726    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8727    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
8728    OutChains[0] = DAG.getStore(Root, dl,
8729                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8730                                Trmp, MachinePointerInfo(TrmpAddr),
8731                                false, false, 0);
8732
8733    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8734                       DAG.getConstant(1, MVT::i32));
8735    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8736                                MachinePointerInfo(TrmpAddr, 1),
8737                                false, false, 1);
8738
8739    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8740    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8741                       DAG.getConstant(5, MVT::i32));
8742    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8743                                MachinePointerInfo(TrmpAddr, 5),
8744                                false, false, 1);
8745
8746    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8747                       DAG.getConstant(6, MVT::i32));
8748    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8749                                MachinePointerInfo(TrmpAddr, 6),
8750                                false, false, 1);
8751
8752    SDValue Ops[] =
8753      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8754    return DAG.getMergeValues(Ops, 2, dl);
8755  }
8756}
8757
8758SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8759                                            SelectionDAG &DAG) const {
8760  /*
8761   The rounding mode is in bits 11:10 of FPSR, and has the following
8762   settings:
8763     00 Round to nearest
8764     01 Round to -inf
8765     10 Round to +inf
8766     11 Round to 0
8767
8768  FLT_ROUNDS, on the other hand, expects the following:
8769    -1 Undefined
8770     0 Round to 0
8771     1 Round to nearest
8772     2 Round to +inf
8773     3 Round to -inf
8774
8775  To perform the conversion, we do:
8776    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8777  */
8778
8779  MachineFunction &MF = DAG.getMachineFunction();
8780  const TargetMachine &TM = MF.getTarget();
8781  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8782  unsigned StackAlignment = TFI.getStackAlignment();
8783  EVT VT = Op.getValueType();
8784  DebugLoc DL = Op.getDebugLoc();
8785
8786  // Save FP Control Word to stack slot
8787  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8788  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8789
8790
8791  MachineMemOperand *MMO =
8792   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8793                           MachineMemOperand::MOStore, 2, 2);
8794
8795  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8796  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8797                                          DAG.getVTList(MVT::Other),
8798                                          Ops, 2, MVT::i16, MMO);
8799
8800  // Load FP Control Word from stack slot
8801  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8802                            MachinePointerInfo(), false, false, 0);
8803
8804  // Transform as necessary
8805  SDValue CWD1 =
8806    DAG.getNode(ISD::SRL, DL, MVT::i16,
8807                DAG.getNode(ISD::AND, DL, MVT::i16,
8808                            CWD, DAG.getConstant(0x800, MVT::i16)),
8809                DAG.getConstant(11, MVT::i8));
8810  SDValue CWD2 =
8811    DAG.getNode(ISD::SRL, DL, MVT::i16,
8812                DAG.getNode(ISD::AND, DL, MVT::i16,
8813                            CWD, DAG.getConstant(0x400, MVT::i16)),
8814                DAG.getConstant(9, MVT::i8));
8815
8816  SDValue RetVal =
8817    DAG.getNode(ISD::AND, DL, MVT::i16,
8818                DAG.getNode(ISD::ADD, DL, MVT::i16,
8819                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8820                            DAG.getConstant(1, MVT::i16)),
8821                DAG.getConstant(3, MVT::i16));
8822
8823
8824  return DAG.getNode((VT.getSizeInBits() < 16 ?
8825                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8826}
8827
8828SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8829  EVT VT = Op.getValueType();
8830  EVT OpVT = VT;
8831  unsigned NumBits = VT.getSizeInBits();
8832  DebugLoc dl = Op.getDebugLoc();
8833
8834  Op = Op.getOperand(0);
8835  if (VT == MVT::i8) {
8836    // Zero extend to i32 since there is not an i8 bsr.
8837    OpVT = MVT::i32;
8838    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8839  }
8840
8841  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8842  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8843  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8844
8845  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8846  SDValue Ops[] = {
8847    Op,
8848    DAG.getConstant(NumBits+NumBits-1, OpVT),
8849    DAG.getConstant(X86::COND_E, MVT::i8),
8850    Op.getValue(1)
8851  };
8852  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8853
8854  // Finally xor with NumBits-1.
8855  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8856
8857  if (VT == MVT::i8)
8858    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8859  return Op;
8860}
8861
8862SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8863  EVT VT = Op.getValueType();
8864  EVT OpVT = VT;
8865  unsigned NumBits = VT.getSizeInBits();
8866  DebugLoc dl = Op.getDebugLoc();
8867
8868  Op = Op.getOperand(0);
8869  if (VT == MVT::i8) {
8870    OpVT = MVT::i32;
8871    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8872  }
8873
8874  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8875  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8876  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8877
8878  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8879  SDValue Ops[] = {
8880    Op,
8881    DAG.getConstant(NumBits, OpVT),
8882    DAG.getConstant(X86::COND_E, MVT::i8),
8883    Op.getValue(1)
8884  };
8885  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8886
8887  if (VT == MVT::i8)
8888    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8889  return Op;
8890}
8891
8892SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8893  EVT VT = Op.getValueType();
8894  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8895  DebugLoc dl = Op.getDebugLoc();
8896
8897  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8898  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8899  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8900  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8901  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8902  //
8903  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8904  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8905  //  return AloBlo + AloBhi + AhiBlo;
8906
8907  SDValue A = Op.getOperand(0);
8908  SDValue B = Op.getOperand(1);
8909
8910  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8911                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8912                       A, DAG.getConstant(32, MVT::i32));
8913  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8914                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8915                       B, DAG.getConstant(32, MVT::i32));
8916  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8917                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8918                       A, B);
8919  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8920                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8921                       A, Bhi);
8922  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8923                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8924                       Ahi, B);
8925  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8926                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8927                       AloBhi, DAG.getConstant(32, MVT::i32));
8928  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8929                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8930                       AhiBlo, DAG.getConstant(32, MVT::i32));
8931  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8932  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8933  return Res;
8934}
8935
8936SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
8937
8938  EVT VT = Op.getValueType();
8939  DebugLoc dl = Op.getDebugLoc();
8940  SDValue R = Op.getOperand(0);
8941  SDValue Amt = Op.getOperand(1);
8942
8943  LLVMContext *Context = DAG.getContext();
8944
8945  // Must have SSE2.
8946  if (!Subtarget->hasSSE2()) return SDValue();
8947
8948  // Optimize shl/srl/sra with constant shift amount.
8949  if (isSplatVector(Amt.getNode())) {
8950    SDValue SclrAmt = Amt->getOperand(0);
8951    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
8952      uint64_t ShiftAmt = C->getZExtValue();
8953
8954      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
8955       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8956                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8957                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8958
8959      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
8960       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8961                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8962                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8963
8964      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
8965       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8966                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8967                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8968
8969      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
8970       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8971                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8972                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8973
8974      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
8975       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8976                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8977                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8978
8979      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
8980       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8981                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8982                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8983
8984      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
8985       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8986                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8987                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8988
8989      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
8990       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8991                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8992                     R, DAG.getConstant(ShiftAmt, MVT::i32));
8993    }
8994  }
8995
8996  // Lower SHL with variable shift amount.
8997  // Cannot lower SHL without SSE2 or later.
8998  if (!Subtarget->hasSSE2()) return SDValue();
8999
9000  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9001    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9002                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9003                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9004
9005    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9006
9007    std::vector<Constant*> CV(4, CI);
9008    Constant *C = ConstantVector::get(CV);
9009    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9010    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9011                                 MachinePointerInfo::getConstantPool(),
9012                                 false, false, 16);
9013
9014    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9015    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9016    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9017    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9018  }
9019  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9020    // a = a << 5;
9021    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9022                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9023                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9024
9025    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9026    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9027
9028    std::vector<Constant*> CVM1(16, CM1);
9029    std::vector<Constant*> CVM2(16, CM2);
9030    Constant *C = ConstantVector::get(CVM1);
9031    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9032    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9033                            MachinePointerInfo::getConstantPool(),
9034                            false, false, 16);
9035
9036    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9037    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9038    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9039                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9040                    DAG.getConstant(4, MVT::i32));
9041    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9042    // a += a
9043    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9044
9045    C = ConstantVector::get(CVM2);
9046    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9047    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9048                    MachinePointerInfo::getConstantPool(),
9049                    false, false, 16);
9050
9051    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9052    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9053    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9054                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9055                    DAG.getConstant(2, MVT::i32));
9056    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9057    // a += a
9058    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9059
9060    // return pblendv(r, r+r, a);
9061    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9062                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9063    return R;
9064  }
9065  return SDValue();
9066}
9067
9068SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9069  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9070  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9071  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9072  // has only one use.
9073  SDNode *N = Op.getNode();
9074  SDValue LHS = N->getOperand(0);
9075  SDValue RHS = N->getOperand(1);
9076  unsigned BaseOp = 0;
9077  unsigned Cond = 0;
9078  DebugLoc DL = Op.getDebugLoc();
9079  switch (Op.getOpcode()) {
9080  default: llvm_unreachable("Unknown ovf instruction!");
9081  case ISD::SADDO:
9082    // A subtract of one will be selected as a INC. Note that INC doesn't
9083    // set CF, so we can't do this for UADDO.
9084    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9085      if (C->isOne()) {
9086        BaseOp = X86ISD::INC;
9087        Cond = X86::COND_O;
9088        break;
9089      }
9090    BaseOp = X86ISD::ADD;
9091    Cond = X86::COND_O;
9092    break;
9093  case ISD::UADDO:
9094    BaseOp = X86ISD::ADD;
9095    Cond = X86::COND_B;
9096    break;
9097  case ISD::SSUBO:
9098    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9099    // set CF, so we can't do this for USUBO.
9100    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9101      if (C->isOne()) {
9102        BaseOp = X86ISD::DEC;
9103        Cond = X86::COND_O;
9104        break;
9105      }
9106    BaseOp = X86ISD::SUB;
9107    Cond = X86::COND_O;
9108    break;
9109  case ISD::USUBO:
9110    BaseOp = X86ISD::SUB;
9111    Cond = X86::COND_B;
9112    break;
9113  case ISD::SMULO:
9114    BaseOp = X86ISD::SMUL;
9115    Cond = X86::COND_O;
9116    break;
9117  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9118    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9119                                 MVT::i32);
9120    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9121
9122    SDValue SetCC =
9123      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9124                  DAG.getConstant(X86::COND_O, MVT::i32),
9125                  SDValue(Sum.getNode(), 2));
9126
9127    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
9128    return Sum;
9129  }
9130  }
9131
9132  // Also sets EFLAGS.
9133  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9134  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9135
9136  SDValue SetCC =
9137    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9138                DAG.getConstant(Cond, MVT::i32),
9139                SDValue(Sum.getNode(), 1));
9140
9141  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
9142  return Sum;
9143}
9144
9145SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9146  DebugLoc dl = Op.getDebugLoc();
9147  SDNode* Node = Op.getNode();
9148  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9149  EVT VT = Node->getValueType(0);
9150
9151  if (Subtarget->hasSSE2() && VT.isVector()) {
9152    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9153                        ExtraVT.getScalarType().getSizeInBits();
9154    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9155
9156    unsigned SHLIntrinsicsID = 0;
9157    unsigned SRAIntrinsicsID = 0;
9158    switch (VT.getSimpleVT().SimpleTy) {
9159      default:
9160        return SDValue();
9161      case MVT::v2i64: {
9162        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9163        SRAIntrinsicsID = 0;
9164        break;
9165      }
9166      case MVT::v4i32: {
9167        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9168        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9169        break;
9170      }
9171      case MVT::v8i16: {
9172        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9173        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9174        break;
9175      }
9176    }
9177
9178    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9179                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9180                         Node->getOperand(0), ShAmt);
9181
9182    // In case of 1 bit sext, no need to shr
9183    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9184
9185    if (SRAIntrinsicsID) {
9186      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9187                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9188                         Tmp1, ShAmt);
9189    }
9190    return Tmp1;
9191  }
9192
9193  return SDValue();
9194}
9195
9196
9197SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9198  DebugLoc dl = Op.getDebugLoc();
9199
9200  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9201  // There isn't any reason to disable it if the target processor supports it.
9202  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9203    SDValue Chain = Op.getOperand(0);
9204    SDValue Zero = DAG.getConstant(0, MVT::i32);
9205    SDValue Ops[] = {
9206      DAG.getRegister(X86::ESP, MVT::i32), // Base
9207      DAG.getTargetConstant(1, MVT::i8),   // Scale
9208      DAG.getRegister(0, MVT::i32),        // Index
9209      DAG.getTargetConstant(0, MVT::i32),  // Disp
9210      DAG.getRegister(0, MVT::i32),        // Segment.
9211      Zero,
9212      Chain
9213    };
9214    SDNode *Res =
9215      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9216                          array_lengthof(Ops));
9217    return SDValue(Res, 0);
9218  }
9219
9220  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9221  if (!isDev)
9222    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9223
9224  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9225  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9226  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9227  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9228
9229  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9230  if (!Op1 && !Op2 && !Op3 && Op4)
9231    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9232
9233  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9234  if (Op1 && !Op2 && !Op3 && !Op4)
9235    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9236
9237  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9238  //           (MFENCE)>;
9239  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9240}
9241
9242SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9243  EVT T = Op.getValueType();
9244  DebugLoc DL = Op.getDebugLoc();
9245  unsigned Reg = 0;
9246  unsigned size = 0;
9247  switch(T.getSimpleVT().SimpleTy) {
9248  default:
9249    assert(false && "Invalid value type!");
9250  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9251  case MVT::i16: Reg = X86::AX;  size = 2; break;
9252  case MVT::i32: Reg = X86::EAX; size = 4; break;
9253  case MVT::i64:
9254    assert(Subtarget->is64Bit() && "Node not type legal!");
9255    Reg = X86::RAX; size = 8;
9256    break;
9257  }
9258  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9259                                    Op.getOperand(2), SDValue());
9260  SDValue Ops[] = { cpIn.getValue(0),
9261                    Op.getOperand(1),
9262                    Op.getOperand(3),
9263                    DAG.getTargetConstant(size, MVT::i8),
9264                    cpIn.getValue(1) };
9265  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9266  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9267  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9268                                           Ops, 5, T, MMO);
9269  SDValue cpOut =
9270    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9271  return cpOut;
9272}
9273
9274SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9275                                                 SelectionDAG &DAG) const {
9276  assert(Subtarget->is64Bit() && "Result not type legalized?");
9277  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9278  SDValue TheChain = Op.getOperand(0);
9279  DebugLoc dl = Op.getDebugLoc();
9280  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9281  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9282  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9283                                   rax.getValue(2));
9284  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9285                            DAG.getConstant(32, MVT::i8));
9286  SDValue Ops[] = {
9287    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9288    rdx.getValue(1)
9289  };
9290  return DAG.getMergeValues(Ops, 2, dl);
9291}
9292
9293SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9294                                            SelectionDAG &DAG) const {
9295  EVT SrcVT = Op.getOperand(0).getValueType();
9296  EVT DstVT = Op.getValueType();
9297  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9298         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9299  assert((DstVT == MVT::i64 ||
9300          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9301         "Unexpected custom BITCAST");
9302  // i64 <=> MMX conversions are Legal.
9303  if (SrcVT==MVT::i64 && DstVT.isVector())
9304    return Op;
9305  if (DstVT==MVT::i64 && SrcVT.isVector())
9306    return Op;
9307  // MMX <=> MMX conversions are Legal.
9308  if (SrcVT.isVector() && DstVT.isVector())
9309    return Op;
9310  // All other conversions need to be expanded.
9311  return SDValue();
9312}
9313
9314SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9315  SDNode *Node = Op.getNode();
9316  DebugLoc dl = Node->getDebugLoc();
9317  EVT T = Node->getValueType(0);
9318  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9319                              DAG.getConstant(0, T), Node->getOperand(2));
9320  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9321                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9322                       Node->getOperand(0),
9323                       Node->getOperand(1), negOp,
9324                       cast<AtomicSDNode>(Node)->getSrcValue(),
9325                       cast<AtomicSDNode>(Node)->getAlignment());
9326}
9327
9328static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9329  EVT VT = Op.getNode()->getValueType(0);
9330
9331  // Let legalize expand this if it isn't a legal type yet.
9332  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9333    return SDValue();
9334
9335  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9336
9337  unsigned Opc;
9338  bool ExtraOp = false;
9339  switch (Op.getOpcode()) {
9340  default: assert(0 && "Invalid code");
9341  case ISD::ADDC: Opc = X86ISD::ADD; break;
9342  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9343  case ISD::SUBC: Opc = X86ISD::SUB; break;
9344  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9345  }
9346
9347  if (!ExtraOp)
9348    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9349                       Op.getOperand(1));
9350  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9351                     Op.getOperand(1), Op.getOperand(2));
9352}
9353
9354/// LowerOperation - Provide custom lowering hooks for some operations.
