X86ISelLowering.cpp revision 5aaffa84703debaba17650c5ca9eae9a49844cf1
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Target/TargetOptions.h"
53#include <bitset>
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
64/// sets things up to match to an AVX VEXTRACTF128 instruction or a
65/// simple subregister reference.  Idx is an index in the 128 bits we
66/// want.  It need not be aligned to a 128-bit bounday.  That makes
67/// lowering EXTRACT_VECTOR_ELT operations easier.
68static SDValue Extract128BitVector(SDValue Vec,
69                                   SDValue Idx,
70                                   SelectionDAG &DAG,
71                                   DebugLoc dl) {
72  EVT VT = Vec.getValueType();
73  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
74  EVT ElVT = VT.getVectorElementType();
75  int Factor = VT.getSizeInBits()/128;
76  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
77                                  VT.getVectorNumElements()/Factor);
78
79  // Extract from UNDEF is UNDEF.
80  if (Vec.getOpcode() == ISD::UNDEF)
81    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
82
83  if (isa<ConstantSDNode>(Idx)) {
84    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
85
86    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
87    // we can match to VEXTRACTF128.
88    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
89
90    // This is the index of the first element of the 128-bit chunk
91    // we want.
92    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
93                                 * ElemsPerChunk);
94
95    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
96    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
97                                 VecIdx);
98
99    return Result;
100  }
101
102  return SDValue();
103}
104
105/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
106/// sets things up to match to an AVX VINSERTF128 instruction or a
107/// simple superregister reference.  Idx is an index in the 128 bits
108/// we want.  It need not be aligned to a 128-bit bounday.  That makes
109/// lowering INSERT_VECTOR_ELT operations easier.
110static SDValue Insert128BitVector(SDValue Result,
111                                  SDValue Vec,
112                                  SDValue Idx,
113                                  SelectionDAG &DAG,
114                                  DebugLoc dl) {
115  if (isa<ConstantSDNode>(Idx)) {
116    EVT VT = Vec.getValueType();
117    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
118
119    EVT ElVT = VT.getVectorElementType();
120    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
121    EVT ResultVT = Result.getValueType();
122
123    // Insert the relevant 128 bits.
124    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
125
126    // This is the index of the first element of the 128-bit chunk
127    // we want.
128    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
129                                 * ElemsPerChunk);
130
131    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
132    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
133                         VecIdx);
134    return Result;
135  }
136
137  return SDValue();
138}
139
140static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
141  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
142  bool is64Bit = Subtarget->is64Bit();
143
144  if (Subtarget->isTargetEnvMacho()) {
145    if (is64Bit)
146      return new X8664_MachoTargetObjectFile();
147    return new TargetLoweringObjectFileMachO();
148  }
149
150  if (Subtarget->isTargetELF())
151    return new TargetLoweringObjectFileELF();
152  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
153    return new TargetLoweringObjectFileCOFF();
154  llvm_unreachable("unknown subtarget type");
155}
156
157X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
158  : TargetLowering(TM, createTLOF(TM)) {
159  Subtarget = &TM.getSubtarget<X86Subtarget>();
160  X86ScalarSSEf64 = Subtarget->hasSSE2();
161  X86ScalarSSEf32 = Subtarget->hasSSE1();
162  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
163
164  RegInfo = TM.getRegisterInfo();
165  TD = getTargetData();
166
167  // Set up the TargetLowering object.
168  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
169
170  // X86 is weird, it always uses i8 for shift amounts and setcc results.
171  setBooleanContents(ZeroOrOneBooleanContent);
172  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
173  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
174
175  // For 64-bit since we have so many registers use the ILP scheduler, for
176  // 32-bit code use the register pressure specific scheduling.
177  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
178  if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else if (Subtarget->isAtom())
181    setSchedulingPreference(Sched::Hybrid);
182  else
183    setSchedulingPreference(Sched::RegPressure);
184  setStackPointerRegisterToSaveRestore(X86StackPtr);
185
186  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
187    // Setup Windows compiler runtime calls.
188    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
189    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
190    setLibcallName(RTLIB::SREM_I64, "_allrem");
191    setLibcallName(RTLIB::UREM_I64, "_aullrem");
192    setLibcallName(RTLIB::MUL_I64, "_allmul");
193    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
194    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
195    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
201    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
322  if (!X86ScalarSSEf64) {
323    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
324    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
325    if (Subtarget->is64Bit()) {
326      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
327      // Without SSE, i64->f64 goes through memory.
328      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
329    }
330  }
331
332  // Scalar integer divide and remainder are lowered to use operations that
333  // produce two results, to match the available instructions. This exposes
334  // the two-result form to trivial CSE, which is able to combine x/y and x%y
335  // into a single instruction.
336  //
337  // Scalar integer multiply-high is also lowered to use two-result
338  // operations, to match the available instructions. However, plain multiply
339  // (low) operations are left as Legal, as there are single-result
340  // instructions for this in x86. Using the two-result multiply instructions
341  // when both high and low results are needed must be arranged by dagcombine.
342  for (unsigned i = 0, e = 4; i != e; ++i) {
343    MVT VT = IntVTs[i];
344    setOperationAction(ISD::MULHS, VT, Expand);
345    setOperationAction(ISD::MULHU, VT, Expand);
346    setOperationAction(ISD::SDIV, VT, Expand);
347    setOperationAction(ISD::UDIV, VT, Expand);
348    setOperationAction(ISD::SREM, VT, Expand);
349    setOperationAction(ISD::UREM, VT, Expand);
350
351    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
352    setOperationAction(ISD::ADDC, VT, Custom);
353    setOperationAction(ISD::ADDE, VT, Custom);
354    setOperationAction(ISD::SUBC, VT, Custom);
355    setOperationAction(ISD::SUBE, VT, Custom);
356  }
357
358  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
359  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
360  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
361  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
362  if (Subtarget->is64Bit())
363    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
364  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
365  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
367  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
368  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
369  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
371  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
372
373  // Promote the i8 variants and force them on up to i32 which has a shorter
374  // encoding.
375  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
376  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
377  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
379  if (Subtarget->hasBMI()) {
380    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
381    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
382    if (Subtarget->is64Bit())
383      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
384  } else {
385    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
386    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
387    if (Subtarget->is64Bit())
388      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
389  }
390
391  if (Subtarget->hasLZCNT()) {
392    // When promoting the i8 variants, force them to i32 for a shorter
393    // encoding.
394    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
395    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
396    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
399    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
400    if (Subtarget->is64Bit())
401      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
402  } else {
403    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
404    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
405    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
409    if (Subtarget->is64Bit()) {
410      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
411      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
412    }
413  }
414
415  if (Subtarget->hasPOPCNT()) {
416    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
417  } else {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
419    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
420    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
421    if (Subtarget->is64Bit())
422      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
423  }
424
425  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
426  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
427
428  // These should be promoted to a larger select which is supported.
429  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
430  // X86 wants to expand cmov itself.
431  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
432  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
433  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
434  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
437  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
438  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
440  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
445    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
446  }
447  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
448
449  // Darwin ABI issue.
450  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
451  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
452  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
453  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
454  if (Subtarget->is64Bit())
455    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
456  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
457  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
458  if (Subtarget->is64Bit()) {
459    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
460    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
461    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
462    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
463    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
464  }
465  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
466  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
467  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
468  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
469  if (Subtarget->is64Bit()) {
470    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
471    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
472    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
473  }
474
475  if (Subtarget->hasSSE1())
476    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
477
478  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
479  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
480
481  // On X86 and X86-64, atomic operations are lowered to locked instructions.
482  // Locked instructions, in turn, have implicit fence semantics (all memory
483  // operations are flushed before issuing the locked instruction, and they
484  // are not buffered), so we can fold away the common pattern of
485  // fence-atomic-fence.
486  setShouldFoldAtomicFences(true);
487
488  // Expand certain atomics
489  for (unsigned i = 0, e = 4; i != e; ++i) {
490    MVT VT = IntVTs[i];
491    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
492    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
493    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
494  }
495
496  if (!Subtarget->is64Bit()) {
497    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
499    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
505  }
506
507  if (Subtarget->hasCmpxchg16b()) {
508    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
509  }
510
511  // FIXME - use subtarget debug flags
512  if (!Subtarget->isTargetDarwin() &&
513      !Subtarget->isTargetELF() &&
514      !Subtarget->isTargetCygMing()) {
515    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
516  }
517
518  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
519  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
522  if (Subtarget->is64Bit()) {
523    setExceptionPointerRegister(X86::RAX);
524    setExceptionSelectorRegister(X86::RDX);
525  } else {
526    setExceptionPointerRegister(X86::EAX);
527    setExceptionSelectorRegister(X86::EDX);
528  }
529  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
530  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
531
532  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
533  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
534
535  setOperationAction(ISD::TRAP, MVT::Other, Legal);
536
537  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
538  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
539  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
540  if (Subtarget->is64Bit()) {
541    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
542    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
543  } else {
544    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
545    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
546  }
547
548  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
549  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
550
551  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
552    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
553                       MVT::i64 : MVT::i32, Custom);
554  else if (TM.Options.EnableSegmentedStacks)
555    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
556                       MVT::i64 : MVT::i32, Custom);
557  else
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Expand);
560
561  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
562    // f32 and f64 use SSE.
563    // Set up the FP register classes.
564    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
565    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
566
567    // Use ANDPD to simulate FABS.
568    setOperationAction(ISD::FABS , MVT::f64, Custom);
569    setOperationAction(ISD::FABS , MVT::f32, Custom);
570
571    // Use XORP to simulate FNEG.
572    setOperationAction(ISD::FNEG , MVT::f64, Custom);
573    setOperationAction(ISD::FNEG , MVT::f32, Custom);
574
575    // Use ANDPD and ORPD to simulate FCOPYSIGN.
576    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
577    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
578
579    // Lower this to FGETSIGNx86 plus an AND.
580    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
581    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
582
583    // We don't support sin/cos/fmod
584    setOperationAction(ISD::FSIN , MVT::f64, Expand);
585    setOperationAction(ISD::FCOS , MVT::f64, Expand);
586    setOperationAction(ISD::FSIN , MVT::f32, Expand);
587    setOperationAction(ISD::FCOS , MVT::f32, Expand);
588
589    // Expand FP immediates into loads from the stack, except for the special
590    // cases we handle.
591    addLegalFPImmediate(APFloat(+0.0)); // xorpd
592    addLegalFPImmediate(APFloat(+0.0f)); // xorps
593  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
594    // Use SSE for f32, x87 for f64.
595    // Set up the FP register classes.
596    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
597    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
598
599    // Use ANDPS to simulate FABS.
600    setOperationAction(ISD::FABS , MVT::f32, Custom);
601
602    // Use XORP to simulate FNEG.
603    setOperationAction(ISD::FNEG , MVT::f32, Custom);
604
605    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
606
607    // Use ANDPS and ORPS to simulate FCOPYSIGN.
608    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
609    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
610
611    // We don't support sin/cos/fmod
612    setOperationAction(ISD::FSIN , MVT::f32, Expand);
613    setOperationAction(ISD::FCOS , MVT::f32, Expand);
614
615    // Special cases we handle for FP constants.
616    addLegalFPImmediate(APFloat(+0.0f)); // xorps
617    addLegalFPImmediate(APFloat(+0.0)); // FLD0
618    addLegalFPImmediate(APFloat(+1.0)); // FLD1
619    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
620    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
621
622    if (!TM.Options.UnsafeFPMath) {
623      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
624      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
625    }
626  } else if (!TM.Options.UseSoftFloat) {
627    // f32 and f64 in x87.
628    // Set up the FP register classes.
629    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
630    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
631
632    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
633    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
634    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
635    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
636
637    if (!TM.Options.UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
640    }
641    addLegalFPImmediate(APFloat(+0.0)); // FLD0
642    addLegalFPImmediate(APFloat(+1.0)); // FLD1
643    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
644    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
645    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
646    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
647    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
648    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
649  }
650
651  // We don't support FMA.
652  setOperationAction(ISD::FMA, MVT::f64, Expand);
653  setOperationAction(ISD::FMA, MVT::f32, Expand);
654
655  // Long double always uses X87.
656  if (!TM.Options.UseSoftFloat) {
657    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
658    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
660    {
661      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
662      addLegalFPImmediate(TmpFlt);  // FLD0
663      TmpFlt.changeSign();
664      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
665
666      bool ignored;
667      APFloat TmpFlt2(+1.0);
668      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
669                      &ignored);
670      addLegalFPImmediate(TmpFlt2);  // FLD1
671      TmpFlt2.changeSign();
672      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
673    }
674
675    if (!TM.Options.UnsafeFPMath) {
676      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
677      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
678    }
679
680    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
681    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
682    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
683    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
684    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
685    setOperationAction(ISD::FMA, MVT::f80, Expand);
686  }
687
688  // Always use a library call for pow.
689  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
690  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
691  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
692
693  setOperationAction(ISD::FLOG, MVT::f80, Expand);
694  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
695  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
696  setOperationAction(ISD::FEXP, MVT::f80, Expand);
697  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
698
699  // First set operation action for all vector types to either promote
700  // (for widening) or expand (for scalarization). Then we will selectively
701  // turn on ones that can be effectively codegen'd.
702  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
703       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
704    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
719    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
722    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
756    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
761    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
762         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
763      setTruncStoreAction((MVT::SimpleValueType)VT,
764                          (MVT::SimpleValueType)InnerVT, Expand);
765    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
766    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
767    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
768  }
769
770  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
771  // with -msoft-float, disable use of MMX as well.
772  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
773    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
774    // No operations on x86mmx supported, everything uses intrinsics.
775  }
776
777  // MMX-sized vectors (other than x86mmx) are expected to be expanded
778  // into smaller operations.
779  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
780  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
781  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
782  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
783  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
784  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
785  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
786  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
787  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
788  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
789  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
790  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
791  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
792  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
793  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
794  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
795  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
796  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
799  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
800  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
801  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
803  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
804  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
805  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
808
809  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
810    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
811
812    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
813    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
814    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
817    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
818    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
820    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
822    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
823    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
824  }
825
826  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
827    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
828
829    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
830    // registers cannot be used even for integer operations.
831    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
832    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
833    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
834    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
835
836    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
837    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
838    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
839    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
840    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
841    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
842    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
843    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
844    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
845    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
846    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
847    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
848    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
851    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
852
853    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
854    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
855    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
857
858    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
859    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
860    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
861    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
863
864    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
865    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
869
870    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
871    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
872      EVT VT = (MVT::SimpleValueType)i;
873      // Do not attempt to custom lower non-power-of-2 vectors
874      if (!isPowerOf2_32(VT.getVectorNumElements()))
875        continue;
876      // Do not attempt to custom lower non-128-bit vectors
877      if (!VT.is128BitVector())
878        continue;
879      setOperationAction(ISD::BUILD_VECTOR,
880                         VT.getSimpleVT().SimpleTy, Custom);
881      setOperationAction(ISD::VECTOR_SHUFFLE,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
884                         VT.getSimpleVT().SimpleTy, Custom);
885    }
886
887    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
888    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
889    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
890    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
891    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
892    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
893
894    if (Subtarget->is64Bit()) {
895      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
896      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
897    }
898
899    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
900    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
901      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
902      EVT VT = SVT;
903
904      // Do not attempt to promote non-128-bit vectors
905      if (!VT.is128BitVector())
906        continue;
907
908      setOperationAction(ISD::AND,    SVT, Promote);
909      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
910      setOperationAction(ISD::OR,     SVT, Promote);
911      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
912      setOperationAction(ISD::XOR,    SVT, Promote);
913      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
914      setOperationAction(ISD::LOAD,   SVT, Promote);
915      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
916      setOperationAction(ISD::SELECT, SVT, Promote);
917      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
918    }
919
920    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
921
922    // Custom lower v2i64 and v2f64 selects.
923    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
924    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
925    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
926    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
927
928    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
929    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
930  }
931
932  if (Subtarget->hasSSE41()) {
933    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
934    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
935    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
936    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
937    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
938    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
939    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
940    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
941    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
942    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
943
944    // FIXME: Do we need to handle scalar-to-vector here?
945    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
946
947    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
948    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
949    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
952
953    // i8 and i16 vectors are custom , because the source register and source
954    // source memory operand types are not the same width.  f32 vectors are
955    // custom since the immediate controlling the insert encodes additional
956    // information.
957    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
958    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
961
962    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
963    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
966
967    // FIXME: these should be Legal but thats only for the case where
968    // the index is constant.  For now custom expand to deal with that.
969    if (Subtarget->is64Bit()) {
970      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
971      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
972    }
973  }
974
975  if (Subtarget->hasSSE2()) {
976    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
977    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
978
979    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
980    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
981
982    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
984
985    if (Subtarget->hasAVX2()) {
986      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
987      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
988
989      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
990      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
991
992      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
993    } else {
994      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
995      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
996
997      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
998      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
999
1000      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1001    }
1002  }
1003
1004  if (Subtarget->hasSSE42())
1005    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1006
1007  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1008    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1009    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1010    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1011    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1012    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1013    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1014
1015    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1016    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1017    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1018
1019    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1020    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1021    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1024    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1025
1026    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1027    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1028    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1031    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1032
1033    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1034    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1035    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1036
1037    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1038    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1043
1044    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1045    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1046
1047    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1048    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1049
1050    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1054    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1055    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1057
1058    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1059    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1060    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1061
1062    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1063    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1064    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1066
1067    if (Subtarget->hasAVX2()) {
1068      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1069      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1070      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1072
1073      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1074      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1075      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1077
1078      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1079      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1080      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1081      // Don't lower v32i8 because there is no 128-bit byte mul
1082
1083      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1084
1085      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1086      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1087
1088      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1089      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1090
1091      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1092    } else {
1093      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1094      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1095      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1097
1098      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1099      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1100      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1102
1103      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1104      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1105      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1106      // Don't lower v32i8 because there is no 128-bit byte mul
1107
1108      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1109      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1110
1111      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1112      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1113
1114      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1115    }
1116
1117    // Custom lower several nodes for 256-bit types.
1118    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1119                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1120      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1121      EVT VT = SVT;
1122
1123      // Extract subvector is special because the value type
1124      // (result) is 128-bit but the source is 256-bit wide.
1125      if (VT.is128BitVector())
1126        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1127
1128      // Do not attempt to custom lower other non-256-bit vectors
1129      if (!VT.is256BitVector())
1130        continue;
1131
1132      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1133      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1134      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1135      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1136      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1137      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1138    }
1139
1140    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1141    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1142      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1143      EVT VT = SVT;
1144
1145      // Do not attempt to promote non-256-bit vectors
1146      if (!VT.is256BitVector())
1147        continue;
1148
1149      setOperationAction(ISD::AND,    SVT, Promote);
1150      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1151      setOperationAction(ISD::OR,     SVT, Promote);
1152      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1153      setOperationAction(ISD::XOR,    SVT, Promote);
1154      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1155      setOperationAction(ISD::LOAD,   SVT, Promote);
1156      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1157      setOperationAction(ISD::SELECT, SVT, Promote);
1158      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1159    }
1160  }
1161
1162  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1163  // of this type with custom code.
1164  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1165         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1166    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1167                       Custom);
1168  }
1169
1170  // We want to custom lower some of our intrinsics.
1171  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1172
1173
1174  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1175  // handle type legalization for these operations here.
1176  //
1177  // FIXME: We really should do custom legalization for addition and
1178  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1179  // than generic legalization for 64-bit multiplication-with-overflow, though.
1180  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1181    // Add/Sub/Mul with overflow operations are custom lowered.
1182    MVT VT = IntVTs[i];
1183    setOperationAction(ISD::SADDO, VT, Custom);
1184    setOperationAction(ISD::UADDO, VT, Custom);
1185    setOperationAction(ISD::SSUBO, VT, Custom);
1186    setOperationAction(ISD::USUBO, VT, Custom);
1187    setOperationAction(ISD::SMULO, VT, Custom);
1188    setOperationAction(ISD::UMULO, VT, Custom);
1189  }
1190
1191  // There are no 8-bit 3-address imul/mul instructions
1192  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1193  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1194
1195  if (!Subtarget->is64Bit()) {
1196    // These libcalls are not available in 32-bit.
1197    setLibcallName(RTLIB::SHL_I128, 0);
1198    setLibcallName(RTLIB::SRL_I128, 0);
1199    setLibcallName(RTLIB::SRA_I128, 0);
1200  }
1201
1202  // We have target-specific dag combine patterns for the following nodes:
1203  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1204  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1205  setTargetDAGCombine(ISD::VSELECT);
1206  setTargetDAGCombine(ISD::SELECT);
1207  setTargetDAGCombine(ISD::SHL);
1208  setTargetDAGCombine(ISD::SRA);
1209  setTargetDAGCombine(ISD::SRL);
1210  setTargetDAGCombine(ISD::OR);
1211  setTargetDAGCombine(ISD::AND);
1212  setTargetDAGCombine(ISD::ADD);
1213  setTargetDAGCombine(ISD::FADD);
1214  setTargetDAGCombine(ISD::FSUB);
1215  setTargetDAGCombine(ISD::SUB);
1216  setTargetDAGCombine(ISD::LOAD);
1217  setTargetDAGCombine(ISD::STORE);
1218  setTargetDAGCombine(ISD::ZERO_EXTEND);
1219  setTargetDAGCombine(ISD::SIGN_EXTEND);
1220  setTargetDAGCombine(ISD::TRUNCATE);
1221  setTargetDAGCombine(ISD::SINT_TO_FP);
1222  if (Subtarget->is64Bit())
1223    setTargetDAGCombine(ISD::MUL);
1224  if (Subtarget->hasBMI())
1225    setTargetDAGCombine(ISD::XOR);
1226
1227  computeRegisterProperties();
1228
1229  // On Darwin, -Os means optimize for size without hurting performance,
1230  // do not reduce the limit.
1231  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1232  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1233  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1234  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1235  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1236  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1237  setPrefLoopAlignment(4); // 2^4 bytes.
1238  benefitFromCodePlacementOpt = true;
1239
1240  setPrefFunctionAlignment(4); // 2^4 bytes.
1241}
1242
1243
1244EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1245  if (!VT.isVector()) return MVT::i8;
1246  return VT.changeVectorElementTypeToInteger();
1247}
1248
1249
1250/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1251/// the desired ByVal argument alignment.
1252static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1253  if (MaxAlign == 16)
1254    return;
1255  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1256    if (VTy->getBitWidth() == 128)
1257      MaxAlign = 16;
1258  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1259    unsigned EltAlign = 0;
1260    getMaxByValAlign(ATy->getElementType(), EltAlign);
1261    if (EltAlign > MaxAlign)
1262      MaxAlign = EltAlign;
1263  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1264    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1265      unsigned EltAlign = 0;
1266      getMaxByValAlign(STy->getElementType(i), EltAlign);
1267      if (EltAlign > MaxAlign)
1268        MaxAlign = EltAlign;
1269      if (MaxAlign == 16)
1270        break;
1271    }
1272  }
1273  return;
1274}
1275
1276/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1277/// function arguments in the caller parameter area. For X86, aggregates
1278/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1279/// are at 4-byte boundaries.
1280unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1281  if (Subtarget->is64Bit()) {
1282    // Max of 8 and alignment of type.
1283    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1284    if (TyAlign > 8)
1285      return TyAlign;
1286    return 8;
1287  }
1288
1289  unsigned Align = 4;
1290  if (Subtarget->hasSSE1())
1291    getMaxByValAlign(Ty, Align);
1292  return Align;
1293}
1294
1295/// getOptimalMemOpType - Returns the target specific optimal type for load
1296/// and store operations as a result of memset, memcpy, and memmove
1297/// lowering. If DstAlign is zero that means it's safe to destination
1298/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1299/// means there isn't a need to check it against alignment requirement,
1300/// probably because the source does not need to be loaded. If
1301/// 'IsZeroVal' is true, that means it's safe to return a
1302/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1303/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1304/// constant so it does not need to be loaded.
1305/// It returns EVT::Other if the type should be determined using generic
1306/// target-independent logic.
1307EVT
1308X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1309                                       unsigned DstAlign, unsigned SrcAlign,
1310                                       bool IsZeroVal,
1311                                       bool MemcpyStrSrc,
1312                                       MachineFunction &MF) const {
1313  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1314  // linux.  This is because the stack realignment code can't handle certain
1315  // cases like PR2962.  This should be removed when PR2962 is fixed.
1316  const Function *F = MF.getFunction();
1317  if (IsZeroVal &&
1318      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1319    if (Size >= 16 &&
1320        (Subtarget->isUnalignedMemAccessFast() ||
1321         ((DstAlign == 0 || DstAlign >= 16) &&
1322          (SrcAlign == 0 || SrcAlign >= 16))) &&
1323        Subtarget->getStackAlignment() >= 16) {
1324      if (Subtarget->getStackAlignment() >= 32) {
1325        if (Subtarget->hasAVX2())
1326          return MVT::v8i32;
1327        if (Subtarget->hasAVX())
1328          return MVT::v8f32;
1329      }
1330      if (Subtarget->hasSSE2())
1331        return MVT::v4i32;
1332      if (Subtarget->hasSSE1())
1333        return MVT::v4f32;
1334    } else if (!MemcpyStrSrc && Size >= 8 &&
1335               !Subtarget->is64Bit() &&
1336               Subtarget->getStackAlignment() >= 8 &&
1337               Subtarget->hasSSE2()) {
1338      // Do not use f64 to lower memcpy if source is string constant. It's
1339      // better to use i32 to avoid the loads.
1340      return MVT::f64;
1341    }
1342  }
1343  if (Subtarget->is64Bit() && Size >= 8)
1344    return MVT::i64;
1345  return MVT::i32;
1346}
1347
1348/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1349/// current function.  The returned value is a member of the
1350/// MachineJumpTableInfo::JTEntryKind enum.
1351unsigned X86TargetLowering::getJumpTableEncoding() const {
1352  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1353  // symbol.
1354  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1355      Subtarget->isPICStyleGOT())
1356    return MachineJumpTableInfo::EK_Custom32;
1357
1358  // Otherwise, use the normal jump table encoding heuristics.
1359  return TargetLowering::getJumpTableEncoding();
1360}
1361
1362const MCExpr *
1363X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1364                                             const MachineBasicBlock *MBB,
1365                                             unsigned uid,MCContext &Ctx) const{
1366  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1367         Subtarget->isPICStyleGOT());
1368  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1369  // entries.
1370  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1371                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1372}
1373
1374/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1375/// jumptable.
1376SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1377                                                    SelectionDAG &DAG) const {
1378  if (!Subtarget->is64Bit())
1379    // This doesn't have DebugLoc associated with it, but is not really the
1380    // same as a Register.
1381    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1382  return Table;
1383}
1384
1385/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1386/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1387/// MCExpr.
1388const MCExpr *X86TargetLowering::
1389getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1390                             MCContext &Ctx) const {
1391  // X86-64 uses RIP relative addressing based on the jump table label.
1392  if (Subtarget->isPICStyleRIPRel())
1393    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1394
1395  // Otherwise, the reference is relative to the PIC base.
1396  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1397}
1398
1399// FIXME: Why this routine is here? Move to RegInfo!
1400std::pair<const TargetRegisterClass*, uint8_t>
1401X86TargetLowering::findRepresentativeClass(EVT VT) const{
1402  const TargetRegisterClass *RRC = 0;
1403  uint8_t Cost = 1;
1404  switch (VT.getSimpleVT().SimpleTy) {
1405  default:
1406    return TargetLowering::findRepresentativeClass(VT);
1407  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1408    RRC = (Subtarget->is64Bit()
1409           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1410    break;
1411  case MVT::x86mmx:
1412    RRC = X86::VR64RegisterClass;
1413    break;
1414  case MVT::f32: case MVT::f64:
1415  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1416  case MVT::v4f32: case MVT::v2f64:
1417  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1418  case MVT::v4f64:
1419    RRC = X86::VR128RegisterClass;
1420    break;
1421  }
1422  return std::make_pair(RRC, Cost);
1423}
1424
1425bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1426                                               unsigned &Offset) const {
1427  if (!Subtarget->isTargetLinux())
1428    return false;
1429
1430  if (Subtarget->is64Bit()) {
1431    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1432    Offset = 0x28;
1433    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1434      AddressSpace = 256;
1435    else
1436      AddressSpace = 257;
1437  } else {
1438    // %gs:0x14 on i386
1439    Offset = 0x14;
1440    AddressSpace = 256;
1441  }
1442  return true;
1443}
1444
1445
1446//===----------------------------------------------------------------------===//
1447//               Return Value Calling Convention Implementation
1448//===----------------------------------------------------------------------===//
1449
1450#include "X86GenCallingConv.inc"
1451
1452bool
1453X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1454				  MachineFunction &MF, bool isVarArg,
1455                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1456                        LLVMContext &Context) const {
1457  SmallVector<CCValAssign, 16> RVLocs;
1458  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1459                 RVLocs, Context);
1460  return CCInfo.CheckReturn(Outs, RetCC_X86);
1461}
1462
1463SDValue
1464X86TargetLowering::LowerReturn(SDValue Chain,
1465                               CallingConv::ID CallConv, bool isVarArg,
1466                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1467                               const SmallVectorImpl<SDValue> &OutVals,
1468                               DebugLoc dl, SelectionDAG &DAG) const {
1469  MachineFunction &MF = DAG.getMachineFunction();
1470  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1471
1472  SmallVector<CCValAssign, 16> RVLocs;
1473  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1474                 RVLocs, *DAG.getContext());
1475  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1476
1477  // Add the regs to the liveout set for the function.
1478  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1479  for (unsigned i = 0; i != RVLocs.size(); ++i)
1480    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1481      MRI.addLiveOut(RVLocs[i].getLocReg());
1482
1483  SDValue Flag;
1484
1485  SmallVector<SDValue, 6> RetOps;
1486  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1487  // Operand #1 = Bytes To Pop
1488  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1489                   MVT::i16));
1490
1491  // Copy the result values into the output registers.
1492  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1493    CCValAssign &VA = RVLocs[i];
1494    assert(VA.isRegLoc() && "Can only return in registers!");
1495    SDValue ValToCopy = OutVals[i];
1496    EVT ValVT = ValToCopy.getValueType();
1497
1498    // If this is x86-64, and we disabled SSE, we can't return FP values,
1499    // or SSE or MMX vectors.
1500    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1501         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1502          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1503      report_fatal_error("SSE register return with SSE disabled");
1504    }
1505    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1506    // llvm-gcc has never done it right and no one has noticed, so this
1507    // should be OK for now.
1508    if (ValVT == MVT::f64 &&
1509        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1510      report_fatal_error("SSE2 register return with SSE2 disabled");
1511
1512    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1513    // the RET instruction and handled by the FP Stackifier.
1514    if (VA.getLocReg() == X86::ST0 ||
1515        VA.getLocReg() == X86::ST1) {
1516      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1517      // change the value to the FP stack register class.
1518      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1519        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1520      RetOps.push_back(ValToCopy);
1521      // Don't emit a copytoreg.
1522      continue;
1523    }
1524
1525    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1526    // which is returned in RAX / RDX.
1527    if (Subtarget->is64Bit()) {
1528      if (ValVT == MVT::x86mmx) {
1529        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1530          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1531          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1532                                  ValToCopy);
1533          // If we don't have SSE2 available, convert to v4f32 so the generated
1534          // register is legal.
1535          if (!Subtarget->hasSSE2())
1536            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1537        }
1538      }
1539    }
1540
1541    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1542    Flag = Chain.getValue(1);
1543  }
1544
1545  // The x86-64 ABI for returning structs by value requires that we copy
1546  // the sret argument into %rax for the return. We saved the argument into
1547  // a virtual register in the entry block, so now we copy the value out
1548  // and into %rax.
1549  if (Subtarget->is64Bit() &&
1550      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1551    MachineFunction &MF = DAG.getMachineFunction();
1552    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1553    unsigned Reg = FuncInfo->getSRetReturnReg();
1554    assert(Reg &&
1555           "SRetReturnReg should have been set in LowerFormalArguments().");
1556    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1557
1558    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1559    Flag = Chain.getValue(1);
1560
1561    // RAX now acts like a return value.
1562    MRI.addLiveOut(X86::RAX);
1563  }
1564
1565  RetOps[0] = Chain;  // Update chain.
1566
1567  // Add the flag if we have it.
1568  if (Flag.getNode())
1569    RetOps.push_back(Flag);
1570
1571  return DAG.getNode(X86ISD::RET_FLAG, dl,
1572                     MVT::Other, &RetOps[0], RetOps.size());
1573}
1574
1575bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1576  if (N->getNumValues() != 1)
1577    return false;
1578  if (!N->hasNUsesOfValue(1, 0))
1579    return false;
1580
1581  SDNode *Copy = *N->use_begin();
1582  if (Copy->getOpcode() != ISD::CopyToReg &&
1583      Copy->getOpcode() != ISD::FP_EXTEND)
1584    return false;
1585
1586  bool HasRet = false;
1587  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1588       UI != UE; ++UI) {
1589    if (UI->getOpcode() != X86ISD::RET_FLAG)
1590      return false;
1591    HasRet = true;
1592  }
1593
1594  return HasRet;
1595}
1596
1597EVT
1598X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1599                                            ISD::NodeType ExtendKind) const {
1600  MVT ReturnMVT;
1601  // TODO: Is this also valid on 32-bit?
1602  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1603    ReturnMVT = MVT::i8;
1604  else
1605    ReturnMVT = MVT::i32;
1606
1607  EVT MinVT = getRegisterType(Context, ReturnMVT);
1608  return VT.bitsLT(MinVT) ? MinVT : VT;
1609}
1610
1611/// LowerCallResult - Lower the result values of a call into the
1612/// appropriate copies out of appropriate physical registers.
1613///
1614SDValue
1615X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1616                                   CallingConv::ID CallConv, bool isVarArg,
1617                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1618                                   DebugLoc dl, SelectionDAG &DAG,
1619                                   SmallVectorImpl<SDValue> &InVals) const {
1620
1621  // Assign locations to each value returned by this call.
1622  SmallVector<CCValAssign, 16> RVLocs;
1623  bool Is64Bit = Subtarget->is64Bit();
1624  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1625		 getTargetMachine(), RVLocs, *DAG.getContext());
1626  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1627
1628  // Copy all of the result registers out of their specified physreg.
1629  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1630    CCValAssign &VA = RVLocs[i];
1631    EVT CopyVT = VA.getValVT();
1632
1633    // If this is x86-64, and we disabled SSE, we can't return FP values
1634    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1635        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1636      report_fatal_error("SSE register return with SSE disabled");
1637    }
1638
1639    SDValue Val;
1640
1641    // If this is a call to a function that returns an fp value on the floating
1642    // point stack, we must guarantee the the value is popped from the stack, so
1643    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1644    // if the return value is not used. We use the FpPOP_RETVAL instruction
1645    // instead.
1646    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1647      // If we prefer to use the value in xmm registers, copy it out as f80 and
1648      // use a truncate to move it from fp stack reg to xmm reg.
1649      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1650      SDValue Ops[] = { Chain, InFlag };
1651      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1652                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1653      Val = Chain.getValue(0);
1654
1655      // Round the f80 to the right size, which also moves it to the appropriate
1656      // xmm register.
1657      if (CopyVT != VA.getValVT())
1658        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1659                          // This truncation won't change the value.
1660                          DAG.getIntPtrConstant(1));
1661    } else {
1662      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1663                                 CopyVT, InFlag).getValue(1);
1664      Val = Chain.getValue(0);
1665    }
1666    InFlag = Chain.getValue(2);
1667    InVals.push_back(Val);
1668  }
1669
1670  return Chain;
1671}
1672
1673
1674//===----------------------------------------------------------------------===//
1675//                C & StdCall & Fast Calling Convention implementation
1676//===----------------------------------------------------------------------===//
1677//  StdCall calling convention seems to be standard for many Windows' API
1678//  routines and around. It differs from C calling convention just a little:
1679//  callee should clean up the stack, not caller. Symbols should be also
1680//  decorated in some fancy way :) It doesn't support any vector arguments.
1681//  For info on fast calling convention see Fast Calling Convention (tail call)
1682//  implementation LowerX86_32FastCCCallTo.
1683
1684/// CallIsStructReturn - Determines whether a call uses struct return
1685/// semantics.
1686static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1687  if (Outs.empty())
1688    return false;
1689
1690  return Outs[0].Flags.isSRet();
1691}
1692
1693/// ArgsAreStructReturn - Determines whether a function uses struct
1694/// return semantics.
1695static bool
1696ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1697  if (Ins.empty())
1698    return false;
1699
1700  return Ins[0].Flags.isSRet();
1701}
1702
1703/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1704/// by "Src" to address "Dst" with size and alignment information specified by
1705/// the specific parameter attribute. The copy will be passed as a byval
1706/// function parameter.
1707static SDValue
1708CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1709                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1710                          DebugLoc dl) {
1711  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1712
1713  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1714                       /*isVolatile*/false, /*AlwaysInline=*/true,
1715                       MachinePointerInfo(), MachinePointerInfo());
1716}
1717
1718/// IsTailCallConvention - Return true if the calling convention is one that
1719/// supports tail call optimization.
1720static bool IsTailCallConvention(CallingConv::ID CC) {
1721  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1722}
1723
1724bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1725  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1726    return false;
1727
1728  CallSite CS(CI);
1729  CallingConv::ID CalleeCC = CS.getCallingConv();
1730  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1731    return false;
1732
1733  return true;
1734}
1735
1736/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1737/// a tailcall target by changing its ABI.
1738static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1739                                   bool GuaranteedTailCallOpt) {
1740  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1741}
1742
1743SDValue
1744X86TargetLowering::LowerMemArgument(SDValue Chain,
1745                                    CallingConv::ID CallConv,
1746                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1747                                    DebugLoc dl, SelectionDAG &DAG,
1748                                    const CCValAssign &VA,
1749                                    MachineFrameInfo *MFI,
1750                                    unsigned i) const {
1751  // Create the nodes corresponding to a load from this parameter slot.
1752  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1753  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1754                              getTargetMachine().Options.GuaranteedTailCallOpt);
1755  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1756  EVT ValVT;
1757
1758  // If value is passed by pointer we have address passed instead of the value
1759  // itself.
1760  if (VA.getLocInfo() == CCValAssign::Indirect)
1761    ValVT = VA.getLocVT();
1762  else
1763    ValVT = VA.getValVT();
1764
1765  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1766  // changed with more analysis.
1767  // In case of tail call optimization mark all arguments mutable. Since they
1768  // could be overwritten by lowering of arguments in case of a tail call.
1769  if (Flags.isByVal()) {
1770    unsigned Bytes = Flags.getByValSize();
1771    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1772    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1773    return DAG.getFrameIndex(FI, getPointerTy());
1774  } else {
1775    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1776                                    VA.getLocMemOffset(), isImmutable);
1777    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1778    return DAG.getLoad(ValVT, dl, Chain, FIN,
1779                       MachinePointerInfo::getFixedStack(FI),
1780                       false, false, false, 0);
1781  }
1782}
1783
1784SDValue
1785X86TargetLowering::LowerFormalArguments(SDValue Chain,
1786                                        CallingConv::ID CallConv,
1787                                        bool isVarArg,
1788                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1789                                        DebugLoc dl,
1790                                        SelectionDAG &DAG,
1791                                        SmallVectorImpl<SDValue> &InVals)
1792                                          const {
1793  MachineFunction &MF = DAG.getMachineFunction();
1794  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1795
1796  const Function* Fn = MF.getFunction();
1797  if (Fn->hasExternalLinkage() &&
1798      Subtarget->isTargetCygMing() &&
1799      Fn->getName() == "main")
1800    FuncInfo->setForceFramePointer(true);
1801
1802  MachineFrameInfo *MFI = MF.getFrameInfo();
1803  bool Is64Bit = Subtarget->is64Bit();
1804  bool IsWindows = Subtarget->isTargetWindows();
1805  bool IsWin64 = Subtarget->isTargetWin64();
1806
1807  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1808         "Var args not supported with calling convention fastcc or ghc");
1809
1810  // Assign locations to all of the incoming arguments.
1811  SmallVector<CCValAssign, 16> ArgLocs;
1812  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1813                 ArgLocs, *DAG.getContext());
1814
1815  // Allocate shadow area for Win64
1816  if (IsWin64) {
1817    CCInfo.AllocateStack(32, 8);
1818  }
1819
1820  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1821
1822  unsigned LastVal = ~0U;
1823  SDValue ArgValue;
1824  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1825    CCValAssign &VA = ArgLocs[i];
1826    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1827    // places.
1828    assert(VA.getValNo() != LastVal &&
1829           "Don't support value assigned to multiple locs yet");
1830    (void)LastVal;
1831    LastVal = VA.getValNo();
1832
1833    if (VA.isRegLoc()) {
1834      EVT RegVT = VA.getLocVT();
1835      TargetRegisterClass *RC = NULL;
1836      if (RegVT == MVT::i32)
1837        RC = X86::GR32RegisterClass;
1838      else if (Is64Bit && RegVT == MVT::i64)
1839        RC = X86::GR64RegisterClass;
1840      else if (RegVT == MVT::f32)
1841        RC = X86::FR32RegisterClass;
1842      else if (RegVT == MVT::f64)
1843        RC = X86::FR64RegisterClass;
1844      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1845        RC = X86::VR256RegisterClass;
1846      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1847        RC = X86::VR128RegisterClass;
1848      else if (RegVT == MVT::x86mmx)
1849        RC = X86::VR64RegisterClass;
1850      else
1851        llvm_unreachable("Unknown argument type!");
1852
1853      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1854      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1855
1856      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1857      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1858      // right size.
1859      if (VA.getLocInfo() == CCValAssign::SExt)
1860        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1861                               DAG.getValueType(VA.getValVT()));
1862      else if (VA.getLocInfo() == CCValAssign::ZExt)
1863        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1864                               DAG.getValueType(VA.getValVT()));
1865      else if (VA.getLocInfo() == CCValAssign::BCvt)
1866        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1867
1868      if (VA.isExtInLoc()) {
1869        // Handle MMX values passed in XMM regs.
1870        if (RegVT.isVector()) {
1871          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1872                                 ArgValue);
1873        } else
1874          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1875      }
1876    } else {
1877      assert(VA.isMemLoc());
1878      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1879    }
1880
1881    // If value is passed via pointer - do a load.
1882    if (VA.getLocInfo() == CCValAssign::Indirect)
1883      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1884                             MachinePointerInfo(), false, false, false, 0);
1885
1886    InVals.push_back(ArgValue);
1887  }
1888
1889  // The x86-64 ABI for returning structs by value requires that we copy
1890  // the sret argument into %rax for the return. Save the argument into
1891  // a virtual register so that we can access it from the return points.
1892  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1893    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1894    unsigned Reg = FuncInfo->getSRetReturnReg();
1895    if (!Reg) {
1896      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1897      FuncInfo->setSRetReturnReg(Reg);
1898    }
1899    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1900    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1901  }
1902
1903  unsigned StackSize = CCInfo.getNextStackOffset();
1904  // Align stack specially for tail calls.
1905  if (FuncIsMadeTailCallSafe(CallConv,
1906                             MF.getTarget().Options.GuaranteedTailCallOpt))
1907    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1908
1909  // If the function takes variable number of arguments, make a frame index for
1910  // the start of the first vararg value... for expansion of llvm.va_start.
1911  if (isVarArg) {
1912    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1913                    CallConv != CallingConv::X86_ThisCall)) {
1914      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1915    }
1916    if (Is64Bit) {
1917      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1918
1919      // FIXME: We should really autogenerate these arrays
1920      static const unsigned GPR64ArgRegsWin64[] = {
1921        X86::RCX, X86::RDX, X86::R8,  X86::R9
1922      };
1923      static const unsigned GPR64ArgRegs64Bit[] = {
1924        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1925      };
1926      static const unsigned XMMArgRegs64Bit[] = {
1927        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1928        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1929      };
1930      const unsigned *GPR64ArgRegs;
1931      unsigned NumXMMRegs = 0;
1932
1933      if (IsWin64) {
1934        // The XMM registers which might contain var arg parameters are shadowed
1935        // in their paired GPR.  So we only need to save the GPR to their home
1936        // slots.
1937        TotalNumIntRegs = 4;
1938        GPR64ArgRegs = GPR64ArgRegsWin64;
1939      } else {
1940        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1941        GPR64ArgRegs = GPR64ArgRegs64Bit;
1942
1943        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1944                                                TotalNumXMMRegs);
1945      }
1946      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1947                                                       TotalNumIntRegs);
1948
1949      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1950      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1951             "SSE register cannot be used when SSE is disabled!");
1952      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1953               NoImplicitFloatOps) &&
1954             "SSE register cannot be used when SSE is disabled!");
1955      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1956          !Subtarget->hasSSE1())
1957        // Kernel mode asks for SSE to be disabled, so don't push them
1958        // on the stack.
1959        TotalNumXMMRegs = 0;
1960
1961      if (IsWin64) {
1962        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1963        // Get to the caller-allocated home save location.  Add 8 to account
1964        // for the return address.
1965        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1966        FuncInfo->setRegSaveFrameIndex(
1967          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1968        // Fixup to set vararg frame on shadow area (4 x i64).
1969        if (NumIntRegs < 4)
1970          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1971      } else {
1972        // For X86-64, if there are vararg parameters that are passed via
1973        // registers, then we must store them to their spots on the stack so
1974        // they may be loaded by deferencing the result of va_next.
1975        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1976        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1977        FuncInfo->setRegSaveFrameIndex(
1978          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1979                               false));
1980      }
1981
1982      // Store the integer parameter registers.
1983      SmallVector<SDValue, 8> MemOps;
1984      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1985                                        getPointerTy());
1986      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1987      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1988        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1989                                  DAG.getIntPtrConstant(Offset));
1990        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1991                                     X86::GR64RegisterClass);
1992        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1993        SDValue Store =
1994          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1995                       MachinePointerInfo::getFixedStack(
1996                         FuncInfo->getRegSaveFrameIndex(), Offset),
1997                       false, false, 0);
1998        MemOps.push_back(Store);
1999        Offset += 8;
2000      }
2001
2002      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2003        // Now store the XMM (fp + vector) parameter registers.
2004        SmallVector<SDValue, 11> SaveXMMOps;
2005        SaveXMMOps.push_back(Chain);
2006
2007        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2008        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2009        SaveXMMOps.push_back(ALVal);
2010
2011        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2012                               FuncInfo->getRegSaveFrameIndex()));
2013        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2014                               FuncInfo->getVarArgsFPOffset()));
2015
2016        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2017          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2018                                       X86::VR128RegisterClass);
2019          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2020          SaveXMMOps.push_back(Val);
2021        }
2022        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2023                                     MVT::Other,
2024                                     &SaveXMMOps[0], SaveXMMOps.size()));
2025      }
2026
2027      if (!MemOps.empty())
2028        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2029                            &MemOps[0], MemOps.size());
2030    }
2031  }
2032
2033  // Some CCs need callee pop.
2034  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2035                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2036    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2037  } else {
2038    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2039    // If this is an sret function, the return should pop the hidden pointer.
2040    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2041        ArgsAreStructReturn(Ins))
2042      FuncInfo->setBytesToPopOnReturn(4);
2043  }
2044
2045  if (!Is64Bit) {
2046    // RegSaveFrameIndex is X86-64 only.
2047    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2048    if (CallConv == CallingConv::X86_FastCall ||
2049        CallConv == CallingConv::X86_ThisCall)
2050      // fastcc functions can't have varargs.
2051      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2052  }
2053
2054  FuncInfo->setArgumentStackSize(StackSize);
2055
2056  return Chain;
2057}
2058
2059SDValue
2060X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2061                                    SDValue StackPtr, SDValue Arg,
2062                                    DebugLoc dl, SelectionDAG &DAG,
2063                                    const CCValAssign &VA,
2064                                    ISD::ArgFlagsTy Flags) const {
2065  unsigned LocMemOffset = VA.getLocMemOffset();
2066  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2067  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2068  if (Flags.isByVal())
2069    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2070
2071  return DAG.getStore(Chain, dl, Arg, PtrOff,
2072                      MachinePointerInfo::getStack(LocMemOffset),
2073                      false, false, 0);
2074}
2075
2076/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2077/// optimization is performed and it is required.
2078SDValue
2079X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2080                                           SDValue &OutRetAddr, SDValue Chain,
2081                                           bool IsTailCall, bool Is64Bit,
2082                                           int FPDiff, DebugLoc dl) const {
2083  // Adjust the Return address stack slot.
2084  EVT VT = getPointerTy();
2085  OutRetAddr = getReturnAddressFrameIndex(DAG);
2086
2087  // Load the "old" Return address.
2088  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2089                           false, false, false, 0);
2090  return SDValue(OutRetAddr.getNode(), 1);
2091}
2092
2093/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2094/// optimization is performed and it is required (FPDiff!=0).
2095static SDValue
2096EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2097                         SDValue Chain, SDValue RetAddrFrIdx,
2098                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2099  // Store the return address to the appropriate stack slot.
2100  if (!FPDiff) return Chain;
2101  // Calculate the new stack slot for the return address.
2102  int SlotSize = Is64Bit ? 8 : 4;
2103  int NewReturnAddrFI =
2104    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2105  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2106  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2107  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2108                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2109                       false, false, 0);
2110  return Chain;
2111}
2112
2113SDValue
2114X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2115                             CallingConv::ID CallConv, bool isVarArg,
2116                             bool &isTailCall,
2117                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2118                             const SmallVectorImpl<SDValue> &OutVals,
2119                             const SmallVectorImpl<ISD::InputArg> &Ins,
2120                             DebugLoc dl, SelectionDAG &DAG,
2121                             SmallVectorImpl<SDValue> &InVals) const {
2122  MachineFunction &MF = DAG.getMachineFunction();
2123  bool Is64Bit        = Subtarget->is64Bit();
2124  bool IsWin64        = Subtarget->isTargetWin64();
2125  bool IsWindows      = Subtarget->isTargetWindows();
2126  bool IsStructRet    = CallIsStructReturn(Outs);
2127  bool IsSibcall      = false;
2128
2129  if (MF.getTarget().Options.DisableTailCalls)
2130    isTailCall = false;
2131
2132  if (isTailCall) {
2133    // Check if it's really possible to do a tail call.
2134    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2135                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2136                                                   Outs, OutVals, Ins, DAG);
2137
2138    // Sibcalls are automatically detected tailcalls which do not require
2139    // ABI changes.
2140    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2141      IsSibcall = true;
2142
2143    if (isTailCall)
2144      ++NumTailCalls;
2145  }
2146
2147  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2148         "Var args not supported with calling convention fastcc or ghc");
2149
2150  // Analyze operands of the call, assigning locations to each operand.
2151  SmallVector<CCValAssign, 16> ArgLocs;
2152  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2153                 ArgLocs, *DAG.getContext());
2154
2155  // Allocate shadow area for Win64
2156  if (IsWin64) {
2157    CCInfo.AllocateStack(32, 8);
2158  }
2159
2160  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2161
2162  // Get a count of how many bytes are to be pushed on the stack.
2163  unsigned NumBytes = CCInfo.getNextStackOffset();
2164  if (IsSibcall)
2165    // This is a sibcall. The memory operands are available in caller's
2166    // own caller's stack.
2167    NumBytes = 0;
2168  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2169           IsTailCallConvention(CallConv))
2170    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2171
2172  int FPDiff = 0;
2173  if (isTailCall && !IsSibcall) {
2174    // Lower arguments at fp - stackoffset + fpdiff.
2175    unsigned NumBytesCallerPushed =
2176      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2177    FPDiff = NumBytesCallerPushed - NumBytes;
2178
2179    // Set the delta of movement of the returnaddr stackslot.
2180    // But only set if delta is greater than previous delta.
2181    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2182      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2183  }
2184
2185  if (!IsSibcall)
2186    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2187
2188  SDValue RetAddrFrIdx;
2189  // Load return address for tail calls.
2190  if (isTailCall && FPDiff)
2191    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2192                                    Is64Bit, FPDiff, dl);
2193
2194  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2195  SmallVector<SDValue, 8> MemOpChains;
2196  SDValue StackPtr;
2197
2198  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2199  // of tail call optimization arguments are handle later.
2200  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2201    CCValAssign &VA = ArgLocs[i];
2202    EVT RegVT = VA.getLocVT();
2203    SDValue Arg = OutVals[i];
2204    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2205    bool isByVal = Flags.isByVal();
2206
2207    // Promote the value if needed.
2208    switch (VA.getLocInfo()) {
2209    default: llvm_unreachable("Unknown loc info!");
2210    case CCValAssign::Full: break;
2211    case CCValAssign::SExt:
2212      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2213      break;
2214    case CCValAssign::ZExt:
2215      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2216      break;
2217    case CCValAssign::AExt:
2218      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2219        // Special case: passing MMX values in XMM registers.
2220        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2221        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2222        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2223      } else
2224        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2225      break;
2226    case CCValAssign::BCvt:
2227      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2228      break;
2229    case CCValAssign::Indirect: {
2230      // Store the argument.
2231      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2232      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2233      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2234                           MachinePointerInfo::getFixedStack(FI),
2235                           false, false, 0);
2236      Arg = SpillSlot;
2237      break;
2238    }
2239    }
2240
2241    if (VA.isRegLoc()) {
2242      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2243      if (isVarArg && IsWin64) {
2244        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2245        // shadow reg if callee is a varargs function.
2246        unsigned ShadowReg = 0;
2247        switch (VA.getLocReg()) {
2248        case X86::XMM0: ShadowReg = X86::RCX; break;
2249        case X86::XMM1: ShadowReg = X86::RDX; break;
2250        case X86::XMM2: ShadowReg = X86::R8; break;
2251        case X86::XMM3: ShadowReg = X86::R9; break;
2252        }
2253        if (ShadowReg)
2254          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2255      }
2256    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2257      assert(VA.isMemLoc());
2258      if (StackPtr.getNode() == 0)
2259        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2260      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2261                                             dl, DAG, VA, Flags));
2262    }
2263  }
2264
2265  if (!MemOpChains.empty())
2266    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2267                        &MemOpChains[0], MemOpChains.size());
2268
2269  // Build a sequence of copy-to-reg nodes chained together with token chain
2270  // and flag operands which copy the outgoing args into registers.
2271  SDValue InFlag;
2272  // Tail call byval lowering might overwrite argument registers so in case of
2273  // tail call optimization the copies to registers are lowered later.
2274  if (!isTailCall)
2275    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2276      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2277                               RegsToPass[i].second, InFlag);
2278      InFlag = Chain.getValue(1);
2279    }
2280
2281  if (Subtarget->isPICStyleGOT()) {
2282    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2283    // GOT pointer.
2284    if (!isTailCall) {
2285      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2286                               DAG.getNode(X86ISD::GlobalBaseReg,
2287                                           DebugLoc(), getPointerTy()),
2288                               InFlag);
2289      InFlag = Chain.getValue(1);
2290    } else {
2291      // If we are tail calling and generating PIC/GOT style code load the
2292      // address of the callee into ECX. The value in ecx is used as target of
2293      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2294      // for tail calls on PIC/GOT architectures. Normally we would just put the
2295      // address of GOT into ebx and then call target@PLT. But for tail calls
2296      // ebx would be restored (since ebx is callee saved) before jumping to the
2297      // target@PLT.
2298
2299      // Note: The actual moving to ECX is done further down.
2300      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2301      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2302          !G->getGlobal()->hasProtectedVisibility())
2303        Callee = LowerGlobalAddress(Callee, DAG);
2304      else if (isa<ExternalSymbolSDNode>(Callee))
2305        Callee = LowerExternalSymbol(Callee, DAG);
2306    }
2307  }
2308
2309  if (Is64Bit && isVarArg && !IsWin64) {
2310    // From AMD64 ABI document:
2311    // For calls that may call functions that use varargs or stdargs
2312    // (prototype-less calls or calls to functions containing ellipsis (...) in
2313    // the declaration) %al is used as hidden argument to specify the number
2314    // of SSE registers used. The contents of %al do not need to match exactly
2315    // the number of registers, but must be an ubound on the number of SSE
2316    // registers used and is in the range 0 - 8 inclusive.
2317
2318    // Count the number of XMM registers allocated.
2319    static const unsigned XMMArgRegs[] = {
2320      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2321      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2322    };
2323    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2324    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2325           && "SSE registers cannot be used when SSE is disabled");
2326
2327    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2328                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2329    InFlag = Chain.getValue(1);
2330  }
2331
2332
2333  // For tail calls lower the arguments to the 'real' stack slot.
2334  if (isTailCall) {
2335    // Force all the incoming stack arguments to be loaded from the stack
2336    // before any new outgoing arguments are stored to the stack, because the
2337    // outgoing stack slots may alias the incoming argument stack slots, and
2338    // the alias isn't otherwise explicit. This is slightly more conservative
2339    // than necessary, because it means that each store effectively depends
2340    // on every argument instead of just those arguments it would clobber.
2341    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2342
2343    SmallVector<SDValue, 8> MemOpChains2;
2344    SDValue FIN;
2345    int FI = 0;
2346    // Do not flag preceding copytoreg stuff together with the following stuff.
2347    InFlag = SDValue();
2348    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2349      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2350        CCValAssign &VA = ArgLocs[i];
2351        if (VA.isRegLoc())
2352          continue;
2353        assert(VA.isMemLoc());
2354        SDValue Arg = OutVals[i];
2355        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2356        // Create frame index.
2357        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2358        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2359        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2360        FIN = DAG.getFrameIndex(FI, getPointerTy());
2361
2362        if (Flags.isByVal()) {
2363          // Copy relative to framepointer.
2364          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2365          if (StackPtr.getNode() == 0)
2366            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2367                                          getPointerTy());
2368          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2369
2370          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2371                                                           ArgChain,
2372                                                           Flags, DAG, dl));
2373        } else {
2374          // Store relative to framepointer.
2375          MemOpChains2.push_back(
2376            DAG.getStore(ArgChain, dl, Arg, FIN,
2377                         MachinePointerInfo::getFixedStack(FI),
2378                         false, false, 0));
2379        }
2380      }
2381    }
2382
2383    if (!MemOpChains2.empty())
2384      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2385                          &MemOpChains2[0], MemOpChains2.size());
2386
2387    // Copy arguments to their registers.
