X86ISelLowering.cpp revision 5b8a1db7ea6510a2589f710d50754599da742de9
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55#include <bitset>
56using namespace llvm;
57using namespace dwarf;
58
59STATISTIC(NumTailCalls, "Number of tail calls");
60
61static cl::opt<bool> UseRegMask("x86-use-regmask",
62                                cl::desc("Use register masks for x86 calls"));
63
64// Forward declarations.
65static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
66                       SDValue V2);
67
68/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
69/// sets things up to match to an AVX VEXTRACTF128 instruction or a
70/// simple subregister reference.  Idx is an index in the 128 bits we
71/// want.  It need not be aligned to a 128-bit bounday.  That makes
72/// lowering EXTRACT_VECTOR_ELT operations easier.
73static SDValue Extract128BitVector(SDValue Vec,
74                                   SDValue Idx,
75                                   SelectionDAG &DAG,
76                                   DebugLoc dl) {
77  EVT VT = Vec.getValueType();
78  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
79  EVT ElVT = VT.getVectorElementType();
80  int Factor = VT.getSizeInBits()/128;
81  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
82                                  VT.getVectorNumElements()/Factor);
83
84  // Extract from UNDEF is UNDEF.
85  if (Vec.getOpcode() == ISD::UNDEF)
86    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
87
88  if (isa<ConstantSDNode>(Idx)) {
89    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
90
91    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
92    // we can match to VEXTRACTF128.
93    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
94
95    // This is the index of the first element of the 128-bit chunk
96    // we want.
97    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
98                                 * ElemsPerChunk);
99
100    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
101    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
102                                 VecIdx);
103
104    return Result;
105  }
106
107  return SDValue();
108}
109
110/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
111/// sets things up to match to an AVX VINSERTF128 instruction or a
112/// simple superregister reference.  Idx is an index in the 128 bits
113/// we want.  It need not be aligned to a 128-bit bounday.  That makes
114/// lowering INSERT_VECTOR_ELT operations easier.
115static SDValue Insert128BitVector(SDValue Result,
116                                  SDValue Vec,
117                                  SDValue Idx,
118                                  SelectionDAG &DAG,
119                                  DebugLoc dl) {
120  if (isa<ConstantSDNode>(Idx)) {
121    EVT VT = Vec.getValueType();
122    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
123
124    EVT ElVT = VT.getVectorElementType();
125    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
126    EVT ResultVT = Result.getValueType();
127
128    // Insert the relevant 128 bits.
129    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
130
131    // This is the index of the first element of the 128-bit chunk
132    // we want.
133    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
134                                 * ElemsPerChunk);
135
136    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
137    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
138                         VecIdx);
139    return Result;
140  }
141
142  return SDValue();
143}
144
145static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
146  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
147  bool is64Bit = Subtarget->is64Bit();
148
149  if (Subtarget->isTargetEnvMacho()) {
150    if (is64Bit)
151      return new X8664_MachoTargetObjectFile();
152    return new TargetLoweringObjectFileMachO();
153  }
154
155  if (Subtarget->isTargetELF())
156    return new TargetLoweringObjectFileELF();
157  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
158    return new TargetLoweringObjectFileCOFF();
159  llvm_unreachable("unknown subtarget type");
160}
161
162X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
163  : TargetLowering(TM, createTLOF(TM)) {
164  Subtarget = &TM.getSubtarget<X86Subtarget>();
165  X86ScalarSSEf64 = Subtarget->hasSSE2();
166  X86ScalarSSEf32 = Subtarget->hasSSE1();
167  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
168
169  RegInfo = TM.getRegisterInfo();
170  TD = getTargetData();
171
172  // Set up the TargetLowering object.
173  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
174
175  // X86 is weird, it always uses i8 for shift amounts and setcc results.
176  setBooleanContents(ZeroOrOneBooleanContent);
177  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
178  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
179
180  // For 64-bit since we have so many registers use the ILP scheduler, for
181  // 32-bit code use the register pressure specific scheduling.
182  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
183  if (Subtarget->is64Bit())
184    setSchedulingPreference(Sched::ILP);
185  else if (Subtarget->isAtom())
186    setSchedulingPreference(Sched::Hybrid);
187  else
188    setSchedulingPreference(Sched::RegPressure);
189  setStackPointerRegisterToSaveRestore(X86StackPtr);
190
191  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
192    // Setup Windows compiler runtime calls.
193    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
194    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
195    setLibcallName(RTLIB::SREM_I64, "_allrem");
196    setLibcallName(RTLIB::UREM_I64, "_aullrem");
197    setLibcallName(RTLIB::MUL_I64, "_allmul");
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
200    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
201    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
207  }
208
209  if (Subtarget->isTargetDarwin()) {
210    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
211    setUseUnderscoreSetJmp(false);
212    setUseUnderscoreLongJmp(false);
213  } else if (Subtarget->isTargetMingw()) {
214    // MS runtime is weird: it exports _setjmp, but longjmp!
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(false);
217  } else {
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(true);
220  }
221
222  // Set up the register classes.
223  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
224  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
225  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
226  if (Subtarget->is64Bit())
227    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
228
229  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
230
231  // We don't accept any truncstore of integer registers.
232  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
233  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
235  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
236  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
237  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
238
239  // SETOEQ and SETUNE require checking two conditions.
240  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
243  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
246
247  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
248  // operation.
249  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
252
253  if (Subtarget->is64Bit()) {
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256  } else if (!TM.Options.UseSoftFloat) {
257    // We have an algorithm for SSE2->double, and we turn this into a
258    // 64-bit FILD followed by conditional FADD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
260    // We have an algorithm for SSE2, and we turn this into a 64-bit
261    // FILD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
263  }
264
265  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
266  // this operation.
267  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
269
270  if (!TM.Options.UseSoftFloat) {
271    // SSE has no i16 to fp conversion, only i32
272    if (X86ScalarSSEf32) {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
274      // f32 and f64 cases are Legal, f80 case is not
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    } else {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    }
280  } else {
281    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
283  }
284
285  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
286  // are Legal, f80 is custom lowered.
287  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
288  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
289
290  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
291  // this operation.
292  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
294
295  if (X86ScalarSSEf32) {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
297    // f32 and f64 cases are Legal, f80 case is not
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  } else {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  }
303
304  // Handle FP_TO_UINT by promoting the destination to a larger signed
305  // conversion.
306  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
309
310  if (Subtarget->is64Bit()) {
311    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
313  } else if (!TM.Options.UseSoftFloat) {
314    // Since AVX is a superset of SSE3, only check for SSE here.
315    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  // Promote the i8 variants and force them on up to i32 which has a shorter
379  // encoding.
380  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
381  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
382  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
383  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
384  if (Subtarget->hasBMI()) {
385    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
387    if (Subtarget->is64Bit())
388      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
389  } else {
390    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
391    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
392    if (Subtarget->is64Bit())
393      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
394  }
395
396  if (Subtarget->hasLZCNT()) {
397    // When promoting the i8 variants, force them to i32 for a shorter
398    // encoding.
399    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
400    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
402    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
403    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
405    if (Subtarget->is64Bit())
406      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
407  } else {
408    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
414    if (Subtarget->is64Bit()) {
415      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
416      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
417    }
418  }
419
420  if (Subtarget->hasPOPCNT()) {
421    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
422  } else {
423    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
424    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
426    if (Subtarget->is64Bit())
427      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
428  }
429
430  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
431  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
432
433  // These should be promoted to a larger select which is supported.
434  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
435  // X86 wants to expand cmov itself.
436  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
437  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
448  if (Subtarget->is64Bit()) {
449    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
450    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
451  }
452  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
453
454  // Darwin ABI issue.
455  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
456  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
457  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
459  if (Subtarget->is64Bit())
460    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
461  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
462  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
463  if (Subtarget->is64Bit()) {
464    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
465    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
466    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
467    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
468    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
469  }
470  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
471  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
472  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
474  if (Subtarget->is64Bit()) {
475    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
476    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
478  }
479
480  if (Subtarget->hasSSE1())
481    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
482
483  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
484  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
485
486  // On X86 and X86-64, atomic operations are lowered to locked instructions.
487  // Locked instructions, in turn, have implicit fence semantics (all memory
488  // operations are flushed before issuing the locked instruction, and they
489  // are not buffered), so we can fold away the common pattern of
490  // fence-atomic-fence.
491  setShouldFoldAtomicFences(true);
492
493  // Expand certain atomics
494  for (unsigned i = 0, e = 4; i != e; ++i) {
495    MVT VT = IntVTs[i];
496    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
497    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
498    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
499  }
500
501  if (!Subtarget->is64Bit()) {
502    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
510  }
511
512  if (Subtarget->hasCmpxchg16b()) {
513    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
514  }
515
516  // FIXME - use subtarget debug flags
517  if (!Subtarget->isTargetDarwin() &&
518      !Subtarget->isTargetELF() &&
519      !Subtarget->isTargetCygMing()) {
520    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
521  }
522
523  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
524  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
525  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
526  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
527  if (Subtarget->is64Bit()) {
528    setExceptionPointerRegister(X86::RAX);
529    setExceptionSelectorRegister(X86::RDX);
530  } else {
531    setExceptionPointerRegister(X86::EAX);
532    setExceptionSelectorRegister(X86::EDX);
533  }
534  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
536
537  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
538  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
539
540  setOperationAction(ISD::TRAP, MVT::Other, Legal);
541
542  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
543  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
544  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
545  if (Subtarget->is64Bit()) {
546    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
548  } else {
549    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
550    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
551  }
552
553  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
554  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
555
556  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else if (TM.Options.EnableSegmentedStacks)
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Custom);
562  else
563    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
564                       MVT::i64 : MVT::i32, Expand);
565
566  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
567    // f32 and f64 use SSE.
568    // Set up the FP register classes.
569    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
570    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
571
572    // Use ANDPD to simulate FABS.
573    setOperationAction(ISD::FABS , MVT::f64, Custom);
574    setOperationAction(ISD::FABS , MVT::f32, Custom);
575
576    // Use XORP to simulate FNEG.
577    setOperationAction(ISD::FNEG , MVT::f64, Custom);
578    setOperationAction(ISD::FNEG , MVT::f32, Custom);
579
580    // Use ANDPD and ORPD to simulate FCOPYSIGN.
581    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
582    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
583
584    // Lower this to FGETSIGNx86 plus an AND.
585    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
586    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
587
588    // We don't support sin/cos/fmod
589    setOperationAction(ISD::FSIN , MVT::f64, Expand);
590    setOperationAction(ISD::FCOS , MVT::f64, Expand);
591    setOperationAction(ISD::FSIN , MVT::f32, Expand);
592    setOperationAction(ISD::FCOS , MVT::f32, Expand);
593
594    // Expand FP immediates into loads from the stack, except for the special
595    // cases we handle.
596    addLegalFPImmediate(APFloat(+0.0)); // xorpd
597    addLegalFPImmediate(APFloat(+0.0f)); // xorps
598  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
599    // Use SSE for f32, x87 for f64.
600    // Set up the FP register classes.
601    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
602    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
603
604    // Use ANDPS to simulate FABS.
605    setOperationAction(ISD::FABS , MVT::f32, Custom);
606
607    // Use XORP to simulate FNEG.
608    setOperationAction(ISD::FNEG , MVT::f32, Custom);
609
610    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
611
612    // Use ANDPS and ORPS to simulate FCOPYSIGN.
613    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
614    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
615
616    // We don't support sin/cos/fmod
617    setOperationAction(ISD::FSIN , MVT::f32, Expand);
618    setOperationAction(ISD::FCOS , MVT::f32, Expand);
619
620    // Special cases we handle for FP constants.
621    addLegalFPImmediate(APFloat(+0.0f)); // xorps
622    addLegalFPImmediate(APFloat(+0.0)); // FLD0
623    addLegalFPImmediate(APFloat(+1.0)); // FLD1
624    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
625    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
626
627    if (!TM.Options.UnsafeFPMath) {
628      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
629      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
630    }
631  } else if (!TM.Options.UseSoftFloat) {
632    // f32 and f64 in x87.
633    // Set up the FP register classes.
634    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
635    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
636
637    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
638    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
639    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
641
642    if (!TM.Options.UnsafeFPMath) {
643      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
644      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
645    }
646    addLegalFPImmediate(APFloat(+0.0)); // FLD0
647    addLegalFPImmediate(APFloat(+1.0)); // FLD1
648    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
649    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
650    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
651    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
652    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
653    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
654  }
655
656  // We don't support FMA.
657  setOperationAction(ISD::FMA, MVT::f64, Expand);
658  setOperationAction(ISD::FMA, MVT::f32, Expand);
659
660  // Long double always uses X87.
661  if (!TM.Options.UseSoftFloat) {
662    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
663    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
664    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
665    {
666      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
667      addLegalFPImmediate(TmpFlt);  // FLD0
668      TmpFlt.changeSign();
669      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
670
671      bool ignored;
672      APFloat TmpFlt2(+1.0);
673      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
674                      &ignored);
675      addLegalFPImmediate(TmpFlt2);  // FLD1
676      TmpFlt2.changeSign();
677      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
678    }
679
680    if (!TM.Options.UnsafeFPMath) {
681      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
682      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
683    }
684
685    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
686    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
687    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
688    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
689    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
690    setOperationAction(ISD::FMA, MVT::f80, Expand);
691  }
692
693  // Always use a library call for pow.
694  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
695  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
697
698  setOperationAction(ISD::FLOG, MVT::f80, Expand);
699  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
701  setOperationAction(ISD::FEXP, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
703
704  // First set operation action for all vector types to either promote
705  // (for widening) or expand (for scalarization). Then we will selectively
706  // turn on ones that can be effectively codegen'd.
707  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
708       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
709    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
726    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
761    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
766    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
767         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
768      setTruncStoreAction((MVT::SimpleValueType)VT,
769                          (MVT::SimpleValueType)InnerVT, Expand);
770    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
771    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
773  }
774
775  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
776  // with -msoft-float, disable use of MMX as well.
777  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
778    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
779    // No operations on x86mmx supported, everything uses intrinsics.
780  }
781
782  // MMX-sized vectors (other than x86mmx) are expected to be expanded
783  // into smaller operations.
784  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
785  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
786  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
788  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
789  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
790  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
791  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
792  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
793  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
794  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
795  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
796  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
797  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
798  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
799  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
804  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
806  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
807  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
813
814  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
815    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
816
817    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
822    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
823    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
824    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
825    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
826    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
827    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
828    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
829  }
830
831  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
832    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
833
834    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
835    // registers cannot be used even for integer operations.
836    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
837    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
840
841    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
842    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
843    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
844    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
845    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
846    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
847    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
848    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
849    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
850    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
851    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
856    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
857
858    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
859    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
862
863    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
865    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
868
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
874
875    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
876    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
877      EVT VT = (MVT::SimpleValueType)i;
878      // Do not attempt to custom lower non-power-of-2 vectors
879      if (!isPowerOf2_32(VT.getVectorNumElements()))
880        continue;
881      // Do not attempt to custom lower non-128-bit vectors
882      if (!VT.is128BitVector())
883        continue;
884      setOperationAction(ISD::BUILD_VECTOR,
885                         VT.getSimpleVT().SimpleTy, Custom);
886      setOperationAction(ISD::VECTOR_SHUFFLE,
887                         VT.getSimpleVT().SimpleTy, Custom);
888      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
889                         VT.getSimpleVT().SimpleTy, Custom);
890    }
891
892    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
894    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
896    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
897    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
898
899    if (Subtarget->is64Bit()) {
900      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
901      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
902    }
903
904    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
905    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
906      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
907      EVT VT = SVT;
908
909      // Do not attempt to promote non-128-bit vectors
910      if (!VT.is128BitVector())
911        continue;
912
913      setOperationAction(ISD::AND,    SVT, Promote);
914      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
915      setOperationAction(ISD::OR,     SVT, Promote);
916      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
917      setOperationAction(ISD::XOR,    SVT, Promote);
918      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
919      setOperationAction(ISD::LOAD,   SVT, Promote);
920      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
921      setOperationAction(ISD::SELECT, SVT, Promote);
922      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
923    }
924
925    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
926
927    // Custom lower v2i64 and v2f64 selects.
928    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
929    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
930    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
931    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
932
933    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
934    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
935  }
936
937  if (Subtarget->hasSSE41()) {
938    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
939    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
940    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
941    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
942    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
943    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
944    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
945    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
946    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
947    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
948
949    // FIXME: Do we need to handle scalar-to-vector here?
950    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
951
952    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
957
958    // i8 and i16 vectors are custom , because the source register and source
959    // source memory operand types are not the same width.  f32 vectors are
960    // custom since the immediate controlling the insert encodes additional
961    // information.
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
966
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
971
972    // FIXME: these should be Legal but thats only for the case where
973    // the index is constant.  For now custom expand to deal with that.