9355///
9356SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9357  switch (Op.getOpcode()) {
9358  default: llvm_unreachable("Should not custom lower this!");
9359  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9360  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9361  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9362  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9363  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9364  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9365  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9366  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9367  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9368  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9369  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9370  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9371  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9372  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9373  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9374  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9375  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9376  case ISD::SHL_PARTS:
9377  case ISD::SRA_PARTS:
9378  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9379  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9380  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9381  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9382  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9383  case ISD::FABS:               return LowerFABS(Op, DAG);
9384  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9385  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9386  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9387  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9388  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9389  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9390  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9391  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9392  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9393  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9394  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9395  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9396  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9397  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9398  case ISD::FRAME_TO_ARGS_OFFSET:
9399                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9400  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9401  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9402  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9403  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9404  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9405  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9406  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9407  case ISD::SRA:
9408  case ISD::SRL:
9409  case ISD::SHL:                return LowerShift(Op, DAG);
9410  case ISD::SADDO:
9411  case ISD::UADDO:
9412  case ISD::SSUBO:
9413  case ISD::USUBO:
9414  case ISD::SMULO:
9415  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9416  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9417  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9418  case ISD::ADDC:
9419  case ISD::ADDE:
9420  case ISD::SUBC:
9421  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9422  }
9423}
9424
9425void X86TargetLowering::
9426ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9427                        SelectionDAG &DAG, unsigned NewOp) const {
9428  EVT T = Node->getValueType(0);
9429  DebugLoc dl = Node->getDebugLoc();
9430  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9431
9432  SDValue Chain = Node->getOperand(0);
9433  SDValue In1 = Node->getOperand(1);
9434  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9435                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9436  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9437                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9438  SDValue Ops[] = { Chain, In1, In2L, In2H };
9439  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9440  SDValue Result =
9441    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9442                            cast<MemSDNode>(Node)->getMemOperand());
9443  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9444  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9445  Results.push_back(Result.getValue(2));
9446}
9447
9448/// ReplaceNodeResults - Replace a node with an illegal result type
9449/// with a new node built out of custom code.
9450void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9451                                           SmallVectorImpl<SDValue>&Results,
9452                                           SelectionDAG &DAG) const {
9453  DebugLoc dl = N->getDebugLoc();
9454  switch (N->getOpcode()) {
9455  default:
9456    assert(false && "Do not know how to custom type legalize this operation!");
9457    return;
9458  case ISD::SIGN_EXTEND_INREG:
9459  case ISD::ADDC:
9460  case ISD::ADDE:
9461  case ISD::SUBC:
9462  case ISD::SUBE:
9463    // We don't want to expand or promote these.
9464    return;
9465  case ISD::FP_TO_SINT: {
9466    std::pair<SDValue,SDValue> Vals =
9467        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9468    SDValue FIST = Vals.first, StackSlot = Vals.second;
9469    if (FIST.getNode() != 0) {
9470      EVT VT = N->getValueType(0);
9471      // Return a load from the stack slot.
9472      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9473                                    MachinePointerInfo(), false, false, 0));
9474    }
9475    return;
9476  }
9477  case ISD::READCYCLECOUNTER: {
9478    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9479    SDValue TheChain = N->getOperand(0);
9480    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9481    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9482                                     rd.getValue(1));
9483    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9484                                     eax.getValue(2));
9485    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9486    SDValue Ops[] = { eax, edx };
9487    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9488    Results.push_back(edx.getValue(1));
9489    return;
9490  }
9491  case ISD::ATOMIC_CMP_SWAP: {
9492    EVT T = N->getValueType(0);
9493    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9494    SDValue cpInL, cpInH;
9495    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9496                        DAG.getConstant(0, MVT::i32));
9497    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9498                        DAG.getConstant(1, MVT::i32));
9499    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9500    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9501                             cpInL.getValue(1));
9502    SDValue swapInL, swapInH;
9503    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9504                          DAG.getConstant(0, MVT::i32));
9505    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9506                          DAG.getConstant(1, MVT::i32));
9507    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9508                               cpInH.getValue(1));
9509    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9510                               swapInL.getValue(1));
9511    SDValue Ops[] = { swapInH.getValue(0),
9512                      N->getOperand(1),
9513                      swapInH.getValue(1) };
9514    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9515    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9516    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9517                                             Ops, 3, T, MMO);
9518    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9519                                        MVT::i32, Result.getValue(1));
9520    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9521                                        MVT::i32, cpOutL.getValue(2));
9522    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9523    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9524    Results.push_back(cpOutH.getValue(1));
9525    return;
9526  }
9527  case ISD::ATOMIC_LOAD_ADD:
9528    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9529    return;
9530  case ISD::ATOMIC_LOAD_AND:
9531    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9532    return;
9533  case ISD::ATOMIC_LOAD_NAND:
9534    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9535    return;
9536  case ISD::ATOMIC_LOAD_OR:
9537    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9538    return;
9539  case ISD::ATOMIC_LOAD_SUB:
9540    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9541    return;
9542  case ISD::ATOMIC_LOAD_XOR:
9543    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9544    return;
9545  case ISD::ATOMIC_SWAP:
9546    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9547    return;
9548  }
9549}
9550
9551const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9552  switch (Opcode) {
9553  default: return NULL;
9554  case X86ISD::BSF:                return "X86ISD::BSF";
9555  case X86ISD::BSR:                return "X86ISD::BSR";
9556  case X86ISD::SHLD:               return "X86ISD::SHLD";
9557  case X86ISD::SHRD:               return "X86ISD::SHRD";
9558  case X86ISD::FAND:               return "X86ISD::FAND";
9559  case X86ISD::FOR:                return "X86ISD::FOR";
9560  case X86ISD::FXOR:               return "X86ISD::FXOR";
9561  case X86ISD::FSRL:               return "X86ISD::FSRL";
9562  case X86ISD::FILD:               return "X86ISD::FILD";
9563  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9564  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9565  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9566  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9567  case X86ISD::FLD:                return "X86ISD::FLD";
9568  case X86ISD::FST:                return "X86ISD::FST";
9569  case X86ISD::CALL:               return "X86ISD::CALL";
9570  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9571  case X86ISD::BT:                 return "X86ISD::BT";
9572  case X86ISD::CMP:                return "X86ISD::CMP";
9573  case X86ISD::COMI:               return "X86ISD::COMI";
9574  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9575  case X86ISD::SETCC:              return "X86ISD::SETCC";
9576  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9577  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9578  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9579  case X86ISD::CMOV:               return "X86ISD::CMOV";
9580  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9581  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9582  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9583  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9584  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9585  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9586  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9587  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9588  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9589  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9590  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9591  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9592  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9593  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9594  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9595  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9596  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9597  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9598  case X86ISD::FMAX:               return "X86ISD::FMAX";
9599  case X86ISD::FMIN:               return "X86ISD::FMIN";
9600  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9601  case X86ISD::FRCP:               return "X86ISD::FRCP";
9602  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9603  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9604  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9605  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9606  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9607  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9608  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9609  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9610  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9611  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9612  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9613  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9614  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9615  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9616  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9617  case X86ISD::VSHL:               return "X86ISD::VSHL";
9618  case X86ISD::VSRL:               return "X86ISD::VSRL";
9619  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9620  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9621  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9622  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9623  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9624  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9625  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9626  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9627  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9628  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9629  case X86ISD::ADD:                return "X86ISD::ADD";
9630  case X86ISD::SUB:                return "X86ISD::SUB";
9631  case X86ISD::ADC:                return "X86ISD::ADC";
9632  case X86ISD::SBB:                return "X86ISD::SBB";
9633  case X86ISD::SMUL:               return "X86ISD::SMUL";
9634  case X86ISD::UMUL:               return "X86ISD::UMUL";
9635  case X86ISD::INC:                return "X86ISD::INC";
9636  case X86ISD::DEC:                return "X86ISD::DEC";
9637  case X86ISD::OR:                 return "X86ISD::OR";
9638  case X86ISD::XOR:                return "X86ISD::XOR";
9639  case X86ISD::AND:                return "X86ISD::AND";
9640  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9641  case X86ISD::PTEST:              return "X86ISD::PTEST";
9642  case X86ISD::TESTP:              return "X86ISD::TESTP";
9643  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9644  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9645  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9646  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9647  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9648  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9649  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9650  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9651  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9652  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9653  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9654  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9655  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9656  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9657  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9658  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9659  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9660  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9661  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9662  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9663  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9664  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9665  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9666  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9667  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9668  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9669  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9670  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9671  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9672  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9673  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9674  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9675  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9676  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9677  case X86ISD::VPERMIL:            return "X86ISD::VPERMIL";
9678  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9679  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9680  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9681  }
9682}
9683
9684// isLegalAddressingMode - Return true if the addressing mode represented
9685// by AM is legal for this target, for a load/store of the specified type.
9686bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9687                                              Type *Ty) const {
9688  // X86 supports extremely general addressing modes.
9689  CodeModel::Model M = getTargetMachine().getCodeModel();
9690  Reloc::Model R = getTargetMachine().getRelocationModel();
9691
9692  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9693  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9694    return false;
9695
9696  if (AM.BaseGV) {
9697    unsigned GVFlags =
9698      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9699
9700    // If a reference to this global requires an extra load, we can't fold it.
9701    if (isGlobalStubReference(GVFlags))
9702      return false;
9703
9704    // If BaseGV requires a register for the PIC base, we cannot also have a
9705    // BaseReg specified.
9706    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9707      return false;
9708
9709    // If lower 4G is not available, then we must use rip-relative addressing.
9710    if ((M != CodeModel::Small || R != Reloc::Static) &&
9711        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9712      return false;
9713  }
9714
9715  switch (AM.Scale) {
9716  case 0:
9717  case 1:
9718  case 2:
9719  case 4:
9720  case 8:
9721    // These scales always work.
9722    break;
9723  case 3:
9724  case 5:
9725  case 9:
9726    // These scales are formed with basereg+scalereg.  Only accept if there is
9727    // no basereg yet.
9728    if (AM.HasBaseReg)
9729      return false;
9730    break;
9731  default:  // Other stuff never works.
9732    return false;
9733  }
9734
9735  return true;
9736}
9737
9738
9739bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
9740  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9741    return false;
9742  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9743  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9744  if (NumBits1 <= NumBits2)
9745    return false;
9746  return true;
9747}
9748
9749bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9750  if (!VT1.isInteger() || !VT2.isInteger())
9751    return false;
9752  unsigned NumBits1 = VT1.getSizeInBits();
9753  unsigned NumBits2 = VT2.getSizeInBits();
9754  if (NumBits1 <= NumBits2)
9755    return false;
9756  return true;
9757}
9758
9759bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
9760  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9761  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9762}
9763
9764bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9765  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9766  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9767}
9768
9769bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9770  // i16 instructions are longer (0x66 prefix) and potentially slower.
9771  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9772}
9773
9774/// isShuffleMaskLegal - Targets can use this to indicate that they only
9775/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9776/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9777/// are assumed to be legal.
9778bool
9779X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9780                                      EVT VT) const {
9781  // Very little shuffling can be done for 64-bit vectors right now.
9782  if (VT.getSizeInBits() == 64)
9783    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9784
9785  // FIXME: pshufb, blends, shifts.
9786  return (VT.getVectorNumElements() == 2 ||
9787          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9788          isMOVLMask(M, VT) ||
9789          isSHUFPMask(M, VT) ||
9790          isPSHUFDMask(M, VT) ||
9791          isPSHUFHWMask(M, VT) ||
9792          isPSHUFLWMask(M, VT) ||
9793          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9794          isUNPCKLMask(M, VT) ||
9795          isUNPCKHMask(M, VT) ||
9796          isUNPCKL_v_undef_Mask(M, VT) ||
9797          isUNPCKH_v_undef_Mask(M, VT));
9798}
9799
9800bool
9801X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9802                                          EVT VT) const {
9803  unsigned NumElts = VT.getVectorNumElements();
9804  // FIXME: This collection of masks seems suspect.
9805  if (NumElts == 2)
9806    return true;
9807  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9808    return (isMOVLMask(Mask, VT)  ||
9809            isCommutedMOVLMask(Mask, VT, true) ||
9810            isSHUFPMask(Mask, VT) ||
9811            isCommutedSHUFPMask(Mask, VT));
9812  }
9813  return false;
9814}
9815
9816//===----------------------------------------------------------------------===//
9817//                           X86 Scheduler Hooks
9818//===----------------------------------------------------------------------===//
9819
9820// private utility function
9821MachineBasicBlock *
9822X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9823                                                       MachineBasicBlock *MBB,
9824                                                       unsigned regOpc,
9825                                                       unsigned immOpc,
9826                                                       unsigned LoadOpc,
9827                                                       unsigned CXchgOpc,
9828                                                       unsigned notOpc,
9829                                                       unsigned EAXreg,
9830                                                       TargetRegisterClass *RC,
9831                                                       bool invSrc) const {
9832  // For the atomic bitwise operator, we generate
9833  //   thisMBB:
9834  //   newMBB:
9835  //     ld  t1 = [bitinstr.addr]
9836  //     op  t2 = t1, [bitinstr.val]
9837  //     mov EAX = t1
9838  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9839  //     bz  newMBB
9840  //     fallthrough -->nextMBB
9841  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9842  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9843  MachineFunction::iterator MBBIter = MBB;
9844  ++MBBIter;
9845
9846  /// First build the CFG
9847  MachineFunction *F = MBB->getParent();
9848  MachineBasicBlock *thisMBB = MBB;
9849  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9850  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9851  F->insert(MBBIter, newMBB);
9852  F->insert(MBBIter, nextMBB);
9853
9854  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9855  nextMBB->splice(nextMBB->begin(), thisMBB,
9856                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9857                  thisMBB->end());
9858  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9859
9860  // Update thisMBB to fall through to newMBB
9861  thisMBB->addSuccessor(newMBB);
9862
9863  // newMBB jumps to itself and fall through to nextMBB
9864  newMBB->addSuccessor(nextMBB);
9865  newMBB->addSuccessor(newMBB);
9866
9867  // Insert instructions into newMBB based on incoming instruction
9868  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9869         "unexpected number of operands");
9870  DebugLoc dl = bInstr->getDebugLoc();
9871  MachineOperand& destOper = bInstr->getOperand(0);
9872  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9873  int numArgs = bInstr->getNumOperands() - 1;
9874  for (int i=0; i < numArgs; ++i)
9875    argOpers[i] = &bInstr->getOperand(i+1);
9876
9877  // x86 address has 4 operands: base, index, scale, and displacement
9878  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9879  int valArgIndx = lastAddrIndx + 1;
9880
9881  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9882  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9883  for (int i=0; i <= lastAddrIndx; ++i)
9884    (*MIB).addOperand(*argOpers[i]);
9885
9886  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9887  if (invSrc) {
9888    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9889  }
9890  else
9891    tt = t1;
9892
9893  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9894  assert((argOpers[valArgIndx]->isReg() ||
9895          argOpers[valArgIndx]->isImm()) &&
9896         "invalid operand");
9897  if (argOpers[valArgIndx]->isReg())
9898    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9899  else
9900    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9901  MIB.addReg(tt);
9902  (*MIB).addOperand(*argOpers[valArgIndx]);
9903
9904  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9905  MIB.addReg(t1);
9906
9907  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9908  for (int i=0; i <= lastAddrIndx; ++i)
9909    (*MIB).addOperand(*argOpers[i]);
9910  MIB.addReg(t2);
9911  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9912  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9913                    bInstr->memoperands_end());
9914
9915  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9916  MIB.addReg(EAXreg);
9917
9918  // insert branch
9919  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9920
9921  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9922  return nextMBB;
9923}
9924
9925// private utility function:  64 bit atomics on 32 bit host.
9926MachineBasicBlock *
9927X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9928                                                       MachineBasicBlock *MBB,
9929                                                       unsigned regOpcL,
9930                                                       unsigned regOpcH,
9931                                                       unsigned immOpcL,
9932                                                       unsigned immOpcH,
9933                                                       bool invSrc) const {
9934  // For the atomic bitwise operator, we generate
9935  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9936  //     ld t1,t2 = [bitinstr.addr]
9937  //   newMBB:
9938  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9939  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9940  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9941  //     mov ECX, EBX <- t5, t6
9942  //     mov EAX, EDX <- t1, t2
9943  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9944  //     mov t3, t4 <- EAX, EDX
9945  //     bz  newMBB
9946  //     result in out1, out2
9947  //     fallthrough -->nextMBB
9948
9949  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9950  const unsigned LoadOpc = X86::MOV32rm;
9951  const unsigned NotOpc = X86::NOT32r;
9952  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9953  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9954  MachineFunction::iterator MBBIter = MBB;
9955  ++MBBIter;
9956
9957  /// First build the CFG
9958  MachineFunction *F = MBB->getParent();
9959  MachineBasicBlock *thisMBB = MBB;
9960  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9961  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9962  F->insert(MBBIter, newMBB);
9963  F->insert(MBBIter, nextMBB);
9964
9965  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9966  nextMBB->splice(nextMBB->begin(), thisMBB,
9967                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9968                  thisMBB->end());
9969  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9970
9971  // Update thisMBB to fall through to newMBB
9972  thisMBB->addSuccessor(newMBB);
9973
9974  // newMBB jumps to itself and fall through to nextMBB
9975  newMBB->addSuccessor(nextMBB);
9976  newMBB->addSuccessor(newMBB);
9977
9978  DebugLoc dl = bInstr->getDebugLoc();
9979  // Insert instructions into newMBB based on incoming instruction
9980  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9981  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9982         "unexpected number of operands");
9983  MachineOperand& dest1Oper = bInstr->getOperand(0);
9984  MachineOperand& dest2Oper = bInstr->getOperand(1);
9985  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9986  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9987    argOpers[i] = &bInstr->getOperand(i+2);
9988
9989    // We use some of the operands multiple times, so conservatively just
9990    // clear any kill flags that might be present.
9991    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9992      argOpers[i]->setIsKill(false);
9993  }
9994
9995  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9996  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9997
9998  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9999  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10000  for (int i=0; i <= lastAddrIndx; ++i)
10001    (*MIB).addOperand(*argOpers[i]);
10002  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10003  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10004  // add 4 to displacement.