2388    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2389      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2390                               RegsToPass[i].second, InFlag);
2391      InFlag = Chain.getValue(1);
2392    }
2393    InFlag =SDValue();
2394
2395    // Store the return address to the appropriate stack slot.
2396    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2397                                     FPDiff, dl);
2398  }
2399
2400  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2401    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2402    // In the 64-bit large code model, we have to make all calls
2403    // through a register, since the call instruction's 32-bit
2404    // pc-relative offset may not be large enough to hold the whole
2405    // address.
2406  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2407    // If the callee is a GlobalAddress node (quite common, every direct call
2408    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2409    // it.
2410
2411    // We should use extra load for direct calls to dllimported functions in
2412    // non-JIT mode.
2413    const GlobalValue *GV = G->getGlobal();
2414    if (!GV->hasDLLImportLinkage()) {
2415      unsigned char OpFlags = 0;
2416      bool ExtraLoad = false;
2417      unsigned WrapperKind = ISD::DELETED_NODE;
2418
2419      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2420      // external symbols most go through the PLT in PIC mode.  If the symbol
2421      // has hidden or protected visibility, or if it is static or local, then
2422      // we don't need to use the PLT - we can directly call it.
2423      if (Subtarget->isTargetELF() &&
2424          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2425          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2426        OpFlags = X86II::MO_PLT;
2427      } else if (Subtarget->isPICStyleStubAny() &&
2428                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2429                 (!Subtarget->getTargetTriple().isMacOSX() ||
2430                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2431        // PC-relative references to external symbols should go through $stub,
2432        // unless we're building with the leopard linker or later, which
2433        // automatically synthesizes these stubs.
2434        OpFlags = X86II::MO_DARWIN_STUB;
2435      } else if (Subtarget->isPICStyleRIPRel() &&
2436                 isa<Function>(GV) &&
2437                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2438        // If the function is marked as non-lazy, generate an indirect call
2439        // which loads from the GOT directly. This avoids runtime overhead
2440        // at the cost of eager binding (and one extra byte of encoding).
2441        OpFlags = X86II::MO_GOTPCREL;
2442        WrapperKind = X86ISD::WrapperRIP;
2443        ExtraLoad = true;
2444      }
2445
2446      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2447                                          G->getOffset(), OpFlags);
2448
2449      // Add a wrapper if needed.
2450      if (WrapperKind != ISD::DELETED_NODE)
2451        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2452      // Add extra indirection if needed.
2453      if (ExtraLoad)
2454        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2455                             MachinePointerInfo::getGOT(),
2456                             false, false, false, 0);
2457    }
2458  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2459    unsigned char OpFlags = 0;
2460
2461    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2462    // external symbols should go through the PLT.
2463    if (Subtarget->isTargetELF() &&
2464        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2465      OpFlags = X86II::MO_PLT;
2466    } else if (Subtarget->isPICStyleStubAny() &&
2467               (!Subtarget->getTargetTriple().isMacOSX() ||
2468                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2469      // PC-relative references to external symbols should go through $stub,
2470      // unless we're building with the leopard linker or later, which
2471      // automatically synthesizes these stubs.
2472      OpFlags = X86II::MO_DARWIN_STUB;
2473    }
2474
2475    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2476                                         OpFlags);
2477  }
2478
2479  // Returns a chain & a flag for retval copy to use.
2480  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2481  SmallVector<SDValue, 8> Ops;
2482
2483  if (!IsSibcall && isTailCall) {
2484    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2485                           DAG.getIntPtrConstant(0, true), InFlag);
2486    InFlag = Chain.getValue(1);
2487  }
2488
2489  Ops.push_back(Chain);
2490  Ops.push_back(Callee);
2491
2492  if (isTailCall)
2493    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2494
2495  // Add argument registers to the end of the list so that they are known live
2496  // into the call.
2497  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2498    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2499                                  RegsToPass[i].second.getValueType()));
2500
2501  // Add an implicit use GOT pointer in EBX.
2502  if (!isTailCall && Subtarget->isPICStyleGOT())
2503    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2504
2505  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2506  if (Is64Bit && isVarArg && !IsWin64)
2507    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2508
2509  // Add a register mask operand representing the call-preserved registers.
2510  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2511  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2512  assert(Mask && "Missing call preserved mask for calling convention");
2513  Ops.push_back(DAG.getRegisterMask(Mask));
2514
2515  if (InFlag.getNode())
2516    Ops.push_back(InFlag);
2517
2518  if (isTailCall) {
2519    // We used to do:
2520    //// If this is the first return lowered for this function, add the regs
2521    //// to the liveout set for the function.
2522    // This isn't right, although it's probably harmless on x86; liveouts
2523    // should be computed from returns not tail calls.  Consider a void
2524    // function making a tail call to a function returning int.
2525    return DAG.getNode(X86ISD::TC_RETURN, dl,
2526                       NodeTys, &Ops[0], Ops.size());
2527  }
2528
2529  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2530  InFlag = Chain.getValue(1);
2531
2532  // Create the CALLSEQ_END node.
2533  unsigned NumBytesForCalleeToPush;
2534  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2535                       getTargetMachine().Options.GuaranteedTailCallOpt))
2536    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2537  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2538           IsStructRet)
2539    // If this is a call to a struct-return function, the callee
2540    // pops the hidden struct pointer, so we have to push it back.
2541    // This is common for Darwin/X86, Linux & Mingw32 targets.
2542    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2543    NumBytesForCalleeToPush = 4;
2544  else
2545    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2546
2547  // Returns a flag for retval copy to use.
2548  if (!IsSibcall) {
2549    Chain = DAG.getCALLSEQ_END(Chain,
2550                               DAG.getIntPtrConstant(NumBytes, true),
2551                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2552                                                     true),
2553                               InFlag);
2554    InFlag = Chain.getValue(1);
2555  }
2556
2557  // Handle result values, copying them out of physregs into vregs that we
2558  // return.
2559  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2560                         Ins, dl, DAG, InVals);
2561}
2562
2563
2564//===----------------------------------------------------------------------===//
2565//                Fast Calling Convention (tail call) implementation
2566//===----------------------------------------------------------------------===//
2567
2568//  Like std call, callee cleans arguments, convention except that ECX is
2569//  reserved for storing the tail called function address. Only 2 registers are
2570//  free for argument passing (inreg). Tail call optimization is performed
2571//  provided:
2572//                * tailcallopt is enabled
2573//                * caller/callee are fastcc
2574//  On X86_64 architecture with GOT-style position independent code only local
2575//  (within module) calls are supported at the moment.
2576//  To keep the stack aligned according to platform abi the function
2577//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2578//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2579//  If a tail called function callee has more arguments than the caller the
2580//  caller needs to make sure that there is room to move the RETADDR to. This is
2581//  achieved by reserving an area the size of the argument delta right after the
2582//  original REtADDR, but before the saved framepointer or the spilled registers
2583//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2584//  stack layout:
2585//    arg1
2586//    arg2
2587//    RETADDR
2588//    [ new RETADDR
2589//      move area ]
2590//    (possible EBP)
2591//    ESI
2592//    EDI
2593//    local1 ..
2594
2595/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2596/// for a 16 byte align requirement.
2597unsigned
2598X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2599                                               SelectionDAG& DAG) const {
2600  MachineFunction &MF = DAG.getMachineFunction();
2601  const TargetMachine &TM = MF.getTarget();
2602  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2603  unsigned StackAlignment = TFI.getStackAlignment();
2604  uint64_t AlignMask = StackAlignment - 1;
2605  int64_t Offset = StackSize;
2606  uint64_t SlotSize = TD->getPointerSize();
2607  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2608    // Number smaller than 12 so just add the difference.
2609    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2610  } else {
2611    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2612    Offset = ((~AlignMask) & Offset) + StackAlignment +
2613      (StackAlignment-SlotSize);
2614  }
2615  return Offset;
2616}
2617
2618/// MatchingStackOffset - Return true if the given stack call argument is
2619/// already available in the same position (relatively) of the caller's
2620/// incoming argument stack.
2621static
2622bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2623                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2624                         const X86InstrInfo *TII) {
2625  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2626  int FI = INT_MAX;
2627  if (Arg.getOpcode() == ISD::CopyFromReg) {
2628    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2629    if (!TargetRegisterInfo::isVirtualRegister(VR))
2630      return false;
2631    MachineInstr *Def = MRI->getVRegDef(VR);
2632    if (!Def)
2633      return false;
2634    if (!Flags.isByVal()) {
2635      if (!TII->isLoadFromStackSlot(Def, FI))
2636        return false;
2637    } else {
2638      unsigned Opcode = Def->getOpcode();
2639      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2640          Def->getOperand(1).isFI()) {
2641        FI = Def->getOperand(1).getIndex();
2642        Bytes = Flags.getByValSize();
2643      } else
2644        return false;
2645    }
2646  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2647    if (Flags.isByVal())
2648      // ByVal argument is passed in as a pointer but it's now being
2649      // dereferenced. e.g.
2650      // define @foo(%struct.X* %A) {
2651      //   tail call @bar(%struct.X* byval %A)
2652      // }
2653      return false;
2654    SDValue Ptr = Ld->getBasePtr();
2655    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2656    if (!FINode)
2657      return false;
2658    FI = FINode->getIndex();
2659  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2660    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2661    FI = FINode->getIndex();
2662    Bytes = Flags.getByValSize();
2663  } else
2664    return false;
2665
2666  assert(FI != INT_MAX);
2667  if (!MFI->isFixedObjectIndex(FI))
2668    return false;
2669  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2670}
2671
2672/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2673/// for tail call optimization. Targets which want to do tail call
2674/// optimization should implement this function.
2675bool
2676X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2677                                                     CallingConv::ID CalleeCC,
2678                                                     bool isVarArg,
2679                                                     bool isCalleeStructRet,
2680                                                     bool isCallerStructRet,
2681                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2682                                    const SmallVectorImpl<SDValue> &OutVals,
2683                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2684                                                     SelectionDAG& DAG) const {
2685  if (!IsTailCallConvention(CalleeCC) &&
2686      CalleeCC != CallingConv::C)
2687    return false;
2688
2689  // If -tailcallopt is specified, make fastcc functions tail-callable.
2690  const MachineFunction &MF = DAG.getMachineFunction();
2691  const Function *CallerF = DAG.getMachineFunction().getFunction();
2692  CallingConv::ID CallerCC = CallerF->getCallingConv();
2693  bool CCMatch = CallerCC == CalleeCC;
2694
2695  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2696    if (IsTailCallConvention(CalleeCC) && CCMatch)
2697      return true;
2698    return false;
2699  }
2700
2701  // Look for obvious safe cases to perform tail call optimization that do not
2702  // require ABI changes. This is what gcc calls sibcall.
2703
2704  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2705  // emit a special epilogue.
2706  if (RegInfo->needsStackRealignment(MF))
2707    return false;
2708
2709  // Also avoid sibcall optimization if either caller or callee uses struct
2710  // return semantics.
2711  if (isCalleeStructRet || isCallerStructRet)
2712    return false;
2713
2714  // An stdcall caller is expected to clean up its arguments; the callee
2715  // isn't going to do that.
2716  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2717    return false;
2718
2719  // Do not sibcall optimize vararg calls unless all arguments are passed via
2720  // registers.
2721  if (isVarArg && !Outs.empty()) {
2722
2723    // Optimizing for varargs on Win64 is unlikely to be safe without
2724    // additional testing.
2725    if (Subtarget->isTargetWin64())
2726      return false;
2727
2728    SmallVector<CCValAssign, 16> ArgLocs;
2729    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2730		   getTargetMachine(), ArgLocs, *DAG.getContext());
2731
2732    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2733    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2734      if (!ArgLocs[i].isRegLoc())
2735        return false;
2736  }
2737
2738  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2739  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2740  // this into a sibcall.
2741  bool Unused = false;
2742  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2743    if (!Ins[i].Used) {
2744      Unused = true;
2745      break;
2746    }
2747  }
2748  if (Unused) {
2749    SmallVector<CCValAssign, 16> RVLocs;
2750    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2751		   getTargetMachine(), RVLocs, *DAG.getContext());
2752    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2753    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2754      CCValAssign &VA = RVLocs[i];
2755      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2756        return false;
2757    }
2758  }
2759
2760  // If the calling conventions do not match, then we'd better make sure the
2761  // results are returned in the same way as what the caller expects.
2762  if (!CCMatch) {
2763    SmallVector<CCValAssign, 16> RVLocs1;
2764    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2765		    getTargetMachine(), RVLocs1, *DAG.getContext());
2766    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2767
2768    SmallVector<CCValAssign, 16> RVLocs2;
2769    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2770		    getTargetMachine(), RVLocs2, *DAG.getContext());
2771    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2772
2773    if (RVLocs1.size() != RVLocs2.size())
2774      return false;
2775    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2776      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2777        return false;
2778      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2779        return false;
2780      if (RVLocs1[i].isRegLoc()) {
2781        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2782          return false;
2783      } else {
2784        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2785          return false;
2786      }
2787    }
2788  }
2789
2790  // If the callee takes no arguments then go on to check the results of the
2791  // call.
2792  if (!Outs.empty()) {
2793    // Check if stack adjustment is needed. For now, do not do this if any
2794    // argument is passed on the stack.
2795    SmallVector<CCValAssign, 16> ArgLocs;
2796    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2797		   getTargetMachine(), ArgLocs, *DAG.getContext());
2798
2799    // Allocate shadow area for Win64
2800    if (Subtarget->isTargetWin64()) {
2801      CCInfo.AllocateStack(32, 8);
2802    }
2803
2804    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2805    if (CCInfo.getNextStackOffset()) {
2806      MachineFunction &MF = DAG.getMachineFunction();
2807      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2808        return false;
2809
2810      // Check if the arguments are already laid out in the right way as
2811      // the caller's fixed stack objects.
2812      MachineFrameInfo *MFI = MF.getFrameInfo();
2813      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2814      const X86InstrInfo *TII =
2815        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2816      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2817        CCValAssign &VA = ArgLocs[i];
2818        SDValue Arg = OutVals[i];
2819        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2820        if (VA.getLocInfo() == CCValAssign::Indirect)
2821          return false;
2822        if (!VA.isRegLoc()) {
2823          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2824                                   MFI, MRI, TII))
2825            return false;
2826        }
2827      }
2828    }
2829
2830    // If the tailcall address may be in a register, then make sure it's
2831    // possible to register allocate for it. In 32-bit, the call address can
2832    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2833    // callee-saved registers are restored. These happen to be the same
2834    // registers used to pass 'inreg' arguments so watch out for those.
2835    if (!Subtarget->is64Bit() &&
2836        !isa<GlobalAddressSDNode>(Callee) &&
2837        !isa<ExternalSymbolSDNode>(Callee)) {
2838      unsigned NumInRegs = 0;
2839      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2840        CCValAssign &VA = ArgLocs[i];
2841        if (!VA.isRegLoc())
2842          continue;
2843        unsigned Reg = VA.getLocReg();
2844        switch (Reg) {
2845        default: break;
2846        case X86::EAX: case X86::EDX: case X86::ECX:
2847          if (++NumInRegs == 3)
2848            return false;
2849          break;
2850        }
2851      }
2852    }
2853  }
2854
2855  return true;
2856}
2857
2858FastISel *
2859X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2860  return X86::createFastISel(funcInfo);
2861}
2862
2863
2864//===----------------------------------------------------------------------===//
2865//                           Other Lowering Hooks
2866//===----------------------------------------------------------------------===//
2867
2868static bool MayFoldLoad(SDValue Op) {
2869  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2870}
2871
2872static bool MayFoldIntoStore(SDValue Op) {
2873  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2874}
2875
2876static bool isTargetShuffle(unsigned Opcode) {
2877  switch(Opcode) {
2878  default: return false;
2879  case X86ISD::PSHUFD:
2880  case X86ISD::PSHUFHW:
2881  case X86ISD::PSHUFLW:
2882  case X86ISD::SHUFP:
2883  case X86ISD::PALIGN:
2884  case X86ISD::MOVLHPS:
2885  case X86ISD::MOVLHPD:
2886  case X86ISD::MOVHLPS:
2887  case X86ISD::MOVLPS:
2888  case X86ISD::MOVLPD:
2889  case X86ISD::MOVSHDUP:
2890  case X86ISD::MOVSLDUP:
2891  case X86ISD::MOVDDUP:
2892  case X86ISD::MOVSS:
2893  case X86ISD::MOVSD:
2894  case X86ISD::UNPCKL:
2895  case X86ISD::UNPCKH:
2896  case X86ISD::VPERMILP:
2897  case X86ISD::VPERM2X128:
2898    return true;
2899  }
2900}
2901
2902static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2903                                               SDValue V1, SelectionDAG &DAG) {
2904  switch(Opc) {
2905  default: llvm_unreachable("Unknown x86 shuffle node");
2906  case X86ISD::MOVSHDUP:
2907  case X86ISD::MOVSLDUP:
2908  case X86ISD::MOVDDUP:
2909    return DAG.getNode(Opc, dl, VT, V1);
2910  }
2911}
2912
2913static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2914                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2915  switch(Opc) {
2916  default: llvm_unreachable("Unknown x86 shuffle node");
2917  case X86ISD::PSHUFD:
2918  case X86ISD::PSHUFHW:
2919  case X86ISD::PSHUFLW:
2920  case X86ISD::VPERMILP:
2921    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2922  }
2923}
2924
2925static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2926               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2927  switch(Opc) {
2928  default: llvm_unreachable("Unknown x86 shuffle node");
2929  case X86ISD::PALIGN:
2930  case X86ISD::SHUFP:
2931  case X86ISD::VPERM2X128:
2932    return DAG.getNode(Opc, dl, VT, V1, V2,
2933                       DAG.getConstant(TargetMask, MVT::i8));
2934  }
2935}
2936
2937static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2938                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2939  switch(Opc) {
2940  default: llvm_unreachable("Unknown x86 shuffle node");
2941  case X86ISD::MOVLHPS:
2942  case X86ISD::MOVLHPD:
2943  case X86ISD::MOVHLPS:
2944  case X86ISD::MOVLPS:
2945  case X86ISD::MOVLPD:
2946  case X86ISD::MOVSS:
2947  case X86ISD::MOVSD:
2948  case X86ISD::UNPCKL:
2949  case X86ISD::UNPCKH:
2950    return DAG.getNode(Opc, dl, VT, V1, V2);
2951  }
2952}
2953
2954SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2955  MachineFunction &MF = DAG.getMachineFunction();
2956  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2957  int ReturnAddrIndex = FuncInfo->getRAIndex();
2958
2959  if (ReturnAddrIndex == 0) {
2960    // Set up a frame object for the return address.
2961    uint64_t SlotSize = TD->getPointerSize();
2962    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2963                                                           false);
2964    FuncInfo->setRAIndex(ReturnAddrIndex);
2965  }
2966
2967  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2968}
2969
2970
2971bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2972                                       bool hasSymbolicDisplacement) {
2973  // Offset should fit into 32 bit immediate field.
2974  if (!isInt<32>(Offset))
2975    return false;
2976
2977  // If we don't have a symbolic displacement - we don't have any extra
2978  // restrictions.
2979  if (!hasSymbolicDisplacement)
2980    return true;
2981
2982  // FIXME: Some tweaks might be needed for medium code model.
2983  if (M != CodeModel::Small && M != CodeModel::Kernel)
2984    return false;
2985
2986  // For small code model we assume that latest object is 16MB before end of 31
2987  // bits boundary. We may also accept pretty large negative constants knowing
2988  // that all objects are in the positive half of address space.
2989  if (M == CodeModel::Small && Offset < 16*1024*1024)
2990    return true;
2991
2992  // For kernel code model we know that all object resist in the negative half
2993  // of 32bits address space. We may not accept negative offsets, since they may
2994  // be just off and we may accept pretty large positive ones.
2995  if (M == CodeModel::Kernel && Offset > 0)
2996    return true;
2997
2998  return false;
2999}
3000
3001/// isCalleePop - Determines whether the callee is required to pop its
3002/// own arguments. Callee pop is necessary to support tail calls.
3003bool X86::isCalleePop(CallingConv::ID CallingConv,
3004                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3005  if (IsVarArg)
3006    return false;
3007
3008  switch (CallingConv) {
3009  default:
3010    return false;
3011  case CallingConv::X86_StdCall:
3012    return !is64Bit;
3013  case CallingConv::X86_FastCall:
3014    return !is64Bit;
3015  case CallingConv::X86_ThisCall:
3016    return !is64Bit;
3017  case CallingConv::Fast:
3018    return TailCallOpt;
3019  case CallingConv::GHC:
3020    return TailCallOpt;
3021  }
3022}
3023
3024/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3025/// specific condition code, returning the condition code and the LHS/RHS of the
3026/// comparison to make.
3027static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3028                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3029  if (!isFP) {
3030    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3031      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3032        // X > -1   -> X == 0, jump !sign.
3033        RHS = DAG.getConstant(0, RHS.getValueType());
3034        return X86::COND_NS;
3035      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3036        // X < 0   -> X == 0, jump on sign.
3037        return X86::COND_S;
3038      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3039        // X < 1   -> X <= 0
3040        RHS = DAG.getConstant(0, RHS.getValueType());
3041        return X86::COND_LE;
3042      }
3043    }
3044
3045    switch (SetCCOpcode) {
3046    default: llvm_unreachable("Invalid integer condition!");
3047    case ISD::SETEQ:  return X86::COND_E;
3048    case ISD::SETGT:  return X86::COND_G;
3049    case ISD::SETGE:  return X86::COND_GE;
3050    case ISD::SETLT:  return X86::COND_L;
3051    case ISD::SETLE:  return X86::COND_LE;
3052    case ISD::SETNE:  return X86::COND_NE;
3053    case ISD::SETULT: return X86::COND_B;
3054    case ISD::SETUGT: return X86::COND_A;
3055    case ISD::SETULE: return X86::COND_BE;
3056    case ISD::SETUGE: return X86::COND_AE;
3057    }
3058  }
3059
3060  // First determine if it is required or is profitable to flip the operands.
3061
3062  // If LHS is a foldable load, but RHS is not, flip the condition.
3063  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3064      !ISD::isNON_EXTLoad(RHS.getNode())) {
3065    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3066    std::swap(LHS, RHS);
3067  }
3068
3069  switch (SetCCOpcode) {
3070  default: break;
3071  case ISD::SETOLT:
3072  case ISD::SETOLE:
3073  case ISD::SETUGT:
3074  case ISD::SETUGE:
3075    std::swap(LHS, RHS);
3076    break;
3077  }
3078
3079  // On a floating point condition, the flags are set as follows:
3080  // ZF  PF  CF   op
3081  //  0 | 0 | 0 | X > Y
3082  //  0 | 0 | 1 | X < Y
3083  //  1 | 0 | 0 | X == Y
3084  //  1 | 1 | 1 | unordered
3085  switch (SetCCOpcode) {
3086  default: llvm_unreachable("Condcode should be pre-legalized away");
3087  case ISD::SETUEQ:
3088  case ISD::SETEQ:   return X86::COND_E;
3089  case ISD::SETOLT:              // flipped
3090  case ISD::SETOGT:
3091  case ISD::SETGT:   return X86::COND_A;
3092  case ISD::SETOLE:              // flipped
3093  case ISD::SETOGE:
3094  case ISD::SETGE:   return X86::COND_AE;
3095  case ISD::SETUGT:              // flipped
3096  case ISD::SETULT:
3097  case ISD::SETLT:   return X86::COND_B;
3098  case ISD::SETUGE:              // flipped
3099  case ISD::SETULE:
3100  case ISD::SETLE:   return X86::COND_BE;
3101  case ISD::SETONE:
3102  case ISD::SETNE:   return X86::COND_NE;
3103  case ISD::SETUO:   return X86::COND_P;
3104  case ISD::SETO:    return X86::COND_NP;
3105  case ISD::SETOEQ:
3106  case ISD::SETUNE:  return X86::COND_INVALID;
3107  }
3108}
3109
3110/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3111/// code. Current x86 isa includes the following FP cmov instructions:
3112/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3113static bool hasFPCMov(unsigned X86CC) {
3114  switch (X86CC) {
3115  default:
3116    return false;
3117  case X86::COND_B:
3118  case X86::COND_BE:
3119  case X86::COND_E:
3120  case X86::COND_P:
3121  case X86::COND_A:
3122  case X86::COND_AE:
3123  case X86::COND_NE:
3124  case X86::COND_NP:
3125    return true;
3126  }
3127}
3128
3129/// isFPImmLegal - Returns true if the target can instruction select the
3130/// specified FP immediate natively. If false, the legalizer will
3131/// materialize the FP immediate as a load from a constant pool.
3132bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3133  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3134    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3135      return true;
3136  }
3137  return false;
3138}
3139
3140/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3141/// the specified range (L, H].
3142static bool isUndefOrInRange(int Val, int Low, int Hi) {
3143  return (Val < 0) || (Val >= Low && Val < Hi);
3144}
3145
3146/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3147/// specified value.
3148static bool isUndefOrEqual(int Val, int CmpVal) {
3149  if (Val < 0 || Val == CmpVal)
3150    return true;
3151  return false;
3152}
3153
3154/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3155/// from position Pos and ending in Pos+Size, falls within the specified
3156/// sequential range (L, L+Pos]. or is undef.
3157static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3158                                       int Pos, int Size, int Low) {
3159  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3160    if (!isUndefOrEqual(Mask[i], Low))
3161      return false;
3162  return true;
3163}
3164
3165/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3166/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3167/// the second operand.
3168static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3169  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3170    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3171  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3172    return (Mask[0] < 2 && Mask[1] < 2);
3173  return false;
3174}
3175
3176/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3177/// is suitable for input to PSHUFHW.
3178static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3179  if (VT != MVT::v8i16)
3180    return false;
3181
3182  // Lower quadword copied in order or undef.
3183  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3184    return false;
3185
3186  // Upper quadword shuffled.
3187  for (unsigned i = 4; i != 8; ++i)
3188    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3189      return false;
3190
3191  return true;
3192}
3193
3194/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3195/// is suitable for input to PSHUFLW.
3196static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3197  if (VT != MVT::v8i16)
3198    return false;
3199
3200  // Upper quadword copied in order.
3201  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3202    return false;
3203
3204  // Lower quadword shuffled.
3205  for (unsigned i = 0; i != 4; ++i)
3206    if (Mask[i] >= 4)
3207      return false;
3208
3209  return true;
3210}
3211
3212/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3213/// is suitable for input to PALIGNR.
3214static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3215                          const X86Subtarget *Subtarget) {
3216  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3217      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3218    return false;
3219
3220  unsigned NumElts = VT.getVectorNumElements();
3221  unsigned NumLanes = VT.getSizeInBits()/128;
3222  unsigned NumLaneElts = NumElts/NumLanes;
3223
3224  // Do not handle 64-bit element shuffles with palignr.
3225  if (NumLaneElts == 2)
3226    return false;
3227
3228  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3229    unsigned i;
3230    for (i = 0; i != NumLaneElts; ++i) {
3231      if (Mask[i+l] >= 0)
3232        break;
3233    }
3234
3235    // Lane is all undef, go to next lane
3236    if (i == NumLaneElts)
3237      continue;
3238
3239    int Start = Mask[i+l];
3240
3241    // Make sure its in this lane in one of the sources
3242    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3243        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3244      return false;
3245
3246    // If not lane 0, then we must match lane 0
3247    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3248      return false;
3249
3250    // Correct second source to be contiguous with first source
3251    if (Start >= (int)NumElts)
3252      Start -= NumElts - NumLaneElts;
3253
3254    // Make sure we're shifting in the right direction.
3255    if (Start <= (int)(i+l))
3256      return false;
3257
3258    Start -= i;
3259
3260    // Check the rest of the elements to see if they are consecutive.
3261    for (++i; i != NumLaneElts; ++i) {
3262      int Idx = Mask[i+l];
3263
3264      // Make sure its in this lane
3265      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3266          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3267        return false;
3268
3269      // If not lane 0, then we must match lane 0
3270      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3271        return false;
3272
3273      if (Idx >= (int)NumElts)
3274        Idx -= NumElts - NumLaneElts;
3275
3276      if (!isUndefOrEqual(Idx, Start+i))
3277        return false;
3278
3279    }
3280  }
3281
3282  return true;
3283}
3284
3285/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3286/// the two vector operands have swapped position.
3287static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3288                                     unsigned NumElems) {
3289  for (unsigned i = 0; i != NumElems; ++i) {
3290    int idx = Mask[i];
3291    if (idx < 0)
3292      continue;
3293    else if (idx < (int)NumElems)
3294      Mask[i] = idx + NumElems;
3295    else
3296      Mask[i] = idx - NumElems;
3297  }
3298}
3299
3300/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3301/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3302/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3303/// reverse of what x86 shuffles want.
3304static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3305                        bool Commuted = false) {
3306  if (!HasAVX && VT.getSizeInBits() == 256)
3307    return false;
3308
3309  unsigned NumElems = VT.getVectorNumElements();
3310  unsigned NumLanes = VT.getSizeInBits()/128;
3311  unsigned NumLaneElems = NumElems/NumLanes;
3312
3313  if (NumLaneElems != 2 && NumLaneElems != 4)
3314    return false;
3315
3316  // VSHUFPSY divides the resulting vector into 4 chunks.
3317  // The sources are also splitted into 4 chunks, and each destination
3318  // chunk must come from a different source chunk.
3319  //
3320  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3321  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3322  //
3323  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3324  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3325  //
3326  // VSHUFPDY divides the resulting vector into 4 chunks.
3327  // The sources are also splitted into 4 chunks, and each destination
3328  // chunk must come from a different source chunk.
3329  //
3330  //  SRC1 =>      X3       X2       X1       X0
3331  //  SRC2 =>      Y3       Y2       Y1       Y0
3332  //
3333  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3334  //
3335  unsigned HalfLaneElems = NumLaneElems/2;
3336  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3337    for (unsigned i = 0; i != NumLaneElems; ++i) {
3338      int Idx = Mask[i+l];
3339      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3340      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3341        return false;
3342      // For VSHUFPSY, the mask of the second half must be the same as the
3343      // first but with the appropriate offsets. This works in the same way as
3344      // VPERMILPS works with masks.
3345      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3346        continue;
3347      if (!isUndefOrEqual(Idx, Mask[i]+l))
3348        return false;
3349    }
3350  }
3351
3352  return true;
3353}
3354
3355/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3356/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3357static bool isMOVHLPSMask(ShuffleVectorSDNode *N) {
3358  EVT VT = N->getValueType(0);
3359  unsigned NumElems = VT.getVectorNumElements();
3360
3361  if (VT.getSizeInBits() != 128)
3362    return false;
3363
3364  if (NumElems != 4)
3365    return false;
3366
3367  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3368  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3369         isUndefOrEqual(N->getMaskElt(1), 7) &&
3370         isUndefOrEqual(N->getMaskElt(2), 2) &&
3371         isUndefOrEqual(N->getMaskElt(3), 3);
3372}
3373
3374/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3375/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3376/// <2, 3, 2, 3>
3377static bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3378  EVT VT = N->getValueType(0);
3379  unsigned NumElems = VT.getVectorNumElements();
3380
3381  if (VT.getSizeInBits() != 128)
3382    return false;
3383
3384  if (NumElems != 4)
3385    return false;
3386
3387  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3388         isUndefOrEqual(N->getMaskElt(1), 3) &&
3389         isUndefOrEqual(N->getMaskElt(2), 2) &&
3390         isUndefOrEqual(N->getMaskElt(3), 3);
3391}
3392
3393/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3394/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3395static bool isMOVLPMask(ShuffleVectorSDNode *N) {
3396  EVT VT = N->getValueType(0);
3397
3398  if (VT.getSizeInBits() != 128)
3399    return false;
3400
3401  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3402
3403  if (NumElems != 2 && NumElems != 4)
3404    return false;
3405
3406  for (unsigned i = 0; i < NumElems/2; ++i)
3407    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3408      return false;
3409
3410  for (unsigned i = NumElems/2; i < NumElems; ++i)
3411    if (!isUndefOrEqual(N->getMaskElt(i), i))
3412      return false;
3413
3414  return true;
3415}
3416
3417/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3418/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3419static bool isMOVLHPSMask(ShuffleVectorSDNode *N) {
3420  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3421
3422  if ((NumElems != 2 && NumElems != 4)
3423      || N->getValueType(0).getSizeInBits() > 128)
3424    return false;
3425
3426  for (unsigned i = 0; i < NumElems/2; ++i)
3427    if (!isUndefOrEqual(N->getMaskElt(i), i))
3428      return false;
3429
3430  for (unsigned i = 0; i < NumElems/2; ++i)
3431    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3432      return false;
3433
3434  return true;
3435}
3436
3437/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3438/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3439static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3440                         bool HasAVX2, bool V2IsSplat = false) {
3441  unsigned NumElts = VT.getVectorNumElements();
3442
3443  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3444         "Unsupported vector type for unpckh");
3445
3446  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3447      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3448    return false;
3449
3450  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3451  // independently on 128-bit lanes.
3452  unsigned NumLanes = VT.getSizeInBits()/128;
3453  unsigned NumLaneElts = NumElts/NumLanes;
3454
3455  for (unsigned l = 0; l != NumLanes; ++l) {
3456    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3457         i != (l+1)*NumLaneElts;
3458         i += 2, ++j) {
3459      int BitI  = Mask[i];
3460      int BitI1 = Mask[i+1];
3461      if (!isUndefOrEqual(BitI, j))
3462        return false;
3463      if (V2IsSplat) {
3464        if (!isUndefOrEqual(BitI1, NumElts))
3465          return false;
3466      } else {
3467        if (!isUndefOrEqual(BitI1, j + NumElts))
3468          return false;
3469      }
3470    }
3471  }
3472
3473  return true;
3474}
3475
3476/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3477/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3478static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3479                         bool HasAVX2, bool V2IsSplat = false) {
3480  unsigned NumElts = VT.getVectorNumElements();
3481
3482  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3483         "Unsupported vector type for unpckh");
3484
3485  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3486      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3487    return false;
3488
3489  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3490  // independently on 128-bit lanes.
3491  unsigned NumLanes = VT.getSizeInBits()/128;
3492  unsigned NumLaneElts = NumElts/NumLanes;
3493
3494  for (unsigned l = 0; l != NumLanes; ++l) {
3495    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3496         i != (l+1)*NumLaneElts; i += 2, ++j) {
3497      int BitI  = Mask[i];
3498      int BitI1 = Mask[i+1];
3499      if (!isUndefOrEqual(BitI, j))
3500        return false;
3501      if (V2IsSplat) {
3502        if (isUndefOrEqual(BitI1, NumElts))
3503          return false;
3504      } else {
3505        if (!isUndefOrEqual(BitI1, j+NumElts))
3506          return false;
3507      }
3508    }
3509  }
3510  return true;
3511}
3512
3513/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3514/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3515/// <0, 0, 1, 1>
3516static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3517                                  bool HasAVX2) {
3518  unsigned NumElts = VT.getVectorNumElements();
3519
3520  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3521         "Unsupported vector type for unpckh");
3522
3523  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3524      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3525    return false;
3526
3527  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3528  // FIXME: Need a better way to get rid of this, there's no latency difference
3529  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3530  // the former later. We should also remove the "_undef" special mask.
3531  if (NumElts == 4 && VT.getSizeInBits() == 256)
3532    return false;
3533
3534  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3535  // independently on 128-bit lanes.
3536  unsigned NumLanes = VT.getSizeInBits()/128;
3537  unsigned NumLaneElts = NumElts/NumLanes;
3538
3539  for (unsigned l = 0; l != NumLanes; ++l) {
3540    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3541         i != (l+1)*NumLaneElts;
3542         i += 2, ++j) {
3543      int BitI  = Mask[i];
3544      int BitI1 = Mask[i+1];
3545
3546      if (!isUndefOrEqual(BitI, j))
3547        return false;
3548      if (!isUndefOrEqual(BitI1, j))
3549        return false;
3550    }
3551  }
3552
3553  return true;
3554}
3555
3556/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3557/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3558/// <2, 2, 3, 3>
3559static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3560  unsigned NumElts = VT.getVectorNumElements();
3561
3562  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3563         "Unsupported vector type for unpckh");
3564
3565  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3566      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3567    return false;
3568
3569  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3570  // independently on 128-bit lanes.
3571  unsigned NumLanes = VT.getSizeInBits()/128;
3572  unsigned NumLaneElts = NumElts/NumLanes;
3573
3574  for (unsigned l = 0; l != NumLanes; ++l) {
3575    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3576         i != (l+1)*NumLaneElts; i += 2, ++j) {
3577      int BitI  = Mask[i];
3578      int BitI1 = Mask[i+1];
3579      if (!isUndefOrEqual(BitI, j))
3580        return false;
3581      if (!isUndefOrEqual(BitI1, j))
3582        return false;
3583    }
3584  }
3585  return true;
3586}
3587
3588/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3589/// specifies a shuffle of elements that is suitable for input to MOVSS,
3590/// MOVSD, and MOVD, i.e. setting the lowest element.
3591static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3592  if (VT.getVectorElementType().getSizeInBits() < 32)
3593    return false;
3594  if (VT.getSizeInBits() == 256)
3595    return false;
3596
3597  unsigned NumElts = VT.getVectorNumElements();
3598
3599  if (!isUndefOrEqual(Mask[0], NumElts))
3600    return false;
3601
3602  for (unsigned i = 1; i != NumElts; ++i)
3603    if (!isUndefOrEqual(Mask[i], i))
3604      return false;
3605
3606  return true;
3607}
3608
3609/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3610/// as permutations between 128-bit chunks or halves. As an example: this
3611/// shuffle bellow:
3612///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3613/// The first half comes from the second half of V1 and the second half from the
3614/// the second half of V2.
3615static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3616  if (!HasAVX || VT.getSizeInBits() != 256)
3617    return false;
3618
3619  // The shuffle result is divided into half A and half B. In total the two
3620  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3621  // B must come from C, D, E or F.
3622  unsigned HalfSize = VT.getVectorNumElements()/2;
3623  bool MatchA = false, MatchB = false;
3624
3625  // Check if A comes from one of C, D, E, F.
3626  for (unsigned Half = 0; Half != 4; ++Half) {
3627    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3628      MatchA = true;
3629      break;
3630    }
3631  }
3632
3633  // Check if B comes from one of C, D, E, F.
3634  for (unsigned Half = 0; Half != 4; ++Half) {
3635    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3636      MatchB = true;
3637      break;
3638    }
3639  }
3640
3641  return MatchA && MatchB;
3642}
3643
3644/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3645/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3646static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3647  EVT VT = SVOp->getValueType(0);
3648
3649  unsigned HalfSize = VT.getVectorNumElements()/2;
3650
3651  unsigned FstHalf = 0, SndHalf = 0;
3652  for (unsigned i = 0; i < HalfSize; ++i) {
3653    if (SVOp->getMaskElt(i) > 0) {
3654      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3655      break;
3656    }
3657  }
3658  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3659    if (SVOp->getMaskElt(i) > 0) {
3660      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3661      break;
3662    }
3663  }
3664
3665  return (FstHalf | (SndHalf << 4));
3666}
3667
3668/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3669/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3670/// Note that VPERMIL mask matching is different depending whether theunderlying
3671/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3672/// to the same elements of the low, but to the higher half of the source.
3673/// In VPERMILPD the two lanes could be shuffled independently of each other
3674/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3675static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3676  if (!HasAVX)
3677    return false;
3678
3679  unsigned NumElts = VT.getVectorNumElements();
3680  // Only match 256-bit with 32/64-bit types
3681  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3682    return false;
3683
3684  unsigned NumLanes = VT.getSizeInBits()/128;
3685  unsigned LaneSize = NumElts/NumLanes;
3686  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3687    for (unsigned i = 0; i != LaneSize; ++i) {
3688      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3689        return false;
3690      if (NumElts != 8 || l == 0)
3691        continue;
3692      // VPERMILPS handling
3693      if (Mask[i] < 0)
3694        continue;
3695      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3696        return false;
3697    }
3698  }
3699
3700  return true;
3701}
3702
3703/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3704/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3705/// element of vector 2 and the other elements to come from vector 1 in order.
3706static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3707                               bool V2IsSplat = false, bool V2IsUndef = false) {
3708  unsigned NumOps = VT.getVectorNumElements();
3709  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3710    return false;
3711
3712  if (!isUndefOrEqual(Mask[0], 0))
3713    return false;
3714
3715  for (unsigned i = 1; i != NumOps; ++i)
3716    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3717          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3718          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3719      return false;
3720
3721  return true;
3722}
3723
3724/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3725/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3726/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3727static bool isMOVSHDUPMask(ShuffleVectorSDNode *N,
3728                           const X86Subtarget *Subtarget) {
3729  if (!Subtarget->hasSSE3())
3730    return false;
3731
3732  // The second vector must be undef
3733  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3734    return false;
3735
3736  EVT VT = N->getValueType(0);
3737  unsigned NumElems = VT.getVectorNumElements();
3738
3739  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3740      (VT.getSizeInBits() == 256 && NumElems != 8))
3741    return false;
3742
3743  // "i+1" is the value the indexed mask element must have
3744  for (unsigned i = 0; i < NumElems; i += 2)
3745    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3746        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3747      return false;
3748
3749  return true;
3750}
3751
3752/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3753/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3754/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3755static bool isMOVSLDUPMask(ShuffleVectorSDNode *N,
3756                           const X86Subtarget *Subtarget) {
3757  if (!Subtarget->hasSSE3())
3758    return false;
3759
3760  // The second vector must be undef
3761  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3762    return false;
3763
3764  EVT VT = N->getValueType(0);
3765  unsigned NumElems = VT.getVectorNumElements();
3766
3767  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3768      (VT.getSizeInBits() == 256 && NumElems != 8))
3769    return false;
3770
3771  // "i" is the value the indexed mask element must have
3772  for (unsigned i = 0; i != NumElems; i += 2)
3773    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3774        !isUndefOrEqual(N->getMaskElt(i+1), i))
3775      return false;
3776
3777  return true;
3778}
3779
3780/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3781/// specifies a shuffle of elements that is suitable for input to 256-bit
3782/// version of MOVDDUP.
3783static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3784  unsigned NumElts = VT.getVectorNumElements();
3785
3786  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3787    return false;
3788
3789  for (unsigned i = 0; i != NumElts/2; ++i)
3790    if (!isUndefOrEqual(Mask[i], 0))
3791      return false;
3792  for (unsigned i = NumElts/2; i != NumElts; ++i)
3793    if (!isUndefOrEqual(Mask[i], NumElts/2))
3794      return false;
3795  return true;
3796}
3797
3798/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3799/// specifies a shuffle of elements that is suitable for input to 128-bit
3800/// version of MOVDDUP.
3801static bool isMOVDDUPMask(ShuffleVectorSDNode *N) {
3802  EVT VT = N->getValueType(0);
3803
3804  if (VT.getSizeInBits() != 128)
3805    return false;
3806
3807  unsigned e = VT.getVectorNumElements() / 2;
3808  for (unsigned i = 0; i != e; ++i)
3809    if (!isUndefOrEqual(N->getMaskElt(i), i))
3810      return false;
3811  for (unsigned i = 0; i != e; ++i)
3812    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3813      return false;
3814  return true;
3815}
3816
3817/// isVEXTRACTF128Index - Return true if the specified
3818/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3819/// suitable for input to VEXTRACTF128.
3820bool X86::isVEXTRACTF128Index(SDNode *N) {
3821  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3822    return false;
3823
3824  // The index should be aligned on a 128-bit boundary.
3825  uint64_t Index =
3826    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3827
3828  unsigned VL = N->getValueType(0).getVectorNumElements();
3829  unsigned VBits = N->getValueType(0).getSizeInBits();
3830  unsigned ElSize = VBits / VL;
3831  bool Result = (Index * ElSize) % 128 == 0;
3832
3833  return Result;
3834}
3835
3836/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3837/// operand specifies a subvector insert that is suitable for input to
3838/// VINSERTF128.
3839bool X86::isVINSERTF128Index(SDNode *N) {
3840  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3841    return false;
3842
3843  // The index should be aligned on a 128-bit boundary.
3844  uint64_t Index =
3845    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3846
3847  unsigned VL = N->getValueType(0).getVectorNumElements();
3848  unsigned VBits = N->getValueType(0).getSizeInBits();
3849  unsigned ElSize = VBits / VL;
3850  bool Result = (Index * ElSize) % 128 == 0;
3851
3852  return Result;
3853}
3854
3855/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3856/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3857/// Handles 128-bit and 256-bit.
3858static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3859  EVT VT = N->getValueType(0);
3860
3861  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3862         "Unsupported vector type for PSHUF/SHUFP");
3863
3864  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3865  // independently on 128-bit lanes.
3866  unsigned NumElts = VT.getVectorNumElements();
3867  unsigned NumLanes = VT.getSizeInBits()/128;
3868  unsigned NumLaneElts = NumElts/NumLanes;
3869
3870  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3871         "Only supports 2 or 4 elements per lane");
3872
3873  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3874  unsigned Mask = 0;
3875  for (unsigned i = 0; i != NumElts; ++i) {
3876    int Elt = N->getMaskElt(i);
3877    if (Elt < 0) continue;
3878    Elt %= NumLaneElts;
3879    unsigned ShAmt = i << Shift;
3880    if (ShAmt >= 8) ShAmt -= 8;
3881    Mask |= Elt << ShAmt;
3882  }
3883
3884  return Mask;
3885}
3886
3887/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3888/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3889static unsigned getShufflePSHUFHWImmediate(SDNode *N) {
3890  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3891  unsigned Mask = 0;
3892  // 8 nodes, but we only care about the last 4.
3893  for (unsigned i = 7; i >= 4; --i) {
3894    int Val = SVOp->getMaskElt(i);
3895    if (Val >= 0)
3896      Mask |= (Val - 4);
3897    if (i != 4)
3898      Mask <<= 2;
3899  }
3900  return Mask;
3901}
3902
3903/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3904/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3905static unsigned getShufflePSHUFLWImmediate(SDNode *N) {
3906  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3907  unsigned Mask = 0;
3908  // 8 nodes, but we only care about the first 4.
3909  for (int i = 3; i >= 0; --i) {
3910    int Val = SVOp->getMaskElt(i);
3911    if (Val >= 0)
3912      Mask |= Val;
3913    if (i != 0)
3914      Mask <<= 2;
3915  }
3916  return Mask;
3917}
3918
3919/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3920/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3921static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3922  EVT VT = SVOp->getValueType(0);
3923  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3924
3925  unsigned NumElts = VT.getVectorNumElements();
3926  unsigned NumLanes = VT.getSizeInBits()/128;
3927  unsigned NumLaneElts = NumElts/NumLanes;
3928
3929  int Val = 0;
3930  unsigned i;
3931  for (i = 0; i != NumElts; ++i) {
3932    Val = SVOp->getMaskElt(i);
3933    if (Val >= 0)
3934      break;
3935  }
3936  if (Val >= (int)NumElts)
3937    Val -= NumElts - NumLaneElts;
3938
3939  assert(Val - i > 0 && "PALIGNR imm should be positive");
3940  return (Val - i) * EltSize;
3941}
3942
3943/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3944/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3945/// instructions.
3946unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3947  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3948    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3949
3950  uint64_t Index =
3951    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3952
3953  EVT VecVT = N->getOperand(0).getValueType();
3954  EVT ElVT = VecVT.getVectorElementType();
3955
3956  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3957  return Index / NumElemsPerChunk;
3958}
3959
3960/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3961/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3962/// instructions.
3963unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3964  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3965    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3966
3967  uint64_t Index =
3968    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3969
3970  EVT VecVT = N->getValueType(0);
3971  EVT ElVT = VecVT.getVectorElementType();
3972
3973  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3974  return Index / NumElemsPerChunk;
3975}
3976
3977/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3978/// constant +0.0.
3979bool X86::isZeroNode(SDValue Elt) {
3980  return ((isa<ConstantSDNode>(Elt) &&
3981           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3982          (isa<ConstantFPSDNode>(Elt) &&
3983           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3984}
3985
3986/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3987/// their permute mask.
3988static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3989                                    SelectionDAG &DAG) {
3990  EVT VT = SVOp->getValueType(0);
3991  unsigned NumElems = VT.getVectorNumElements();
3992  SmallVector<int, 8> MaskVec;
3993
3994  for (unsigned i = 0; i != NumElems; ++i) {
3995    int idx = SVOp->getMaskElt(i);
3996    if (idx < 0)
3997      MaskVec.push_back(idx);
3998    else if (idx < (int)NumElems)
3999      MaskVec.push_back(idx + NumElems);
4000    else
4001      MaskVec.push_back(idx - NumElems);
4002  }
4003  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4004                              SVOp->getOperand(0), &MaskVec[0]);
4005}
4006
4007/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4008/// match movhlps. The lower half elements should come from upper half of
4009/// V1 (and in order), and the upper half elements should come from the upper
4010/// half of V2 (and in order).
4011static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4012  EVT VT = Op->getValueType(0);
4013  if (VT.getSizeInBits() != 128)
4014    return false;
4015  if (VT.getVectorNumElements() != 4)
4016    return false;
4017  for (unsigned i = 0, e = 2; i != e; ++i)
4018    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4019      return false;
4020  for (unsigned i = 2; i != 4; ++i)
4021    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4022      return false;
4023  return true;
4024}
4025
4026/// isScalarLoadToVector - Returns true if the node is a scalar load that
4027/// is promoted to a vector. It also returns the LoadSDNode by reference if
4028/// required.
4029static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4030  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4031    return false;
4032  N = N->getOperand(0).getNode();
4033  if (!ISD::isNON_EXTLoad(N))
4034    return false;
4035  if (LD)
4036    *LD = cast<LoadSDNode>(N);
4037  return true;
4038}
4039
4040// Test whether the given value is a vector value which will be legalized
4041// into a load.
4042static bool WillBeConstantPoolLoad(SDNode *N) {
4043  if (N->getOpcode() != ISD::BUILD_VECTOR)
4044    return false;
4045
4046  // Check for any non-constant elements.
4047  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4048    switch (N->getOperand(i).getNode()->getOpcode()) {
4049    case ISD::UNDEF:
4050    case ISD::ConstantFP:
4051    case ISD::Constant:
4052      break;
4053    default:
4054      return false;
4055    }
4056
4057  // Vectors of all-zeros and all-ones are materialized with special
4058  // instructions rather than being loaded.
4059  return !ISD::isBuildVectorAllZeros(N) &&
4060         !ISD::isBuildVectorAllOnes(N);
4061}
4062
4063/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4064/// match movlp{s|d}. The lower half elements should come from lower half of
4065/// V1 (and in order), and the upper half elements should come from the upper
4066/// half of V2 (and in order). And since V1 will become the source of the
4067/// MOVLP, it must be either a vector load or a scalar load to vector.
4068static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4069                               ShuffleVectorSDNode *Op) {
4070  EVT VT = Op->getValueType(0);
4071  if (VT.getSizeInBits() != 128)
4072    return false;
4073
4074  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4075    return false;
4076  // Is V2 is a vector load, don't do this transformation. We will try to use
4077  // load folding shufps op.
4078  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4079    return false;
4080
4081  unsigned NumElems = VT.getVectorNumElements();
4082
4083  if (NumElems != 2 && NumElems != 4)
4084    return false;
4085  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4086    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4087      return false;
4088  for (unsigned i = NumElems/2; i != NumElems; ++i)
4089    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4090      return false;
4091  return true;
4092}
4093
4094/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4095/// all the same.
4096static bool isSplatVector(SDNode *N) {
4097  if (N->getOpcode() != ISD::BUILD_VECTOR)
4098    return false;
4099
4100  SDValue SplatValue = N->getOperand(0);
4101  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4102    if (N->getOperand(i) != SplatValue)
4103      return false;
4104  return true;
4105}
4106
4107/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4108/// to an zero vector.
4109/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4110static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4111  SDValue V1 = N->getOperand(0);
4112  SDValue V2 = N->getOperand(1);
4113  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4114  for (unsigned i = 0; i != NumElems; ++i) {
4115    int Idx = N->getMaskElt(i);
4116    if (Idx >= (int)NumElems) {
4117      unsigned Opc = V2.getOpcode();
4118      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4119        continue;
4120      if (Opc != ISD::BUILD_VECTOR ||
4121          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4122        return false;
4123    } else if (Idx >= 0) {
4124      unsigned Opc = V1.getOpcode();
4125      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4126        continue;
4127      if (Opc != ISD::BUILD_VECTOR ||
4128          !X86::isZeroNode(V1.getOperand(Idx)))
4129        return false;
4130    }
4131  }
4132  return true;
4133}
4134
4135/// getZeroVector - Returns a vector of specified type with all zero elements.
4136///
4137static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4138                             SelectionDAG &DAG, DebugLoc dl) {
4139  assert(VT.isVector() && "Expected a vector type");
4140
4141  // Always build SSE zero vectors as <4 x i32> bitcasted
4142  // to their dest type. This ensures they get CSE'd.
4143  SDValue Vec;
4144  if (VT.getSizeInBits() == 128) {  // SSE
4145    if (Subtarget->hasSSE2()) {  // SSE2
4146      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4147      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4148    } else { // SSE1
4149      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4150      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4151    }
4152  } else if (VT.getSizeInBits() == 256) { // AVX
4153    if (Subtarget->hasAVX2()) { // AVX2
4154      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4155      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4157    } else {
4158      // 256-bit logic and arithmetic instructions in AVX are all
4159      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4160      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4161      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4162      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4163    }
4164  }
4165  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4166}
4167
4168/// getOnesVector - Returns a vector of specified type with all bits set.
4169/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4170/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4171/// Then bitcast to their original type, ensuring they get CSE'd.
4172static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4173                             DebugLoc dl) {
4174  assert(VT.isVector() && "Expected a vector type");
4175  assert((VT.is128BitVector() || VT.is256BitVector())
4176         && "Expected a 128-bit or 256-bit vector type");
4177
4178  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4179  SDValue Vec;
4180  if (VT.getSizeInBits() == 256) {
4181    if (HasAVX2) { // AVX2
4182      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4183      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4184    } else { // AVX
4185      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4186      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4187                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4188      Vec = Insert128BitVector(InsV, Vec,
4189                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4190    }
4191  } else {
4192    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4193  }
4194
4195  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4196}
4197
4198/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4199/// that point to V2 points to its first element.
4200static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4201  for (unsigned i = 0; i != NumElems; ++i) {
4202    if (Mask[i] > (int)NumElems) {
4203      Mask[i] = NumElems;
4204    }
4205  }
4206}
4207
4208/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4209/// operation of specified width.
4210static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4211                       SDValue V2) {
4212  unsigned NumElems = VT.getVectorNumElements();
4213  SmallVector<int, 8> Mask;
4214  Mask.push_back(NumElems);
4215  for (unsigned i = 1; i != NumElems; ++i)
4216    Mask.push_back(i);
4217  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4218}
4219
4220/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4221static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4222                          SDValue V2) {
4223  unsigned NumElems = VT.getVectorNumElements();
4224  SmallVector<int, 8> Mask;
4225  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4226    Mask.push_back(i);
4227    Mask.push_back(i + NumElems);
4228  }
4229  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4230}
4231
4232/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4233static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4234                          SDValue V2) {
4235  unsigned NumElems = VT.getVectorNumElements();
4236  unsigned Half = NumElems/2;
4237  SmallVector<int, 8> Mask;
4238  for (unsigned i = 0; i != Half; ++i) {
4239    Mask.push_back(i + Half);
4240    Mask.push_back(i + NumElems + Half);
4241  }
4242  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4243}
4244
4245// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4246// a generic shuffle instruction because the target has no such instructions.
4247// Generate shuffles which repeat i16 and i8 several times until they can be
4248// represented by v4f32 and then be manipulated by target suported shuffles.
4249static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4250  EVT VT = V.getValueType();
4251  int NumElems = VT.getVectorNumElements();
4252  DebugLoc dl = V.getDebugLoc();
4253
4254  while (NumElems > 4) {
4255    if (EltNo < NumElems/2) {
4256      V = getUnpackl(DAG, dl, VT, V, V);
4257    } else {
4258      V = getUnpackh(DAG, dl, VT, V, V);
4259      EltNo -= NumElems/2;
4260    }
4261    NumElems >>= 1;
4262  }
4263  return V;
4264}
4265
4266/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4267static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4268  EVT VT = V.getValueType();
4269  DebugLoc dl = V.getDebugLoc();
4270  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4271         && "Vector size not supported");
4272
4273  if (VT.getSizeInBits() == 128) {
4274    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4275    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4276    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4277                             &SplatMask[0]);
4278  } else {
4279    // To use VPERMILPS to splat scalars, the second half of indicies must
4280    // refer to the higher part, which is a duplication of the lower one,
4281    // because VPERMILPS can only handle in-lane permutations.
4282    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4283                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4284
4285    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4286    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4287                             &SplatMask[0]);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4291}
4292
4293/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4294static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4295  EVT SrcVT = SV->getValueType(0);
4296  SDValue V1 = SV->getOperand(0);
4297  DebugLoc dl = SV->getDebugLoc();
4298
4299  int EltNo = SV->getSplatIndex();
4300  int NumElems = SrcVT.getVectorNumElements();
4301  unsigned Size = SrcVT.getSizeInBits();
4302
4303  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4304          "Unknown how to promote splat for type");
4305
4306  // Extract the 128-bit part containing the splat element and update
4307  // the splat element index when it refers to the higher register.
4308  if (Size == 256) {
4309    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4310    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4311    if (Idx > 0)
4312      EltNo -= NumElems/2;
4313  }
4314
4315  // All i16 and i8 vector types can't be used directly by a generic shuffle
4316  // instruction because the target has no such instruction. Generate shuffles
4317  // which repeat i16 and i8 several times until they fit in i32, and then can
4318  // be manipulated by target suported shuffles.