974    if (Subtarget->is64Bit()) {
975      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
976      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
977    }
978  }
979
980  if (Subtarget->hasSSE2()) {
981    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
986
987    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
988    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
989
990    if (Subtarget->hasAVX2()) {
991      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
995      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
996
997      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
998    } else {
999      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1003      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1004
1005      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1006    }
1007  }
1008
1009  if (Subtarget->hasSSE42())
1010    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1011
1012  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1013    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1014    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1019
1020    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1021    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1023
1024    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1029    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1030
1031    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1036    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1037
1038    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1039    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1041
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1048
1049    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1056    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1057
1058    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1059    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1062
1063    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1064    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1066
1067    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1068    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1071
1072    if (Subtarget->hasAVX2()) {
1073      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1074      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1077
1078      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1079      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1082
1083      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1084      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1085      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1086      // Don't lower v32i8 because there is no 128-bit byte mul
1087
1088      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1089
1090      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1094      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1095
1096      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1097    } else {
1098      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1099      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1102
1103      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1104      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1107
1108      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1109      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1111      // Don't lower v32i8 because there is no 128-bit byte mul
1112
1113      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1117      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1118
1119      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1120    }
1121
1122    // Custom lower several nodes for 256-bit types.
1123    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1124                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1125      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1126      EVT VT = SVT;
1127
1128      // Extract subvector is special because the value type
1129      // (result) is 128-bit but the source is 256-bit wide.
1130      if (VT.is128BitVector())
1131        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1132
1133      // Do not attempt to custom lower other non-256-bit vectors
1134      if (!VT.is256BitVector())
1135        continue;
1136
1137      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1138      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1139      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1140      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1141      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1142      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1143    }
1144
1145    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1146    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1147      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1148      EVT VT = SVT;
1149
1150      // Do not attempt to promote non-256-bit vectors
1151      if (!VT.is256BitVector())
1152        continue;
1153
1154      setOperationAction(ISD::AND,    SVT, Promote);
1155      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1156      setOperationAction(ISD::OR,     SVT, Promote);
1157      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1158      setOperationAction(ISD::XOR,    SVT, Promote);
1159      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1160      setOperationAction(ISD::LOAD,   SVT, Promote);
1161      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1162      setOperationAction(ISD::SELECT, SVT, Promote);
1163      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1164    }
1165  }
1166
1167  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1168  // of this type with custom code.
1169  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1170         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1171    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1172                       Custom);
1173  }
1174
1175  // We want to custom lower some of our intrinsics.
1176  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1177
1178
1179  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1180  // handle type legalization for these operations here.
1181  //
1182  // FIXME: We really should do custom legalization for addition and
1183  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1184  // than generic legalization for 64-bit multiplication-with-overflow, though.
1185  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1186    // Add/Sub/Mul with overflow operations are custom lowered.
1187    MVT VT = IntVTs[i];
1188    setOperationAction(ISD::SADDO, VT, Custom);
1189    setOperationAction(ISD::UADDO, VT, Custom);
1190    setOperationAction(ISD::SSUBO, VT, Custom);
1191    setOperationAction(ISD::USUBO, VT, Custom);
1192    setOperationAction(ISD::SMULO, VT, Custom);
1193    setOperationAction(ISD::UMULO, VT, Custom);
1194  }
1195
1196  // There are no 8-bit 3-address imul/mul instructions
1197  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1198  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1199
1200  if (!Subtarget->is64Bit()) {
1201    // These libcalls are not available in 32-bit.
1202    setLibcallName(RTLIB::SHL_I128, 0);
1203    setLibcallName(RTLIB::SRL_I128, 0);
1204    setLibcallName(RTLIB::SRA_I128, 0);
1205  }
1206
1207  // We have target-specific dag combine patterns for the following nodes:
1208  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1209  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1210  setTargetDAGCombine(ISD::VSELECT);
1211  setTargetDAGCombine(ISD::SELECT);
1212  setTargetDAGCombine(ISD::SHL);
1213  setTargetDAGCombine(ISD::SRA);
1214  setTargetDAGCombine(ISD::SRL);
1215  setTargetDAGCombine(ISD::OR);
1216  setTargetDAGCombine(ISD::AND);
1217  setTargetDAGCombine(ISD::ADD);
1218  setTargetDAGCombine(ISD::FADD);
1219  setTargetDAGCombine(ISD::FSUB);
1220  setTargetDAGCombine(ISD::SUB);
1221  setTargetDAGCombine(ISD::LOAD);
1222  setTargetDAGCombine(ISD::STORE);
1223  setTargetDAGCombine(ISD::ZERO_EXTEND);
1224  setTargetDAGCombine(ISD::SIGN_EXTEND);
1225  setTargetDAGCombine(ISD::TRUNCATE);
1226  setTargetDAGCombine(ISD::SINT_TO_FP);
1227  if (Subtarget->is64Bit())
1228    setTargetDAGCombine(ISD::MUL);
1229  if (Subtarget->hasBMI())
1230    setTargetDAGCombine(ISD::XOR);
1231
1232  computeRegisterProperties();
1233
1234  // On Darwin, -Os means optimize for size without hurting performance,
1235  // do not reduce the limit.
1236  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1237  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1238  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1239  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1240  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1241  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1242  setPrefLoopAlignment(4); // 2^4 bytes.
1243  benefitFromCodePlacementOpt = true;
1244
1245  setPrefFunctionAlignment(4); // 2^4 bytes.
1246}
1247
1248
1249EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1250  if (!VT.isVector()) return MVT::i8;
1251  return VT.changeVectorElementTypeToInteger();
1252}
1253
1254
1255/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1256/// the desired ByVal argument alignment.
1257static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1258  if (MaxAlign == 16)
1259    return;
1260  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1261    if (VTy->getBitWidth() == 128)
1262      MaxAlign = 16;
1263  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1264    unsigned EltAlign = 0;
1265    getMaxByValAlign(ATy->getElementType(), EltAlign);
1266    if (EltAlign > MaxAlign)
1267      MaxAlign = EltAlign;
1268  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1269    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1270      unsigned EltAlign = 0;
1271      getMaxByValAlign(STy->getElementType(i), EltAlign);
1272      if (EltAlign > MaxAlign)
1273        MaxAlign = EltAlign;
1274      if (MaxAlign == 16)
1275        break;
1276    }
1277  }
1278  return;
1279}
1280
1281/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1282/// function arguments in the caller parameter area. For X86, aggregates
1283/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1284/// are at 4-byte boundaries.
1285unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1286  if (Subtarget->is64Bit()) {
1287    // Max of 8 and alignment of type.
1288    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1289    if (TyAlign > 8)
1290      return TyAlign;
1291    return 8;
1292  }
1293
1294  unsigned Align = 4;
1295  if (Subtarget->hasSSE1())
1296    getMaxByValAlign(Ty, Align);
1297  return Align;
1298}
1299
1300/// getOptimalMemOpType - Returns the target specific optimal type for load
1301/// and store operations as a result of memset, memcpy, and memmove
1302/// lowering. If DstAlign is zero that means it's safe to destination
1303/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1304/// means there isn't a need to check it against alignment requirement,
1305/// probably because the source does not need to be loaded. If
1306/// 'IsZeroVal' is true, that means it's safe to return a
1307/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1308/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1309/// constant so it does not need to be loaded.
1310/// It returns EVT::Other if the type should be determined using generic
1311/// target-independent logic.
1312EVT
1313X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1314                                       unsigned DstAlign, unsigned SrcAlign,
1315                                       bool IsZeroVal,
1316                                       bool MemcpyStrSrc,
1317                                       MachineFunction &MF) const {
1318  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1319  // linux.  This is because the stack realignment code can't handle certain
1320  // cases like PR2962.  This should be removed when PR2962 is fixed.
1321  const Function *F = MF.getFunction();
1322  if (IsZeroVal &&
1323      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1324    if (Size >= 16 &&
1325        (Subtarget->isUnalignedMemAccessFast() ||
1326         ((DstAlign == 0 || DstAlign >= 16) &&
1327          (SrcAlign == 0 || SrcAlign >= 16))) &&
1328        Subtarget->getStackAlignment() >= 16) {
1329      if (Subtarget->getStackAlignment() >= 32) {
1330        if (Subtarget->hasAVX2())
1331          return MVT::v8i32;
1332        if (Subtarget->hasAVX())
1333          return MVT::v8f32;
1334      }
1335      if (Subtarget->hasSSE2())
1336        return MVT::v4i32;
1337      if (Subtarget->hasSSE1())
1338        return MVT::v4f32;
1339    } else if (!MemcpyStrSrc && Size >= 8 &&
1340               !Subtarget->is64Bit() &&
1341               Subtarget->getStackAlignment() >= 8 &&
1342               Subtarget->hasSSE2()) {
1343      // Do not use f64 to lower memcpy if source is string constant. It's
1344      // better to use i32 to avoid the loads.
1345      return MVT::f64;
1346    }
1347  }
1348  if (Subtarget->is64Bit() && Size >= 8)
1349    return MVT::i64;
1350  return MVT::i32;
1351}
1352
1353/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1354/// current function.  The returned value is a member of the
1355/// MachineJumpTableInfo::JTEntryKind enum.
1356unsigned X86TargetLowering::getJumpTableEncoding() const {
1357  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1358  // symbol.
1359  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1360      Subtarget->isPICStyleGOT())
1361    return MachineJumpTableInfo::EK_Custom32;
1362
1363  // Otherwise, use the normal jump table encoding heuristics.
1364  return TargetLowering::getJumpTableEncoding();
1365}
1366
1367const MCExpr *
1368X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1369                                             const MachineBasicBlock *MBB,
1370                                             unsigned uid,MCContext &Ctx) const{
1371  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1372         Subtarget->isPICStyleGOT());
1373  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1374  // entries.
1375  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1376                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1377}
1378
1379/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1380/// jumptable.
1381SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1382                                                    SelectionDAG &DAG) const {
1383  if (!Subtarget->is64Bit())
1384    // This doesn't have DebugLoc associated with it, but is not really the
1385    // same as a Register.
1386    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1387  return Table;
1388}
1389
1390/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1391/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1392/// MCExpr.
1393const MCExpr *X86TargetLowering::
1394getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1395                             MCContext &Ctx) const {
1396  // X86-64 uses RIP relative addressing based on the jump table label.
1397  if (Subtarget->isPICStyleRIPRel())
1398    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1399
1400  // Otherwise, the reference is relative to the PIC base.
1401  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1402}
1403
1404// FIXME: Why this routine is here? Move to RegInfo!
1405std::pair<const TargetRegisterClass*, uint8_t>
1406X86TargetLowering::findRepresentativeClass(EVT VT) const{
1407  const TargetRegisterClass *RRC = 0;
1408  uint8_t Cost = 1;
1409  switch (VT.getSimpleVT().SimpleTy) {
1410  default:
1411    return TargetLowering::findRepresentativeClass(VT);
1412  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1413    RRC = (Subtarget->is64Bit()
1414           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1415    break;
1416  case MVT::x86mmx:
1417    RRC = X86::VR64RegisterClass;
1418    break;
1419  case MVT::f32: case MVT::f64:
1420  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1421  case MVT::v4f32: case MVT::v2f64:
1422  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1423  case MVT::v4f64:
1424    RRC = X86::VR128RegisterClass;
1425    break;
1426  }
1427  return std::make_pair(RRC, Cost);
1428}
1429
1430bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1431                                               unsigned &Offset) const {
1432  if (!Subtarget->isTargetLinux())
1433    return false;
1434
1435  if (Subtarget->is64Bit()) {
1436    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1437    Offset = 0x28;
1438    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1439      AddressSpace = 256;
1440    else
1441      AddressSpace = 257;
1442  } else {
1443    // %gs:0x14 on i386
1444    Offset = 0x14;
1445    AddressSpace = 256;
1446  }
1447  return true;
1448}
1449
1450
1451//===----------------------------------------------------------------------===//
1452//               Return Value Calling Convention Implementation
1453//===----------------------------------------------------------------------===//
1454
1455#include "X86GenCallingConv.inc"
1456
1457bool
1458X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1459				  MachineFunction &MF, bool isVarArg,
1460                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1461                        LLVMContext &Context) const {
1462  SmallVector<CCValAssign, 16> RVLocs;
1463  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1464                 RVLocs, Context);
1465  return CCInfo.CheckReturn(Outs, RetCC_X86);
1466}
1467
1468SDValue
1469X86TargetLowering::LowerReturn(SDValue Chain,
1470                               CallingConv::ID CallConv, bool isVarArg,
1471                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1472                               const SmallVectorImpl<SDValue> &OutVals,
1473                               DebugLoc dl, SelectionDAG &DAG) const {
1474  MachineFunction &MF = DAG.getMachineFunction();
1475  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1476
1477  SmallVector<CCValAssign, 16> RVLocs;
1478  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1479                 RVLocs, *DAG.getContext());
1480  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1481
1482  // Add the regs to the liveout set for the function.
1483  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1484  for (unsigned i = 0; i != RVLocs.size(); ++i)
1485    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1486      MRI.addLiveOut(RVLocs[i].getLocReg());
1487
1488  SDValue Flag;
1489
1490  SmallVector<SDValue, 6> RetOps;
1491  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1492  // Operand #1 = Bytes To Pop
1493  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1494                   MVT::i16));
1495
1496  // Copy the result values into the output registers.
1497  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1498    CCValAssign &VA = RVLocs[i];
1499    assert(VA.isRegLoc() && "Can only return in registers!");
1500    SDValue ValToCopy = OutVals[i];
1501    EVT ValVT = ValToCopy.getValueType();
1502
1503    // If this is x86-64, and we disabled SSE, we can't return FP values,
1504    // or SSE or MMX vectors.
1505    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1506         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1507          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1508      report_fatal_error("SSE register return with SSE disabled");
1509    }
1510    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1511    // llvm-gcc has never done it right and no one has noticed, so this
1512    // should be OK for now.
1513    if (ValVT == MVT::f64 &&
1514        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1515      report_fatal_error("SSE2 register return with SSE2 disabled");
1516
1517    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1518    // the RET instruction and handled by the FP Stackifier.
1519    if (VA.getLocReg() == X86::ST0 ||
1520        VA.getLocReg() == X86::ST1) {
1521      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1522      // change the value to the FP stack register class.
1523      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1524        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1525      RetOps.push_back(ValToCopy);
1526      // Don't emit a copytoreg.
1527      continue;
1528    }
1529
1530    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1531    // which is returned in RAX / RDX.
1532    if (Subtarget->is64Bit()) {
1533      if (ValVT == MVT::x86mmx) {
1534        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1535          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1536          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1537                                  ValToCopy);
1538          // If we don't have SSE2 available, convert to v4f32 so the generated
1539          // register is legal.
1540          if (!Subtarget->hasSSE2())
1541            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1542        }
1543      }
1544    }
1545
1546    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1547    Flag = Chain.getValue(1);
1548  }
1549
1550  // The x86-64 ABI for returning structs by value requires that we copy
1551  // the sret argument into %rax for the return. We saved the argument into
1552  // a virtual register in the entry block, so now we copy the value out
1553  // and into %rax.
1554  if (Subtarget->is64Bit() &&
1555      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1556    MachineFunction &MF = DAG.getMachineFunction();
1557    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1558    unsigned Reg = FuncInfo->getSRetReturnReg();
1559    assert(Reg &&
1560           "SRetReturnReg should have been set in LowerFormalArguments().");
1561    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1562
1563    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1564    Flag = Chain.getValue(1);
1565
1566    // RAX now acts like a return value.
1567    MRI.addLiveOut(X86::RAX);
1568  }
1569
1570  RetOps[0] = Chain;  // Update chain.
1571
1572  // Add the flag if we have it.
1573  if (Flag.getNode())
1574    RetOps.push_back(Flag);
1575
1576  return DAG.getNode(X86ISD::RET_FLAG, dl,
1577                     MVT::Other, &RetOps[0], RetOps.size());
1578}
1579
1580bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1581  if (N->getNumValues() != 1)
1582    return false;
1583  if (!N->hasNUsesOfValue(1, 0))
1584    return false;
1585
1586  SDNode *Copy = *N->use_begin();
1587  if (Copy->getOpcode() != ISD::CopyToReg &&
1588      Copy->getOpcode() != ISD::FP_EXTEND)
1589    return false;
1590
1591  bool HasRet = false;
1592  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1593       UI != UE; ++UI) {
1594    if (UI->getOpcode() != X86ISD::RET_FLAG)
1595      return false;
1596    HasRet = true;
1597  }
1598
1599  return HasRet;
1600}
1601
1602EVT
1603X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1604                                            ISD::NodeType ExtendKind) const {
1605  MVT ReturnMVT;
1606  // TODO: Is this also valid on 32-bit?
1607  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1608    ReturnMVT = MVT::i8;
1609  else
1610    ReturnMVT = MVT::i32;
1611
1612  EVT MinVT = getRegisterType(Context, ReturnMVT);
1613  return VT.bitsLT(MinVT) ? MinVT : VT;
1614}
1615
1616/// LowerCallResult - Lower the result values of a call into the
1617/// appropriate copies out of appropriate physical registers.
1618///
1619SDValue
1620X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1621                                   CallingConv::ID CallConv, bool isVarArg,
1622                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1623                                   DebugLoc dl, SelectionDAG &DAG,
1624                                   SmallVectorImpl<SDValue> &InVals) const {
1625
1626  // Assign locations to each value returned by this call.