10005  for (int i=0; i <= lastAddrIndx-2; ++i)
10006    (*MIB).addOperand(*argOpers[i]);
10007  MachineOperand newOp3 = *(argOpers[3]);
10008  if (newOp3.isImm())
10009    newOp3.setImm(newOp3.getImm()+4);
10010  else
10011    newOp3.setOffset(newOp3.getOffset()+4);
10012  (*MIB).addOperand(newOp3);
10013  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10014
10015  // t3/4 are defined later, at the bottom of the loop
10016  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10017  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10018  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10019    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10020  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10021    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10022
10023  // The subsequent operations should be using the destination registers of
10024  //the PHI instructions.
10025  if (invSrc) {
10026    t1 = F->getRegInfo().createVirtualRegister(RC);
10027    t2 = F->getRegInfo().createVirtualRegister(RC);
10028    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10029    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10030  } else {
10031    t1 = dest1Oper.getReg();
10032    t2 = dest2Oper.getReg();
10033  }
10034
10035  int valArgIndx = lastAddrIndx + 1;
10036  assert((argOpers[valArgIndx]->isReg() ||
10037          argOpers[valArgIndx]->isImm()) &&
10038         "invalid operand");
10039  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10040  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10041  if (argOpers[valArgIndx]->isReg())
10042    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10043  else
10044    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10045  if (regOpcL != X86::MOV32rr)
10046    MIB.addReg(t1);
10047  (*MIB).addOperand(*argOpers[valArgIndx]);
10048  assert(argOpers[valArgIndx + 1]->isReg() ==
10049         argOpers[valArgIndx]->isReg());
10050  assert(argOpers[valArgIndx + 1]->isImm() ==
10051         argOpers[valArgIndx]->isImm());
10052  if (argOpers[valArgIndx + 1]->isReg())
10053    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10054  else
10055    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10056  if (regOpcH != X86::MOV32rr)
10057    MIB.addReg(t2);
10058  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10059
10060  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10061  MIB.addReg(t1);
10062  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10063  MIB.addReg(t2);
10064
10065  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10066  MIB.addReg(t5);
10067  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10068  MIB.addReg(t6);
10069
10070  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10071  for (int i=0; i <= lastAddrIndx; ++i)
10072    (*MIB).addOperand(*argOpers[i]);
10073
10074  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10075  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10076                    bInstr->memoperands_end());
10077
10078  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10079  MIB.addReg(X86::EAX);
10080  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10081  MIB.addReg(X86::EDX);
10082
10083  // insert branch
10084  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10085
10086  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10087  return nextMBB;
10088}
10089
10090// private utility function
10091MachineBasicBlock *
10092X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10093                                                      MachineBasicBlock *MBB,
10094                                                      unsigned cmovOpc) const {
10095  // For the atomic min/max operator, we generate
10096  //   thisMBB:
10097  //   newMBB:
10098  //     ld t1 = [min/max.addr]
10099  //     mov t2 = [min/max.val]
10100  //     cmp  t1, t2
10101  //     cmov[cond] t2 = t1
10102  //     mov EAX = t1
10103  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10104  //     bz   newMBB
10105  //     fallthrough -->nextMBB
10106  //
10107  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10108  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10109  MachineFunction::iterator MBBIter = MBB;
10110  ++MBBIter;
10111
10112  /// First build the CFG
10113  MachineFunction *F = MBB->getParent();
10114  MachineBasicBlock *thisMBB = MBB;
10115  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10116  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10117  F->insert(MBBIter, newMBB);
10118  F->insert(MBBIter, nextMBB);
10119
10120  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10121  nextMBB->splice(nextMBB->begin(), thisMBB,
10122                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10123                  thisMBB->end());
10124  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10125
10126  // Update thisMBB to fall through to newMBB
10127  thisMBB->addSuccessor(newMBB);
10128
10129  // newMBB jumps to newMBB and fall through to nextMBB
10130  newMBB->addSuccessor(nextMBB);
10131  newMBB->addSuccessor(newMBB);
10132
10133  DebugLoc dl = mInstr->getDebugLoc();
10134  // Insert instructions into newMBB based on incoming instruction
10135  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10136         "unexpected number of operands");
10137  MachineOperand& destOper = mInstr->getOperand(0);
10138  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10139  int numArgs = mInstr->getNumOperands() - 1;
10140  for (int i=0; i < numArgs; ++i)
10141    argOpers[i] = &mInstr->getOperand(i+1);
10142
10143  // x86 address has 4 operands: base, index, scale, and displacement
10144  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10145  int valArgIndx = lastAddrIndx + 1;
10146
10147  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10148  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10149  for (int i=0; i <= lastAddrIndx; ++i)
10150    (*MIB).addOperand(*argOpers[i]);
10151
10152  // We only support register and immediate values
10153  assert((argOpers[valArgIndx]->isReg() ||
10154          argOpers[valArgIndx]->isImm()) &&
10155         "invalid operand");
10156
10157  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10158  if (argOpers[valArgIndx]->isReg())
10159    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10160  else
10161    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10162  (*MIB).addOperand(*argOpers[valArgIndx]);
10163
10164  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10165  MIB.addReg(t1);
10166
10167  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10168  MIB.addReg(t1);
10169  MIB.addReg(t2);
10170
10171  // Generate movc
10172  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10173  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10174  MIB.addReg(t2);
10175  MIB.addReg(t1);
10176
10177  // Cmp and exchange if none has modified the memory location
10178  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10179  for (int i=0; i <= lastAddrIndx; ++i)
10180    (*MIB).addOperand(*argOpers[i]);
10181  MIB.addReg(t3);
10182  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10183  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10184                    mInstr->memoperands_end());
10185
10186  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10187  MIB.addReg(X86::EAX);
10188
10189  // insert branch
10190  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10191
10192  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10193  return nextMBB;
10194}
10195
10196// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10197// or XMM0_V32I8 in AVX all of this code can be replaced with that
10198// in the .td file.
10199MachineBasicBlock *
10200X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10201                            unsigned numArgs, bool memArg) const {
10202  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10203         "Target must have SSE4.2 or AVX features enabled");
10204
10205  DebugLoc dl = MI->getDebugLoc();
10206  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10207  unsigned Opc;
10208  if (!Subtarget->hasAVX()) {
10209    if (memArg)
10210      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10211    else
10212      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10213  } else {
10214    if (memArg)
10215      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10216    else
10217      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10218  }
10219
10220  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10221  for (unsigned i = 0; i < numArgs; ++i) {
10222    MachineOperand &Op = MI->getOperand(i+1);
10223    if (!(Op.isReg() && Op.isImplicit()))
10224      MIB.addOperand(Op);
10225  }
10226  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10227    .addReg(X86::XMM0);
10228
10229  MI->eraseFromParent();
10230  return BB;
10231}
10232
10233MachineBasicBlock *
10234X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10235  DebugLoc dl = MI->getDebugLoc();
10236  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10237
10238  // Address into RAX/EAX, other two args into ECX, EDX.
10239  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10240  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10241  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10242  for (int i = 0; i < X86::AddrNumOperands; ++i)
10243    MIB.addOperand(MI->getOperand(i));
10244
10245  unsigned ValOps = X86::AddrNumOperands;
10246  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10247    .addReg(MI->getOperand(ValOps).getReg());
10248  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10249    .addReg(MI->getOperand(ValOps+1).getReg());
10250
10251  // The instruction doesn't actually take any operands though.
10252  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10253
10254  MI->eraseFromParent(); // The pseudo is gone now.
10255  return BB;
10256}
10257
10258MachineBasicBlock *
10259X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10260  DebugLoc dl = MI->getDebugLoc();
10261  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10262
10263  // First arg in ECX, the second in EAX.
10264  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10265    .addReg(MI->getOperand(0).getReg());
10266  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10267    .addReg(MI->getOperand(1).getReg());
10268
10269  // The instruction doesn't actually take any operands though.
10270  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10271
10272  MI->eraseFromParent(); // The pseudo is gone now.
10273  return BB;
10274}
10275
10276MachineBasicBlock *
10277X86TargetLowering::EmitVAARG64WithCustomInserter(
10278                   MachineInstr *MI,
10279                   MachineBasicBlock *MBB) const {
10280  // Emit va_arg instruction on X86-64.
10281
10282  // Operands to this pseudo-instruction:
10283  // 0  ) Output        : destination address (reg)
10284  // 1-5) Input         : va_list address (addr, i64mem)
10285  // 6  ) ArgSize       : Size (in bytes) of vararg type
10286  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10287  // 8  ) Align         : Alignment of type
10288  // 9  ) EFLAGS (implicit-def)
10289
10290  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10291  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10292
10293  unsigned DestReg = MI->getOperand(0).getReg();
10294  MachineOperand &Base = MI->getOperand(1);
10295  MachineOperand &Scale = MI->getOperand(2);
10296  MachineOperand &Index = MI->getOperand(3);
10297  MachineOperand &Disp = MI->getOperand(4);
10298  MachineOperand &Segment = MI->getOperand(5);
10299  unsigned ArgSize = MI->getOperand(6).getImm();
10300  unsigned ArgMode = MI->getOperand(7).getImm();
10301  unsigned Align = MI->getOperand(8).getImm();
10302
10303  // Memory Reference
10304  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10305  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10306  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10307
10308  // Machine Information
10309  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10310  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10311  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10312  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10313  DebugLoc DL = MI->getDebugLoc();
10314
10315  // struct va_list {
10316  //   i32   gp_offset
10317  //   i32   fp_offset
10318  //   i64   overflow_area (address)
10319  //   i64   reg_save_area (address)
10320  // }
10321  // sizeof(va_list) = 24
10322  // alignment(va_list) = 8
10323
10324  unsigned TotalNumIntRegs = 6;
10325  unsigned TotalNumXMMRegs = 8;
10326  bool UseGPOffset = (ArgMode == 1);
10327  bool UseFPOffset = (ArgMode == 2);
10328  unsigned MaxOffset = TotalNumIntRegs * 8 +
10329                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10330
10331  /* Align ArgSize to a multiple of 8 */
10332  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10333  bool NeedsAlign = (Align > 8);
10334
10335  MachineBasicBlock *thisMBB = MBB;
10336  MachineBasicBlock *overflowMBB;
10337  MachineBasicBlock *offsetMBB;
10338  MachineBasicBlock *endMBB;
10339
10340  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10341  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10342  unsigned OffsetReg = 0;
10343
10344  if (!UseGPOffset && !UseFPOffset) {
10345    // If we only pull from the overflow region, we don't create a branch.
10346    // We don't need to alter control flow.
10347    OffsetDestReg = 0; // unused
10348    OverflowDestReg = DestReg;
10349
10350    offsetMBB = NULL;
10351    overflowMBB = thisMBB;
10352    endMBB = thisMBB;
10353  } else {
10354    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10355    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10356    // If not, pull from overflow_area. (branch to overflowMBB)
10357    //
10358    //       thisMBB
10359    //         |     .
10360    //         |        .
10361    //     offsetMBB   overflowMBB
10362    //         |        .
10363    //         |     .
10364    //        endMBB
10365
10366    // Registers for the PHI in endMBB
10367    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10368    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10369
10370    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10371    MachineFunction *MF = MBB->getParent();
10372    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10373    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10374    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10375
10376    MachineFunction::iterator MBBIter = MBB;
10377    ++MBBIter;
10378
10379    // Insert the new basic blocks
10380    MF->insert(MBBIter, offsetMBB);
10381    MF->insert(MBBIter, overflowMBB);
10382    MF->insert(MBBIter, endMBB);
10383
10384    // Transfer the remainder of MBB and its successor edges to endMBB.
10385    endMBB->splice(endMBB->begin(), thisMBB,
10386                    llvm::next(MachineBasicBlock::iterator(MI)),
10387                    thisMBB->end());
10388    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10389
10390    // Make offsetMBB and overflowMBB successors of thisMBB
10391    thisMBB->addSuccessor(offsetMBB);
10392    thisMBB->addSuccessor(overflowMBB);
10393
10394    // endMBB is a successor of both offsetMBB and overflowMBB
10395    offsetMBB->addSuccessor(endMBB);
10396    overflowMBB->addSuccessor(endMBB);
10397
10398    // Load the offset value into a register
10399    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10400    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10401      .addOperand(Base)
10402      .addOperand(Scale)
10403      .addOperand(Index)
10404      .addDisp(Disp, UseFPOffset ? 4 : 0)
10405      .addOperand(Segment)
10406      .setMemRefs(MMOBegin, MMOEnd);
10407
10408    // Check if there is enough room left to pull this argument.
10409    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10410      .addReg(OffsetReg)
10411      .addImm(MaxOffset + 8 - ArgSizeA8);
10412
10413    // Branch to "overflowMBB" if offset >= max
10414    // Fall through to "offsetMBB" otherwise
10415    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10416      .addMBB(overflowMBB);
10417  }
10418
10419  // In offsetMBB, emit code to use the reg_save_area.
10420  if (offsetMBB) {
10421    assert(OffsetReg != 0);
10422
10423    // Read the reg_save_area address.
10424    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10425    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10426      .addOperand(Base)
10427      .addOperand(Scale)
10428      .addOperand(Index)
10429      .addDisp(Disp, 16)
10430      .addOperand(Segment)
10431      .setMemRefs(MMOBegin, MMOEnd);
10432
10433    // Zero-extend the offset
10434    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10435      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10436        .addImm(0)
10437        .addReg(OffsetReg)
10438        .addImm(X86::sub_32bit);
10439
10440    // Add the offset to the reg_save_area to get the final address.
10441    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10442      .addReg(OffsetReg64)
10443      .addReg(RegSaveReg);
10444
10445    // Compute the offset for the next argument
10446    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10447    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10448      .addReg(OffsetReg)
10449      .addImm(UseFPOffset ? 16 : 8);
10450
10451    // Store it back into the va_list.
10452    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10453      .addOperand(Base)
10454      .addOperand(Scale)
10455      .addOperand(Index)
10456      .addDisp(Disp, UseFPOffset ? 4 : 0)
10457      .addOperand(Segment)
10458      .addReg(NextOffsetReg)
10459      .setMemRefs(MMOBegin, MMOEnd);
10460
10461    // Jump to endMBB
10462    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10463      .addMBB(endMBB);
10464  }
10465
10466  //
10467  // Emit code to use overflow area
10468  //
10469
10470  // Load the overflow_area address into a register.
10471  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10472  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10473    .addOperand(Base)
10474    .addOperand(Scale)
10475    .addOperand(Index)
10476    .addDisp(Disp, 8)
10477    .addOperand(Segment)
10478    .setMemRefs(MMOBegin, MMOEnd);
10479
10480  // If we need to align it, do so. Otherwise, just copy the address
10481  // to OverflowDestReg.
10482  if (NeedsAlign) {
10483    // Align the overflow address
10484    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10485    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10486
10487    // aligned_addr = (addr + (align-1)) & ~(align-1)
10488    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10489      .addReg(OverflowAddrReg)
10490      .addImm(Align-1);
10491
10492    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10493      .addReg(TmpReg)
10494      .addImm(~(uint64_t)(Align-1));
10495  } else {
10496    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10497      .addReg(OverflowAddrReg);
10498  }
10499
10500  // Compute the next overflow address after this argument.
10501  // (the overflow address should be kept 8-byte aligned)
10502  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10503  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10504    .addReg(OverflowDestReg)
10505    .addImm(ArgSizeA8);
10506
10507  // Store the new overflow address.
10508  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10509    .addOperand(Base)
10510    .addOperand(Scale)
10511    .addOperand(Index)
10512    .addDisp(Disp, 8)
10513    .addOperand(Segment)
10514    .addReg(NextAddrReg)
10515    .setMemRefs(MMOBegin, MMOEnd);
10516
10517  // If we branched, emit the PHI to the front of endMBB.
10518  if (offsetMBB) {
10519    BuildMI(*endMBB, endMBB->begin(), DL,
10520            TII->get(X86::PHI), DestReg)
10521      .addReg(OffsetDestReg).addMBB(offsetMBB)
10522      .addReg(OverflowDestReg).addMBB(overflowMBB);
10523  }
10524
10525  // Erase the pseudo instruction
10526  MI->eraseFromParent();
10527
10528  return endMBB;
10529}
10530
10531MachineBasicBlock *
10532X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10533                                                 MachineInstr *MI,
10534                                                 MachineBasicBlock *MBB) const {
10535  // Emit code to save XMM registers to the stack. The ABI says that the
10536  // number of registers to save is given in %al, so it's theoretically
10537  // possible to do an indirect jump trick to avoid saving all of them,
10538  // however this code takes a simpler approach and just executes all
10539  // of the stores if %al is non-zero. It's less code, and it's probably
10540  // easier on the hardware branch predictor, and stores aren't all that
10541  // expensive anyway.
10542
10543  // Create the new basic blocks. One block contains all the XMM stores,
10544  // and one block is the final destination regardless of whether any
10545  // stores were performed.
10546  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10547  MachineFunction *F = MBB->getParent();
10548  MachineFunction::iterator MBBIter = MBB;
10549  ++MBBIter;
10550  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10551  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10552  F->insert(MBBIter, XMMSaveMBB);
10553  F->insert(MBBIter, EndMBB);
10554
10555  // Transfer the remainder of MBB and its successor edges to EndMBB.
10556  EndMBB->splice(EndMBB->begin(), MBB,
10557                 llvm::next(MachineBasicBlock::iterator(MI)),
10558                 MBB->end());
10559  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10560
10561  // The original block will now fall through to the XMM save block.