4319  EVT EltVT = SrcVT.getVectorElementType();
4320  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4321    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4322
4323  // Recreate the 256-bit vector and place the same 128-bit vector
4324  // into the low and high part. This is necessary because we want
4325  // to use VPERM* to shuffle the vectors
4326  if (Size == 256) {
4327    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4328                         DAG.getConstant(0, MVT::i32), DAG, dl);
4329    V1 = Insert128BitVector(InsV, V1,
4330               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4331  }
4332
4333  return getLegalSplat(DAG, V1, EltNo);
4334}
4335
4336/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4337/// vector of zero or undef vector.  This produces a shuffle where the low
4338/// element of V2 is swizzled into the zero/undef vector, landing at element
4339/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4340static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4341                                           bool IsZero,
4342                                           const X86Subtarget *Subtarget,
4343                                           SelectionDAG &DAG) {
4344  EVT VT = V2.getValueType();
4345  SDValue V1 = IsZero
4346    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4347  unsigned NumElems = VT.getVectorNumElements();
4348  SmallVector<int, 16> MaskVec;
4349  for (unsigned i = 0; i != NumElems; ++i)
4350    // If this is the insertion idx, put the low elt of V2 here.
4351    MaskVec.push_back(i == Idx ? NumElems : i);
4352  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4353}
4354
4355/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4356/// element of the result of the vector shuffle.
4357static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4358                                   unsigned Depth) {
4359  if (Depth == 6)
4360    return SDValue();  // Limit search depth.
4361
4362  SDValue V = SDValue(N, 0);
4363  EVT VT = V.getValueType();
4364  unsigned Opcode = V.getOpcode();
4365
4366  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4367  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4368    Index = SV->getMaskElt(Index);
4369
4370    if (Index < 0)
4371      return DAG.getUNDEF(VT.getVectorElementType());
4372
4373    unsigned NumElems = VT.getVectorNumElements();
4374    SDValue NewV = (Index < (int)NumElems) ? SV->getOperand(0)
4375                                           : SV->getOperand(1);
4376    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4377  }
4378
4379  // Recurse into target specific vector shuffles to find scalars.
4380  if (isTargetShuffle(Opcode)) {
4381    unsigned NumElems = VT.getVectorNumElements();
4382    SmallVector<unsigned, 16> ShuffleMask;
4383    SDValue ImmN;
4384
4385    switch(Opcode) {
4386    case X86ISD::SHUFP:
4387      ImmN = N->getOperand(N->getNumOperands()-1);
4388      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4389                      ShuffleMask);
4390      break;
4391    case X86ISD::UNPCKH:
4392      DecodeUNPCKHMask(VT, ShuffleMask);
4393      break;
4394    case X86ISD::UNPCKL:
4395      DecodeUNPCKLMask(VT, ShuffleMask);
4396      break;
4397    case X86ISD::MOVHLPS:
4398      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4399      break;
4400    case X86ISD::MOVLHPS:
4401      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4402      break;
4403    case X86ISD::PSHUFD:
4404    case X86ISD::VPERMILP:
4405      ImmN = N->getOperand(N->getNumOperands()-1);
4406      DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4407                      ShuffleMask);
4408      break;
4409    case X86ISD::PSHUFHW:
4410      ImmN = N->getOperand(N->getNumOperands()-1);
4411      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4412                        ShuffleMask);
4413      break;
4414    case X86ISD::PSHUFLW:
4415      ImmN = N->getOperand(N->getNumOperands()-1);
4416      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4417                        ShuffleMask);
4418      break;
4419    case X86ISD::MOVSS:
4420    case X86ISD::MOVSD: {
4421      // The index 0 always comes from the first element of the second source,
4422      // this is why MOVSS and MOVSD are used in the first place. The other
4423      // elements come from the other positions of the first source vector.
4424      unsigned OpNum = (Index == 0) ? 1 : 0;
4425      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4426                                 Depth+1);
4427    }
4428    case X86ISD::VPERM2X128:
4429      ImmN = N->getOperand(N->getNumOperands()-1);
4430      DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4431                           ShuffleMask);
4432      break;
4433    case X86ISD::MOVDDUP:
4434    case X86ISD::MOVLHPD:
4435    case X86ISD::MOVLPD:
4436    case X86ISD::MOVLPS:
4437    case X86ISD::MOVSHDUP:
4438    case X86ISD::MOVSLDUP:
4439    case X86ISD::PALIGN:
4440      return SDValue(); // Not yet implemented.
4441    default: llvm_unreachable("unknown target shuffle node");
4442    }
4443
4444    Index = ShuffleMask[Index];
4445    if (Index < 0)
4446      return DAG.getUNDEF(VT.getVectorElementType());
4447
4448    SDValue NewV = (Index < (int)NumElems) ? N->getOperand(0)
4449                                           : N->getOperand(1);
4450    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4451                               Depth+1);
4452  }
4453
4454  // Actual nodes that may contain scalar elements
4455  if (Opcode == ISD::BITCAST) {
4456    V = V.getOperand(0);
4457    EVT SrcVT = V.getValueType();
4458    unsigned NumElems = VT.getVectorNumElements();
4459
4460    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4461      return SDValue();
4462  }
4463
4464  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4465    return (Index == 0) ? V.getOperand(0)
4466                          : DAG.getUNDEF(VT.getVectorElementType());
4467
4468  if (V.getOpcode() == ISD::BUILD_VECTOR)
4469    return V.getOperand(Index);
4470
4471  return SDValue();
4472}
4473
4474/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4475/// shuffle operation which come from a consecutively from a zero. The
4476/// search can start in two different directions, from left or right.
4477static
4478unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4479                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4480  int i = 0;
4481
4482  while (i < NumElems) {
4483    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4484    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4485    if (!(Elt.getNode() &&
4486         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4487      break;
4488    ++i;
4489  }
4490
4491  return i;
4492}
4493
4494/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4495/// MaskE correspond consecutively to elements from one of the vector operands,
4496/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4497static
4498bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4499                              int OpIdx, int NumElems, unsigned &OpNum) {
4500  bool SeenV1 = false;
4501  bool SeenV2 = false;
4502
4503  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4504    int Idx = SVOp->getMaskElt(i);
4505    // Ignore undef indicies
4506    if (Idx < 0)
4507      continue;
4508
4509    if (Idx < NumElems)
4510      SeenV1 = true;
4511    else
4512      SeenV2 = true;
4513
4514    // Only accept consecutive elements from the same vector
4515    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4516      return false;
4517  }
4518
4519  OpNum = SeenV1 ? 0 : 1;
4520  return true;
4521}
4522
4523/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4524/// logical left shift of a vector.
4525static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4526                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4527  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4528  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4529              false /* check zeros from right */, DAG);
4530  unsigned OpSrc;
4531
4532  if (!NumZeros)
4533    return false;
4534
4535  // Considering the elements in the mask that are not consecutive zeros,
4536  // check if they consecutively come from only one of the source vectors.
4537  //
4538  //               V1 = {X, A, B, C}     0
4539  //                         \  \  \    /
4540  //   vector_shuffle V1, V2 <1, 2, 3, X>
4541  //
4542  if (!isShuffleMaskConsecutive(SVOp,
4543            0,                   // Mask Start Index
4544            NumElems-NumZeros-1, // Mask End Index
4545            NumZeros,            // Where to start looking in the src vector
4546            NumElems,            // Number of elements in vector
4547            OpSrc))              // Which source operand ?
4548    return false;
4549
4550  isLeft = false;
4551  ShAmt = NumZeros;
4552  ShVal = SVOp->getOperand(OpSrc);
4553  return true;
4554}
4555
4556/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4557/// logical left shift of a vector.
4558static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4559                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4560  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4561  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4562              true /* check zeros from left */, DAG);
4563  unsigned OpSrc;
4564
4565  if (!NumZeros)
4566    return false;
4567
4568  // Considering the elements in the mask that are not consecutive zeros,
4569  // check if they consecutively come from only one of the source vectors.
4570  //
4571  //                           0    { A, B, X, X } = V2
4572  //                          / \    /  /
4573  //   vector_shuffle V1, V2 <X, X, 4, 5>
4574  //
4575  if (!isShuffleMaskConsecutive(SVOp,
4576            NumZeros,     // Mask Start Index
4577            NumElems-1,   // Mask End Index
4578            0,            // Where to start looking in the src vector
4579            NumElems,     // Number of elements in vector
4580            OpSrc))       // Which source operand ?
4581    return false;
4582
4583  isLeft = true;
4584  ShAmt = NumZeros;
4585  ShVal = SVOp->getOperand(OpSrc);
4586  return true;
4587}
4588
4589/// isVectorShift - Returns true if the shuffle can be implemented as a
4590/// logical left or right shift of a vector.
4591static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4592                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4593  // Although the logic below support any bitwidth size, there are no
4594  // shift instructions which handle more than 128-bit vectors.
4595  if (SVOp->getValueType(0).getSizeInBits() > 128)
4596    return false;
4597
4598  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4599      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4600    return true;
4601
4602  return false;
4603}
4604
4605/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4606///
4607static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4608                                       unsigned NumNonZero, unsigned NumZero,
4609                                       SelectionDAG &DAG,
4610                                       const X86Subtarget* Subtarget,
4611                                       const TargetLowering &TLI) {
4612  if (NumNonZero > 8)
4613    return SDValue();
4614
4615  DebugLoc dl = Op.getDebugLoc();
4616  SDValue V(0, 0);
4617  bool First = true;
4618  for (unsigned i = 0; i < 16; ++i) {
4619    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4620    if (ThisIsNonZero && First) {
4621      if (NumZero)
4622        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4623      else
4624        V = DAG.getUNDEF(MVT::v8i16);
4625      First = false;
4626    }
4627
4628    if ((i & 1) != 0) {
4629      SDValue ThisElt(0, 0), LastElt(0, 0);
4630      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4631      if (LastIsNonZero) {
4632        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4633                              MVT::i16, Op.getOperand(i-1));
4634      }
4635      if (ThisIsNonZero) {
4636        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4637        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4638                              ThisElt, DAG.getConstant(8, MVT::i8));
4639        if (LastIsNonZero)
4640          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4641      } else
4642        ThisElt = LastElt;
4643
4644      if (ThisElt.getNode())
4645        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4646                        DAG.getIntPtrConstant(i/2));
4647    }
4648  }
4649
4650  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4651}
4652
4653/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4654///
4655static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4656                                     unsigned NumNonZero, unsigned NumZero,
4657                                     SelectionDAG &DAG,
4658                                     const X86Subtarget* Subtarget,
4659                                     const TargetLowering &TLI) {
4660  if (NumNonZero > 4)
4661    return SDValue();
4662
4663  DebugLoc dl = Op.getDebugLoc();
4664  SDValue V(0, 0);
4665  bool First = true;
4666  for (unsigned i = 0; i < 8; ++i) {
4667    bool isNonZero = (NonZeros & (1 << i)) != 0;
4668    if (isNonZero) {
4669      if (First) {
4670        if (NumZero)
4671          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4672        else
4673          V = DAG.getUNDEF(MVT::v8i16);
4674        First = false;
4675      }
4676      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4677                      MVT::v8i16, V, Op.getOperand(i),
4678                      DAG.getIntPtrConstant(i));
4679    }
4680  }
4681
4682  return V;
4683}
4684
4685/// getVShift - Return a vector logical shift node.
4686///
4687static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4688                         unsigned NumBits, SelectionDAG &DAG,
4689                         const TargetLowering &TLI, DebugLoc dl) {
4690  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4691  EVT ShVT = MVT::v2i64;
4692  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4693  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4694  return DAG.getNode(ISD::BITCAST, dl, VT,
4695                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4696                             DAG.getConstant(NumBits,
4697                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4698}
4699
4700SDValue
4701X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4702                                          SelectionDAG &DAG) const {
4703
4704  // Check if the scalar load can be widened into a vector load. And if
4705  // the address is "base + cst" see if the cst can be "absorbed" into
4706  // the shuffle mask.
4707  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4708    SDValue Ptr = LD->getBasePtr();
4709    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4710      return SDValue();
4711    EVT PVT = LD->getValueType(0);
4712    if (PVT != MVT::i32 && PVT != MVT::f32)
4713      return SDValue();
4714
4715    int FI = -1;
4716    int64_t Offset = 0;
4717    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4718      FI = FINode->getIndex();
4719      Offset = 0;
4720    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4721               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4722      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4723      Offset = Ptr.getConstantOperandVal(1);
4724      Ptr = Ptr.getOperand(0);
4725    } else {
4726      return SDValue();
4727    }
4728
4729    // FIXME: 256-bit vector instructions don't require a strict alignment,
4730    // improve this code to support it better.
4731    unsigned RequiredAlign = VT.getSizeInBits()/8;
4732    SDValue Chain = LD->getChain();
4733    // Make sure the stack object alignment is at least 16 or 32.
4734    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4735    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4736      if (MFI->isFixedObjectIndex(FI)) {
4737        // Can't change the alignment. FIXME: It's possible to compute
4738        // the exact stack offset and reference FI + adjust offset instead.
4739        // If someone *really* cares about this. That's the way to implement it.
4740        return SDValue();
4741      } else {
4742        MFI->setObjectAlignment(FI, RequiredAlign);
4743      }
4744    }
4745
4746    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4747    // Ptr + (Offset & ~15).
4748    if (Offset < 0)
4749      return SDValue();
4750    if ((Offset % RequiredAlign) & 3)
4751      return SDValue();
4752    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4753    if (StartOffset)
4754      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4755                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4756
4757    int EltNo = (Offset - StartOffset) >> 2;
4758    int NumElems = VT.getVectorNumElements();
4759
4760    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4761    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4762                             LD->getPointerInfo().getWithOffset(StartOffset),
4763                             false, false, false, 0);
4764
4765    SmallVector<int, 8> Mask;
4766    for (int i = 0; i < NumElems; ++i)
4767      Mask.push_back(EltNo);
4768
4769    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4770  }
4771
4772  return SDValue();
4773}
4774
4775/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4776/// vector of type 'VT', see if the elements can be replaced by a single large
4777/// load which has the same value as a build_vector whose operands are 'elts'.
4778///
4779/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4780///
4781/// FIXME: we'd also like to handle the case where the last elements are zero
4782/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4783/// There's even a handy isZeroNode for that purpose.
4784static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4785                                        DebugLoc &DL, SelectionDAG &DAG) {
4786  EVT EltVT = VT.getVectorElementType();
4787  unsigned NumElems = Elts.size();
4788
4789  LoadSDNode *LDBase = NULL;
4790  unsigned LastLoadedElt = -1U;
4791
4792  // For each element in the initializer, see if we've found a load or an undef.
4793  // If we don't find an initial load element, or later load elements are
4794  // non-consecutive, bail out.
4795  for (unsigned i = 0; i < NumElems; ++i) {
4796    SDValue Elt = Elts[i];
4797
4798    if (!Elt.getNode() ||
4799        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4800      return SDValue();
4801    if (!LDBase) {
4802      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4803        return SDValue();
4804      LDBase = cast<LoadSDNode>(Elt.getNode());
4805      LastLoadedElt = i;
4806      continue;
4807    }
4808    if (Elt.getOpcode() == ISD::UNDEF)
4809      continue;
4810
4811    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4812    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4813      return SDValue();
4814    LastLoadedElt = i;
4815  }
4816
4817  // If we have found an entire vector of loads and undefs, then return a large
4818  // load of the entire vector width starting at the base pointer.  If we found
4819  // consecutive loads for the low half, generate a vzext_load node.
4820  if (LastLoadedElt == NumElems - 1) {
4821    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4822      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4823                         LDBase->getPointerInfo(),
4824                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4825                         LDBase->isInvariant(), 0);
4826    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4827                       LDBase->getPointerInfo(),
4828                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4829                       LDBase->isInvariant(), LDBase->getAlignment());
4830  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4831             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4832    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4833    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4834    SDValue ResNode =
4835        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4836                                LDBase->getPointerInfo(),
4837                                LDBase->getAlignment(),
4838                                false/*isVolatile*/, true/*ReadMem*/,
4839                                false/*WriteMem*/);
4840    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4841  }
4842  return SDValue();
4843}
4844
4845/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4846/// a vbroadcast node. We support two patterns:
4847/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4848/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4849/// a scalar load.
4850/// The scalar load node is returned when a pattern is found,
4851/// or SDValue() otherwise.
4852static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4853  if (!Subtarget->hasAVX())
4854    return SDValue();
4855
4856  EVT VT = Op.getValueType();
4857  SDValue V = Op;
4858
4859  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4860    V = V.getOperand(0);
4861
4862  //A suspected load to be broadcasted.
4863  SDValue Ld;
4864
4865  switch (V.getOpcode()) {
4866    default:
4867      // Unknown pattern found.
4868      return SDValue();
4869
4870    case ISD::BUILD_VECTOR: {
4871      // The BUILD_VECTOR node must be a splat.
4872      if (!isSplatVector(V.getNode()))
4873        return SDValue();
4874
4875      Ld = V.getOperand(0);
4876
4877      // The suspected load node has several users. Make sure that all
4878      // of its users are from the BUILD_VECTOR node.
4879      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4880        return SDValue();
4881      break;
4882    }
4883
4884    case ISD::VECTOR_SHUFFLE: {
4885      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4886
4887      // Shuffles must have a splat mask where the first element is
4888      // broadcasted.
4889      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4890        return SDValue();
4891
4892      SDValue Sc = Op.getOperand(0);
4893      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4894        return SDValue();
4895
4896      Ld = Sc.getOperand(0);
4897
4898      // The scalar_to_vector node and the suspected
4899      // load node must have exactly one user.
4900      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4901        return SDValue();
4902      break;
4903    }
4904  }
4905
4906  // The scalar source must be a normal load.
4907  if (!ISD::isNormalLoad(Ld.getNode()))
4908    return SDValue();
4909
4910  // Reject loads that have uses of the chain result
4911  if (Ld->hasAnyUseOfValue(1))
4912    return SDValue();
4913
4914  bool Is256 = VT.getSizeInBits() == 256;
4915  bool Is128 = VT.getSizeInBits() == 128;
4916  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4917
4918  // VBroadcast to YMM
4919  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4920    return Ld;
4921
4922  // VBroadcast to XMM
4923  if (Is128 && (ScalarSize == 32))
4924    return Ld;
4925
4926  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4927  // double since there is vbroadcastsd xmm
4928  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4929    // VBroadcast to YMM
4930    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4931      return Ld;
4932
4933    // VBroadcast to XMM
4934    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4935      return Ld;
4936  }
4937
4938  // Unsupported broadcast.
4939  return SDValue();
4940}
4941
4942SDValue
4943X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4944  DebugLoc dl = Op.getDebugLoc();
4945
4946  EVT VT = Op.getValueType();
4947  EVT ExtVT = VT.getVectorElementType();
4948  unsigned NumElems = Op.getNumOperands();
4949
4950  // Vectors containing all zeros can be matched by pxor and xorps later
4951  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4952    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4953    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4954    if (VT == MVT::v4i32 || VT == MVT::v8i32)
4955      return Op;
4956
4957    return getZeroVector(VT, Subtarget, DAG, dl);
4958  }
4959
4960  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4961  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
4962  // vpcmpeqd on 256-bit vectors.
4963  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4964    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
4965      return Op;
4966
4967    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
4968  }
4969
4970  SDValue LD = isVectorBroadcast(Op, Subtarget);
4971  if (LD.getNode())
4972    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
4973
4974  unsigned EVTBits = ExtVT.getSizeInBits();
4975
4976  unsigned NumZero  = 0;
4977  unsigned NumNonZero = 0;
4978  unsigned NonZeros = 0;
4979  bool IsAllConstants = true;
4980  SmallSet<SDValue, 8> Values;
4981  for (unsigned i = 0; i < NumElems; ++i) {
4982    SDValue Elt = Op.getOperand(i);
4983    if (Elt.getOpcode() == ISD::UNDEF)
4984      continue;
4985    Values.insert(Elt);
4986    if (Elt.getOpcode() != ISD::Constant &&
4987        Elt.getOpcode() != ISD::ConstantFP)
4988      IsAllConstants = false;
4989    if (X86::isZeroNode(Elt))
4990      NumZero++;
4991    else {
4992      NonZeros |= (1 << i);
4993      NumNonZero++;
4994    }
4995  }
4996
4997  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4998  if (NumNonZero == 0)
4999    return DAG.getUNDEF(VT);
5000
5001  // Special case for single non-zero, non-undef, element.
5002  if (NumNonZero == 1) {
5003    unsigned Idx = CountTrailingZeros_32(NonZeros);
5004    SDValue Item = Op.getOperand(Idx);
5005
5006    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5007    // the value are obviously zero, truncate the value to i32 and do the
5008    // insertion that way.  Only do this if the value is non-constant or if the
5009    // value is a constant being inserted into element 0.  It is cheaper to do
5010    // a constant pool load than it is to do a movd + shuffle.
5011    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5012        (!IsAllConstants || Idx == 0)) {
5013      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5014        // Handle SSE only.
5015        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5016        EVT VecVT = MVT::v4i32;
5017        unsigned VecElts = 4;
5018
5019        // Truncate the value (which may itself be a constant) to i32, and
5020        // convert it to a vector with movd (S2V+shuffle to zero extend).
5021        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5022        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5023        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5024
5025        // Now we have our 32-bit value zero extended in the low element of
5026        // a vector.  If Idx != 0, swizzle it into place.
5027        if (Idx != 0) {
5028          SmallVector<int, 4> Mask;
5029          Mask.push_back(Idx);
5030          for (unsigned i = 1; i != VecElts; ++i)
5031            Mask.push_back(i);
5032          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5033                                      DAG.getUNDEF(Item.getValueType()),
5034                                      &Mask[0]);
5035        }
5036        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5037      }
5038    }
5039
5040    // If we have a constant or non-constant insertion into the low element of
5041    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5042    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5043    // depending on what the source datatype is.
5044    if (Idx == 0) {
5045      if (NumZero == 0)
5046        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5047
5048      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5049          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5050        if (VT.getSizeInBits() == 256) {
5051          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5052          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5053                             Item, DAG.getIntPtrConstant(0));
5054        }
5055        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5056        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5057        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5058        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5059      }
5060
5061      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5062        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5063        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5064        if (VT.getSizeInBits() == 256) {
5065          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5066          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5067                                    DAG, dl);
5068        } else {
5069          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5070          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5071        }
5072        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5073      }
5074    }
5075
5076    // Is it a vector logical left shift?
5077    if (NumElems == 2 && Idx == 1 &&
5078        X86::isZeroNode(Op.getOperand(0)) &&
5079        !X86::isZeroNode(Op.getOperand(1))) {
5080      unsigned NumBits = VT.getSizeInBits();
5081      return getVShift(true, VT,
5082                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5083                                   VT, Op.getOperand(1)),
5084                       NumBits/2, DAG, *this, dl);
5085    }
5086
5087    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5088      return SDValue();
5089
5090    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5091    // is a non-constant being inserted into an element other than the low one,
5092    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5093    // movd/movss) to move this into the low element, then shuffle it into
5094    // place.
5095    if (EVTBits == 32) {
5096      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5097
5098      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5099      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5100      SmallVector<int, 8> MaskVec;
5101      for (unsigned i = 0; i < NumElems; i++)
5102        MaskVec.push_back(i == Idx ? 0 : 1);
5103      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5104    }
5105  }
5106
5107  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5108  if (Values.size() == 1) {
5109    if (EVTBits == 32) {
5110      // Instead of a shuffle like this:
5111      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5112      // Check if it's possible to issue this instead.
5113      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5114      unsigned Idx = CountTrailingZeros_32(NonZeros);
5115      SDValue Item = Op.getOperand(Idx);
5116      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5117        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5118    }
5119    return SDValue();
5120  }
5121
5122  // A vector full of immediates; various special cases are already
5123  // handled, so this is best done with a single constant-pool load.
5124  if (IsAllConstants)
5125    return SDValue();
5126
5127  // For AVX-length vectors, build the individual 128-bit pieces and use
5128  // shuffles to put them in place.
5129  if (VT.getSizeInBits() == 256) {
5130    SmallVector<SDValue, 32> V;
5131    for (unsigned i = 0; i != NumElems; ++i)
5132      V.push_back(Op.getOperand(i));
5133
5134    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5135
5136    // Build both the lower and upper subvector.
5137    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5138    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5139                                NumElems/2);
5140
5141    // Recreate the wider vector with the lower and upper part.
5142    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5143                                DAG.getConstant(0, MVT::i32), DAG, dl);
5144    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5145                              DAG, dl);
5146  }
5147
5148  // Let legalizer expand 2-wide build_vectors.
5149  if (EVTBits == 64) {
5150    if (NumNonZero == 1) {
5151      // One half is zero or undef.
5152      unsigned Idx = CountTrailingZeros_32(NonZeros);
5153      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5154                                 Op.getOperand(Idx));
5155      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5156    }
5157    return SDValue();
5158  }
5159
5160  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5161  if (EVTBits == 8 && NumElems == 16) {
5162    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5163                                        Subtarget, *this);
5164    if (V.getNode()) return V;
5165  }
5166
5167  if (EVTBits == 16 && NumElems == 8) {
5168    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5169                                      Subtarget, *this);
5170    if (V.getNode()) return V;
5171  }
5172
5173  // If element VT is == 32 bits, turn it into a number of shuffles.
5174  SmallVector<SDValue, 8> V(NumElems);
5175  if (NumElems == 4 && NumZero > 0) {
5176    for (unsigned i = 0; i < 4; ++i) {
5177      bool isZero = !(NonZeros & (1 << i));
5178      if (isZero)
5179        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5180      else
5181        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5182    }
5183
5184    for (unsigned i = 0; i < 2; ++i) {
5185      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5186        default: break;
5187        case 0:
5188          V[i] = V[i*2];  // Must be a zero vector.
5189          break;
5190        case 1:
5191          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5192          break;
5193        case 2:
5194          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5195          break;
5196        case 3:
5197          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5198          break;
5199      }
5200    }
5201
5202    bool Reverse1 = (NonZeros & 0x3) == 2;
5203    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5204    int MaskVec[] = {
5205      Reverse1 ? 1 : 0,
5206      Reverse1 ? 0 : 1,
5207      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5208      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5209    };
5210    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5211  }
5212
5213  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5214    // Check for a build vector of consecutive loads.
5215    for (unsigned i = 0; i < NumElems; ++i)
5216      V[i] = Op.getOperand(i);
5217
5218    // Check for elements which are consecutive loads.
5219    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5220    if (LD.getNode())
5221      return LD;
5222
5223    // For SSE 4.1, use insertps to put the high elements into the low element.
5224    if (getSubtarget()->hasSSE41()) {
5225      SDValue Result;
5226      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5227        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5228      else
5229        Result = DAG.getUNDEF(VT);
5230
5231      for (unsigned i = 1; i < NumElems; ++i) {
5232        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5233        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5234                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5235      }
5236      return Result;
5237    }
5238
5239    // Otherwise, expand into a number of unpckl*, start by extending each of
5240    // our (non-undef) elements to the full vector width with the element in the
5241    // bottom slot of the vector (which generates no code for SSE).
5242    for (unsigned i = 0; i < NumElems; ++i) {
5243      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5244        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5245      else
5246        V[i] = DAG.getUNDEF(VT);
5247    }
5248
5249    // Next, we iteratively mix elements, e.g. for v4f32:
5250    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5251    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5252    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5253    unsigned EltStride = NumElems >> 1;
5254    while (EltStride != 0) {
5255      for (unsigned i = 0; i < EltStride; ++i) {
5256        // If V[i+EltStride] is undef and this is the first round of mixing,
5257        // then it is safe to just drop this shuffle: V[i] is already in the
5258        // right place, the one element (since it's the first round) being
5259        // inserted as undef can be dropped.  This isn't safe for successive
5260        // rounds because they will permute elements within both vectors.
5261        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5262            EltStride == NumElems/2)
5263          continue;
5264
5265        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5266      }
5267      EltStride >>= 1;
5268    }
5269    return V[0];
5270  }
5271  return SDValue();
5272}
5273
5274// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5275// them in a MMX register.  This is better than doing a stack convert.
5276static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5277  DebugLoc dl = Op.getDebugLoc();
5278  EVT ResVT = Op.getValueType();
5279
5280  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5281         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5282  int Mask[2];
5283  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5284  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5285  InVec = Op.getOperand(1);
5286  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5287    unsigned NumElts = ResVT.getVectorNumElements();
5288    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5289    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5290                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5291  } else {
5292    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5293    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5294    Mask[0] = 0; Mask[1] = 2;
5295    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5296  }
5297  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5298}
5299
5300// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5301// to create 256-bit vectors from two other 128-bit ones.
5302static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5303  DebugLoc dl = Op.getDebugLoc();
5304  EVT ResVT = Op.getValueType();
5305
5306  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5307
5308  SDValue V1 = Op.getOperand(0);
5309  SDValue V2 = Op.getOperand(1);
5310  unsigned NumElems = ResVT.getVectorNumElements();
5311
5312  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5313                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5314  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5315                            DAG, dl);
5316}
5317
5318SDValue
5319X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5320  EVT ResVT = Op.getValueType();
5321
5322  assert(Op.getNumOperands() == 2);
5323  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5324         "Unsupported CONCAT_VECTORS for value type");
5325
5326  // We support concatenate two MMX registers and place them in a MMX register.
5327  // This is better than doing a stack convert.
5328  if (ResVT.is128BitVector())
5329    return LowerMMXCONCAT_VECTORS(Op, DAG);
5330
5331  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5332  // from two other 128-bit ones.
5333  return LowerAVXCONCAT_VECTORS(Op, DAG);
5334}
5335
5336// v8i16 shuffles - Prefer shuffles in the following order:
5337// 1. [all]   pshuflw, pshufhw, optional move
5338// 2. [ssse3] 1 x pshufb
5339// 3. [ssse3] 2 x pshufb + 1 x por
5340// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5341SDValue
5342X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5343                                            SelectionDAG &DAG) const {
5344  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5345  SDValue V1 = SVOp->getOperand(0);
5346  SDValue V2 = SVOp->getOperand(1);
5347  DebugLoc dl = SVOp->getDebugLoc();
5348  SmallVector<int, 8> MaskVals;
5349
5350  // Determine if more than 1 of the words in each of the low and high quadwords
5351  // of the result come from the same quadword of one of the two inputs.  Undef
5352  // mask values count as coming from any quadword, for better codegen.
5353  unsigned LoQuad[] = { 0, 0, 0, 0 };
5354  unsigned HiQuad[] = { 0, 0, 0, 0 };
5355  std::bitset<4> InputQuads;
5356  for (unsigned i = 0; i < 8; ++i) {
5357    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5358    int EltIdx = SVOp->getMaskElt(i);
5359    MaskVals.push_back(EltIdx);
5360    if (EltIdx < 0) {
5361      ++Quad[0];
5362      ++Quad[1];
5363      ++Quad[2];
5364      ++Quad[3];
5365      continue;
5366    }
5367    ++Quad[EltIdx / 4];
5368    InputQuads.set(EltIdx / 4);
5369  }
5370
5371  int BestLoQuad = -1;
5372  unsigned MaxQuad = 1;
5373  for (unsigned i = 0; i < 4; ++i) {
5374    if (LoQuad[i] > MaxQuad) {
5375      BestLoQuad = i;
5376      MaxQuad = LoQuad[i];
5377    }
5378  }
5379
5380  int BestHiQuad = -1;
5381  MaxQuad = 1;
5382  for (unsigned i = 0; i < 4; ++i) {
5383    if (HiQuad[i] > MaxQuad) {
5384      BestHiQuad = i;
5385      MaxQuad = HiQuad[i];
5386    }
5387  }
5388
5389  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5390  // of the two input vectors, shuffle them into one input vector so only a
5391  // single pshufb instruction is necessary. If There are more than 2 input
5392  // quads, disable the next transformation since it does not help SSSE3.
5393  bool V1Used = InputQuads[0] || InputQuads[1];
5394  bool V2Used = InputQuads[2] || InputQuads[3];
5395  if (Subtarget->hasSSSE3()) {
5396    if (InputQuads.count() == 2 && V1Used && V2Used) {
5397      BestLoQuad = InputQuads[0] ? 0 : 1;
5398      BestHiQuad = InputQuads[2] ? 2 : 3;
5399    }
5400    if (InputQuads.count() > 2) {
5401      BestLoQuad = -1;
5402      BestHiQuad = -1;
5403    }
5404  }
5405
5406  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5407  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5408  // words from all 4 input quadwords.
5409  SDValue NewV;
5410  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5411    int MaskV[] = {
5412      BestLoQuad < 0 ? 0 : BestLoQuad,
5413      BestHiQuad < 0 ? 1 : BestHiQuad
5414    };
5415    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5416                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5417                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5418    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5419
5420    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5421    // source words for the shuffle, to aid later transformations.
5422    bool AllWordsInNewV = true;
5423    bool InOrder[2] = { true, true };
5424    for (unsigned i = 0; i != 8; ++i) {
5425      int idx = MaskVals[i];
5426      if (idx != (int)i)
5427        InOrder[i/4] = false;
5428      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5429        continue;
5430      AllWordsInNewV = false;
5431      break;
5432    }
5433
5434    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5435    if (AllWordsInNewV) {
5436      for (int i = 0; i != 8; ++i) {
5437        int idx = MaskVals[i];
5438        if (idx < 0)
5439          continue;
5440        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5441        if ((idx != i) && idx < 4)
5442          pshufhw = false;
5443        if ((idx != i) && idx > 3)
5444          pshuflw = false;
5445      }
5446      V1 = NewV;
5447      V2Used = false;
5448      BestLoQuad = 0;
5449      BestHiQuad = 1;
5450    }
5451
5452    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5453    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5454    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5455      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5456      unsigned TargetMask = 0;
5457      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5458                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5459      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(NewV.getNode()):
5460                             getShufflePSHUFLWImmediate(NewV.getNode());
5461      V1 = NewV.getOperand(0);
5462      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5463    }
5464  }
5465
5466  // If we have SSSE3, and all words of the result are from 1 input vector,
5467  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5468  // is present, fall back to case 4.
5469  if (Subtarget->hasSSSE3()) {
5470    SmallVector<SDValue,16> pshufbMask;
5471
5472    // If we have elements from both input vectors, set the high bit of the
5473    // shuffle mask element to zero out elements that come from V2 in the V1
5474    // mask, and elements that come from V1 in the V2 mask, so that the two
5475    // results can be OR'd together.
5476    bool TwoInputs = V1Used && V2Used;
5477    for (unsigned i = 0; i != 8; ++i) {
5478      int EltIdx = MaskVals[i] * 2;
5479      if (TwoInputs && (EltIdx >= 16)) {
5480        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5481        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5482        continue;
5483      }
5484      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5485      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5486    }
5487    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5488    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5489                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5490                                 MVT::v16i8, &pshufbMask[0], 16));
5491    if (!TwoInputs)
5492      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5493
5494    // Calculate the shuffle mask for the second input, shuffle it, and
5495    // OR it with the first shuffled input.
5496    pshufbMask.clear();
5497    for (unsigned i = 0; i != 8; ++i) {
5498      int EltIdx = MaskVals[i] * 2;
5499      if (EltIdx < 16) {
5500        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5501        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5502        continue;
5503      }
5504      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5505      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5506    }
5507    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5508    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5509                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5510                                 MVT::v16i8, &pshufbMask[0], 16));
5511    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5512    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5513  }
5514
5515  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5516  // and update MaskVals with new element order.
5517  std::bitset<8> InOrder;
5518  if (BestLoQuad >= 0) {
5519    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5520    for (int i = 0; i != 4; ++i) {
5521      int idx = MaskVals[i];
5522      if (idx < 0) {
5523        InOrder.set(i);
5524      } else if ((idx / 4) == BestLoQuad) {
5525        MaskV[i] = idx & 3;
5526        InOrder.set(i);
5527      }
5528    }
5529    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5530                                &MaskV[0]);
5531
5532    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5533      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5534                               NewV.getOperand(0),
5535                               getShufflePSHUFLWImmediate(NewV.getNode()),
5536                               DAG);
5537  }
5538
5539  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5540  // and update MaskVals with the new element order.
5541  if (BestHiQuad >= 0) {
5542    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5543    for (unsigned i = 4; i != 8; ++i) {
5544      int idx = MaskVals[i];
5545      if (idx < 0) {
5546        InOrder.set(i);
5547      } else if ((idx / 4) == BestHiQuad) {
5548        MaskV[i] = (idx & 3) + 4;
5549        InOrder.set(i);
5550      }
5551    }
5552    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5553                                &MaskV[0]);
5554
5555    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5556      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5557                              NewV.getOperand(0),
5558                              getShufflePSHUFHWImmediate(NewV.getNode()),
5559                              DAG);
5560  }
5561
5562  // In case BestHi & BestLo were both -1, which means each quadword has a word
5563  // from each of the four input quadwords, calculate the InOrder bitvector now
5564  // before falling through to the insert/extract cleanup.
5565  if (BestLoQuad == -1 && BestHiQuad == -1) {
5566    NewV = V1;
5567    for (int i = 0; i != 8; ++i)
5568      if (MaskVals[i] < 0 || MaskVals[i] == i)
5569        InOrder.set(i);
5570  }
5571
5572  // The other elements are put in the right place using pextrw and pinsrw.
5573  for (unsigned i = 0; i != 8; ++i) {
5574    if (InOrder[i])
5575      continue;
5576    int EltIdx = MaskVals[i];
5577    if (EltIdx < 0)
5578      continue;
5579    SDValue ExtOp = (EltIdx < 8)
5580    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5581                  DAG.getIntPtrConstant(EltIdx))
5582    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5583                  DAG.getIntPtrConstant(EltIdx - 8));
5584    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5585                       DAG.getIntPtrConstant(i));
5586  }
5587  return NewV;
5588}
5589
5590// v16i8 shuffles - Prefer shuffles in the following order:
5591// 1. [ssse3] 1 x pshufb
5592// 2. [ssse3] 2 x pshufb + 1 x por
5593// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5594static
5595SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5596                                 SelectionDAG &DAG,
5597                                 const X86TargetLowering &TLI) {
5598  SDValue V1 = SVOp->getOperand(0);
5599  SDValue V2 = SVOp->getOperand(1);
5600  DebugLoc dl = SVOp->getDebugLoc();
5601  ArrayRef<int> MaskVals = SVOp->getMask();
5602
5603  // If we have SSSE3, case 1 is generated when all result bytes come from
5604  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5605  // present, fall back to case 3.
5606  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5607  bool V1Only = true;
5608  bool V2Only = true;
5609  for (unsigned i = 0; i < 16; ++i) {
5610    int EltIdx = MaskVals[i];
5611    if (EltIdx < 0)
5612      continue;
5613    if (EltIdx < 16)
5614      V2Only = false;
5615    else
5616      V1Only = false;
5617  }
5618
5619  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5620  if (TLI.getSubtarget()->hasSSSE3()) {
5621    SmallVector<SDValue,16> pshufbMask;
5622
5623    // If all result elements are from one input vector, then only translate
5624    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5625    //
5626    // Otherwise, we have elements from both input vectors, and must zero out
5627    // elements that come from V2 in the first mask, and V1 in the second mask
5628    // so that we can OR them together.
5629    bool TwoInputs = !(V1Only || V2Only);
5630    for (unsigned i = 0; i != 16; ++i) {
5631      int EltIdx = MaskVals[i];
5632      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5633        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5634        continue;
5635      }
5636      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5637    }
5638    // If all the elements are from V2, assign it to V1 and return after
5639    // building the first pshufb.
5640    if (V2Only)
5641      V1 = V2;
5642    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5643                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5644                                 MVT::v16i8, &pshufbMask[0], 16));
5645    if (!TwoInputs)
5646      return V1;
5647
5648    // Calculate the shuffle mask for the second input, shuffle it, and
5649    // OR it with the first shuffled input.
5650    pshufbMask.clear();
5651    for (unsigned i = 0; i != 16; ++i) {
5652      int EltIdx = MaskVals[i];
5653      if (EltIdx < 16) {
5654        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5655        continue;
5656      }
5657      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5658    }
5659    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5660                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5661                                 MVT::v16i8, &pshufbMask[0], 16));
5662    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5663  }
5664
5665  // No SSSE3 - Calculate in place words and then fix all out of place words
5666  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5667  // the 16 different words that comprise the two doublequadword input vectors.
5668  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5669  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5670  SDValue NewV = V2Only ? V2 : V1;
5671  for (int i = 0; i != 8; ++i) {
5672    int Elt0 = MaskVals[i*2];
5673    int Elt1 = MaskVals[i*2+1];
5674
5675    // This word of the result is all undef, skip it.
5676    if (Elt0 < 0 && Elt1 < 0)
5677      continue;
5678
5679    // This word of the result is already in the correct place, skip it.
5680    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5681      continue;
5682    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5683      continue;
5684
5685    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5686    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5687    SDValue InsElt;
5688
5689    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5690    // using a single extract together, load it and store it.
5691    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5692      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5693                           DAG.getIntPtrConstant(Elt1 / 2));
5694      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5695                        DAG.getIntPtrConstant(i));
5696      continue;
5697    }
5698
5699    // If Elt1 is defined, extract it from the appropriate source.  If the
5700    // source byte is not also odd, shift the extracted word left 8 bits
5701    // otherwise clear the bottom 8 bits if we need to do an or.
5702    if (Elt1 >= 0) {
5703      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5704                           DAG.getIntPtrConstant(Elt1 / 2));
5705      if ((Elt1 & 1) == 0)
5706        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5707                             DAG.getConstant(8,
5708                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5709      else if (Elt0 >= 0)
5710        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5711                             DAG.getConstant(0xFF00, MVT::i16));
5712    }
5713    // If Elt0 is defined, extract it from the appropriate source.  If the
5714    // source byte is not also even, shift the extracted word right 8 bits. If
5715    // Elt1 was also defined, OR the extracted values together before
5716    // inserting them in the result.
5717    if (Elt0 >= 0) {
5718      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5719                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5720      if ((Elt0 & 1) != 0)
5721        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5722                              DAG.getConstant(8,
5723                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5724      else if (Elt1 >= 0)
5725        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5726                             DAG.getConstant(0x00FF, MVT::i16));
5727      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5728                         : InsElt0;
5729    }
5730    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5731                       DAG.getIntPtrConstant(i));
5732  }
5733  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5734}
5735
5736/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5737/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5738/// done when every pair / quad of shuffle mask elements point to elements in
5739/// the right sequence. e.g.
5740/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5741static
5742SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5743                                 SelectionDAG &DAG, DebugLoc dl) {
5744  EVT VT = SVOp->getValueType(0);
5745  SDValue V1 = SVOp->getOperand(0);
5746  SDValue V2 = SVOp->getOperand(1);
5747  unsigned NumElems = VT.getVectorNumElements();
5748  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5749  EVT NewVT;
5750  switch (VT.getSimpleVT().SimpleTy) {
5751  default: llvm_unreachable("Unexpected!");
5752  case MVT::v4f32: NewVT = MVT::v2f64; break;
5753  case MVT::v4i32: NewVT = MVT::v2i64; break;
5754  case MVT::v8i16: NewVT = MVT::v4i32; break;
5755  case MVT::v16i8: NewVT = MVT::v4i32; break;
5756  }
5757
5758  int Scale = NumElems / NewWidth;
5759  SmallVector<int, 8> MaskVec;
5760  for (unsigned i = 0; i < NumElems; i += Scale) {
5761    int StartIdx = -1;
5762    for (int j = 0; j < Scale; ++j) {
5763      int EltIdx = SVOp->getMaskElt(i+j);
5764      if (EltIdx < 0)
5765        continue;
5766      if (StartIdx == -1)
5767        StartIdx = EltIdx - (EltIdx % Scale);
5768      if (EltIdx != StartIdx + j)
5769        return SDValue();
5770    }
5771    if (StartIdx == -1)
5772      MaskVec.push_back(-1);
5773    else
5774      MaskVec.push_back(StartIdx / Scale);
5775  }
5776
5777  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5778  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5779  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5780}
5781
5782/// getVZextMovL - Return a zero-extending vector move low node.
5783///
5784static SDValue getVZextMovL(EVT VT, EVT OpVT,
5785                            SDValue SrcOp, SelectionDAG &DAG,
5786                            const X86Subtarget *Subtarget, DebugLoc dl) {
5787  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5788    LoadSDNode *LD = NULL;
5789    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5790      LD = dyn_cast<LoadSDNode>(SrcOp);
5791    if (!LD) {
5792      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5793      // instead.
5794      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5795      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5796          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5797          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5798          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5799        // PR2108
5800        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5801        return DAG.getNode(ISD::BITCAST, dl, VT,
5802                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5803                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5804                                                   OpVT,
5805                                                   SrcOp.getOperand(0)
5806                                                          .getOperand(0))));
5807      }
5808    }
5809  }
5810
5811  return DAG.getNode(ISD::BITCAST, dl, VT,
5812                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5813                                 DAG.getNode(ISD::BITCAST, dl,
5814                                             OpVT, SrcOp)));
5815}
5816
5817/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5818/// which could not be matched by any known target speficic shuffle
5819static SDValue
5820LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5821  EVT VT = SVOp->getValueType(0);
5822
5823  unsigned NumElems = VT.getVectorNumElements();
5824  unsigned NumLaneElems = NumElems / 2;
5825
5826  int MinRange[2][2] = { { static_cast<int>(NumElems),
5827                           static_cast<int>(NumElems) },
5828                         { static_cast<int>(NumElems),
5829                           static_cast<int>(NumElems) } };
5830  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5831
5832  // Collect used ranges for each source in each lane
5833  for (unsigned l = 0; l < 2; ++l) {
5834    unsigned LaneStart = l*NumLaneElems;
5835    for (unsigned i = 0; i != NumLaneElems; ++i) {
5836      int Idx = SVOp->getMaskElt(i+LaneStart);
5837      if (Idx < 0)
5838        continue;
5839
5840      int Input = 0;
5841      if (Idx >= (int)NumElems) {
5842        Idx -= NumElems;
5843        Input = 1;
5844      }
5845
5846      if (Idx > MaxRange[l][Input])
5847        MaxRange[l][Input] = Idx;
5848      if (Idx < MinRange[l][Input])
5849        MinRange[l][Input] = Idx;
5850    }
5851  }
5852
5853  // Make sure each range is 128-bits
5854  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5855  for (unsigned l = 0; l < 2; ++l) {
5856    for (unsigned Input = 0; Input < 2; ++Input) {
5857      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5858        continue;
5859
5860      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5861        ExtractIdx[l][Input] = 0;
5862      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5863               MaxRange[l][Input] < (int)NumElems)
5864        ExtractIdx[l][Input] = NumLaneElems;
5865      else
5866        return SDValue();
5867    }
5868  }
5869
5870  DebugLoc dl = SVOp->getDebugLoc();
5871  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5872  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5873
5874  SDValue Ops[2][2];
5875  for (unsigned l = 0; l < 2; ++l) {
5876    for (unsigned Input = 0; Input < 2; ++Input) {
5877      if (ExtractIdx[l][Input] >= 0)
5878        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5879                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5880                                                DAG, dl);
5881      else
5882        Ops[l][Input] = DAG.getUNDEF(NVT);
5883    }
5884  }
5885
5886  // Generate 128-bit shuffles
5887  SmallVector<int, 16> Mask1, Mask2;
5888  for (unsigned i = 0; i != NumLaneElems; ++i) {
5889    int Elt = SVOp->getMaskElt(i);
5890    if (Elt >= (int)NumElems) {
5891      Elt %= NumLaneElems;
5892      Elt += NumLaneElems;
5893    } else if (Elt >= 0) {
5894      Elt %= NumLaneElems;
5895    }
5896    Mask1.push_back(Elt);
5897  }
5898  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
5899    int Elt = SVOp->getMaskElt(i);
5900    if (Elt >= (int)NumElems) {
5901      Elt %= NumLaneElems;
5902      Elt += NumLaneElems;
5903    } else if (Elt >= 0) {
5904      Elt %= NumLaneElems;
5905    }
5906    Mask2.push_back(Elt);
5907  }
5908
5909  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
5910  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
5911
5912  // Concatenate the result back
5913  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
5914                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5915  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
5916                            DAG, dl);
5917}
5918
5919/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5920/// 4 elements, and match them with several different shuffle types.
5921static SDValue
5922LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5923  SDValue V1 = SVOp->getOperand(0);
5924  SDValue V2 = SVOp->getOperand(1);
5925  DebugLoc dl = SVOp->getDebugLoc();
5926  EVT VT = SVOp->getValueType(0);
5927
5928  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5929
5930  std::pair<int, int> Locs[4];
5931  int Mask1[] = { -1, -1, -1, -1 };
5932  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
5933
5934  unsigned NumHi = 0;
5935  unsigned NumLo = 0;
5936  for (unsigned i = 0; i != 4; ++i) {
5937    int Idx = PermMask[i];
5938    if (Idx < 0) {
5939      Locs[i] = std::make_pair(-1, -1);
5940    } else {
5941      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5942      if (Idx < 4) {
5943        Locs[i] = std::make_pair(0, NumLo);
5944        Mask1[NumLo] = Idx;
5945        NumLo++;
5946      } else {
5947        Locs[i] = std::make_pair(1, NumHi);
5948        if (2+NumHi < 4)
5949          Mask1[2+NumHi] = Idx;
5950        NumHi++;
5951      }
5952    }
5953  }
5954
5955  if (NumLo <= 2 && NumHi <= 2) {
5956    // If no more than two elements come from either vector. This can be
5957    // implemented with two shuffles. First shuffle gather the elements.
5958    // The second shuffle, which takes the first shuffle as both of its
5959    // vector operands, put the elements into the right order.
5960    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5961
5962    int Mask2[] = { -1, -1, -1, -1 };
5963
5964    for (unsigned i = 0; i != 4; ++i)
5965      if (Locs[i].first != -1) {
5966        unsigned Idx = (i < 2) ? 0 : 4;
5967        Idx += Locs[i].first * 2 + Locs[i].second;
5968        Mask2[i] = Idx;
5969      }
5970
5971    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5972  } else if (NumLo == 3 || NumHi == 3) {
5973    // Otherwise, we must have three elements from one vector, call it X, and
5974    // one element from the other, call it Y.  First, use a shufps to build an
5975    // intermediate vector with the one element from Y and the element from X
5976    // that will be in the same half in the final destination (the indexes don't
5977    // matter). Then, use a shufps to build the final vector, taking the half
5978    // containing the element from Y from the intermediate, and the other half
5979    // from X.
5980    if (NumHi == 3) {
5981      // Normalize it so the 3 elements come from V1.
5982      CommuteVectorShuffleMask(PermMask, 4);
5983      std::swap(V1, V2);
5984    }
5985
5986    // Find the element from V2.
5987    unsigned HiIndex;
5988    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5989      int Val = PermMask[HiIndex];
5990      if (Val < 0)
5991        continue;
5992      if (Val >= 4)
5993        break;
5994    }
5995
5996    Mask1[0] = PermMask[HiIndex];
5997    Mask1[1] = -1;
5998    Mask1[2] = PermMask[HiIndex^1];
5999    Mask1[3] = -1;
6000    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6001
6002    if (HiIndex >= 2) {
6003      Mask1[0] = PermMask[0];
6004      Mask1[1] = PermMask[1];
6005      Mask1[2] = HiIndex & 1 ? 6 : 4;
6006      Mask1[3] = HiIndex & 1 ? 4 : 6;
6007      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6008    } else {
6009      Mask1[0] = HiIndex & 1 ? 2 : 0;
6010      Mask1[1] = HiIndex & 1 ? 0 : 2;
6011      Mask1[2] = PermMask[2];
6012      Mask1[3] = PermMask[3];
6013      if (Mask1[2] >= 0)
6014        Mask1[2] += 4;
6015      if (Mask1[3] >= 0)
6016        Mask1[3] += 4;
6017      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6018    }
6019  }
6020
6021  // Break it into (shuffle shuffle_hi, shuffle_lo).
6022  int LoMask[] = { -1, -1, -1, -1 };
6023  int HiMask[] = { -1, -1, -1, -1 };
6024
6025  int *MaskPtr = LoMask;
6026  unsigned MaskIdx = 0;
6027  unsigned LoIdx = 0;
6028  unsigned HiIdx = 2;
6029  for (unsigned i = 0; i != 4; ++i) {
6030    if (i == 2) {
6031      MaskPtr = HiMask;
6032      MaskIdx = 1;
6033      LoIdx = 0;
6034      HiIdx = 2;
6035    }
6036    int Idx = PermMask[i];
6037    if (Idx < 0) {
6038      Locs[i] = std::make_pair(-1, -1);
6039    } else if (Idx < 4) {
6040      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6041      MaskPtr[LoIdx] = Idx;
6042      LoIdx++;
6043    } else {
6044      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6045      MaskPtr[HiIdx] = Idx;
6046      HiIdx++;
6047    }
6048  }
6049
6050  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6051  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6052  int MaskOps[] = { -1, -1, -1, -1 };
6053  for (unsigned i = 0; i != 4; ++i)
6054    if (Locs[i].first != -1)
6055      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6056  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6057}
6058
6059static bool MayFoldVectorLoad(SDValue V) {
6060  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6061    V = V.getOperand(0);
6062  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6063    V = V.getOperand(0);
6064  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6065      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6066    // BUILD_VECTOR (load), undef
6067    V = V.getOperand(0);
6068  if (MayFoldLoad(V))
6069    return true;
6070  return false;
6071}
6072
6073// FIXME: the version above should always be used. Since there's
6074// a bug where several vector shuffles can't be folded because the
6075// DAG is not updated during lowering and a node claims to have two
6076// uses while it only has one, use this version, and let isel match
6077// another instruction if the load really happens to have more than
6078// one use. Remove this version after this bug get fixed.
6079// rdar://8434668, PR8156
6080static bool RelaxedMayFoldVectorLoad(SDValue V) {
6081  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6082    V = V.getOperand(0);
6083  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6084    V = V.getOperand(0);
6085  if (ISD::isNormalLoad(V.getNode()))
6086    return true;
6087  return false;
6088}
6089
6090/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6091/// a vector extract, and if both can be later optimized into a single load.
6092/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6093/// here because otherwise a target specific shuffle node is going to be
6094/// emitted for this shuffle, and the optimization not done.
6095/// FIXME: This is probably not the best approach, but fix the problem
6096/// until the right path is decided.
6097static
6098bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6099                                         const TargetLowering &TLI) {
6100  EVT VT = V.getValueType();
6101  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6102
6103  // Be sure that the vector shuffle is present in a pattern like this:
6104  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6105  if (!V.hasOneUse())
6106    return false;
6107
6108  SDNode *N = *V.getNode()->use_begin();
6109  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6110    return false;
6111
6112  SDValue EltNo = N->getOperand(1);
6113  if (!isa<ConstantSDNode>(EltNo))
6114    return false;
6115
6116  // If the bit convert changed the number of elements, it is unsafe
6117  // to examine the mask.
6118  bool HasShuffleIntoBitcast = false;
6119  if (V.getOpcode() == ISD::BITCAST) {
6120    EVT SrcVT = V.getOperand(0).getValueType();
6121    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6122      return false;
6123    V = V.getOperand(0);
6124    HasShuffleIntoBitcast = true;
6125  }
6126
6127  // Select the input vector, guarding against out of range extract vector.
6128  unsigned NumElems = VT.getVectorNumElements();
6129  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6130  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6131  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6132
6133  // If we are accessing the upper part of a YMM register
6134  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6135  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6136  // because the legalization of N did not happen yet.
6137  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6138    return false;
6139
6140  // Skip one more bit_convert if necessary
6141  if (V.getOpcode() == ISD::BITCAST) {
6142    if (!V.hasOneUse())
6143      return false;
6144    V = V.getOperand(0);
6145  }
6146
6147  if (!ISD::isNormalLoad(V.getNode()))
6148    return false;
6149
6150  // Is the original load suitable?
6151  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6152
6153  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6154    return false;
6155
6156  if (!HasShuffleIntoBitcast)
6157    return true;
6158
6159  // If there's a bitcast before the shuffle, check if the load type and
6160  // alignment is valid.
6161  unsigned Align = LN0->getAlignment();
6162  unsigned NewAlign =
6163    TLI.getTargetData()->getABITypeAlignment(
6164                                  VT.getTypeForEVT(*DAG.getContext()));
6165
6166  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6167    return false;
6168
6169  return true;
6170}
6171
6172static
6173SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6174  EVT VT = Op.getValueType();
6175
6176  // Canonizalize to v2f64.
6177  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6178  return DAG.getNode(ISD::BITCAST, dl, VT,
6179                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6180                                          V1, DAG));
6181}
6182
6183static
6184SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6185                        bool HasSSE2) {
6186  SDValue V1 = Op.getOperand(0);
6187  SDValue V2 = Op.getOperand(1);
6188  EVT VT = Op.getValueType();
6189
6190  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6191
6192  if (HasSSE2 && VT == MVT::v2f64)
6193    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6194
6195  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6196  return DAG.getNode(ISD::BITCAST, dl, VT,
6197                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6198                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6199                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6200}
6201
6202static
6203SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6204  SDValue V1 = Op.getOperand(0);
6205  SDValue V2 = Op.getOperand(1);
6206  EVT VT = Op.getValueType();
6207
6208  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6209         "unsupported shuffle type");
6210
6211  if (V2.getOpcode() == ISD::UNDEF)
6212    V2 = V1;
6213
6214  // v4i32 or v4f32
6215  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6216}
6217
6218static
6219SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6220  SDValue V1 = Op.getOperand(0);
6221  SDValue V2 = Op.getOperand(1);
6222  EVT VT = Op.getValueType();
6223  unsigned NumElems = VT.getVectorNumElements();
6224
6225  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6226  // operand of these instructions is only memory, so check if there's a
6227  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6228  // same masks.
6229  bool CanFoldLoad = false;
6230
6231  // Trivial case, when V2 comes from a load.
6232  if (MayFoldVectorLoad(V2))
6233    CanFoldLoad = true;
6234
6235  // When V1 is a load, it can be folded later into a store in isel, example:
6236  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6237  //    turns into:
6238  //  (MOVLPSmr addr:$src1, VR128:$src2)
6239  // So, recognize this potential and also use MOVLPS or MOVLPD
6240  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6241    CanFoldLoad = true;
6242
6243  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6244  if (CanFoldLoad) {
6245    if (HasSSE2 && NumElems == 2)
6246      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6247
6248    if (NumElems == 4)
6249      // If we don't care about the second element, procede to use movss.