1627  SmallVector<CCValAssign, 16> RVLocs;
1628  bool Is64Bit = Subtarget->is64Bit();
1629  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1630		 getTargetMachine(), RVLocs, *DAG.getContext());
1631  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1632
1633  // Copy all of the result registers out of their specified physreg.
1634  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1635    CCValAssign &VA = RVLocs[i];
1636    EVT CopyVT = VA.getValVT();
1637
1638    // If this is x86-64, and we disabled SSE, we can't return FP values
1639    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1640        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1641      report_fatal_error("SSE register return with SSE disabled");
1642    }
1643
1644    SDValue Val;
1645
1646    // If this is a call to a function that returns an fp value on the floating
1647    // point stack, we must guarantee the the value is popped from the stack, so
1648    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1649    // if the return value is not used. We use the FpPOP_RETVAL instruction
1650    // instead.
1651    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1652      // If we prefer to use the value in xmm registers, copy it out as f80 and
1653      // use a truncate to move it from fp stack reg to xmm reg.
1654      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1655      SDValue Ops[] = { Chain, InFlag };
1656      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1657                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1658      Val = Chain.getValue(0);
1659
1660      // Round the f80 to the right size, which also moves it to the appropriate
1661      // xmm register.
1662      if (CopyVT != VA.getValVT())
1663        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1664                          // This truncation won't change the value.
1665                          DAG.getIntPtrConstant(1));
1666    } else {
1667      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1668                                 CopyVT, InFlag).getValue(1);
1669      Val = Chain.getValue(0);
1670    }
1671    InFlag = Chain.getValue(2);
1672    InVals.push_back(Val);
1673  }
1674
1675  return Chain;
1676}
1677
1678
1679//===----------------------------------------------------------------------===//
1680//                C & StdCall & Fast Calling Convention implementation
1681//===----------------------------------------------------------------------===//
1682//  StdCall calling convention seems to be standard for many Windows' API
1683//  routines and around. It differs from C calling convention just a little:
1684//  callee should clean up the stack, not caller. Symbols should be also
1685//  decorated in some fancy way :) It doesn't support any vector arguments.
1686//  For info on fast calling convention see Fast Calling Convention (tail call)
1687//  implementation LowerX86_32FastCCCallTo.
1688
1689/// CallIsStructReturn - Determines whether a call uses struct return
1690/// semantics.
1691static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1692  if (Outs.empty())
1693    return false;
1694
1695  return Outs[0].Flags.isSRet();
1696}
1697
1698/// ArgsAreStructReturn - Determines whether a function uses struct
1699/// return semantics.
1700static bool
1701ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1702  if (Ins.empty())
1703    return false;
1704
1705  return Ins[0].Flags.isSRet();
1706}
1707
1708/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1709/// by "Src" to address "Dst" with size and alignment information specified by
1710/// the specific parameter attribute. The copy will be passed as a byval
1711/// function parameter.
1712static SDValue
1713CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1714                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1715                          DebugLoc dl) {
1716  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1717
1718  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1719                       /*isVolatile*/false, /*AlwaysInline=*/true,
1720                       MachinePointerInfo(), MachinePointerInfo());
1721}
1722
1723/// IsTailCallConvention - Return true if the calling convention is one that
1724/// supports tail call optimization.
1725static bool IsTailCallConvention(CallingConv::ID CC) {
1726  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1727}
1728
1729bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1730  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1731    return false;
1732
1733  CallSite CS(CI);
1734  CallingConv::ID CalleeCC = CS.getCallingConv();
1735  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1736    return false;
1737
1738  return true;
1739}
1740
1741/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1742/// a tailcall target by changing its ABI.
1743static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1744                                   bool GuaranteedTailCallOpt) {
1745  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1746}
1747
1748SDValue
1749X86TargetLowering::LowerMemArgument(SDValue Chain,
1750                                    CallingConv::ID CallConv,
1751                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1752                                    DebugLoc dl, SelectionDAG &DAG,
1753                                    const CCValAssign &VA,
1754                                    MachineFrameInfo *MFI,
1755                                    unsigned i) const {
1756  // Create the nodes corresponding to a load from this parameter slot.
1757  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1758  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1759                              getTargetMachine().Options.GuaranteedTailCallOpt);
1760  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1761  EVT ValVT;
1762
1763  // If value is passed by pointer we have address passed instead of the value
1764  // itself.
1765  if (VA.getLocInfo() == CCValAssign::Indirect)
1766    ValVT = VA.getLocVT();
1767  else
1768    ValVT = VA.getValVT();
1769
1770  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1771  // changed with more analysis.
1772  // In case of tail call optimization mark all arguments mutable. Since they
1773  // could be overwritten by lowering of arguments in case of a tail call.
1774  if (Flags.isByVal()) {
1775    unsigned Bytes = Flags.getByValSize();
1776    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1777    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1778    return DAG.getFrameIndex(FI, getPointerTy());
1779  } else {
1780    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1781                                    VA.getLocMemOffset(), isImmutable);
1782    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1783    return DAG.getLoad(ValVT, dl, Chain, FIN,
1784                       MachinePointerInfo::getFixedStack(FI),
1785                       false, false, false, 0);
1786  }
1787}
1788
1789SDValue
1790X86TargetLowering::LowerFormalArguments(SDValue Chain,
1791                                        CallingConv::ID CallConv,
1792                                        bool isVarArg,
1793                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1794                                        DebugLoc dl,
1795                                        SelectionDAG &DAG,
1796                                        SmallVectorImpl<SDValue> &InVals)
1797                                          const {
1798  MachineFunction &MF = DAG.getMachineFunction();
1799  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1800
1801  const Function* Fn = MF.getFunction();
1802  if (Fn->hasExternalLinkage() &&
1803      Subtarget->isTargetCygMing() &&
1804      Fn->getName() == "main")
1805    FuncInfo->setForceFramePointer(true);
1806
1807  MachineFrameInfo *MFI = MF.getFrameInfo();
1808  bool Is64Bit = Subtarget->is64Bit();
1809  bool IsWindows = Subtarget->isTargetWindows();
1810  bool IsWin64 = Subtarget->isTargetWin64();
1811
1812  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1813         "Var args not supported with calling convention fastcc or ghc");
1814
1815  // Assign locations to all of the incoming arguments.
1816  SmallVector<CCValAssign, 16> ArgLocs;
1817  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1818                 ArgLocs, *DAG.getContext());
1819
1820  // Allocate shadow area for Win64
1821  if (IsWin64) {
1822    CCInfo.AllocateStack(32, 8);
1823  }
1824
1825  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1826
1827  unsigned LastVal = ~0U;
1828  SDValue ArgValue;
1829  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1830    CCValAssign &VA = ArgLocs[i];
1831    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1832    // places.
1833    assert(VA.getValNo() != LastVal &&
1834           "Don't support value assigned to multiple locs yet");
1835    (void)LastVal;
1836    LastVal = VA.getValNo();
1837
1838    if (VA.isRegLoc()) {
1839      EVT RegVT = VA.getLocVT();
1840      TargetRegisterClass *RC = NULL;
1841      if (RegVT == MVT::i32)
1842        RC = X86::GR32RegisterClass;
1843      else if (Is64Bit && RegVT == MVT::i64)
1844        RC = X86::GR64RegisterClass;
1845      else if (RegVT == MVT::f32)
1846        RC = X86::FR32RegisterClass;
1847      else if (RegVT == MVT::f64)
1848        RC = X86::FR64RegisterClass;
1849      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1850        RC = X86::VR256RegisterClass;
1851      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1852        RC = X86::VR128RegisterClass;
1853      else if (RegVT == MVT::x86mmx)
1854        RC = X86::VR64RegisterClass;
1855      else
1856        llvm_unreachable("Unknown argument type!");
1857
1858      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1859      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1860
1861      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1862      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1863      // right size.
1864      if (VA.getLocInfo() == CCValAssign::SExt)
1865        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1866                               DAG.getValueType(VA.getValVT()));
1867      else if (VA.getLocInfo() == CCValAssign::ZExt)
1868        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1869                               DAG.getValueType(VA.getValVT()));
1870      else if (VA.getLocInfo() == CCValAssign::BCvt)
1871        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1872
1873      if (VA.isExtInLoc()) {
1874        // Handle MMX values passed in XMM regs.
1875        if (RegVT.isVector()) {
1876          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1877                                 ArgValue);
1878        } else
1879          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1880      }
1881    } else {
1882      assert(VA.isMemLoc());
1883      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1884    }
1885
1886    // If value is passed via pointer - do a load.
1887    if (VA.getLocInfo() == CCValAssign::Indirect)
1888      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1889                             MachinePointerInfo(), false, false, false, 0);
1890
1891    InVals.push_back(ArgValue);
1892  }
1893
1894  // The x86-64 ABI for returning structs by value requires that we copy
1895  // the sret argument into %rax for the return. Save the argument into
1896  // a virtual register so that we can access it from the return points.
1897  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1898    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1899    unsigned Reg = FuncInfo->getSRetReturnReg();
1900    if (!Reg) {
1901      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1902      FuncInfo->setSRetReturnReg(Reg);
1903    }
1904    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1905    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1906  }
1907
1908  unsigned StackSize = CCInfo.getNextStackOffset();
1909  // Align stack specially for tail calls.
1910  if (FuncIsMadeTailCallSafe(CallConv,
1911                             MF.getTarget().Options.GuaranteedTailCallOpt))
1912    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1913
1914  // If the function takes variable number of arguments, make a frame index for
1915  // the start of the first vararg value... for expansion of llvm.va_start.
1916  if (isVarArg) {
1917    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1918                    CallConv != CallingConv::X86_ThisCall)) {
1919      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1920    }
1921    if (Is64Bit) {
1922      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1923
1924      // FIXME: We should really autogenerate these arrays
1925      static const unsigned GPR64ArgRegsWin64[] = {
1926        X86::RCX, X86::RDX, X86::R8,  X86::R9
1927      };
1928      static const unsigned GPR64ArgRegs64Bit[] = {
1929        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1930      };
1931      static const unsigned XMMArgRegs64Bit[] = {
1932        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1933        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1934      };
1935      const unsigned *GPR64ArgRegs;
1936      unsigned NumXMMRegs = 0;
1937
1938      if (IsWin64) {
1939        // The XMM registers which might contain var arg parameters are shadowed
1940        // in their paired GPR.  So we only need to save the GPR to their home
1941        // slots.
1942        TotalNumIntRegs = 4;
1943        GPR64ArgRegs = GPR64ArgRegsWin64;
1944      } else {
1945        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1946        GPR64ArgRegs = GPR64ArgRegs64Bit;
1947
1948        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1949                                                TotalNumXMMRegs);
1950      }
1951      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1952                                                       TotalNumIntRegs);
1953
1954      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1955      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1956             "SSE register cannot be used when SSE is disabled!");
1957      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1958               NoImplicitFloatOps) &&
1959             "SSE register cannot be used when SSE is disabled!");
1960      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1961          !Subtarget->hasSSE1())
1962        // Kernel mode asks for SSE to be disabled, so don't push them
1963        // on the stack.
1964        TotalNumXMMRegs = 0;
1965
1966      if (IsWin64) {
1967        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1968        // Get to the caller-allocated home save location.  Add 8 to account
1969        // for the return address.
1970        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1971        FuncInfo->setRegSaveFrameIndex(
1972          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1973        // Fixup to set vararg frame on shadow area (4 x i64).
1974        if (NumIntRegs < 4)
1975          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1976      } else {
1977        // For X86-64, if there are vararg parameters that are passed via
1978        // registers, then we must store them to their spots on the stack so
1979        // they may be loaded by deferencing the result of va_next.
1980        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1981        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1984                               false));
1985      }
1986
1987      // Store the integer parameter registers.
1988      SmallVector<SDValue, 8> MemOps;
1989      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1990                                        getPointerTy());
1991      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1992      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1993        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1994                                  DAG.getIntPtrConstant(Offset));
1995        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1996                                     X86::GR64RegisterClass);
1997        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1998        SDValue Store =
1999          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2000                       MachinePointerInfo::getFixedStack(
2001                         FuncInfo->getRegSaveFrameIndex(), Offset),
2002                       false, false, 0);
2003        MemOps.push_back(Store);
2004        Offset += 8;
2005      }
2006
2007      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2008        // Now store the XMM (fp + vector) parameter registers.
2009        SmallVector<SDValue, 11> SaveXMMOps;
2010        SaveXMMOps.push_back(Chain);
2011
2012        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2013        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2014        SaveXMMOps.push_back(ALVal);
2015
2016        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2017                               FuncInfo->getRegSaveFrameIndex()));
2018        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2019                               FuncInfo->getVarArgsFPOffset()));
2020
2021        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2022          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2023                                       X86::VR128RegisterClass);
2024          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2025          SaveXMMOps.push_back(Val);
2026        }
2027        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2028                                     MVT::Other,
2029                                     &SaveXMMOps[0], SaveXMMOps.size()));
2030      }
2031
2032      if (!MemOps.empty())
2033        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2034                            &MemOps[0], MemOps.size());
2035    }
2036  }
2037
2038  // Some CCs need callee pop.
2039  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2040                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2041    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2042  } else {
2043    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2044    // If this is an sret function, the return should pop the hidden pointer.
2045    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2046        ArgsAreStructReturn(Ins))
2047      FuncInfo->setBytesToPopOnReturn(4);
2048  }
2049
2050  if (!Is64Bit) {
2051    // RegSaveFrameIndex is X86-64 only.
2052    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2053    if (CallConv == CallingConv::X86_FastCall ||
2054        CallConv == CallingConv::X86_ThisCall)
2055      // fastcc functions can't have varargs.
2056      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2057  }
2058
2059  FuncInfo->setArgumentStackSize(StackSize);
2060
2061  return Chain;
2062}
2063
2064SDValue
2065X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2066                                    SDValue StackPtr, SDValue Arg,
2067                                    DebugLoc dl, SelectionDAG &DAG,
2068                                    const CCValAssign &VA,
2069                                    ISD::ArgFlagsTy Flags) const {
2070  unsigned LocMemOffset = VA.getLocMemOffset();
2071  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2072  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2073  if (Flags.isByVal())
2074    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2075
2076  return DAG.getStore(Chain, dl, Arg, PtrOff,
2077                      MachinePointerInfo::getStack(LocMemOffset),
2078                      false, false, 0);
2079}
2080
2081/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2082/// optimization is performed and it is required.
2083SDValue
2084X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2085                                           SDValue &OutRetAddr, SDValue Chain,
2086                                           bool IsTailCall, bool Is64Bit,
2087                                           int FPDiff, DebugLoc dl) const {
2088  // Adjust the Return address stack slot.
2089  EVT VT = getPointerTy();
2090  OutRetAddr = getReturnAddressFrameIndex(DAG);
2091
2092  // Load the "old" Return address.
2093  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2094                           false, false, false, 0);
2095  return SDValue(OutRetAddr.getNode(), 1);
2096}
2097
2098/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2099/// optimization is performed and it is required (FPDiff!=0).
2100static SDValue
2101EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2102                         SDValue Chain, SDValue RetAddrFrIdx,
2103                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2104  // Store the return address to the appropriate stack slot.
2105  if (!FPDiff) return Chain;
2106  // Calculate the new stack slot for the return address.
2107  int SlotSize = Is64Bit ? 8 : 4;
2108  int NewReturnAddrFI =
2109    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2110  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2111  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2112  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2113                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2114                       false, false, 0);
2115  return Chain;
2116}
2117
2118SDValue
2119X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2120                             CallingConv::ID CallConv, bool isVarArg,
2121                             bool &isTailCall,
2122                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2123                             const SmallVectorImpl<SDValue> &OutVals,
2124                             const SmallVectorImpl<ISD::InputArg> &Ins,
2125                             DebugLoc dl, SelectionDAG &DAG,
2126                             SmallVectorImpl<SDValue> &InVals) const {
2127  MachineFunction &MF = DAG.getMachineFunction();
2128  bool Is64Bit        = Subtarget->is64Bit();
2129  bool IsWin64        = Subtarget->isTargetWin64();
2130  bool IsWindows      = Subtarget->isTargetWindows();
2131  bool IsStructRet    = CallIsStructReturn(Outs);
2132  bool IsSibcall      = false;
2133
2134  if (MF.getTarget().Options.DisableTailCalls)
2135    isTailCall = false;
2136
2137  if (isTailCall) {
2138    // Check if it's really possible to do a tail call.
2139    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2140                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2141                                                   Outs, OutVals, Ins, DAG);
2142
2143    // Sibcalls are automatically detected tailcalls which do not require
2144    // ABI changes.
2145    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2146      IsSibcall = true;
2147
2148    if (isTailCall)
2149      ++NumTailCalls;
2150  }
2151
2152  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2153         "Var args not supported with calling convention fastcc or ghc");
2154
2155  // Analyze operands of the call, assigning locations to each operand.