10562  MBB->addSuccessor(XMMSaveMBB);
10563  // The XMMSaveMBB will fall through to the end block.
10564  XMMSaveMBB->addSuccessor(EndMBB);
10565
10566  // Now add the instructions.
10567  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10568  DebugLoc DL = MI->getDebugLoc();
10569
10570  unsigned CountReg = MI->getOperand(0).getReg();
10571  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10572  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10573
10574  if (!Subtarget->isTargetWin64()) {
10575    // If %al is 0, branch around the XMM save block.
10576    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10577    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10578    MBB->addSuccessor(EndMBB);
10579  }
10580
10581  // In the XMM save block, save all the XMM argument registers.
10582  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10583    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10584    MachineMemOperand *MMO =
10585      F->getMachineMemOperand(
10586          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10587        MachineMemOperand::MOStore,
10588        /*Size=*/16, /*Align=*/16);
10589    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10590      .addFrameIndex(RegSaveFrameIndex)
10591      .addImm(/*Scale=*/1)
10592      .addReg(/*IndexReg=*/0)
10593      .addImm(/*Disp=*/Offset)
10594      .addReg(/*Segment=*/0)
10595      .addReg(MI->getOperand(i).getReg())
10596      .addMemOperand(MMO);
10597  }
10598
10599  MI->eraseFromParent();   // The pseudo instruction is gone now.
10600
10601  return EndMBB;
10602}
10603
10604MachineBasicBlock *
10605X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10606                                     MachineBasicBlock *BB) const {
10607  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10608  DebugLoc DL = MI->getDebugLoc();
10609
10610  // To "insert" a SELECT_CC instruction, we actually have to insert the
10611  // diamond control-flow pattern.  The incoming instruction knows the
10612  // destination vreg to set, the condition code register to branch on, the
10613  // true/false values to select between, and a branch opcode to use.
10614  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10615  MachineFunction::iterator It = BB;
10616  ++It;
10617
10618  //  thisMBB:
10619  //  ...
10620  //   TrueVal = ...
10621  //   cmpTY ccX, r1, r2
10622  //   bCC copy1MBB
10623  //   fallthrough --> copy0MBB
10624  MachineBasicBlock *thisMBB = BB;
10625  MachineFunction *F = BB->getParent();
10626  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10627  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10628  F->insert(It, copy0MBB);
10629  F->insert(It, sinkMBB);
10630
10631  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10632  // live into the sink and copy blocks.
10633  const MachineFunction *MF = BB->getParent();
10634  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10635  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10636
10637  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10638    const MachineOperand &MO = MI->getOperand(I);
10639    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10640    unsigned Reg = MO.getReg();
10641    if (Reg != X86::EFLAGS) continue;
10642    copy0MBB->addLiveIn(Reg);
10643    sinkMBB->addLiveIn(Reg);
10644  }
10645
10646  // Transfer the remainder of BB and its successor edges to sinkMBB.
10647  sinkMBB->splice(sinkMBB->begin(), BB,
10648                  llvm::next(MachineBasicBlock::iterator(MI)),
10649                  BB->end());
10650  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10651
10652  // Add the true and fallthrough blocks as its successors.
10653  BB->addSuccessor(copy0MBB);
10654  BB->addSuccessor(sinkMBB);
10655
10656  // Create the conditional branch instruction.
10657  unsigned Opc =
10658    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10659  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10660
10661  //  copy0MBB:
10662  //   %FalseValue = ...
10663  //   # fallthrough to sinkMBB
10664  copy0MBB->addSuccessor(sinkMBB);
10665
10666  //  sinkMBB:
10667  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10668  //  ...
10669  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10670          TII->get(X86::PHI), MI->getOperand(0).getReg())
10671    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10672    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10673
10674  MI->eraseFromParent();   // The pseudo instruction is gone now.
10675  return sinkMBB;
10676}
10677
10678MachineBasicBlock *
10679X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10680                                          MachineBasicBlock *BB) const {
10681  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10682  DebugLoc DL = MI->getDebugLoc();
10683
10684  assert(!Subtarget->isTargetEnvMacho());
10685
10686  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10687  // non-trivial part is impdef of ESP.
10688
10689  if (Subtarget->isTargetWin64()) {
10690    if (Subtarget->isTargetCygMing()) {
10691      // ___chkstk(Mingw64):
10692      // Clobbers R10, R11, RAX and EFLAGS.
10693      // Updates RSP.
10694      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10695        .addExternalSymbol("___chkstk")
10696        .addReg(X86::RAX, RegState::Implicit)
10697        .addReg(X86::RSP, RegState::Implicit)
10698        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10699        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10700        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10701    } else {
10702      // __chkstk(MSVCRT): does not update stack pointer.
10703      // Clobbers R10, R11 and EFLAGS.
10704      // FIXME: RAX(allocated size) might be reused and not killed.
10705      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10706        .addExternalSymbol("__chkstk")
10707        .addReg(X86::RAX, RegState::Implicit)
10708        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10709      // RAX has the offset to subtracted from RSP.
10710      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10711        .addReg(X86::RSP)
10712        .addReg(X86::RAX);
10713    }
10714  } else {
10715    const char *StackProbeSymbol =
10716      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10717
10718    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10719      .addExternalSymbol(StackProbeSymbol)
10720      .addReg(X86::EAX, RegState::Implicit)
10721      .addReg(X86::ESP, RegState::Implicit)
10722      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10723      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10724      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10725  }
10726
10727  MI->eraseFromParent();   // The pseudo instruction is gone now.
10728  return BB;
10729}
10730
10731MachineBasicBlock *
10732X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10733                                      MachineBasicBlock *BB) const {
10734  // This is pretty easy.  We're taking the value that we received from
10735  // our load from the relocation, sticking it in either RDI (x86-64)
10736  // or EAX and doing an indirect call.  The return value will then
10737  // be in the normal return register.
10738  const X86InstrInfo *TII
10739    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10740  DebugLoc DL = MI->getDebugLoc();
10741  MachineFunction *F = BB->getParent();
10742
10743  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10744  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10745
10746  if (Subtarget->is64Bit()) {
10747    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10748                                      TII->get(X86::MOV64rm), X86::RDI)
10749    .addReg(X86::RIP)
10750    .addImm(0).addReg(0)
10751    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10752                      MI->getOperand(3).getTargetFlags())
10753    .addReg(0);
10754    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10755    addDirectMem(MIB, X86::RDI);
10756  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10757    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10758                                      TII->get(X86::MOV32rm), X86::EAX)
10759    .addReg(0)
10760    .addImm(0).addReg(0)
10761    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10762                      MI->getOperand(3).getTargetFlags())
10763    .addReg(0);
10764    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10765    addDirectMem(MIB, X86::EAX);
10766  } else {
10767    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10768                                      TII->get(X86::MOV32rm), X86::EAX)
10769    .addReg(TII->getGlobalBaseReg(F))
10770    .addImm(0).addReg(0)
10771    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10772                      MI->getOperand(3).getTargetFlags())
10773    .addReg(0);
10774    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10775    addDirectMem(MIB, X86::EAX);
10776  }
10777
10778  MI->eraseFromParent(); // The pseudo instruction is gone now.
10779  return BB;
10780}
10781
10782MachineBasicBlock *
10783X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10784                                               MachineBasicBlock *BB) const {
10785  switch (MI->getOpcode()) {
10786  default: assert(false && "Unexpected instr type to insert");
10787  case X86::TAILJMPd64:
10788  case X86::TAILJMPr64:
10789  case X86::TAILJMPm64:
10790    assert(!"TAILJMP64 would not be touched here.");
10791  case X86::TCRETURNdi64:
10792  case X86::TCRETURNri64:
10793  case X86::TCRETURNmi64:
10794    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10795    // On AMD64, additional defs should be added before register allocation.
10796    if (!Subtarget->isTargetWin64()) {
10797      MI->addRegisterDefined(X86::RSI);
10798      MI->addRegisterDefined(X86::RDI);
10799      MI->addRegisterDefined(X86::XMM6);
10800      MI->addRegisterDefined(X86::XMM7);
10801      MI->addRegisterDefined(X86::XMM8);
10802      MI->addRegisterDefined(X86::XMM9);
10803      MI->addRegisterDefined(X86::XMM10);
10804      MI->addRegisterDefined(X86::XMM11);
10805      MI->addRegisterDefined(X86::XMM12);
10806      MI->addRegisterDefined(X86::XMM13);
10807      MI->addRegisterDefined(X86::XMM14);
10808      MI->addRegisterDefined(X86::XMM15);
10809    }
10810    return BB;
10811  case X86::WIN_ALLOCA:
10812    return EmitLoweredWinAlloca(MI, BB);
10813  case X86::TLSCall_32:
10814  case X86::TLSCall_64:
10815    return EmitLoweredTLSCall(MI, BB);
10816  case X86::CMOV_GR8:
10817  case X86::CMOV_FR32:
10818  case X86::CMOV_FR64:
10819  case X86::CMOV_V4F32:
10820  case X86::CMOV_V2F64:
10821  case X86::CMOV_V2I64:
10822  case X86::CMOV_GR16:
10823  case X86::CMOV_GR32:
10824  case X86::CMOV_RFP32:
10825  case X86::CMOV_RFP64:
10826  case X86::CMOV_RFP80:
10827    return EmitLoweredSelect(MI, BB);
10828
10829  case X86::FP32_TO_INT16_IN_MEM:
10830  case X86::FP32_TO_INT32_IN_MEM:
10831  case X86::FP32_TO_INT64_IN_MEM:
10832  case X86::FP64_TO_INT16_IN_MEM:
10833  case X86::FP64_TO_INT32_IN_MEM:
10834  case X86::FP64_TO_INT64_IN_MEM:
10835  case X86::FP80_TO_INT16_IN_MEM:
10836  case X86::FP80_TO_INT32_IN_MEM:
10837  case X86::FP80_TO_INT64_IN_MEM: {
10838    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10839    DebugLoc DL = MI->getDebugLoc();
10840
10841    // Change the floating point control register to use "round towards zero"
10842    // mode when truncating to an integer value.
10843    MachineFunction *F = BB->getParent();
10844    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10845    addFrameReference(BuildMI(*BB, MI, DL,
10846                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10847
10848    // Load the old value of the high byte of the control word...
10849    unsigned OldCW =
10850      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10851    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10852                      CWFrameIdx);
10853
10854    // Set the high part to be round to zero...
10855    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10856      .addImm(0xC7F);
10857
10858    // Reload the modified control word now...
10859    addFrameReference(BuildMI(*BB, MI, DL,
10860                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10861
10862    // Restore the memory image of control word to original value
10863    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10864      .addReg(OldCW);
10865
10866    // Get the X86 opcode to use.
10867    unsigned Opc;
10868    switch (MI->getOpcode()) {
10869    default: llvm_unreachable("illegal opcode!");
10870    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10871    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10872    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10873    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10874    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10875    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10876    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10877    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10878    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10879    }
10880
10881    X86AddressMode AM;
10882    MachineOperand &Op = MI->getOperand(0);
10883    if (Op.isReg()) {
10884      AM.BaseType = X86AddressMode::RegBase;
10885      AM.Base.Reg = Op.getReg();
10886    } else {
10887      AM.BaseType = X86AddressMode::FrameIndexBase;
10888      AM.Base.FrameIndex = Op.getIndex();
10889    }
10890    Op = MI->getOperand(1);
10891    if (Op.isImm())
10892      AM.Scale = Op.getImm();
10893    Op = MI->getOperand(2);
10894    if (Op.isImm())
10895      AM.IndexReg = Op.getImm();
10896    Op = MI->getOperand(3);
10897    if (Op.isGlobal()) {
10898      AM.GV = Op.getGlobal();
10899    } else {
10900      AM.Disp = Op.getImm();
10901    }
10902    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10903                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10904
10905    // Reload the original control word now.
10906    addFrameReference(BuildMI(*BB, MI, DL,
10907                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10908
10909    MI->eraseFromParent();   // The pseudo instruction is gone now.
10910    return BB;
10911  }
10912    // String/text processing lowering.
10913  case X86::PCMPISTRM128REG:
10914  case X86::VPCMPISTRM128REG:
10915    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10916  case X86::PCMPISTRM128MEM:
10917  case X86::VPCMPISTRM128MEM:
10918    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10919  case X86::PCMPESTRM128REG:
10920  case X86::VPCMPESTRM128REG:
10921    return EmitPCMP(MI, BB, 5, false /* in mem */);
10922  case X86::PCMPESTRM128MEM:
10923  case X86::VPCMPESTRM128MEM:
10924    return EmitPCMP(MI, BB, 5, true /* in mem */);
10925
10926    // Thread synchronization.
10927  case X86::MONITOR:
10928    return EmitMonitor(MI, BB);
10929  case X86::MWAIT:
10930    return EmitMwait(MI, BB);
10931
10932    // Atomic Lowering.
10933  case X86::ATOMAND32:
10934    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10935                                               X86::AND32ri, X86::MOV32rm,
10936                                               X86::LCMPXCHG32,
10937                                               X86::NOT32r, X86::EAX,
10938                                               X86::GR32RegisterClass);
10939  case X86::ATOMOR32:
10940    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10941                                               X86::OR32ri, X86::MOV32rm,
10942                                               X86::LCMPXCHG32,
10943                                               X86::NOT32r, X86::EAX,
10944                                               X86::GR32RegisterClass);
10945  case X86::ATOMXOR32:
10946    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10947                                               X86::XOR32ri, X86::MOV32rm,
10948                                               X86::LCMPXCHG32,
10949                                               X86::NOT32r, X86::EAX,
10950                                               X86::GR32RegisterClass);
10951  case X86::ATOMNAND32:
10952    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10953                                               X86::AND32ri, X86::MOV32rm,
10954                                               X86::LCMPXCHG32,
10955                                               X86::NOT32r, X86::EAX,
10956                                               X86::GR32RegisterClass, true);
10957  case X86::ATOMMIN32:
10958    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10959  case X86::ATOMMAX32:
10960    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10961  case X86::ATOMUMIN32:
10962    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10963  case X86::ATOMUMAX32:
10964    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10965
10966  case X86::ATOMAND16:
10967    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10968                                               X86::AND16ri, X86::MOV16rm,
10969                                               X86::LCMPXCHG16,
10970                                               X86::NOT16r, X86::AX,
10971                                               X86::GR16RegisterClass);
10972  case X86::ATOMOR16:
10973    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10974                                               X86::OR16ri, X86::MOV16rm,
10975                                               X86::LCMPXCHG16,
10976                                               X86::NOT16r, X86::AX,
10977                                               X86::GR16RegisterClass);
10978  case X86::ATOMXOR16:
10979    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10980                                               X86::XOR16ri, X86::MOV16rm,
10981                                               X86::LCMPXCHG16,
10982                                               X86::NOT16r, X86::AX,
10983                                               X86::GR16RegisterClass);
10984  case X86::ATOMNAND16:
10985    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10986                                               X86::AND16ri, X86::MOV16rm,
10987                                               X86::LCMPXCHG16,
10988                                               X86::NOT16r, X86::AX,
10989                                               X86::GR16RegisterClass, true);
10990  case X86::ATOMMIN16:
10991    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10992  case X86::ATOMMAX16:
10993    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10994  case X86::ATOMUMIN16:
10995    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10996  case X86::ATOMUMAX16:
10997    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10998
10999  case X86::ATOMAND8:
11000    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11001                                               X86::AND8ri, X86::MOV8rm,
11002                                               X86::LCMPXCHG8,
11003                                               X86::NOT8r, X86::AL,
11004                                               X86::GR8RegisterClass);
11005  case X86::ATOMOR8:
11006    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11007                                               X86::OR8ri, X86::MOV8rm,
11008                                               X86::LCMPXCHG8,
11009                                               X86::NOT8r, X86::AL,
11010                                               X86::GR8RegisterClass);
11011  case X86::ATOMXOR8:
11012    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11013                                               X86::XOR8ri, X86::MOV8rm,
11014                                               X86::LCMPXCHG8,
11015                                               X86::NOT8r, X86::AL,
11016                                               X86::GR8RegisterClass);
11017  case X86::ATOMNAND8:
11018    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11019                                               X86::AND8ri, X86::MOV8rm,
11020                                               X86::LCMPXCHG8,
11021                                               X86::NOT8r, X86::AL,
11022                                               X86::GR8RegisterClass, true);
11023  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11024  // This group is for 64-bit host.
11025  case X86::ATOMAND64:
11026    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11027                                               X86::AND64ri32, X86::MOV64rm,
11028                                               X86::LCMPXCHG64,
11029                                               X86::NOT64r, X86::RAX,
11030                                               X86::GR64RegisterClass);
11031  case X86::ATOMOR64:
11032    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11033                                               X86::OR64ri32, X86::MOV64rm,
11034                                               X86::LCMPXCHG64,
11035                                               X86::NOT64r, X86::RAX,
11036                                               X86::GR64RegisterClass);
11037  case X86::ATOMXOR64:
11038    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11039                                               X86::XOR64ri32, X86::MOV64rm,
11040                                               X86::LCMPXCHG64,
11041                                               X86::NOT64r, X86::RAX,
11042                                               X86::GR64RegisterClass);
11043  case X86::ATOMNAND64:
11044    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11045                                               X86::AND64ri32, X86::MOV64rm,
11046                                               X86::LCMPXCHG64,
11047                                               X86::NOT64r, X86::RAX,
11048                                               X86::GR64RegisterClass, true);
11049  case X86::ATOMMIN64:
11050    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11051  case X86::ATOMMAX64:
11052    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11053  case X86::ATOMUMIN64:
11054    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11055  case X86::ATOMUMAX64:
11056    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11057
11058  // This group does 64-bit operations on a 32-bit host.