6250      if (SVOp->getMaskElt(1) != -1)
6251        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6252  }
6253
6254  // movl and movlp will both match v2i64, but v2i64 is never matched by
6255  // movl earlier because we make it strict to avoid messing with the movlp load
6256  // folding logic (see the code above getMOVLP call). Match it here then,
6257  // this is horrible, but will stay like this until we move all shuffle
6258  // matching to x86 specific nodes. Note that for the 1st condition all
6259  // types are matched with movsd.
6260  if (HasSSE2) {
6261    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6262    // as to remove this logic from here, as much as possible
6263    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6264      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6265    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6266  }
6267
6268  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6269
6270  // Invert the operand order and use SHUFPS to match it.
6271  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6272                              getShuffleSHUFImmediate(SVOp), DAG);
6273}
6274
6275static
6276SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6277                               const TargetLowering &TLI,
6278                               const X86Subtarget *Subtarget) {
6279  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6280  EVT VT = Op.getValueType();
6281  DebugLoc dl = Op.getDebugLoc();
6282  SDValue V1 = Op.getOperand(0);
6283  SDValue V2 = Op.getOperand(1);
6284
6285  if (isZeroShuffle(SVOp))
6286    return getZeroVector(VT, Subtarget, DAG, dl);
6287
6288  // Handle splat operations
6289  if (SVOp->isSplat()) {
6290    unsigned NumElem = VT.getVectorNumElements();
6291    int Size = VT.getSizeInBits();
6292    // Special case, this is the only place now where it's allowed to return
6293    // a vector_shuffle operation without using a target specific node, because
6294    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6295    // this be moved to DAGCombine instead?
6296    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6297      return Op;
6298
6299    // Use vbroadcast whenever the splat comes from a foldable load
6300    SDValue LD = isVectorBroadcast(Op, Subtarget);
6301    if (LD.getNode())
6302      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6303
6304    // Handle splats by matching through known shuffle masks
6305    if ((Size == 128 && NumElem <= 4) ||
6306        (Size == 256 && NumElem < 8))
6307      return SDValue();
6308
6309    // All remaning splats are promoted to target supported vector shuffles.
6310    return PromoteSplat(SVOp, DAG);
6311  }
6312
6313  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6314  // do it!
6315  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6316    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6317    if (NewOp.getNode())
6318      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6319  } else if ((VT == MVT::v4i32 ||
6320             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6321    // FIXME: Figure out a cleaner way to do this.
6322    // Try to make use of movq to zero out the top part.
6323    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6324      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6325      if (NewOp.getNode()) {
6326        EVT NewVT = NewOp.getValueType();
6327        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6328                               NewVT, true, false))
6329          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6330                              DAG, Subtarget, dl);
6331      }
6332    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6333      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6334      if (NewOp.getNode()) {
6335        EVT NewVT = NewOp.getValueType();
6336        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6337          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6338                              DAG, Subtarget, dl);
6339      }
6340    }
6341  }
6342  return SDValue();
6343}
6344
6345SDValue
6346X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6347  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6348  SDValue V1 = Op.getOperand(0);
6349  SDValue V2 = Op.getOperand(1);
6350  EVT VT = Op.getValueType();
6351  DebugLoc dl = Op.getDebugLoc();
6352  unsigned NumElems = VT.getVectorNumElements();
6353  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6354  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6355  bool V1IsSplat = false;
6356  bool V2IsSplat = false;
6357  bool HasSSE2 = Subtarget->hasSSE2();
6358  bool HasAVX    = Subtarget->hasAVX();
6359  bool HasAVX2   = Subtarget->hasAVX2();
6360  MachineFunction &MF = DAG.getMachineFunction();
6361  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6362
6363  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6364
6365  if (V1IsUndef && V2IsUndef)
6366    return DAG.getUNDEF(VT);
6367
6368  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6369
6370  // Vector shuffle lowering takes 3 steps:
6371  //
6372  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6373  //    narrowing and commutation of operands should be handled.
6374  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6375  //    shuffle nodes.
6376  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6377  //    so the shuffle can be broken into other shuffles and the legalizer can
6378  //    try the lowering again.
6379  //
6380  // The general idea is that no vector_shuffle operation should be left to
6381  // be matched during isel, all of them must be converted to a target specific
6382  // node here.
6383
6384  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6385  // narrowing and commutation of operands should be handled. The actual code
6386  // doesn't include all of those, work in progress...
6387  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6388  if (NewOp.getNode())
6389    return NewOp;
6390
6391  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6392
6393  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6394  // unpckh_undef). Only use pshufd if speed is more important than size.
6395  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6396    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6397  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6398    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6399
6400  if (isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6401      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6402    return getMOVDDup(Op, dl, V1, DAG);
6403
6404  if (isMOVHLPS_v_undef_Mask(SVOp))
6405    return getMOVHighToLow(Op, dl, DAG);
6406
6407  // Use to match splats
6408  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6409      (VT == MVT::v2f64 || VT == MVT::v2i64))
6410    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6411
6412  if (isPSHUFDMask(M, VT)) {
6413    // The actual implementation will match the mask in the if above and then
6414    // during isel it can match several different instructions, not only pshufd
6415    // as its name says, sad but true, emulate the behavior for now...
6416    if (isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6417        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6418
6419    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6420
6421    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6422      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6423
6424    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6425      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6426
6427    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6428                                TargetMask, DAG);
6429  }
6430
6431  // Check if this can be converted into a logical shift.
6432  bool isLeft = false;
6433  unsigned ShAmt = 0;
6434  SDValue ShVal;
6435  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6436  if (isShift && ShVal.hasOneUse()) {
6437    // If the shifted value has multiple uses, it may be cheaper to use
6438    // v_set0 + movlhps or movhlps, etc.
6439    EVT EltVT = VT.getVectorElementType();
6440    ShAmt *= EltVT.getSizeInBits();
6441    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6442  }
6443
6444  if (isMOVLMask(M, VT)) {
6445    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6446      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6447    if (!isMOVLPMask(SVOp)) {
6448      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6449        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6450
6451      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6452        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6453    }
6454  }
6455
6456  // FIXME: fold these into legal mask.
6457  if (isMOVLHPSMask(SVOp) && !isUNPCKLMask(M, VT, HasAVX2))
6458    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6459
6460  if (isMOVHLPSMask(SVOp))
6461    return getMOVHighToLow(Op, dl, DAG);
6462
6463  if (isMOVSHDUPMask(SVOp, Subtarget))
6464    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6465
6466  if (isMOVSLDUPMask(SVOp, Subtarget))
6467    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6468
6469  if (isMOVLPMask(SVOp))
6470    return getMOVLP(Op, dl, DAG, HasSSE2);
6471
6472  if (ShouldXformToMOVHLPS(SVOp) ||
6473      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6474    return CommuteVectorShuffle(SVOp, DAG);
6475
6476  if (isShift) {
6477    // No better options. Use a vshldq / vsrldq.
6478    EVT EltVT = VT.getVectorElementType();
6479    ShAmt *= EltVT.getSizeInBits();
6480    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6481  }
6482
6483  bool Commuted = false;
6484  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6485  // 1,1,1,1 -> v8i16 though.
6486  V1IsSplat = isSplatVector(V1.getNode());
6487  V2IsSplat = isSplatVector(V2.getNode());
6488
6489  // Canonicalize the splat or undef, if present, to be on the RHS.
6490  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6491    CommuteVectorShuffleMask(M, NumElems);
6492    std::swap(V1, V2);
6493    std::swap(V1IsSplat, V2IsSplat);
6494    Commuted = true;
6495  }
6496
6497  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6498    // Shuffling low element of v1 into undef, just return v1.
6499    if (V2IsUndef)
6500      return V1;
6501    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6502    // the instruction selector will not match, so get a canonical MOVL with
6503    // swapped operands to undo the commute.
6504    return getMOVL(DAG, dl, VT, V2, V1);
6505  }
6506
6507  if (isUNPCKLMask(M, VT, HasAVX2))
6508    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6509
6510  if (isUNPCKHMask(M, VT, HasAVX2))
6511    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6512
6513  if (V2IsSplat) {
6514    // Normalize mask so all entries that point to V2 points to its first
6515    // element then try to match unpck{h|l} again. If match, return a
6516    // new vector_shuffle with the corrected mask.p
6517    SmallVector<int, 8> NewMask(M.begin(), M.end());
6518    NormalizeMask(NewMask, NumElems);
6519    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6520      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6521    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6522      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6523    }
6524  }
6525
6526  if (Commuted) {
6527    // Commute is back and try unpck* again.
6528    // FIXME: this seems wrong.
6529    CommuteVectorShuffleMask(M, NumElems);
6530    std::swap(V1, V2);
6531    std::swap(V1IsSplat, V2IsSplat);
6532    Commuted = false;
6533
6534    if (isUNPCKLMask(M, VT, HasAVX2))
6535      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6536
6537    if (isUNPCKHMask(M, VT, HasAVX2))
6538      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6539  }
6540
6541  // Normalize the node to match x86 shuffle ops if needed
6542  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6543    return CommuteVectorShuffle(SVOp, DAG);
6544
6545  // The checks below are all present in isShuffleMaskLegal, but they are
6546  // inlined here right now to enable us to directly emit target specific
6547  // nodes, and remove one by one until they don't return Op anymore.
6548
6549  if (isPALIGNRMask(M, VT, Subtarget))
6550    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6551                                getShufflePALIGNRImmediate(SVOp),
6552                                DAG);
6553
6554  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6555      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6556    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6557      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6558  }
6559
6560  if (isPSHUFHWMask(M, VT))
6561    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6562                                getShufflePSHUFHWImmediate(SVOp),
6563                                DAG);
6564
6565  if (isPSHUFLWMask(M, VT))
6566    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6567                                getShufflePSHUFLWImmediate(SVOp),
6568                                DAG);
6569
6570  if (isSHUFPMask(M, VT, HasAVX))
6571    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6572                                getShuffleSHUFImmediate(SVOp), DAG);
6573
6574  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6575    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6576  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6577    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6578
6579  //===--------------------------------------------------------------------===//
6580  // Generate target specific nodes for 128 or 256-bit shuffles only
6581  // supported in the AVX instruction set.
6582  //
6583
6584  // Handle VMOVDDUPY permutations
6585  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6586    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6587
6588  // Handle VPERMILPS/D* permutations
6589  if (isVPERMILPMask(M, VT, HasAVX)) {
6590    if (HasAVX2 && VT == MVT::v8i32)
6591      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6592                                  getShuffleSHUFImmediate(SVOp), DAG);
6593    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6594                                getShuffleSHUFImmediate(SVOp), DAG);
6595  }
6596
6597  // Handle VPERM2F128/VPERM2I128 permutations
6598  if (isVPERM2X128Mask(M, VT, HasAVX))
6599    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6600                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6601
6602  //===--------------------------------------------------------------------===//
6603  // Since no target specific shuffle was selected for this generic one,
6604  // lower it into other known shuffles. FIXME: this isn't true yet, but
6605  // this is the plan.
6606  //
6607
6608  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6609  if (VT == MVT::v8i16) {
6610    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6611    if (NewOp.getNode())
6612      return NewOp;
6613  }
6614
6615  if (VT == MVT::v16i8) {
6616    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6617    if (NewOp.getNode())
6618      return NewOp;
6619  }
6620
6621  // Handle all 128-bit wide vectors with 4 elements, and match them with
6622  // several different shuffle types.
6623  if (NumElems == 4 && VT.getSizeInBits() == 128)
6624    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6625
6626  // Handle general 256-bit shuffles
6627  if (VT.is256BitVector())
6628    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6629
6630  return SDValue();
6631}
6632
6633SDValue
6634X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6635                                                SelectionDAG &DAG) const {
6636  EVT VT = Op.getValueType();
6637  DebugLoc dl = Op.getDebugLoc();
6638
6639  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6640    return SDValue();
6641
6642  if (VT.getSizeInBits() == 8) {
6643    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6644                                    Op.getOperand(0), Op.getOperand(1));
6645    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6646                                    DAG.getValueType(VT));
6647    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6648  } else if (VT.getSizeInBits() == 16) {
6649    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6650    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6651    if (Idx == 0)
6652      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6653                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6654                                     DAG.getNode(ISD::BITCAST, dl,
6655                                                 MVT::v4i32,
6656                                                 Op.getOperand(0)),
6657                                     Op.getOperand(1)));
6658    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6659                                    Op.getOperand(0), Op.getOperand(1));
6660    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6661                                    DAG.getValueType(VT));
6662    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6663  } else if (VT == MVT::f32) {
6664    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6665    // the result back to FR32 register. It's only worth matching if the
6666    // result has a single use which is a store or a bitcast to i32.  And in
6667    // the case of a store, it's not worth it if the index is a constant 0,
6668    // because a MOVSSmr can be used instead, which is smaller and faster.
6669    if (!Op.hasOneUse())
6670      return SDValue();
6671    SDNode *User = *Op.getNode()->use_begin();
6672    if ((User->getOpcode() != ISD::STORE ||
6673         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6674          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6675        (User->getOpcode() != ISD::BITCAST ||
6676         User->getValueType(0) != MVT::i32))
6677      return SDValue();
6678    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6679                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6680                                              Op.getOperand(0)),
6681                                              Op.getOperand(1));
6682    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6683  } else if (VT == MVT::i32 || VT == MVT::i64) {
6684    // ExtractPS/pextrq works with constant index.
6685    if (isa<ConstantSDNode>(Op.getOperand(1)))
6686      return Op;
6687  }
6688  return SDValue();
6689}
6690
6691
6692SDValue
6693X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6694                                           SelectionDAG &DAG) const {
6695  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6696    return SDValue();
6697
6698  SDValue Vec = Op.getOperand(0);
6699  EVT VecVT = Vec.getValueType();
6700
6701  // If this is a 256-bit vector result, first extract the 128-bit vector and
6702  // then extract the element from the 128-bit vector.
6703  if (VecVT.getSizeInBits() == 256) {
6704    DebugLoc dl = Op.getNode()->getDebugLoc();
6705    unsigned NumElems = VecVT.getVectorNumElements();
6706    SDValue Idx = Op.getOperand(1);
6707    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6708
6709    // Get the 128-bit vector.
6710    bool Upper = IdxVal >= NumElems/2;
6711    Vec = Extract128BitVector(Vec,
6712                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6713
6714    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6715                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6716  }
6717
6718  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6719
6720  if (Subtarget->hasSSE41()) {
6721    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6722    if (Res.getNode())
6723      return Res;
6724  }
6725
6726  EVT VT = Op.getValueType();
6727  DebugLoc dl = Op.getDebugLoc();
6728  // TODO: handle v16i8.
6729  if (VT.getSizeInBits() == 16) {
6730    SDValue Vec = Op.getOperand(0);
6731    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6732    if (Idx == 0)
6733      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6734                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6735                                     DAG.getNode(ISD::BITCAST, dl,
6736                                                 MVT::v4i32, Vec),
6737                                     Op.getOperand(1)));
6738    // Transform it so it match pextrw which produces a 32-bit result.
6739    EVT EltVT = MVT::i32;
6740    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6741                                    Op.getOperand(0), Op.getOperand(1));
6742    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6743                                    DAG.getValueType(VT));
6744    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6745  } else if (VT.getSizeInBits() == 32) {
6746    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6747    if (Idx == 0)
6748      return Op;
6749
6750    // SHUFPS the element to the lowest double word, then movss.
6751    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6752    EVT VVT = Op.getOperand(0).getValueType();
6753    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6754                                       DAG.getUNDEF(VVT), Mask);
6755    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6756                       DAG.getIntPtrConstant(0));
6757  } else if (VT.getSizeInBits() == 64) {
6758    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6759    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6760    //        to match extract_elt for f64.
6761    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6762    if (Idx == 0)
6763      return Op;
6764
6765    // UNPCKHPD the element to the lowest double word, then movsd.
6766    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6767    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6768    int Mask[2] = { 1, -1 };
6769    EVT VVT = Op.getOperand(0).getValueType();
6770    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6771                                       DAG.getUNDEF(VVT), Mask);
6772    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6773                       DAG.getIntPtrConstant(0));
6774  }
6775
6776  return SDValue();
6777}
6778
6779SDValue
6780X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6781                                               SelectionDAG &DAG) const {
6782  EVT VT = Op.getValueType();
6783  EVT EltVT = VT.getVectorElementType();
6784  DebugLoc dl = Op.getDebugLoc();
6785
6786  SDValue N0 = Op.getOperand(0);
6787  SDValue N1 = Op.getOperand(1);
6788  SDValue N2 = Op.getOperand(2);
6789
6790  if (VT.getSizeInBits() == 256)
6791    return SDValue();
6792
6793  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6794      isa<ConstantSDNode>(N2)) {
6795    unsigned Opc;
6796    if (VT == MVT::v8i16)
6797      Opc = X86ISD::PINSRW;
6798    else if (VT == MVT::v16i8)
6799      Opc = X86ISD::PINSRB;
6800    else
6801      Opc = X86ISD::PINSRB;
6802
6803    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6804    // argument.
6805    if (N1.getValueType() != MVT::i32)
6806      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6807    if (N2.getValueType() != MVT::i32)
6808      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6809    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6810  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6811    // Bits [7:6] of the constant are the source select.  This will always be
6812    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6813    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6814    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6815    // Bits [5:4] of the constant are the destination select.  This is the
6816    //  value of the incoming immediate.
6817    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6818    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6819    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6820    // Create this as a scalar to vector..
6821    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6822    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6823  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6824             isa<ConstantSDNode>(N2)) {
6825    // PINSR* works with constant index.
6826    return Op;
6827  }
6828  return SDValue();
6829}
6830
6831SDValue
6832X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6833  EVT VT = Op.getValueType();
6834  EVT EltVT = VT.getVectorElementType();
6835
6836  DebugLoc dl = Op.getDebugLoc();
6837  SDValue N0 = Op.getOperand(0);
6838  SDValue N1 = Op.getOperand(1);
6839  SDValue N2 = Op.getOperand(2);
6840
6841  // If this is a 256-bit vector result, first extract the 128-bit vector,
6842  // insert the element into the extracted half and then place it back.
6843  if (VT.getSizeInBits() == 256) {
6844    if (!isa<ConstantSDNode>(N2))
6845      return SDValue();
6846
6847    // Get the desired 128-bit vector half.
6848    unsigned NumElems = VT.getVectorNumElements();
6849    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6850    bool Upper = IdxVal >= NumElems/2;
6851    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6852    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6853
6854    // Insert the element into the desired half.
6855    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6856                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6857
6858    // Insert the changed part back to the 256-bit vector
6859    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6860  }
6861
6862  if (Subtarget->hasSSE41())
6863    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6864
6865  if (EltVT == MVT::i8)
6866    return SDValue();
6867
6868  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6869    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6870    // as its second argument.
6871    if (N1.getValueType() != MVT::i32)
6872      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6873    if (N2.getValueType() != MVT::i32)
6874      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6875    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6876  }
6877  return SDValue();
6878}
6879
6880SDValue
6881X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6882  LLVMContext *Context = DAG.getContext();
6883  DebugLoc dl = Op.getDebugLoc();
6884  EVT OpVT = Op.getValueType();
6885
6886  // If this is a 256-bit vector result, first insert into a 128-bit
6887  // vector and then insert into the 256-bit vector.
6888  if (OpVT.getSizeInBits() > 128) {
6889    // Insert into a 128-bit vector.
6890    EVT VT128 = EVT::getVectorVT(*Context,
6891                                 OpVT.getVectorElementType(),
6892                                 OpVT.getVectorNumElements() / 2);
6893
6894    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6895
6896    // Insert the 128-bit vector.
6897    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6898                              DAG.getConstant(0, MVT::i32),
6899                              DAG, dl);
6900  }
6901
6902  if (Op.getValueType() == MVT::v1i64 &&
6903      Op.getOperand(0).getValueType() == MVT::i64)
6904    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6905
6906  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6907  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6908         "Expected an SSE type!");
6909  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6910                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6911}
6912
6913// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6914// a simple subregister reference or explicit instructions to grab
6915// upper bits of a vector.
6916SDValue
6917X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6918  if (Subtarget->hasAVX()) {
6919    DebugLoc dl = Op.getNode()->getDebugLoc();
6920    SDValue Vec = Op.getNode()->getOperand(0);
6921    SDValue Idx = Op.getNode()->getOperand(1);
6922
6923    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6924        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6925        return Extract128BitVector(Vec, Idx, DAG, dl);
6926    }
6927  }
6928  return SDValue();
6929}
6930
6931// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6932// simple superregister reference or explicit instructions to insert
6933// the upper bits of a vector.
6934SDValue
6935X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6936  if (Subtarget->hasAVX()) {
6937    DebugLoc dl = Op.getNode()->getDebugLoc();
6938    SDValue Vec = Op.getNode()->getOperand(0);
6939    SDValue SubVec = Op.getNode()->getOperand(1);
6940    SDValue Idx = Op.getNode()->getOperand(2);
6941
6942    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6943        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6944      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6945    }
6946  }
6947  return SDValue();
6948}
6949
6950// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6951// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6952// one of the above mentioned nodes. It has to be wrapped because otherwise
6953// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6954// be used to form addressing mode. These wrapped nodes will be selected
6955// into MOV32ri.
6956SDValue
6957X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6958  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6959
6960  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6961  // global base reg.
6962  unsigned char OpFlag = 0;
6963  unsigned WrapperKind = X86ISD::Wrapper;
6964  CodeModel::Model M = getTargetMachine().getCodeModel();
6965
6966  if (Subtarget->isPICStyleRIPRel() &&
6967      (M == CodeModel::Small || M == CodeModel::Kernel))
6968    WrapperKind = X86ISD::WrapperRIP;
6969  else if (Subtarget->isPICStyleGOT())
6970    OpFlag = X86II::MO_GOTOFF;
6971  else if (Subtarget->isPICStyleStubPIC())
6972    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6973
6974  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6975                                             CP->getAlignment(),
6976                                             CP->getOffset(), OpFlag);
6977  DebugLoc DL = CP->getDebugLoc();
6978  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6979  // With PIC, the address is actually $g + Offset.
6980  if (OpFlag) {
6981    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6982                         DAG.getNode(X86ISD::GlobalBaseReg,
6983                                     DebugLoc(), getPointerTy()),
6984                         Result);
6985  }
6986
6987  return Result;
6988}
6989
6990SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6991  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6992
6993  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6994  // global base reg.
6995  unsigned char OpFlag = 0;
6996  unsigned WrapperKind = X86ISD::Wrapper;
6997  CodeModel::Model M = getTargetMachine().getCodeModel();
6998
6999  if (Subtarget->isPICStyleRIPRel() &&
7000      (M == CodeModel::Small || M == CodeModel::Kernel))
7001    WrapperKind = X86ISD::WrapperRIP;
7002  else if (Subtarget->isPICStyleGOT())
7003    OpFlag = X86II::MO_GOTOFF;
7004  else if (Subtarget->isPICStyleStubPIC())
7005    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7006
7007  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7008                                          OpFlag);
7009  DebugLoc DL = JT->getDebugLoc();
7010  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7011
7012  // With PIC, the address is actually $g + Offset.
7013  if (OpFlag)
7014    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7015                         DAG.getNode(X86ISD::GlobalBaseReg,
7016                                     DebugLoc(), getPointerTy()),
7017                         Result);
7018
7019  return Result;
7020}
7021
7022SDValue
7023X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7024  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7025
7026  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7027  // global base reg.
7028  unsigned char OpFlag = 0;
7029  unsigned WrapperKind = X86ISD::Wrapper;
7030  CodeModel::Model M = getTargetMachine().getCodeModel();
7031
7032  if (Subtarget->isPICStyleRIPRel() &&
7033      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7034    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7035      OpFlag = X86II::MO_GOTPCREL;
7036    WrapperKind = X86ISD::WrapperRIP;
7037  } else if (Subtarget->isPICStyleGOT()) {
7038    OpFlag = X86II::MO_GOT;
7039  } else if (Subtarget->isPICStyleStubPIC()) {
7040    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7041  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7042    OpFlag = X86II::MO_DARWIN_NONLAZY;
7043  }
7044
7045  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7046
7047  DebugLoc DL = Op.getDebugLoc();
7048  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7049
7050
7051  // With PIC, the address is actually $g + Offset.
7052  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7053      !Subtarget->is64Bit()) {
7054    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7055                         DAG.getNode(X86ISD::GlobalBaseReg,
7056                                     DebugLoc(), getPointerTy()),
7057                         Result);
7058  }
7059
7060  // For symbols that require a load from a stub to get the address, emit the
7061  // load.
7062  if (isGlobalStubReference(OpFlag))
7063    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7064                         MachinePointerInfo::getGOT(), false, false, false, 0);
7065
7066  return Result;
7067}
7068
7069SDValue
7070X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7071  // Create the TargetBlockAddressAddress node.
7072  unsigned char OpFlags =
7073    Subtarget->ClassifyBlockAddressReference();
7074  CodeModel::Model M = getTargetMachine().getCodeModel();
7075  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7076  DebugLoc dl = Op.getDebugLoc();
7077  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7078                                       /*isTarget=*/true, OpFlags);
7079
7080  if (Subtarget->isPICStyleRIPRel() &&
7081      (M == CodeModel::Small || M == CodeModel::Kernel))
7082    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7083  else
7084    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7085
7086  // With PIC, the address is actually $g + Offset.
7087  if (isGlobalRelativeToPICBase(OpFlags)) {
7088    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7089                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7090                         Result);
7091  }
7092
7093  return Result;
7094}
7095
7096SDValue
7097X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7098                                      int64_t Offset,
7099                                      SelectionDAG &DAG) const {
7100  // Create the TargetGlobalAddress node, folding in the constant
7101  // offset if it is legal.
7102  unsigned char OpFlags =
7103    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7104  CodeModel::Model M = getTargetMachine().getCodeModel();
7105  SDValue Result;
7106  if (OpFlags == X86II::MO_NO_FLAG &&
7107      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7108    // A direct static reference to a global.
7109    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7110    Offset = 0;
7111  } else {
7112    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7113  }
7114
7115  if (Subtarget->isPICStyleRIPRel() &&
7116      (M == CodeModel::Small || M == CodeModel::Kernel))
7117    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7118  else
7119    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7120
7121  // With PIC, the address is actually $g + Offset.
7122  if (isGlobalRelativeToPICBase(OpFlags)) {
7123    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7124                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7125                         Result);
7126  }
7127
7128  // For globals that require a load from a stub to get the address, emit the
7129  // load.
7130  if (isGlobalStubReference(OpFlags))
7131    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7132                         MachinePointerInfo::getGOT(), false, false, false, 0);
7133
7134  // If there was a non-zero offset that we didn't fold, create an explicit
7135  // addition for it.
7136  if (Offset != 0)
7137    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7138                         DAG.getConstant(Offset, getPointerTy()));
7139
7140  return Result;
7141}
7142
7143SDValue
7144X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7145  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7146  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7147  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7148}
7149
7150static SDValue
7151GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7152           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7153           unsigned char OperandFlags) {
7154  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7155  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7156  DebugLoc dl = GA->getDebugLoc();
7157  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7158                                           GA->getValueType(0),
7159                                           GA->getOffset(),
7160                                           OperandFlags);
7161  if (InFlag) {
7162    SDValue Ops[] = { Chain,  TGA, *InFlag };
7163    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7164  } else {
7165    SDValue Ops[]  = { Chain, TGA };
7166    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7167  }
7168
7169  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7170  MFI->setAdjustsStack(true);
7171
7172  SDValue Flag = Chain.getValue(1);
7173  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7174}
7175
7176// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7177static SDValue
7178LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7179                                const EVT PtrVT) {
7180  SDValue InFlag;
7181  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7182  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7183                                     DAG.getNode(X86ISD::GlobalBaseReg,
7184                                                 DebugLoc(), PtrVT), InFlag);
7185  InFlag = Chain.getValue(1);
7186
7187  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7188}
7189
7190// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7191static SDValue
7192LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7193                                const EVT PtrVT) {
7194  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7195                    X86::RAX, X86II::MO_TLSGD);
7196}
7197
7198// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7199// "local exec" model.
7200static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7201                                   const EVT PtrVT, TLSModel::Model model,
7202                                   bool is64Bit) {
7203  DebugLoc dl = GA->getDebugLoc();
7204
7205  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7206  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7207                                                         is64Bit ? 257 : 256));
7208
7209  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7210                                      DAG.getIntPtrConstant(0),
7211                                      MachinePointerInfo(Ptr),
7212                                      false, false, false, 0);
7213
7214  unsigned char OperandFlags = 0;
7215  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7216  // initialexec.
7217  unsigned WrapperKind = X86ISD::Wrapper;
7218  if (model == TLSModel::LocalExec) {
7219    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7220  } else if (is64Bit) {
7221    assert(model == TLSModel::InitialExec);
7222    OperandFlags = X86II::MO_GOTTPOFF;
7223    WrapperKind = X86ISD::WrapperRIP;
7224  } else {
7225    assert(model == TLSModel::InitialExec);
7226    OperandFlags = X86II::MO_INDNTPOFF;
7227  }
7228
7229  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7230  // exec)
7231  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7232                                           GA->getValueType(0),
7233                                           GA->getOffset(), OperandFlags);
7234  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7235
7236  if (model == TLSModel::InitialExec)
7237    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7238                         MachinePointerInfo::getGOT(), false, false, false, 0);
7239
7240  // The address of the thread local variable is the add of the thread
7241  // pointer with the offset of the variable.
7242  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7243}
7244
7245SDValue
7246X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7247
7248  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7249  const GlobalValue *GV = GA->getGlobal();
7250
7251  if (Subtarget->isTargetELF()) {
7252    // TODO: implement the "local dynamic" model
7253    // TODO: implement the "initial exec"model for pic executables
7254
7255    // If GV is an alias then use the aliasee for determining
7256    // thread-localness.
7257    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7258      GV = GA->resolveAliasedGlobal(false);
7259
7260    TLSModel::Model model
7261      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7262
7263    switch (model) {
7264      case TLSModel::GeneralDynamic:
7265      case TLSModel::LocalDynamic: // not implemented
7266        if (Subtarget->is64Bit())
7267          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7268        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7269
7270      case TLSModel::InitialExec:
7271      case TLSModel::LocalExec:
7272        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7273                                   Subtarget->is64Bit());
7274    }
7275  } else if (Subtarget->isTargetDarwin()) {
7276    // Darwin only has one model of TLS.  Lower to that.
7277    unsigned char OpFlag = 0;
7278    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7279                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7280
7281    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7282    // global base reg.
7283    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7284                  !Subtarget->is64Bit();
7285    if (PIC32)
7286      OpFlag = X86II::MO_TLVP_PIC_BASE;
7287    else
7288      OpFlag = X86II::MO_TLVP;
7289    DebugLoc DL = Op.getDebugLoc();
7290    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7291                                                GA->getValueType(0),
7292                                                GA->getOffset(), OpFlag);
7293    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7294
7295    // With PIC32, the address is actually $g + Offset.
7296    if (PIC32)
7297      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7298                           DAG.getNode(X86ISD::GlobalBaseReg,
7299                                       DebugLoc(), getPointerTy()),
7300                           Offset);
7301
7302    // Lowering the machine isd will make sure everything is in the right
7303    // location.
7304    SDValue Chain = DAG.getEntryNode();
7305    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7306    SDValue Args[] = { Chain, Offset };
7307    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7308
7309    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7310    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7311    MFI->setAdjustsStack(true);
7312
7313    // And our return value (tls address) is in the standard call return value
7314    // location.
7315    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7316    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7317                              Chain.getValue(1));
7318  } else if (Subtarget->isTargetWindows()) {
7319    // Just use the implicit TLS architecture
7320    // Need to generate someting similar to:
7321    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7322    //                                  ; from TEB
7323    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7324    //   mov     rcx, qword [rdx+rcx*8]
7325    //   mov     eax, .tls$:tlsvar
7326    //   [rax+rcx] contains the address
7327    // Windows 64bit: gs:0x58
7328    // Windows 32bit: fs:__tls_array
7329
7330    // If GV is an alias then use the aliasee for determining
7331    // thread-localness.
7332    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7333      GV = GA->resolveAliasedGlobal(false);
7334    DebugLoc dl = GA->getDebugLoc();
7335    SDValue Chain = DAG.getEntryNode();
7336
7337    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7338    // %gs:0x58 (64-bit).
7339    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7340                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7341                                                             256)
7342                                        : Type::getInt32PtrTy(*DAG.getContext(),
7343                                                              257));
7344
7345    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7346                                        Subtarget->is64Bit()
7347                                        ? DAG.getIntPtrConstant(0x58)
7348                                        : DAG.getExternalSymbol("_tls_array",
7349                                                                getPointerTy()),
7350                                        MachinePointerInfo(Ptr),
7351                                        false, false, false, 0);
7352
7353    // Load the _tls_index variable
7354    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7355    if (Subtarget->is64Bit())
7356      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7357                           IDX, MachinePointerInfo(), MVT::i32,
7358                           false, false, 0);
7359    else
7360      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7361                        false, false, false, 0);
7362
7363    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7364		                            getPointerTy());
7365    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7366
7367    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7368    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7369                      false, false, false, 0);
7370
7371    // Get the offset of start of .tls section
7372    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7373                                             GA->getValueType(0),
7374                                             GA->getOffset(), X86II::MO_SECREL);
7375    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7376
7377    // The address of the thread local variable is the add of the thread
7378    // pointer with the offset of the variable.
7379    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7380  }
7381
7382  llvm_unreachable("TLS not implemented for this target.");
7383}
7384
7385
7386/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7387/// and take a 2 x i32 value to shift plus a shift amount.
7388SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7389  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7390  EVT VT = Op.getValueType();
7391  unsigned VTBits = VT.getSizeInBits();
7392  DebugLoc dl = Op.getDebugLoc();
7393  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7394  SDValue ShOpLo = Op.getOperand(0);
7395  SDValue ShOpHi = Op.getOperand(1);
7396  SDValue ShAmt  = Op.getOperand(2);
7397  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7398                                     DAG.getConstant(VTBits - 1, MVT::i8))
7399                       : DAG.getConstant(0, VT);
7400
7401  SDValue Tmp2, Tmp3;
7402  if (Op.getOpcode() == ISD::SHL_PARTS) {
7403    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7404    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7405  } else {
7406    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7407    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7408  }
7409
7410  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7411                                DAG.getConstant(VTBits, MVT::i8));
7412  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7413                             AndNode, DAG.getConstant(0, MVT::i8));
7414
7415  SDValue Hi, Lo;
7416  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7417  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7418  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7419
7420  if (Op.getOpcode() == ISD::SHL_PARTS) {
7421    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7422    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7423  } else {
7424    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7425    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7426  }
7427
7428  SDValue Ops[2] = { Lo, Hi };
7429  return DAG.getMergeValues(Ops, 2, dl);
7430}
7431
7432SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7433                                           SelectionDAG &DAG) const {
7434  EVT SrcVT = Op.getOperand(0).getValueType();
7435
7436  if (SrcVT.isVector())
7437    return SDValue();
7438
7439  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7440         "Unknown SINT_TO_FP to lower!");
7441
7442  // These are really Legal; return the operand so the caller accepts it as
7443  // Legal.
7444  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7445    return Op;
7446  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7447      Subtarget->is64Bit()) {
7448    return Op;
7449  }
7450
7451  DebugLoc dl = Op.getDebugLoc();
7452  unsigned Size = SrcVT.getSizeInBits()/8;
7453  MachineFunction &MF = DAG.getMachineFunction();
7454  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7455  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7456  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7457                               StackSlot,
7458                               MachinePointerInfo::getFixedStack(SSFI),
7459                               false, false, 0);
7460  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7461}
7462
7463SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7464                                     SDValue StackSlot,
7465                                     SelectionDAG &DAG) const {
7466  // Build the FILD
7467  DebugLoc DL = Op.getDebugLoc();
7468  SDVTList Tys;
7469  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7470  if (useSSE)
7471    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7472  else
7473    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7474
7475  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7476
7477  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7478  MachineMemOperand *MMO;
7479  if (FI) {
7480    int SSFI = FI->getIndex();
7481    MMO =
7482      DAG.getMachineFunction()
7483      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7484                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7485  } else {
7486    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7487    StackSlot = StackSlot.getOperand(1);
7488  }
7489  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7490  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7491                                           X86ISD::FILD, DL,
7492                                           Tys, Ops, array_lengthof(Ops),
7493                                           SrcVT, MMO);
7494
7495  if (useSSE) {
7496    Chain = Result.getValue(1);
7497    SDValue InFlag = Result.getValue(2);
7498
7499    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7500    // shouldn't be necessary except that RFP cannot be live across
7501    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7502    MachineFunction &MF = DAG.getMachineFunction();
7503    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7504    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7505    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7506    Tys = DAG.getVTList(MVT::Other);
7507    SDValue Ops[] = {
7508      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7509    };
7510    MachineMemOperand *MMO =
7511      DAG.getMachineFunction()
7512      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7513                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7514
7515    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7516                                    Ops, array_lengthof(Ops),
7517                                    Op.getValueType(), MMO);
7518    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7519                         MachinePointerInfo::getFixedStack(SSFI),
7520                         false, false, false, 0);
7521  }
7522
7523  return Result;
7524}
7525
7526// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7527SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7528                                               SelectionDAG &DAG) const {
7529  // This algorithm is not obvious. Here it is what we're trying to output:
7530  /*
7531     movq       %rax,  %xmm0
7532     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7533     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7534     #ifdef __SSE3__
7535       haddpd   %xmm0, %xmm0
7536     #else
7537       pshufd   $0x4e, %xmm0, %xmm1
7538       addpd    %xmm1, %xmm0
7539     #endif
7540  */
7541
7542  DebugLoc dl = Op.getDebugLoc();
7543  LLVMContext *Context = DAG.getContext();
7544
7545  // Build some magic constants.
7546  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7547  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7548  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7549
7550  SmallVector<Constant*,2> CV1;
7551  CV1.push_back(
7552        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7553  CV1.push_back(
7554        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7555  Constant *C1 = ConstantVector::get(CV1);
7556  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7557
7558  // Load the 64-bit value into an XMM register.
7559  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7560                            Op.getOperand(0));
7561  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7562                              MachinePointerInfo::getConstantPool(),
7563                              false, false, false, 16);
7564  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7565                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7566                              CLod0);
7567
7568  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7569                              MachinePointerInfo::getConstantPool(),
7570                              false, false, false, 16);
7571  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7572  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7573  SDValue Result;
7574
7575  if (Subtarget->hasSSE3()) {
7576    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7577    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7578  } else {
7579    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7580    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7581                                           S2F, 0x4E, DAG);
7582    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7583                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7584                         Sub);
7585  }
7586
7587  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7588                     DAG.getIntPtrConstant(0));
7589}
7590
7591// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7592SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7593                                               SelectionDAG &DAG) const {
7594  DebugLoc dl = Op.getDebugLoc();
7595  // FP constant to bias correct the final result.
7596  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7597                                   MVT::f64);
7598
7599  // Load the 32-bit value into an XMM register.
7600  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7601                             Op.getOperand(0));
7602
7603  // Zero out the upper parts of the register.
7604  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7605
7606  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7607                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7608                     DAG.getIntPtrConstant(0));
7609
7610  // Or the load with the bias.
7611  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7612                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7613                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7614                                                   MVT::v2f64, Load)),
7615                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7616                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7617                                                   MVT::v2f64, Bias)));
7618  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7619                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7620                   DAG.getIntPtrConstant(0));
7621
7622  // Subtract the bias.
7623  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7624
7625  // Handle final rounding.
7626  EVT DestVT = Op.getValueType();
7627
7628  if (DestVT.bitsLT(MVT::f64)) {
7629    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7630                       DAG.getIntPtrConstant(0));
7631  } else if (DestVT.bitsGT(MVT::f64)) {
7632    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7633  }
7634
7635  // Handle final rounding.
7636  return Sub;
7637}
7638
7639SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7640                                           SelectionDAG &DAG) const {
7641  SDValue N0 = Op.getOperand(0);
7642  DebugLoc dl = Op.getDebugLoc();
7643
7644  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7645  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7646  // the optimization here.
7647  if (DAG.SignBitIsZero(N0))
7648    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7649
7650  EVT SrcVT = N0.getValueType();
7651  EVT DstVT = Op.getValueType();
7652  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7653    return LowerUINT_TO_FP_i64(Op, DAG);
7654  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7655    return LowerUINT_TO_FP_i32(Op, DAG);
7656  else if (Subtarget->is64Bit() &&
7657           SrcVT == MVT::i64 && DstVT == MVT::f32)
7658    return SDValue();
7659
7660  // Make a 64-bit buffer, and use it to build an FILD.
7661  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7662  if (SrcVT == MVT::i32) {
7663    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7664    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7665                                     getPointerTy(), StackSlot, WordOff);
7666    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7667                                  StackSlot, MachinePointerInfo(),
7668                                  false, false, 0);
7669    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7670                                  OffsetSlot, MachinePointerInfo(),
7671                                  false, false, 0);
7672    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7673    return Fild;
7674  }
7675
7676  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7677  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7678                               StackSlot, MachinePointerInfo(),
7679                               false, false, 0);
7680  // For i64 source, we need to add the appropriate power of 2 if the input
7681  // was negative.  This is the same as the optimization in
7682  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7683  // we must be careful to do the computation in x87 extended precision, not
7684  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7685  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7686  MachineMemOperand *MMO =
7687    DAG.getMachineFunction()
7688    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7689                          MachineMemOperand::MOLoad, 8, 8);
7690
7691  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7692  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7693  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7694                                         MVT::i64, MMO);
7695
7696  APInt FF(32, 0x5F800000ULL);
7697
7698  // Check whether the sign bit is set.
7699  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7700                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7701                                 ISD::SETLT);
7702
7703  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7704  SDValue FudgePtr = DAG.getConstantPool(
7705                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7706                                         getPointerTy());
7707
7708  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7709  SDValue Zero = DAG.getIntPtrConstant(0);
7710  SDValue Four = DAG.getIntPtrConstant(4);
7711  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7712                               Zero, Four);
7713  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7714
7715  // Load the value out, extending it from f32 to f80.
7716  // FIXME: Avoid the extend by constructing the right constant pool?
7717  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7718                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7719                                 MVT::f32, false, false, 4);
7720  // Extend everything to 80 bits to force it to be done on x87.
7721  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7722  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7723}
7724
7725std::pair<SDValue,SDValue> X86TargetLowering::
7726FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7727  DebugLoc DL = Op.getDebugLoc();
7728
7729  EVT DstTy = Op.getValueType();
7730
7731  if (!IsSigned) {
7732    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7733    DstTy = MVT::i64;
7734  }
7735
7736  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7737         DstTy.getSimpleVT() >= MVT::i16 &&
7738         "Unknown FP_TO_SINT to lower!");
7739
7740  // These are really Legal.
7741  if (DstTy == MVT::i32 &&
7742      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7743    return std::make_pair(SDValue(), SDValue());
7744  if (Subtarget->is64Bit() &&
7745      DstTy == MVT::i64 &&
7746      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7747    return std::make_pair(SDValue(), SDValue());
7748
7749  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7750  // stack slot.
7751  MachineFunction &MF = DAG.getMachineFunction();
7752  unsigned MemSize = DstTy.getSizeInBits()/8;
7753  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7754  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7755
7756
7757
7758  unsigned Opc;
7759  switch (DstTy.getSimpleVT().SimpleTy) {
7760  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7761  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7762  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7763  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7764  }
7765
7766  SDValue Chain = DAG.getEntryNode();
7767  SDValue Value = Op.getOperand(0);
7768  EVT TheVT = Op.getOperand(0).getValueType();
7769  if (isScalarFPTypeInSSEReg(TheVT)) {
7770    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7771    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7772                         MachinePointerInfo::getFixedStack(SSFI),
7773                         false, false, 0);
7774    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7775    SDValue Ops[] = {
7776      Chain, StackSlot, DAG.getValueType(TheVT)
7777    };
7778
7779    MachineMemOperand *MMO =
7780      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7781                              MachineMemOperand::MOLoad, MemSize, MemSize);
7782    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7783                                    DstTy, MMO);
7784    Chain = Value.getValue(1);
7785    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7786    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7787  }
7788
7789  MachineMemOperand *MMO =
7790    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7791                            MachineMemOperand::MOStore, MemSize, MemSize);
7792
7793  // Build the FP_TO_INT*_IN_MEM
7794  SDValue Ops[] = { Chain, Value, StackSlot };
7795  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7796                                         Ops, 3, DstTy, MMO);
7797
7798  return std::make_pair(FIST, StackSlot);
7799}
7800
7801SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7802                                           SelectionDAG &DAG) const {
7803  if (Op.getValueType().isVector())
7804    return SDValue();
7805
7806  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7807  SDValue FIST = Vals.first, StackSlot = Vals.second;
7808  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7809  if (FIST.getNode() == 0) return Op;
7810
7811  // Load the result.
7812  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7813                     FIST, StackSlot, MachinePointerInfo(),
7814                     false, false, false, 0);
7815}
7816
7817SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7818                                           SelectionDAG &DAG) const {
7819  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7820  SDValue FIST = Vals.first, StackSlot = Vals.second;
7821  assert(FIST.getNode() && "Unexpected failure");
7822
7823  // Load the result.
7824  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7825                     FIST, StackSlot, MachinePointerInfo(),
7826                     false, false, false, 0);
7827}
7828
7829SDValue X86TargetLowering::LowerFABS(SDValue Op,
7830                                     SelectionDAG &DAG) const {
7831  LLVMContext *Context = DAG.getContext();
7832  DebugLoc dl = Op.getDebugLoc();
7833  EVT VT = Op.getValueType();
7834  EVT EltVT = VT;
7835  if (VT.isVector())
7836    EltVT = VT.getVectorElementType();
7837  Constant *C;
7838  if (EltVT == MVT::f64) {
7839    C = ConstantVector::getSplat(2,
7840                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7841  } else {
7842    C = ConstantVector::getSplat(4,
7843               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7844  }
7845  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7846  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7847                             MachinePointerInfo::getConstantPool(),
7848                             false, false, false, 16);
7849  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7850}
7851
7852SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7853  LLVMContext *Context = DAG.getContext();
7854  DebugLoc dl = Op.getDebugLoc();
7855  EVT VT = Op.getValueType();
7856  EVT EltVT = VT;
7857  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7858  if (VT.isVector()) {
7859    EltVT = VT.getVectorElementType();
7860    NumElts = VT.getVectorNumElements();
7861  }
7862  Constant *C;
7863  if (EltVT == MVT::f64)
7864    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7865  else
7866    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7867  C = ConstantVector::getSplat(NumElts, C);
7868  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7869  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7870                             MachinePointerInfo::getConstantPool(),
7871                             false, false, false, 16);
7872  if (VT.isVector()) {
7873    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7874    return DAG.getNode(ISD::BITCAST, dl, VT,
7875                       DAG.getNode(ISD::XOR, dl, XORVT,
7876                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7877                                Op.getOperand(0)),
7878                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7879  } else {
7880    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7881  }
7882}
7883
7884SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7885  LLVMContext *Context = DAG.getContext();
7886  SDValue Op0 = Op.getOperand(0);
7887  SDValue Op1 = Op.getOperand(1);
7888  DebugLoc dl = Op.getDebugLoc();
7889  EVT VT = Op.getValueType();
7890  EVT SrcVT = Op1.getValueType();
7891
7892  // If second operand is smaller, extend it first.
7893  if (SrcVT.bitsLT(VT)) {
7894    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7895    SrcVT = VT;
7896  }
7897  // And if it is bigger, shrink it first.
7898  if (SrcVT.bitsGT(VT)) {
7899    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7900    SrcVT = VT;
7901  }
7902
7903  // At this point the operands and the result should have the same
7904  // type, and that won't be f80 since that is not custom lowered.
7905
7906  // First get the sign bit of second operand.
7907  SmallVector<Constant*,4> CV;
7908  if (SrcVT == MVT::f64) {
7909    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7910    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7911  } else {
7912    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7913    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7914    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7915    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7916  }
7917  Constant *C = ConstantVector::get(CV);
7918  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7919  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7920                              MachinePointerInfo::getConstantPool(),
7921                              false, false, false, 16);
7922  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7923
7924  // Shift sign bit right or left if the two operands have different types.
7925  if (SrcVT.bitsGT(VT)) {
7926    // Op0 is MVT::f32, Op1 is MVT::f64.
7927    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7928    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7929                          DAG.getConstant(32, MVT::i32));
7930    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7931    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7932                          DAG.getIntPtrConstant(0));
7933  }
7934
7935  // Clear first operand sign bit.
7936  CV.clear();
7937  if (VT == MVT::f64) {
7938    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7939    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7940  } else {
7941    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7942    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7943    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7944    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7945  }
7946  C = ConstantVector::get(CV);
7947  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7948  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7949                              MachinePointerInfo::getConstantPool(),
7950                              false, false, false, 16);
7951  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7952
7953  // Or the value with the sign bit.
7954  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7955}
7956
7957SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7958  SDValue N0 = Op.getOperand(0);
7959  DebugLoc dl = Op.getDebugLoc();
7960  EVT VT = Op.getValueType();
7961
7962  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7963  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7964                                  DAG.getConstant(1, VT));
7965  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7966}
7967
7968/// Emit nodes that will be selected as "test Op0,Op0", or something
7969/// equivalent.
7970SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7971                                    SelectionDAG &DAG) const {
7972  DebugLoc dl = Op.getDebugLoc();
7973
7974  // CF and OF aren't always set the way we want. Determine which
7975  // of these we need.
7976  bool NeedCF = false;
7977  bool NeedOF = false;
7978  switch (X86CC) {
7979  default: break;
7980  case X86::COND_A: case X86::COND_AE:
7981  case X86::COND_B: case X86::COND_BE:
7982    NeedCF = true;
7983    break;
7984  case X86::COND_G: case X86::COND_GE:
7985  case X86::COND_L: case X86::COND_LE:
7986  case X86::COND_O: case X86::COND_NO:
7987    NeedOF = true;
7988    break;
7989  }
7990
7991  // See if we can use the EFLAGS value from the operand instead of
7992  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7993  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7994  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7995    // Emit a CMP with 0, which is the TEST pattern.
7996    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7997                       DAG.getConstant(0, Op.getValueType()));
7998
7999  unsigned Opcode = 0;
8000  unsigned NumOperands = 0;
8001  switch (Op.getNode()->getOpcode()) {
8002  case ISD::ADD:
8003    // Due to an isel shortcoming, be conservative if this add is likely to be
8004    // selected as part of a load-modify-store instruction. When the root node
8005    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8006    // uses of other nodes in the match, such as the ADD in this case. This
8007    // leads to the ADD being left around and reselected, with the result being
8008    // two adds in the output.  Alas, even if none our users are stores, that
8009    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8010    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8011    // climbing the DAG back to the root, and it doesn't seem to be worth the
8012    // effort.
8013    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8014         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8015      if (UI->getOpcode() != ISD::CopyToReg &&
8016          UI->getOpcode() != ISD::SETCC &&
8017          UI->getOpcode() != ISD::STORE)
8018        goto default_case;
8019
8020    if (ConstantSDNode *C =
8021        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8022      // An add of one will be selected as an INC.
8023      if (C->getAPIntValue() == 1) {
8024        Opcode = X86ISD::INC;
8025        NumOperands = 1;
8026        break;
8027      }
8028
8029      // An add of negative one (subtract of one) will be selected as a DEC.
8030      if (C->getAPIntValue().isAllOnesValue()) {
8031        Opcode = X86ISD::DEC;
8032        NumOperands = 1;
8033        break;
8034      }
8035    }
8036
8037    // Otherwise use a regular EFLAGS-setting add.
8038    Opcode = X86ISD::ADD;
8039    NumOperands = 2;
8040    break;
8041  case ISD::AND: {
8042    // If the primary and result isn't used, don't bother using X86ISD::AND,
8043    // because a TEST instruction will be better.
8044    bool NonFlagUse = false;
8045    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8046           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8047      SDNode *User = *UI;
8048      unsigned UOpNo = UI.getOperandNo();
8049      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8050        // Look pass truncate.
8051        UOpNo = User->use_begin().getOperandNo();
8052        User = *User->use_begin();
8053      }
8054
8055      if (User->getOpcode() != ISD::BRCOND &&
8056          User->getOpcode() != ISD::SETCC &&
8057          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8058        NonFlagUse = true;
8059        break;
8060      }
8061    }
8062
8063    if (!NonFlagUse)
8064      break;
8065  }
8066    // FALL THROUGH
8067  case ISD::SUB:
8068  case ISD::OR:
8069  case ISD::XOR:
8070    // Due to the ISEL shortcoming noted above, be conservative if this op is
8071    // likely to be selected as part of a load-modify-store instruction.
8072    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8073           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8074      if (UI->getOpcode() == ISD::STORE)
8075        goto default_case;
8076
8077    // Otherwise use a regular EFLAGS-setting instruction.
8078    switch (Op.getNode()->getOpcode()) {
8079    default: llvm_unreachable("unexpected operator!");
8080    case ISD::SUB: Opcode = X86ISD::SUB; break;
8081    case ISD::OR:  Opcode = X86ISD::OR;  break;
8082    case ISD::XOR: Opcode = X86ISD::XOR; break;
8083    case ISD::AND: Opcode = X86ISD::AND; break;
8084    }
8085
8086    NumOperands = 2;
8087    break;
8088  case X86ISD::ADD:
8089  case X86ISD::SUB:
8090  case X86ISD::INC:
8091  case X86ISD::DEC:
8092  case X86ISD::OR:
8093  case X86ISD::XOR:
8094  case X86ISD::AND:
8095    return SDValue(Op.getNode(), 1);
8096  default:
8097  default_case:
8098    break;
8099  }
8100
8101  if (Opcode == 0)
8102    // Emit a CMP with 0, which is the TEST pattern.
8103    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8104                       DAG.getConstant(0, Op.getValueType()));
8105
8106  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8107  SmallVector<SDValue, 4> Ops;
8108  for (unsigned i = 0; i != NumOperands; ++i)
8109    Ops.push_back(Op.getOperand(i));
8110
8111  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8112  DAG.ReplaceAllUsesWith(Op, New);
8113  return SDValue(New.getNode(), 1);
8114}
8115
8116/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8117/// equivalent.
8118SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8119                                   SelectionDAG &DAG) const {
8120  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8121    if (C->getAPIntValue() == 0)
8122      return EmitTest(Op0, X86CC, DAG);
8123
8124  DebugLoc dl = Op0.getDebugLoc();
8125  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8126}
8127
8128/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8129/// if it's possible.
8130SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8131                                     DebugLoc dl, SelectionDAG &DAG) const {
8132  SDValue Op0 = And.getOperand(0);
8133  SDValue Op1 = And.getOperand(1);
8134  if (Op0.getOpcode() == ISD::TRUNCATE)
8135    Op0 = Op0.getOperand(0);
8136  if (Op1.getOpcode() == ISD::TRUNCATE)
8137    Op1 = Op1.getOperand(0);
8138
8139  SDValue LHS, RHS;
8140  if (Op1.getOpcode() == ISD::SHL)
8141    std::swap(Op0, Op1);
8142  if (Op0.getOpcode() == ISD::SHL) {
8143    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8144      if (And00C->getZExtValue() == 1) {
8145        // If we looked past a truncate, check that it's only truncating away
8146        // known zeros.
8147        unsigned BitWidth = Op0.getValueSizeInBits();
8148        unsigned AndBitWidth = And.getValueSizeInBits();
8149        if (BitWidth > AndBitWidth) {
8150          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8151          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8152          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8153            return SDValue();
8154        }
8155        LHS = Op1;
8156        RHS = Op0.getOperand(1);
8157      }
8158  } else if (Op1.getOpcode() == ISD::Constant) {
8159    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8160    uint64_t AndRHSVal = AndRHS->getZExtValue();
8161    SDValue AndLHS = Op0;
8162
8163    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8164      LHS = AndLHS.getOperand(0);
8165      RHS = AndLHS.getOperand(1);
8166    }
8167
8168    // Use BT if the immediate can't be encoded in a TEST instruction.
8169    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8170      LHS = AndLHS;
8171      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8172    }
8173  }
8174
8175  if (LHS.getNode()) {
8176    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8177    // instruction.  Since the shift amount is in-range-or-undefined, we know
8178    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8179    // the encoding for the i16 version is larger than the i32 version.
8180    // Also promote i16 to i32 for performance / code size reason.
8181    if (LHS.getValueType() == MVT::i8 ||
8182        LHS.getValueType() == MVT::i16)
8183      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8184
8185    // If the operand types disagree, extend the shift amount to match.  Since
8186    // BT ignores high bits (like shifts) we can use anyextend.
8187    if (LHS.getValueType() != RHS.getValueType())
8188      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8189
8190    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8191    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8192    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8193                       DAG.getConstant(Cond, MVT::i8), BT);
8194  }
8195
8196  return SDValue();
8197}
8198
8199SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8200
8201  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8202
8203  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8204  SDValue Op0 = Op.getOperand(0);
8205  SDValue Op1 = Op.getOperand(1);
8206  DebugLoc dl = Op.getDebugLoc();
8207  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8208
8209  // Optimize to BT if possible.
8210  // Lower (X & (1 << N)) == 0 to BT(X, N).
8211  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8212  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8213  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8214      Op1.getOpcode() == ISD::Constant &&
8215      cast<ConstantSDNode>(Op1)->isNullValue() &&
8216      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8217    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8218    if (NewSetCC.getNode())
8219      return NewSetCC;
8220  }
8221
8222  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8223  // these.
8224  if (Op1.getOpcode() == ISD::Constant &&
8225      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8226       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8227      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8228
8229    // If the input is a setcc, then reuse the input setcc or use a new one with
8230    // the inverted condition.
8231    if (Op0.getOpcode() == X86ISD::SETCC) {
8232      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8233      bool Invert = (CC == ISD::SETNE) ^
8234        cast<ConstantSDNode>(Op1)->isNullValue();
8235      if (!Invert) return Op0;
8236
8237      CCode = X86::GetOppositeBranchCondition(CCode);
8238      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8239                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8240    }
8241  }
8242
8243  bool isFP = Op1.getValueType().isFloatingPoint();
8244  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8245  if (X86CC == X86::COND_INVALID)
8246    return SDValue();
8247
8248  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8249  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8250                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8251}
8252
8253// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8254// ones, and then concatenate the result back.