2156  SmallVector<CCValAssign, 16> ArgLocs;
2157  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2158                 ArgLocs, *DAG.getContext());
2159
2160  // Allocate shadow area for Win64
2161  if (IsWin64) {
2162    CCInfo.AllocateStack(32, 8);
2163  }
2164
2165  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2166
2167  // Get a count of how many bytes are to be pushed on the stack.
2168  unsigned NumBytes = CCInfo.getNextStackOffset();
2169  if (IsSibcall)
2170    // This is a sibcall. The memory operands are available in caller's
2171    // own caller's stack.
2172    NumBytes = 0;
2173  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2174           IsTailCallConvention(CallConv))
2175    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2176
2177  int FPDiff = 0;
2178  if (isTailCall && !IsSibcall) {
2179    // Lower arguments at fp - stackoffset + fpdiff.
2180    unsigned NumBytesCallerPushed =
2181      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2182    FPDiff = NumBytesCallerPushed - NumBytes;
2183
2184    // Set the delta of movement of the returnaddr stackslot.
2185    // But only set if delta is greater than previous delta.
2186    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2187      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2188  }
2189
2190  if (!IsSibcall)
2191    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2192
2193  SDValue RetAddrFrIdx;
2194  // Load return address for tail calls.
2195  if (isTailCall && FPDiff)
2196    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2197                                    Is64Bit, FPDiff, dl);
2198
2199  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2200  SmallVector<SDValue, 8> MemOpChains;
2201  SDValue StackPtr;
2202
2203  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2204  // of tail call optimization arguments are handle later.
2205  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2206    CCValAssign &VA = ArgLocs[i];
2207    EVT RegVT = VA.getLocVT();
2208    SDValue Arg = OutVals[i];
2209    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2210    bool isByVal = Flags.isByVal();
2211
2212    // Promote the value if needed.
2213    switch (VA.getLocInfo()) {
2214    default: llvm_unreachable("Unknown loc info!");
2215    case CCValAssign::Full: break;
2216    case CCValAssign::SExt:
2217      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2218      break;
2219    case CCValAssign::ZExt:
2220      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2221      break;
2222    case CCValAssign::AExt:
2223      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2224        // Special case: passing MMX values in XMM registers.
2225        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2226        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2227        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2228      } else
2229        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2230      break;
2231    case CCValAssign::BCvt:
2232      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2233      break;
2234    case CCValAssign::Indirect: {
2235      // Store the argument.
2236      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2237      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2238      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2239                           MachinePointerInfo::getFixedStack(FI),
2240                           false, false, 0);
2241      Arg = SpillSlot;
2242      break;
2243    }
2244    }
2245
2246    if (VA.isRegLoc()) {
2247      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2248      if (isVarArg && IsWin64) {
2249        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2250        // shadow reg if callee is a varargs function.
2251        unsigned ShadowReg = 0;
2252        switch (VA.getLocReg()) {
2253        case X86::XMM0: ShadowReg = X86::RCX; break;
2254        case X86::XMM1: ShadowReg = X86::RDX; break;
2255        case X86::XMM2: ShadowReg = X86::R8; break;
2256        case X86::XMM3: ShadowReg = X86::R9; break;
2257        }
2258        if (ShadowReg)
2259          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2260      }
2261    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2262      assert(VA.isMemLoc());
2263      if (StackPtr.getNode() == 0)
2264        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2265      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2266                                             dl, DAG, VA, Flags));
2267    }
2268  }
2269
2270  if (!MemOpChains.empty())
2271    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2272                        &MemOpChains[0], MemOpChains.size());
2273
2274  // Build a sequence of copy-to-reg nodes chained together with token chain
2275  // and flag operands which copy the outgoing args into registers.
2276  SDValue InFlag;
2277  // Tail call byval lowering might overwrite argument registers so in case of
2278  // tail call optimization the copies to registers are lowered later.
2279  if (!isTailCall)
2280    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2281      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2282                               RegsToPass[i].second, InFlag);
2283      InFlag = Chain.getValue(1);
2284    }
2285
2286  if (Subtarget->isPICStyleGOT()) {
2287    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2288    // GOT pointer.
2289    if (!isTailCall) {
2290      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2291                               DAG.getNode(X86ISD::GlobalBaseReg,
2292                                           DebugLoc(), getPointerTy()),
2293                               InFlag);
2294      InFlag = Chain.getValue(1);
2295    } else {
2296      // If we are tail calling and generating PIC/GOT style code load the
2297      // address of the callee into ECX. The value in ecx is used as target of
2298      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2299      // for tail calls on PIC/GOT architectures. Normally we would just put the
2300      // address of GOT into ebx and then call target@PLT. But for tail calls
2301      // ebx would be restored (since ebx is callee saved) before jumping to the
2302      // target@PLT.
2303
2304      // Note: The actual moving to ECX is done further down.
2305      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2306      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2307          !G->getGlobal()->hasProtectedVisibility())
2308        Callee = LowerGlobalAddress(Callee, DAG);
2309      else if (isa<ExternalSymbolSDNode>(Callee))
2310        Callee = LowerExternalSymbol(Callee, DAG);
2311    }
2312  }
2313
2314  if (Is64Bit && isVarArg && !IsWin64) {
2315    // From AMD64 ABI document:
2316    // For calls that may call functions that use varargs or stdargs
2317    // (prototype-less calls or calls to functions containing ellipsis (...) in
2318    // the declaration) %al is used as hidden argument to specify the number
2319    // of SSE registers used. The contents of %al do not need to match exactly
2320    // the number of registers, but must be an ubound on the number of SSE
2321    // registers used and is in the range 0 - 8 inclusive.
2322
2323    // Count the number of XMM registers allocated.
2324    static const unsigned XMMArgRegs[] = {
2325      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2326      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2327    };
2328    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2329    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2330           && "SSE registers cannot be used when SSE is disabled");
2331
2332    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2333                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2334    InFlag = Chain.getValue(1);
2335  }
2336
2337
2338  // For tail calls lower the arguments to the 'real' stack slot.
2339  if (isTailCall) {
2340    // Force all the incoming stack arguments to be loaded from the stack
2341    // before any new outgoing arguments are stored to the stack, because the
2342    // outgoing stack slots may alias the incoming argument stack slots, and
2343    // the alias isn't otherwise explicit. This is slightly more conservative
2344    // than necessary, because it means that each store effectively depends
2345    // on every argument instead of just those arguments it would clobber.
2346    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2347
2348    SmallVector<SDValue, 8> MemOpChains2;
2349    SDValue FIN;
2350    int FI = 0;
2351    // Do not flag preceding copytoreg stuff together with the following stuff.
2352    InFlag = SDValue();
2353    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2354      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2355        CCValAssign &VA = ArgLocs[i];
2356        if (VA.isRegLoc())
2357          continue;
2358        assert(VA.isMemLoc());
2359        SDValue Arg = OutVals[i];
2360        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2361        // Create frame index.
2362        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2363        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2364        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2365        FIN = DAG.getFrameIndex(FI, getPointerTy());
2366
2367        if (Flags.isByVal()) {
2368          // Copy relative to framepointer.
2369          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2370          if (StackPtr.getNode() == 0)
2371            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2372                                          getPointerTy());
2373          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2374
2375          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2376                                                           ArgChain,
2377                                                           Flags, DAG, dl));
2378        } else {
2379          // Store relative to framepointer.
2380          MemOpChains2.push_back(
2381            DAG.getStore(ArgChain, dl, Arg, FIN,
2382                         MachinePointerInfo::getFixedStack(FI),
2383                         false, false, 0));
2384        }
2385      }
2386    }
2387
2388    if (!MemOpChains2.empty())
2389      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2390                          &MemOpChains2[0], MemOpChains2.size());
2391
2392    // Copy arguments to their registers.
2393    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2394      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2395                               RegsToPass[i].second, InFlag);
2396      InFlag = Chain.getValue(1);
2397    }
2398    InFlag =SDValue();
2399
2400    // Store the return address to the appropriate stack slot.
2401    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2402                                     FPDiff, dl);
2403  }
2404
2405  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2406    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2407    // In the 64-bit large code model, we have to make all calls
2408    // through a register, since the call instruction's 32-bit
2409    // pc-relative offset may not be large enough to hold the whole
2410    // address.
2411  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2412    // If the callee is a GlobalAddress node (quite common, every direct call
2413    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2414    // it.
2415
2416    // We should use extra load for direct calls to dllimported functions in
2417    // non-JIT mode.
2418    const GlobalValue *GV = G->getGlobal();
2419    if (!GV->hasDLLImportLinkage()) {
2420      unsigned char OpFlags = 0;
2421      bool ExtraLoad = false;
2422      unsigned WrapperKind = ISD::DELETED_NODE;
2423
2424      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2425      // external symbols most go through the PLT in PIC mode.  If the symbol
2426      // has hidden or protected visibility, or if it is static or local, then
2427      // we don't need to use the PLT - we can directly call it.
2428      if (Subtarget->isTargetELF() &&
2429          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2430          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2431        OpFlags = X86II::MO_PLT;
2432      } else if (Subtarget->isPICStyleStubAny() &&
2433                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2434                 (!Subtarget->getTargetTriple().isMacOSX() ||
2435                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2436        // PC-relative references to external symbols should go through $stub,
2437        // unless we're building with the leopard linker or later, which
2438        // automatically synthesizes these stubs.
2439        OpFlags = X86II::MO_DARWIN_STUB;
2440      } else if (Subtarget->isPICStyleRIPRel() &&
2441                 isa<Function>(GV) &&
2442                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2443        // If the function is marked as non-lazy, generate an indirect call
2444        // which loads from the GOT directly. This avoids runtime overhead
2445        // at the cost of eager binding (and one extra byte of encoding).
2446        OpFlags = X86II::MO_GOTPCREL;
2447        WrapperKind = X86ISD::WrapperRIP;
2448        ExtraLoad = true;
2449      }
2450
2451      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2452                                          G->getOffset(), OpFlags);
2453
2454      // Add a wrapper if needed.
2455      if (WrapperKind != ISD::DELETED_NODE)
2456        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2457      // Add extra indirection if needed.
2458      if (ExtraLoad)
2459        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2460                             MachinePointerInfo::getGOT(),
2461                             false, false, false, 0);
2462    }
2463  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2464    unsigned char OpFlags = 0;
2465
2466    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2467    // external symbols should go through the PLT.
2468    if (Subtarget->isTargetELF() &&
2469        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2470      OpFlags = X86II::MO_PLT;
2471    } else if (Subtarget->isPICStyleStubAny() &&
2472               (!Subtarget->getTargetTriple().isMacOSX() ||
2473                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2474      // PC-relative references to external symbols should go through $stub,
2475      // unless we're building with the leopard linker or later, which
2476      // automatically synthesizes these stubs.
2477      OpFlags = X86II::MO_DARWIN_STUB;
2478    }
2479
2480    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2481                                         OpFlags);
2482  }
2483
2484  // Returns a chain & a flag for retval copy to use.
2485  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2486  SmallVector<SDValue, 8> Ops;
2487
2488  if (!IsSibcall && isTailCall) {
2489    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2490                           DAG.getIntPtrConstant(0, true), InFlag);
2491    InFlag = Chain.getValue(1);
2492  }
2493
2494  Ops.push_back(Chain);
2495  Ops.push_back(Callee);
2496
2497  if (isTailCall)
2498    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2499
2500  // Add argument registers to the end of the list so that they are known live
2501  // into the call.
2502  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2503    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2504                                  RegsToPass[i].second.getValueType()));
2505
2506  // Add an implicit use GOT pointer in EBX.
2507  if (!isTailCall && Subtarget->isPICStyleGOT())
2508    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2509
2510  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2511  if (Is64Bit && isVarArg && !IsWin64)
2512    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2513
2514  // Experimental: Add a register mask operand representing the call-preserved
2515  // registers.
2516  if (UseRegMask) {
2517    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2518    if (const uint32_t *Mask = TRI->getCallPreservedMask(CallConv))
2519      Ops.push_back(DAG.getRegisterMask(Mask));
2520  }
2521
2522  if (InFlag.getNode())
2523    Ops.push_back(InFlag);
2524
2525  if (isTailCall) {
2526    // We used to do:
2527    //// If this is the first return lowered for this function, add the regs
2528    //// to the liveout set for the function.
2529    // This isn't right, although it's probably harmless on x86; liveouts
2530    // should be computed from returns not tail calls.  Consider a void
2531    // function making a tail call to a function returning int.
2532    return DAG.getNode(X86ISD::TC_RETURN, dl,
2533                       NodeTys, &Ops[0], Ops.size());
2534  }
2535
2536  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2537  InFlag = Chain.getValue(1);
2538
2539  // Create the CALLSEQ_END node.
2540  unsigned NumBytesForCalleeToPush;
2541  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2542                       getTargetMachine().Options.GuaranteedTailCallOpt))
2543    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2544  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2545           IsStructRet)
2546    // If this is a call to a struct-return function, the callee
2547    // pops the hidden struct pointer, so we have to push it back.
2548    // This is common for Darwin/X86, Linux & Mingw32 targets.
2549    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2550    NumBytesForCalleeToPush = 4;
2551  else
2552    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2553
2554  // Returns a flag for retval copy to use.
2555  if (!IsSibcall) {
2556    Chain = DAG.getCALLSEQ_END(Chain,
2557                               DAG.getIntPtrConstant(NumBytes, true),
2558                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2559                                                     true),
2560                               InFlag);
2561    InFlag = Chain.getValue(1);
2562  }
2563
2564  // Handle result values, copying them out of physregs into vregs that we
2565  // return.
2566  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2567                         Ins, dl, DAG, InVals);
2568}
2569
2570
2571//===----------------------------------------------------------------------===//
2572//                Fast Calling Convention (tail call) implementation
2573//===----------------------------------------------------------------------===//
2574
2575//  Like std call, callee cleans arguments, convention except that ECX is
2576//  reserved for storing the tail called function address. Only 2 registers are
2577//  free for argument passing (inreg). Tail call optimization is performed
2578//  provided:
2579//                * tailcallopt is enabled
2580//                * caller/callee are fastcc
2581//  On X86_64 architecture with GOT-style position independent code only local
2582//  (within module) calls are supported at the moment.
2583//  To keep the stack aligned according to platform abi the function
2584//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2585//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2586//  If a tail called function callee has more arguments than the caller the
2587//  caller needs to make sure that there is room to move the RETADDR to. This is
2588//  achieved by reserving an area the size of the argument delta right after the
2589//  original REtADDR, but before the saved framepointer or the spilled registers
2590//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2591//  stack layout:
2592//    arg1
2593//    arg2
2594//    RETADDR
2595//    [ new RETADDR
2596//      move area ]
2597//    (possible EBP)
2598//    ESI
2599//    EDI
2600//    local1 ..
2601
2602/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2603/// for a 16 byte align requirement.
2604unsigned
2605X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2606                                               SelectionDAG& DAG) const {
2607  MachineFunction &MF = DAG.getMachineFunction();
2608  const TargetMachine &TM = MF.getTarget();
2609  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2610  unsigned StackAlignment = TFI.getStackAlignment();
2611  uint64_t AlignMask = StackAlignment - 1;
2612  int64_t Offset = StackSize;
2613  uint64_t SlotSize = TD->getPointerSize();
2614  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2615    // Number smaller than 12 so just add the difference.
2616    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2617  } else {
2618    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2619    Offset = ((~AlignMask) & Offset) + StackAlignment +
2620      (StackAlignment-SlotSize);
2621  }
2622  return Offset;
2623}
2624
2625/// MatchingStackOffset - Return true if the given stack call argument is
2626/// already available in the same position (relatively) of the caller's
2627/// incoming argument stack.
2628static
2629bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2630                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2631                         const X86InstrInfo *TII) {
2632  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2633  int FI = INT_MAX;
2634  if (Arg.getOpcode() == ISD::CopyFromReg) {
2635    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2636    if (!TargetRegisterInfo::isVirtualRegister(VR))
2637      return false;
2638    MachineInstr *Def = MRI->getVRegDef(VR);
2639    if (!Def)
2640      return false;
2641    if (!Flags.isByVal()) {
2642      if (!TII->isLoadFromStackSlot(Def, FI))
2643        return false;
2644    } else {
2645      unsigned Opcode = Def->getOpcode();
2646      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2647          Def->getOperand(1).isFI()) {
2648        FI = Def->getOperand(1).getIndex();
2649        Bytes = Flags.getByValSize();
2650      } else
2651        return false;
2652    }
2653  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2654    if (Flags.isByVal())
2655      // ByVal argument is passed in as a pointer but it's now being
2656      // dereferenced. e.g.
2657      // define @foo(%struct.X* %A) {
2658      //   tail call @bar(%struct.X* byval %A)
2659      // }
2660      return false;
2661    SDValue Ptr = Ld->getBasePtr();
2662    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2663    if (!FINode)
2664      return false;
2665    FI = FINode->getIndex();
2666  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2667    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2668    FI = FINode->getIndex();
2669    Bytes = Flags.getByValSize();
2670  } else
2671    return false;
2672
2673  assert(FI != INT_MAX);
2674  if (!MFI->isFixedObjectIndex(FI))
2675    return false;
2676  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2677}
2678
2679/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2680/// for tail call optimization. Targets which want to do tail call
2681/// optimization should implement this function.