11059  case X86::ATOMAND6432:
11060    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11061                                               X86::AND32rr, X86::AND32rr,
11062                                               X86::AND32ri, X86::AND32ri,
11063                                               false);
11064  case X86::ATOMOR6432:
11065    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11066                                               X86::OR32rr, X86::OR32rr,
11067                                               X86::OR32ri, X86::OR32ri,
11068                                               false);
11069  case X86::ATOMXOR6432:
11070    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11071                                               X86::XOR32rr, X86::XOR32rr,
11072                                               X86::XOR32ri, X86::XOR32ri,
11073                                               false);
11074  case X86::ATOMNAND6432:
11075    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11076                                               X86::AND32rr, X86::AND32rr,
11077                                               X86::AND32ri, X86::AND32ri,
11078                                               true);
11079  case X86::ATOMADD6432:
11080    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11081                                               X86::ADD32rr, X86::ADC32rr,
11082                                               X86::ADD32ri, X86::ADC32ri,
11083                                               false);
11084  case X86::ATOMSUB6432:
11085    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11086                                               X86::SUB32rr, X86::SBB32rr,
11087                                               X86::SUB32ri, X86::SBB32ri,
11088                                               false);
11089  case X86::ATOMSWAP6432:
11090    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11091                                               X86::MOV32rr, X86::MOV32rr,
11092                                               X86::MOV32ri, X86::MOV32ri,
11093                                               false);
11094  case X86::VASTART_SAVE_XMM_REGS:
11095    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11096
11097  case X86::VAARG_64:
11098    return EmitVAARG64WithCustomInserter(MI, BB);
11099  }
11100}
11101
11102//===----------------------------------------------------------------------===//
11103//                           X86 Optimization Hooks
11104//===----------------------------------------------------------------------===//
11105
11106void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11107                                                       const APInt &Mask,
11108                                                       APInt &KnownZero,
11109                                                       APInt &KnownOne,
11110                                                       const SelectionDAG &DAG,
11111                                                       unsigned Depth) const {
11112  unsigned Opc = Op.getOpcode();
11113  assert((Opc >= ISD::BUILTIN_OP_END ||
11114          Opc == ISD::INTRINSIC_WO_CHAIN ||
11115          Opc == ISD::INTRINSIC_W_CHAIN ||
11116          Opc == ISD::INTRINSIC_VOID) &&
11117         "Should use MaskedValueIsZero if you don't know whether Op"
11118         " is a target node!");
11119
11120  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11121  switch (Opc) {
11122  default: break;
11123  case X86ISD::ADD:
11124  case X86ISD::SUB:
11125  case X86ISD::ADC:
11126  case X86ISD::SBB:
11127  case X86ISD::SMUL:
11128  case X86ISD::UMUL:
11129  case X86ISD::INC:
11130  case X86ISD::DEC:
11131  case X86ISD::OR:
11132  case X86ISD::XOR:
11133  case X86ISD::AND:
11134    // These nodes' second result is a boolean.
11135    if (Op.getResNo() == 0)
11136      break;
11137    // Fallthrough
11138  case X86ISD::SETCC:
11139    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11140                                       Mask.getBitWidth() - 1);
11141    break;
11142  }
11143}
11144
11145unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11146                                                         unsigned Depth) const {
11147  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11148  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11149    return Op.getValueType().getScalarType().getSizeInBits();
11150
11151  // Fallback case.
11152  return 1;
11153}
11154
11155/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11156/// node is a GlobalAddress + offset.
11157bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11158                                       const GlobalValue* &GA,
11159                                       int64_t &Offset) const {
11160  if (N->getOpcode() == X86ISD::Wrapper) {
11161    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11162      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11163      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11164      return true;
11165    }
11166  }
11167  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11168}
11169
11170/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11171static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11172                                        TargetLowering::DAGCombinerInfo &DCI) {
11173  DebugLoc dl = N->getDebugLoc();
11174  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11175  SDValue V1 = SVOp->getOperand(0);
11176  SDValue V2 = SVOp->getOperand(1);
11177  EVT VT = SVOp->getValueType(0);
11178
11179  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11180      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11181    //
11182    //                   0,0,0,...
11183    //                      |
11184    //    V      UNDEF    BUILD_VECTOR    UNDEF
11185    //     \      /           \           /
11186    //  CONCAT_VECTOR         CONCAT_VECTOR
11187    //         \                  /
11188    //          \                /
11189    //          RESULT: V + zero extended
11190    //
11191    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11192        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11193        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11194      return SDValue();
11195
11196    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11197      return SDValue();
11198
11199    // To match the shuffle mask, the first half of the mask should
11200    // be exactly the first vector, and all the rest a splat with the
11201    // first element of the second one.
11202    int NumElems = VT.getVectorNumElements();
11203    for (int i = 0; i < NumElems/2; ++i)
11204      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11205          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11206        return SDValue();
11207
11208    // Emit a zeroed vector and insert the desired subvector on its
11209    // first half.
11210    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11211    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11212                         DAG.getConstant(0, MVT::i32), DAG, dl);
11213    return DCI.CombineTo(N, InsV);
11214  }
11215
11216  return SDValue();
11217}
11218
11219/// PerformShuffleCombine - Performs several different shuffle combines.
11220static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11221                                     TargetLowering::DAGCombinerInfo &DCI) {
11222  DebugLoc dl = N->getDebugLoc();
11223  EVT VT = N->getValueType(0);
11224
11225  // Don't create instructions with illegal types after legalize types has run.
11226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11227  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11228    return SDValue();
11229
11230  // Only handle pure VECTOR_SHUFFLE nodes.
11231  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11232    return PerformShuffleCombine256(N, DAG, DCI);
11233
11234  // Only handle 128 wide vector from here on.
11235  if (VT.getSizeInBits() != 128)
11236    return SDValue();
11237
11238  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11239  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11240  // consecutive, non-overlapping, and in the right order.
11241  SmallVector<SDValue, 16> Elts;
11242  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11243    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11244
11245  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11246}
11247
11248/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11249/// generation and convert it from being a bunch of shuffles and extracts
11250/// to a simple store and scalar loads to extract the elements.
11251static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11252                                                const TargetLowering &TLI) {
11253  SDValue InputVector = N->getOperand(0);
11254
11255  // Only operate on vectors of 4 elements, where the alternative shuffling
11256  // gets to be more expensive.
11257  if (InputVector.getValueType() != MVT::v4i32)
11258    return SDValue();
11259
11260  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11261  // single use which is a sign-extend or zero-extend, and all elements are
11262  // used.
11263  SmallVector<SDNode *, 4> Uses;
11264  unsigned ExtractedElements = 0;
11265  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11266       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11267    if (UI.getUse().getResNo() != InputVector.getResNo())
11268      return SDValue();
11269
11270    SDNode *Extract = *UI;
11271    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11272      return SDValue();
11273
11274    if (Extract->getValueType(0) != MVT::i32)
11275      return SDValue();
11276    if (!Extract->hasOneUse())
11277      return SDValue();
11278    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11279        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11280      return SDValue();
11281    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11282      return SDValue();
11283
11284    // Record which element was extracted.
11285    ExtractedElements |=
11286      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11287
11288    Uses.push_back(Extract);
11289  }
11290
11291  // If not all the elements were used, this may not be worthwhile.
11292  if (ExtractedElements != 15)
11293    return SDValue();
11294
11295  // Ok, we've now decided to do the transformation.
11296  DebugLoc dl = InputVector.getDebugLoc();
11297
11298  // Store the value to a temporary stack slot.
11299  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11300  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11301                            MachinePointerInfo(), false, false, 0);
11302
11303  // Replace each use (extract) with a load of the appropriate element.
11304  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11305       UE = Uses.end(); UI != UE; ++UI) {
11306    SDNode *Extract = *UI;
11307
11308    // cOMpute the element's address.
11309    SDValue Idx = Extract->getOperand(1);
11310    unsigned EltSize =
11311        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11312    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11313    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11314
11315    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11316                                     StackPtr, OffsetVal);
11317
11318    // Load the scalar.
11319    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11320                                     ScalarAddr, MachinePointerInfo(),
11321                                     false, false, 0);
11322
11323    // Replace the exact with the load.
11324    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11325  }
11326
11327  // The replacement was made in place; don't return anything.
11328  return SDValue();
11329}
11330
11331/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11332static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11333                                    const X86Subtarget *Subtarget) {
11334  DebugLoc DL = N->getDebugLoc();
11335  SDValue Cond = N->getOperand(0);
11336  // Get the LHS/RHS of the select.
11337  SDValue LHS = N->getOperand(1);
11338  SDValue RHS = N->getOperand(2);
11339
11340  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11341  // instructions match the semantics of the common C idiom x<y?x:y but not
11342  // x<=y?x:y, because of how they handle negative zero (which can be
11343  // ignored in unsafe-math mode).
11344  if (Subtarget->hasSSE2() &&
11345      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11346      Cond.getOpcode() == ISD::SETCC) {
11347    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11348
11349    unsigned Opcode = 0;
11350    // Check for x CC y ? x : y.
11351    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11352        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11353      switch (CC) {
11354      default: break;
11355      case ISD::SETULT:
11356        // Converting this to a min would handle NaNs incorrectly, and swapping
11357        // the operands would cause it to handle comparisons between positive
11358        // and negative zero incorrectly.
11359        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11360          if (!UnsafeFPMath &&
11361              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11362            break;
11363          std::swap(LHS, RHS);
11364        }
11365        Opcode = X86ISD::FMIN;
11366        break;
11367      case ISD::SETOLE:
11368        // Converting this to a min would handle comparisons between positive
11369        // and negative zero incorrectly.
11370        if (!UnsafeFPMath &&
11371            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11372          break;
11373        Opcode = X86ISD::FMIN;
11374        break;
11375      case ISD::SETULE:
11376        // Converting this to a min would handle both negative zeros and NaNs
11377        // incorrectly, but we can swap the operands to fix both.
11378        std::swap(LHS, RHS);
11379      case ISD::SETOLT:
11380      case ISD::SETLT:
11381      case ISD::SETLE:
11382        Opcode = X86ISD::FMIN;
11383        break;
11384
11385      case ISD::SETOGE:
11386        // Converting this to a max would handle comparisons between positive
11387        // and negative zero incorrectly.
11388        if (!UnsafeFPMath &&
11389            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11390          break;
11391        Opcode = X86ISD::FMAX;
11392        break;
11393      case ISD::SETUGT:
11394        // Converting this to a max would handle NaNs incorrectly, and swapping
11395        // the operands would cause it to handle comparisons between positive
11396        // and negative zero incorrectly.
11397        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11398          if (!UnsafeFPMath &&
11399              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11400            break;
11401          std::swap(LHS, RHS);
11402        }
11403        Opcode = X86ISD::FMAX;
11404        break;
11405      case ISD::SETUGE:
11406        // Converting this to a max would handle both negative zeros and NaNs
11407        // incorrectly, but we can swap the operands to fix both.
11408        std::swap(LHS, RHS);
11409      case ISD::SETOGT:
11410      case ISD::SETGT:
11411      case ISD::SETGE:
11412        Opcode = X86ISD::FMAX;
11413        break;
11414      }
11415    // Check for x CC y ? y : x -- a min/max with reversed arms.
11416    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11417               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11418      switch (CC) {
11419      default: break;
11420      case ISD::SETOGE:
11421        // Converting this to a min would handle comparisons between positive
11422        // and negative zero incorrectly, and swapping the operands would
11423        // cause it to handle NaNs incorrectly.
11424        if (!UnsafeFPMath &&
11425            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11426          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11427            break;
11428          std::swap(LHS, RHS);
11429        }
11430        Opcode = X86ISD::FMIN;
11431        break;
11432      case ISD::SETUGT:
11433        // Converting this to a min would handle NaNs incorrectly.
11434        if (!UnsafeFPMath &&
11435            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11436          break;
11437        Opcode = X86ISD::FMIN;
11438        break;
11439      case ISD::SETUGE:
11440        // Converting this to a min would handle both negative zeros and NaNs
11441        // incorrectly, but we can swap the operands to fix both.
11442        std::swap(LHS, RHS);
11443      case ISD::SETOGT:
11444      case ISD::SETGT:
11445      case ISD::SETGE:
11446        Opcode = X86ISD::FMIN;
11447        break;
11448
11449      case ISD::SETULT:
11450        // Converting this to a max would handle NaNs incorrectly.
11451        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11452          break;
11453        Opcode = X86ISD::FMAX;
11454        break;
11455      case ISD::SETOLE:
11456        // Converting this to a max would handle comparisons between positive
11457        // and negative zero incorrectly, and swapping the operands would
11458        // cause it to handle NaNs incorrectly.
11459        if (!UnsafeFPMath &&
11460            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11461          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11462            break;
11463          std::swap(LHS, RHS);
11464        }
11465        Opcode = X86ISD::FMAX;
11466        break;
11467      case ISD::SETULE:
11468        // Converting this to a max would handle both negative zeros and NaNs
11469        // incorrectly, but we can swap the operands to fix both.
11470        std::swap(LHS, RHS);
11471      case ISD::SETOLT:
11472      case ISD::SETLT:
11473      case ISD::SETLE:
11474        Opcode = X86ISD::FMAX;
11475        break;
11476      }
11477    }
11478
11479    if (Opcode)
11480      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11481  }
11482
11483  // If this is a select between two integer constants, try to do some
11484  // optimizations.
11485  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11486    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11487      // Don't do this for crazy integer types.
11488      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11489        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11490        // so that TrueC (the true value) is larger than FalseC.
11491        bool NeedsCondInvert = false;
11492
11493        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11494            // Efficiently invertible.
11495            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11496             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11497              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11498          NeedsCondInvert = true;
11499          std::swap(TrueC, FalseC);
11500        }
11501
11502        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11503        if (FalseC->getAPIntValue() == 0 &&
11504            TrueC->getAPIntValue().isPowerOf2()) {
11505          if (NeedsCondInvert) // Invert the condition if needed.
11506            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11507                               DAG.getConstant(1, Cond.getValueType()));
11508
11509          // Zero extend the condition if needed.
11510          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11511
11512          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11513          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11514                             DAG.getConstant(ShAmt, MVT::i8));
11515        }
11516
11517        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11518        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11519          if (NeedsCondInvert) // Invert the condition if needed.
11520            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11521                               DAG.getConstant(1, Cond.getValueType()));
11522
11523          // Zero extend the condition if needed.
11524          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11525                             FalseC->getValueType(0), Cond);
11526          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11527                             SDValue(FalseC, 0));
11528        }
11529
11530        // Optimize cases that will turn into an LEA instruction.  This requires
11531        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11532        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11533          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11534          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11535
11536          bool isFastMultiplier = false;
11537          if (Diff < 10) {
11538            switch ((unsigned char)Diff) {
11539              default: break;
11540              case 1:  // result = add base, cond
11541              case 2:  // result = lea base(    , cond*2)
11542              case 3:  // result = lea base(cond, cond*2)
11543              case 4:  // result = lea base(    , cond*4)
11544              case 5:  // result = lea base(cond, cond*4)
11545              case 8:  // result = lea base(    , cond*8)
11546              case 9:  // result = lea base(cond, cond*8)
11547                isFastMultiplier = true;
11548                break;
11549            }
11550          }
11551
11552          if (isFastMultiplier) {
11553            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11554            if (NeedsCondInvert) // Invert the condition if needed.
11555              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11556                                 DAG.getConstant(1, Cond.getValueType()));
11557
11558            // Zero extend the condition if needed.
11559            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11560                               Cond);
11561            // Scale the condition by the difference.
11562            if (Diff != 1)
11563              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11564                                 DAG.getConstant(Diff, Cond.getValueType()));
11565
11566            // Add the base if non-zero.
11567            if (FalseC->getAPIntValue() != 0)
11568              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11569                                 SDValue(FalseC, 0));
11570            return Cond;
11571          }
11572        }
11573      }
11574  }
11575
11576  return SDValue();
11577}
11578
11579/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11580static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11581                                  TargetLowering::DAGCombinerInfo &DCI) {
11582  DebugLoc DL = N->getDebugLoc();
11583
11584  // If the flag operand isn't dead, don't touch this CMOV.
11585  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11586    return SDValue();
11587
11588  SDValue FalseOp = N->getOperand(0);
11589  SDValue TrueOp = N->getOperand(1);
11590  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11591  SDValue Cond = N->getOperand(3);
11592  if (CC == X86::COND_E || CC == X86::COND_NE) {
11593    switch (Cond.getOpcode()) {
11594    default: break;
11595    case X86ISD::BSR:
11596    case X86ISD::BSF:
11597      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11598      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11599        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11600    }
11601  }
11602
11603  // If this is a select between two integer constants, try to do some
11604  // optimizations.  Note that the operands are ordered the opposite of SELECT
11605  // operands.
11606  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11607    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11608      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11609      // larger than FalseC (the false value).
11610      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11611        CC = X86::GetOppositeBranchCondition(CC);
11612        std::swap(TrueC, FalseC);
11613      }
11614
11615      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11616      // This is efficient for any integer data type (including i8/i16) and
11617      // shift amount.
11618      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11619        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11620                           DAG.getConstant(CC, MVT::i8), Cond);
11621
11622        // Zero extend the condition if needed.
11623        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11624
11625        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11626        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11627                           DAG.getConstant(ShAmt, MVT::i8));
11628        if (N->getNumValues() == 2)  // Dead flag value?