8255static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8256  EVT VT = Op.getValueType();
8257
8258  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8259         "Unsupported value type for operation");
8260
8261  int NumElems = VT.getVectorNumElements();
8262  DebugLoc dl = Op.getDebugLoc();
8263  SDValue CC = Op.getOperand(2);
8264  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8265  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8266
8267  // Extract the LHS vectors
8268  SDValue LHS = Op.getOperand(0);
8269  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8270  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8271
8272  // Extract the RHS vectors
8273  SDValue RHS = Op.getOperand(1);
8274  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8275  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8276
8277  // Issue the operation on the smaller types and concatenate the result back
8278  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8279  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8280  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8281                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8282                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8283}
8284
8285
8286SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8287  SDValue Cond;
8288  SDValue Op0 = Op.getOperand(0);
8289  SDValue Op1 = Op.getOperand(1);
8290  SDValue CC = Op.getOperand(2);
8291  EVT VT = Op.getValueType();
8292  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8293  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8294  DebugLoc dl = Op.getDebugLoc();
8295
8296  if (isFP) {
8297    unsigned SSECC = 8;
8298    EVT EltVT = Op0.getValueType().getVectorElementType();
8299    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8300
8301    bool Swap = false;
8302
8303    // SSE Condition code mapping:
8304    //  0 - EQ
8305    //  1 - LT
8306    //  2 - LE
8307    //  3 - UNORD
8308    //  4 - NEQ
8309    //  5 - NLT
8310    //  6 - NLE
8311    //  7 - ORD
8312    switch (SetCCOpcode) {
8313    default: break;
8314    case ISD::SETOEQ:
8315    case ISD::SETEQ:  SSECC = 0; break;
8316    case ISD::SETOGT:
8317    case ISD::SETGT: Swap = true; // Fallthrough
8318    case ISD::SETLT:
8319    case ISD::SETOLT: SSECC = 1; break;
8320    case ISD::SETOGE:
8321    case ISD::SETGE: Swap = true; // Fallthrough
8322    case ISD::SETLE:
8323    case ISD::SETOLE: SSECC = 2; break;
8324    case ISD::SETUO:  SSECC = 3; break;
8325    case ISD::SETUNE:
8326    case ISD::SETNE:  SSECC = 4; break;
8327    case ISD::SETULE: Swap = true;
8328    case ISD::SETUGE: SSECC = 5; break;
8329    case ISD::SETULT: Swap = true;
8330    case ISD::SETUGT: SSECC = 6; break;
8331    case ISD::SETO:   SSECC = 7; break;
8332    }
8333    if (Swap)
8334      std::swap(Op0, Op1);
8335
8336    // In the two special cases we can't handle, emit two comparisons.
8337    if (SSECC == 8) {
8338      if (SetCCOpcode == ISD::SETUEQ) {
8339        SDValue UNORD, EQ;
8340        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8341                            DAG.getConstant(3, MVT::i8));
8342        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8343                         DAG.getConstant(0, MVT::i8));
8344        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8345      } else if (SetCCOpcode == ISD::SETONE) {
8346        SDValue ORD, NEQ;
8347        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8348                          DAG.getConstant(7, MVT::i8));
8349        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8350                          DAG.getConstant(4, MVT::i8));
8351        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8352      }
8353      llvm_unreachable("Illegal FP comparison");
8354    }
8355    // Handle all other FP comparisons here.
8356    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8357                       DAG.getConstant(SSECC, MVT::i8));
8358  }
8359
8360  // Break 256-bit integer vector compare into smaller ones.
8361  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8362    return Lower256IntVSETCC(Op, DAG);
8363
8364  // We are handling one of the integer comparisons here.  Since SSE only has
8365  // GT and EQ comparisons for integer, swapping operands and multiple
8366  // operations may be required for some comparisons.
8367  unsigned Opc = 0;
8368  bool Swap = false, Invert = false, FlipSigns = false;
8369
8370  switch (SetCCOpcode) {
8371  default: break;
8372  case ISD::SETNE:  Invert = true;
8373  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8374  case ISD::SETLT:  Swap = true;
8375  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8376  case ISD::SETGE:  Swap = true;
8377  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8378  case ISD::SETULT: Swap = true;
8379  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8380  case ISD::SETUGE: Swap = true;
8381  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8382  }
8383  if (Swap)
8384    std::swap(Op0, Op1);
8385
8386  // Check that the operation in question is available (most are plain SSE2,
8387  // but PCMPGTQ and PCMPEQQ have different requirements).
8388  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8389    return SDValue();
8390  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8391    return SDValue();
8392
8393  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8394  // bits of the inputs before performing those operations.
8395  if (FlipSigns) {
8396    EVT EltVT = VT.getVectorElementType();
8397    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8398                                      EltVT);
8399    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8400    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8401                                    SignBits.size());
8402    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8403    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8404  }
8405
8406  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8407
8408  // If the logical-not of the result is required, perform that now.
8409  if (Invert)
8410    Result = DAG.getNOT(dl, Result, VT);
8411
8412  return Result;
8413}
8414
8415// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8416static bool isX86LogicalCmp(SDValue Op) {
8417  unsigned Opc = Op.getNode()->getOpcode();
8418  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8419    return true;
8420  if (Op.getResNo() == 1 &&
8421      (Opc == X86ISD::ADD ||
8422       Opc == X86ISD::SUB ||
8423       Opc == X86ISD::ADC ||
8424       Opc == X86ISD::SBB ||
8425       Opc == X86ISD::SMUL ||
8426       Opc == X86ISD::UMUL ||
8427       Opc == X86ISD::INC ||
8428       Opc == X86ISD::DEC ||
8429       Opc == X86ISD::OR ||
8430       Opc == X86ISD::XOR ||
8431       Opc == X86ISD::AND))
8432    return true;
8433
8434  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8435    return true;
8436
8437  return false;
8438}
8439
8440static bool isZero(SDValue V) {
8441  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8442  return C && C->isNullValue();
8443}
8444
8445static bool isAllOnes(SDValue V) {
8446  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8447  return C && C->isAllOnesValue();
8448}
8449
8450SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8451  bool addTest = true;
8452  SDValue Cond  = Op.getOperand(0);
8453  SDValue Op1 = Op.getOperand(1);
8454  SDValue Op2 = Op.getOperand(2);
8455  DebugLoc DL = Op.getDebugLoc();
8456  SDValue CC;
8457
8458  if (Cond.getOpcode() == ISD::SETCC) {
8459    SDValue NewCond = LowerSETCC(Cond, DAG);
8460    if (NewCond.getNode())
8461      Cond = NewCond;
8462  }
8463
8464  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8465  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8466  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8467  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8468  if (Cond.getOpcode() == X86ISD::SETCC &&
8469      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8470      isZero(Cond.getOperand(1).getOperand(1))) {
8471    SDValue Cmp = Cond.getOperand(1);
8472
8473    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8474
8475    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8476        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8477      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8478
8479      SDValue CmpOp0 = Cmp.getOperand(0);
8480      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8481                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8482
8483      SDValue Res =   // Res = 0 or -1.
8484        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8485                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8486
8487      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8488        Res = DAG.getNOT(DL, Res, Res.getValueType());
8489
8490      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8491      if (N2C == 0 || !N2C->isNullValue())
8492        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8493      return Res;
8494    }
8495  }
8496
8497  // Look past (and (setcc_carry (cmp ...)), 1).
8498  if (Cond.getOpcode() == ISD::AND &&
8499      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8500    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8501    if (C && C->getAPIntValue() == 1)
8502      Cond = Cond.getOperand(0);
8503  }
8504
8505  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8506  // setting operand in place of the X86ISD::SETCC.
8507  unsigned CondOpcode = Cond.getOpcode();
8508  if (CondOpcode == X86ISD::SETCC ||
8509      CondOpcode == X86ISD::SETCC_CARRY) {
8510    CC = Cond.getOperand(0);
8511
8512    SDValue Cmp = Cond.getOperand(1);
8513    unsigned Opc = Cmp.getOpcode();
8514    EVT VT = Op.getValueType();
8515
8516    bool IllegalFPCMov = false;
8517    if (VT.isFloatingPoint() && !VT.isVector() &&
8518        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8519      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8520
8521    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8522        Opc == X86ISD::BT) { // FIXME
8523      Cond = Cmp;
8524      addTest = false;
8525    }
8526  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8527             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8528             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8529              Cond.getOperand(0).getValueType() != MVT::i8)) {
8530    SDValue LHS = Cond.getOperand(0);
8531    SDValue RHS = Cond.getOperand(1);
8532    unsigned X86Opcode;
8533    unsigned X86Cond;
8534    SDVTList VTs;
8535    switch (CondOpcode) {
8536    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8537    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8538    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8539    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8540    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8541    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8542    default: llvm_unreachable("unexpected overflowing operator");
8543    }
8544    if (CondOpcode == ISD::UMULO)
8545      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8546                          MVT::i32);
8547    else
8548      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8549
8550    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8551
8552    if (CondOpcode == ISD::UMULO)
8553      Cond = X86Op.getValue(2);
8554    else
8555      Cond = X86Op.getValue(1);
8556
8557    CC = DAG.getConstant(X86Cond, MVT::i8);
8558    addTest = false;
8559  }
8560
8561  if (addTest) {
8562    // Look pass the truncate.
8563    if (Cond.getOpcode() == ISD::TRUNCATE)
8564      Cond = Cond.getOperand(0);
8565
8566    // We know the result of AND is compared against zero. Try to match
8567    // it to BT.
8568    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8569      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8570      if (NewSetCC.getNode()) {
8571        CC = NewSetCC.getOperand(0);
8572        Cond = NewSetCC.getOperand(1);
8573        addTest = false;
8574      }
8575    }
8576  }
8577
8578  if (addTest) {
8579    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8580    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8581  }
8582
8583  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8584  // a <  b ?  0 : -1 -> RES = setcc_carry
8585  // a >= b ? -1 :  0 -> RES = setcc_carry
8586  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8587  if (Cond.getOpcode() == X86ISD::CMP) {
8588    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8589
8590    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8591        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8592      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8593                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8594      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8595        return DAG.getNOT(DL, Res, Res.getValueType());
8596      return Res;
8597    }
8598  }
8599
8600  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8601  // condition is true.
8602  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8603  SDValue Ops[] = { Op2, Op1, CC, Cond };
8604  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8605}
8606
8607// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8608// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8609// from the AND / OR.
8610static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8611  Opc = Op.getOpcode();
8612  if (Opc != ISD::OR && Opc != ISD::AND)
8613    return false;
8614  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8615          Op.getOperand(0).hasOneUse() &&
8616          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8617          Op.getOperand(1).hasOneUse());
8618}
8619
8620// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8621// 1 and that the SETCC node has a single use.
8622static bool isXor1OfSetCC(SDValue Op) {
8623  if (Op.getOpcode() != ISD::XOR)
8624    return false;
8625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8626  if (N1C && N1C->getAPIntValue() == 1) {
8627    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8628      Op.getOperand(0).hasOneUse();
8629  }
8630  return false;
8631}
8632
8633SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8634  bool addTest = true;
8635  SDValue Chain = Op.getOperand(0);
8636  SDValue Cond  = Op.getOperand(1);
8637  SDValue Dest  = Op.getOperand(2);
8638  DebugLoc dl = Op.getDebugLoc();
8639  SDValue CC;
8640  bool Inverted = false;
8641
8642  if (Cond.getOpcode() == ISD::SETCC) {
8643    // Check for setcc([su]{add,sub,mul}o == 0).
8644    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8645        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8646        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8647        Cond.getOperand(0).getResNo() == 1 &&
8648        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8649         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8650         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8651         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8652         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8653         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8654      Inverted = true;
8655      Cond = Cond.getOperand(0);
8656    } else {
8657      SDValue NewCond = LowerSETCC(Cond, DAG);
8658      if (NewCond.getNode())
8659        Cond = NewCond;
8660    }
8661  }
8662#if 0
8663  // FIXME: LowerXALUO doesn't handle these!!
8664  else if (Cond.getOpcode() == X86ISD::ADD  ||
8665           Cond.getOpcode() == X86ISD::SUB  ||
8666           Cond.getOpcode() == X86ISD::SMUL ||
8667           Cond.getOpcode() == X86ISD::UMUL)
8668    Cond = LowerXALUO(Cond, DAG);
8669#endif
8670
8671  // Look pass (and (setcc_carry (cmp ...)), 1).
8672  if (Cond.getOpcode() == ISD::AND &&
8673      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8674    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8675    if (C && C->getAPIntValue() == 1)
8676      Cond = Cond.getOperand(0);
8677  }
8678
8679  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8680  // setting operand in place of the X86ISD::SETCC.
8681  unsigned CondOpcode = Cond.getOpcode();
8682  if (CondOpcode == X86ISD::SETCC ||
8683      CondOpcode == X86ISD::SETCC_CARRY) {
8684    CC = Cond.getOperand(0);
8685
8686    SDValue Cmp = Cond.getOperand(1);
8687    unsigned Opc = Cmp.getOpcode();
8688    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8689    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8690      Cond = Cmp;
8691      addTest = false;
8692    } else {
8693      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8694      default: break;
8695      case X86::COND_O:
8696      case X86::COND_B:
8697        // These can only come from an arithmetic instruction with overflow,
8698        // e.g. SADDO, UADDO.
8699        Cond = Cond.getNode()->getOperand(1);
8700        addTest = false;
8701        break;
8702      }
8703    }
8704  }
8705  CondOpcode = Cond.getOpcode();
8706  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8707      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8708      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8709       Cond.getOperand(0).getValueType() != MVT::i8)) {
8710    SDValue LHS = Cond.getOperand(0);
8711    SDValue RHS = Cond.getOperand(1);
8712    unsigned X86Opcode;
8713    unsigned X86Cond;
8714    SDVTList VTs;
8715    switch (CondOpcode) {
8716    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8717    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8718    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8719    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8720    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8721    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8722    default: llvm_unreachable("unexpected overflowing operator");
8723    }
8724    if (Inverted)
8725      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8726    if (CondOpcode == ISD::UMULO)
8727      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8728                          MVT::i32);
8729    else
8730      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8731
8732    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8733
8734    if (CondOpcode == ISD::UMULO)
8735      Cond = X86Op.getValue(2);
8736    else
8737      Cond = X86Op.getValue(1);
8738
8739    CC = DAG.getConstant(X86Cond, MVT::i8);
8740    addTest = false;
8741  } else {
8742    unsigned CondOpc;
8743    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8744      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8745      if (CondOpc == ISD::OR) {
8746        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8747        // two branches instead of an explicit OR instruction with a
8748        // separate test.
8749        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8750            isX86LogicalCmp(Cmp)) {
8751          CC = Cond.getOperand(0).getOperand(0);
8752          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8753                              Chain, Dest, CC, Cmp);
8754          CC = Cond.getOperand(1).getOperand(0);
8755          Cond = Cmp;
8756          addTest = false;
8757        }
8758      } else { // ISD::AND
8759        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8760        // two branches instead of an explicit AND instruction with a
8761        // separate test. However, we only do this if this block doesn't
8762        // have a fall-through edge, because this requires an explicit
8763        // jmp when the condition is false.
8764        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8765            isX86LogicalCmp(Cmp) &&
8766            Op.getNode()->hasOneUse()) {
8767          X86::CondCode CCode =
8768            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8769          CCode = X86::GetOppositeBranchCondition(CCode);
8770          CC = DAG.getConstant(CCode, MVT::i8);
8771          SDNode *User = *Op.getNode()->use_begin();
8772          // Look for an unconditional branch following this conditional branch.
8773          // We need this because we need to reverse the successors in order
8774          // to implement FCMP_OEQ.
8775          if (User->getOpcode() == ISD::BR) {
8776            SDValue FalseBB = User->getOperand(1);
8777            SDNode *NewBR =
8778              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8779            assert(NewBR == User);
8780            (void)NewBR;
8781            Dest = FalseBB;
8782
8783            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8784                                Chain, Dest, CC, Cmp);
8785            X86::CondCode CCode =
8786              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8787            CCode = X86::GetOppositeBranchCondition(CCode);
8788            CC = DAG.getConstant(CCode, MVT::i8);
8789            Cond = Cmp;
8790            addTest = false;
8791          }
8792        }
8793      }
8794    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8795      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8796      // It should be transformed during dag combiner except when the condition
8797      // is set by a arithmetics with overflow node.
8798      X86::CondCode CCode =
8799        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8800      CCode = X86::GetOppositeBranchCondition(CCode);
8801      CC = DAG.getConstant(CCode, MVT::i8);
8802      Cond = Cond.getOperand(0).getOperand(1);
8803      addTest = false;
8804    } else if (Cond.getOpcode() == ISD::SETCC &&
8805               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8806      // For FCMP_OEQ, we can emit
8807      // two branches instead of an explicit AND instruction with a
8808      // separate test. However, we only do this if this block doesn't
8809      // have a fall-through edge, because this requires an explicit
8810      // jmp when the condition is false.
8811      if (Op.getNode()->hasOneUse()) {
8812        SDNode *User = *Op.getNode()->use_begin();
8813        // Look for an unconditional branch following this conditional branch.
8814        // We need this because we need to reverse the successors in order
8815        // to implement FCMP_OEQ.
8816        if (User->getOpcode() == ISD::BR) {
8817          SDValue FalseBB = User->getOperand(1);
8818          SDNode *NewBR =
8819            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8820          assert(NewBR == User);
8821          (void)NewBR;
8822          Dest = FalseBB;
8823
8824          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8825                                    Cond.getOperand(0), Cond.getOperand(1));
8826          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8827          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8828                              Chain, Dest, CC, Cmp);
8829          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8830          Cond = Cmp;
8831          addTest = false;
8832        }
8833      }
8834    } else if (Cond.getOpcode() == ISD::SETCC &&
8835               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8836      // For FCMP_UNE, we can emit
8837      // two branches instead of an explicit AND instruction with a
8838      // separate test. However, we only do this if this block doesn't
8839      // have a fall-through edge, because this requires an explicit
8840      // jmp when the condition is false.
8841      if (Op.getNode()->hasOneUse()) {
8842        SDNode *User = *Op.getNode()->use_begin();
8843        // Look for an unconditional branch following this conditional branch.
8844        // We need this because we need to reverse the successors in order
8845        // to implement FCMP_UNE.
8846        if (User->getOpcode() == ISD::BR) {
8847          SDValue FalseBB = User->getOperand(1);
8848          SDNode *NewBR =
8849            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8850          assert(NewBR == User);
8851          (void)NewBR;
8852
8853          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8854                                    Cond.getOperand(0), Cond.getOperand(1));
8855          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8856          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8857                              Chain, Dest, CC, Cmp);
8858          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8859          Cond = Cmp;
8860          addTest = false;
8861          Dest = FalseBB;
8862        }
8863      }
8864    }
8865  }
8866
8867  if (addTest) {
8868    // Look pass the truncate.
8869    if (Cond.getOpcode() == ISD::TRUNCATE)
8870      Cond = Cond.getOperand(0);
8871
8872    // We know the result of AND is compared against zero. Try to match
8873    // it to BT.
8874    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8875      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8876      if (NewSetCC.getNode()) {
8877        CC = NewSetCC.getOperand(0);
8878        Cond = NewSetCC.getOperand(1);
8879        addTest = false;
8880      }
8881    }
8882  }
8883
8884  if (addTest) {
8885    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8886    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8887  }
8888  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8889                     Chain, Dest, CC, Cond);
8890}
8891
8892
8893// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8894// Calls to _alloca is needed to probe the stack when allocating more than 4k
8895// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8896// that the guard pages used by the OS virtual memory manager are allocated in
8897// correct sequence.
8898SDValue
8899X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8900                                           SelectionDAG &DAG) const {
8901  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8902          getTargetMachine().Options.EnableSegmentedStacks) &&
8903         "This should be used only on Windows targets or when segmented stacks "
8904         "are being used");
8905  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8906  DebugLoc dl = Op.getDebugLoc();
8907
8908  // Get the inputs.
8909  SDValue Chain = Op.getOperand(0);
8910  SDValue Size  = Op.getOperand(1);
8911  // FIXME: Ensure alignment here
8912
8913  bool Is64Bit = Subtarget->is64Bit();
8914  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8915
8916  if (getTargetMachine().Options.EnableSegmentedStacks) {
8917    MachineFunction &MF = DAG.getMachineFunction();
8918    MachineRegisterInfo &MRI = MF.getRegInfo();
8919
8920    if (Is64Bit) {
8921      // The 64 bit implementation of segmented stacks needs to clobber both r10
8922      // r11. This makes it impossible to use it along with nested parameters.
8923      const Function *F = MF.getFunction();
8924
8925      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8926           I != E; I++)
8927        if (I->hasNestAttr())
8928          report_fatal_error("Cannot use segmented stacks with functions that "
8929                             "have nested arguments.");
8930    }
8931
8932    const TargetRegisterClass *AddrRegClass =
8933      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8934    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8935    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8936    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8937                                DAG.getRegister(Vreg, SPTy));
8938    SDValue Ops1[2] = { Value, Chain };
8939    return DAG.getMergeValues(Ops1, 2, dl);
8940  } else {
8941    SDValue Flag;
8942    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8943
8944    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8945    Flag = Chain.getValue(1);
8946    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8947
8948    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8949    Flag = Chain.getValue(1);
8950
8951    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8952
8953    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8954    return DAG.getMergeValues(Ops1, 2, dl);
8955  }
8956}
8957
8958SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8959  MachineFunction &MF = DAG.getMachineFunction();
8960  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8961
8962  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8963  DebugLoc DL = Op.getDebugLoc();
8964
8965  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8966    // vastart just stores the address of the VarArgsFrameIndex slot into the
8967    // memory location argument.
8968    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8969                                   getPointerTy());
8970    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8971                        MachinePointerInfo(SV), false, false, 0);
8972  }
8973
8974  // __va_list_tag:
8975  //   gp_offset         (0 - 6 * 8)
8976  //   fp_offset         (48 - 48 + 8 * 16)
8977  //   overflow_arg_area (point to parameters coming in memory).
8978  //   reg_save_area
8979  SmallVector<SDValue, 8> MemOps;
8980  SDValue FIN = Op.getOperand(1);
8981  // Store gp_offset
8982  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8983                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8984                                               MVT::i32),
8985                               FIN, MachinePointerInfo(SV), false, false, 0);
8986  MemOps.push_back(Store);
8987
8988  // Store fp_offset
8989  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8990                    FIN, DAG.getIntPtrConstant(4));
8991  Store = DAG.getStore(Op.getOperand(0), DL,
8992                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8993                                       MVT::i32),
8994                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8995  MemOps.push_back(Store);
8996
8997  // Store ptr to overflow_arg_area
8998  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8999                    FIN, DAG.getIntPtrConstant(4));
9000  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9001                                    getPointerTy());
9002  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9003                       MachinePointerInfo(SV, 8),
9004                       false, false, 0);
9005  MemOps.push_back(Store);
9006
9007  // Store ptr to reg_save_area.
9008  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9009                    FIN, DAG.getIntPtrConstant(8));
9010  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9011                                    getPointerTy());
9012  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9013                       MachinePointerInfo(SV, 16), false, false, 0);
9014  MemOps.push_back(Store);
9015  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9016                     &MemOps[0], MemOps.size());
9017}
9018
9019SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9020  assert(Subtarget->is64Bit() &&
9021         "LowerVAARG only handles 64-bit va_arg!");
9022  assert((Subtarget->isTargetLinux() ||
9023          Subtarget->isTargetDarwin()) &&
9024          "Unhandled target in LowerVAARG");
9025  assert(Op.getNode()->getNumOperands() == 4);
9026  SDValue Chain = Op.getOperand(0);
9027  SDValue SrcPtr = Op.getOperand(1);
9028  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9029  unsigned Align = Op.getConstantOperandVal(3);
9030  DebugLoc dl = Op.getDebugLoc();
9031
9032  EVT ArgVT = Op.getNode()->getValueType(0);
9033  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9034  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9035  uint8_t ArgMode;
9036
9037  // Decide which area this value should be read from.
9038  // TODO: Implement the AMD64 ABI in its entirety. This simple
9039  // selection mechanism works only for the basic types.
9040  if (ArgVT == MVT::f80) {
9041    llvm_unreachable("va_arg for f80 not yet implemented");
9042  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9043    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9044  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9045    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9046  } else {
9047    llvm_unreachable("Unhandled argument type in LowerVAARG");
9048  }
9049
9050  if (ArgMode == 2) {
9051    // Sanity Check: Make sure using fp_offset makes sense.
9052    assert(!getTargetMachine().Options.UseSoftFloat &&
9053           !(DAG.getMachineFunction()
9054                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9055           Subtarget->hasSSE1());
9056  }
9057
9058  // Insert VAARG_64 node into the DAG
9059  // VAARG_64 returns two values: Variable Argument Address, Chain
9060  SmallVector<SDValue, 11> InstOps;
9061  InstOps.push_back(Chain);
9062  InstOps.push_back(SrcPtr);
9063  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9064  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9065  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9066  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9067  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9068                                          VTs, &InstOps[0], InstOps.size(),
9069                                          MVT::i64,
9070                                          MachinePointerInfo(SV),
9071                                          /*Align=*/0,
9072                                          /*Volatile=*/false,
9073                                          /*ReadMem=*/true,
9074                                          /*WriteMem=*/true);
9075  Chain = VAARG.getValue(1);
9076
9077  // Load the next argument and return it
9078  return DAG.getLoad(ArgVT, dl,
9079                     Chain,
9080                     VAARG,
9081                     MachinePointerInfo(),
9082                     false, false, false, 0);
9083}
9084
9085SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9086  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9087  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9088  SDValue Chain = Op.getOperand(0);
9089  SDValue DstPtr = Op.getOperand(1);
9090  SDValue SrcPtr = Op.getOperand(2);
9091  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9092  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9093  DebugLoc DL = Op.getDebugLoc();
9094
9095  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9096                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9097                       false,
9098                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9099}
9100
9101// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9102// may or may not be a constant. Takes immediate version of shift as input.
9103static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9104                                   SDValue SrcOp, SDValue ShAmt,
9105                                   SelectionDAG &DAG) {
9106  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9107
9108  if (isa<ConstantSDNode>(ShAmt)) {
9109    switch (Opc) {
9110      default: llvm_unreachable("Unknown target vector shift node");
9111      case X86ISD::VSHLI:
9112      case X86ISD::VSRLI:
9113      case X86ISD::VSRAI:
9114        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9115    }
9116  }
9117
9118  // Change opcode to non-immediate version
9119  switch (Opc) {
9120    default: llvm_unreachable("Unknown target vector shift node");
9121    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9122    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9123    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9124  }
9125
9126  // Need to build a vector containing shift amount
9127  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9128  SDValue ShOps[4];
9129  ShOps[0] = ShAmt;
9130  ShOps[1] = DAG.getConstant(0, MVT::i32);
9131  ShOps[2] = DAG.getUNDEF(MVT::i32);
9132  ShOps[3] = DAG.getUNDEF(MVT::i32);
9133  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9134  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9135  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9136}
9137
9138SDValue
9139X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9140  DebugLoc dl = Op.getDebugLoc();
9141  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9142  switch (IntNo) {
9143  default: return SDValue();    // Don't custom lower most intrinsics.
9144  // Comparison intrinsics.
9145  case Intrinsic::x86_sse_comieq_ss:
9146  case Intrinsic::x86_sse_comilt_ss:
9147  case Intrinsic::x86_sse_comile_ss:
9148  case Intrinsic::x86_sse_comigt_ss:
9149  case Intrinsic::x86_sse_comige_ss:
9150  case Intrinsic::x86_sse_comineq_ss:
9151  case Intrinsic::x86_sse_ucomieq_ss:
9152  case Intrinsic::x86_sse_ucomilt_ss:
9153  case Intrinsic::x86_sse_ucomile_ss:
9154  case Intrinsic::x86_sse_ucomigt_ss:
9155  case Intrinsic::x86_sse_ucomige_ss:
9156  case Intrinsic::x86_sse_ucomineq_ss:
9157  case Intrinsic::x86_sse2_comieq_sd:
9158  case Intrinsic::x86_sse2_comilt_sd:
9159  case Intrinsic::x86_sse2_comile_sd:
9160  case Intrinsic::x86_sse2_comigt_sd:
9161  case Intrinsic::x86_sse2_comige_sd:
9162  case Intrinsic::x86_sse2_comineq_sd:
9163  case Intrinsic::x86_sse2_ucomieq_sd:
9164  case Intrinsic::x86_sse2_ucomilt_sd:
9165  case Intrinsic::x86_sse2_ucomile_sd:
9166  case Intrinsic::x86_sse2_ucomigt_sd:
9167  case Intrinsic::x86_sse2_ucomige_sd:
9168  case Intrinsic::x86_sse2_ucomineq_sd: {
9169    unsigned Opc = 0;
9170    ISD::CondCode CC = ISD::SETCC_INVALID;
9171    switch (IntNo) {
9172    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9173    case Intrinsic::x86_sse_comieq_ss:
9174    case Intrinsic::x86_sse2_comieq_sd:
9175      Opc = X86ISD::COMI;
9176      CC = ISD::SETEQ;
9177      break;
9178    case Intrinsic::x86_sse_comilt_ss:
9179    case Intrinsic::x86_sse2_comilt_sd:
9180      Opc = X86ISD::COMI;
9181      CC = ISD::SETLT;
9182      break;
9183    case Intrinsic::x86_sse_comile_ss:
9184    case Intrinsic::x86_sse2_comile_sd:
9185      Opc = X86ISD::COMI;
9186      CC = ISD::SETLE;
9187      break;
9188    case Intrinsic::x86_sse_comigt_ss:
9189    case Intrinsic::x86_sse2_comigt_sd:
9190      Opc = X86ISD::COMI;
9191      CC = ISD::SETGT;
9192      break;
9193    case Intrinsic::x86_sse_comige_ss:
9194    case Intrinsic::x86_sse2_comige_sd:
9195      Opc = X86ISD::COMI;
9196      CC = ISD::SETGE;
9197      break;
9198    case Intrinsic::x86_sse_comineq_ss:
9199    case Intrinsic::x86_sse2_comineq_sd:
9200      Opc = X86ISD::COMI;
9201      CC = ISD::SETNE;
9202      break;
9203    case Intrinsic::x86_sse_ucomieq_ss:
9204    case Intrinsic::x86_sse2_ucomieq_sd:
9205      Opc = X86ISD::UCOMI;
9206      CC = ISD::SETEQ;
9207      break;
9208    case Intrinsic::x86_sse_ucomilt_ss:
9209    case Intrinsic::x86_sse2_ucomilt_sd:
9210      Opc = X86ISD::UCOMI;
9211      CC = ISD::SETLT;
9212      break;
9213    case Intrinsic::x86_sse_ucomile_ss:
9214    case Intrinsic::x86_sse2_ucomile_sd:
9215      Opc = X86ISD::UCOMI;
9216      CC = ISD::SETLE;
9217      break;
9218    case Intrinsic::x86_sse_ucomigt_ss:
9219    case Intrinsic::x86_sse2_ucomigt_sd:
9220      Opc = X86ISD::UCOMI;
9221      CC = ISD::SETGT;
9222      break;
9223    case Intrinsic::x86_sse_ucomige_ss:
9224    case Intrinsic::x86_sse2_ucomige_sd:
9225      Opc = X86ISD::UCOMI;
9226      CC = ISD::SETGE;
9227      break;
9228    case Intrinsic::x86_sse_ucomineq_ss:
9229    case Intrinsic::x86_sse2_ucomineq_sd:
9230      Opc = X86ISD::UCOMI;
9231      CC = ISD::SETNE;
9232      break;
9233    }
9234
9235    SDValue LHS = Op.getOperand(1);
9236    SDValue RHS = Op.getOperand(2);
9237    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9238    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9239    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9240    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9241                                DAG.getConstant(X86CC, MVT::i8), Cond);
9242    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9243  }
9244  // XOP comparison intrinsics
9245  case Intrinsic::x86_xop_vpcomltb:
9246  case Intrinsic::x86_xop_vpcomltw:
9247  case Intrinsic::x86_xop_vpcomltd:
9248  case Intrinsic::x86_xop_vpcomltq:
9249  case Intrinsic::x86_xop_vpcomltub:
9250  case Intrinsic::x86_xop_vpcomltuw:
9251  case Intrinsic::x86_xop_vpcomltud:
9252  case Intrinsic::x86_xop_vpcomltuq:
9253  case Intrinsic::x86_xop_vpcomleb:
9254  case Intrinsic::x86_xop_vpcomlew:
9255  case Intrinsic::x86_xop_vpcomled:
9256  case Intrinsic::x86_xop_vpcomleq:
9257  case Intrinsic::x86_xop_vpcomleub:
9258  case Intrinsic::x86_xop_vpcomleuw:
9259  case Intrinsic::x86_xop_vpcomleud:
9260  case Intrinsic::x86_xop_vpcomleuq:
9261  case Intrinsic::x86_xop_vpcomgtb:
9262  case Intrinsic::x86_xop_vpcomgtw:
9263  case Intrinsic::x86_xop_vpcomgtd:
9264  case Intrinsic::x86_xop_vpcomgtq:
9265  case Intrinsic::x86_xop_vpcomgtub:
9266  case Intrinsic::x86_xop_vpcomgtuw:
9267  case Intrinsic::x86_xop_vpcomgtud:
9268  case Intrinsic::x86_xop_vpcomgtuq:
9269  case Intrinsic::x86_xop_vpcomgeb:
9270  case Intrinsic::x86_xop_vpcomgew:
9271  case Intrinsic::x86_xop_vpcomged:
9272  case Intrinsic::x86_xop_vpcomgeq:
9273  case Intrinsic::x86_xop_vpcomgeub:
9274  case Intrinsic::x86_xop_vpcomgeuw:
9275  case Intrinsic::x86_xop_vpcomgeud:
9276  case Intrinsic::x86_xop_vpcomgeuq:
9277  case Intrinsic::x86_xop_vpcomeqb:
9278  case Intrinsic::x86_xop_vpcomeqw:
9279  case Intrinsic::x86_xop_vpcomeqd:
9280  case Intrinsic::x86_xop_vpcomeqq:
9281  case Intrinsic::x86_xop_vpcomequb:
9282  case Intrinsic::x86_xop_vpcomequw:
9283  case Intrinsic::x86_xop_vpcomequd:
9284  case Intrinsic::x86_xop_vpcomequq:
9285  case Intrinsic::x86_xop_vpcomneb:
9286  case Intrinsic::x86_xop_vpcomnew:
9287  case Intrinsic::x86_xop_vpcomned:
9288  case Intrinsic::x86_xop_vpcomneq:
9289  case Intrinsic::x86_xop_vpcomneub:
9290  case Intrinsic::x86_xop_vpcomneuw:
9291  case Intrinsic::x86_xop_vpcomneud:
9292  case Intrinsic::x86_xop_vpcomneuq:
9293  case Intrinsic::x86_xop_vpcomfalseb:
9294  case Intrinsic::x86_xop_vpcomfalsew:
9295  case Intrinsic::x86_xop_vpcomfalsed:
9296  case Intrinsic::x86_xop_vpcomfalseq:
9297  case Intrinsic::x86_xop_vpcomfalseub:
9298  case Intrinsic::x86_xop_vpcomfalseuw:
9299  case Intrinsic::x86_xop_vpcomfalseud:
9300  case Intrinsic::x86_xop_vpcomfalseuq:
9301  case Intrinsic::x86_xop_vpcomtrueb:
9302  case Intrinsic::x86_xop_vpcomtruew:
9303  case Intrinsic::x86_xop_vpcomtrued:
9304  case Intrinsic::x86_xop_vpcomtrueq:
9305  case Intrinsic::x86_xop_vpcomtrueub:
9306  case Intrinsic::x86_xop_vpcomtrueuw:
9307  case Intrinsic::x86_xop_vpcomtrueud:
9308  case Intrinsic::x86_xop_vpcomtrueuq: {
9309    unsigned CC = 0;
9310    unsigned Opc = 0;
9311
9312    switch (IntNo) {
9313    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9314    case Intrinsic::x86_xop_vpcomltb:
9315    case Intrinsic::x86_xop_vpcomltw:
9316    case Intrinsic::x86_xop_vpcomltd:
9317    case Intrinsic::x86_xop_vpcomltq:
9318      CC = 0;
9319      Opc = X86ISD::VPCOM;
9320      break;
9321    case Intrinsic::x86_xop_vpcomltub:
9322    case Intrinsic::x86_xop_vpcomltuw:
9323    case Intrinsic::x86_xop_vpcomltud:
9324    case Intrinsic::x86_xop_vpcomltuq:
9325      CC = 0;
9326      Opc = X86ISD::VPCOMU;
9327      break;
9328    case Intrinsic::x86_xop_vpcomleb:
9329    case Intrinsic::x86_xop_vpcomlew:
9330    case Intrinsic::x86_xop_vpcomled:
9331    case Intrinsic::x86_xop_vpcomleq:
9332      CC = 1;
9333      Opc = X86ISD::VPCOM;
9334      break;
9335    case Intrinsic::x86_xop_vpcomleub:
9336    case Intrinsic::x86_xop_vpcomleuw:
9337    case Intrinsic::x86_xop_vpcomleud:
9338    case Intrinsic::x86_xop_vpcomleuq:
9339      CC = 1;
9340      Opc = X86ISD::VPCOMU;
9341      break;
9342    case Intrinsic::x86_xop_vpcomgtb:
9343    case Intrinsic::x86_xop_vpcomgtw:
9344    case Intrinsic::x86_xop_vpcomgtd:
9345    case Intrinsic::x86_xop_vpcomgtq:
9346      CC = 2;
9347      Opc = X86ISD::VPCOM;
9348      break;
9349    case Intrinsic::x86_xop_vpcomgtub:
9350    case Intrinsic::x86_xop_vpcomgtuw:
9351    case Intrinsic::x86_xop_vpcomgtud:
9352    case Intrinsic::x86_xop_vpcomgtuq:
9353      CC = 2;
9354      Opc = X86ISD::VPCOMU;
9355      break;
9356    case Intrinsic::x86_xop_vpcomgeb:
9357    case Intrinsic::x86_xop_vpcomgew:
9358    case Intrinsic::x86_xop_vpcomged:
9359    case Intrinsic::x86_xop_vpcomgeq:
9360      CC = 3;
9361      Opc = X86ISD::VPCOM;
9362      break;
9363    case Intrinsic::x86_xop_vpcomgeub:
9364    case Intrinsic::x86_xop_vpcomgeuw:
9365    case Intrinsic::x86_xop_vpcomgeud:
9366    case Intrinsic::x86_xop_vpcomgeuq:
9367      CC = 3;
9368      Opc = X86ISD::VPCOMU;
9369      break;
9370    case Intrinsic::x86_xop_vpcomeqb:
9371    case Intrinsic::x86_xop_vpcomeqw:
9372    case Intrinsic::x86_xop_vpcomeqd:
9373    case Intrinsic::x86_xop_vpcomeqq:
9374      CC = 4;
9375      Opc = X86ISD::VPCOM;
9376      break;
9377    case Intrinsic::x86_xop_vpcomequb:
9378    case Intrinsic::x86_xop_vpcomequw:
9379    case Intrinsic::x86_xop_vpcomequd:
9380    case Intrinsic::x86_xop_vpcomequq:
9381      CC = 4;
9382      Opc = X86ISD::VPCOMU;
9383      break;
9384    case Intrinsic::x86_xop_vpcomneb:
9385    case Intrinsic::x86_xop_vpcomnew:
9386    case Intrinsic::x86_xop_vpcomned:
9387    case Intrinsic::x86_xop_vpcomneq:
9388      CC = 5;
9389      Opc = X86ISD::VPCOM;
9390      break;
9391    case Intrinsic::x86_xop_vpcomneub:
9392    case Intrinsic::x86_xop_vpcomneuw:
9393    case Intrinsic::x86_xop_vpcomneud:
9394    case Intrinsic::x86_xop_vpcomneuq:
9395      CC = 5;
9396      Opc = X86ISD::VPCOMU;
9397      break;
9398    case Intrinsic::x86_xop_vpcomfalseb:
9399    case Intrinsic::x86_xop_vpcomfalsew:
9400    case Intrinsic::x86_xop_vpcomfalsed:
9401    case Intrinsic::x86_xop_vpcomfalseq:
9402      CC = 6;
9403      Opc = X86ISD::VPCOM;
9404      break;
9405    case Intrinsic::x86_xop_vpcomfalseub:
9406    case Intrinsic::x86_xop_vpcomfalseuw:
9407    case Intrinsic::x86_xop_vpcomfalseud:
9408    case Intrinsic::x86_xop_vpcomfalseuq:
9409      CC = 6;
9410      Opc = X86ISD::VPCOMU;
9411      break;
9412    case Intrinsic::x86_xop_vpcomtrueb:
9413    case Intrinsic::x86_xop_vpcomtruew:
9414    case Intrinsic::x86_xop_vpcomtrued:
9415    case Intrinsic::x86_xop_vpcomtrueq:
9416      CC = 7;
9417      Opc = X86ISD::VPCOM;
9418      break;
9419    case Intrinsic::x86_xop_vpcomtrueub:
9420    case Intrinsic::x86_xop_vpcomtrueuw:
9421    case Intrinsic::x86_xop_vpcomtrueud:
9422    case Intrinsic::x86_xop_vpcomtrueuq:
9423      CC = 7;
9424      Opc = X86ISD::VPCOMU;
9425      break;
9426    }
9427
9428    SDValue LHS = Op.getOperand(1);
9429    SDValue RHS = Op.getOperand(2);
9430    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9431                       DAG.getConstant(CC, MVT::i8));
9432  }
9433
9434  // Arithmetic intrinsics.
9435  case Intrinsic::x86_sse2_pmulu_dq:
9436  case Intrinsic::x86_avx2_pmulu_dq:
9437    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9438                       Op.getOperand(1), Op.getOperand(2));
9439  case Intrinsic::x86_sse3_hadd_ps:
9440  case Intrinsic::x86_sse3_hadd_pd:
9441  case Intrinsic::x86_avx_hadd_ps_256:
9442  case Intrinsic::x86_avx_hadd_pd_256:
9443    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9444                       Op.getOperand(1), Op.getOperand(2));
9445  case Intrinsic::x86_sse3_hsub_ps:
9446  case Intrinsic::x86_sse3_hsub_pd:
9447  case Intrinsic::x86_avx_hsub_ps_256:
9448  case Intrinsic::x86_avx_hsub_pd_256:
9449    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9450                       Op.getOperand(1), Op.getOperand(2));
9451  case Intrinsic::x86_ssse3_phadd_w_128:
9452  case Intrinsic::x86_ssse3_phadd_d_128:
9453  case Intrinsic::x86_avx2_phadd_w:
9454  case Intrinsic::x86_avx2_phadd_d:
9455    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9456                       Op.getOperand(1), Op.getOperand(2));
9457  case Intrinsic::x86_ssse3_phsub_w_128:
9458  case Intrinsic::x86_ssse3_phsub_d_128:
9459  case Intrinsic::x86_avx2_phsub_w:
9460  case Intrinsic::x86_avx2_phsub_d:
9461    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9462                       Op.getOperand(1), Op.getOperand(2));
9463  case Intrinsic::x86_avx2_psllv_d:
9464  case Intrinsic::x86_avx2_psllv_q:
9465  case Intrinsic::x86_avx2_psllv_d_256:
9466  case Intrinsic::x86_avx2_psllv_q_256:
9467    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9468                      Op.getOperand(1), Op.getOperand(2));
9469  case Intrinsic::x86_avx2_psrlv_d:
9470  case Intrinsic::x86_avx2_psrlv_q:
9471  case Intrinsic::x86_avx2_psrlv_d_256:
9472  case Intrinsic::x86_avx2_psrlv_q_256:
9473    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9474                      Op.getOperand(1), Op.getOperand(2));
9475  case Intrinsic::x86_avx2_psrav_d:
9476  case Intrinsic::x86_avx2_psrav_d_256:
9477    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9478                      Op.getOperand(1), Op.getOperand(2));
9479  case Intrinsic::x86_ssse3_pshuf_b_128:
9480  case Intrinsic::x86_avx2_pshuf_b:
9481    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9482                       Op.getOperand(1), Op.getOperand(2));
9483  case Intrinsic::x86_ssse3_psign_b_128:
9484  case Intrinsic::x86_ssse3_psign_w_128:
9485  case Intrinsic::x86_ssse3_psign_d_128:
9486  case Intrinsic::x86_avx2_psign_b:
9487  case Intrinsic::x86_avx2_psign_w:
9488  case Intrinsic::x86_avx2_psign_d:
9489    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9490                       Op.getOperand(1), Op.getOperand(2));
9491  case Intrinsic::x86_sse41_insertps:
9492    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9493                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9494  case Intrinsic::x86_avx_vperm2f128_ps_256:
9495  case Intrinsic::x86_avx_vperm2f128_pd_256:
9496  case Intrinsic::x86_avx_vperm2f128_si_256:
9497  case Intrinsic::x86_avx2_vperm2i128:
9498    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9499                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9500  case Intrinsic::x86_avx_vpermil_ps:
9501  case Intrinsic::x86_avx_vpermil_pd:
9502  case Intrinsic::x86_avx_vpermil_ps_256:
9503  case Intrinsic::x86_avx_vpermil_pd_256:
9504    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9505                       Op.getOperand(1), Op.getOperand(2));
9506
9507  // ptest and testp intrinsics. The intrinsic these come from are designed to
9508  // return an integer value, not just an instruction so lower it to the ptest
9509  // or testp pattern and a setcc for the result.
9510  case Intrinsic::x86_sse41_ptestz:
9511  case Intrinsic::x86_sse41_ptestc:
9512  case Intrinsic::x86_sse41_ptestnzc:
9513  case Intrinsic::x86_avx_ptestz_256:
9514  case Intrinsic::x86_avx_ptestc_256:
9515  case Intrinsic::x86_avx_ptestnzc_256:
9516  case Intrinsic::x86_avx_vtestz_ps:
9517  case Intrinsic::x86_avx_vtestc_ps:
9518  case Intrinsic::x86_avx_vtestnzc_ps:
9519  case Intrinsic::x86_avx_vtestz_pd:
9520  case Intrinsic::x86_avx_vtestc_pd:
9521  case Intrinsic::x86_avx_vtestnzc_pd:
9522  case Intrinsic::x86_avx_vtestz_ps_256:
9523  case Intrinsic::x86_avx_vtestc_ps_256:
9524  case Intrinsic::x86_avx_vtestnzc_ps_256:
9525  case Intrinsic::x86_avx_vtestz_pd_256:
9526  case Intrinsic::x86_avx_vtestc_pd_256:
9527  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9528    bool IsTestPacked = false;
9529    unsigned X86CC = 0;
9530    switch (IntNo) {
9531    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9532    case Intrinsic::x86_avx_vtestz_ps:
9533    case Intrinsic::x86_avx_vtestz_pd:
9534    case Intrinsic::x86_avx_vtestz_ps_256:
9535    case Intrinsic::x86_avx_vtestz_pd_256:
9536      IsTestPacked = true; // Fallthrough
9537    case Intrinsic::x86_sse41_ptestz:
9538    case Intrinsic::x86_avx_ptestz_256:
9539      // ZF = 1
9540      X86CC = X86::COND_E;
9541      break;
9542    case Intrinsic::x86_avx_vtestc_ps:
9543    case Intrinsic::x86_avx_vtestc_pd:
9544    case Intrinsic::x86_avx_vtestc_ps_256:
9545    case Intrinsic::x86_avx_vtestc_pd_256:
9546      IsTestPacked = true; // Fallthrough
9547    case Intrinsic::x86_sse41_ptestc:
9548    case Intrinsic::x86_avx_ptestc_256:
9549      // CF = 1
9550      X86CC = X86::COND_B;
9551      break;
9552    case Intrinsic::x86_avx_vtestnzc_ps:
9553    case Intrinsic::x86_avx_vtestnzc_pd:
9554    case Intrinsic::x86_avx_vtestnzc_ps_256:
9555    case Intrinsic::x86_avx_vtestnzc_pd_256:
9556      IsTestPacked = true; // Fallthrough
9557    case Intrinsic::x86_sse41_ptestnzc:
9558    case Intrinsic::x86_avx_ptestnzc_256:
9559      // ZF and CF = 0
9560      X86CC = X86::COND_A;
9561      break;
9562    }
9563
9564    SDValue LHS = Op.getOperand(1);
9565    SDValue RHS = Op.getOperand(2);
9566    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9567    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9568    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9569    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9570    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9571  }
9572
9573  // SSE/AVX shift intrinsics
9574  case Intrinsic::x86_sse2_psll_w:
9575  case Intrinsic::x86_sse2_psll_d:
9576  case Intrinsic::x86_sse2_psll_q:
9577  case Intrinsic::x86_avx2_psll_w:
9578  case Intrinsic::x86_avx2_psll_d:
9579  case Intrinsic::x86_avx2_psll_q:
9580    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9581                       Op.getOperand(1), Op.getOperand(2));
9582  case Intrinsic::x86_sse2_psrl_w:
9583  case Intrinsic::x86_sse2_psrl_d:
9584  case Intrinsic::x86_sse2_psrl_q:
9585  case Intrinsic::x86_avx2_psrl_w:
9586  case Intrinsic::x86_avx2_psrl_d:
9587  case Intrinsic::x86_avx2_psrl_q:
9588    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9589                       Op.getOperand(1), Op.getOperand(2));
9590  case Intrinsic::x86_sse2_psra_w:
9591  case Intrinsic::x86_sse2_psra_d:
9592  case Intrinsic::x86_avx2_psra_w:
9593  case Intrinsic::x86_avx2_psra_d:
9594    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9595                       Op.getOperand(1), Op.getOperand(2));
9596  case Intrinsic::x86_sse2_pslli_w:
9597  case Intrinsic::x86_sse2_pslli_d:
9598  case Intrinsic::x86_sse2_pslli_q:
9599  case Intrinsic::x86_avx2_pslli_w:
9600  case Intrinsic::x86_avx2_pslli_d:
9601  case Intrinsic::x86_avx2_pslli_q:
9602    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9603                               Op.getOperand(1), Op.getOperand(2), DAG);
9604  case Intrinsic::x86_sse2_psrli_w:
9605  case Intrinsic::x86_sse2_psrli_d:
9606  case Intrinsic::x86_sse2_psrli_q:
9607  case Intrinsic::x86_avx2_psrli_w:
9608  case Intrinsic::x86_avx2_psrli_d:
9609  case Intrinsic::x86_avx2_psrli_q:
9610    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9611                               Op.getOperand(1), Op.getOperand(2), DAG);
9612  case Intrinsic::x86_sse2_psrai_w:
9613  case Intrinsic::x86_sse2_psrai_d:
9614  case Intrinsic::x86_avx2_psrai_w:
9615  case Intrinsic::x86_avx2_psrai_d:
9616    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9617                               Op.getOperand(1), Op.getOperand(2), DAG);
9618  // Fix vector shift instructions where the last operand is a non-immediate
9619  // i32 value.
9620  case Intrinsic::x86_mmx_pslli_w:
9621  case Intrinsic::x86_mmx_pslli_d:
9622  case Intrinsic::x86_mmx_pslli_q:
9623  case Intrinsic::x86_mmx_psrli_w:
9624  case Intrinsic::x86_mmx_psrli_d:
9625  case Intrinsic::x86_mmx_psrli_q:
9626  case Intrinsic::x86_mmx_psrai_w:
9627  case Intrinsic::x86_mmx_psrai_d: {
9628    SDValue ShAmt = Op.getOperand(2);
9629    if (isa<ConstantSDNode>(ShAmt))
9630      return SDValue();
9631
9632    unsigned NewIntNo = 0;
9633    switch (IntNo) {
9634    case Intrinsic::x86_mmx_pslli_w:
9635      NewIntNo = Intrinsic::x86_mmx_psll_w;
9636      break;
9637    case Intrinsic::x86_mmx_pslli_d:
9638      NewIntNo = Intrinsic::x86_mmx_psll_d;
9639      break;
9640    case Intrinsic::x86_mmx_pslli_q:
9641      NewIntNo = Intrinsic::x86_mmx_psll_q;
9642      break;
9643    case Intrinsic::x86_mmx_psrli_w:
9644      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9645      break;
9646    case Intrinsic::x86_mmx_psrli_d:
9647      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9648      break;
9649    case Intrinsic::x86_mmx_psrli_q:
9650      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9651      break;
9652    case Intrinsic::x86_mmx_psrai_w:
9653      NewIntNo = Intrinsic::x86_mmx_psra_w;
9654      break;
9655    case Intrinsic::x86_mmx_psrai_d:
9656      NewIntNo = Intrinsic::x86_mmx_psra_d;
9657      break;
9658    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9659    }
9660
9661    // The vector shift intrinsics with scalars uses 32b shift amounts but
9662    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9663    // to be zero.
9664    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9665                         DAG.getConstant(0, MVT::i32));
9666// FIXME this must be lowered to get rid of the invalid type.
9667
9668    EVT VT = Op.getValueType();
9669    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9670    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9671                       DAG.getConstant(NewIntNo, MVT::i32),
9672                       Op.getOperand(1), ShAmt);
9673  }
9674  }
9675}
9676
9677SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9678                                           SelectionDAG &DAG) const {
9679  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9680  MFI->setReturnAddressIsTaken(true);
9681
9682  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9683  DebugLoc dl = Op.getDebugLoc();
9684
9685  if (Depth > 0) {
9686    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9687    SDValue Offset =
9688      DAG.getConstant(TD->getPointerSize(),
9689                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9690    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9691                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9692                                   FrameAddr, Offset),
9693                       MachinePointerInfo(), false, false, false, 0);
9694  }
9695
9696  // Just load the return address.
9697  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9698  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9699                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9700}
9701
9702SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9703  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9704  MFI->setFrameAddressIsTaken(true);
9705
9706  EVT VT = Op.getValueType();
9707  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9708  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9709  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9710  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9711  while (Depth--)
9712    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9713                            MachinePointerInfo(),
9714                            false, false, false, 0);
9715  return FrameAddr;
9716}
9717
9718SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9719                                                     SelectionDAG &DAG) const {
9720  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9721}
9722
9723SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9724  MachineFunction &MF = DAG.getMachineFunction();
9725  SDValue Chain     = Op.getOperand(0);
9726  SDValue Offset    = Op.getOperand(1);
9727  SDValue Handler   = Op.getOperand(2);
9728  DebugLoc dl       = Op.getDebugLoc();
9729
9730  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9731                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9732                                     getPointerTy());
9733  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9734
9735  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9736                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9737  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9738  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9739                       false, false, 0);
9740  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9741  MF.getRegInfo().addLiveOut(StoreAddrReg);
9742
9743  return DAG.getNode(X86ISD::EH_RETURN, dl,
9744                     MVT::Other,
9745                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9746}
9747
9748SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9749                                                  SelectionDAG &DAG) const {
9750  return Op.getOperand(0);
9751}
9752
9753SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9754                                                SelectionDAG &DAG) const {
9755  SDValue Root = Op.getOperand(0);
9756  SDValue Trmp = Op.getOperand(1); // trampoline
9757  SDValue FPtr = Op.getOperand(2); // nested function
9758  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9759  DebugLoc dl  = Op.getDebugLoc();
9760
9761  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9762
9763  if (Subtarget->is64Bit()) {
9764    SDValue OutChains[6];
9765
9766    // Large code-model.
9767    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9768    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9769
9770    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9771    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9772
9773    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9774
9775    // Load the pointer to the nested function into R11.
9776    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9777    SDValue Addr = Trmp;
9778    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9779                                Addr, MachinePointerInfo(TrmpAddr),
9780                                false, false, 0);
9781
9782    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9783                       DAG.getConstant(2, MVT::i64));
9784    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9785                                MachinePointerInfo(TrmpAddr, 2),
9786                                false, false, 2);
9787
9788    // Load the 'nest' parameter value into R10.
9789    // R10 is specified in X86CallingConv.td
9790    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9791    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9792                       DAG.getConstant(10, MVT::i64));
9793    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9794                                Addr, MachinePointerInfo(TrmpAddr, 10),
9795                                false, false, 0);
9796
9797    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9798                       DAG.getConstant(12, MVT::i64));
9799    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9800                                MachinePointerInfo(TrmpAddr, 12),
9801                                false, false, 2);
9802
9803    // Jump to the nested function.
9804    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9805    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9806                       DAG.getConstant(20, MVT::i64));
9807    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9808                                Addr, MachinePointerInfo(TrmpAddr, 20),
9809                                false, false, 0);
9810
9811    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9812    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9813                       DAG.getConstant(22, MVT::i64));
9814    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9815                                MachinePointerInfo(TrmpAddr, 22),
9816                                false, false, 0);
9817
9818    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9819  } else {
9820    const Function *Func =
9821      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9822    CallingConv::ID CC = Func->getCallingConv();
9823    unsigned NestReg;
9824
9825    switch (CC) {
9826    default:
9827      llvm_unreachable("Unsupported calling convention");
9828    case CallingConv::C:
9829    case CallingConv::X86_StdCall: {
9830      // Pass 'nest' parameter in ECX.
9831      // Must be kept in sync with X86CallingConv.td
9832      NestReg = X86::ECX;
9833
9834      // Check that ECX wasn't needed by an 'inreg' parameter.
9835      FunctionType *FTy = Func->getFunctionType();
9836      const AttrListPtr &Attrs = Func->getAttributes();
9837
9838      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9839        unsigned InRegCount = 0;
9840        unsigned Idx = 1;
9841
9842        for (FunctionType::param_iterator I = FTy->param_begin(),
9843             E = FTy->param_end(); I != E; ++I, ++Idx)
9844          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9845            // FIXME: should only count parameters that are lowered to integers.
9846            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9847
9848        if (InRegCount > 2) {
9849          report_fatal_error("Nest register in use - reduce number of inreg"
9850                             " parameters!");
9851        }
9852      }
9853      break;
9854    }
9855    case CallingConv::X86_FastCall:
9856    case CallingConv::X86_ThisCall:
9857    case CallingConv::Fast:
9858      // Pass 'nest' parameter in EAX.