2682bool
2683X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2684                                                     CallingConv::ID CalleeCC,
2685                                                     bool isVarArg,
2686                                                     bool isCalleeStructRet,
2687                                                     bool isCallerStructRet,
2688                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2689                                    const SmallVectorImpl<SDValue> &OutVals,
2690                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2691                                                     SelectionDAG& DAG) const {
2692  if (!IsTailCallConvention(CalleeCC) &&
2693      CalleeCC != CallingConv::C)
2694    return false;
2695
2696  // If -tailcallopt is specified, make fastcc functions tail-callable.
2697  const MachineFunction &MF = DAG.getMachineFunction();
2698  const Function *CallerF = DAG.getMachineFunction().getFunction();
2699  CallingConv::ID CallerCC = CallerF->getCallingConv();
2700  bool CCMatch = CallerCC == CalleeCC;
2701
2702  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2703    if (IsTailCallConvention(CalleeCC) && CCMatch)
2704      return true;
2705    return false;
2706  }
2707
2708  // Look for obvious safe cases to perform tail call optimization that do not
2709  // require ABI changes. This is what gcc calls sibcall.
2710
2711  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2712  // emit a special epilogue.
2713  if (RegInfo->needsStackRealignment(MF))
2714    return false;
2715
2716  // Also avoid sibcall optimization if either caller or callee uses struct
2717  // return semantics.
2718  if (isCalleeStructRet || isCallerStructRet)
2719    return false;
2720
2721  // An stdcall caller is expected to clean up its arguments; the callee
2722  // isn't going to do that.
2723  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2724    return false;
2725
2726  // Do not sibcall optimize vararg calls unless all arguments are passed via
2727  // registers.
2728  if (isVarArg && !Outs.empty()) {
2729
2730    // Optimizing for varargs on Win64 is unlikely to be safe without
2731    // additional testing.
2732    if (Subtarget->isTargetWin64())
2733      return false;
2734
2735    SmallVector<CCValAssign, 16> ArgLocs;
2736    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2737		   getTargetMachine(), ArgLocs, *DAG.getContext());
2738
2739    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2740    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2741      if (!ArgLocs[i].isRegLoc())
2742        return false;
2743  }
2744
2745  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2746  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2747  // this into a sibcall.
2748  bool Unused = false;
2749  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2750    if (!Ins[i].Used) {
2751      Unused = true;
2752      break;
2753    }
2754  }
2755  if (Unused) {
2756    SmallVector<CCValAssign, 16> RVLocs;
2757    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2758		   getTargetMachine(), RVLocs, *DAG.getContext());
2759    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2760    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2761      CCValAssign &VA = RVLocs[i];
2762      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2763        return false;
2764    }
2765  }
2766
2767  // If the calling conventions do not match, then we'd better make sure the
2768  // results are returned in the same way as what the caller expects.
2769  if (!CCMatch) {
2770    SmallVector<CCValAssign, 16> RVLocs1;
2771    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2772		    getTargetMachine(), RVLocs1, *DAG.getContext());
2773    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2774
2775    SmallVector<CCValAssign, 16> RVLocs2;
2776    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2777		    getTargetMachine(), RVLocs2, *DAG.getContext());
2778    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2779
2780    if (RVLocs1.size() != RVLocs2.size())
2781      return false;
2782    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2783      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2784        return false;
2785      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2786        return false;
2787      if (RVLocs1[i].isRegLoc()) {
2788        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2789          return false;
2790      } else {
2791        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2792          return false;
2793      }
2794    }
2795  }
2796
2797  // If the callee takes no arguments then go on to check the results of the
2798  // call.
2799  if (!Outs.empty()) {
2800    // Check if stack adjustment is needed. For now, do not do this if any
2801    // argument is passed on the stack.
2802    SmallVector<CCValAssign, 16> ArgLocs;
2803    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2804		   getTargetMachine(), ArgLocs, *DAG.getContext());
2805
2806    // Allocate shadow area for Win64
2807    if (Subtarget->isTargetWin64()) {
2808      CCInfo.AllocateStack(32, 8);
2809    }
2810
2811    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2812    if (CCInfo.getNextStackOffset()) {
2813      MachineFunction &MF = DAG.getMachineFunction();
2814      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2815        return false;
2816
2817      // Check if the arguments are already laid out in the right way as
2818      // the caller's fixed stack objects.
2819      MachineFrameInfo *MFI = MF.getFrameInfo();
2820      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2821      const X86InstrInfo *TII =
2822        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2823      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2824        CCValAssign &VA = ArgLocs[i];
2825        SDValue Arg = OutVals[i];
2826        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2827        if (VA.getLocInfo() == CCValAssign::Indirect)
2828          return false;
2829        if (!VA.isRegLoc()) {
2830          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2831                                   MFI, MRI, TII))
2832            return false;
2833        }
2834      }
2835    }
2836
2837    // If the tailcall address may be in a register, then make sure it's
2838    // possible to register allocate for it. In 32-bit, the call address can
2839    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2840    // callee-saved registers are restored. These happen to be the same
2841    // registers used to pass 'inreg' arguments so watch out for those.
2842    if (!Subtarget->is64Bit() &&
2843        !isa<GlobalAddressSDNode>(Callee) &&
2844        !isa<ExternalSymbolSDNode>(Callee)) {
2845      unsigned NumInRegs = 0;
2846      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2847        CCValAssign &VA = ArgLocs[i];
2848        if (!VA.isRegLoc())
2849          continue;
2850        unsigned Reg = VA.getLocReg();
2851        switch (Reg) {
2852        default: break;
2853        case X86::EAX: case X86::EDX: case X86::ECX:
2854          if (++NumInRegs == 3)
2855            return false;
2856          break;
2857        }
2858      }
2859    }
2860  }
2861
2862  return true;
2863}
2864
2865FastISel *
2866X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2867  return X86::createFastISel(funcInfo);
2868}
2869
2870
2871//===----------------------------------------------------------------------===//
2872//                           Other Lowering Hooks
2873//===----------------------------------------------------------------------===//
2874
2875static bool MayFoldLoad(SDValue Op) {
2876  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2877}
2878
2879static bool MayFoldIntoStore(SDValue Op) {
2880  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2881}
2882
2883static bool isTargetShuffle(unsigned Opcode) {
2884  switch(Opcode) {
2885  default: return false;
2886  case X86ISD::PSHUFD:
2887  case X86ISD::PSHUFHW:
2888  case X86ISD::PSHUFLW:
2889  case X86ISD::SHUFP:
2890  case X86ISD::PALIGN:
2891  case X86ISD::MOVLHPS:
2892  case X86ISD::MOVLHPD:
2893  case X86ISD::MOVHLPS:
2894  case X86ISD::MOVLPS:
2895  case X86ISD::MOVLPD:
2896  case X86ISD::MOVSHDUP:
2897  case X86ISD::MOVSLDUP:
2898  case X86ISD::MOVDDUP:
2899  case X86ISD::MOVSS:
2900  case X86ISD::MOVSD:
2901  case X86ISD::UNPCKL:
2902  case X86ISD::UNPCKH:
2903  case X86ISD::VPERMILP:
2904  case X86ISD::VPERM2X128:
2905    return true;
2906  }
2907}
2908
2909static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2910                                               SDValue V1, SelectionDAG &DAG) {
2911  switch(Opc) {
2912  default: llvm_unreachable("Unknown x86 shuffle node");
2913  case X86ISD::MOVSHDUP:
2914  case X86ISD::MOVSLDUP:
2915  case X86ISD::MOVDDUP:
2916    return DAG.getNode(Opc, dl, VT, V1);
2917  }
2918}
2919
2920static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2921                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2922  switch(Opc) {
2923  default: llvm_unreachable("Unknown x86 shuffle node");
2924  case X86ISD::PSHUFD:
2925  case X86ISD::PSHUFHW:
2926  case X86ISD::PSHUFLW:
2927  case X86ISD::VPERMILP:
2928    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2929  }
2930}
2931
2932static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2933               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2934  switch(Opc) {
2935  default: llvm_unreachable("Unknown x86 shuffle node");
2936  case X86ISD::PALIGN:
2937  case X86ISD::SHUFP:
2938  case X86ISD::VPERM2X128:
2939    return DAG.getNode(Opc, dl, VT, V1, V2,
2940                       DAG.getConstant(TargetMask, MVT::i8));
2941  }
2942}
2943
2944static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2945                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2946  switch(Opc) {
2947  default: llvm_unreachable("Unknown x86 shuffle node");
2948  case X86ISD::MOVLHPS:
2949  case X86ISD::MOVLHPD:
2950  case X86ISD::MOVHLPS:
2951  case X86ISD::MOVLPS:
2952  case X86ISD::MOVLPD:
2953  case X86ISD::MOVSS:
2954  case X86ISD::MOVSD:
2955  case X86ISD::UNPCKL:
2956  case X86ISD::UNPCKH:
2957    return DAG.getNode(Opc, dl, VT, V1, V2);
2958  }
2959}
2960
2961SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2962  MachineFunction &MF = DAG.getMachineFunction();
2963  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2964  int ReturnAddrIndex = FuncInfo->getRAIndex();
2965
2966  if (ReturnAddrIndex == 0) {
2967    // Set up a frame object for the return address.
2968    uint64_t SlotSize = TD->getPointerSize();
2969    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2970                                                           false);
2971    FuncInfo->setRAIndex(ReturnAddrIndex);
2972  }
2973
2974  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2975}
2976
2977
2978bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2979                                       bool hasSymbolicDisplacement) {
2980  // Offset should fit into 32 bit immediate field.
2981  if (!isInt<32>(Offset))
2982    return false;
2983
2984  // If we don't have a symbolic displacement - we don't have any extra
2985  // restrictions.
2986  if (!hasSymbolicDisplacement)
2987    return true;
2988
2989  // FIXME: Some tweaks might be needed for medium code model.
2990  if (M != CodeModel::Small && M != CodeModel::Kernel)
2991    return false;
2992
2993  // For small code model we assume that latest object is 16MB before end of 31
2994  // bits boundary. We may also accept pretty large negative constants knowing
2995  // that all objects are in the positive half of address space.
2996  if (M == CodeModel::Small && Offset < 16*1024*1024)
2997    return true;
2998
2999  // For kernel code model we know that all object resist in the negative half
3000  // of 32bits address space. We may not accept negative offsets, since they may
3001  // be just off and we may accept pretty large positive ones.
3002  if (M == CodeModel::Kernel && Offset > 0)
3003    return true;
3004
3005  return false;
3006}
3007
3008/// isCalleePop - Determines whether the callee is required to pop its
3009/// own arguments. Callee pop is necessary to support tail calls.
3010bool X86::isCalleePop(CallingConv::ID CallingConv,
3011                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3012  if (IsVarArg)
3013    return false;
3014
3015  switch (CallingConv) {
3016  default:
3017    return false;
3018  case CallingConv::X86_StdCall:
3019    return !is64Bit;
3020  case CallingConv::X86_FastCall:
3021    return !is64Bit;
3022  case CallingConv::X86_ThisCall:
3023    return !is64Bit;
3024  case CallingConv::Fast:
3025    return TailCallOpt;
3026  case CallingConv::GHC:
3027    return TailCallOpt;
3028  }
3029}
3030
3031/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3032/// specific condition code, returning the condition code and the LHS/RHS of the
3033/// comparison to make.
3034static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3035                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3036  if (!isFP) {
3037    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3038      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3039        // X > -1   -> X == 0, jump !sign.
3040        RHS = DAG.getConstant(0, RHS.getValueType());
3041        return X86::COND_NS;
3042      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3043        // X < 0   -> X == 0, jump on sign.
3044        return X86::COND_S;
3045      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3046        // X < 1   -> X <= 0
3047        RHS = DAG.getConstant(0, RHS.getValueType());
3048        return X86::COND_LE;
3049      }
3050    }
3051
3052    switch (SetCCOpcode) {
3053    default: llvm_unreachable("Invalid integer condition!");
3054    case ISD::SETEQ:  return X86::COND_E;
3055    case ISD::SETGT:  return X86::COND_G;
3056    case ISD::SETGE:  return X86::COND_GE;
3057    case ISD::SETLT:  return X86::COND_L;
3058    case ISD::SETLE:  return X86::COND_LE;
3059    case ISD::SETNE:  return X86::COND_NE;
3060    case ISD::SETULT: return X86::COND_B;
3061    case ISD::SETUGT: return X86::COND_A;
3062    case ISD::SETULE: return X86::COND_BE;
3063    case ISD::SETUGE: return X86::COND_AE;
3064    }
3065  }
3066
3067  // First determine if it is required or is profitable to flip the operands.
3068
3069  // If LHS is a foldable load, but RHS is not, flip the condition.
3070  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3071      !ISD::isNON_EXTLoad(RHS.getNode())) {
3072    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3073    std::swap(LHS, RHS);
3074  }
3075
3076  switch (SetCCOpcode) {
3077  default: break;
3078  case ISD::SETOLT:
3079  case ISD::SETOLE:
3080  case ISD::SETUGT:
3081  case ISD::SETUGE:
3082    std::swap(LHS, RHS);
3083    break;
3084  }
3085
3086  // On a floating point condition, the flags are set as follows:
3087  // ZF  PF  CF   op
3088  //  0 | 0 | 0 | X > Y
3089  //  0 | 0 | 1 | X < Y
3090  //  1 | 0 | 0 | X == Y
3091  //  1 | 1 | 1 | unordered
3092  switch (SetCCOpcode) {
3093  default: llvm_unreachable("Condcode should be pre-legalized away");
3094  case ISD::SETUEQ:
3095  case ISD::SETEQ:   return X86::COND_E;
3096  case ISD::SETOLT:              // flipped
3097  case ISD::SETOGT:
3098  case ISD::SETGT:   return X86::COND_A;
3099  case ISD::SETOLE:              // flipped
3100  case ISD::SETOGE:
3101  case ISD::SETGE:   return X86::COND_AE;
3102  case ISD::SETUGT:              // flipped
3103  case ISD::SETULT:
3104  case ISD::SETLT:   return X86::COND_B;
3105  case ISD::SETUGE:              // flipped
3106  case ISD::SETULE:
3107  case ISD::SETLE:   return X86::COND_BE;
3108  case ISD::SETONE:
3109  case ISD::SETNE:   return X86::COND_NE;
3110  case ISD::SETUO:   return X86::COND_P;
3111  case ISD::SETO:    return X86::COND_NP;
3112  case ISD::SETOEQ:
3113  case ISD::SETUNE:  return X86::COND_INVALID;
3114  }
3115}
3116
3117/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3118/// code. Current x86 isa includes the following FP cmov instructions:
3119/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3120static bool hasFPCMov(unsigned X86CC) {
3121  switch (X86CC) {
3122  default:
3123    return false;
3124  case X86::COND_B:
3125  case X86::COND_BE:
3126  case X86::COND_E:
3127  case X86::COND_P:
3128  case X86::COND_A:
3129  case X86::COND_AE:
3130  case X86::COND_NE:
3131  case X86::COND_NP:
3132    return true;
3133  }
3134}
3135
3136/// isFPImmLegal - Returns true if the target can instruction select the
3137/// specified FP immediate natively. If false, the legalizer will
3138/// materialize the FP immediate as a load from a constant pool.
3139bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3140  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3141    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3142      return true;
3143  }
3144  return false;
3145}
3146
3147/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3148/// the specified range (L, H].
3149static bool isUndefOrInRange(int Val, int Low, int Hi) {
3150  return (Val < 0) || (Val >= Low && Val < Hi);
3151}
3152
3153/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3154/// specified value.
3155static bool isUndefOrEqual(int Val, int CmpVal) {
3156  if (Val < 0 || Val == CmpVal)
3157    return true;
3158  return false;
3159}
3160
3161/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3162/// from position Pos and ending in Pos+Size, falls within the specified
3163/// sequential range (L, L+Pos]. or is undef.
3164static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3165                                       int Pos, int Size, int Low) {
3166  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3167    if (!isUndefOrEqual(Mask[i], Low))
3168      return false;
3169  return true;
3170}
3171
3172/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3173/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3174/// the second operand.
3175static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3176  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3177    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3178  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3179    return (Mask[0] < 2 && Mask[1] < 2);
3180  return false;
3181}
3182
3183bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3184  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3185}
3186
3187/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3188/// is suitable for input to PSHUFHW.
3189static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3190  if (VT != MVT::v8i16)
3191    return false;
3192
3193  // Lower quadword copied in order or undef.
3194  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3195    return false;
3196
3197  // Upper quadword shuffled.
3198  for (unsigned i = 4; i != 8; ++i)
3199    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3200      return false;
3201
3202  return true;
3203}
3204
3205bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3206  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3207}
3208
3209/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3210/// is suitable for input to PSHUFLW.
3211static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3212  if (VT != MVT::v8i16)
3213    return false;
3214
3215  // Upper quadword copied in order.
3216  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3217    return false;
3218
3219  // Lower quadword shuffled.