11629          return DCI.CombineTo(N, Cond, SDValue());
11630        return Cond;
11631      }
11632
11633      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11634      // for any integer data type, including i8/i16.
11635      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11636        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11637                           DAG.getConstant(CC, MVT::i8), Cond);
11638
11639        // Zero extend the condition if needed.
11640        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11641                           FalseC->getValueType(0), Cond);
11642        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11643                           SDValue(FalseC, 0));
11644
11645        if (N->getNumValues() == 2)  // Dead flag value?
11646          return DCI.CombineTo(N, Cond, SDValue());
11647        return Cond;
11648      }
11649
11650      // Optimize cases that will turn into an LEA instruction.  This requires
11651      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11652      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11653        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11654        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11655
11656        bool isFastMultiplier = false;
11657        if (Diff < 10) {
11658          switch ((unsigned char)Diff) {
11659          default: break;
11660          case 1:  // result = add base, cond
11661          case 2:  // result = lea base(    , cond*2)
11662          case 3:  // result = lea base(cond, cond*2)
11663          case 4:  // result = lea base(    , cond*4)
11664          case 5:  // result = lea base(cond, cond*4)
11665          case 8:  // result = lea base(    , cond*8)
11666          case 9:  // result = lea base(cond, cond*8)
11667            isFastMultiplier = true;
11668            break;
11669          }
11670        }
11671
11672        if (isFastMultiplier) {
11673          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11674          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11675                             DAG.getConstant(CC, MVT::i8), Cond);
11676          // Zero extend the condition if needed.
11677          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11678                             Cond);
11679          // Scale the condition by the difference.
11680          if (Diff != 1)
11681            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11682                               DAG.getConstant(Diff, Cond.getValueType()));
11683
11684          // Add the base if non-zero.
11685          if (FalseC->getAPIntValue() != 0)
11686            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11687                               SDValue(FalseC, 0));
11688          if (N->getNumValues() == 2)  // Dead flag value?
11689            return DCI.CombineTo(N, Cond, SDValue());
11690          return Cond;
11691        }
11692      }
11693    }
11694  }
11695  return SDValue();
11696}
11697
11698
11699/// PerformMulCombine - Optimize a single multiply with constant into two
11700/// in order to implement it with two cheaper instructions, e.g.
11701/// LEA + SHL, LEA + LEA.
11702static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11703                                 TargetLowering::DAGCombinerInfo &DCI) {
11704  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11705    return SDValue();
11706
11707  EVT VT = N->getValueType(0);
11708  if (VT != MVT::i64)
11709    return SDValue();
11710
11711  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11712  if (!C)
11713    return SDValue();
11714  uint64_t MulAmt = C->getZExtValue();
11715  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11716    return SDValue();
11717
11718  uint64_t MulAmt1 = 0;
11719  uint64_t MulAmt2 = 0;
11720  if ((MulAmt % 9) == 0) {
11721    MulAmt1 = 9;
11722    MulAmt2 = MulAmt / 9;
11723  } else if ((MulAmt % 5) == 0) {
11724    MulAmt1 = 5;
11725    MulAmt2 = MulAmt / 5;
11726  } else if ((MulAmt % 3) == 0) {
11727    MulAmt1 = 3;
11728    MulAmt2 = MulAmt / 3;
11729  }
11730  if (MulAmt2 &&
11731      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11732    DebugLoc DL = N->getDebugLoc();
11733
11734    if (isPowerOf2_64(MulAmt2) &&
11735        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11736      // If second multiplifer is pow2, issue it first. We want the multiply by
11737      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11738      // is an add.
11739      std::swap(MulAmt1, MulAmt2);
11740
11741    SDValue NewMul;
11742    if (isPowerOf2_64(MulAmt1))
11743      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11744                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11745    else
11746      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11747                           DAG.getConstant(MulAmt1, VT));
11748
11749    if (isPowerOf2_64(MulAmt2))
11750      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11751                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11752    else
11753      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11754                           DAG.getConstant(MulAmt2, VT));
11755
11756    // Do not add new nodes to DAG combiner worklist.
11757    DCI.CombineTo(N, NewMul, false);
11758  }
11759  return SDValue();
11760}
11761
11762static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11763  SDValue N0 = N->getOperand(0);
11764  SDValue N1 = N->getOperand(1);
11765  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11766  EVT VT = N0.getValueType();
11767
11768  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11769  // since the result of setcc_c is all zero's or all ones.
11770  if (N1C && N0.getOpcode() == ISD::AND &&
11771      N0.getOperand(1).getOpcode() == ISD::Constant) {
11772    SDValue N00 = N0.getOperand(0);
11773    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11774        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11775          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11776         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11777      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11778      APInt ShAmt = N1C->getAPIntValue();
11779      Mask = Mask.shl(ShAmt);
11780      if (Mask != 0)
11781        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11782                           N00, DAG.getConstant(Mask, VT));
11783    }
11784  }
11785
11786  return SDValue();
11787}
11788
11789/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11790///                       when possible.
11791static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11792                                   const X86Subtarget *Subtarget) {
11793  EVT VT = N->getValueType(0);
11794  if (!VT.isVector() && VT.isInteger() &&
11795      N->getOpcode() == ISD::SHL)
11796    return PerformSHLCombine(N, DAG);
11797
11798  // On X86 with SSE2 support, we can transform this to a vector shift if
11799  // all elements are shifted by the same amount.  We can't do this in legalize
11800  // because the a constant vector is typically transformed to a constant pool
11801  // so we have no knowledge of the shift amount.
11802  if (!Subtarget->hasSSE2())
11803    return SDValue();
11804
11805  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11806    return SDValue();
11807
11808  SDValue ShAmtOp = N->getOperand(1);
11809  EVT EltVT = VT.getVectorElementType();
11810  DebugLoc DL = N->getDebugLoc();
11811  SDValue BaseShAmt = SDValue();
11812  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11813    unsigned NumElts = VT.getVectorNumElements();
11814    unsigned i = 0;
11815    for (; i != NumElts; ++i) {
11816      SDValue Arg = ShAmtOp.getOperand(i);
11817      if (Arg.getOpcode() == ISD::UNDEF) continue;
11818      BaseShAmt = Arg;
11819      break;
11820    }
11821    for (; i != NumElts; ++i) {
11822      SDValue Arg = ShAmtOp.getOperand(i);
11823      if (Arg.getOpcode() == ISD::UNDEF) continue;
11824      if (Arg != BaseShAmt) {
11825        return SDValue();
11826      }
11827    }
11828  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11829             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11830    SDValue InVec = ShAmtOp.getOperand(0);
11831    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11832      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11833      unsigned i = 0;
11834      for (; i != NumElts; ++i) {
11835        SDValue Arg = InVec.getOperand(i);
11836        if (Arg.getOpcode() == ISD::UNDEF) continue;
11837        BaseShAmt = Arg;
11838        break;
11839      }
11840    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11841       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11842         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11843         if (C->getZExtValue() == SplatIdx)
11844           BaseShAmt = InVec.getOperand(1);
11845       }
11846    }
11847    if (BaseShAmt.getNode() == 0)
11848      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11849                              DAG.getIntPtrConstant(0));
11850  } else
11851    return SDValue();
11852
11853  // The shift amount is an i32.
11854  if (EltVT.bitsGT(MVT::i32))
11855    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11856  else if (EltVT.bitsLT(MVT::i32))
11857    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11858
11859  // The shift amount is identical so we can do a vector shift.
11860  SDValue  ValOp = N->getOperand(0);
11861  switch (N->getOpcode()) {
11862  default:
11863    llvm_unreachable("Unknown shift opcode!");
11864    break;
11865  case ISD::SHL:
11866    if (VT == MVT::v2i64)
11867      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11868                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11869                         ValOp, BaseShAmt);
11870    if (VT == MVT::v4i32)
11871      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11872                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11873                         ValOp, BaseShAmt);
11874    if (VT == MVT::v8i16)
11875      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11876                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11877                         ValOp, BaseShAmt);
11878    break;
11879  case ISD::SRA:
11880    if (VT == MVT::v4i32)
11881      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11882                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11883                         ValOp, BaseShAmt);
11884    if (VT == MVT::v8i16)
11885      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11886                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11887                         ValOp, BaseShAmt);
11888    break;
11889  case ISD::SRL:
11890    if (VT == MVT::v2i64)
11891      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11892                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11893                         ValOp, BaseShAmt);
11894    if (VT == MVT::v4i32)
11895      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11896                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11897                         ValOp, BaseShAmt);
11898    if (VT ==  MVT::v8i16)
11899      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11900                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11901                         ValOp, BaseShAmt);
11902    break;
11903  }
11904  return SDValue();
11905}
11906
11907
11908// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
11909// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
11910// and friends.  Likewise for OR -> CMPNEQSS.
11911static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
11912                            TargetLowering::DAGCombinerInfo &DCI,
11913                            const X86Subtarget *Subtarget) {
11914  unsigned opcode;
11915
11916  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
11917  // we're requiring SSE2 for both.
11918  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
11919    SDValue N0 = N->getOperand(0);
11920    SDValue N1 = N->getOperand(1);
11921    SDValue CMP0 = N0->getOperand(1);
11922    SDValue CMP1 = N1->getOperand(1);
11923    DebugLoc DL = N->getDebugLoc();
11924
11925    // The SETCCs should both refer to the same CMP.
11926    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
11927      return SDValue();
11928
11929    SDValue CMP00 = CMP0->getOperand(0);
11930    SDValue CMP01 = CMP0->getOperand(1);
11931    EVT     VT    = CMP00.getValueType();
11932
11933    if (VT == MVT::f32 || VT == MVT::f64) {
11934      bool ExpectingFlags = false;
11935      // Check for any users that want flags:
11936      for (SDNode::use_iterator UI = N->use_begin(),
11937             UE = N->use_end();
11938           !ExpectingFlags && UI != UE; ++UI)
11939        switch (UI->getOpcode()) {
11940        default:
11941        case ISD::BR_CC:
11942        case ISD::BRCOND:
11943        case ISD::SELECT:
11944          ExpectingFlags = true;
11945          break;
11946        case ISD::CopyToReg:
11947        case ISD::SIGN_EXTEND:
11948        case ISD::ZERO_EXTEND:
11949        case ISD::ANY_EXTEND:
11950          break;
11951        }
11952
11953      if (!ExpectingFlags) {
11954        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
11955        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
11956
11957        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
11958          X86::CondCode tmp = cc0;
11959          cc0 = cc1;
11960          cc1 = tmp;
11961        }
11962
11963        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
11964            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
11965          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
11966          X86ISD::NodeType NTOperator = is64BitFP ?
11967            X86ISD::FSETCCsd : X86ISD::FSETCCss;
11968          // FIXME: need symbolic constants for these magic numbers.
11969          // See X86ATTInstPrinter.cpp:printSSECC().
11970          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
11971          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
11972                                              DAG.getConstant(x86cc, MVT::i8));
11973          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
11974                                              OnesOrZeroesF);
11975          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
11976                                      DAG.getConstant(1, MVT::i32));
11977          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
11978          return OneBitOfTruth;
11979        }
11980      }
11981    }
11982  }
11983  return SDValue();
11984}
11985
11986static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11987                                 TargetLowering::DAGCombinerInfo &DCI,
11988                                 const X86Subtarget *Subtarget) {
11989  if (DCI.isBeforeLegalizeOps())
11990    return SDValue();
11991
11992  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
11993  if (R.getNode())
11994    return R;
11995
11996  // Want to form ANDNP nodes:
11997  // 1) In the hopes of then easily combining them with OR and AND nodes
11998  //    to form PBLEND/PSIGN.
11999  // 2) To match ANDN packed intrinsics
12000  EVT VT = N->getValueType(0);
12001  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12002    return SDValue();
12003
12004  SDValue N0 = N->getOperand(0);
12005  SDValue N1 = N->getOperand(1);
12006  DebugLoc DL = N->getDebugLoc();
12007
12008  // Check LHS for vnot
12009  if (N0.getOpcode() == ISD::XOR &&
12010      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12011    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12012
12013  // Check RHS for vnot
12014  if (N1.getOpcode() == ISD::XOR &&
12015      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12016    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12017
12018  return SDValue();
12019}
12020
12021static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12022                                TargetLowering::DAGCombinerInfo &DCI,
12023                                const X86Subtarget *Subtarget) {
12024  if (DCI.isBeforeLegalizeOps())
12025    return SDValue();
12026
12027  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12028  if (R.getNode())
12029    return R;
12030
12031  EVT VT = N->getValueType(0);
12032  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12033    return SDValue();
12034
12035  SDValue N0 = N->getOperand(0);
12036  SDValue N1 = N->getOperand(1);
12037
12038  // look for psign/blend
12039  if (Subtarget->hasSSSE3()) {
12040    if (VT == MVT::v2i64) {
12041      // Canonicalize pandn to RHS
12042      if (N0.getOpcode() == X86ISD::ANDNP)
12043        std::swap(N0, N1);
12044      // or (and (m, x), (pandn m, y))
12045      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12046        SDValue Mask = N1.getOperand(0);
12047        SDValue X    = N1.getOperand(1);
12048        SDValue Y;
12049        if (N0.getOperand(0) == Mask)
12050          Y = N0.getOperand(1);
12051        if (N0.getOperand(1) == Mask)
12052          Y = N0.getOperand(0);
12053
12054        // Check to see if the mask appeared in both the AND and ANDNP and
12055        if (!Y.getNode())
12056          return SDValue();
12057
12058        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12059        if (Mask.getOpcode() != ISD::BITCAST ||
12060            X.getOpcode() != ISD::BITCAST ||
12061            Y.getOpcode() != ISD::BITCAST)
12062          return SDValue();
12063
12064        // Look through mask bitcast.
12065        Mask = Mask.getOperand(0);
12066        EVT MaskVT = Mask.getValueType();
12067
12068        // Validate that the Mask operand is a vector sra node.  The sra node
12069        // will be an intrinsic.
12070        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12071          return SDValue();
12072
12073        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12074        // there is no psrai.b
12075        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12076        case Intrinsic::x86_sse2_psrai_w:
12077        case Intrinsic::x86_sse2_psrai_d:
12078          break;
12079        default: return SDValue();
12080        }
12081
12082        // Check that the SRA is all signbits.
12083        SDValue SraC = Mask.getOperand(2);
12084        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12085        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12086        if ((SraAmt + 1) != EltBits)
12087          return SDValue();
12088
12089        DebugLoc DL = N->getDebugLoc();
12090
12091        // Now we know we at least have a plendvb with the mask val.  See if
12092        // we can form a psignb/w/d.
12093        // psign = x.type == y.type == mask.type && y = sub(0, x);
12094        X = X.getOperand(0);
12095        Y = Y.getOperand(0);
12096        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12097            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12098            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12099          unsigned Opc = 0;
12100          switch (EltBits) {
12101          case 8: Opc = X86ISD::PSIGNB; break;
12102          case 16: Opc = X86ISD::PSIGNW; break;
12103          case 32: Opc = X86ISD::PSIGND; break;
12104          default: break;
12105          }
12106          if (Opc) {
12107            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12108            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12109          }
12110        }
12111        // PBLENDVB only available on SSE 4.1
12112        if (!Subtarget->hasSSE41())
12113          return SDValue();
12114
12115        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12116        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12117        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12118        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12119        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12120      }
12121    }
12122  }
12123
12124  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12125  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12126    std::swap(N0, N1);
12127  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12128    return SDValue();
12129  if (!N0.hasOneUse() || !N1.hasOneUse())
12130    return SDValue();
12131
12132  SDValue ShAmt0 = N0.getOperand(1);
12133  if (ShAmt0.getValueType() != MVT::i8)
12134    return SDValue();
12135  SDValue ShAmt1 = N1.getOperand(1);
12136  if (ShAmt1.getValueType() != MVT::i8)
12137    return SDValue();
12138  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12139    ShAmt0 = ShAmt0.getOperand(0);
12140  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12141    ShAmt1 = ShAmt1.getOperand(0);
12142
12143  DebugLoc DL = N->getDebugLoc();
12144  unsigned Opc = X86ISD::SHLD;
12145  SDValue Op0 = N0.getOperand(0);
12146  SDValue Op1 = N1.getOperand(0);
12147  if (ShAmt0.getOpcode() == ISD::SUB) {
12148    Opc = X86ISD::SHRD;
12149    std::swap(Op0, Op1);
12150    std::swap(ShAmt0, ShAmt1);
12151  }
12152
12153  unsigned Bits = VT.getSizeInBits();
12154  if (ShAmt1.getOpcode() == ISD::SUB) {
12155    SDValue Sum = ShAmt1.getOperand(0);
12156    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12157      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12158      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12159        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12160      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12161        return DAG.getNode(Opc, DL, VT,
12162                           Op0, Op1,
12163                           DAG.getNode(ISD::TRUNCATE, DL,
12164                                       MVT::i8, ShAmt0));
12165    }
12166  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12167    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12168    if (ShAmt0C &&
12169        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12170      return DAG.getNode(Opc, DL, VT,
12171                         N0.getOperand(0), N1.getOperand(0),
12172                         DAG.getNode(ISD::TRUNCATE, DL,
12173                                       MVT::i8, ShAmt0));
12174  }
12175
12176  return SDValue();
12177}
12178
12179/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12180static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12181                                   const X86Subtarget *Subtarget) {
12182  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12183  // the FP state in cases where an emms may be missing.
12184  // A preferable solution to the general problem is to figure out the right
12185  // places to insert EMMS.  This qualifies as a quick hack.