9859      // Must be kept in sync with X86CallingConv.td
9860      NestReg = X86::EAX;
9861      break;
9862    }
9863
9864    SDValue OutChains[4];
9865    SDValue Addr, Disp;
9866
9867    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9868                       DAG.getConstant(10, MVT::i32));
9869    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9870
9871    // This is storing the opcode for MOV32ri.
9872    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9873    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9874    OutChains[0] = DAG.getStore(Root, dl,
9875                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9876                                Trmp, MachinePointerInfo(TrmpAddr),
9877                                false, false, 0);
9878
9879    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9880                       DAG.getConstant(1, MVT::i32));
9881    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9882                                MachinePointerInfo(TrmpAddr, 1),
9883                                false, false, 1);
9884
9885    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9886    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9887                       DAG.getConstant(5, MVT::i32));
9888    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9889                                MachinePointerInfo(TrmpAddr, 5),
9890                                false, false, 1);
9891
9892    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9893                       DAG.getConstant(6, MVT::i32));
9894    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9895                                MachinePointerInfo(TrmpAddr, 6),
9896                                false, false, 1);
9897
9898    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9899  }
9900}
9901
9902SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9903                                            SelectionDAG &DAG) const {
9904  /*
9905   The rounding mode is in bits 11:10 of FPSR, and has the following
9906   settings:
9907     00 Round to nearest
9908     01 Round to -inf
9909     10 Round to +inf
9910     11 Round to 0
9911
9912  FLT_ROUNDS, on the other hand, expects the following:
9913    -1 Undefined
9914     0 Round to 0
9915     1 Round to nearest
9916     2 Round to +inf
9917     3 Round to -inf
9918
9919  To perform the conversion, we do:
9920    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9921  */
9922
9923  MachineFunction &MF = DAG.getMachineFunction();
9924  const TargetMachine &TM = MF.getTarget();
9925  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9926  unsigned StackAlignment = TFI.getStackAlignment();
9927  EVT VT = Op.getValueType();
9928  DebugLoc DL = Op.getDebugLoc();
9929
9930  // Save FP Control Word to stack slot
9931  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9932  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9933
9934
9935  MachineMemOperand *MMO =
9936   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9937                           MachineMemOperand::MOStore, 2, 2);
9938
9939  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9940  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9941                                          DAG.getVTList(MVT::Other),
9942                                          Ops, 2, MVT::i16, MMO);
9943
9944  // Load FP Control Word from stack slot
9945  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9946                            MachinePointerInfo(), false, false, false, 0);
9947
9948  // Transform as necessary
9949  SDValue CWD1 =
9950    DAG.getNode(ISD::SRL, DL, MVT::i16,
9951                DAG.getNode(ISD::AND, DL, MVT::i16,
9952                            CWD, DAG.getConstant(0x800, MVT::i16)),
9953                DAG.getConstant(11, MVT::i8));
9954  SDValue CWD2 =
9955    DAG.getNode(ISD::SRL, DL, MVT::i16,
9956                DAG.getNode(ISD::AND, DL, MVT::i16,
9957                            CWD, DAG.getConstant(0x400, MVT::i16)),
9958                DAG.getConstant(9, MVT::i8));
9959
9960  SDValue RetVal =
9961    DAG.getNode(ISD::AND, DL, MVT::i16,
9962                DAG.getNode(ISD::ADD, DL, MVT::i16,
9963                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9964                            DAG.getConstant(1, MVT::i16)),
9965                DAG.getConstant(3, MVT::i16));
9966
9967
9968  return DAG.getNode((VT.getSizeInBits() < 16 ?
9969                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9970}
9971
9972SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9973  EVT VT = Op.getValueType();
9974  EVT OpVT = VT;
9975  unsigned NumBits = VT.getSizeInBits();
9976  DebugLoc dl = Op.getDebugLoc();
9977
9978  Op = Op.getOperand(0);
9979  if (VT == MVT::i8) {
9980    // Zero extend to i32 since there is not an i8 bsr.
9981    OpVT = MVT::i32;
9982    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9983  }
9984
9985  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9986  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9987  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9988
9989  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9990  SDValue Ops[] = {
9991    Op,
9992    DAG.getConstant(NumBits+NumBits-1, OpVT),
9993    DAG.getConstant(X86::COND_E, MVT::i8),
9994    Op.getValue(1)
9995  };
9996  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9997
9998  // Finally xor with NumBits-1.
9999  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10000
10001  if (VT == MVT::i8)
10002    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10003  return Op;
10004}
10005
10006SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10007                                                SelectionDAG &DAG) const {
10008  EVT VT = Op.getValueType();
10009  EVT OpVT = VT;
10010  unsigned NumBits = VT.getSizeInBits();
10011  DebugLoc dl = Op.getDebugLoc();
10012
10013  Op = Op.getOperand(0);
10014  if (VT == MVT::i8) {
10015    // Zero extend to i32 since there is not an i8 bsr.
10016    OpVT = MVT::i32;
10017    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10018  }
10019
10020  // Issue a bsr (scan bits in reverse).
10021  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10022  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10023
10024  // And xor with NumBits-1.
10025  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10026
10027  if (VT == MVT::i8)
10028    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10029  return Op;
10030}
10031
10032SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10033  EVT VT = Op.getValueType();
10034  unsigned NumBits = VT.getSizeInBits();
10035  DebugLoc dl = Op.getDebugLoc();
10036  Op = Op.getOperand(0);
10037
10038  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10039  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10040  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10041
10042  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10043  SDValue Ops[] = {
10044    Op,
10045    DAG.getConstant(NumBits, VT),
10046    DAG.getConstant(X86::COND_E, MVT::i8),
10047    Op.getValue(1)
10048  };
10049  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10050}
10051
10052// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10053// ones, and then concatenate the result back.
10054static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10055  EVT VT = Op.getValueType();
10056
10057  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10058         "Unsupported value type for operation");
10059
10060  int NumElems = VT.getVectorNumElements();
10061  DebugLoc dl = Op.getDebugLoc();
10062  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10063  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10064
10065  // Extract the LHS vectors
10066  SDValue LHS = Op.getOperand(0);
10067  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10068  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10069
10070  // Extract the RHS vectors
10071  SDValue RHS = Op.getOperand(1);
10072  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10073  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10074
10075  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10076  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10077
10078  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10079                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10080                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10081}
10082
10083SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10084  assert(Op.getValueType().getSizeInBits() == 256 &&
10085         Op.getValueType().isInteger() &&
10086         "Only handle AVX 256-bit vector integer operation");
10087  return Lower256IntArith(Op, DAG);
10088}
10089
10090SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10091  assert(Op.getValueType().getSizeInBits() == 256 &&
10092         Op.getValueType().isInteger() &&
10093         "Only handle AVX 256-bit vector integer operation");
10094  return Lower256IntArith(Op, DAG);
10095}
10096
10097SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10098  EVT VT = Op.getValueType();
10099
10100  // Decompose 256-bit ops into smaller 128-bit ops.
10101  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10102    return Lower256IntArith(Op, DAG);
10103
10104  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10105         "Only know how to lower V2I64/V4I64 multiply");
10106
10107  DebugLoc dl = Op.getDebugLoc();
10108
10109  //  Ahi = psrlqi(a, 32);
10110  //  Bhi = psrlqi(b, 32);
10111  //
10112  //  AloBlo = pmuludq(a, b);
10113  //  AloBhi = pmuludq(a, Bhi);
10114  //  AhiBlo = pmuludq(Ahi, b);
10115
10116  //  AloBhi = psllqi(AloBhi, 32);
10117  //  AhiBlo = psllqi(AhiBlo, 32);
10118  //  return AloBlo + AloBhi + AhiBlo;
10119
10120  SDValue A = Op.getOperand(0);
10121  SDValue B = Op.getOperand(1);
10122
10123  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10124
10125  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10126  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10127
10128  // Bit cast to 32-bit vectors for MULUDQ
10129  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10130  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10131  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10132  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10133  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10134
10135  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10136  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10137  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10138
10139  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10140  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10141
10142  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10143  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10144}
10145
10146SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10147
10148  EVT VT = Op.getValueType();
10149  DebugLoc dl = Op.getDebugLoc();
10150  SDValue R = Op.getOperand(0);
10151  SDValue Amt = Op.getOperand(1);
10152  LLVMContext *Context = DAG.getContext();
10153
10154  if (!Subtarget->hasSSE2())
10155    return SDValue();
10156
10157  // Optimize shl/srl/sra with constant shift amount.
10158  if (isSplatVector(Amt.getNode())) {
10159    SDValue SclrAmt = Amt->getOperand(0);
10160    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10161      uint64_t ShiftAmt = C->getZExtValue();
10162
10163      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10164          (Subtarget->hasAVX2() &&
10165           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10166        if (Op.getOpcode() == ISD::SHL)
10167          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10168                             DAG.getConstant(ShiftAmt, MVT::i32));
10169        if (Op.getOpcode() == ISD::SRL)
10170          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10171                             DAG.getConstant(ShiftAmt, MVT::i32));
10172        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10173          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10174                             DAG.getConstant(ShiftAmt, MVT::i32));
10175      }
10176
10177      if (VT == MVT::v16i8) {
10178        if (Op.getOpcode() == ISD::SHL) {
10179          // Make a large shift.
10180          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10181                                    DAG.getConstant(ShiftAmt, MVT::i32));
10182          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10183          // Zero out the rightmost bits.
10184          SmallVector<SDValue, 16> V(16,
10185                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10186                                                     MVT::i8));
10187          return DAG.getNode(ISD::AND, dl, VT, SHL,
10188                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10189        }
10190        if (Op.getOpcode() == ISD::SRL) {
10191          // Make a large shift.
10192          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10193                                    DAG.getConstant(ShiftAmt, MVT::i32));
10194          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10195          // Zero out the leftmost bits.
10196          SmallVector<SDValue, 16> V(16,
10197                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10198                                                     MVT::i8));
10199          return DAG.getNode(ISD::AND, dl, VT, SRL,
10200                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10201        }
10202        if (Op.getOpcode() == ISD::SRA) {
10203          if (ShiftAmt == 7) {
10204            // R s>> 7  ===  R s< 0
10205            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10206            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10207          }
10208
10209          // R s>> a === ((R u>> a) ^ m) - m
10210          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10211          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10212                                                         MVT::i8));
10213          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10214          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10215          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10216          return Res;
10217        }
10218      }
10219
10220      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10221        if (Op.getOpcode() == ISD::SHL) {
10222          // Make a large shift.
10223          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10224                                    DAG.getConstant(ShiftAmt, MVT::i32));
10225          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10226          // Zero out the rightmost bits.
10227          SmallVector<SDValue, 32> V(32,
10228                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10229                                                     MVT::i8));
10230          return DAG.getNode(ISD::AND, dl, VT, SHL,
10231                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10232        }
10233        if (Op.getOpcode() == ISD::SRL) {
10234          // Make a large shift.
10235          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10236                                    DAG.getConstant(ShiftAmt, MVT::i32));
10237          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10238          // Zero out the leftmost bits.
10239          SmallVector<SDValue, 32> V(32,
10240                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10241                                                     MVT::i8));
10242          return DAG.getNode(ISD::AND, dl, VT, SRL,
10243                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10244        }
10245        if (Op.getOpcode() == ISD::SRA) {
10246          if (ShiftAmt == 7) {
10247            // R s>> 7  ===  R s< 0
10248            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10249            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10250          }
10251
10252          // R s>> a === ((R u>> a) ^ m) - m
10253          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10254          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10255                                                         MVT::i8));
10256          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10257          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10258          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10259          return Res;
10260        }
10261      }
10262    }
10263  }
10264
10265  // Lower SHL with variable shift amount.
10266  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10267    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10268                     DAG.getConstant(23, MVT::i32));
10269
10270    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10271    Constant *C = ConstantDataVector::get(*Context, CV);
10272    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10273    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10274                                 MachinePointerInfo::getConstantPool(),
10275                                 false, false, false, 16);
10276
10277    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10278    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10279    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10280    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10281  }
10282  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10283    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10284
10285    // a = a << 5;
10286    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10287                     DAG.getConstant(5, MVT::i32));
10288    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10289
10290    // Turn 'a' into a mask suitable for VSELECT
10291    SDValue VSelM = DAG.getConstant(0x80, VT);
10292    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10293    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10294
10295    SDValue CM1 = DAG.getConstant(0x0f, VT);
10296    SDValue CM2 = DAG.getConstant(0x3f, VT);
10297
10298    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10299    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10300    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10301                            DAG.getConstant(4, MVT::i32), DAG);
10302    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10303    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10304
10305    // a += a
10306    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10307    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10308    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10309
10310    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10311    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10312    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10313                            DAG.getConstant(2, MVT::i32), DAG);
10314    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10315    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10316
10317    // a += a
10318    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10319    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10320    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10321
10322    // return VSELECT(r, r+r, a);
10323    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10324                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10325    return R;
10326  }
10327
10328  // Decompose 256-bit shifts into smaller 128-bit shifts.
10329  if (VT.getSizeInBits() == 256) {
10330    unsigned NumElems = VT.getVectorNumElements();
10331    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10332    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10333
10334    // Extract the two vectors
10335    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10336    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10337                                     DAG, dl);
10338
10339    // Recreate the shift amount vectors
10340    SDValue Amt1, Amt2;
10341    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10342      // Constant shift amount
10343      SmallVector<SDValue, 4> Amt1Csts;
10344      SmallVector<SDValue, 4> Amt2Csts;
10345      for (unsigned i = 0; i != NumElems/2; ++i)
10346        Amt1Csts.push_back(Amt->getOperand(i));
10347      for (unsigned i = NumElems/2; i != NumElems; ++i)
10348        Amt2Csts.push_back(Amt->getOperand(i));
10349
10350      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10351                                 &Amt1Csts[0], NumElems/2);
10352      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10353                                 &Amt2Csts[0], NumElems/2);
10354    } else {
10355      // Variable shift amount
10356      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10357      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10358                                 DAG, dl);
10359    }
10360
10361    // Issue new vector shifts for the smaller types
10362    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10363    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10364
10365    // Concatenate the result back
10366    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10367  }
10368
10369  return SDValue();
10370}
10371
10372SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10373  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10374  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10375  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10376  // has only one use.
10377  SDNode *N = Op.getNode();
10378  SDValue LHS = N->getOperand(0);
10379  SDValue RHS = N->getOperand(1);
10380  unsigned BaseOp = 0;
10381  unsigned Cond = 0;
10382  DebugLoc DL = Op.getDebugLoc();
10383  switch (Op.getOpcode()) {
10384  default: llvm_unreachable("Unknown ovf instruction!");
10385  case ISD::SADDO:
10386    // A subtract of one will be selected as a INC. Note that INC doesn't
10387    // set CF, so we can't do this for UADDO.
10388    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10389      if (C->isOne()) {
10390        BaseOp = X86ISD::INC;
10391        Cond = X86::COND_O;
10392        break;
10393      }
10394    BaseOp = X86ISD::ADD;
10395    Cond = X86::COND_O;
10396    break;
10397  case ISD::UADDO:
10398    BaseOp = X86ISD::ADD;
10399    Cond = X86::COND_B;
10400    break;
10401  case ISD::SSUBO:
10402    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10403    // set CF, so we can't do this for USUBO.
10404    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10405      if (C->isOne()) {
10406        BaseOp = X86ISD::DEC;
10407        Cond = X86::COND_O;
10408        break;
10409      }
10410    BaseOp = X86ISD::SUB;
10411    Cond = X86::COND_O;
10412    break;
10413  case ISD::USUBO:
10414    BaseOp = X86ISD::SUB;
10415    Cond = X86::COND_B;
10416    break;
10417  case ISD::SMULO:
10418    BaseOp = X86ISD::SMUL;
10419    Cond = X86::COND_O;
10420    break;
10421  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10422    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10423                                 MVT::i32);
10424    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10425
10426    SDValue SetCC =
10427      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10428                  DAG.getConstant(X86::COND_O, MVT::i32),
10429                  SDValue(Sum.getNode(), 2));
10430
10431    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10432  }
10433  }
10434
10435  // Also sets EFLAGS.
10436  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10437  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10438
10439  SDValue SetCC =
10440    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10441                DAG.getConstant(Cond, MVT::i32),
10442                SDValue(Sum.getNode(), 1));
10443
10444  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10445}
10446
10447SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10448                                                  SelectionDAG &DAG) const {
10449  DebugLoc dl = Op.getDebugLoc();
10450  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10451  EVT VT = Op.getValueType();
10452
10453  if (!Subtarget->hasSSE2() || !VT.isVector())
10454    return SDValue();
10455
10456  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10457                      ExtraVT.getScalarType().getSizeInBits();
10458  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10459
10460  switch (VT.getSimpleVT().SimpleTy) {
10461    default: return SDValue();
10462    case MVT::v8i32:
10463    case MVT::v16i16:
10464      if (!Subtarget->hasAVX())
10465        return SDValue();
10466      if (!Subtarget->hasAVX2()) {
10467        // needs to be split
10468        int NumElems = VT.getVectorNumElements();
10469        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10470        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10471
10472        // Extract the LHS vectors
10473        SDValue LHS = Op.getOperand(0);
10474        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10475        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10476
10477        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10478        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10479
10480        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10481        int ExtraNumElems = ExtraVT.getVectorNumElements();
10482        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10483                                   ExtraNumElems/2);
10484        SDValue Extra = DAG.getValueType(ExtraVT);
10485
10486        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10487        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10488
10489        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10490      }
10491      // fall through
10492    case MVT::v4i32:
10493    case MVT::v8i16: {
10494      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10495                                         Op.getOperand(0), ShAmt, DAG);
10496      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10497    }
10498  }
10499}
10500
10501
10502SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10503  DebugLoc dl = Op.getDebugLoc();
10504
10505  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10506  // There isn't any reason to disable it if the target processor supports it.
10507  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10508    SDValue Chain = Op.getOperand(0);
10509    SDValue Zero = DAG.getConstant(0, MVT::i32);
10510    SDValue Ops[] = {
10511      DAG.getRegister(X86::ESP, MVT::i32), // Base
10512      DAG.getTargetConstant(1, MVT::i8),   // Scale
10513      DAG.getRegister(0, MVT::i32),        // Index
10514      DAG.getTargetConstant(0, MVT::i32),  // Disp
10515      DAG.getRegister(0, MVT::i32),        // Segment.
10516      Zero,
10517      Chain
10518    };
10519    SDNode *Res =
10520      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10521                          array_lengthof(Ops));
10522    return SDValue(Res, 0);
10523  }
10524
10525  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10526  if (!isDev)
10527    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10528
10529  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10530  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10531  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10532  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10533
10534  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10535  if (!Op1 && !Op2 && !Op3 && Op4)
10536    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10537
10538  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10539  if (Op1 && !Op2 && !Op3 && !Op4)
10540    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10541
10542  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10543  //           (MFENCE)>;
10544  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10545}
10546
10547SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10548                                             SelectionDAG &DAG) const {
10549  DebugLoc dl = Op.getDebugLoc();
10550  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10551    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10552  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10553    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10554
10555  // The only fence that needs an instruction is a sequentially-consistent
10556  // cross-thread fence.
10557  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10558    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10559    // no-sse2). There isn't any reason to disable it if the target processor
10560    // supports it.
10561    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10562      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10563
10564    SDValue Chain = Op.getOperand(0);
10565    SDValue Zero = DAG.getConstant(0, MVT::i32);
10566    SDValue Ops[] = {
10567      DAG.getRegister(X86::ESP, MVT::i32), // Base
10568      DAG.getTargetConstant(1, MVT::i8),   // Scale
10569      DAG.getRegister(0, MVT::i32),        // Index
10570      DAG.getTargetConstant(0, MVT::i32),  // Disp
10571      DAG.getRegister(0, MVT::i32),        // Segment.
10572      Zero,
10573      Chain
10574    };
10575    SDNode *Res =
10576      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10577                         array_lengthof(Ops));
10578    return SDValue(Res, 0);
10579  }
10580
10581  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10582  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10583}
10584
10585
10586SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10587  EVT T = Op.getValueType();
10588  DebugLoc DL = Op.getDebugLoc();
10589  unsigned Reg = 0;
10590  unsigned size = 0;
10591  switch(T.getSimpleVT().SimpleTy) {
10592  default: llvm_unreachable("Invalid value type!");
10593  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10594  case MVT::i16: Reg = X86::AX;  size = 2; break;
10595  case MVT::i32: Reg = X86::EAX; size = 4; break;
10596  case MVT::i64:
10597    assert(Subtarget->is64Bit() && "Node not type legal!");
10598    Reg = X86::RAX; size = 8;
10599    break;
10600  }
10601  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10602                                    Op.getOperand(2), SDValue());
10603  SDValue Ops[] = { cpIn.getValue(0),
10604                    Op.getOperand(1),
10605                    Op.getOperand(3),
10606                    DAG.getTargetConstant(size, MVT::i8),
10607                    cpIn.getValue(1) };
10608  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10609  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10610  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10611                                           Ops, 5, T, MMO);
10612  SDValue cpOut =
10613    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10614  return cpOut;
10615}
10616
10617SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10618                                                 SelectionDAG &DAG) const {
10619  assert(Subtarget->is64Bit() && "Result not type legalized?");
10620  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10621  SDValue TheChain = Op.getOperand(0);
10622  DebugLoc dl = Op.getDebugLoc();
10623  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10624  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10625  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10626                                   rax.getValue(2));
10627  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10628                            DAG.getConstant(32, MVT::i8));
10629  SDValue Ops[] = {
10630    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10631    rdx.getValue(1)
10632  };
10633  return DAG.getMergeValues(Ops, 2, dl);
10634}
10635
10636SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10637                                            SelectionDAG &DAG) const {
10638  EVT SrcVT = Op.getOperand(0).getValueType();
10639  EVT DstVT = Op.getValueType();
10640  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10641         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10642  assert((DstVT == MVT::i64 ||
10643          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10644         "Unexpected custom BITCAST");
10645  // i64 <=> MMX conversions are Legal.
10646  if (SrcVT==MVT::i64 && DstVT.isVector())
10647    return Op;
10648  if (DstVT==MVT::i64 && SrcVT.isVector())
10649    return Op;
10650  // MMX <=> MMX conversions are Legal.
10651  if (SrcVT.isVector() && DstVT.isVector())
10652    return Op;
10653  // All other conversions need to be expanded.
10654  return SDValue();
10655}
10656
10657SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10658  SDNode *Node = Op.getNode();
10659  DebugLoc dl = Node->getDebugLoc();
10660  EVT T = Node->getValueType(0);
10661  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10662                              DAG.getConstant(0, T), Node->getOperand(2));
10663  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10664                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10665                       Node->getOperand(0),
10666                       Node->getOperand(1), negOp,
10667                       cast<AtomicSDNode>(Node)->getSrcValue(),
10668                       cast<AtomicSDNode>(Node)->getAlignment(),
10669                       cast<AtomicSDNode>(Node)->getOrdering(),
10670                       cast<AtomicSDNode>(Node)->getSynchScope());
10671}
10672
10673static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10674  SDNode *Node = Op.getNode();
10675  DebugLoc dl = Node->getDebugLoc();
10676  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10677
10678  // Convert seq_cst store -> xchg
10679  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10680  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10681  //        (The only way to get a 16-byte store is cmpxchg16b)
10682  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10683  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10684      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10685    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10686                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10687                                 Node->getOperand(0),
10688                                 Node->getOperand(1), Node->getOperand(2),
10689                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10690                                 cast<AtomicSDNode>(Node)->getOrdering(),
10691                                 cast<AtomicSDNode>(Node)->getSynchScope());
10692    return Swap.getValue(1);
10693  }
10694  // Other atomic stores have a simple pattern.
10695  return Op;
10696}
10697
10698static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10699  EVT VT = Op.getNode()->getValueType(0);
10700
10701  // Let legalize expand this if it isn't a legal type yet.
10702  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10703    return SDValue();
10704
10705  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10706
10707  unsigned Opc;
10708  bool ExtraOp = false;
10709  switch (Op.getOpcode()) {
10710  default: llvm_unreachable("Invalid code");
10711  case ISD::ADDC: Opc = X86ISD::ADD; break;
10712  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10713  case ISD::SUBC: Opc = X86ISD::SUB; break;
10714  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10715  }
10716
10717  if (!ExtraOp)
10718    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10719                       Op.getOperand(1));
10720  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10721                     Op.getOperand(1), Op.getOperand(2));
10722}
10723
10724/// LowerOperation - Provide custom lowering hooks for some operations.
10725///
10726SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10727  switch (Op.getOpcode()) {
10728  default: llvm_unreachable("Should not custom lower this!");
10729  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10730  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10731  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10732  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10733  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10734  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10735  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10736  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10737  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10738  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10739  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10740  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10741  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10742  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10743  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10744  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10745  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10746  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10747  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10748  case ISD::SHL_PARTS:
10749  case ISD::SRA_PARTS:
10750  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10751  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10752  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10753  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10754  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10755  case ISD::FABS:               return LowerFABS(Op, DAG);
10756  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10757  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10758  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10759  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10760  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10761  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10762  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10763  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10764  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10765  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10766  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10767  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10768  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10769  case ISD::FRAME_TO_ARGS_OFFSET:
10770                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10771  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10772  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10773  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10774  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10775  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10776  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10777  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10778  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10779  case ISD::MUL:                return LowerMUL(Op, DAG);
10780  case ISD::SRA:
10781  case ISD::SRL:
10782  case ISD::SHL:                return LowerShift(Op, DAG);
10783  case ISD::SADDO:
10784  case ISD::UADDO:
10785  case ISD::SSUBO:
10786  case ISD::USUBO:
10787  case ISD::SMULO:
10788  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10789  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10790  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10791  case ISD::ADDC:
10792  case ISD::ADDE:
10793  case ISD::SUBC:
10794  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10795  case ISD::ADD:                return LowerADD(Op, DAG);
10796  case ISD::SUB:                return LowerSUB(Op, DAG);
10797  }
10798}
10799
10800static void ReplaceATOMIC_LOAD(SDNode *Node,
10801                                  SmallVectorImpl<SDValue> &Results,
10802                                  SelectionDAG &DAG) {
10803  DebugLoc dl = Node->getDebugLoc();
10804  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10805
10806  // Convert wide load -> cmpxchg8b/cmpxchg16b
10807  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10808  //        (The only way to get a 16-byte load is cmpxchg16b)
10809  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10810  SDValue Zero = DAG.getConstant(0, VT);
10811  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10812                               Node->getOperand(0),
10813                               Node->getOperand(1), Zero, Zero,
10814                               cast<AtomicSDNode>(Node)->getMemOperand(),
10815                               cast<AtomicSDNode>(Node)->getOrdering(),
10816                               cast<AtomicSDNode>(Node)->getSynchScope());
10817  Results.push_back(Swap.getValue(0));
10818  Results.push_back(Swap.getValue(1));
10819}
10820
10821void X86TargetLowering::
10822ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10823                        SelectionDAG &DAG, unsigned NewOp) const {
10824  DebugLoc dl = Node->getDebugLoc();
10825  assert (Node->getValueType(0) == MVT::i64 &&
10826          "Only know how to expand i64 atomics");
10827
10828  SDValue Chain = Node->getOperand(0);
10829  SDValue In1 = Node->getOperand(1);
10830  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10831                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10832  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10833                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10834  SDValue Ops[] = { Chain, In1, In2L, In2H };
10835  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10836  SDValue Result =
10837    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10838                            cast<MemSDNode>(Node)->getMemOperand());
10839  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10840  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10841  Results.push_back(Result.getValue(2));
10842}
10843
10844/// ReplaceNodeResults - Replace a node with an illegal result type
10845/// with a new node built out of custom code.
10846void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10847                                           SmallVectorImpl<SDValue>&Results,
10848                                           SelectionDAG &DAG) const {
10849  DebugLoc dl = N->getDebugLoc();
10850  switch (N->getOpcode()) {
10851  default:
10852    llvm_unreachable("Do not know how to custom type legalize this operation!");
10853  case ISD::SIGN_EXTEND_INREG:
10854  case ISD::ADDC:
10855  case ISD::ADDE:
10856  case ISD::SUBC:
10857  case ISD::SUBE:
10858    // We don't want to expand or promote these.
10859    return;
10860  case ISD::FP_TO_SINT: {
10861    std::pair<SDValue,SDValue> Vals =
10862        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10863    SDValue FIST = Vals.first, StackSlot = Vals.second;
10864    if (FIST.getNode() != 0) {
10865      EVT VT = N->getValueType(0);
10866      // Return a load from the stack slot.
10867      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10868                                    MachinePointerInfo(),
10869                                    false, false, false, 0));
10870    }
10871    return;
10872  }
10873  case ISD::READCYCLECOUNTER: {
10874    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10875    SDValue TheChain = N->getOperand(0);
10876    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10877    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10878                                     rd.getValue(1));
10879    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10880                                     eax.getValue(2));
10881    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10882    SDValue Ops[] = { eax, edx };
10883    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10884    Results.push_back(edx.getValue(1));
10885    return;
10886  }
10887  case ISD::ATOMIC_CMP_SWAP: {
10888    EVT T = N->getValueType(0);
10889    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10890    bool Regs64bit = T == MVT::i128;
10891    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10892    SDValue cpInL, cpInH;
10893    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10894                        DAG.getConstant(0, HalfT));
10895    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10896                        DAG.getConstant(1, HalfT));
10897    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10898                             Regs64bit ? X86::RAX : X86::EAX,
10899                             cpInL, SDValue());
10900    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10901                             Regs64bit ? X86::RDX : X86::EDX,
10902                             cpInH, cpInL.getValue(1));
10903    SDValue swapInL, swapInH;
10904    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10905                          DAG.getConstant(0, HalfT));
10906    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10907                          DAG.getConstant(1, HalfT));
10908    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10909                               Regs64bit ? X86::RBX : X86::EBX,
10910                               swapInL, cpInH.getValue(1));
10911    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10912                               Regs64bit ? X86::RCX : X86::ECX,
10913                               swapInH, swapInL.getValue(1));
10914    SDValue Ops[] = { swapInH.getValue(0),
10915                      N->getOperand(1),
10916                      swapInH.getValue(1) };
10917    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10918    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10919    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10920                                  X86ISD::LCMPXCHG8_DAG;
10921    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10922                                             Ops, 3, T, MMO);
10923    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10924                                        Regs64bit ? X86::RAX : X86::EAX,
10925                                        HalfT, Result.getValue(1));
10926    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10927                                        Regs64bit ? X86::RDX : X86::EDX,
10928                                        HalfT, cpOutL.getValue(2));
10929    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10930    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10931    Results.push_back(cpOutH.getValue(1));
10932    return;
10933  }
10934  case ISD::ATOMIC_LOAD_ADD:
10935    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10936    return;
10937  case ISD::ATOMIC_LOAD_AND:
10938    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10939    return;
10940  case ISD::ATOMIC_LOAD_NAND:
10941    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10942    return;
10943  case ISD::ATOMIC_LOAD_OR:
10944    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10945    return;
10946  case ISD::ATOMIC_LOAD_SUB:
10947    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10948    return;
10949  case ISD::ATOMIC_LOAD_XOR:
10950    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10951    return;
10952  case ISD::ATOMIC_SWAP:
10953    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10954    return;
10955  case ISD::ATOMIC_LOAD:
10956    ReplaceATOMIC_LOAD(N, Results, DAG);
10957  }
10958}
10959
10960const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10961  switch (Opcode) {
10962  default: return NULL;
10963  case X86ISD::BSF:                return "X86ISD::BSF";
10964  case X86ISD::BSR:                return "X86ISD::BSR";
10965  case X86ISD::SHLD:               return "X86ISD::SHLD";
10966  case X86ISD::SHRD:               return "X86ISD::SHRD";
10967  case X86ISD::FAND:               return "X86ISD::FAND";
10968  case X86ISD::FOR:                return "X86ISD::FOR";
10969  case X86ISD::FXOR:               return "X86ISD::FXOR";
10970  case X86ISD::FSRL:               return "X86ISD::FSRL";
10971  case X86ISD::FILD:               return "X86ISD::FILD";
10972  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10973  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10974  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10975  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10976  case X86ISD::FLD:                return "X86ISD::FLD";
10977  case X86ISD::FST:                return "X86ISD::FST";
10978  case X86ISD::CALL:               return "X86ISD::CALL";
10979  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10980  case X86ISD::BT:                 return "X86ISD::BT";
10981  case X86ISD::CMP:                return "X86ISD::CMP";
10982  case X86ISD::COMI:               return "X86ISD::COMI";
10983  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10984  case X86ISD::SETCC:              return "X86ISD::SETCC";
10985  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10986  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10987  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10988  case X86ISD::CMOV:               return "X86ISD::CMOV";
10989  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10990  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10991  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10992  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10993  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10994  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10995  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10996  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10997  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10998  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10999  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11000  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11001  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11002  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11003  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11004  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11005  case X86ISD::HADD:               return "X86ISD::HADD";
11006  case X86ISD::HSUB:               return "X86ISD::HSUB";
11007  case X86ISD::FHADD:              return "X86ISD::FHADD";
11008  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11009  case X86ISD::FMAX:               return "X86ISD::FMAX";
11010  case X86ISD::FMIN:               return "X86ISD::FMIN";
11011  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11012  case X86ISD::FRCP:               return "X86ISD::FRCP";
11013  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11014  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11015  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11016  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11017  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11018  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11019  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11020  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11021  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11022  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11023  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11024  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11025  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11026  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11027  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11028  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11029  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11030  case X86ISD::VSHL:               return "X86ISD::VSHL";
11031  case X86ISD::VSRL:               return "X86ISD::VSRL";
11032  case X86ISD::VSRA:               return "X86ISD::VSRA";
11033  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11034  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11035  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11036  case X86ISD::CMPP:               return "X86ISD::CMPP";
11037  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11038  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11039  case X86ISD::ADD:                return "X86ISD::ADD";
11040  case X86ISD::SUB:                return "X86ISD::SUB";
11041  case X86ISD::ADC:                return "X86ISD::ADC";
11042  case X86ISD::SBB:                return "X86ISD::SBB";
11043  case X86ISD::SMUL:               return "X86ISD::SMUL";
11044  case X86ISD::UMUL:               return "X86ISD::UMUL";
11045  case X86ISD::INC:                return "X86ISD::INC";
11046  case X86ISD::DEC:                return "X86ISD::DEC";
11047  case X86ISD::OR:                 return "X86ISD::OR";
11048  case X86ISD::XOR:                return "X86ISD::XOR";
11049  case X86ISD::AND:                return "X86ISD::AND";
11050  case X86ISD::ANDN:               return "X86ISD::ANDN";
11051  case X86ISD::BLSI:               return "X86ISD::BLSI";
11052  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11053  case X86ISD::BLSR:               return "X86ISD::BLSR";
11054  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11055  case X86ISD::PTEST:              return "X86ISD::PTEST";
11056  case X86ISD::TESTP:              return "X86ISD::TESTP";
11057  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11058  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11059  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11060  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11061  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11062  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11063  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11064  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11065  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11066  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11067  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11068  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11069  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11070  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11071  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11072  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11073  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11074  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11075  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11076  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11077  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11078  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11079  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11080  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11081  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11082  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11083  }
11084}
11085
11086// isLegalAddressingMode - Return true if the addressing mode represented
11087// by AM is legal for this target, for a load/store of the specified type.
11088bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11089                                              Type *Ty) const {
11090  // X86 supports extremely general addressing modes.
11091  CodeModel::Model M = getTargetMachine().getCodeModel();
11092  Reloc::Model R = getTargetMachine().getRelocationModel();
11093
11094  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11095  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11096    return false;
11097
11098  if (AM.BaseGV) {
11099    unsigned GVFlags =
11100      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11101
11102    // If a reference to this global requires an extra load, we can't fold it.
11103    if (isGlobalStubReference(GVFlags))
11104      return false;
11105
11106    // If BaseGV requires a register for the PIC base, we cannot also have a
11107    // BaseReg specified.
11108    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11109      return false;
11110
11111    // If lower 4G is not available, then we must use rip-relative addressing.
11112    if ((M != CodeModel::Small || R != Reloc::Static) &&
11113        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11114      return false;
11115  }
11116
11117  switch (AM.Scale) {
11118  case 0:
11119  case 1:
11120  case 2:
11121  case 4:
11122  case 8:
11123    // These scales always work.
11124    break;
11125  case 3:
11126  case 5:
11127  case 9:
11128    // These scales are formed with basereg+scalereg.  Only accept if there is
11129    // no basereg yet.
11130    if (AM.HasBaseReg)
11131      return false;
11132    break;
11133  default:  // Other stuff never works.
11134    return false;
11135  }
11136
11137  return true;
11138}
11139
11140
11141bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11142  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11143    return false;
11144  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11145  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11146  if (NumBits1 <= NumBits2)
11147    return false;
11148  return true;
11149}
11150
11151bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11152  if (!VT1.isInteger() || !VT2.isInteger())
11153    return false;
11154  unsigned NumBits1 = VT1.getSizeInBits();
11155  unsigned NumBits2 = VT2.getSizeInBits();
11156  if (NumBits1 <= NumBits2)
11157    return false;
11158  return true;
11159}
11160
11161bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11162  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11163  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11164}
11165
11166bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11167  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11168  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11169}
11170
11171bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11172  // i16 instructions are longer (0x66 prefix) and potentially slower.
11173  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11174}
11175
11176/// isShuffleMaskLegal - Targets can use this to indicate that they only
11177/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11178/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11179/// are assumed to be legal.
11180bool
11181X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11182                                      EVT VT) const {
11183  // Very little shuffling can be done for 64-bit vectors right now.
11184  if (VT.getSizeInBits() == 64)
11185    return false;
11186
11187  // FIXME: pshufb, blends, shifts.
11188  return (VT.getVectorNumElements() == 2 ||
11189          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11190          isMOVLMask(M, VT) ||
11191          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11192          isPSHUFDMask(M, VT) ||
11193          isPSHUFHWMask(M, VT) ||
11194          isPSHUFLWMask(M, VT) ||
11195          isPALIGNRMask(M, VT, Subtarget) ||
11196          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11197          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11198          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11199          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11200}
11201
11202bool
11203X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11204                                          EVT VT) const {
11205  unsigned NumElts = VT.getVectorNumElements();
11206  // FIXME: This collection of masks seems suspect.
11207  if (NumElts == 2)
11208    return true;
11209  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11210    return (isMOVLMask(Mask, VT)  ||
11211            isCommutedMOVLMask(Mask, VT, true) ||
11212            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11213            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11214  }
11215  return false;
11216}
11217
11218//===----------------------------------------------------------------------===//
11219//                           X86 Scheduler Hooks
11220//===----------------------------------------------------------------------===//
11221
11222// private utility function
11223MachineBasicBlock *
11224X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11225                                                       MachineBasicBlock *MBB,
11226                                                       unsigned regOpc,
11227                                                       unsigned immOpc,
11228                                                       unsigned LoadOpc,
11229                                                       unsigned CXchgOpc,
11230                                                       unsigned notOpc,
11231                                                       unsigned EAXreg,
11232                                                       TargetRegisterClass *RC,
11233                                                       bool invSrc) const {
11234  // For the atomic bitwise operator, we generate
11235  //   thisMBB:
11236  //   newMBB:
11237  //     ld  t1 = [bitinstr.addr]
11238  //     op  t2 = t1, [bitinstr.val]
11239  //     mov EAX = t1
11240  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11241  //     bz  newMBB
11242  //     fallthrough -->nextMBB
11243  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11244  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11245  MachineFunction::iterator MBBIter = MBB;
11246  ++MBBIter;
11247
11248  /// First build the CFG
11249  MachineFunction *F = MBB->getParent();
11250  MachineBasicBlock *thisMBB = MBB;
11251  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11252  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11253  F->insert(MBBIter, newMBB);
11254  F->insert(MBBIter, nextMBB);
11255
11256  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11257  nextMBB->splice(nextMBB->begin(), thisMBB,
11258                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11259                  thisMBB->end());
11260  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11261
11262  // Update thisMBB to fall through to newMBB
11263  thisMBB->addSuccessor(newMBB);
11264
11265  // newMBB jumps to itself and fall through to nextMBB
11266  newMBB->addSuccessor(nextMBB);
11267  newMBB->addSuccessor(newMBB);
11268
11269  // Insert instructions into newMBB based on incoming instruction
11270  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11271         "unexpected number of operands");
11272  DebugLoc dl = bInstr->getDebugLoc();
11273  MachineOperand& destOper = bInstr->getOperand(0);
11274  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11275  int numArgs = bInstr->getNumOperands() - 1;
11276  for (int i=0; i < numArgs; ++i)
11277    argOpers[i] = &bInstr->getOperand(i+1);
11278
11279  // x86 address has 4 operands: base, index, scale, and displacement
11280  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11281  int valArgIndx = lastAddrIndx + 1;
11282
11283  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11284  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11285  for (int i=0; i <= lastAddrIndx; ++i)
11286    (*MIB).addOperand(*argOpers[i]);
11287
11288  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11289  if (invSrc) {
11290    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11291  }
11292  else
11293    tt = t1;
11294
11295  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11296  assert((argOpers[valArgIndx]->isReg() ||
11297          argOpers[valArgIndx]->isImm()) &&
11298         "invalid operand");
11299  if (argOpers[valArgIndx]->isReg())
11300    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11301  else
11302    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11303  MIB.addReg(tt);
11304  (*MIB).addOperand(*argOpers[valArgIndx]);
11305
11306  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11307  MIB.addReg(t1);
11308
11309  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11310  for (int i=0; i <= lastAddrIndx; ++i)
11311    (*MIB).addOperand(*argOpers[i]);
11312  MIB.addReg(t2);
11313  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11314  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11315                    bInstr->memoperands_end());
11316
11317  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11318  MIB.addReg(EAXreg);
11319
11320  // insert branch
11321  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11322
11323  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11324  return nextMBB;
11325}
11326
11327// private utility function:  64 bit atomics on 32 bit host.
11328MachineBasicBlock *
11329X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11330                                                       MachineBasicBlock *MBB,
11331                                                       unsigned regOpcL,
11332                                                       unsigned regOpcH,
11333                                                       unsigned immOpcL,
11334                                                       unsigned immOpcH,
11335                                                       bool invSrc) const {
11336  // For the atomic bitwise operator, we generate
11337  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11338  //     ld t1,t2 = [bitinstr.addr]
11339  //   newMBB:
11340  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11341  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11342  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11343  //     mov ECX, EBX <- t5, t6
11344  //     mov EAX, EDX <- t1, t2
11345  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11346  //     mov t3, t4 <- EAX, EDX
11347  //     bz  newMBB
11348  //     result in out1, out2
11349  //     fallthrough -->nextMBB
11350
11351  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11352  const unsigned LoadOpc = X86::MOV32rm;
11353  const unsigned NotOpc = X86::NOT32r;
11354  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11355  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11356  MachineFunction::iterator MBBIter = MBB;
11357  ++MBBIter;
11358
11359  /// First build the CFG
11360  MachineFunction *F = MBB->getParent();
11361  MachineBasicBlock *thisMBB = MBB;
11362  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11363  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11364  F->insert(MBBIter, newMBB);
11365  F->insert(MBBIter, nextMBB);
11366
11367  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11368  nextMBB->splice(nextMBB->begin(), thisMBB,
11369                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11370                  thisMBB->end());
11371  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11372
11373  // Update thisMBB to fall through to newMBB
11374  thisMBB->addSuccessor(newMBB);
11375
11376  // newMBB jumps to itself and fall through to nextMBB
11377  newMBB->addSuccessor(nextMBB);
11378  newMBB->addSuccessor(newMBB);
11379
11380  DebugLoc dl = bInstr->getDebugLoc();
11381  // Insert instructions into newMBB based on incoming instruction
11382  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11383  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11384         "unexpected number of operands");
11385  MachineOperand& dest1Oper = bInstr->getOperand(0);
11386  MachineOperand& dest2Oper = bInstr->getOperand(1);
11387  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11388  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11389    argOpers[i] = &bInstr->getOperand(i+2);
11390
11391    // We use some of the operands multiple times, so conservatively just
11392    // clear any kill flags that might be present.
11393    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11394      argOpers[i]->setIsKill(false);
11395  }
11396
11397  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11398  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11399
11400  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11401  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11402  for (int i=0; i <= lastAddrIndx; ++i)
11403    (*MIB).addOperand(*argOpers[i]);
11404  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11405  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11406  // add 4 to displacement.
11407  for (int i=0; i <= lastAddrIndx-2; ++i)
11408    (*MIB).addOperand(*argOpers[i]);
11409  MachineOperand newOp3 = *(argOpers[3]);
11410  if (newOp3.isImm())
11411    newOp3.setImm(newOp3.getImm()+4);
11412  else
11413    newOp3.setOffset(newOp3.getOffset()+4);
11414  (*MIB).addOperand(newOp3);
11415  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11416
11417  // t3/4 are defined later, at the bottom of the loop
11418  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11419  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11420  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11421    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11422  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11423    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11424
11425  // The subsequent operations should be using the destination registers of
11426  //the PHI instructions.
11427  if (invSrc) {
11428    t1 = F->getRegInfo().createVirtualRegister(RC);
11429    t2 = F->getRegInfo().createVirtualRegister(RC);
11430    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11431    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11432  } else {
11433    t1 = dest1Oper.getReg();
11434    t2 = dest2Oper.getReg();
11435  }
11436
11437  int valArgIndx = lastAddrIndx + 1;
11438  assert((argOpers[valArgIndx]->isReg() ||
11439          argOpers[valArgIndx]->isImm()) &&
11440         "invalid operand");
11441  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11442  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11443  if (argOpers[valArgIndx]->isReg())
11444    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11445  else
11446    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11447  if (regOpcL != X86::MOV32rr)
11448    MIB.addReg(t1);
11449  (*MIB).addOperand(*argOpers[valArgIndx]);
11450  assert(argOpers[valArgIndx + 1]->isReg() ==
11451         argOpers[valArgIndx]->isReg());
11452  assert(argOpers[valArgIndx + 1]->isImm() ==
11453         argOpers[valArgIndx]->isImm());
11454  if (argOpers[valArgIndx + 1]->isReg())
11455    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11456  else
11457    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11458  if (regOpcH != X86::MOV32rr)
11459    MIB.addReg(t2);
11460  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11461
11462  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11463  MIB.addReg(t1);
11464  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11465  MIB.addReg(t2);
11466
11467  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11468  MIB.addReg(t5);
11469  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11470  MIB.addReg(t6);
11471
11472  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11473  for (int i=0; i <= lastAddrIndx; ++i)
11474    (*MIB).addOperand(*argOpers[i]);
11475
11476  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11477  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11478                    bInstr->memoperands_end());
11479
11480  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11481  MIB.addReg(X86::EAX);
11482  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11483  MIB.addReg(X86::EDX);
11484
11485  // insert branch
11486  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11487
11488  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11489  return nextMBB;
11490}
11491
11492// private utility function
11493MachineBasicBlock *
11494X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11495                                                      MachineBasicBlock *MBB,
11496                                                      unsigned cmovOpc) const {
11497  // For the atomic min/max operator, we generate
11498  //   thisMBB:
11499  //   newMBB:
11500  //     ld t1 = [min/max.addr]
11501  //     mov t2 = [min/max.val]
11502  //     cmp  t1, t2
11503  //     cmov[cond] t2 = t1
11504  //     mov EAX = t1
11505  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11506  //     bz   newMBB
11507  //     fallthrough -->nextMBB
11508  //
11509  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11510  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11511  MachineFunction::iterator MBBIter = MBB;
11512  ++MBBIter;
11513
11514  /// First build the CFG
11515  MachineFunction *F = MBB->getParent();
11516  MachineBasicBlock *thisMBB = MBB;
11517  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11518  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11519  F->insert(MBBIter, newMBB);
11520  F->insert(MBBIter, nextMBB);
11521
11522  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11523  nextMBB->splice(nextMBB->begin(), thisMBB,
11524                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11525                  thisMBB->end());
11526  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11527
11528  // Update thisMBB to fall through to newMBB
11529  thisMBB->addSuccessor(newMBB);
11530
11531  // newMBB jumps to newMBB and fall through to nextMBB
11532  newMBB->addSuccessor(nextMBB);
11533  newMBB->addSuccessor(newMBB);
11534
11535  DebugLoc dl = mInstr->getDebugLoc();
11536  // Insert instructions into newMBB based on incoming instruction
11537  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11538         "unexpected number of operands");
11539  MachineOperand& destOper = mInstr->getOperand(0);
11540  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11541  int numArgs = mInstr->getNumOperands() - 1;
11542  for (int i=0; i < numArgs; ++i)
11543    argOpers[i] = &mInstr->getOperand(i+1);
11544
11545  // x86 address has 4 operands: base, index, scale, and displacement
11546  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11547  int valArgIndx = lastAddrIndx + 1;
11548
11549  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11550  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11551  for (int i=0; i <= lastAddrIndx; ++i)
11552    (*MIB).addOperand(*argOpers[i]);
11553
11554  // We only support register and immediate values
11555  assert((argOpers[valArgIndx]->isReg() ||
11556          argOpers[valArgIndx]->isImm()) &&
11557         "invalid operand");
11558
11559  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11560  if (argOpers[valArgIndx]->isReg())
11561    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11562  else
11563    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11564  (*MIB).addOperand(*argOpers[valArgIndx]);
11565
11566  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11567  MIB.addReg(t1);
11568
11569  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11570  MIB.addReg(t1);
11571  MIB.addReg(t2);
11572
11573  // Generate movc
11574  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11575  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11576  MIB.addReg(t2);
11577  MIB.addReg(t1);
11578
11579  // Cmp and exchange if none has modified the memory location
11580  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11581  for (int i=0; i <= lastAddrIndx; ++i)
11582    (*MIB).addOperand(*argOpers[i]);
11583  MIB.addReg(t3);
11584  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11585  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11586                    mInstr->memoperands_end());
11587
11588  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11589  MIB.addReg(X86::EAX);
11590
11591  // insert branch
11592  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11593
11594  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11595  return nextMBB;
11596}
11597
11598// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11599// or XMM0_V32I8 in AVX all of this code can be replaced with that
11600// in the .td file.
11601MachineBasicBlock *
11602X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11603                            unsigned numArgs, bool memArg) const {
11604  assert(Subtarget->hasSSE42() &&
11605         "Target must have SSE4.2 or AVX features enabled");
11606
11607  DebugLoc dl = MI->getDebugLoc();
11608  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11609  unsigned Opc;
11610  if (!Subtarget->hasAVX()) {
11611    if (memArg)
11612      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11613    else
11614      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11615  } else {
11616    if (memArg)
11617      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11618    else
11619      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11620  }
11621
11622  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11623  for (unsigned i = 0; i < numArgs; ++i) {
11624    MachineOperand &Op = MI->getOperand(i+1);
11625    if (!(Op.isReg() && Op.isImplicit()))
11626      MIB.addOperand(Op);
11627  }
11628  BuildMI(*BB, MI, dl,
11629    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11630             MI->getOperand(0).getReg())
11631    .addReg(X86::XMM0);
11632
11633  MI->eraseFromParent();
11634  return BB;
11635}
11636
11637MachineBasicBlock *
11638X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11639  DebugLoc dl = MI->getDebugLoc();
11640  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11641
11642  // Address into RAX/EAX, other two args into ECX, EDX.
11643  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11644  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11645  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11646  for (int i = 0; i < X86::AddrNumOperands; ++i)
11647    MIB.addOperand(MI->getOperand(i));
11648
11649  unsigned ValOps = X86::AddrNumOperands;
11650  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11651    .addReg(MI->getOperand(ValOps).getReg());
11652  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11653    .addReg(MI->getOperand(ValOps+1).getReg());
11654
11655  // The instruction doesn't actually take any operands though.
11656  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11657
11658  MI->eraseFromParent(); // The pseudo is gone now.
11659  return BB;
11660}
11661
11662MachineBasicBlock *
11663X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11664  DebugLoc dl = MI->getDebugLoc();
11665  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11666
11667  // First arg in ECX, the second in EAX.
11668  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11669    .addReg(MI->getOperand(0).getReg());
11670  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11671    .addReg(MI->getOperand(1).getReg());
11672
11673  // The instruction doesn't actually take any operands though.
11674  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11675
11676  MI->eraseFromParent(); // The pseudo is gone now.
11677  return BB;
11678}
11679
11680MachineBasicBlock *
11681X86TargetLowering::EmitVAARG64WithCustomInserter(
11682                   MachineInstr *MI,
11683                   MachineBasicBlock *MBB) const {
11684  // Emit va_arg instruction on X86-64.
11685
11686  // Operands to this pseudo-instruction:
11687  // 0  ) Output        : destination address (reg)
11688  // 1-5) Input         : va_list address (addr, i64mem)
11689  // 6  ) ArgSize       : Size (in bytes) of vararg type
11690  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11691  // 8  ) Align         : Alignment of type
11692  // 9  ) EFLAGS (implicit-def)
11693
11694  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11695  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11696
11697  unsigned DestReg = MI->getOperand(0).getReg();
11698  MachineOperand &Base = MI->getOperand(1);
11699  MachineOperand &Scale = MI->getOperand(2);
11700  MachineOperand &Index = MI->getOperand(3);
11701  MachineOperand &Disp = MI->getOperand(4);
11702  MachineOperand &Segment = MI->getOperand(5);
11703  unsigned ArgSize = MI->getOperand(6).getImm();
11704  unsigned ArgMode = MI->getOperand(7).getImm();
11705  unsigned Align = MI->getOperand(8).getImm();
11706
11707  // Memory Reference
11708  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11709  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11710  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11711
11712  // Machine Information
11713  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11714  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11715  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11716  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11717  DebugLoc DL = MI->getDebugLoc();
11718
11719  // struct va_list {
11720  //   i32   gp_offset
11721  //   i32   fp_offset
11722  //   i64   overflow_area (address)
11723  //   i64   reg_save_area (address)
11724  // }
11725  // sizeof(va_list) = 24
11726  // alignment(va_list) = 8
11727
11728  unsigned TotalNumIntRegs = 6;
11729  unsigned TotalNumXMMRegs = 8;
11730  bool UseGPOffset = (ArgMode == 1);
11731  bool UseFPOffset = (ArgMode == 2);
11732  unsigned MaxOffset = TotalNumIntRegs * 8 +
11733                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11734
11735  /* Align ArgSize to a multiple of 8 */
11736  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11737  bool NeedsAlign = (Align > 8);
11738
11739  MachineBasicBlock *thisMBB = MBB;
11740  MachineBasicBlock *overflowMBB;
11741  MachineBasicBlock *offsetMBB;
11742  MachineBasicBlock *endMBB;
11743
11744  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11745  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11746  unsigned OffsetReg = 0;
11747
11748  if (!UseGPOffset && !UseFPOffset) {
11749    // If we only pull from the overflow region, we don't create a branch.
11750    // We don't need to alter control flow.
11751    OffsetDestReg = 0; // unused
11752    OverflowDestReg = DestReg;
11753
11754    offsetMBB = NULL;
11755    overflowMBB = thisMBB;
11756    endMBB = thisMBB;
11757  } else {
11758    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11759    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11760    // If not, pull from overflow_area. (branch to overflowMBB)
11761    //
11762    //       thisMBB
11763    //         |     .
11764    //         |        .
11765    //     offsetMBB   overflowMBB
11766    //         |        .
11767    //         |     .
11768    //        endMBB
11769
11770    // Registers for the PHI in endMBB
11771    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11772    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11773
11774    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11775    MachineFunction *MF = MBB->getParent();
11776    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11777    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11778    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11779
11780    MachineFunction::iterator MBBIter = MBB;
11781    ++MBBIter;
11782
11783    // Insert the new basic blocks
11784    MF->insert(MBBIter, offsetMBB);
11785    MF->insert(MBBIter, overflowMBB);
11786    MF->insert(MBBIter, endMBB);
11787
11788    // Transfer the remainder of MBB and its successor edges to endMBB.
11789    endMBB->splice(endMBB->begin(), thisMBB,
11790                    llvm::next(MachineBasicBlock::iterator(MI)),
11791                    thisMBB->end());
11792    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11793
11794    // Make offsetMBB and overflowMBB successors of thisMBB
11795    thisMBB->addSuccessor(offsetMBB);
11796    thisMBB->addSuccessor(overflowMBB);
11797
11798    // endMBB is a successor of both offsetMBB and overflowMBB
11799    offsetMBB->addSuccessor(endMBB);
11800    overflowMBB->addSuccessor(endMBB);
11801
11802    // Load the offset value into a register
11803    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11804    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11805      .addOperand(Base)
11806      .addOperand(Scale)
11807      .addOperand(Index)
11808      .addDisp(Disp, UseFPOffset ? 4 : 0)
11809      .addOperand(Segment)
11810      .setMemRefs(MMOBegin, MMOEnd);
11811
11812    // Check if there is enough room left to pull this argument.
11813    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11814      .addReg(OffsetReg)
11815      .addImm(MaxOffset + 8 - ArgSizeA8);
11816
11817    // Branch to "overflowMBB" if offset >= max
11818    // Fall through to "offsetMBB" otherwise
11819    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11820      .addMBB(overflowMBB);
11821  }
11822
11823  // In offsetMBB, emit code to use the reg_save_area.
11824  if (offsetMBB) {
11825    assert(OffsetReg != 0);
11826
11827    // Read the reg_save_area address.
11828    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11829    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11830      .addOperand(Base)
11831      .addOperand(Scale)
11832      .addOperand(Index)
11833      .addDisp(Disp, 16)
11834      .addOperand(Segment)
11835      .setMemRefs(MMOBegin, MMOEnd);
11836
11837    // Zero-extend the offset
11838    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11839      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11840        .addImm(0)
11841        .addReg(OffsetReg)
11842        .addImm(X86::sub_32bit);
11843
11844    // Add the offset to the reg_save_area to get the final address.
11845    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11846      .addReg(OffsetReg64)
11847      .addReg(RegSaveReg);
11848
11849    // Compute the offset for the next argument
11850    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11851    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11852      .addReg(OffsetReg)
11853      .addImm(UseFPOffset ? 16 : 8);
11854
11855    // Store it back into the va_list.