3220  for (unsigned i = 0; i != 4; ++i)
3221    if (Mask[i] >= 4)
3222      return false;
3223
3224  return true;
3225}
3226
3227bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3228  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3229}
3230
3231/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3232/// is suitable for input to PALIGNR.
3233static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3234                          const X86Subtarget *Subtarget) {
3235  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3236      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3237    return false;
3238
3239  unsigned NumElts = VT.getVectorNumElements();
3240  unsigned NumLanes = VT.getSizeInBits()/128;
3241  unsigned NumLaneElts = NumElts/NumLanes;
3242
3243  // Do not handle 64-bit element shuffles with palignr.
3244  if (NumLaneElts == 2)
3245    return false;
3246
3247  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3248    unsigned i;
3249    for (i = 0; i != NumLaneElts; ++i) {
3250      if (Mask[i+l] >= 0)
3251        break;
3252    }
3253
3254    // Lane is all undef, go to next lane
3255    if (i == NumLaneElts)
3256      continue;
3257
3258    int Start = Mask[i+l];
3259
3260    // Make sure its in this lane in one of the sources
3261    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3262        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3263      return false;
3264
3265    // If not lane 0, then we must match lane 0
3266    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3267      return false;
3268
3269    // Correct second source to be contiguous with first source
3270    if (Start >= (int)NumElts)
3271      Start -= NumElts - NumLaneElts;
3272
3273    // Make sure we're shifting in the right direction.
3274    if (Start <= (int)(i+l))
3275      return false;
3276
3277    Start -= i;
3278
3279    // Check the rest of the elements to see if they are consecutive.
3280    for (++i; i != NumLaneElts; ++i) {
3281      int Idx = Mask[i+l];
3282
3283      // Make sure its in this lane
3284      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3285          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3286        return false;
3287
3288      // If not lane 0, then we must match lane 0
3289      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3290        return false;
3291
3292      if (Idx >= (int)NumElts)
3293        Idx -= NumElts - NumLaneElts;
3294
3295      if (!isUndefOrEqual(Idx, Start+i))
3296        return false;
3297
3298    }
3299  }
3300
3301  return true;
3302}
3303
3304/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3305/// the two vector operands have swapped position.
3306static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3307                                     unsigned NumElems) {
3308  for (unsigned i = 0; i != NumElems; ++i) {
3309    int idx = Mask[i];
3310    if (idx < 0)
3311      continue;
3312    else if (idx < (int)NumElems)
3313      Mask[i] = idx + NumElems;
3314    else
3315      Mask[i] = idx - NumElems;
3316  }
3317}
3318
3319/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3320/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3321/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3322/// reverse of what x86 shuffles want.
3323static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3324                        bool Commuted = false) {
3325  if (!HasAVX && VT.getSizeInBits() == 256)
3326    return false;
3327
3328  unsigned NumElems = VT.getVectorNumElements();
3329  unsigned NumLanes = VT.getSizeInBits()/128;
3330  unsigned NumLaneElems = NumElems/NumLanes;
3331
3332  if (NumLaneElems != 2 && NumLaneElems != 4)
3333    return false;
3334
3335  // VSHUFPSY divides the resulting vector into 4 chunks.
3336  // The sources are also splitted into 4 chunks, and each destination
3337  // chunk must come from a different source chunk.
3338  //
3339  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3340  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3341  //
3342  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3343  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3344  //
3345  // VSHUFPDY divides the resulting vector into 4 chunks.
3346  // The sources are also splitted into 4 chunks, and each destination
3347  // chunk must come from a different source chunk.
3348  //
3349  //  SRC1 =>      X3       X2       X1       X0
3350  //  SRC2 =>      Y3       Y2       Y1       Y0
3351  //
3352  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3353  //
3354  unsigned HalfLaneElems = NumLaneElems/2;
3355  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3356    for (unsigned i = 0; i != NumLaneElems; ++i) {
3357      int Idx = Mask[i+l];
3358      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3359      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3360        return false;
3361      // For VSHUFPSY, the mask of the second half must be the same as the
3362      // first but with the appropriate offsets. This works in the same way as
3363      // VPERMILPS works with masks.
3364      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3365        continue;
3366      if (!isUndefOrEqual(Idx, Mask[i]+l))
3367        return false;
3368    }
3369  }
3370
3371  return true;
3372}
3373
3374bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3375  return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3376}
3377
3378/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3379/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3380bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3381  EVT VT = N->getValueType(0);
3382  unsigned NumElems = VT.getVectorNumElements();
3383
3384  if (VT.getSizeInBits() != 128)
3385    return false;
3386
3387  if (NumElems != 4)
3388    return false;
3389
3390  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3391  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3392         isUndefOrEqual(N->getMaskElt(1), 7) &&
3393         isUndefOrEqual(N->getMaskElt(2), 2) &&
3394         isUndefOrEqual(N->getMaskElt(3), 3);
3395}
3396
3397/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3398/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3399/// <2, 3, 2, 3>
3400bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3401  EVT VT = N->getValueType(0);
3402  unsigned NumElems = VT.getVectorNumElements();
3403
3404  if (VT.getSizeInBits() != 128)
3405    return false;
3406
3407  if (NumElems != 4)
3408    return false;
3409
3410  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3411         isUndefOrEqual(N->getMaskElt(1), 3) &&
3412         isUndefOrEqual(N->getMaskElt(2), 2) &&
3413         isUndefOrEqual(N->getMaskElt(3), 3);
3414}
3415
3416/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3417/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3418bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3419  EVT VT = N->getValueType(0);
3420
3421  if (VT.getSizeInBits() != 128)
3422    return false;
3423
3424  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3425
3426  if (NumElems != 2 && NumElems != 4)
3427    return false;
3428
3429  for (unsigned i = 0; i < NumElems/2; ++i)
3430    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3431      return false;
3432
3433  for (unsigned i = NumElems/2; i < NumElems; ++i)
3434    if (!isUndefOrEqual(N->getMaskElt(i), i))
3435      return false;
3436
3437  return true;
3438}
3439
3440/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3441/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3442bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3443  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3444
3445  if ((NumElems != 2 && NumElems != 4)
3446      || N->getValueType(0).getSizeInBits() > 128)
3447    return false;
3448
3449  for (unsigned i = 0; i < NumElems/2; ++i)
3450    if (!isUndefOrEqual(N->getMaskElt(i), i))
3451      return false;
3452
3453  for (unsigned i = 0; i < NumElems/2; ++i)
3454    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3455      return false;
3456
3457  return true;
3458}
3459
3460/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3461/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3462static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3463                         bool HasAVX2, bool V2IsSplat = false) {
3464  unsigned NumElts = VT.getVectorNumElements();
3465
3466  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3467         "Unsupported vector type for unpckh");
3468
3469  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3470      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3471    return false;
3472
3473  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3474  // independently on 128-bit lanes.
3475  unsigned NumLanes = VT.getSizeInBits()/128;
3476  unsigned NumLaneElts = NumElts/NumLanes;
3477
3478  for (unsigned l = 0; l != NumLanes; ++l) {
3479    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3480         i != (l+1)*NumLaneElts;
3481         i += 2, ++j) {
3482      int BitI  = Mask[i];
3483      int BitI1 = Mask[i+1];
3484      if (!isUndefOrEqual(BitI, j))
3485        return false;
3486      if (V2IsSplat) {
3487        if (!isUndefOrEqual(BitI1, NumElts))
3488          return false;
3489      } else {
3490        if (!isUndefOrEqual(BitI1, j + NumElts))
3491          return false;
3492      }
3493    }
3494  }
3495
3496  return true;
3497}
3498
3499bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3500  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3501}
3502
3503/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3504/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3505static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3506                         bool HasAVX2, bool V2IsSplat = false) {
3507  unsigned NumElts = VT.getVectorNumElements();
3508
3509  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3510         "Unsupported vector type for unpckh");
3511
3512  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3513      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3514    return false;
3515
3516  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3517  // independently on 128-bit lanes.
3518  unsigned NumLanes = VT.getSizeInBits()/128;
3519  unsigned NumLaneElts = NumElts/NumLanes;
3520
3521  for (unsigned l = 0; l != NumLanes; ++l) {
3522    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3523         i != (l+1)*NumLaneElts; i += 2, ++j) {
3524      int BitI  = Mask[i];
3525      int BitI1 = Mask[i+1];
3526      if (!isUndefOrEqual(BitI, j))
3527        return false;
3528      if (V2IsSplat) {
3529        if (isUndefOrEqual(BitI1, NumElts))
3530          return false;
3531      } else {
3532        if (!isUndefOrEqual(BitI1, j+NumElts))
3533          return false;
3534      }
3535    }
3536  }
3537  return true;
3538}
3539
3540bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3541  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3542}
3543
3544/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3545/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3546/// <0, 0, 1, 1>
3547static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3548                                  bool HasAVX2) {
3549  unsigned NumElts = VT.getVectorNumElements();
3550
3551  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3552         "Unsupported vector type for unpckh");
3553
3554  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3555      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3556    return false;
3557
3558  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3559  // FIXME: Need a better way to get rid of this, there's no latency difference
3560  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3561  // the former later. We should also remove the "_undef" special mask.
3562  if (NumElts == 4 && VT.getSizeInBits() == 256)
3563    return false;
3564
3565  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3566  // independently on 128-bit lanes.
3567  unsigned NumLanes = VT.getSizeInBits()/128;
3568  unsigned NumLaneElts = NumElts/NumLanes;
3569
3570  for (unsigned l = 0; l != NumLanes; ++l) {
3571    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3572         i != (l+1)*NumLaneElts;
3573         i += 2, ++j) {
3574      int BitI  = Mask[i];
3575      int BitI1 = Mask[i+1];
3576
3577      if (!isUndefOrEqual(BitI, j))
3578        return false;
3579      if (!isUndefOrEqual(BitI1, j))
3580        return false;
3581    }
3582  }
3583
3584  return true;
3585}
3586
3587bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3588  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3589}
3590
3591/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3592/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3593/// <2, 2, 3, 3>
3594static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3595  unsigned NumElts = VT.getVectorNumElements();
3596
3597  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3598         "Unsupported vector type for unpckh");
3599
3600  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3601      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3602    return false;
3603
3604  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3605  // independently on 128-bit lanes.
3606  unsigned NumLanes = VT.getSizeInBits()/128;
3607  unsigned NumLaneElts = NumElts/NumLanes;
3608
3609  for (unsigned l = 0; l != NumLanes; ++l) {
3610    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3611         i != (l+1)*NumLaneElts; i += 2, ++j) {
3612      int BitI  = Mask[i];
3613      int BitI1 = Mask[i+1];
3614      if (!isUndefOrEqual(BitI, j))
3615        return false;
3616      if (!isUndefOrEqual(BitI1, j))
3617        return false;
3618    }
3619  }
3620  return true;
3621}
3622
3623bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3624  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3625}
3626
3627/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3628/// specifies a shuffle of elements that is suitable for input to MOVSS,
3629/// MOVSD, and MOVD, i.e. setting the lowest element.
3630static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3631  if (VT.getVectorElementType().getSizeInBits() < 32)
3632    return false;
3633  if (VT.getSizeInBits() == 256)
3634    return false;
3635
3636  unsigned NumElts = VT.getVectorNumElements();
3637
3638  if (!isUndefOrEqual(Mask[0], NumElts))
3639    return false;
3640
3641  for (unsigned i = 1; i != NumElts; ++i)
3642    if (!isUndefOrEqual(Mask[i], i))
3643      return false;
3644
3645  return true;
3646}
3647
3648bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3649  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3650}
3651
3652/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3653/// as permutations between 128-bit chunks or halves. As an example: this
3654/// shuffle bellow:
3655///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3656/// The first half comes from the second half of V1 and the second half from the
3657/// the second half of V2.
3658static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3659  if (!HasAVX || VT.getSizeInBits() != 256)
3660    return false;
3661
3662  // The shuffle result is divided into half A and half B. In total the two
3663  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3664  // B must come from C, D, E or F.
3665  unsigned HalfSize = VT.getVectorNumElements()/2;
3666  bool MatchA = false, MatchB = false;
3667
3668  // Check if A comes from one of C, D, E, F.
3669  for (unsigned Half = 0; Half != 4; ++Half) {
3670    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3671      MatchA = true;
3672      break;
3673    }
3674  }
3675
3676  // Check if B comes from one of C, D, E, F.
3677  for (unsigned Half = 0; Half != 4; ++Half) {
3678    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3679      MatchB = true;
3680      break;
3681    }
3682  }
3683
3684  return MatchA && MatchB;
3685}
3686
3687/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3688/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3689static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3690  EVT VT = SVOp->getValueType(0);
3691
3692  unsigned HalfSize = VT.getVectorNumElements()/2;
3693
3694  unsigned FstHalf = 0, SndHalf = 0;
3695  for (unsigned i = 0; i < HalfSize; ++i) {
3696    if (SVOp->getMaskElt(i) > 0) {
3697      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3698      break;
3699    }
3700  }
3701  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3702    if (SVOp->getMaskElt(i) > 0) {
3703      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3704      break;
3705    }
3706  }
3707
3708  return (FstHalf | (SndHalf << 4));
3709}
3710
3711/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3712/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3713/// Note that VPERMIL mask matching is different depending whether theunderlying
3714/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3715/// to the same elements of the low, but to the higher half of the source.
3716/// In VPERMILPD the two lanes could be shuffled independently of each other
3717/// with the same restriction that lanes can't be crossed.
3718static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3719  if (!HasAVX)
3720    return false;
3721
3722  unsigned NumElts = VT.getVectorNumElements();
3723  // Only match 256-bit with 32/64-bit types
3724  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3725    return false;
3726
3727  unsigned NumLanes = VT.getSizeInBits()/128;
3728  unsigned LaneSize = NumElts/NumLanes;
3729  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3730    for (unsigned i = 0; i != LaneSize; ++i) {
3731      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3732        return false;
3733      if (NumElts != 8 || l == 0)
3734        continue;
3735      // VPERMILPS handling
3736      if (Mask[i] < 0)
3737        continue;
3738      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3739        return false;
3740    }
3741  }
3742
3743  return true;
3744}
3745
3746/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3747/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3748/// element of vector 2 and the other elements to come from vector 1 in order.
3749static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3750                               bool V2IsSplat = false, bool V2IsUndef = false) {
3751  unsigned NumOps = VT.getVectorNumElements();
3752  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3753    return false;
3754
3755  if (!isUndefOrEqual(Mask[0], 0))
3756    return false;
3757
3758  for (unsigned i = 1; i != NumOps; ++i)
3759    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3760          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3761          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3762      return false;
3763
3764  return true;
3765}
3766
3767static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3768                           bool V2IsUndef = false) {
3769  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3770                            V2IsSplat, V2IsUndef);
3771}
3772
3773/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3774/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3775/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3776bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3777                         const X86Subtarget *Subtarget) {
3778  if (!Subtarget->hasSSE3())
3779    return false;
3780
3781  // The second vector must be undef
3782  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3783    return false;
3784
3785  EVT VT = N->getValueType(0);
3786  unsigned NumElems = VT.getVectorNumElements();
3787
3788  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3789      (VT.getSizeInBits() == 256 && NumElems != 8))
3790    return false;
3791
3792  // "i+1" is the value the indexed mask element must have
3793  for (unsigned i = 0; i < NumElems; i += 2)
3794    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3795        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3796      return false;
3797
3798  return true;
3799}
3800
3801/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3802/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3803/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3804bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3805                         const X86Subtarget *Subtarget) {
3806  if (!Subtarget->hasSSE3())
3807    return false;
3808
3809  // The second vector must be undef
3810  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3811    return false;
3812
3813  EVT VT = N->getValueType(0);
3814  unsigned NumElems = VT.getVectorNumElements();
3815
3816  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3817      (VT.getSizeInBits() == 256 && NumElems != 8))
3818    return false;
3819
3820  // "i" is the value the indexed mask element must have
3821  for (unsigned i = 0; i != NumElems; i += 2)
3822    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3823        !isUndefOrEqual(N->getMaskElt(i+1), i))
3824      return false;
3825
3826  return true;
3827}
3828
3829/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3830/// specifies a shuffle of elements that is suitable for input to 256-bit
3831/// version of MOVDDUP.
3832static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3833  unsigned NumElts = VT.getVectorNumElements();
3834
3835  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3836    return false;
3837
3838  for (unsigned i = 0; i != NumElts/2; ++i)
3839    if (!isUndefOrEqual(Mask[i], 0))
3840      return false;
3841  for (unsigned i = NumElts/2; i != NumElts; ++i)
3842    if (!isUndefOrEqual(Mask[i], NumElts/2))
3843      return false;
3844  return true;
3845}
3846
3847/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3848/// specifies a shuffle of elements that is suitable for input to 128-bit
3849/// version of MOVDDUP.