12186
12187  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12188  StoreSDNode *St = cast<StoreSDNode>(N);
12189  EVT VT = St->getValue().getValueType();
12190  if (VT.getSizeInBits() != 64)
12191    return SDValue();
12192
12193  const Function *F = DAG.getMachineFunction().getFunction();
12194  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12195  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12196    && Subtarget->hasSSE2();
12197  if ((VT.isVector() ||
12198       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12199      isa<LoadSDNode>(St->getValue()) &&
12200      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12201      St->getChain().hasOneUse() && !St->isVolatile()) {
12202    SDNode* LdVal = St->getValue().getNode();
12203    LoadSDNode *Ld = 0;
12204    int TokenFactorIndex = -1;
12205    SmallVector<SDValue, 8> Ops;
12206    SDNode* ChainVal = St->getChain().getNode();
12207    // Must be a store of a load.  We currently handle two cases:  the load
12208    // is a direct child, and it's under an intervening TokenFactor.  It is
12209    // possible to dig deeper under nested TokenFactors.
12210    if (ChainVal == LdVal)
12211      Ld = cast<LoadSDNode>(St->getChain());
12212    else if (St->getValue().hasOneUse() &&
12213             ChainVal->getOpcode() == ISD::TokenFactor) {
12214      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12215        if (ChainVal->getOperand(i).getNode() == LdVal) {
12216          TokenFactorIndex = i;
12217          Ld = cast<LoadSDNode>(St->getValue());
12218        } else
12219          Ops.push_back(ChainVal->getOperand(i));
12220      }
12221    }
12222
12223    if (!Ld || !ISD::isNormalLoad(Ld))
12224      return SDValue();
12225
12226    // If this is not the MMX case, i.e. we are just turning i64 load/store
12227    // into f64 load/store, avoid the transformation if there are multiple
12228    // uses of the loaded value.
12229    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12230      return SDValue();
12231
12232    DebugLoc LdDL = Ld->getDebugLoc();
12233    DebugLoc StDL = N->getDebugLoc();
12234    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12235    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12236    // pair instead.
12237    if (Subtarget->is64Bit() || F64IsLegal) {
12238      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12239      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12240                                  Ld->getPointerInfo(), Ld->isVolatile(),
12241                                  Ld->isNonTemporal(), Ld->getAlignment());
12242      SDValue NewChain = NewLd.getValue(1);
12243      if (TokenFactorIndex != -1) {
12244        Ops.push_back(NewChain);
12245        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12246                               Ops.size());
12247      }
12248      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12249                          St->getPointerInfo(),
12250                          St->isVolatile(), St->isNonTemporal(),
12251                          St->getAlignment());
12252    }
12253
12254    // Otherwise, lower to two pairs of 32-bit loads / stores.
12255    SDValue LoAddr = Ld->getBasePtr();
12256    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12257                                 DAG.getConstant(4, MVT::i32));
12258
12259    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12260                               Ld->getPointerInfo(),
12261                               Ld->isVolatile(), Ld->isNonTemporal(),
12262                               Ld->getAlignment());
12263    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12264                               Ld->getPointerInfo().getWithOffset(4),
12265                               Ld->isVolatile(), Ld->isNonTemporal(),
12266                               MinAlign(Ld->getAlignment(), 4));
12267
12268    SDValue NewChain = LoLd.getValue(1);
12269    if (TokenFactorIndex != -1) {
12270      Ops.push_back(LoLd);
12271      Ops.push_back(HiLd);
12272      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12273                             Ops.size());
12274    }
12275
12276    LoAddr = St->getBasePtr();
12277    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12278                         DAG.getConstant(4, MVT::i32));
12279
12280    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12281                                St->getPointerInfo(),
12282                                St->isVolatile(), St->isNonTemporal(),
12283                                St->getAlignment());
12284    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12285                                St->getPointerInfo().getWithOffset(4),
12286                                St->isVolatile(),
12287                                St->isNonTemporal(),
12288                                MinAlign(St->getAlignment(), 4));
12289    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12290  }
12291  return SDValue();
12292}
12293
12294/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12295/// X86ISD::FXOR nodes.
12296static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12297  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12298  // F[X]OR(0.0, x) -> x
12299  // F[X]OR(x, 0.0) -> x
12300  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12301    if (C->getValueAPF().isPosZero())
12302      return N->getOperand(1);
12303  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12304    if (C->getValueAPF().isPosZero())
12305      return N->getOperand(0);
12306  return SDValue();
12307}
12308
12309/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12310static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12311  // FAND(0.0, x) -> 0.0
12312  // FAND(x, 0.0) -> 0.0
12313  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12314    if (C->getValueAPF().isPosZero())
12315      return N->getOperand(0);
12316  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12317    if (C->getValueAPF().isPosZero())
12318      return N->getOperand(1);
12319  return SDValue();
12320}
12321
12322static SDValue PerformBTCombine(SDNode *N,
12323                                SelectionDAG &DAG,
12324                                TargetLowering::DAGCombinerInfo &DCI) {
12325  // BT ignores high bits in the bit index operand.
12326  SDValue Op1 = N->getOperand(1);
12327  if (Op1.hasOneUse()) {
12328    unsigned BitWidth = Op1.getValueSizeInBits();
12329    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12330    APInt KnownZero, KnownOne;
12331    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12332                                          !DCI.isBeforeLegalizeOps());
12333    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12334    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12335        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12336      DCI.CommitTargetLoweringOpt(TLO);
12337  }
12338  return SDValue();
12339}
12340
12341static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12342  SDValue Op = N->getOperand(0);
12343  if (Op.getOpcode() == ISD::BITCAST)
12344    Op = Op.getOperand(0);
12345  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12346  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12347      VT.getVectorElementType().getSizeInBits() ==
12348      OpVT.getVectorElementType().getSizeInBits()) {
12349    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12350  }
12351  return SDValue();
12352}
12353
12354static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12355  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12356  //           (and (i32 x86isd::setcc_carry), 1)
12357  // This eliminates the zext. This transformation is necessary because
12358  // ISD::SETCC is always legalized to i8.
12359  DebugLoc dl = N->getDebugLoc();
12360  SDValue N0 = N->getOperand(0);
12361  EVT VT = N->getValueType(0);
12362  if (N0.getOpcode() == ISD::AND &&
12363      N0.hasOneUse() &&
12364      N0.getOperand(0).hasOneUse()) {
12365    SDValue N00 = N0.getOperand(0);
12366    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12367      return SDValue();
12368    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12369    if (!C || C->getZExtValue() != 1)
12370      return SDValue();
12371    return DAG.getNode(ISD::AND, dl, VT,
12372                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12373                                   N00.getOperand(0), N00.getOperand(1)),
12374                       DAG.getConstant(1, VT));
12375  }
12376
12377  return SDValue();
12378}
12379
12380// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12381static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12382  unsigned X86CC = N->getConstantOperandVal(0);
12383  SDValue EFLAG = N->getOperand(1);
12384  DebugLoc DL = N->getDebugLoc();
12385
12386  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12387  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12388  // cases.
12389  if (X86CC == X86::COND_B)
12390    return DAG.getNode(ISD::AND, DL, MVT::i8,
12391                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12392                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12393                       DAG.getConstant(1, MVT::i8));
12394
12395  return SDValue();
12396}
12397
12398static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12399                                        const X86TargetLowering *XTLI) {
12400  SDValue Op0 = N->getOperand(0);
12401  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12402  // a 32-bit target where SSE doesn't support i64->FP operations.
12403  if (Op0.getOpcode() == ISD::LOAD) {
12404    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12405    EVT VT = Ld->getValueType(0);
12406    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12407        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12408        !XTLI->getSubtarget()->is64Bit() &&
12409        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12410      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12411                                          Ld->getChain(), Op0, DAG);
12412      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12413      return FILDChain;
12414    }
12415  }
12416  return SDValue();
12417}
12418
12419// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12420static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12421                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12422  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12423  // the result is either zero or one (depending on the input carry bit).
12424  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12425  if (X86::isZeroNode(N->getOperand(0)) &&
12426      X86::isZeroNode(N->getOperand(1)) &&
12427      // We don't have a good way to replace an EFLAGS use, so only do this when
12428      // dead right now.
12429      SDValue(N, 1).use_empty()) {
12430    DebugLoc DL = N->getDebugLoc();
12431    EVT VT = N->getValueType(0);
12432    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12433    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12434                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12435                                           DAG.getConstant(X86::COND_B,MVT::i8),
12436                                           N->getOperand(2)),
12437                               DAG.getConstant(1, VT));
12438    return DCI.CombineTo(N, Res1, CarryOut);
12439  }
12440
12441  return SDValue();
12442}
12443
12444// fold (add Y, (sete  X, 0)) -> adc  0, Y
12445//      (add Y, (setne X, 0)) -> sbb -1, Y
12446//      (sub (sete  X, 0), Y) -> sbb  0, Y
12447//      (sub (setne X, 0), Y) -> adc -1, Y
12448static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
12449  DebugLoc DL = N->getDebugLoc();
12450
12451  // Look through ZExts.
12452  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12453  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12454    return SDValue();
12455
12456  SDValue SetCC = Ext.getOperand(0);
12457  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12458    return SDValue();
12459
12460  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12461  if (CC != X86::COND_E && CC != X86::COND_NE)
12462    return SDValue();
12463
12464  SDValue Cmp = SetCC.getOperand(1);
12465  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12466      !X86::isZeroNode(Cmp.getOperand(1)) ||
12467      !Cmp.getOperand(0).getValueType().isInteger())
12468    return SDValue();
12469
12470  SDValue CmpOp0 = Cmp.getOperand(0);
12471  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12472                               DAG.getConstant(1, CmpOp0.getValueType()));
12473
12474  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12475  if (CC == X86::COND_NE)
12476    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12477                       DL, OtherVal.getValueType(), OtherVal,
12478                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12479  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12480                     DL, OtherVal.getValueType(), OtherVal,
12481                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12482}
12483
12484SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12485                                             DAGCombinerInfo &DCI) const {
12486  SelectionDAG &DAG = DCI.DAG;
12487  switch (N->getOpcode()) {
12488  default: break;
12489  case ISD::EXTRACT_VECTOR_ELT:
12490    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12491  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12492  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12493  case ISD::ADD:
12494  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12495  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12496  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12497  case ISD::SHL:
12498  case ISD::SRA:
12499  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12500  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12501  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12502  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12503  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12504  case X86ISD::FXOR:
12505  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12506  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12507  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12508  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12509  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12510  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12511  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12512  case X86ISD::SHUFPD:
12513  case X86ISD::PALIGN:
12514  case X86ISD::PUNPCKHBW:
12515  case X86ISD::PUNPCKHWD:
12516  case X86ISD::PUNPCKHDQ:
12517  case X86ISD::PUNPCKHQDQ:
12518  case X86ISD::UNPCKHPS:
12519  case X86ISD::UNPCKHPD:
12520  case X86ISD::PUNPCKLBW:
12521  case X86ISD::PUNPCKLWD:
12522  case X86ISD::PUNPCKLDQ:
12523  case X86ISD::PUNPCKLQDQ:
12524  case X86ISD::UNPCKLPS:
12525  case X86ISD::UNPCKLPD:
12526  case X86ISD::VUNPCKLPSY:
12527  case X86ISD::VUNPCKLPDY:
12528  case X86ISD::MOVHLPS:
12529  case X86ISD::MOVLHPS:
12530  case X86ISD::PSHUFD:
12531  case X86ISD::PSHUFHW:
12532  case X86ISD::PSHUFLW:
12533  case X86ISD::MOVSS:
12534  case X86ISD::MOVSD:
12535  case X86ISD::VPERMIL:
12536  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12537  }
12538
12539  return SDValue();
12540}
12541
12542/// isTypeDesirableForOp - Return true if the target has native support for
12543/// the specified value type and it is 'desirable' to use the type for the
12544/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12545/// instruction encodings are longer and some i16 instructions are slow.
12546bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12547  if (!isTypeLegal(VT))
12548    return false;
12549  if (VT != MVT::i16)
12550    return true;
12551
12552  switch (Opc) {
12553  default:
12554    return true;
12555  case ISD::LOAD:
12556  case ISD::SIGN_EXTEND:
12557  case ISD::ZERO_EXTEND:
12558  case ISD::ANY_EXTEND:
12559  case ISD::SHL:
12560  case ISD::SRL:
12561  case ISD::SUB:
12562  case ISD::ADD:
12563  case ISD::MUL:
12564  case ISD::AND:
12565  case ISD::OR:
12566  case ISD::XOR:
12567    return false;
12568  }
12569}
12570
12571/// IsDesirableToPromoteOp - This method query the target whether it is
12572/// beneficial for dag combiner to promote the specified node. If true, it
12573/// should return the desired promotion type by reference.
12574bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12575  EVT VT = Op.getValueType();
12576  if (VT != MVT::i16)
12577    return false;
12578
12579  bool Promote = false;
12580  bool Commute = false;
12581  switch (Op.getOpcode()) {
12582  default: break;
12583  case ISD::LOAD: {
12584    LoadSDNode *LD = cast<LoadSDNode>(Op);
12585    // If the non-extending load has a single use and it's not live out, then it
12586    // might be folded.
12587    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12588                                                     Op.hasOneUse()*/) {
12589      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12590             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12591        // The only case where we'd want to promote LOAD (rather then it being
12592        // promoted as an operand is when it's only use is liveout.
12593        if (UI->getOpcode() != ISD::CopyToReg)
12594          return false;
12595      }
12596    }
12597    Promote = true;
12598    break;
12599  }
12600  case ISD::SIGN_EXTEND:
12601  case ISD::ZERO_EXTEND:
12602  case ISD::ANY_EXTEND:
12603    Promote = true;
12604    break;
12605  case ISD::SHL:
12606  case ISD::SRL: {
12607    SDValue N0 = Op.getOperand(0);
12608    // Look out for (store (shl (load), x)).
12609    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12610      return false;
12611    Promote = true;
12612    break;
12613  }
12614  case ISD::ADD:
12615  case ISD::MUL:
12616  case ISD::AND:
12617  case ISD::OR:
12618  case ISD::XOR:
12619    Commute = true;
12620    // fallthrough
12621  case ISD::SUB: {
12622    SDValue N0 = Op.getOperand(0);
12623    SDValue N1 = Op.getOperand(1);
12624    if (!Commute && MayFoldLoad(N1))
12625      return false;
12626    // Avoid disabling potential load folding opportunities.
12627    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12628      return false;
12629    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12630      return false;
12631    Promote = true;
12632  }
12633  }
12634
12635  PVT = MVT::i32;
12636  return Promote;
12637}
12638
12639//===----------------------------------------------------------------------===//
12640//                           X86 Inline Assembly Support
12641//===----------------------------------------------------------------------===//
12642
12643bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12644  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12645
12646  std::string AsmStr = IA->getAsmString();
12647
12648  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12649  SmallVector<StringRef, 4> AsmPieces;
12650  SplitString(AsmStr, AsmPieces, ";\n");
12651
12652  switch (AsmPieces.size()) {
12653  default: return false;
12654  case 1:
12655    AsmStr = AsmPieces[0];
12656    AsmPieces.clear();
12657    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12658
12659    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12660    // we will turn this bswap into something that will be lowered to logical ops
12661    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12662    // so don't worry about this.
12663    // bswap $0
12664    if (AsmPieces.size() == 2 &&
12665        (AsmPieces[0] == "bswap" ||
12666         AsmPieces[0] == "bswapq" ||
12667         AsmPieces[0] == "bswapl") &&
12668        (AsmPieces[1] == "$0" ||
12669         AsmPieces[1] == "${0:q}")) {
12670      // No need to check constraints, nothing other than the equivalent of
12671      // "=r,0" would be valid here.
12672      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12673      if (!Ty || Ty->getBitWidth() % 16 != 0)
12674        return false;
12675      return IntrinsicLowering::LowerToByteSwap(CI);
12676    }
12677    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12678    if (CI->getType()->isIntegerTy(16) &&
12679        AsmPieces.size() == 3 &&
12680        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12681        AsmPieces[1] == "$$8," &&
12682        AsmPieces[2] == "${0:w}" &&
12683        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12684      AsmPieces.clear();
12685      const std::string &ConstraintsStr = IA->getConstraintString();
12686      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12687      std::sort(AsmPieces.begin(), AsmPieces.end());
12688      if (AsmPieces.size() == 4 &&
12689          AsmPieces[0] == "~{cc}" &&
12690          AsmPieces[1] == "~{dirflag}" &&
12691          AsmPieces[2] == "~{flags}" &&
12692          AsmPieces[3] == "~{fpsr}") {
12693        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12694        if (!Ty || Ty->getBitWidth() % 16 != 0)
12695          return false;
12696        return IntrinsicLowering::LowerToByteSwap(CI);
12697      }
12698    }
12699    break;
12700  case 3:
12701    if (CI->getType()->isIntegerTy(32) &&
12702        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12703      SmallVector<StringRef, 4> Words;
12704      SplitString(AsmPieces[0], Words, " \t,");
12705      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12706          Words[2] == "${0:w}") {
12707        Words.clear();
12708        SplitString(AsmPieces[1], Words, " \t,");
12709        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12710            Words[2] == "$0") {
12711          Words.clear();
12712          SplitString(AsmPieces[2], Words, " \t,");
12713          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12714              Words[2] == "${0:w}") {
12715            AsmPieces.clear();
12716            const std::string &ConstraintsStr = IA->getConstraintString();
12717            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12718            std::sort(AsmPieces.begin(), AsmPieces.end());
12719            if (AsmPieces.size() == 4 &&
12720                AsmPieces[0] == "~{cc}" &&
12721                AsmPieces[1] == "~{dirflag}" &&
12722                AsmPieces[2] == "~{flags}" &&
12723                AsmPieces[3] == "~{fpsr}") {
12724              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12725              if (!Ty || Ty->getBitWidth() % 16 != 0)
12726                return false;
12727              return IntrinsicLowering::LowerToByteSwap(CI);
12728            }
12729          }
12730        }
12731      }
12732    }
12733
12734    if (CI->getType()->isIntegerTy(64)) {
12735      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12736      if (Constraints.size() >= 2 &&
12737          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12738          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12739        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12740        SmallVector<StringRef, 4> Words;
12741        SplitString(AsmPieces[0], Words, " \t");
12742        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12743          Words.clear();
12744          SplitString(AsmPieces[1], Words, " \t");
12745          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12746            Words.clear();
12747            SplitString(AsmPieces[2], Words, " \t,");
12748            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12749                Words[2] == "%edx") {
12750              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12751              if (!Ty || Ty->getBitWidth() % 16 != 0)
12752                return false;
12753              return IntrinsicLowering::LowerToByteSwap(CI);
12754            }
12755          }
12756        }
12757      }
12758    }
12759    break;
12760  }
12761  return false;
12762}
12763
12764
12765
12766/// getConstraintType - Given a constraint letter, return the type of
12767/// constraint it is for this target.