11856    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11857      .addOperand(Base)
11858      .addOperand(Scale)
11859      .addOperand(Index)
11860      .addDisp(Disp, UseFPOffset ? 4 : 0)
11861      .addOperand(Segment)
11862      .addReg(NextOffsetReg)
11863      .setMemRefs(MMOBegin, MMOEnd);
11864
11865    // Jump to endMBB
11866    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11867      .addMBB(endMBB);
11868  }
11869
11870  //
11871  // Emit code to use overflow area
11872  //
11873
11874  // Load the overflow_area address into a register.
11875  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11876  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11877    .addOperand(Base)
11878    .addOperand(Scale)
11879    .addOperand(Index)
11880    .addDisp(Disp, 8)
11881    .addOperand(Segment)
11882    .setMemRefs(MMOBegin, MMOEnd);
11883
11884  // If we need to align it, do so. Otherwise, just copy the address
11885  // to OverflowDestReg.
11886  if (NeedsAlign) {
11887    // Align the overflow address
11888    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11889    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11890
11891    // aligned_addr = (addr + (align-1)) & ~(align-1)
11892    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11893      .addReg(OverflowAddrReg)
11894      .addImm(Align-1);
11895
11896    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11897      .addReg(TmpReg)
11898      .addImm(~(uint64_t)(Align-1));
11899  } else {
11900    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11901      .addReg(OverflowAddrReg);
11902  }
11903
11904  // Compute the next overflow address after this argument.
11905  // (the overflow address should be kept 8-byte aligned)
11906  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11907  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11908    .addReg(OverflowDestReg)
11909    .addImm(ArgSizeA8);
11910
11911  // Store the new overflow address.
11912  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11913    .addOperand(Base)
11914    .addOperand(Scale)
11915    .addOperand(Index)
11916    .addDisp(Disp, 8)
11917    .addOperand(Segment)
11918    .addReg(NextAddrReg)
11919    .setMemRefs(MMOBegin, MMOEnd);
11920
11921  // If we branched, emit the PHI to the front of endMBB.
11922  if (offsetMBB) {
11923    BuildMI(*endMBB, endMBB->begin(), DL,
11924            TII->get(X86::PHI), DestReg)
11925      .addReg(OffsetDestReg).addMBB(offsetMBB)
11926      .addReg(OverflowDestReg).addMBB(overflowMBB);
11927  }
11928
11929  // Erase the pseudo instruction
11930  MI->eraseFromParent();
11931
11932  return endMBB;
11933}
11934
11935MachineBasicBlock *
11936X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11937                                                 MachineInstr *MI,
11938                                                 MachineBasicBlock *MBB) const {
11939  // Emit code to save XMM registers to the stack. The ABI says that the
11940  // number of registers to save is given in %al, so it's theoretically
11941  // possible to do an indirect jump trick to avoid saving all of them,
11942  // however this code takes a simpler approach and just executes all
11943  // of the stores if %al is non-zero. It's less code, and it's probably
11944  // easier on the hardware branch predictor, and stores aren't all that
11945  // expensive anyway.
11946
11947  // Create the new basic blocks. One block contains all the XMM stores,
11948  // and one block is the final destination regardless of whether any
11949  // stores were performed.
11950  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11951  MachineFunction *F = MBB->getParent();
11952  MachineFunction::iterator MBBIter = MBB;
11953  ++MBBIter;
11954  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11955  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11956  F->insert(MBBIter, XMMSaveMBB);
11957  F->insert(MBBIter, EndMBB);
11958
11959  // Transfer the remainder of MBB and its successor edges to EndMBB.
11960  EndMBB->splice(EndMBB->begin(), MBB,
11961                 llvm::next(MachineBasicBlock::iterator(MI)),
11962                 MBB->end());
11963  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11964
11965  // The original block will now fall through to the XMM save block.
11966  MBB->addSuccessor(XMMSaveMBB);
11967  // The XMMSaveMBB will fall through to the end block.
11968  XMMSaveMBB->addSuccessor(EndMBB);
11969
11970  // Now add the instructions.
11971  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11972  DebugLoc DL = MI->getDebugLoc();
11973
11974  unsigned CountReg = MI->getOperand(0).getReg();
11975  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11976  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11977
11978  if (!Subtarget->isTargetWin64()) {
11979    // If %al is 0, branch around the XMM save block.
11980    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11981    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11982    MBB->addSuccessor(EndMBB);
11983  }
11984
11985  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11986  // In the XMM save block, save all the XMM argument registers.
11987  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11988    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11989    MachineMemOperand *MMO =
11990      F->getMachineMemOperand(
11991          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11992        MachineMemOperand::MOStore,
11993        /*Size=*/16, /*Align=*/16);
11994    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11995      .addFrameIndex(RegSaveFrameIndex)
11996      .addImm(/*Scale=*/1)
11997      .addReg(/*IndexReg=*/0)
11998      .addImm(/*Disp=*/Offset)
11999      .addReg(/*Segment=*/0)
12000      .addReg(MI->getOperand(i).getReg())
12001      .addMemOperand(MMO);
12002  }
12003
12004  MI->eraseFromParent();   // The pseudo instruction is gone now.
12005
12006  return EndMBB;
12007}
12008
12009// The EFLAGS operand of SelectItr might be missing a kill marker
12010// because there were multiple uses of EFLAGS, and ISel didn't know
12011// which to mark. Figure out whether SelectItr should have had a
12012// kill marker, and set it if it should. Returns the correct kill
12013// marker value.
12014static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12015                                     MachineBasicBlock* BB,
12016                                     const TargetRegisterInfo* TRI) {
12017  // Scan forward through BB for a use/def of EFLAGS.
12018  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12019  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12020    const MachineInstr& mi = *miI;
12021    if (mi.readsRegister(X86::EFLAGS))
12022      return false;
12023    if (mi.definesRegister(X86::EFLAGS))
12024      break; // Should have kill-flag - update below.
12025  }
12026
12027  // If we hit the end of the block, check whether EFLAGS is live into a
12028  // successor.
12029  if (miI == BB->end()) {
12030    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12031                                          sEnd = BB->succ_end();
12032         sItr != sEnd; ++sItr) {
12033      MachineBasicBlock* succ = *sItr;
12034      if (succ->isLiveIn(X86::EFLAGS))
12035        return false;
12036    }
12037  }
12038
12039  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12040  // out. SelectMI should have a kill flag on EFLAGS.
12041  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12042  return true;
12043}
12044
12045MachineBasicBlock *
12046X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12047                                     MachineBasicBlock *BB) const {
12048  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12049  DebugLoc DL = MI->getDebugLoc();
12050
12051  // To "insert" a SELECT_CC instruction, we actually have to insert the
12052  // diamond control-flow pattern.  The incoming instruction knows the
12053  // destination vreg to set, the condition code register to branch on, the
12054  // true/false values to select between, and a branch opcode to use.
12055  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12056  MachineFunction::iterator It = BB;
12057  ++It;
12058
12059  //  thisMBB:
12060  //  ...
12061  //   TrueVal = ...
12062  //   cmpTY ccX, r1, r2
12063  //   bCC copy1MBB
12064  //   fallthrough --> copy0MBB
12065  MachineBasicBlock *thisMBB = BB;
12066  MachineFunction *F = BB->getParent();
12067  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12068  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12069  F->insert(It, copy0MBB);
12070  F->insert(It, sinkMBB);
12071
12072  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12073  // live into the sink and copy blocks.
12074  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12075  if (!MI->killsRegister(X86::EFLAGS) &&
12076      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12077    copy0MBB->addLiveIn(X86::EFLAGS);
12078    sinkMBB->addLiveIn(X86::EFLAGS);
12079  }
12080
12081  // Transfer the remainder of BB and its successor edges to sinkMBB.
12082  sinkMBB->splice(sinkMBB->begin(), BB,
12083                  llvm::next(MachineBasicBlock::iterator(MI)),
12084                  BB->end());
12085  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12086
12087  // Add the true and fallthrough blocks as its successors.
12088  BB->addSuccessor(copy0MBB);
12089  BB->addSuccessor(sinkMBB);
12090
12091  // Create the conditional branch instruction.
12092  unsigned Opc =
12093    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12094  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12095
12096  //  copy0MBB:
12097  //   %FalseValue = ...
12098  //   # fallthrough to sinkMBB
12099  copy0MBB->addSuccessor(sinkMBB);
12100
12101  //  sinkMBB:
12102  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12103  //  ...
12104  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12105          TII->get(X86::PHI), MI->getOperand(0).getReg())
12106    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12107    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12108
12109  MI->eraseFromParent();   // The pseudo instruction is gone now.
12110  return sinkMBB;
12111}
12112
12113MachineBasicBlock *
12114X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12115                                        bool Is64Bit) const {
12116  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12117  DebugLoc DL = MI->getDebugLoc();
12118  MachineFunction *MF = BB->getParent();
12119  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12120
12121  assert(getTargetMachine().Options.EnableSegmentedStacks);
12122
12123  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12124  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12125
12126  // BB:
12127  //  ... [Till the alloca]
12128  // If stacklet is not large enough, jump to mallocMBB
12129  //
12130  // bumpMBB:
12131  //  Allocate by subtracting from RSP
12132  //  Jump to continueMBB
12133  //
12134  // mallocMBB:
12135  //  Allocate by call to runtime
12136  //
12137  // continueMBB:
12138  //  ...
12139  //  [rest of original BB]
12140  //
12141
12142  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12143  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12144  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12145
12146  MachineRegisterInfo &MRI = MF->getRegInfo();
12147  const TargetRegisterClass *AddrRegClass =
12148    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12149
12150  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12151    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12152    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12153    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12154    sizeVReg = MI->getOperand(1).getReg(),
12155    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12156
12157  MachineFunction::iterator MBBIter = BB;
12158  ++MBBIter;
12159
12160  MF->insert(MBBIter, bumpMBB);
12161  MF->insert(MBBIter, mallocMBB);
12162  MF->insert(MBBIter, continueMBB);
12163
12164  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12165                      (MachineBasicBlock::iterator(MI)), BB->end());
12166  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12167
12168  // Add code to the main basic block to check if the stack limit has been hit,
12169  // and if so, jump to mallocMBB otherwise to bumpMBB.
12170  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12171  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12172    .addReg(tmpSPVReg).addReg(sizeVReg);
12173  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12174    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12175    .addReg(SPLimitVReg);
12176  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12177
12178  // bumpMBB simply decreases the stack pointer, since we know the current
12179  // stacklet has enough space.
12180  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12181    .addReg(SPLimitVReg);
12182  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12183    .addReg(SPLimitVReg);
12184  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12185
12186  // Calls into a routine in libgcc to allocate more space from the heap.
12187  const uint32_t *RegMask =
12188    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12189  if (Is64Bit) {
12190    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12191      .addReg(sizeVReg);
12192    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12193      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12194      .addRegMask(RegMask)
12195      .addReg(X86::RAX, RegState::ImplicitDefine);
12196  } else {
12197    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12198      .addImm(12);
12199    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12200    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12201      .addExternalSymbol("__morestack_allocate_stack_space")
12202      .addRegMask(RegMask)
12203      .addReg(X86::EAX, RegState::ImplicitDefine);
12204  }
12205
12206  if (!Is64Bit)
12207    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12208      .addImm(16);
12209
12210  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12211    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12212  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12213
12214  // Set up the CFG correctly.
12215  BB->addSuccessor(bumpMBB);
12216  BB->addSuccessor(mallocMBB);
12217  mallocMBB->addSuccessor(continueMBB);
12218  bumpMBB->addSuccessor(continueMBB);
12219
12220  // Take care of the PHI nodes.
12221  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12222          MI->getOperand(0).getReg())
12223    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12224    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12225
12226  // Delete the original pseudo instruction.
12227  MI->eraseFromParent();
12228
12229  // And we're done.
12230  return continueMBB;
12231}
12232
12233MachineBasicBlock *
12234X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12235                                          MachineBasicBlock *BB) const {
12236  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12237  DebugLoc DL = MI->getDebugLoc();
12238
12239  assert(!Subtarget->isTargetEnvMacho());
12240
12241  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12242  // non-trivial part is impdef of ESP.
12243
12244  if (Subtarget->isTargetWin64()) {
12245    if (Subtarget->isTargetCygMing()) {
12246      // ___chkstk(Mingw64):
12247      // Clobbers R10, R11, RAX and EFLAGS.
12248      // Updates RSP.
12249      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12250        .addExternalSymbol("___chkstk")
12251        .addReg(X86::RAX, RegState::Implicit)
12252        .addReg(X86::RSP, RegState::Implicit)
12253        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12254        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12255        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12256    } else {
12257      // __chkstk(MSVCRT): does not update stack pointer.
12258      // Clobbers R10, R11 and EFLAGS.
12259      // FIXME: RAX(allocated size) might be reused and not killed.
12260      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12261        .addExternalSymbol("__chkstk")
12262        .addReg(X86::RAX, RegState::Implicit)
12263        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12264      // RAX has the offset to subtracted from RSP.
12265      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12266        .addReg(X86::RSP)
12267        .addReg(X86::RAX);
12268    }
12269  } else {
12270    const char *StackProbeSymbol =
12271      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12272
12273    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12274      .addExternalSymbol(StackProbeSymbol)
12275      .addReg(X86::EAX, RegState::Implicit)
12276      .addReg(X86::ESP, RegState::Implicit)
12277      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12278      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12279      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12280  }
12281
12282  MI->eraseFromParent();   // The pseudo instruction is gone now.
12283  return BB;
12284}
12285
12286MachineBasicBlock *
12287X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12288                                      MachineBasicBlock *BB) const {
12289  // This is pretty easy.  We're taking the value that we received from
12290  // our load from the relocation, sticking it in either RDI (x86-64)
12291  // or EAX and doing an indirect call.  The return value will then
12292  // be in the normal return register.
12293  const X86InstrInfo *TII
12294    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12295  DebugLoc DL = MI->getDebugLoc();
12296  MachineFunction *F = BB->getParent();
12297
12298  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12299  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12300
12301  // Get a register mask for the lowered call.
12302  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12303  // proper register mask.
12304  const uint32_t *RegMask =
12305    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12306  if (Subtarget->is64Bit()) {
12307    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12308                                      TII->get(X86::MOV64rm), X86::RDI)
12309    .addReg(X86::RIP)
12310    .addImm(0).addReg(0)
12311    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12312                      MI->getOperand(3).getTargetFlags())
12313    .addReg(0);
12314    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12315    addDirectMem(MIB, X86::RDI);
12316    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12317  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12318    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12319                                      TII->get(X86::MOV32rm), X86::EAX)
12320    .addReg(0)
12321    .addImm(0).addReg(0)
12322    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12323                      MI->getOperand(3).getTargetFlags())
12324    .addReg(0);
12325    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12326    addDirectMem(MIB, X86::EAX);
12327    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12328  } else {
12329    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12330                                      TII->get(X86::MOV32rm), X86::EAX)
12331    .addReg(TII->getGlobalBaseReg(F))
12332    .addImm(0).addReg(0)
12333    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12334                      MI->getOperand(3).getTargetFlags())
12335    .addReg(0);
12336    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12337    addDirectMem(MIB, X86::EAX);
12338    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12339  }
12340
12341  MI->eraseFromParent(); // The pseudo instruction is gone now.
12342  return BB;
12343}
12344
12345MachineBasicBlock *
12346X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12347                                               MachineBasicBlock *BB) const {
12348  switch (MI->getOpcode()) {
12349  default: llvm_unreachable("Unexpected instr type to insert");
12350  case X86::TAILJMPd64:
12351  case X86::TAILJMPr64:
12352  case X86::TAILJMPm64:
12353    llvm_unreachable("TAILJMP64 would not be touched here.");
12354  case X86::TCRETURNdi64:
12355  case X86::TCRETURNri64:
12356  case X86::TCRETURNmi64:
12357    return BB;
12358  case X86::WIN_ALLOCA:
12359    return EmitLoweredWinAlloca(MI, BB);
12360  case X86::SEG_ALLOCA_32:
12361    return EmitLoweredSegAlloca(MI, BB, false);
12362  case X86::SEG_ALLOCA_64:
12363    return EmitLoweredSegAlloca(MI, BB, true);
12364  case X86::TLSCall_32:
12365  case X86::TLSCall_64:
12366    return EmitLoweredTLSCall(MI, BB);
12367  case X86::CMOV_GR8:
12368  case X86::CMOV_FR32:
12369  case X86::CMOV_FR64:
12370  case X86::CMOV_V4F32:
12371  case X86::CMOV_V2F64:
12372  case X86::CMOV_V2I64:
12373  case X86::CMOV_V8F32:
12374  case X86::CMOV_V4F64:
12375  case X86::CMOV_V4I64:
12376  case X86::CMOV_GR16:
12377  case X86::CMOV_GR32:
12378  case X86::CMOV_RFP32:
12379  case X86::CMOV_RFP64:
12380  case X86::CMOV_RFP80:
12381    return EmitLoweredSelect(MI, BB);
12382
12383  case X86::FP32_TO_INT16_IN_MEM:
12384  case X86::FP32_TO_INT32_IN_MEM:
12385  case X86::FP32_TO_INT64_IN_MEM:
12386  case X86::FP64_TO_INT16_IN_MEM:
12387  case X86::FP64_TO_INT32_IN_MEM:
12388  case X86::FP64_TO_INT64_IN_MEM:
12389  case X86::FP80_TO_INT16_IN_MEM:
12390  case X86::FP80_TO_INT32_IN_MEM:
12391  case X86::FP80_TO_INT64_IN_MEM: {
12392    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12393    DebugLoc DL = MI->getDebugLoc();
12394
12395    // Change the floating point control register to use "round towards zero"
12396    // mode when truncating to an integer value.
12397    MachineFunction *F = BB->getParent();
12398    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12399    addFrameReference(BuildMI(*BB, MI, DL,
12400                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12401
12402    // Load the old value of the high byte of the control word...
12403    unsigned OldCW =
12404      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12405    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12406                      CWFrameIdx);
12407
12408    // Set the high part to be round to zero...
12409    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12410      .addImm(0xC7F);
12411
12412    // Reload the modified control word now...
12413    addFrameReference(BuildMI(*BB, MI, DL,
12414                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12415
12416    // Restore the memory image of control word to original value
12417    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12418      .addReg(OldCW);
12419
12420    // Get the X86 opcode to use.
12421    unsigned Opc;
12422    switch (MI->getOpcode()) {
12423    default: llvm_unreachable("illegal opcode!");
12424    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12425    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12426    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12427    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12428    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12429    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12430    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12431    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12432    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12433    }
12434
12435    X86AddressMode AM;
12436    MachineOperand &Op = MI->getOperand(0);
12437    if (Op.isReg()) {
12438      AM.BaseType = X86AddressMode::RegBase;
12439      AM.Base.Reg = Op.getReg();
12440    } else {
12441      AM.BaseType = X86AddressMode::FrameIndexBase;
12442      AM.Base.FrameIndex = Op.getIndex();
12443    }
12444    Op = MI->getOperand(1);
12445    if (Op.isImm())
12446      AM.Scale = Op.getImm();
12447    Op = MI->getOperand(2);
12448    if (Op.isImm())
12449      AM.IndexReg = Op.getImm();
12450    Op = MI->getOperand(3);
12451    if (Op.isGlobal()) {
12452      AM.GV = Op.getGlobal();
12453    } else {
12454      AM.Disp = Op.getImm();
12455    }
12456    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12457                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12458
12459    // Reload the original control word now.
12460    addFrameReference(BuildMI(*BB, MI, DL,
12461                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12462
12463    MI->eraseFromParent();   // The pseudo instruction is gone now.
12464    return BB;
12465  }
12466    // String/text processing lowering.
12467  case X86::PCMPISTRM128REG:
12468  case X86::VPCMPISTRM128REG:
12469    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12470  case X86::PCMPISTRM128MEM:
12471  case X86::VPCMPISTRM128MEM:
12472    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12473  case X86::PCMPESTRM128REG:
12474  case X86::VPCMPESTRM128REG:
12475    return EmitPCMP(MI, BB, 5, false /* in mem */);
12476  case X86::PCMPESTRM128MEM:
12477  case X86::VPCMPESTRM128MEM:
12478    return EmitPCMP(MI, BB, 5, true /* in mem */);
12479
12480    // Thread synchronization.
12481  case X86::MONITOR:
12482    return EmitMonitor(MI, BB);
12483  case X86::MWAIT:
12484    return EmitMwait(MI, BB);
12485
12486    // Atomic Lowering.
12487  case X86::ATOMAND32:
12488    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12489                                               X86::AND32ri, X86::MOV32rm,
12490                                               X86::LCMPXCHG32,
12491                                               X86::NOT32r, X86::EAX,
12492                                               X86::GR32RegisterClass);
12493  case X86::ATOMOR32:
12494    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12495                                               X86::OR32ri, X86::MOV32rm,
12496                                               X86::LCMPXCHG32,
12497                                               X86::NOT32r, X86::EAX,
12498                                               X86::GR32RegisterClass);
12499  case X86::ATOMXOR32:
12500    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12501                                               X86::XOR32ri, X86::MOV32rm,
12502                                               X86::LCMPXCHG32,
12503                                               X86::NOT32r, X86::EAX,
12504                                               X86::GR32RegisterClass);
12505  case X86::ATOMNAND32:
12506    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12507                                               X86::AND32ri, X86::MOV32rm,
12508                                               X86::LCMPXCHG32,
12509                                               X86::NOT32r, X86::EAX,
12510                                               X86::GR32RegisterClass, true);
12511  case X86::ATOMMIN32:
12512    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12513  case X86::ATOMMAX32:
12514    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12515  case X86::ATOMUMIN32:
12516    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12517  case X86::ATOMUMAX32:
12518    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12519
12520  case X86::ATOMAND16:
12521    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12522                                               X86::AND16ri, X86::MOV16rm,
12523                                               X86::LCMPXCHG16,
12524                                               X86::NOT16r, X86::AX,
12525                                               X86::GR16RegisterClass);
12526  case X86::ATOMOR16:
12527    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12528                                               X86::OR16ri, X86::MOV16rm,
12529                                               X86::LCMPXCHG16,
12530                                               X86::NOT16r, X86::AX,
12531                                               X86::GR16RegisterClass);
12532  case X86::ATOMXOR16:
12533    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12534                                               X86::XOR16ri, X86::MOV16rm,
12535                                               X86::LCMPXCHG16,
12536                                               X86::NOT16r, X86::AX,
12537                                               X86::GR16RegisterClass);
12538  case X86::ATOMNAND16:
12539    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12540                                               X86::AND16ri, X86::MOV16rm,
12541                                               X86::LCMPXCHG16,
12542                                               X86::NOT16r, X86::AX,
12543                                               X86::GR16RegisterClass, true);
12544  case X86::ATOMMIN16:
12545    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12546  case X86::ATOMMAX16:
12547    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12548  case X86::ATOMUMIN16:
12549    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12550  case X86::ATOMUMAX16:
12551    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12552
12553  case X86::ATOMAND8:
12554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12555                                               X86::AND8ri, X86::MOV8rm,
12556                                               X86::LCMPXCHG8,
12557                                               X86::NOT8r, X86::AL,
12558                                               X86::GR8RegisterClass);
12559  case X86::ATOMOR8:
12560    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12561                                               X86::OR8ri, X86::MOV8rm,
12562                                               X86::LCMPXCHG8,
12563                                               X86::NOT8r, X86::AL,
12564                                               X86::GR8RegisterClass);
12565  case X86::ATOMXOR8:
12566    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12567                                               X86::XOR8ri, X86::MOV8rm,
12568                                               X86::LCMPXCHG8,
12569                                               X86::NOT8r, X86::AL,
12570                                               X86::GR8RegisterClass);
12571  case X86::ATOMNAND8:
12572    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12573                                               X86::AND8ri, X86::MOV8rm,
12574                                               X86::LCMPXCHG8,
12575                                               X86::NOT8r, X86::AL,
12576                                               X86::GR8RegisterClass, true);
12577  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12578  // This group is for 64-bit host.
12579  case X86::ATOMAND64:
12580    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12581                                               X86::AND64ri32, X86::MOV64rm,
12582                                               X86::LCMPXCHG64,
12583                                               X86::NOT64r, X86::RAX,
12584                                               X86::GR64RegisterClass);
12585  case X86::ATOMOR64:
12586    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12587                                               X86::OR64ri32, X86::MOV64rm,
12588                                               X86::LCMPXCHG64,
12589                                               X86::NOT64r, X86::RAX,
12590                                               X86::GR64RegisterClass);
12591  case X86::ATOMXOR64:
12592    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12593                                               X86::XOR64ri32, X86::MOV64rm,
12594                                               X86::LCMPXCHG64,
12595                                               X86::NOT64r, X86::RAX,
12596                                               X86::GR64RegisterClass);
12597  case X86::ATOMNAND64:
12598    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12599                                               X86::AND64ri32, X86::MOV64rm,
12600                                               X86::LCMPXCHG64,
12601                                               X86::NOT64r, X86::RAX,
12602                                               X86::GR64RegisterClass, true);
12603  case X86::ATOMMIN64:
12604    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12605  case X86::ATOMMAX64:
12606    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12607  case X86::ATOMUMIN64:
12608    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12609  case X86::ATOMUMAX64:
12610    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12611
12612  // This group does 64-bit operations on a 32-bit host.
12613  case X86::ATOMAND6432:
12614    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12615                                               X86::AND32rr, X86::AND32rr,
12616                                               X86::AND32ri, X86::AND32ri,
12617                                               false);
12618  case X86::ATOMOR6432:
12619    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12620                                               X86::OR32rr, X86::OR32rr,
12621                                               X86::OR32ri, X86::OR32ri,
12622                                               false);
12623  case X86::ATOMXOR6432:
12624    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12625                                               X86::XOR32rr, X86::XOR32rr,
12626                                               X86::XOR32ri, X86::XOR32ri,
12627                                               false);
12628  case X86::ATOMNAND6432:
12629    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12630                                               X86::AND32rr, X86::AND32rr,
12631                                               X86::AND32ri, X86::AND32ri,
12632                                               true);
12633  case X86::ATOMADD6432:
12634    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12635                                               X86::ADD32rr, X86::ADC32rr,
12636                                               X86::ADD32ri, X86::ADC32ri,
12637                                               false);
12638  case X86::ATOMSUB6432:
12639    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12640                                               X86::SUB32rr, X86::SBB32rr,
12641                                               X86::SUB32ri, X86::SBB32ri,
12642                                               false);
12643  case X86::ATOMSWAP6432:
12644    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12645                                               X86::MOV32rr, X86::MOV32rr,
12646                                               X86::MOV32ri, X86::MOV32ri,
12647                                               false);
12648  case X86::VASTART_SAVE_XMM_REGS:
12649    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12650
12651  case X86::VAARG_64:
12652    return EmitVAARG64WithCustomInserter(MI, BB);
12653  }
12654}
12655
12656//===----------------------------------------------------------------------===//
12657//                           X86 Optimization Hooks
12658//===----------------------------------------------------------------------===//
12659
12660void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12661                                                       const APInt &Mask,
12662                                                       APInt &KnownZero,
12663                                                       APInt &KnownOne,
12664                                                       const SelectionDAG &DAG,
12665                                                       unsigned Depth) const {
12666  unsigned Opc = Op.getOpcode();
12667  assert((Opc >= ISD::BUILTIN_OP_END ||
12668          Opc == ISD::INTRINSIC_WO_CHAIN ||
12669          Opc == ISD::INTRINSIC_W_CHAIN ||
12670          Opc == ISD::INTRINSIC_VOID) &&
12671         "Should use MaskedValueIsZero if you don't know whether Op"
12672         " is a target node!");
12673
12674  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12675  switch (Opc) {
12676  default: break;
12677  case X86ISD::ADD:
12678  case X86ISD::SUB:
12679  case X86ISD::ADC:
12680  case X86ISD::SBB:
12681  case X86ISD::SMUL:
12682  case X86ISD::UMUL:
12683  case X86ISD::INC:
12684  case X86ISD::DEC:
12685  case X86ISD::OR:
12686  case X86ISD::XOR:
12687  case X86ISD::AND:
12688    // These nodes' second result is a boolean.
12689    if (Op.getResNo() == 0)
12690      break;
12691    // Fallthrough
12692  case X86ISD::SETCC:
12693    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12694                                       Mask.getBitWidth() - 1);
12695    break;
12696  case ISD::INTRINSIC_WO_CHAIN: {
12697    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12698    unsigned NumLoBits = 0;
12699    switch (IntId) {
12700    default: break;
12701    case Intrinsic::x86_sse_movmsk_ps:
12702    case Intrinsic::x86_avx_movmsk_ps_256:
12703    case Intrinsic::x86_sse2_movmsk_pd:
12704    case Intrinsic::x86_avx_movmsk_pd_256:
12705    case Intrinsic::x86_mmx_pmovmskb:
12706    case Intrinsic::x86_sse2_pmovmskb_128:
12707    case Intrinsic::x86_avx2_pmovmskb: {
12708      // High bits of movmskp{s|d}, pmovmskb are known zero.
12709      switch (IntId) {
12710        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12711        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12712        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12713        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12714        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12715        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12716        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12717        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12718      }
12719      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12720                                        Mask.getBitWidth() - NumLoBits);
12721      break;
12722    }
12723    }
12724    break;
12725  }
12726  }
12727}
12728
12729unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12730                                                         unsigned Depth) const {
12731  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12732  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12733    return Op.getValueType().getScalarType().getSizeInBits();
12734
12735  // Fallback case.
12736  return 1;
12737}
12738
12739/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12740/// node is a GlobalAddress + offset.
12741bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12742                                       const GlobalValue* &GA,
12743                                       int64_t &Offset) const {
12744  if (N->getOpcode() == X86ISD::Wrapper) {
12745    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12746      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12747      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12748      return true;
12749    }
12750  }
12751  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12752}
12753
12754/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12755/// same as extracting the high 128-bit part of 256-bit vector and then
12756/// inserting the result into the low part of a new 256-bit vector
12757static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12758  EVT VT = SVOp->getValueType(0);
12759  int NumElems = VT.getVectorNumElements();
12760
12761  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12762  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12763    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12764        SVOp->getMaskElt(j) >= 0)
12765      return false;
12766
12767  return true;
12768}
12769
12770/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12771/// same as extracting the low 128-bit part of 256-bit vector and then
12772/// inserting the result into the high part of a new 256-bit vector
12773static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12774  EVT VT = SVOp->getValueType(0);
12775  int NumElems = VT.getVectorNumElements();
12776
12777  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12778  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12779    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12780        SVOp->getMaskElt(j) >= 0)
12781      return false;
12782
12783  return true;
12784}
12785
12786/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12787static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12788                                        TargetLowering::DAGCombinerInfo &DCI,
12789                                        const X86Subtarget* Subtarget) {
12790  DebugLoc dl = N->getDebugLoc();
12791  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12792  SDValue V1 = SVOp->getOperand(0);
12793  SDValue V2 = SVOp->getOperand(1);
12794  EVT VT = SVOp->getValueType(0);
12795  int NumElems = VT.getVectorNumElements();
12796
12797  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12798      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12799    //
12800    //                   0,0,0,...
12801    //                      |
12802    //    V      UNDEF    BUILD_VECTOR    UNDEF
12803    //     \      /           \           /
12804    //  CONCAT_VECTOR         CONCAT_VECTOR
12805    //         \                  /
12806    //          \                /
12807    //          RESULT: V + zero extended
12808    //
12809    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12810        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12811        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12812      return SDValue();
12813
12814    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12815      return SDValue();
12816
12817    // To match the shuffle mask, the first half of the mask should
12818    // be exactly the first vector, and all the rest a splat with the
12819    // first element of the second one.
12820    for (int i = 0; i < NumElems/2; ++i)
12821      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12822          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12823        return SDValue();
12824
12825    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12826    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12827      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12828      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12829      SDValue ResNode =
12830        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12831                                Ld->getMemoryVT(),
12832                                Ld->getPointerInfo(),
12833                                Ld->getAlignment(),
12834                                false/*isVolatile*/, true/*ReadMem*/,
12835                                false/*WriteMem*/);
12836      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12837    }
12838
12839    // Emit a zeroed vector and insert the desired subvector on its
12840    // first half.
12841    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12842    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12843                         DAG.getConstant(0, MVT::i32), DAG, dl);
12844    return DCI.CombineTo(N, InsV);
12845  }
12846
12847  //===--------------------------------------------------------------------===//
12848  // Combine some shuffles into subvector extracts and inserts:
12849  //
12850
12851  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12852  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12853    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12854                                    DAG, dl);
12855    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12856                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12857    return DCI.CombineTo(N, InsV);
12858  }
12859
12860  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12861  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12862    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12863    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12864                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12865    return DCI.CombineTo(N, InsV);
12866  }
12867
12868  return SDValue();
12869}
12870
12871/// PerformShuffleCombine - Performs several different shuffle combines.
12872static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12873                                     TargetLowering::DAGCombinerInfo &DCI,
12874                                     const X86Subtarget *Subtarget) {
12875  DebugLoc dl = N->getDebugLoc();
12876  EVT VT = N->getValueType(0);
12877
12878  // Don't create instructions with illegal types after legalize types has run.
12879  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12880  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12881    return SDValue();
12882
12883  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12884  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12885      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12886    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12887
12888  // Only handle 128 wide vector from here on.
12889  if (VT.getSizeInBits() != 128)
12890    return SDValue();
12891
12892  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12893  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12894  // consecutive, non-overlapping, and in the right order.
12895  SmallVector<SDValue, 16> Elts;
12896  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12897    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12898
12899  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12900}
12901
12902
12903/// PerformTruncateCombine - Converts truncate operation to
12904/// a sequence of vector shuffle operations.
12905/// It is possible when we truncate 256-bit vector to 128-bit vector
12906
12907SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12908                                                  DAGCombinerInfo &DCI) const {
12909  if (!DCI.isBeforeLegalizeOps())
12910    return SDValue();
12911
12912  if (!Subtarget->hasAVX()) return SDValue();
12913
12914  EVT VT = N->getValueType(0);
12915  SDValue Op = N->getOperand(0);
12916  EVT OpVT = Op.getValueType();
12917  DebugLoc dl = N->getDebugLoc();
12918
12919  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12920
12921    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12922                          DAG.getIntPtrConstant(0));
12923
12924    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12925                          DAG.getIntPtrConstant(2));
12926
12927    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12928    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12929
12930    // PSHUFD
12931    int ShufMask1[] = {0, 2, 0, 0};
12932
12933    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12934                                ShufMask1);
12935    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12936                                ShufMask1);
12937
12938    // MOVLHPS
12939    int ShufMask2[] = {0, 1, 4, 5};
12940
12941    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12942  }
12943  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12944
12945    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12946                          DAG.getIntPtrConstant(0));
12947
12948    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12949                          DAG.getIntPtrConstant(4));
12950
12951    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12952    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12953
12954    // PSHUFB
12955    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12956                      -1, -1, -1, -1, -1, -1, -1, -1};
12957
12958    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
12959                                DAG.getUNDEF(MVT::v16i8),
12960                                ShufMask1);
12961    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
12962                                DAG.getUNDEF(MVT::v16i8),
12963                                ShufMask1);
12964
12965    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12966    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12967
12968    // MOVLHPS
12969    int ShufMask2[] = {0, 1, 4, 5};
12970
12971    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
12972    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
12973  }
12974
12975  return SDValue();
12976}
12977
12978/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12979/// generation and convert it from being a bunch of shuffles and extracts
12980/// to a simple store and scalar loads to extract the elements.
12981static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12982                                                const TargetLowering &TLI) {
12983  SDValue InputVector = N->getOperand(0);
12984
12985  // Only operate on vectors of 4 elements, where the alternative shuffling
12986  // gets to be more expensive.
12987  if (InputVector.getValueType() != MVT::v4i32)
12988    return SDValue();
12989
12990  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12991  // single use which is a sign-extend or zero-extend, and all elements are
12992  // used.
12993  SmallVector<SDNode *, 4> Uses;
12994  unsigned ExtractedElements = 0;
12995  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12996       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12997    if (UI.getUse().getResNo() != InputVector.getResNo())
12998      return SDValue();
12999
13000    SDNode *Extract = *UI;
13001    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13002      return SDValue();
13003
13004    if (Extract->getValueType(0) != MVT::i32)
13005      return SDValue();
13006    if (!Extract->hasOneUse())
13007      return SDValue();
13008    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13009        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13010      return SDValue();
13011    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13012      return SDValue();
13013
13014    // Record which element was extracted.
13015    ExtractedElements |=
13016      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13017
13018    Uses.push_back(Extract);
13019  }
13020
13021  // If not all the elements were used, this may not be worthwhile.
13022  if (ExtractedElements != 15)
13023    return SDValue();
13024
13025  // Ok, we've now decided to do the transformation.
13026  DebugLoc dl = InputVector.getDebugLoc();
13027
13028  // Store the value to a temporary stack slot.
13029  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13030  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13031                            MachinePointerInfo(), false, false, 0);
13032
13033  // Replace each use (extract) with a load of the appropriate element.
13034  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13035       UE = Uses.end(); UI != UE; ++UI) {
13036    SDNode *Extract = *UI;
13037
13038    // cOMpute the element's address.
13039    SDValue Idx = Extract->getOperand(1);
13040    unsigned EltSize =
13041        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13042    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13043    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13044
13045    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13046                                     StackPtr, OffsetVal);
13047
13048    // Load the scalar.
13049    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13050                                     ScalarAddr, MachinePointerInfo(),
13051                                     false, false, false, 0);
13052
13053    // Replace the exact with the load.
13054    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13055  }
13056
13057  // The replacement was made in place; don't return anything.
13058  return SDValue();
13059}
13060
13061/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13062/// nodes.
13063static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13064                                    TargetLowering::DAGCombinerInfo &DCI,
13065                                    const X86Subtarget *Subtarget) {
13066  DebugLoc DL = N->getDebugLoc();
13067  SDValue Cond = N->getOperand(0);
13068  // Get the LHS/RHS of the select.
13069  SDValue LHS = N->getOperand(1);
13070  SDValue RHS = N->getOperand(2);
13071  EVT VT = LHS.getValueType();
13072
13073  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13074  // instructions match the semantics of the common C idiom x<y?x:y but not
13075  // x<=y?x:y, because of how they handle negative zero (which can be
13076  // ignored in unsafe-math mode).
13077  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13078      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13079      (Subtarget->hasSSE2() ||
13080       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13081    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13082
13083    unsigned Opcode = 0;
13084    // Check for x CC y ? x : y.
13085    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13086        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13087      switch (CC) {
13088      default: break;
13089      case ISD::SETULT:
13090        // Converting this to a min would handle NaNs incorrectly, and swapping
13091        // the operands would cause it to handle comparisons between positive
13092        // and negative zero incorrectly.
13093        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13094          if (!DAG.getTarget().Options.UnsafeFPMath &&
13095              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13096            break;
13097          std::swap(LHS, RHS);
13098        }
13099        Opcode = X86ISD::FMIN;
13100        break;
13101      case ISD::SETOLE:
13102        // Converting this to a min would handle comparisons between positive
13103        // and negative zero incorrectly.
13104        if (!DAG.getTarget().Options.UnsafeFPMath &&
13105            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13106          break;
13107        Opcode = X86ISD::FMIN;
13108        break;
13109      case ISD::SETULE:
13110        // Converting this to a min would handle both negative zeros and NaNs
13111        // incorrectly, but we can swap the operands to fix both.
13112        std::swap(LHS, RHS);
13113      case ISD::SETOLT:
13114      case ISD::SETLT:
13115      case ISD::SETLE:
13116        Opcode = X86ISD::FMIN;
13117        break;
13118
13119      case ISD::SETOGE:
13120        // Converting this to a max would handle comparisons between positive
13121        // and negative zero incorrectly.
13122        if (!DAG.getTarget().Options.UnsafeFPMath &&
13123            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13124          break;
13125        Opcode = X86ISD::FMAX;
13126        break;
13127      case ISD::SETUGT:
13128        // Converting this to a max would handle NaNs incorrectly, and swapping
13129        // the operands would cause it to handle comparisons between positive
13130        // and negative zero incorrectly.
13131        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13132          if (!DAG.getTarget().Options.UnsafeFPMath &&
13133              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13134            break;
13135          std::swap(LHS, RHS);
13136        }
13137        Opcode = X86ISD::FMAX;
13138        break;
13139      case ISD::SETUGE:
13140        // Converting this to a max would handle both negative zeros and NaNs
13141        // incorrectly, but we can swap the operands to fix both.
13142        std::swap(LHS, RHS);
13143      case ISD::SETOGT:
13144      case ISD::SETGT:
13145      case ISD::SETGE:
13146        Opcode = X86ISD::FMAX;
13147        break;
13148      }
13149    // Check for x CC y ? y : x -- a min/max with reversed arms.
13150    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13151               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13152      switch (CC) {
13153      default: break;
13154      case ISD::SETOGE:
13155        // Converting this to a min would handle comparisons between positive
13156        // and negative zero incorrectly, and swapping the operands would
13157        // cause it to handle NaNs incorrectly.
13158        if (!DAG.getTarget().Options.UnsafeFPMath &&
13159            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13160          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13161            break;
13162          std::swap(LHS, RHS);
13163        }
13164        Opcode = X86ISD::FMIN;
13165        break;
13166      case ISD::SETUGT:
13167        // Converting this to a min would handle NaNs incorrectly.
13168        if (!DAG.getTarget().Options.UnsafeFPMath &&
13169            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13170          break;
13171        Opcode = X86ISD::FMIN;
13172        break;
13173      case ISD::SETUGE:
13174        // Converting this to a min would handle both negative zeros and NaNs
13175        // incorrectly, but we can swap the operands to fix both.
13176        std::swap(LHS, RHS);
13177      case ISD::SETOGT:
13178      case ISD::SETGT:
13179      case ISD::SETGE:
13180        Opcode = X86ISD::FMIN;
13181        break;
13182
13183      case ISD::SETULT:
13184        // Converting this to a max would handle NaNs incorrectly.
13185        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13186          break;
13187        Opcode = X86ISD::FMAX;
13188        break;
13189      case ISD::SETOLE:
13190        // Converting this to a max would handle comparisons between positive
13191        // and negative zero incorrectly, and swapping the operands would
13192        // cause it to handle NaNs incorrectly.
13193        if (!DAG.getTarget().Options.UnsafeFPMath &&
13194            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13195          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13196            break;
13197          std::swap(LHS, RHS);
13198        }
13199        Opcode = X86ISD::FMAX;
13200        break;
13201      case ISD::SETULE:
13202        // Converting this to a max would handle both negative zeros and NaNs
13203        // incorrectly, but we can swap the operands to fix both.
13204        std::swap(LHS, RHS);
13205      case ISD::SETOLT:
13206      case ISD::SETLT:
13207      case ISD::SETLE:
13208        Opcode = X86ISD::FMAX;
13209        break;
13210      }
13211    }
13212
13213    if (Opcode)
13214      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13215  }
13216
13217  // If this is a select between two integer constants, try to do some
13218  // optimizations.
13219  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13220    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13221      // Don't do this for crazy integer types.
13222      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13223        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13224        // so that TrueC (the true value) is larger than FalseC.
13225        bool NeedsCondInvert = false;
13226
13227        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13228            // Efficiently invertible.
13229            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13230             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13231              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13232          NeedsCondInvert = true;
13233          std::swap(TrueC, FalseC);
13234        }
13235
13236        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13237        if (FalseC->getAPIntValue() == 0 &&
13238            TrueC->getAPIntValue().isPowerOf2()) {
13239          if (NeedsCondInvert) // Invert the condition if needed.
13240            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13241                               DAG.getConstant(1, Cond.getValueType()));
13242
13243          // Zero extend the condition if needed.
13244          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13245
13246          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13247          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13248                             DAG.getConstant(ShAmt, MVT::i8));
13249        }
13250
13251        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13252        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13253          if (NeedsCondInvert) // Invert the condition if needed.
13254            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13255                               DAG.getConstant(1, Cond.getValueType()));
13256
13257          // Zero extend the condition if needed.
13258          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13259                             FalseC->getValueType(0), Cond);
13260          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13261                             SDValue(FalseC, 0));
13262        }
13263
13264        // Optimize cases that will turn into an LEA instruction.  This requires
13265        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13266        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13267          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13268          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13269
13270          bool isFastMultiplier = false;
13271          if (Diff < 10) {
13272            switch ((unsigned char)Diff) {
13273              default: break;
13274              case 1:  // result = add base, cond
13275              case 2:  // result = lea base(    , cond*2)
13276              case 3:  // result = lea base(cond, cond*2)
13277              case 4:  // result = lea base(    , cond*4)
13278              case 5:  // result = lea base(cond, cond*4)
13279              case 8:  // result = lea base(    , cond*8)
13280              case 9:  // result = lea base(cond, cond*8)
13281                isFastMultiplier = true;
13282                break;
13283            }
13284          }
13285
13286          if (isFastMultiplier) {
13287            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13288            if (NeedsCondInvert) // Invert the condition if needed.
13289              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13290                                 DAG.getConstant(1, Cond.getValueType()));
13291
13292            // Zero extend the condition if needed.
13293            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13294                               Cond);
13295            // Scale the condition by the difference.
13296            if (Diff != 1)
13297              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13298                                 DAG.getConstant(Diff, Cond.getValueType()));
13299
13300            // Add the base if non-zero.
13301            if (FalseC->getAPIntValue() != 0)
13302              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13303                                 SDValue(FalseC, 0));
13304            return Cond;
13305          }
13306        }
13307      }
13308  }
13309
13310  // Canonicalize max and min:
13311  // (x > y) ? x : y -> (x >= y) ? x : y
13312  // (x < y) ? x : y -> (x <= y) ? x : y
13313  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13314  // the need for an extra compare
13315  // against zero. e.g.
13316  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13317  // subl   %esi, %edi
13318  // testl  %edi, %edi
13319  // movl   $0, %eax
13320  // cmovgl %edi, %eax
13321  // =>
13322  // xorl   %eax, %eax
13323  // subl   %esi, $edi
13324  // cmovsl %eax, %edi
13325  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13326      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13327      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13328    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13329    switch (CC) {
13330    default: break;
13331    case ISD::SETLT:
13332    case ISD::SETGT: {
13333      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13334      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13335                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13336      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13337    }
13338    }
13339  }
13340
13341  // If we know that this node is legal then we know that it is going to be
13342  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13343  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13344  // to simplify previous instructions.
13345  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13346  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13347      !DCI.isBeforeLegalize() &&
13348      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13349    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13350    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13351    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13352
13353    APInt KnownZero, KnownOne;
13354    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13355                                          DCI.isBeforeLegalizeOps());
13356    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13357        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13358      DCI.CommitTargetLoweringOpt(TLO);
13359  }
13360
13361  return SDValue();
13362}
13363
13364/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13365static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13366                                  TargetLowering::DAGCombinerInfo &DCI) {
13367  DebugLoc DL = N->getDebugLoc();
13368
13369  // If the flag operand isn't dead, don't touch this CMOV.
13370  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13371    return SDValue();
13372
13373  SDValue FalseOp = N->getOperand(0);
13374  SDValue TrueOp = N->getOperand(1);
13375  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13376  SDValue Cond = N->getOperand(3);
13377  if (CC == X86::COND_E || CC == X86::COND_NE) {
13378    switch (Cond.getOpcode()) {
13379    default: break;
13380    case X86ISD::BSR:
13381    case X86ISD::BSF:
13382      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13383      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13384        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13385    }
13386  }
13387
13388  // If this is a select between two integer constants, try to do some
13389  // optimizations.  Note that the operands are ordered the opposite of SELECT
13390  // operands.
13391  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13392    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13393      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13394      // larger than FalseC (the false value).
13395      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13396        CC = X86::GetOppositeBranchCondition(CC);
13397        std::swap(TrueC, FalseC);
13398      }
13399
13400      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13401      // This is efficient for any integer data type (including i8/i16) and
13402      // shift amount.
13403      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13404        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13405                           DAG.getConstant(CC, MVT::i8), Cond);
13406
13407        // Zero extend the condition if needed.
13408        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13409
13410        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13411        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13412                           DAG.getConstant(ShAmt, MVT::i8));
13413        if (N->getNumValues() == 2)  // Dead flag value?
13414          return DCI.CombineTo(N, Cond, SDValue());
13415        return Cond;
13416      }
13417
13418      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13419      // for any integer data type, including i8/i16.
13420      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13421        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13422                           DAG.getConstant(CC, MVT::i8), Cond);
13423
13424        // Zero extend the condition if needed.
13425        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13426                           FalseC->getValueType(0), Cond);
13427        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13428                           SDValue(FalseC, 0));
13429
13430        if (N->getNumValues() == 2)  // Dead flag value?
13431          return DCI.CombineTo(N, Cond, SDValue());
13432        return Cond;
13433      }
13434
13435      // Optimize cases that will turn into an LEA instruction.  This requires
13436      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13437      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13438        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13439        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13440
13441        bool isFastMultiplier = false;
13442        if (Diff < 10) {
13443          switch ((unsigned char)Diff) {
13444          default: break;
13445          case 1:  // result = add base, cond
13446          case 2:  // result = lea base(    , cond*2)
13447          case 3:  // result = lea base(cond, cond*2)
13448          case 4:  // result = lea base(    , cond*4)
13449          case 5:  // result = lea base(cond, cond*4)
13450          case 8:  // result = lea base(    , cond*8)
13451          case 9:  // result = lea base(cond, cond*8)
13452            isFastMultiplier = true;
13453            break;
13454          }
13455        }
13456
13457        if (isFastMultiplier) {
13458          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13459          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13460                             DAG.getConstant(CC, MVT::i8), Cond);
13461          // Zero extend the condition if needed.
13462          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13463                             Cond);
13464          // Scale the condition by the difference.
13465          if (Diff != 1)
13466            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13467                               DAG.getConstant(Diff, Cond.getValueType()));
13468
13469          // Add the base if non-zero.
13470          if (FalseC->getAPIntValue() != 0)
13471            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13472                               SDValue(FalseC, 0));
13473          if (N->getNumValues() == 2)  // Dead flag value?
13474            return DCI.CombineTo(N, Cond, SDValue());
13475          return Cond;
13476        }
13477      }
13478    }
13479  }
13480  return SDValue();
13481}
13482
13483
13484/// PerformMulCombine - Optimize a single multiply with constant into two
13485/// in order to implement it with two cheaper instructions, e.g.
13486/// LEA + SHL, LEA + LEA.
13487static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13488                                 TargetLowering::DAGCombinerInfo &DCI) {
13489  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13490    return SDValue();
13491
13492  EVT VT = N->getValueType(0);
13493  if (VT != MVT::i64)
13494    return SDValue();
13495
13496  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13497  if (!C)
13498    return SDValue();
13499  uint64_t MulAmt = C->getZExtValue();
13500  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13501    return SDValue();
13502
13503  uint64_t MulAmt1 = 0;
13504  uint64_t MulAmt2 = 0;
13505  if ((MulAmt % 9) == 0) {
13506    MulAmt1 = 9;
13507    MulAmt2 = MulAmt / 9;
13508  } else if ((MulAmt % 5) == 0) {
13509    MulAmt1 = 5;
13510    MulAmt2 = MulAmt / 5;
13511  } else if ((MulAmt % 3) == 0) {
13512    MulAmt1 = 3;
13513    MulAmt2 = MulAmt / 3;
13514  }
13515  if (MulAmt2 &&
13516      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13517    DebugLoc DL = N->getDebugLoc();
13518
13519    if (isPowerOf2_64(MulAmt2) &&
13520        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13521      // If second multiplifer is pow2, issue it first. We want the multiply by
13522      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13523      // is an add.
13524      std::swap(MulAmt1, MulAmt2);
13525
13526    SDValue NewMul;
13527    if (isPowerOf2_64(MulAmt1))
13528      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13529                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13530    else
13531      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13532                           DAG.getConstant(MulAmt1, VT));
13533
13534    if (isPowerOf2_64(MulAmt2))
13535      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13536                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13537    else
13538      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13539                           DAG.getConstant(MulAmt2, VT));
13540
13541    // Do not add new nodes to DAG combiner worklist.
13542    DCI.CombineTo(N, NewMul, false);
13543  }
13544  return SDValue();
13545}
13546
13547static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13548  SDValue N0 = N->getOperand(0);
13549  SDValue N1 = N->getOperand(1);
13550  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13551  EVT VT = N0.getValueType();
13552
13553  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13554  // since the result of setcc_c is all zero's or all ones.
13555  if (VT.isInteger() && !VT.isVector() &&
13556      N1C && N0.getOpcode() == ISD::AND &&
13557      N0.getOperand(1).getOpcode() == ISD::Constant) {
13558    SDValue N00 = N0.getOperand(0);
13559    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13560        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13561          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13562         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13563      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13564      APInt ShAmt = N1C->getAPIntValue();
13565      Mask = Mask.shl(ShAmt);
13566      if (Mask != 0)
13567        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13568                           N00, DAG.getConstant(Mask, VT));
13569    }
13570  }
13571
13572
13573  // Hardware support for vector shifts is sparse which makes us scalarize the
13574  // vector operations in many cases. Also, on sandybridge ADD is faster than
13575  // shl.
13576  // (shl V, 1) -> add V,V
13577  if (isSplatVector(N1.getNode())) {
13578    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13579    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13580    // We shift all of the values by one. In many cases we do not have
13581    // hardware support for this operation. This is better expressed as an ADD
13582    // of two values.
13583    if (N1C && (1 == N1C->getZExtValue())) {
13584      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13585    }
13586  }
13587
13588  return SDValue();
13589}
13590
13591/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13592///                       when possible.
13593static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13594                                   TargetLowering::DAGCombinerInfo &DCI,
13595                                   const X86Subtarget *Subtarget) {
13596  EVT VT = N->getValueType(0);
13597  if (N->getOpcode() == ISD::SHL) {
13598    SDValue V = PerformSHLCombine(N, DAG);
13599    if (V.getNode()) return V;
13600  }
13601
13602  // On X86 with SSE2 support, we can transform this to a vector shift if
13603  // all elements are shifted by the same amount.  We can't do this in legalize
13604  // because the a constant vector is typically transformed to a constant pool
13605  // so we have no knowledge of the shift amount.
13606  if (!Subtarget->hasSSE2())
13607    return SDValue();
13608
13609  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13610      (!Subtarget->hasAVX2() ||
13611       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13612    return SDValue();
13613
13614  SDValue ShAmtOp = N->getOperand(1);
13615  EVT EltVT = VT.getVectorElementType();
13616  DebugLoc DL = N->getDebugLoc();
13617  SDValue BaseShAmt = SDValue();
13618  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13619    unsigned NumElts = VT.getVectorNumElements();
13620    unsigned i = 0;
13621    for (; i != NumElts; ++i) {
13622      SDValue Arg = ShAmtOp.getOperand(i);
13623      if (Arg.getOpcode() == ISD::UNDEF) continue;
13624      BaseShAmt = Arg;
13625      break;
13626    }
13627    // Handle the case where the build_vector is all undef
13628    // FIXME: Should DAG allow this?
13629    if (i == NumElts)
13630      return SDValue();
13631
13632    for (; i != NumElts; ++i) {
13633      SDValue Arg = ShAmtOp.getOperand(i);
13634      if (Arg.getOpcode() == ISD::UNDEF) continue;
13635      if (Arg != BaseShAmt) {
13636        return SDValue();
13637      }
13638    }
13639  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13640             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13641    SDValue InVec = ShAmtOp.getOperand(0);
13642    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13643      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13644      unsigned i = 0;
13645      for (; i != NumElts; ++i) {
13646        SDValue Arg = InVec.getOperand(i);
13647        if (Arg.getOpcode() == ISD::UNDEF) continue;
13648        BaseShAmt = Arg;
13649        break;
13650      }
13651    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13652       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13653         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13654         if (C->getZExtValue() == SplatIdx)
13655           BaseShAmt = InVec.getOperand(1);
13656       }
13657    }
13658    if (BaseShAmt.getNode() == 0) {
13659      // Don't create instructions with illegal types after legalize
13660      // types has run.
13661      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13662          !DCI.isBeforeLegalize())
13663        return SDValue();
13664
13665      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13666                              DAG.getIntPtrConstant(0));
13667    }
13668  } else
13669    return SDValue();
13670
13671  // The shift amount is an i32.
13672  if (EltVT.bitsGT(MVT::i32))
13673    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13674  else if (EltVT.bitsLT(MVT::i32))
13675    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13676
13677  // The shift amount is identical so we can do a vector shift.
13678  SDValue  ValOp = N->getOperand(0);
13679  switch (N->getOpcode()) {
13680  default:
13681    llvm_unreachable("Unknown shift opcode!");
13682  case ISD::SHL:
13683    switch (VT.getSimpleVT().SimpleTy) {
13684    default: return SDValue();
13685    case MVT::v2i64:
13686    case MVT::v4i32:
13687    case MVT::v8i16:
13688    case MVT::v4i64:
13689    case MVT::v8i32:
13690    case MVT::v16i16:
13691      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13692    }
13693  case ISD::SRA:
13694    switch (VT.getSimpleVT().SimpleTy) {
13695    default: return SDValue();
13696    case MVT::v4i32:
13697    case MVT::v8i16:
13698    case MVT::v8i32:
13699    case MVT::v16i16:
13700      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13701    }
13702  case ISD::SRL:
13703    switch (VT.getSimpleVT().SimpleTy) {
13704    default: return SDValue();
13705    case MVT::v2i64:
13706    case MVT::v4i32:
13707    case MVT::v8i16:
13708    case MVT::v4i64:
13709    case MVT::v8i32:
13710    case MVT::v16i16:
13711      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13712    }
13713  }
13714}
13715
13716
13717// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13718// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13719// and friends.  Likewise for OR -> CMPNEQSS.
13720static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13721                            TargetLowering::DAGCombinerInfo &DCI,
13722                            const X86Subtarget *Subtarget) {
13723  unsigned opcode;
13724
13725  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13726  // we're requiring SSE2 for both.
13727  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13728    SDValue N0 = N->getOperand(0);
13729    SDValue N1 = N->getOperand(1);
13730    SDValue CMP0 = N0->getOperand(1);
13731    SDValue CMP1 = N1->getOperand(1);
13732    DebugLoc DL = N->getDebugLoc();
13733
13734    // The SETCCs should both refer to the same CMP.