3850bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3851  EVT VT = N->getValueType(0);
3852
3853  if (VT.getSizeInBits() != 128)
3854    return false;
3855
3856  unsigned e = VT.getVectorNumElements() / 2;
3857  for (unsigned i = 0; i != e; ++i)
3858    if (!isUndefOrEqual(N->getMaskElt(i), i))
3859      return false;
3860  for (unsigned i = 0; i != e; ++i)
3861    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3862      return false;
3863  return true;
3864}
3865
3866/// isVEXTRACTF128Index - Return true if the specified
3867/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3868/// suitable for input to VEXTRACTF128.
3869bool X86::isVEXTRACTF128Index(SDNode *N) {
3870  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3871    return false;
3872
3873  // The index should be aligned on a 128-bit boundary.
3874  uint64_t Index =
3875    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3876
3877  unsigned VL = N->getValueType(0).getVectorNumElements();
3878  unsigned VBits = N->getValueType(0).getSizeInBits();
3879  unsigned ElSize = VBits / VL;
3880  bool Result = (Index * ElSize) % 128 == 0;
3881
3882  return Result;
3883}
3884
3885/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3886/// operand specifies a subvector insert that is suitable for input to
3887/// VINSERTF128.
3888bool X86::isVINSERTF128Index(SDNode *N) {
3889  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3890    return false;
3891
3892  // The index should be aligned on a 128-bit boundary.
3893  uint64_t Index =
3894    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3895
3896  unsigned VL = N->getValueType(0).getVectorNumElements();
3897  unsigned VBits = N->getValueType(0).getSizeInBits();
3898  unsigned ElSize = VBits / VL;
3899  bool Result = (Index * ElSize) % 128 == 0;
3900
3901  return Result;
3902}
3903
3904/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3905/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3906/// Handles 128-bit and 256-bit.
3907unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3908  EVT VT = N->getValueType(0);
3909
3910  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3911         "Unsupported vector type for PSHUF/SHUFP");
3912
3913  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3914  // independently on 128-bit lanes.
3915  unsigned NumElts = VT.getVectorNumElements();
3916  unsigned NumLanes = VT.getSizeInBits()/128;
3917  unsigned NumLaneElts = NumElts/NumLanes;
3918
3919  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3920         "Only supports 2 or 4 elements per lane");
3921
3922  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3923  unsigned Mask = 0;
3924  for (unsigned i = 0; i != NumElts; ++i) {
3925    int Elt = N->getMaskElt(i);
3926    if (Elt < 0) continue;
3927    Elt %= NumLaneElts;
3928    unsigned ShAmt = i << Shift;
3929    if (ShAmt >= 8) ShAmt -= 8;
3930    Mask |= Elt << ShAmt;
3931  }
3932
3933  return Mask;
3934}
3935
3936/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3937/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3938unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3939  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3940  unsigned Mask = 0;
3941  // 8 nodes, but we only care about the last 4.
3942  for (unsigned i = 7; i >= 4; --i) {
3943    int Val = SVOp->getMaskElt(i);
3944    if (Val >= 0)
3945      Mask |= (Val - 4);
3946    if (i != 4)
3947      Mask <<= 2;
3948  }
3949  return Mask;
3950}
3951
3952/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3953/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3954unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3955  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3956  unsigned Mask = 0;
3957  // 8 nodes, but we only care about the first 4.
3958  for (int i = 3; i >= 0; --i) {
3959    int Val = SVOp->getMaskElt(i);
3960    if (Val >= 0)
3961      Mask |= Val;
3962    if (i != 0)
3963      Mask <<= 2;
3964  }
3965  return Mask;
3966}
3967
3968/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3969/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3970static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3971  EVT VT = SVOp->getValueType(0);
3972  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3973
3974  unsigned NumElts = VT.getVectorNumElements();
3975  unsigned NumLanes = VT.getSizeInBits()/128;
3976  unsigned NumLaneElts = NumElts/NumLanes;
3977
3978  int Val = 0;
3979  unsigned i;
3980  for (i = 0; i != NumElts; ++i) {
3981    Val = SVOp->getMaskElt(i);
3982    if (Val >= 0)
3983      break;
3984  }
3985  if (Val >= (int)NumElts)
3986    Val -= NumElts - NumLaneElts;
3987
3988  assert(Val - i > 0 && "PALIGNR imm should be positive");
3989  return (Val - i) * EltSize;
3990}
3991
3992/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3993/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3994/// instructions.
3995unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3996  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3997    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3998
3999  uint64_t Index =
4000    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4001
4002  EVT VecVT = N->getOperand(0).getValueType();
4003  EVT ElVT = VecVT.getVectorElementType();
4004
4005  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4006  return Index / NumElemsPerChunk;
4007}
4008
4009/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4010/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4011/// instructions.
4012unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4013  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4014    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4015
4016  uint64_t Index =
4017    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4018
4019  EVT VecVT = N->getValueType(0);
4020  EVT ElVT = VecVT.getVectorElementType();
4021
4022  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4023  return Index / NumElemsPerChunk;
4024}
4025
4026/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4027/// constant +0.0.
4028bool X86::isZeroNode(SDValue Elt) {
4029  return ((isa<ConstantSDNode>(Elt) &&
4030           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4031          (isa<ConstantFPSDNode>(Elt) &&
4032           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4033}
4034
4035/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4036/// their permute mask.
4037static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4038                                    SelectionDAG &DAG) {
4039  EVT VT = SVOp->getValueType(0);
4040  unsigned NumElems = VT.getVectorNumElements();
4041  SmallVector<int, 8> MaskVec;
4042
4043  for (unsigned i = 0; i != NumElems; ++i) {
4044    int idx = SVOp->getMaskElt(i);
4045    if (idx < 0)
4046      MaskVec.push_back(idx);
4047    else if (idx < (int)NumElems)
4048      MaskVec.push_back(idx + NumElems);
4049    else
4050      MaskVec.push_back(idx - NumElems);
4051  }
4052  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4053                              SVOp->getOperand(0), &MaskVec[0]);
4054}
4055
4056/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4057/// match movhlps. The lower half elements should come from upper half of
4058/// V1 (and in order), and the upper half elements should come from the upper
4059/// half of V2 (and in order).
4060static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4061  EVT VT = Op->getValueType(0);
4062  if (VT.getSizeInBits() != 128)
4063    return false;
4064  if (VT.getVectorNumElements() != 4)
4065    return false;
4066  for (unsigned i = 0, e = 2; i != e; ++i)
4067    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4068      return false;
4069  for (unsigned i = 2; i != 4; ++i)
4070    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4071      return false;
4072  return true;
4073}
4074
4075/// isScalarLoadToVector - Returns true if the node is a scalar load that
4076/// is promoted to a vector. It also returns the LoadSDNode by reference if
4077/// required.
4078static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4079  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4080    return false;
4081  N = N->getOperand(0).getNode();
4082  if (!ISD::isNON_EXTLoad(N))
4083    return false;
4084  if (LD)
4085    *LD = cast<LoadSDNode>(N);
4086  return true;
4087}
4088
4089// Test whether the given value is a vector value which will be legalized
4090// into a load.
4091static bool WillBeConstantPoolLoad(SDNode *N) {
4092  if (N->getOpcode() != ISD::BUILD_VECTOR)
4093    return false;
4094
4095  // Check for any non-constant elements.
4096  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4097    switch (N->getOperand(i).getNode()->getOpcode()) {
4098    case ISD::UNDEF:
4099    case ISD::ConstantFP:
4100    case ISD::Constant:
4101      break;
4102    default:
4103      return false;
4104    }
4105
4106  // Vectors of all-zeros and all-ones are materialized with special
4107  // instructions rather than being loaded.
4108  return !ISD::isBuildVectorAllZeros(N) &&
4109         !ISD::isBuildVectorAllOnes(N);
4110}
4111
4112/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4113/// match movlp{s|d}. The lower half elements should come from lower half of
4114/// V1 (and in order), and the upper half elements should come from the upper
4115/// half of V2 (and in order). And since V1 will become the source of the
4116/// MOVLP, it must be either a vector load or a scalar load to vector.
4117static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4118                               ShuffleVectorSDNode *Op) {
4119  EVT VT = Op->getValueType(0);
4120  if (VT.getSizeInBits() != 128)
4121    return false;
4122
4123  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4124    return false;
4125  // Is V2 is a vector load, don't do this transformation. We will try to use
4126  // load folding shufps op.
4127  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4128    return false;
4129
4130  unsigned NumElems = VT.getVectorNumElements();
4131
4132  if (NumElems != 2 && NumElems != 4)
4133    return false;
4134  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4135    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4136      return false;
4137  for (unsigned i = NumElems/2; i != NumElems; ++i)
4138    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4139      return false;
4140  return true;
4141}
4142
4143/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4144/// all the same.
4145static bool isSplatVector(SDNode *N) {
4146  if (N->getOpcode() != ISD::BUILD_VECTOR)
4147    return false;
4148
4149  SDValue SplatValue = N->getOperand(0);
4150  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4151    if (N->getOperand(i) != SplatValue)
4152      return false;
4153  return true;
4154}
4155
4156/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4157/// to an zero vector.
4158/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4159static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4160  SDValue V1 = N->getOperand(0);
4161  SDValue V2 = N->getOperand(1);
4162  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4163  for (unsigned i = 0; i != NumElems; ++i) {
4164    int Idx = N->getMaskElt(i);
4165    if (Idx >= (int)NumElems) {
4166      unsigned Opc = V2.getOpcode();
4167      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4168        continue;
4169      if (Opc != ISD::BUILD_VECTOR ||
4170          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4171        return false;
4172    } else if (Idx >= 0) {
4173      unsigned Opc = V1.getOpcode();
4174      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4175        continue;
4176      if (Opc != ISD::BUILD_VECTOR ||
4177          !X86::isZeroNode(V1.getOperand(Idx)))
4178        return false;
4179    }
4180  }
4181  return true;
4182}
4183
4184/// getZeroVector - Returns a vector of specified type with all zero elements.
4185///
4186static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4187                             SelectionDAG &DAG, DebugLoc dl) {
4188  assert(VT.isVector() && "Expected a vector type");
4189
4190  // Always build SSE zero vectors as <4 x i32> bitcasted
4191  // to their dest type. This ensures they get CSE'd.
4192  SDValue Vec;
4193  if (VT.getSizeInBits() == 128) {  // SSE
4194    if (Subtarget->hasSSE2()) {  // SSE2
4195      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4196      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4197    } else { // SSE1
4198      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4199      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4200    }
4201  } else if (VT.getSizeInBits() == 256) { // AVX
4202    if (Subtarget->hasAVX2()) { // AVX2
4203      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4204      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4205      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4206    } else {
4207      // 256-bit logic and arithmetic instructions in AVX are all
4208      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4209      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4210      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4211      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4212    }
4213  }
4214  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4215}
4216
4217/// getOnesVector - Returns a vector of specified type with all bits set.
4218/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4219/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4220/// Then bitcast to their original type, ensuring they get CSE'd.
4221static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4222                             DebugLoc dl) {
4223  assert(VT.isVector() && "Expected a vector type");
4224  assert((VT.is128BitVector() || VT.is256BitVector())
4225         && "Expected a 128-bit or 256-bit vector type");
4226
4227  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4228  SDValue Vec;
4229  if (VT.getSizeInBits() == 256) {
4230    if (HasAVX2) { // AVX2
4231      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4232      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4233    } else { // AVX
4234      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4235      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4236                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4237      Vec = Insert128BitVector(InsV, Vec,
4238                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4239    }
4240  } else {
4241    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4242  }
4243
4244  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4245}
4246
4247/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4248/// that point to V2 points to its first element.
4249static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4250  EVT VT = SVOp->getValueType(0);
4251  unsigned NumElems = VT.getVectorNumElements();
4252
4253  bool Changed = false;
4254  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4255
4256  for (unsigned i = 0; i != NumElems; ++i) {
4257    if (MaskVec[i] > (int)NumElems) {
4258      MaskVec[i] = NumElems;
4259      Changed = true;
4260    }
4261  }
4262  if (Changed)
4263    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4264                                SVOp->getOperand(1), &MaskVec[0]);
4265  return SDValue(SVOp, 0);
4266}
4267
4268/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4269/// operation of specified width.
4270static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4271                       SDValue V2) {
4272  unsigned NumElems = VT.getVectorNumElements();
4273  SmallVector<int, 8> Mask;
4274  Mask.push_back(NumElems);
4275  for (unsigned i = 1; i != NumElems; ++i)
4276    Mask.push_back(i);
4277  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4278}
4279
4280/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4281static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4282                          SDValue V2) {
4283  unsigned NumElems = VT.getVectorNumElements();
4284  SmallVector<int, 8> Mask;
4285  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4286    Mask.push_back(i);
4287    Mask.push_back(i + NumElems);
4288  }
4289  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4290}
4291
4292/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4293static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4294                          SDValue V2) {
4295  unsigned NumElems = VT.getVectorNumElements();
4296  unsigned Half = NumElems/2;
4297  SmallVector<int, 8> Mask;
4298  for (unsigned i = 0; i != Half; ++i) {
4299    Mask.push_back(i + Half);
4300    Mask.push_back(i + NumElems + Half);
4301  }
4302  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4303}
4304
4305// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4306// a generic shuffle instruction because the target has no such instructions.
4307// Generate shuffles which repeat i16 and i8 several times until they can be
4308// represented by v4f32 and then be manipulated by target suported shuffles.
4309static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4310  EVT VT = V.getValueType();
4311  int NumElems = VT.getVectorNumElements();
4312  DebugLoc dl = V.getDebugLoc();
4313
4314  while (NumElems > 4) {
4315    if (EltNo < NumElems/2) {
4316      V = getUnpackl(DAG, dl, VT, V, V);
4317    } else {
4318      V = getUnpackh(DAG, dl, VT, V, V);
4319      EltNo -= NumElems/2;
4320    }
4321    NumElems >>= 1;
4322  }
4323  return V;
4324}
4325
4326/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4327static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4328  EVT VT = V.getValueType();
4329  DebugLoc dl = V.getDebugLoc();
4330  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4331         && "Vector size not supported");
4332
4333  if (VT.getSizeInBits() == 128) {
4334    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4335    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4336    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4337                             &SplatMask[0]);
4338  } else {
4339    // To use VPERMILPS to splat scalars, the second half of indicies must
4340    // refer to the higher part, which is a duplication of the lower one,
4341    // because VPERMILPS can only handle in-lane permutations.
4342    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4343                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4344
4345    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4346    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4347                             &SplatMask[0]);
4348  }
4349
4350  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4351}
4352
4353/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4354static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4355  EVT SrcVT = SV->getValueType(0);
4356  SDValue V1 = SV->getOperand(0);
4357  DebugLoc dl = SV->getDebugLoc();
4358
4359  int EltNo = SV->getSplatIndex();
4360  int NumElems = SrcVT.getVectorNumElements();
4361  unsigned Size = SrcVT.getSizeInBits();
4362
4363  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4364          "Unknown how to promote splat for type");
4365
4366  // Extract the 128-bit part containing the splat element and update
4367  // the splat element index when it refers to the higher register.
4368  if (Size == 256) {
4369    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4370    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4371    if (Idx > 0)
4372      EltNo -= NumElems/2;
4373  }
4374
4375  // All i16 and i8 vector types can't be used directly by a generic shuffle
4376  // instruction because the target has no such instruction. Generate shuffles
4377  // which repeat i16 and i8 several times until they fit in i32, and then can
4378  // be manipulated by target suported shuffles.
4379  EVT EltVT = SrcVT.getVectorElementType();
4380  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4381    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4382
4383  // Recreate the 256-bit vector and place the same 128-bit vector
4384  // into the low and high part. This is necessary because we want
4385  // to use VPERM* to shuffle the vectors
4386  if (Size == 256) {
4387    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4388                         DAG.getConstant(0, MVT::i32), DAG, dl);
4389    V1 = Insert128BitVector(InsV, V1,
4390               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4391  }
4392
4393  return getLegalSplat(DAG, V1, EltNo);
4394}
4395
4396/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4397/// vector of zero or undef vector.  This produces a shuffle where the low
4398/// element of V2 is swizzled into the zero/undef vector, landing at element
4399/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4400static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4401                                           bool IsZero,
4402                                           const X86Subtarget *Subtarget,
4403                                           SelectionDAG &DAG) {
4404  EVT VT = V2.getValueType();
4405  SDValue V1 = IsZero
4406    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4407  unsigned NumElems = VT.getVectorNumElements();
4408  SmallVector<int, 16> MaskVec;
4409  for (unsigned i = 0; i != NumElems; ++i)
4410    // If this is the insertion idx, put the low elt of V2 here.
4411    MaskVec.push_back(i == Idx ? NumElems : i);
4412  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4413}
4414
4415/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4416/// element of the result of the vector shuffle.
4417static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4418                                   unsigned Depth) {
4419  if (Depth == 6)
4420    return SDValue();  // Limit search depth.
4421
4422  SDValue V = SDValue(N, 0);
4423  EVT VT = V.getValueType();
4424  unsigned Opcode = V.getOpcode();
4425
4426  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4427  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4428    Index = SV->getMaskElt(Index);
4429
4430    if (Index < 0)
4431      return DAG.getUNDEF(VT.getVectorElementType());
4432
4433    int NumElems = VT.getVectorNumElements();
4434    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4435    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4436  }
4437
4438  // Recurse into target specific vector shuffles to find scalars.