12768X86TargetLowering::ConstraintType
12769X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12770  if (Constraint.size() == 1) {
12771    switch (Constraint[0]) {
12772    case 'R':
12773    case 'q':
12774    case 'Q':
12775    case 'f':
12776    case 't':
12777    case 'u':
12778    case 'y':
12779    case 'x':
12780    case 'Y':
12781    case 'l':
12782      return C_RegisterClass;
12783    case 'a':
12784    case 'b':
12785    case 'c':
12786    case 'd':
12787    case 'S':
12788    case 'D':
12789    case 'A':
12790      return C_Register;
12791    case 'I':
12792    case 'J':
12793    case 'K':
12794    case 'L':
12795    case 'M':
12796    case 'N':
12797    case 'G':
12798    case 'C':
12799    case 'e':
12800    case 'Z':
12801      return C_Other;
12802    default:
12803      break;
12804    }
12805  }
12806  return TargetLowering::getConstraintType(Constraint);
12807}
12808
12809/// Examine constraint type and operand type and determine a weight value.
12810/// This object must already have been set up with the operand type
12811/// and the current alternative constraint selected.
12812TargetLowering::ConstraintWeight
12813  X86TargetLowering::getSingleConstraintMatchWeight(
12814    AsmOperandInfo &info, const char *constraint) const {
12815  ConstraintWeight weight = CW_Invalid;
12816  Value *CallOperandVal = info.CallOperandVal;
12817    // If we don't have a value, we can't do a match,
12818    // but allow it at the lowest weight.
12819  if (CallOperandVal == NULL)
12820    return CW_Default;
12821  Type *type = CallOperandVal->getType();
12822  // Look at the constraint type.
12823  switch (*constraint) {
12824  default:
12825    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12826  case 'R':
12827  case 'q':
12828  case 'Q':
12829  case 'a':
12830  case 'b':
12831  case 'c':
12832  case 'd':
12833  case 'S':
12834  case 'D':
12835  case 'A':
12836    if (CallOperandVal->getType()->isIntegerTy())
12837      weight = CW_SpecificReg;
12838    break;
12839  case 'f':
12840  case 't':
12841  case 'u':
12842      if (type->isFloatingPointTy())
12843        weight = CW_SpecificReg;
12844      break;
12845  case 'y':
12846      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12847        weight = CW_SpecificReg;
12848      break;
12849  case 'x':
12850  case 'Y':
12851    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12852      weight = CW_Register;
12853    break;
12854  case 'I':
12855    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12856      if (C->getZExtValue() <= 31)
12857        weight = CW_Constant;
12858    }
12859    break;
12860  case 'J':
12861    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12862      if (C->getZExtValue() <= 63)
12863        weight = CW_Constant;
12864    }
12865    break;
12866  case 'K':
12867    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12868      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12869        weight = CW_Constant;
12870    }
12871    break;
12872  case 'L':
12873    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12874      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12875        weight = CW_Constant;
12876    }
12877    break;
12878  case 'M':
12879    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12880      if (C->getZExtValue() <= 3)
12881        weight = CW_Constant;
12882    }
12883    break;
12884  case 'N':
12885    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12886      if (C->getZExtValue() <= 0xff)
12887        weight = CW_Constant;
12888    }
12889    break;
12890  case 'G':
12891  case 'C':
12892    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12893      weight = CW_Constant;
12894    }
12895    break;
12896  case 'e':
12897    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12898      if ((C->getSExtValue() >= -0x80000000LL) &&
12899          (C->getSExtValue() <= 0x7fffffffLL))
12900        weight = CW_Constant;
12901    }
12902    break;
12903  case 'Z':
12904    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12905      if (C->getZExtValue() <= 0xffffffff)
12906        weight = CW_Constant;
12907    }
12908    break;
12909  }
12910  return weight;
12911}
12912
12913/// LowerXConstraint - try to replace an X constraint, which matches anything,
12914/// with another that has more specific requirements based on the type of the
12915/// corresponding operand.
12916const char *X86TargetLowering::
12917LowerXConstraint(EVT ConstraintVT) const {
12918  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12919  // 'f' like normal targets.
12920  if (ConstraintVT.isFloatingPoint()) {
12921    if (Subtarget->hasXMMInt())
12922      return "Y";
12923    if (Subtarget->hasXMM())
12924      return "x";
12925  }
12926
12927  return TargetLowering::LowerXConstraint(ConstraintVT);
12928}
12929
12930/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12931/// vector.  If it is invalid, don't add anything to Ops.
12932void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12933                                                     std::string &Constraint,
12934                                                     std::vector<SDValue>&Ops,
12935                                                     SelectionDAG &DAG) const {
12936  SDValue Result(0, 0);
12937
12938  // Only support length 1 constraints for now.
12939  if (Constraint.length() > 1) return;
12940
12941  char ConstraintLetter = Constraint[0];
12942  switch (ConstraintLetter) {
12943  default: break;
12944  case 'I':
12945    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12946      if (C->getZExtValue() <= 31) {
12947        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12948        break;
12949      }
12950    }
12951    return;
12952  case 'J':
12953    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12954      if (C->getZExtValue() <= 63) {
12955        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12956        break;
12957      }
12958    }
12959    return;
12960  case 'K':
12961    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12962      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12963        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12964        break;
12965      }
12966    }
12967    return;
12968  case 'N':
12969    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12970      if (C->getZExtValue() <= 255) {
12971        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12972        break;
12973      }
12974    }
12975    return;
12976  case 'e': {
12977    // 32-bit signed value
12978    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12979      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12980                                           C->getSExtValue())) {
12981        // Widen to 64 bits here to get it sign extended.
12982        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12983        break;
12984      }
12985    // FIXME gcc accepts some relocatable values here too, but only in certain
12986    // memory models; it's complicated.
12987    }
12988    return;
12989  }
12990  case 'Z': {
12991    // 32-bit unsigned value
12992    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12993      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12994                                           C->getZExtValue())) {
12995        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12996        break;
12997      }
12998    }
12999    // FIXME gcc accepts some relocatable values here too, but only in certain
13000    // memory models; it's complicated.
13001    return;
13002  }
13003  case 'i': {
13004    // Literal immediates are always ok.
13005    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13006      // Widen to 64 bits here to get it sign extended.
13007      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13008      break;
13009    }
13010
13011    // In any sort of PIC mode addresses need to be computed at runtime by
13012    // adding in a register or some sort of table lookup.  These can't
13013    // be used as immediates.
13014    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13015      return;
13016
13017    // If we are in non-pic codegen mode, we allow the address of a global (with
13018    // an optional displacement) to be used with 'i'.
13019    GlobalAddressSDNode *GA = 0;
13020    int64_t Offset = 0;
13021
13022    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13023    while (1) {
13024      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13025        Offset += GA->getOffset();
13026        break;
13027      } else if (Op.getOpcode() == ISD::ADD) {
13028        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13029          Offset += C->getZExtValue();
13030          Op = Op.getOperand(0);
13031          continue;
13032        }
13033      } else if (Op.getOpcode() == ISD::SUB) {
13034        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13035          Offset += -C->getZExtValue();
13036          Op = Op.getOperand(0);
13037          continue;
13038        }
13039      }
13040
13041      // Otherwise, this isn't something we can handle, reject it.
13042      return;
13043    }
13044
13045    const GlobalValue *GV = GA->getGlobal();
13046    // If we require an extra load to get this address, as in PIC mode, we
13047    // can't accept it.
13048    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13049                                                        getTargetMachine())))
13050      return;
13051
13052    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13053                                        GA->getValueType(0), Offset);
13054    break;
13055  }
13056  }
13057
13058  if (Result.getNode()) {
13059    Ops.push_back(Result);
13060    return;
13061  }
13062  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13063}
13064
13065std::pair<unsigned, const TargetRegisterClass*>
13066X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13067                                                EVT VT) const {
13068  // First, see if this is a constraint that directly corresponds to an LLVM
13069  // register class.
13070  if (Constraint.size() == 1) {
13071    // GCC Constraint Letters
13072    switch (Constraint[0]) {
13073    default: break;
13074      // TODO: Slight differences here in allocation order and leaving
13075      // RIP in the class. Do they matter any more here than they do
13076      // in the normal allocation?
13077    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13078      if (Subtarget->is64Bit()) {
13079	if (VT == MVT::i32 || VT == MVT::f32)
13080	  return std::make_pair(0U, X86::GR32RegisterClass);
13081	else if (VT == MVT::i16)
13082	  return std::make_pair(0U, X86::GR16RegisterClass);
13083	else if (VT == MVT::i8 || VT == MVT::i1)
13084	  return std::make_pair(0U, X86::GR8RegisterClass);
13085	else if (VT == MVT::i64 || VT == MVT::f64)
13086	  return std::make_pair(0U, X86::GR64RegisterClass);
13087	break;
13088      }
13089      // 32-bit fallthrough
13090    case 'Q':   // Q_REGS
13091      if (VT == MVT::i32 || VT == MVT::f32)
13092	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13093      else if (VT == MVT::i16)
13094	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13095      else if (VT == MVT::i8 || VT == MVT::i1)
13096	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13097      else if (VT == MVT::i64)
13098	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13099      break;
13100    case 'r':   // GENERAL_REGS
13101    case 'l':   // INDEX_REGS
13102      if (VT == MVT::i8 || VT == MVT::i1)
13103        return std::make_pair(0U, X86::GR8RegisterClass);
13104      if (VT == MVT::i16)
13105        return std::make_pair(0U, X86::GR16RegisterClass);
13106      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13107        return std::make_pair(0U, X86::GR32RegisterClass);
13108      return std::make_pair(0U, X86::GR64RegisterClass);
13109    case 'R':   // LEGACY_REGS
13110      if (VT == MVT::i8 || VT == MVT::i1)
13111        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13112      if (VT == MVT::i16)
13113        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13114      if (VT == MVT::i32 || !Subtarget->is64Bit())
13115        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13116      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13117    case 'f':  // FP Stack registers.
13118      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13119      // value to the correct fpstack register class.
13120      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13121        return std::make_pair(0U, X86::RFP32RegisterClass);
13122      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13123        return std::make_pair(0U, X86::RFP64RegisterClass);
13124      return std::make_pair(0U, X86::RFP80RegisterClass);
13125    case 'y':   // MMX_REGS if MMX allowed.
13126      if (!Subtarget->hasMMX()) break;
13127      return std::make_pair(0U, X86::VR64RegisterClass);
13128    case 'Y':   // SSE_REGS if SSE2 allowed
13129      if (!Subtarget->hasXMMInt()) break;
13130      // FALL THROUGH.
13131    case 'x':   // SSE_REGS if SSE1 allowed
13132      if (!Subtarget->hasXMM()) break;
13133
13134      switch (VT.getSimpleVT().SimpleTy) {
13135      default: break;
13136      // Scalar SSE types.
13137      case MVT::f32:
13138      case MVT::i32:
13139        return std::make_pair(0U, X86::FR32RegisterClass);
13140      case MVT::f64:
13141      case MVT::i64:
13142        return std::make_pair(0U, X86::FR64RegisterClass);
13143      // Vector types.
13144      case MVT::v16i8:
13145      case MVT::v8i16:
13146      case MVT::v4i32:
13147      case MVT::v2i64:
13148      case MVT::v4f32:
13149      case MVT::v2f64:
13150        return std::make_pair(0U, X86::VR128RegisterClass);
13151      }
13152      break;
13153    }
13154  }
13155
13156  // Use the default implementation in TargetLowering to convert the register
13157  // constraint into a member of a register class.
13158  std::pair<unsigned, const TargetRegisterClass*> Res;
13159  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13160
13161  // Not found as a standard register?
13162  if (Res.second == 0) {
13163    // Map st(0) -> st(7) -> ST0
13164    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13165        tolower(Constraint[1]) == 's' &&
13166        tolower(Constraint[2]) == 't' &&
13167        Constraint[3] == '(' &&
13168        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13169        Constraint[5] == ')' &&
13170        Constraint[6] == '}') {
13171
13172      Res.first = X86::ST0+Constraint[4]-'0';
13173      Res.second = X86::RFP80RegisterClass;
13174      return Res;
13175    }
13176
13177    // GCC allows "st(0)" to be called just plain "st".
13178    if (StringRef("{st}").equals_lower(Constraint)) {
13179      Res.first = X86::ST0;
13180      Res.second = X86::RFP80RegisterClass;
13181      return Res;
13182    }
13183
13184    // flags -> EFLAGS
13185    if (StringRef("{flags}").equals_lower(Constraint)) {
13186      Res.first = X86::EFLAGS;
13187      Res.second = X86::CCRRegisterClass;
13188      return Res;
13189    }
13190
13191    // 'A' means EAX + EDX.
13192    if (Constraint == "A") {
13193      Res.first = X86::EAX;
13194      Res.second = X86::GR32_ADRegisterClass;
13195      return Res;
13196    }
13197    return Res;
13198  }
13199
13200  // Otherwise, check to see if this is a register class of the wrong value
13201  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13202  // turn into {ax},{dx}.
13203  if (Res.second->hasType(VT))
13204    return Res;   // Correct type already, nothing to do.
13205
13206  // All of the single-register GCC register classes map their values onto
13207  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13208  // really want an 8-bit or 32-bit register, map to the appropriate register
13209  // class and return the appropriate register.
13210  if (Res.second == X86::GR16RegisterClass) {
13211    if (VT == MVT::i8) {
13212      unsigned DestReg = 0;
13213      switch (Res.first) {
13214      default: break;
13215      case X86::AX: DestReg = X86::AL; break;
13216      case X86::DX: DestReg = X86::DL; break;
13217      case X86::CX: DestReg = X86::CL; break;
13218      case X86::BX: DestReg = X86::BL; break;
13219      }
13220      if (DestReg) {
13221        Res.first = DestReg;
13222        Res.second = X86::GR8RegisterClass;
13223      }
13224    } else if (VT == MVT::i32) {
13225      unsigned DestReg = 0;
13226      switch (Res.first) {
13227      default: break;
13228      case X86::AX: DestReg = X86::EAX; break;
13229      case X86::DX: DestReg = X86::EDX; break;
13230      case X86::CX: DestReg = X86::ECX; break;
13231      case X86::BX: DestReg = X86::EBX; break;
13232      case X86::SI: DestReg = X86::ESI; break;
13233      case X86::DI: DestReg = X86::EDI; break;
13234      case X86::BP: DestReg = X86::EBP; break;
13235      case X86::SP: DestReg = X86::ESP; break;
13236      }
13237      if (DestReg) {
13238        Res.first = DestReg;
13239        Res.second = X86::GR32RegisterClass;
13240      }
13241    } else if (VT == MVT::i64) {
13242      unsigned DestReg = 0;
13243      switch (Res.first) {
13244      default: break;
13245      case X86::AX: DestReg = X86::RAX; break;
13246      case X86::DX: DestReg = X86::RDX; break;
13247      case X86::CX: DestReg = X86::RCX; break;
13248      case X86::BX: DestReg = X86::RBX; break;
13249      case X86::SI: DestReg = X86::RSI; break;
13250      case X86::DI: DestReg = X86::RDI; break;
13251      case X86::BP: DestReg = X86::RBP; break;
13252      case X86::SP: DestReg = X86::RSP; break;
13253      }
13254      if (DestReg) {
13255        Res.first = DestReg;
13256        Res.second = X86::GR64RegisterClass;
13257      }
13258    }
13259  } else if (Res.second == X86::FR32RegisterClass ||
13260             Res.second == X86::FR64RegisterClass ||
13261             Res.second == X86::VR128RegisterClass) {
13262    // Handle references to XMM physical registers that got mapped into the
13263    // wrong class.  This can happen with constraints like {xmm0} where the
13264    // target independent register mapper will just pick the first match it can
13265    // find, ignoring the required type.
13266    if (VT == MVT::f32)
13267      Res.second = X86::FR32RegisterClass;
13268    else if (VT == MVT::f64)
13269      Res.second = X86::FR64RegisterClass;
13270    else if (X86::VR128RegisterClass->hasType(VT))
13271      Res.second = X86::VR128RegisterClass;
13272  }
13273
13274  return Res;
13275}
13276