13735    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13736      return SDValue();
13737
13738    SDValue CMP00 = CMP0->getOperand(0);
13739    SDValue CMP01 = CMP0->getOperand(1);
13740    EVT     VT    = CMP00.getValueType();
13741
13742    if (VT == MVT::f32 || VT == MVT::f64) {
13743      bool ExpectingFlags = false;
13744      // Check for any users that want flags:
13745      for (SDNode::use_iterator UI = N->use_begin(),
13746             UE = N->use_end();
13747           !ExpectingFlags && UI != UE; ++UI)
13748        switch (UI->getOpcode()) {
13749        default:
13750        case ISD::BR_CC:
13751        case ISD::BRCOND:
13752        case ISD::SELECT:
13753          ExpectingFlags = true;
13754          break;
13755        case ISD::CopyToReg:
13756        case ISD::SIGN_EXTEND:
13757        case ISD::ZERO_EXTEND:
13758        case ISD::ANY_EXTEND:
13759          break;
13760        }
13761
13762      if (!ExpectingFlags) {
13763        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13764        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13765
13766        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13767          X86::CondCode tmp = cc0;
13768          cc0 = cc1;
13769          cc1 = tmp;
13770        }
13771
13772        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13773            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13774          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13775          X86ISD::NodeType NTOperator = is64BitFP ?
13776            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13777          // FIXME: need symbolic constants for these magic numbers.
13778          // See X86ATTInstPrinter.cpp:printSSECC().
13779          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13780          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13781                                              DAG.getConstant(x86cc, MVT::i8));
13782          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13783                                              OnesOrZeroesF);
13784          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13785                                      DAG.getConstant(1, MVT::i32));
13786          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13787          return OneBitOfTruth;
13788        }
13789      }
13790    }
13791  }
13792  return SDValue();
13793}
13794
13795/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13796/// so it can be folded inside ANDNP.
13797static bool CanFoldXORWithAllOnes(const SDNode *N) {
13798  EVT VT = N->getValueType(0);
13799
13800  // Match direct AllOnes for 128 and 256-bit vectors
13801  if (ISD::isBuildVectorAllOnes(N))
13802    return true;
13803
13804  // Look through a bit convert.
13805  if (N->getOpcode() == ISD::BITCAST)
13806    N = N->getOperand(0).getNode();
13807
13808  // Sometimes the operand may come from a insert_subvector building a 256-bit
13809  // allones vector
13810  if (VT.getSizeInBits() == 256 &&
13811      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13812    SDValue V1 = N->getOperand(0);
13813    SDValue V2 = N->getOperand(1);
13814
13815    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13816        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13817        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13818        ISD::isBuildVectorAllOnes(V2.getNode()))
13819      return true;
13820  }
13821
13822  return false;
13823}
13824
13825static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13826                                 TargetLowering::DAGCombinerInfo &DCI,
13827                                 const X86Subtarget *Subtarget) {
13828  if (DCI.isBeforeLegalizeOps())
13829    return SDValue();
13830
13831  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13832  if (R.getNode())
13833    return R;
13834
13835  EVT VT = N->getValueType(0);
13836
13837  // Create ANDN, BLSI, and BLSR instructions
13838  // BLSI is X & (-X)
13839  // BLSR is X & (X-1)
13840  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13841    SDValue N0 = N->getOperand(0);
13842    SDValue N1 = N->getOperand(1);
13843    DebugLoc DL = N->getDebugLoc();
13844
13845    // Check LHS for not
13846    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13847      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13848    // Check RHS for not
13849    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13850      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13851
13852    // Check LHS for neg
13853    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13854        isZero(N0.getOperand(0)))
13855      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13856
13857    // Check RHS for neg
13858    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13859        isZero(N1.getOperand(0)))
13860      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13861
13862    // Check LHS for X-1
13863    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13864        isAllOnes(N0.getOperand(1)))
13865      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13866
13867    // Check RHS for X-1
13868    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13869        isAllOnes(N1.getOperand(1)))
13870      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13871
13872    return SDValue();
13873  }
13874
13875  // Want to form ANDNP nodes:
13876  // 1) In the hopes of then easily combining them with OR and AND nodes
13877  //    to form PBLEND/PSIGN.
13878  // 2) To match ANDN packed intrinsics
13879  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13880    return SDValue();
13881
13882  SDValue N0 = N->getOperand(0);
13883  SDValue N1 = N->getOperand(1);
13884  DebugLoc DL = N->getDebugLoc();
13885
13886  // Check LHS for vnot
13887  if (N0.getOpcode() == ISD::XOR &&
13888      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13889      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13890    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13891
13892  // Check RHS for vnot
13893  if (N1.getOpcode() == ISD::XOR &&
13894      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13895      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13896    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13897
13898  return SDValue();
13899}
13900
13901static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13902                                TargetLowering::DAGCombinerInfo &DCI,
13903                                const X86Subtarget *Subtarget) {
13904  if (DCI.isBeforeLegalizeOps())
13905    return SDValue();
13906
13907  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13908  if (R.getNode())
13909    return R;
13910
13911  EVT VT = N->getValueType(0);
13912
13913  SDValue N0 = N->getOperand(0);
13914  SDValue N1 = N->getOperand(1);
13915
13916  // look for psign/blend
13917  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13918    if (!Subtarget->hasSSSE3() ||
13919        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13920      return SDValue();
13921
13922    // Canonicalize pandn to RHS
13923    if (N0.getOpcode() == X86ISD::ANDNP)
13924      std::swap(N0, N1);
13925    // or (and (m, y), (pandn m, x))
13926    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13927      SDValue Mask = N1.getOperand(0);
13928      SDValue X    = N1.getOperand(1);
13929      SDValue Y;
13930      if (N0.getOperand(0) == Mask)
13931        Y = N0.getOperand(1);
13932      if (N0.getOperand(1) == Mask)
13933        Y = N0.getOperand(0);
13934
13935      // Check to see if the mask appeared in both the AND and ANDNP and
13936      if (!Y.getNode())
13937        return SDValue();
13938
13939      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13940      if (Mask.getOpcode() != ISD::BITCAST ||
13941          X.getOpcode() != ISD::BITCAST ||
13942          Y.getOpcode() != ISD::BITCAST)
13943        return SDValue();
13944
13945      // Look through mask bitcast.
13946      Mask = Mask.getOperand(0);
13947      EVT MaskVT = Mask.getValueType();
13948
13949      // Validate that the Mask operand is a vector sra node.
13950      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13951      // there is no psrai.b
13952      if (Mask.getOpcode() != X86ISD::VSRAI)
13953        return SDValue();
13954
13955      // Check that the SRA is all signbits.
13956      SDValue SraC = Mask.getOperand(1);
13957      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13958      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13959      if ((SraAmt + 1) != EltBits)
13960        return SDValue();
13961
13962      DebugLoc DL = N->getDebugLoc();
13963
13964      // Now we know we at least have a plendvb with the mask val.  See if
13965      // we can form a psignb/w/d.
13966      // psign = x.type == y.type == mask.type && y = sub(0, x);
13967      X = X.getOperand(0);
13968      Y = Y.getOperand(0);
13969      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13970          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13971          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
13972        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
13973               "Unsupported VT for PSIGN");
13974        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
13975        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13976      }
13977      // PBLENDVB only available on SSE 4.1
13978      if (!Subtarget->hasSSE41())
13979        return SDValue();
13980
13981      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13982
13983      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13984      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13985      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13986      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13987      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13988    }
13989  }
13990
13991  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13992    return SDValue();
13993
13994  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13995  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13996    std::swap(N0, N1);
13997  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13998    return SDValue();
13999  if (!N0.hasOneUse() || !N1.hasOneUse())
14000    return SDValue();
14001
14002  SDValue ShAmt0 = N0.getOperand(1);
14003  if (ShAmt0.getValueType() != MVT::i8)
14004    return SDValue();
14005  SDValue ShAmt1 = N1.getOperand(1);
14006  if (ShAmt1.getValueType() != MVT::i8)
14007    return SDValue();
14008  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14009    ShAmt0 = ShAmt0.getOperand(0);
14010  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14011    ShAmt1 = ShAmt1.getOperand(0);
14012
14013  DebugLoc DL = N->getDebugLoc();
14014  unsigned Opc = X86ISD::SHLD;
14015  SDValue Op0 = N0.getOperand(0);
14016  SDValue Op1 = N1.getOperand(0);
14017  if (ShAmt0.getOpcode() == ISD::SUB) {
14018    Opc = X86ISD::SHRD;
14019    std::swap(Op0, Op1);
14020    std::swap(ShAmt0, ShAmt1);
14021  }
14022
14023  unsigned Bits = VT.getSizeInBits();
14024  if (ShAmt1.getOpcode() == ISD::SUB) {
14025    SDValue Sum = ShAmt1.getOperand(0);
14026    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14027      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14028      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14029        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14030      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14031        return DAG.getNode(Opc, DL, VT,
14032                           Op0, Op1,
14033                           DAG.getNode(ISD::TRUNCATE, DL,
14034                                       MVT::i8, ShAmt0));
14035    }
14036  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14037    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14038    if (ShAmt0C &&
14039        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14040      return DAG.getNode(Opc, DL, VT,
14041                         N0.getOperand(0), N1.getOperand(0),
14042                         DAG.getNode(ISD::TRUNCATE, DL,
14043                                       MVT::i8, ShAmt0));
14044  }
14045
14046  return SDValue();
14047}
14048
14049// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14050static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14051                                 TargetLowering::DAGCombinerInfo &DCI,
14052                                 const X86Subtarget *Subtarget) {
14053  if (DCI.isBeforeLegalizeOps())
14054    return SDValue();
14055
14056  EVT VT = N->getValueType(0);
14057
14058  if (VT != MVT::i32 && VT != MVT::i64)
14059    return SDValue();
14060
14061  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14062
14063  // Create BLSMSK instructions by finding X ^ (X-1)
14064  SDValue N0 = N->getOperand(0);
14065  SDValue N1 = N->getOperand(1);
14066  DebugLoc DL = N->getDebugLoc();
14067
14068  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14069      isAllOnes(N0.getOperand(1)))
14070    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14071
14072  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14073      isAllOnes(N1.getOperand(1)))
14074    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14075
14076  return SDValue();
14077}
14078
14079/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14080static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14081                                   const X86Subtarget *Subtarget) {
14082  LoadSDNode *Ld = cast<LoadSDNode>(N);
14083  EVT RegVT = Ld->getValueType(0);
14084  EVT MemVT = Ld->getMemoryVT();
14085  DebugLoc dl = Ld->getDebugLoc();
14086  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14087
14088  ISD::LoadExtType Ext = Ld->getExtensionType();
14089
14090  // If this is a vector EXT Load then attempt to optimize it using a
14091  // shuffle. We need SSE4 for the shuffles.
14092  // TODO: It is possible to support ZExt by zeroing the undef values
14093  // during the shuffle phase or after the shuffle.
14094  if (RegVT.isVector() && RegVT.isInteger() &&
14095      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14096    assert(MemVT != RegVT && "Cannot extend to the same type");
14097    assert(MemVT.isVector() && "Must load a vector from memory");
14098
14099    unsigned NumElems = RegVT.getVectorNumElements();
14100    unsigned RegSz = RegVT.getSizeInBits();
14101    unsigned MemSz = MemVT.getSizeInBits();
14102    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14103    // All sizes must be a power of two
14104    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14105
14106    // Attempt to load the original value using a single load op.
14107    // Find a scalar type which is equal to the loaded word size.
14108    MVT SclrLoadTy = MVT::i8;
14109    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14110         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14111      MVT Tp = (MVT::SimpleValueType)tp;
14112      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14113        SclrLoadTy = Tp;
14114        break;
14115      }
14116    }
14117
14118    // Proceed if a load word is found.
14119    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14120
14121    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14122      RegSz/SclrLoadTy.getSizeInBits());
14123
14124    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14125                                  RegSz/MemVT.getScalarType().getSizeInBits());
14126    // Can't shuffle using an illegal type.
14127    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14128
14129    // Perform a single load.
14130    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14131                                  Ld->getBasePtr(),
14132                                  Ld->getPointerInfo(), Ld->isVolatile(),
14133                                  Ld->isNonTemporal(), Ld->isInvariant(),
14134                                  Ld->getAlignment());
14135
14136    // Insert the word loaded into a vector.
14137    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14138      LoadUnitVecVT, ScalarLoad);
14139
14140    // Bitcast the loaded value to a vector of the original element type, in
14141    // the size of the target vector type.
14142    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14143                                    ScalarInVector);
14144    unsigned SizeRatio = RegSz/MemSz;
14145
14146    // Redistribute the loaded elements into the different locations.
14147    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14148    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14149
14150    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14151                                DAG.getUNDEF(SlicedVec.getValueType()),
14152                                ShuffleVec.data());
14153
14154    // Bitcast to the requested type.
14155    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14156    // Replace the original load with the new sequence
14157    // and return the new chain.
14158    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14159    return SDValue(ScalarLoad.getNode(), 1);
14160  }
14161
14162  return SDValue();
14163}
14164
14165/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14166static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14167                                   const X86Subtarget *Subtarget) {
14168  StoreSDNode *St = cast<StoreSDNode>(N);
14169  EVT VT = St->getValue().getValueType();
14170  EVT StVT = St->getMemoryVT();
14171  DebugLoc dl = St->getDebugLoc();
14172  SDValue StoredVal = St->getOperand(1);
14173  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14174
14175  // If we are saving a concatenation of two XMM registers, perform two stores.
14176  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14177  // 128-bit ones. If in the future the cost becomes only one memory access the
14178  // first version would be better.
14179  if (VT.getSizeInBits() == 256 &&
14180    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14181    StoredVal.getNumOperands() == 2) {
14182
14183    SDValue Value0 = StoredVal.getOperand(0);
14184    SDValue Value1 = StoredVal.getOperand(1);
14185
14186    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14187    SDValue Ptr0 = St->getBasePtr();
14188    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14189
14190    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14191                                St->getPointerInfo(), St->isVolatile(),
14192                                St->isNonTemporal(), St->getAlignment());
14193    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14194                                St->getPointerInfo(), St->isVolatile(),
14195                                St->isNonTemporal(), St->getAlignment());
14196    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14197  }
14198
14199  // Optimize trunc store (of multiple scalars) to shuffle and store.
14200  // First, pack all of the elements in one place. Next, store to memory
14201  // in fewer chunks.
14202  if (St->isTruncatingStore() && VT.isVector()) {
14203    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14204    unsigned NumElems = VT.getVectorNumElements();
14205    assert(StVT != VT && "Cannot truncate to the same type");
14206    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14207    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14208
14209    // From, To sizes and ElemCount must be pow of two
14210    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14211    // We are going to use the original vector elt for storing.
14212    // Accumulated smaller vector elements must be a multiple of the store size.
14213    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14214
14215    unsigned SizeRatio  = FromSz / ToSz;
14216
14217    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14218
14219    // Create a type on which we perform the shuffle
14220    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14221            StVT.getScalarType(), NumElems*SizeRatio);
14222
14223    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14224
14225    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14226    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14227    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14228
14229    // Can't shuffle using an illegal type
14230    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14231
14232    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14233                                DAG.getUNDEF(WideVec.getValueType()),
14234                                ShuffleVec.data());
14235    // At this point all of the data is stored at the bottom of the
14236    // register. We now need to save it to mem.
14237
14238    // Find the largest store unit
14239    MVT StoreType = MVT::i8;
14240    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14241         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14242      MVT Tp = (MVT::SimpleValueType)tp;
14243      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14244        StoreType = Tp;
14245    }
14246
14247    // Bitcast the original vector into a vector of store-size units
14248    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14249            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14250    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14251    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14252    SmallVector<SDValue, 8> Chains;
14253    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14254                                        TLI.getPointerTy());
14255    SDValue Ptr = St->getBasePtr();
14256
14257    // Perform one or more big stores into memory.
14258    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14259      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14260                                   StoreType, ShuffWide,
14261                                   DAG.getIntPtrConstant(i));
14262      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14263                                St->getPointerInfo(), St->isVolatile(),
14264                                St->isNonTemporal(), St->getAlignment());
14265      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14266      Chains.push_back(Ch);
14267    }
14268
14269    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14270                               Chains.size());
14271  }
14272
14273
14274  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14275  // the FP state in cases where an emms may be missing.
14276  // A preferable solution to the general problem is to figure out the right
14277  // places to insert EMMS.  This qualifies as a quick hack.
14278
14279  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14280  if (VT.getSizeInBits() != 64)
14281    return SDValue();
14282
14283  const Function *F = DAG.getMachineFunction().getFunction();
14284  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14285  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14286                     && Subtarget->hasSSE2();
14287  if ((VT.isVector() ||
14288       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14289      isa<LoadSDNode>(St->getValue()) &&
14290      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14291      St->getChain().hasOneUse() && !St->isVolatile()) {
14292    SDNode* LdVal = St->getValue().getNode();
14293    LoadSDNode *Ld = 0;
14294    int TokenFactorIndex = -1;
14295    SmallVector<SDValue, 8> Ops;
14296    SDNode* ChainVal = St->getChain().getNode();
14297    // Must be a store of a load.  We currently handle two cases:  the load
14298    // is a direct child, and it's under an intervening TokenFactor.  It is
14299    // possible to dig deeper under nested TokenFactors.
14300    if (ChainVal == LdVal)
14301      Ld = cast<LoadSDNode>(St->getChain());
14302    else if (St->getValue().hasOneUse() &&
14303             ChainVal->getOpcode() == ISD::TokenFactor) {
14304      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14305        if (ChainVal->getOperand(i).getNode() == LdVal) {
14306          TokenFactorIndex = i;
14307          Ld = cast<LoadSDNode>(St->getValue());
14308        } else
14309          Ops.push_back(ChainVal->getOperand(i));
14310      }
14311    }
14312
14313    if (!Ld || !ISD::isNormalLoad(Ld))
14314      return SDValue();
14315
14316    // If this is not the MMX case, i.e. we are just turning i64 load/store
14317    // into f64 load/store, avoid the transformation if there are multiple
14318    // uses of the loaded value.
14319    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14320      return SDValue();
14321
14322    DebugLoc LdDL = Ld->getDebugLoc();
14323    DebugLoc StDL = N->getDebugLoc();
14324    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14325    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14326    // pair instead.
14327    if (Subtarget->is64Bit() || F64IsLegal) {
14328      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14329      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14330                                  Ld->getPointerInfo(), Ld->isVolatile(),
14331                                  Ld->isNonTemporal(), Ld->isInvariant(),
14332                                  Ld->getAlignment());
14333      SDValue NewChain = NewLd.getValue(1);
14334      if (TokenFactorIndex != -1) {
14335        Ops.push_back(NewChain);
14336        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14337                               Ops.size());
14338      }
14339      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14340                          St->getPointerInfo(),
14341                          St->isVolatile(), St->isNonTemporal(),
14342                          St->getAlignment());
14343    }
14344
14345    // Otherwise, lower to two pairs of 32-bit loads / stores.
14346    SDValue LoAddr = Ld->getBasePtr();
14347    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14348                                 DAG.getConstant(4, MVT::i32));
14349
14350    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14351                               Ld->getPointerInfo(),
14352                               Ld->isVolatile(), Ld->isNonTemporal(),
14353                               Ld->isInvariant(), Ld->getAlignment());
14354    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14355                               Ld->getPointerInfo().getWithOffset(4),
14356                               Ld->isVolatile(), Ld->isNonTemporal(),
14357                               Ld->isInvariant(),
14358                               MinAlign(Ld->getAlignment(), 4));
14359
14360    SDValue NewChain = LoLd.getValue(1);
14361    if (TokenFactorIndex != -1) {
14362      Ops.push_back(LoLd);
14363      Ops.push_back(HiLd);
14364      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14365                             Ops.size());
14366    }
14367
14368    LoAddr = St->getBasePtr();
14369    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14370                         DAG.getConstant(4, MVT::i32));
14371
14372    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14373                                St->getPointerInfo(),
14374                                St->isVolatile(), St->isNonTemporal(),
14375                                St->getAlignment());
14376    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14377                                St->getPointerInfo().getWithOffset(4),
14378                                St->isVolatile(),
14379                                St->isNonTemporal(),
14380                                MinAlign(St->getAlignment(), 4));
14381    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14382  }
14383  return SDValue();
14384}
14385
14386/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14387/// and return the operands for the horizontal operation in LHS and RHS.  A
14388/// horizontal operation performs the binary operation on successive elements
14389/// of its first operand, then on successive elements of its second operand,
14390/// returning the resulting values in a vector.  For example, if
14391///   A = < float a0, float a1, float a2, float a3 >
14392/// and
14393///   B = < float b0, float b1, float b2, float b3 >
14394/// then the result of doing a horizontal operation on A and B is
14395///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14396/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14397/// A horizontal-op B, for some already available A and B, and if so then LHS is
14398/// set to A, RHS to B, and the routine returns 'true'.
14399/// Note that the binary operation should have the property that if one of the
14400/// operands is UNDEF then the result is UNDEF.
14401static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14402  // Look for the following pattern: if
14403  //   A = < float a0, float a1, float a2, float a3 >
14404  //   B = < float b0, float b1, float b2, float b3 >
14405  // and
14406  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14407  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14408  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14409  // which is A horizontal-op B.
14410
14411  // At least one of the operands should be a vector shuffle.
14412  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14413      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14414    return false;
14415
14416  EVT VT = LHS.getValueType();
14417
14418  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14419         "Unsupported vector type for horizontal add/sub");
14420
14421  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14422  // operate independently on 128-bit lanes.
14423  unsigned NumElts = VT.getVectorNumElements();
14424  unsigned NumLanes = VT.getSizeInBits()/128;
14425  unsigned NumLaneElts = NumElts / NumLanes;
14426  assert((NumLaneElts % 2 == 0) &&
14427         "Vector type should have an even number of elements in each lane");
14428  unsigned HalfLaneElts = NumLaneElts/2;
14429
14430  // View LHS in the form
14431  //   LHS = VECTOR_SHUFFLE A, B, LMask
14432  // If LHS is not a shuffle then pretend it is the shuffle
14433  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14434  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14435  // type VT.
14436  SDValue A, B;
14437  SmallVector<int, 16> LMask(NumElts);
14438  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14439    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14440      A = LHS.getOperand(0);
14441    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14442      B = LHS.getOperand(1);
14443    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14444    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14445  } else {
14446    if (LHS.getOpcode() != ISD::UNDEF)
14447      A = LHS;
14448    for (unsigned i = 0; i != NumElts; ++i)
14449      LMask[i] = i;
14450  }
14451
14452  // Likewise, view RHS in the form
14453  //   RHS = VECTOR_SHUFFLE C, D, RMask
14454  SDValue C, D;
14455  SmallVector<int, 16> RMask(NumElts);
14456  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14457    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14458      C = RHS.getOperand(0);
14459    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14460      D = RHS.getOperand(1);
14461    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14462    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14463  } else {
14464    if (RHS.getOpcode() != ISD::UNDEF)
14465      C = RHS;
14466    for (unsigned i = 0; i != NumElts; ++i)
14467      RMask[i] = i;
14468  }
14469
14470  // Check that the shuffles are both shuffling the same vectors.
14471  if (!(A == C && B == D) && !(A == D && B == C))
14472    return false;
14473
14474  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14475  if (!A.getNode() && !B.getNode())
14476    return false;
14477
14478  // If A and B occur in reverse order in RHS, then "swap" them (which means
14479  // rewriting the mask).
14480  if (A != C)
14481    CommuteVectorShuffleMask(RMask, NumElts);
14482
14483  // At this point LHS and RHS are equivalent to
14484  //   LHS = VECTOR_SHUFFLE A, B, LMask
14485  //   RHS = VECTOR_SHUFFLE A, B, RMask
14486  // Check that the masks correspond to performing a horizontal operation.
14487  for (unsigned i = 0; i != NumElts; ++i) {
14488    int LIdx = LMask[i], RIdx = RMask[i];
14489
14490    // Ignore any UNDEF components.
14491    if (LIdx < 0 || RIdx < 0 ||
14492        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14493        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14494      continue;
14495
14496    // Check that successive elements are being operated on.  If not, this is
14497    // not a horizontal operation.
14498    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14499    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14500    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14501    if (!(LIdx == Index && RIdx == Index + 1) &&
14502        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14503      return false;
14504  }
14505
14506  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14507  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14508  return true;
14509}
14510
14511/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14512static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14513                                  const X86Subtarget *Subtarget) {
14514  EVT VT = N->getValueType(0);
14515  SDValue LHS = N->getOperand(0);
14516  SDValue RHS = N->getOperand(1);
14517
14518  // Try to synthesize horizontal adds from adds of shuffles.
14519  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14520       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14521      isHorizontalBinOp(LHS, RHS, true))
14522    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14523  return SDValue();
14524}
14525
14526/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14527static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14528                                  const X86Subtarget *Subtarget) {
14529  EVT VT = N->getValueType(0);
14530  SDValue LHS = N->getOperand(0);
14531  SDValue RHS = N->getOperand(1);
14532
14533  // Try to synthesize horizontal subs from subs of shuffles.
14534  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14535       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14536      isHorizontalBinOp(LHS, RHS, false))
14537    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14538  return SDValue();
14539}
14540
14541/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14542/// X86ISD::FXOR nodes.
14543static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14544  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14545  // F[X]OR(0.0, x) -> x
14546  // F[X]OR(x, 0.0) -> x
14547  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14548    if (C->getValueAPF().isPosZero())
14549      return N->getOperand(1);
14550  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14551    if (C->getValueAPF().isPosZero())
14552      return N->getOperand(0);
14553  return SDValue();
14554}
14555
14556/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14557static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14558  // FAND(0.0, x) -> 0.0
14559  // FAND(x, 0.0) -> 0.0
14560  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14561    if (C->getValueAPF().isPosZero())
14562      return N->getOperand(0);
14563  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14564    if (C->getValueAPF().isPosZero())
14565      return N->getOperand(1);
14566  return SDValue();
14567}
14568
14569static SDValue PerformBTCombine(SDNode *N,
14570                                SelectionDAG &DAG,
14571                                TargetLowering::DAGCombinerInfo &DCI) {
14572  // BT ignores high bits in the bit index operand.
14573  SDValue Op1 = N->getOperand(1);
14574  if (Op1.hasOneUse()) {
14575    unsigned BitWidth = Op1.getValueSizeInBits();
14576    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14577    APInt KnownZero, KnownOne;
14578    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14579                                          !DCI.isBeforeLegalizeOps());
14580    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14581    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14582        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14583      DCI.CommitTargetLoweringOpt(TLO);
14584  }
14585  return SDValue();
14586}
14587
14588static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14589  SDValue Op = N->getOperand(0);
14590  if (Op.getOpcode() == ISD::BITCAST)
14591    Op = Op.getOperand(0);
14592  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14593  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14594      VT.getVectorElementType().getSizeInBits() ==
14595      OpVT.getVectorElementType().getSizeInBits()) {
14596    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14597  }
14598  return SDValue();
14599}
14600
14601static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14602                                  TargetLowering::DAGCombinerInfo &DCI,
14603                                  const X86Subtarget *Subtarget) {
14604  if (!DCI.isBeforeLegalizeOps())
14605    return SDValue();
14606
14607  if (!Subtarget->hasAVX())
14608    return SDValue();
14609
14610  // Optimize vectors in AVX mode
14611  // Sign extend  v8i16 to v8i32 and
14612  //              v4i32 to v4i64
14613  //
14614  // Divide input vector into two parts
14615  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14616  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14617  // concat the vectors to original VT
14618
14619  EVT VT = N->getValueType(0);
14620  SDValue Op = N->getOperand(0);
14621  EVT OpVT = Op.getValueType();
14622  DebugLoc dl = N->getDebugLoc();
14623
14624  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14625      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14626
14627    unsigned NumElems = OpVT.getVectorNumElements();
14628    SmallVector<int,8> ShufMask1(NumElems, -1);
14629    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14630
14631    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14632                                        ShufMask1.data());
14633
14634    SmallVector<int,8> ShufMask2(NumElems, -1);
14635    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14636
14637    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14638                                        ShufMask2.data());
14639
14640    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14641                                  VT.getVectorNumElements()/2);
14642
14643    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14644    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14645
14646    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14647  }
14648  return SDValue();
14649}
14650
14651static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14652                                  const X86Subtarget *Subtarget) {
14653  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14654  //           (and (i32 x86isd::setcc_carry), 1)
14655  // This eliminates the zext. This transformation is necessary because
14656  // ISD::SETCC is always legalized to i8.
14657  DebugLoc dl = N->getDebugLoc();
14658  SDValue N0 = N->getOperand(0);
14659  EVT VT = N->getValueType(0);
14660  EVT OpVT = N0.getValueType();
14661
14662  if (N0.getOpcode() == ISD::AND &&
14663      N0.hasOneUse() &&
14664      N0.getOperand(0).hasOneUse()) {
14665    SDValue N00 = N0.getOperand(0);
14666    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14667      return SDValue();
14668    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14669    if (!C || C->getZExtValue() != 1)
14670      return SDValue();
14671    return DAG.getNode(ISD::AND, dl, VT,
14672                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14673                                   N00.getOperand(0), N00.getOperand(1)),
14674                       DAG.getConstant(1, VT));
14675  }
14676  // Optimize vectors in AVX mode:
14677  //
14678  //   v8i16 -> v8i32
14679  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14680  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14681  //   Concat upper and lower parts.
14682  //
14683  //   v4i32 -> v4i64
14684  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14685  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14686  //   Concat upper and lower parts.
14687  //
14688  if (Subtarget->hasAVX()) {
14689
14690    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14691      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14692
14693      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14694      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14695      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14696
14697      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14698        VT.getVectorNumElements()/2);
14699
14700      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14701      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14702
14703      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14704    }
14705  }
14706
14707
14708  return SDValue();
14709}
14710
14711// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14712static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14713  unsigned X86CC = N->getConstantOperandVal(0);
14714  SDValue EFLAG = N->getOperand(1);
14715  DebugLoc DL = N->getDebugLoc();
14716
14717  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14718  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14719  // cases.
14720  if (X86CC == X86::COND_B)
14721    return DAG.getNode(ISD::AND, DL, MVT::i8,
14722                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14723                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14724                       DAG.getConstant(1, MVT::i8));
14725
14726  return SDValue();
14727}
14728
14729static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14730                                        const X86TargetLowering *XTLI) {
14731  SDValue Op0 = N->getOperand(0);
14732  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14733  // a 32-bit target where SSE doesn't support i64->FP operations.
14734  if (Op0.getOpcode() == ISD::LOAD) {
14735    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14736    EVT VT = Ld->getValueType(0);
14737    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14738        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14739        !XTLI->getSubtarget()->is64Bit() &&
14740        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14741      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14742                                          Ld->getChain(), Op0, DAG);
14743      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14744      return FILDChain;
14745    }
14746  }
14747  return SDValue();
14748}
14749
14750// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14751static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14752                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14753  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14754  // the result is either zero or one (depending on the input carry bit).
14755  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14756  if (X86::isZeroNode(N->getOperand(0)) &&
14757      X86::isZeroNode(N->getOperand(1)) &&
14758      // We don't have a good way to replace an EFLAGS use, so only do this when
14759      // dead right now.
14760      SDValue(N, 1).use_empty()) {
14761    DebugLoc DL = N->getDebugLoc();
14762    EVT VT = N->getValueType(0);
14763    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14764    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14765                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14766                                           DAG.getConstant(X86::COND_B,MVT::i8),
14767                                           N->getOperand(2)),
14768                               DAG.getConstant(1, VT));
14769    return DCI.CombineTo(N, Res1, CarryOut);
14770  }
14771
14772  return SDValue();
14773}
14774
14775// fold (add Y, (sete  X, 0)) -> adc  0, Y
14776//      (add Y, (setne X, 0)) -> sbb -1, Y
14777//      (sub (sete  X, 0), Y) -> sbb  0, Y
14778//      (sub (setne X, 0), Y) -> adc -1, Y
14779static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14780  DebugLoc DL = N->getDebugLoc();
14781
14782  // Look through ZExts.
14783  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14784  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14785    return SDValue();
14786
14787  SDValue SetCC = Ext.getOperand(0);
14788  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14789    return SDValue();
14790
14791  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14792  if (CC != X86::COND_E && CC != X86::COND_NE)
14793    return SDValue();
14794
14795  SDValue Cmp = SetCC.getOperand(1);
14796  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14797      !X86::isZeroNode(Cmp.getOperand(1)) ||
14798      !Cmp.getOperand(0).getValueType().isInteger())
14799    return SDValue();
14800
14801  SDValue CmpOp0 = Cmp.getOperand(0);
14802  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14803                               DAG.getConstant(1, CmpOp0.getValueType()));
14804
14805  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14806  if (CC == X86::COND_NE)
14807    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14808                       DL, OtherVal.getValueType(), OtherVal,
14809                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14810  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14811                     DL, OtherVal.getValueType(), OtherVal,
14812                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14813}
14814
14815/// PerformADDCombine - Do target-specific dag combines on integer adds.
14816static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14817                                 const X86Subtarget *Subtarget) {
14818  EVT VT = N->getValueType(0);
14819  SDValue Op0 = N->getOperand(0);
14820  SDValue Op1 = N->getOperand(1);
14821
14822  // Try to synthesize horizontal adds from adds of shuffles.
14823  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14824       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14825      isHorizontalBinOp(Op0, Op1, true))
14826    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14827
14828  return OptimizeConditionalInDecrement(N, DAG);
14829}
14830
14831static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14832                                 const X86Subtarget *Subtarget) {
14833  SDValue Op0 = N->getOperand(0);
14834  SDValue Op1 = N->getOperand(1);
14835
14836  // X86 can't encode an immediate LHS of a sub. See if we can push the
14837  // negation into a preceding instruction.
14838  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14839    // If the RHS of the sub is a XOR with one use and a constant, invert the
14840    // immediate. Then add one to the LHS of the sub so we can turn
14841    // X-Y -> X+~Y+1, saving one register.
14842    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14843        isa<ConstantSDNode>(Op1.getOperand(1))) {
14844      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14845      EVT VT = Op0.getValueType();
14846      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14847                                   Op1.getOperand(0),
14848                                   DAG.getConstant(~XorC, VT));
14849      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14850                         DAG.getConstant(C->getAPIntValue()+1, VT));
14851    }
14852  }
14853
14854  // Try to synthesize horizontal adds from adds of shuffles.
14855  EVT VT = N->getValueType(0);
14856  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14857       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14858      isHorizontalBinOp(Op0, Op1, true))
14859    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14860
14861  return OptimizeConditionalInDecrement(N, DAG);
14862}
14863
14864SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14865                                             DAGCombinerInfo &DCI) const {
14866  SelectionDAG &DAG = DCI.DAG;
14867  switch (N->getOpcode()) {
14868  default: break;
14869  case ISD::EXTRACT_VECTOR_ELT:
14870    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14871  case ISD::VSELECT:
14872  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14873  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14874  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14875  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14876  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14877  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14878  case ISD::SHL:
14879  case ISD::SRA:
14880  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
14881  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14882  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14883  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14884  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14885  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14886  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14887  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14888  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14889  case X86ISD::FXOR:
14890  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14891  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14892  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14893  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14894  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14895  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
14896  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
14897  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14898  case X86ISD::SHUFP:       // Handle all target specific shuffles
14899  case X86ISD::PALIGN:
14900  case X86ISD::UNPCKH:
14901  case X86ISD::UNPCKL:
14902  case X86ISD::MOVHLPS:
14903  case X86ISD::MOVLHPS:
14904  case X86ISD::PSHUFD:
14905  case X86ISD::PSHUFHW:
14906  case X86ISD::PSHUFLW:
14907  case X86ISD::MOVSS:
14908  case X86ISD::MOVSD:
14909  case X86ISD::VPERMILP:
14910  case X86ISD::VPERM2X128:
14911  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14912  }
14913
14914  return SDValue();
14915}
14916
14917/// isTypeDesirableForOp - Return true if the target has native support for
14918/// the specified value type and it is 'desirable' to use the type for the
14919/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14920/// instruction encodings are longer and some i16 instructions are slow.
14921bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14922  if (!isTypeLegal(VT))
14923    return false;
14924  if (VT != MVT::i16)
14925    return true;
14926
14927  switch (Opc) {
14928  default:
14929    return true;
14930  case ISD::LOAD:
14931  case ISD::SIGN_EXTEND:
14932  case ISD::ZERO_EXTEND:
14933  case ISD::ANY_EXTEND:
14934  case ISD::SHL:
14935  case ISD::SRL:
14936  case ISD::SUB:
14937  case ISD::ADD:
14938  case ISD::MUL:
14939  case ISD::AND:
14940  case ISD::OR:
14941  case ISD::XOR:
14942    return false;
14943  }
14944}
14945
14946/// IsDesirableToPromoteOp - This method query the target whether it is
14947/// beneficial for dag combiner to promote the specified node. If true, it
14948/// should return the desired promotion type by reference.
14949bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14950  EVT VT = Op.getValueType();
14951  if (VT != MVT::i16)
14952    return false;
14953
14954  bool Promote = false;
14955  bool Commute = false;
14956  switch (Op.getOpcode()) {
14957  default: break;
14958  case ISD::LOAD: {
14959    LoadSDNode *LD = cast<LoadSDNode>(Op);
14960    // If the non-extending load has a single use and it's not live out, then it
14961    // might be folded.
14962    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14963                                                     Op.hasOneUse()*/) {
14964      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14965             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14966        // The only case where we'd want to promote LOAD (rather then it being
14967        // promoted as an operand is when it's only use is liveout.
14968        if (UI->getOpcode() != ISD::CopyToReg)
14969          return false;
14970      }
14971    }
14972    Promote = true;
14973    break;
14974  }
14975  case ISD::SIGN_EXTEND:
14976  case ISD::ZERO_EXTEND:
14977  case ISD::ANY_EXTEND:
14978    Promote = true;
14979    break;
14980  case ISD::SHL:
14981  case ISD::SRL: {
14982    SDValue N0 = Op.getOperand(0);
14983    // Look out for (store (shl (load), x)).
14984    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14985      return false;
14986    Promote = true;
14987    break;
14988  }
14989  case ISD::ADD:
14990  case ISD::MUL:
14991  case ISD::AND:
14992  case ISD::OR:
14993  case ISD::XOR:
14994    Commute = true;
14995    // fallthrough
14996  case ISD::SUB: {
14997    SDValue N0 = Op.getOperand(0);
14998    SDValue N1 = Op.getOperand(1);
14999    if (!Commute && MayFoldLoad(N1))
15000      return false;
15001    // Avoid disabling potential load folding opportunities.
15002    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15003      return false;
15004    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15005      return false;
15006    Promote = true;
15007  }
15008  }
15009
15010  PVT = MVT::i32;
15011  return Promote;
15012}
15013
15014//===----------------------------------------------------------------------===//
15015//                           X86 Inline Assembly Support
15016//===----------------------------------------------------------------------===//
15017
15018namespace {
15019  // Helper to match a string separated by whitespace.
15020  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15021    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15022
15023    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15024      StringRef piece(*args[i]);
15025      if (!s.startswith(piece)) // Check if the piece matches.
15026        return false;
15027
15028      s = s.substr(piece.size());
15029      StringRef::size_type pos = s.find_first_not_of(" \t");
15030      if (pos == 0) // We matched a prefix.
15031        return false;
15032
15033      s = s.substr(pos);
15034    }
15035
15036    return s.empty();
15037  }
15038  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15039}
15040
15041bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15042  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15043
15044  std::string AsmStr = IA->getAsmString();
15045
15046  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15047  if (!Ty || Ty->getBitWidth() % 16 != 0)
15048    return false;
15049
15050  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15051  SmallVector<StringRef, 4> AsmPieces;
15052  SplitString(AsmStr, AsmPieces, ";\n");
15053
15054  switch (AsmPieces.size()) {
15055  default: return false;
15056  case 1:
15057    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15058    // we will turn this bswap into something that will be lowered to logical
15059    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15060    // lower so don't worry about this.
15061    // bswap $0
15062    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15063        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15064        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15065        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15066        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15067        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15068      // No need to check constraints, nothing other than the equivalent of
15069      // "=r,0" would be valid here.
15070      return IntrinsicLowering::LowerToByteSwap(CI);
15071    }
15072
15073    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15074    if (CI->getType()->isIntegerTy(16) &&
15075        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15076        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15077         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15078      AsmPieces.clear();
15079      const std::string &ConstraintsStr = IA->getConstraintString();
15080      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15081      std::sort(AsmPieces.begin(), AsmPieces.end());
15082      if (AsmPieces.size() == 4 &&
15083          AsmPieces[0] == "~{cc}" &&
15084          AsmPieces[1] == "~{dirflag}" &&
15085          AsmPieces[2] == "~{flags}" &&
15086          AsmPieces[3] == "~{fpsr}")
15087      return IntrinsicLowering::LowerToByteSwap(CI);
15088    }
15089    break;
15090  case 3:
15091    if (CI->getType()->isIntegerTy(32) &&
15092        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15093        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15094        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15095        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15096      AsmPieces.clear();
15097      const std::string &ConstraintsStr = IA->getConstraintString();
15098      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15099      std::sort(AsmPieces.begin(), AsmPieces.end());
15100      if (AsmPieces.size() == 4 &&
15101          AsmPieces[0] == "~{cc}" &&
15102          AsmPieces[1] == "~{dirflag}" &&
15103          AsmPieces[2] == "~{flags}" &&
15104          AsmPieces[3] == "~{fpsr}")
15105        return IntrinsicLowering::LowerToByteSwap(CI);
15106    }
15107
15108    if (CI->getType()->isIntegerTy(64)) {
15109      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15110      if (Constraints.size() >= 2 &&
15111          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15112          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15113        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15114        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15115            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15116            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15117          return IntrinsicLowering::LowerToByteSwap(CI);
15118      }
15119    }
15120    break;
15121  }
15122  return false;
15123}
15124
15125
15126
15127/// getConstraintType - Given a constraint letter, return the type of
15128/// constraint it is for this target.
15129X86TargetLowering::ConstraintType
15130X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15131  if (Constraint.size() == 1) {
15132    switch (Constraint[0]) {
15133    case 'R':
15134    case 'q':
15135    case 'Q':
15136    case 'f':
15137    case 't':
15138    case 'u':
15139    case 'y':
15140    case 'x':
15141    case 'Y':
15142    case 'l':
15143      return C_RegisterClass;
15144    case 'a':
15145    case 'b':
15146    case 'c':
15147    case 'd':
15148    case 'S':
15149    case 'D':
15150    case 'A':
15151      return C_Register;
15152    case 'I':
15153    case 'J':
15154    case 'K':
15155    case 'L':
15156    case 'M':
15157    case 'N':
15158    case 'G':
15159    case 'C':
15160    case 'e':
15161    case 'Z':
15162      return C_Other;
15163    default:
15164      break;
15165    }
15166  }
15167  return TargetLowering::getConstraintType(Constraint);
15168}
15169
15170/// Examine constraint type and operand type and determine a weight value.
15171/// This object must already have been set up with the operand type
15172/// and the current alternative constraint selected.
15173TargetLowering::ConstraintWeight
15174  X86TargetLowering::getSingleConstraintMatchWeight(
15175    AsmOperandInfo &info, const char *constraint) const {
15176  ConstraintWeight weight = CW_Invalid;
15177  Value *CallOperandVal = info.CallOperandVal;
15178    // If we don't have a value, we can't do a match,
15179    // but allow it at the lowest weight.
15180  if (CallOperandVal == NULL)
15181    return CW_Default;
15182  Type *type = CallOperandVal->getType();
15183  // Look at the constraint type.
15184  switch (*constraint) {
15185  default:
15186    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15187  case 'R':
15188  case 'q':
15189  case 'Q':
15190  case 'a':
15191  case 'b':
15192  case 'c':
15193  case 'd':
15194  case 'S':
15195  case 'D':
15196  case 'A':
15197    if (CallOperandVal->getType()->isIntegerTy())
15198      weight = CW_SpecificReg;
15199    break;
15200  case 'f':
15201  case 't':
15202  case 'u':
15203      if (type->isFloatingPointTy())
15204        weight = CW_SpecificReg;
15205      break;
15206  case 'y':
15207      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15208        weight = CW_SpecificReg;
15209      break;
15210  case 'x':
15211  case 'Y':
15212    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15213        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15214      weight = CW_Register;
15215    break;
15216  case 'I':
15217    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15218      if (C->getZExtValue() <= 31)
15219        weight = CW_Constant;
15220    }
15221    break;
15222  case 'J':
15223    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15224      if (C->getZExtValue() <= 63)
15225        weight = CW_Constant;
15226    }
15227    break;
15228  case 'K':
15229    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15230      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15231        weight = CW_Constant;
15232    }
15233    break;
15234  case 'L':
15235    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15236      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15237        weight = CW_Constant;
15238    }
15239    break;
15240  case 'M':
15241    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15242      if (C->getZExtValue() <= 3)
15243        weight = CW_Constant;
15244    }
15245    break;
15246  case 'N':
15247    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15248      if (C->getZExtValue() <= 0xff)
15249        weight = CW_Constant;
15250    }
15251    break;
15252  case 'G':
15253  case 'C':
15254    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15255      weight = CW_Constant;
15256    }
15257    break;
15258  case 'e':
15259    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15260      if ((C->getSExtValue() >= -0x80000000LL) &&
15261          (C->getSExtValue() <= 0x7fffffffLL))
15262        weight = CW_Constant;
15263    }
15264    break;
15265  case 'Z':
15266    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15267      if (C->getZExtValue() <= 0xffffffff)
15268        weight = CW_Constant;
15269    }
15270    break;
15271  }
15272  return weight;
15273}
15274
15275/// LowerXConstraint - try to replace an X constraint, which matches anything,
15276/// with another that has more specific requirements based on the type of the
15277/// corresponding operand.
15278const char *X86TargetLowering::
15279LowerXConstraint(EVT ConstraintVT) const {
15280  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15281  // 'f' like normal targets.
15282  if (ConstraintVT.isFloatingPoint()) {
15283    if (Subtarget->hasSSE2())
15284      return "Y";
15285    if (Subtarget->hasSSE1())
15286      return "x";
15287  }
15288
15289  return TargetLowering::LowerXConstraint(ConstraintVT);
15290}
15291
15292/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15293/// vector.  If it is invalid, don't add anything to Ops.
15294void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15295                                                     std::string &Constraint,
15296                                                     std::vector<SDValue>&Ops,
15297                                                     SelectionDAG &DAG) const {
15298  SDValue Result(0, 0);
15299
15300  // Only support length 1 constraints for now.
15301  if (Constraint.length() > 1) return;
15302
15303  char ConstraintLetter = Constraint[0];
15304  switch (ConstraintLetter) {
15305  default: break;
15306  case 'I':
15307    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15308      if (C->getZExtValue() <= 31) {
15309        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15310        break;
15311      }
15312    }
15313    return;
15314  case 'J':
15315    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15316      if (C->getZExtValue() <= 63) {
15317        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15318        break;
15319      }
15320    }
15321    return;
15322  case 'K':
15323    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15324      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15325        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15326        break;
15327      }
15328    }
15329    return;
15330  case 'N':
15331    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15332      if (C->getZExtValue() <= 255) {
15333        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15334        break;
15335      }
15336    }
15337    return;
15338  case 'e': {
15339    // 32-bit signed value
15340    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15341      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15342                                           C->getSExtValue())) {
15343        // Widen to 64 bits here to get it sign extended.
15344        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15345        break;
15346      }
15347    // FIXME gcc accepts some relocatable values here too, but only in certain
15348    // memory models; it's complicated.
15349    }
15350    return;
15351  }
15352  case 'Z': {
15353    // 32-bit unsigned value
15354    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15355      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15356                                           C->getZExtValue())) {
15357        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15358        break;
15359      }
15360    }
15361    // FIXME gcc accepts some relocatable values here too, but only in certain
15362    // memory models; it's complicated.
15363    return;
15364  }
15365  case 'i': {
15366    // Literal immediates are always ok.
15367    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15368      // Widen to 64 bits here to get it sign extended.
15369      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15370      break;
15371    }
15372
15373    // In any sort of PIC mode addresses need to be computed at runtime by
15374    // adding in a register or some sort of table lookup.  These can't
15375    // be used as immediates.
15376    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15377      return;
15378
15379    // If we are in non-pic codegen mode, we allow the address of a global (with
15380    // an optional displacement) to be used with 'i'.
15381    GlobalAddressSDNode *GA = 0;
15382    int64_t Offset = 0;
15383
15384    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15385    while (1) {
15386      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15387        Offset += GA->getOffset();
15388        break;
15389      } else if (Op.getOpcode() == ISD::ADD) {
15390        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15391          Offset += C->getZExtValue();
15392          Op = Op.getOperand(0);
15393          continue;
15394        }
15395      } else if (Op.getOpcode() == ISD::SUB) {
15396        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15397          Offset += -C->getZExtValue();
15398          Op = Op.getOperand(0);
15399          continue;
15400        }
15401      }
15402
15403      // Otherwise, this isn't something we can handle, reject it.
15404      return;
15405    }
15406
15407    const GlobalValue *GV = GA->getGlobal();
15408    // If we require an extra load to get this address, as in PIC mode, we
15409    // can't accept it.
15410    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15411                                                        getTargetMachine())))
15412      return;
15413
15414    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15415                                        GA->getValueType(0), Offset);
15416    break;
15417  }
15418  }
15419
15420  if (Result.getNode()) {
15421    Ops.push_back(Result);
15422    return;
15423  }
15424  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15425}
15426
15427std::pair<unsigned, const TargetRegisterClass*>
15428X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15429                                                EVT VT) const {
15430  // First, see if this is a constraint that directly corresponds to an LLVM
15431  // register class.
15432  if (Constraint.size() == 1) {
15433    // GCC Constraint Letters
15434    switch (Constraint[0]) {
15435    default: break;
15436      // TODO: Slight differences here in allocation order and leaving
15437      // RIP in the class. Do they matter any more here than they do
15438      // in the normal allocation?
15439    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15440      if (Subtarget->is64Bit()) {
15441	if (VT == MVT::i32 || VT == MVT::f32)
15442	  return std::make_pair(0U, X86::GR32RegisterClass);
15443	else if (VT == MVT::i16)
15444	  return std::make_pair(0U, X86::GR16RegisterClass);
15445	else if (VT == MVT::i8 || VT == MVT::i1)
15446	  return std::make_pair(0U, X86::GR8RegisterClass);
15447	else if (VT == MVT::i64 || VT == MVT::f64)
15448	  return std::make_pair(0U, X86::GR64RegisterClass);
15449	break;
15450      }
15451      // 32-bit fallthrough
15452    case 'Q':   // Q_REGS
15453      if (VT == MVT::i32 || VT == MVT::f32)
15454	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15455      else if (VT == MVT::i16)
15456	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15457      else if (VT == MVT::i8 || VT == MVT::i1)
15458	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15459      else if (VT == MVT::i64)
15460	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15461      break;
15462    case 'r':   // GENERAL_REGS
15463    case 'l':   // INDEX_REGS
15464      if (VT == MVT::i8 || VT == MVT::i1)
15465        return std::make_pair(0U, X86::GR8RegisterClass);
15466      if (VT == MVT::i16)
15467        return std::make_pair(0U, X86::GR16RegisterClass);
15468      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15469        return std::make_pair(0U, X86::GR32RegisterClass);
15470      return std::make_pair(0U, X86::GR64RegisterClass);
15471    case 'R':   // LEGACY_REGS
15472      if (VT == MVT::i8 || VT == MVT::i1)
15473        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15474      if (VT == MVT::i16)
15475        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15476      if (VT == MVT::i32 || !Subtarget->is64Bit())
15477        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15478      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15479    case 'f':  // FP Stack registers.
15480      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15481      // value to the correct fpstack register class.
15482      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15483        return std::make_pair(0U, X86::RFP32RegisterClass);
15484      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15485        return std::make_pair(0U, X86::RFP64RegisterClass);
15486      return std::make_pair(0U, X86::RFP80RegisterClass);
15487    case 'y':   // MMX_REGS if MMX allowed.
15488      if (!Subtarget->hasMMX()) break;
15489      return std::make_pair(0U, X86::VR64RegisterClass);
15490    case 'Y':   // SSE_REGS if SSE2 allowed
15491      if (!Subtarget->hasSSE2()) break;
15492      // FALL THROUGH.
15493    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15494      if (!Subtarget->hasSSE1()) break;
15495
15496      switch (VT.getSimpleVT().SimpleTy) {
15497      default: break;
15498      // Scalar SSE types.
15499      case MVT::f32:
15500      case MVT::i32:
15501        return std::make_pair(0U, X86::FR32RegisterClass);
15502      case MVT::f64:
15503      case MVT::i64:
15504        return std::make_pair(0U, X86::FR64RegisterClass);
15505      // Vector types.
15506      case MVT::v16i8:
15507      case MVT::v8i16:
15508      case MVT::v4i32:
15509      case MVT::v2i64:
15510      case MVT::v4f32:
15511      case MVT::v2f64:
15512        return std::make_pair(0U, X86::VR128RegisterClass);
15513      // AVX types.
15514      case MVT::v32i8:
15515      case MVT::v16i16:
15516      case MVT::v8i32:
15517      case MVT::v4i64:
15518      case MVT::v8f32:
15519      case MVT::v4f64:
15520        return std::make_pair(0U, X86::VR256RegisterClass);
15521
15522      }
15523      break;
15524    }
15525  }
15526
15527  // Use the default implementation in TargetLowering to convert the register
15528  // constraint into a member of a register class.
15529  std::pair<unsigned, const TargetRegisterClass*> Res;
15530  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15531
15532  // Not found as a standard register?
15533  if (Res.second == 0) {
15534    // Map st(0) -> st(7) -> ST0
15535    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15536        tolower(Constraint[1]) == 's' &&
15537        tolower(Constraint[2]) == 't' &&
15538        Constraint[3] == '(' &&
15539        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15540        Constraint[5] == ')' &&
15541        Constraint[6] == '}') {
15542
15543      Res.first = X86::ST0+Constraint[4]-'0';
15544      Res.second = X86::RFP80RegisterClass;
15545      return Res;
15546    }
15547
15548    // GCC allows "st(0)" to be called just plain "st".
15549    if (StringRef("{st}").equals_lower(Constraint)) {
15550      Res.first = X86::ST0;
15551      Res.second = X86::RFP80RegisterClass;
15552      return Res;
15553    }
15554
15555    // flags -> EFLAGS
15556    if (StringRef("{flags}").equals_lower(Constraint)) {
15557      Res.first = X86::EFLAGS;
15558      Res.second = X86::CCRRegisterClass;
15559      return Res;
15560    }
15561
15562    // 'A' means EAX + EDX.
15563    if (Constraint == "A") {
15564      Res.first = X86::EAX;
15565      Res.second = X86::GR32_ADRegisterClass;
15566      return Res;
15567    }
15568    return Res;
15569  }
15570
15571  // Otherwise, check to see if this is a register class of the wrong value
15572  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15573  // turn into {ax},{dx}.
15574  if (Res.second->hasType(VT))
15575    return Res;   // Correct type already, nothing to do.
15576
15577  // All of the single-register GCC register classes map their values onto
15578  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15579  // really want an 8-bit or 32-bit register, map to the appropriate register
15580  // class and return the appropriate register.
15581  if (Res.second == X86::GR16RegisterClass) {
15582    if (VT == MVT::i8) {
15583      unsigned DestReg = 0;
15584      switch (Res.first) {
15585      default: break;
15586      case X86::AX: DestReg = X86::AL; break;
15587      case X86::DX: DestReg = X86::DL; break;
15588      case X86::CX: DestReg = X86::CL; break;
15589      case X86::BX: DestReg = X86::BL; break;
15590      }
15591      if (DestReg) {
15592        Res.first = DestReg;
15593        Res.second = X86::GR8RegisterClass;
15594      }
15595    } else if (VT == MVT::i32) {
15596      unsigned DestReg = 0;
15597      switch (Res.first) {
15598      default: break;
15599      case X86::AX: DestReg = X86::EAX; break;
15600      case X86::DX: DestReg = X86::EDX; break;
15601      case X86::CX: DestReg = X86::ECX; break;
15602      case X86::BX: DestReg = X86::EBX; break;
15603      case X86::SI: DestReg = X86::ESI; break;
15604      case X86::DI: DestReg = X86::EDI; break;
15605      case X86::BP: DestReg = X86::EBP; break;
15606      case X86::SP: DestReg = X86::ESP; break;
15607      }
15608      if (DestReg) {
15609        Res.first = DestReg;
15610        Res.second = X86::GR32RegisterClass;
15611      }
15612    } else if (VT == MVT::i64) {
15613      unsigned DestReg = 0;
15614      switch (Res.first) {
15615      default: break;
15616      case X86::AX: DestReg = X86::RAX; break;
15617      case X86::DX: DestReg = X86::RDX; break;
15618      case X86::CX: DestReg = X86::RCX; break;
15619      case X86::BX: DestReg = X86::RBX; break;
15620      case X86::SI: DestReg = X86::RSI; break;
15621      case X86::DI: DestReg = X86::RDI; break;
15622      case X86::BP: DestReg = X86::RBP; break;
15623      case X86::SP: DestReg = X86::RSP; break;
15624      }
15625      if (DestReg) {
15626        Res.first = DestReg;
15627        Res.second = X86::GR64RegisterClass;
15628      }
15629    }
15630  } else if (Res.second == X86::FR32RegisterClass ||
15631             Res.second == X86::FR64RegisterClass ||
15632             Res.second == X86::VR128RegisterClass) {
15633    // Handle references to XMM physical registers that got mapped into the
15634    // wrong class.  This can happen with constraints like {xmm0} where the
15635    // target independent register mapper will just pick the first match it can
15636    // find, ignoring the required type.
15637    if (VT == MVT::f32)
15638      Res.second = X86::FR32RegisterClass;
15639    else if (VT == MVT::f64)
15640      Res.second = X86::FR64RegisterClass;
15641    else if (X86::VR128RegisterClass->hasType(VT))
15642      Res.second = X86::VR128RegisterClass;
15643  }
15644
15645  return Res;
15646}
15647