4439  if (isTargetShuffle(Opcode)) {
4440    int NumElems = VT.getVectorNumElements();
4441    SmallVector<unsigned, 16> ShuffleMask;
4442    SDValue ImmN;
4443
4444    switch(Opcode) {
4445    case X86ISD::SHUFP:
4446      ImmN = N->getOperand(N->getNumOperands()-1);
4447      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4448                      ShuffleMask);
4449      break;
4450    case X86ISD::UNPCKH:
4451      DecodeUNPCKHMask(VT, ShuffleMask);
4452      break;
4453    case X86ISD::UNPCKL:
4454      DecodeUNPCKLMask(VT, ShuffleMask);
4455      break;
4456    case X86ISD::MOVHLPS:
4457      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4458      break;
4459    case X86ISD::MOVLHPS:
4460      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4461      break;
4462    case X86ISD::PSHUFD:
4463      ImmN = N->getOperand(N->getNumOperands()-1);
4464      DecodePSHUFMask(NumElems,
4465                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4466                      ShuffleMask);
4467      break;
4468    case X86ISD::PSHUFHW:
4469      ImmN = N->getOperand(N->getNumOperands()-1);
4470      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4471                        ShuffleMask);
4472      break;
4473    case X86ISD::PSHUFLW:
4474      ImmN = N->getOperand(N->getNumOperands()-1);
4475      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4476                        ShuffleMask);
4477      break;
4478    case X86ISD::MOVSS:
4479    case X86ISD::MOVSD: {
4480      // The index 0 always comes from the first element of the second source,
4481      // this is why MOVSS and MOVSD are used in the first place. The other
4482      // elements come from the other positions of the first source vector.
4483      unsigned OpNum = (Index == 0) ? 1 : 0;
4484      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4485                                 Depth+1);
4486    }
4487    case X86ISD::VPERMILP:
4488      ImmN = N->getOperand(N->getNumOperands()-1);
4489      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4490                        ShuffleMask);
4491      break;
4492    case X86ISD::VPERM2X128:
4493      ImmN = N->getOperand(N->getNumOperands()-1);
4494      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4495                           ShuffleMask);
4496      break;
4497    case X86ISD::MOVDDUP:
4498    case X86ISD::MOVLHPD:
4499    case X86ISD::MOVLPD:
4500    case X86ISD::MOVLPS:
4501    case X86ISD::MOVSHDUP:
4502    case X86ISD::MOVSLDUP:
4503    case X86ISD::PALIGN:
4504      return SDValue(); // Not yet implemented.
4505    default: llvm_unreachable("unknown target shuffle node");
4506    }
4507
4508    Index = ShuffleMask[Index];
4509    if (Index < 0)
4510      return DAG.getUNDEF(VT.getVectorElementType());
4511
4512    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4513    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4514                               Depth+1);
4515  }
4516
4517  // Actual nodes that may contain scalar elements
4518  if (Opcode == ISD::BITCAST) {
4519    V = V.getOperand(0);
4520    EVT SrcVT = V.getValueType();
4521    unsigned NumElems = VT.getVectorNumElements();
4522
4523    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4524      return SDValue();
4525  }
4526
4527  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4528    return (Index == 0) ? V.getOperand(0)
4529                          : DAG.getUNDEF(VT.getVectorElementType());
4530
4531  if (V.getOpcode() == ISD::BUILD_VECTOR)
4532    return V.getOperand(Index);
4533
4534  return SDValue();
4535}
4536
4537/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4538/// shuffle operation which come from a consecutively from a zero. The
4539/// search can start in two different directions, from left or right.
4540static
4541unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4542                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4543  int i = 0;
4544
4545  while (i < NumElems) {
4546    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4547    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4548    if (!(Elt.getNode() &&
4549         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4550      break;
4551    ++i;
4552  }
4553
4554  return i;
4555}
4556
4557/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4558/// MaskE correspond consecutively to elements from one of the vector operands,
4559/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4560static
4561bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4562                              int OpIdx, int NumElems, unsigned &OpNum) {
4563  bool SeenV1 = false;
4564  bool SeenV2 = false;
4565
4566  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4567    int Idx = SVOp->getMaskElt(i);
4568    // Ignore undef indicies
4569    if (Idx < 0)
4570      continue;
4571
4572    if (Idx < NumElems)
4573      SeenV1 = true;
4574    else
4575      SeenV2 = true;
4576
4577    // Only accept consecutive elements from the same vector
4578    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4579      return false;
4580  }
4581
4582  OpNum = SeenV1 ? 0 : 1;
4583  return true;
4584}
4585
4586/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4587/// logical left shift of a vector.
4588static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4589                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4590  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4591  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4592              false /* check zeros from right */, DAG);
4593  unsigned OpSrc;
4594
4595  if (!NumZeros)
4596    return false;
4597
4598  // Considering the elements in the mask that are not consecutive zeros,
4599  // check if they consecutively come from only one of the source vectors.
4600  //
4601  //               V1 = {X, A, B, C}     0
4602  //                         \  \  \    /
4603  //   vector_shuffle V1, V2 <1, 2, 3, X>
4604  //
4605  if (!isShuffleMaskConsecutive(SVOp,
4606            0,                   // Mask Start Index
4607            NumElems-NumZeros-1, // Mask End Index
4608            NumZeros,            // Where to start looking in the src vector
4609            NumElems,            // Number of elements in vector
4610            OpSrc))              // Which source operand ?
4611    return false;
4612
4613  isLeft = false;
4614  ShAmt = NumZeros;
4615  ShVal = SVOp->getOperand(OpSrc);
4616  return true;
4617}
4618
4619/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4620/// logical left shift of a vector.
4621static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4622                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4623  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4624  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4625              true /* check zeros from left */, DAG);
4626  unsigned OpSrc;
4627
4628  if (!NumZeros)
4629    return false;
4630
4631  // Considering the elements in the mask that are not consecutive zeros,
4632  // check if they consecutively come from only one of the source vectors.
4633  //
4634  //                           0    { A, B, X, X } = V2
4635  //                          / \    /  /
4636  //   vector_shuffle V1, V2 <X, X, 4, 5>
4637  //
4638  if (!isShuffleMaskConsecutive(SVOp,
4639            NumZeros,     // Mask Start Index
4640            NumElems-1,   // Mask End Index
4641            0,            // Where to start looking in the src vector
4642            NumElems,     // Number of elements in vector
4643            OpSrc))       // Which source operand ?
4644    return false;
4645
4646  isLeft = true;
4647  ShAmt = NumZeros;
4648  ShVal = SVOp->getOperand(OpSrc);
4649  return true;
4650}
4651
4652/// isVectorShift - Returns true if the shuffle can be implemented as a
4653/// logical left or right shift of a vector.
4654static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4655                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4656  // Although the logic below support any bitwidth size, there are no
4657  // shift instructions which handle more than 128-bit vectors.
4658  if (SVOp->getValueType(0).getSizeInBits() > 128)
4659    return false;
4660
4661  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4662      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4663    return true;
4664
4665  return false;
4666}
4667
4668/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4669///
4670static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4671                                       unsigned NumNonZero, unsigned NumZero,
4672                                       SelectionDAG &DAG,
4673                                       const X86Subtarget* Subtarget,
4674                                       const TargetLowering &TLI) {
4675  if (NumNonZero > 8)
4676    return SDValue();
4677
4678  DebugLoc dl = Op.getDebugLoc();
4679  SDValue V(0, 0);
4680  bool First = true;
4681  for (unsigned i = 0; i < 16; ++i) {
4682    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4683    if (ThisIsNonZero && First) {
4684      if (NumZero)
4685        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4686      else
4687        V = DAG.getUNDEF(MVT::v8i16);
4688      First = false;
4689    }
4690
4691    if ((i & 1) != 0) {
4692      SDValue ThisElt(0, 0), LastElt(0, 0);
4693      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4694      if (LastIsNonZero) {
4695        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4696                              MVT::i16, Op.getOperand(i-1));
4697      }
4698      if (ThisIsNonZero) {
4699        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4700        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4701                              ThisElt, DAG.getConstant(8, MVT::i8));
4702        if (LastIsNonZero)
4703          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4704      } else
4705        ThisElt = LastElt;
4706
4707      if (ThisElt.getNode())
4708        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4709                        DAG.getIntPtrConstant(i/2));
4710    }
4711  }
4712
4713  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4714}
4715
4716/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4717///
4718static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4719                                     unsigned NumNonZero, unsigned NumZero,
4720                                     SelectionDAG &DAG,
4721                                     const X86Subtarget* Subtarget,
4722                                     const TargetLowering &TLI) {
4723  if (NumNonZero > 4)
4724    return SDValue();
4725
4726  DebugLoc dl = Op.getDebugLoc();
4727  SDValue V(0, 0);
4728  bool First = true;
4729  for (unsigned i = 0; i < 8; ++i) {
4730    bool isNonZero = (NonZeros & (1 << i)) != 0;
4731    if (isNonZero) {
4732      if (First) {
4733        if (NumZero)
4734          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4735        else
4736          V = DAG.getUNDEF(MVT::v8i16);
4737        First = false;
4738      }
4739      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4740                      MVT::v8i16, V, Op.getOperand(i),
4741                      DAG.getIntPtrConstant(i));
4742    }
4743  }
4744
4745  return V;
4746}
4747
4748/// getVShift - Return a vector logical shift node.
4749///
4750static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4751                         unsigned NumBits, SelectionDAG &DAG,
4752                         const TargetLowering &TLI, DebugLoc dl) {
4753  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4754  EVT ShVT = MVT::v2i64;
4755  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4756  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4757  return DAG.getNode(ISD::BITCAST, dl, VT,
4758                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4759                             DAG.getConstant(NumBits,
4760                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4761}
4762
4763SDValue
4764X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4765                                          SelectionDAG &DAG) const {
4766
4767  // Check if the scalar load can be widened into a vector load. And if
4768  // the address is "base + cst" see if the cst can be "absorbed" into
4769  // the shuffle mask.
4770  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4771    SDValue Ptr = LD->getBasePtr();
4772    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4773      return SDValue();
4774    EVT PVT = LD->getValueType(0);
4775    if (PVT != MVT::i32 && PVT != MVT::f32)
4776      return SDValue();
4777
4778    int FI = -1;
4779    int64_t Offset = 0;
4780    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4781      FI = FINode->getIndex();
4782      Offset = 0;
4783    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4784               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4785      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4786      Offset = Ptr.getConstantOperandVal(1);
4787      Ptr = Ptr.getOperand(0);
4788    } else {
4789      return SDValue();
4790    }
4791
4792    // FIXME: 256-bit vector instructions don't require a strict alignment,
4793    // improve this code to support it better.
4794    unsigned RequiredAlign = VT.getSizeInBits()/8;
4795    SDValue Chain = LD->getChain();
4796    // Make sure the stack object alignment is at least 16 or 32.
4797    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4798    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4799      if (MFI->isFixedObjectIndex(FI)) {
4800        // Can't change the alignment. FIXME: It's possible to compute
4801        // the exact stack offset and reference FI + adjust offset instead.
4802        // If someone *really* cares about this. That's the way to implement it.
4803        return SDValue();
4804      } else {
4805        MFI->setObjectAlignment(FI, RequiredAlign);
4806      }
4807    }
4808
4809    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4810    // Ptr + (Offset & ~15).
4811    if (Offset < 0)
4812      return SDValue();
4813    if ((Offset % RequiredAlign) & 3)
4814      return SDValue();
4815    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4816    if (StartOffset)
4817      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4818                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4819
4820    int EltNo = (Offset - StartOffset) >> 2;
4821    int NumElems = VT.getVectorNumElements();
4822
4823    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4824    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4825                             LD->getPointerInfo().getWithOffset(StartOffset),
4826                             false, false, false, 0);
4827
4828    SmallVector<int, 8> Mask;
4829    for (int i = 0; i < NumElems; ++i)
4830      Mask.push_back(EltNo);
4831
4832    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4833  }
4834
4835  return SDValue();
4836}
4837
4838/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4839/// vector of type 'VT', see if the elements can be replaced by a single large
4840/// load which has the same value as a build_vector whose operands are 'elts'.
4841///
4842/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4843///
4844/// FIXME: we'd also like to handle the case where the last elements are zero
4845/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4846/// There's even a handy isZeroNode for that purpose.
4847static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4848                                        DebugLoc &DL, SelectionDAG &DAG) {
4849  EVT EltVT = VT.getVectorElementType();
4850  unsigned NumElems = Elts.size();
4851
4852  LoadSDNode *LDBase = NULL;
4853  unsigned LastLoadedElt = -1U;
4854
4855  // For each element in the initializer, see if we've found a load or an undef.
4856  // If we don't find an initial load element, or later load elements are
4857  // non-consecutive, bail out.
4858  for (unsigned i = 0; i < NumElems; ++i) {
4859    SDValue Elt = Elts[i];
4860
4861    if (!Elt.getNode() ||
4862        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4863      return SDValue();
4864    if (!LDBase) {
4865      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4866        return SDValue();
4867      LDBase = cast<LoadSDNode>(Elt.getNode());
4868      LastLoadedElt = i;
4869      continue;
4870    }
4871    if (Elt.getOpcode() == ISD::UNDEF)
4872      continue;
4873
4874    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4875    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4876      return SDValue();
4877    LastLoadedElt = i;
4878  }
4879
4880  // If we have found an entire vector of loads and undefs, then return a large
4881  // load of the entire vector width starting at the base pointer.  If we found
4882  // consecutive loads for the low half, generate a vzext_load node.
4883  if (LastLoadedElt == NumElems - 1) {
4884    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4885      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4886                         LDBase->getPointerInfo(),
4887                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4888                         LDBase->isInvariant(), 0);
4889    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4890                       LDBase->getPointerInfo(),
4891                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4892                       LDBase->isInvariant(), LDBase->getAlignment());
4893  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4894             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4895    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4896    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4897    SDValue ResNode =
4898        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4899                                LDBase->getPointerInfo(),
4900                                LDBase->getAlignment(),
4901                                false/*isVolatile*/, true/*ReadMem*/,
4902                                false/*WriteMem*/);
4903    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4904  }
4905  return SDValue();
4906}
4907
4908/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4909/// a vbroadcast node. We support two patterns:
4910/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4911/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4912/// a scalar load.
4913/// The scalar load node is returned when a pattern is found,
4914/// or SDValue() otherwise.
4915static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4916  if (!Subtarget->hasAVX())
4917    return SDValue();
4918
4919  EVT VT = Op.getValueType();
4920  SDValue V = Op;
4921
4922  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4923    V = V.getOperand(0);
4924
4925  //A suspected load to be broadcasted.
4926  SDValue Ld;
4927
4928  switch (V.getOpcode()) {
4929    default:
4930      // Unknown pattern found.
4931      return SDValue();
4932
4933    case ISD::BUILD_VECTOR: {
4934      // The BUILD_VECTOR node must be a splat.
4935      if (!isSplatVector(V.getNode()))
4936        return SDValue();
4937
4938      Ld = V.getOperand(0);
4939
4940      // The suspected load node has several users. Make sure that all
4941      // of its users are from the BUILD_VECTOR node.
4942      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4943        return SDValue();
4944      break;
4945    }
4946
4947    case ISD::VECTOR_SHUFFLE: {
4948      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4949
4950      // Shuffles must have a splat mask where the first element is
4951      // broadcasted.
4952      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4953        return SDValue();
4954
4955      SDValue Sc = Op.getOperand(0);
4956      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4957        return SDValue();
4958
4959      Ld = Sc.getOperand(0);
4960
4961      // The scalar_to_vector node and the suspected
4962      // load node must have exactly one user.
4963      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4964        return SDValue();
4965      break;
4966    }
4967  }
4968
4969  // The scalar source must be a normal load.
4970  if (!ISD::isNormalLoad(Ld.getNode()))
4971    return SDValue();
4972
4973  // Reject loads that have uses of the chain result
4974  if (Ld->hasAnyUseOfValue(1))
4975    return SDValue();
4976
4977  bool Is256 = VT.getSizeInBits() == 256;
4978  bool Is128 = VT.getSizeInBits() == 128;
4979  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4980
4981  // VBroadcast to YMM
4982  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4983    return Ld;
4984
4985  // VBroadcast to XMM
4986  if (Is128 && (ScalarSize == 32))
4987    return Ld;
4988
4989  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4990  // double since there is vbroadcastsd xmm
4991  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4992    // VBroadcast to YMM
4993    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4994      return Ld;
4995
4996    // VBroadcast to XMM
4997    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4998      return Ld;
4999  }
5000
5001  // Unsupported broadcast.
5002  return SDValue();
5003}
5004
5005SDValue
5006X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5007  DebugLoc dl = Op.getDebugLoc();
5008
5009  EVT VT = Op.getValueType();
5010  EVT ExtVT = VT.getVectorElementType();
5011  unsigned NumElems = Op.getNumOperands();
5012
5013  // Vectors containing all zeros can be matched by pxor and xorps later
5014  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5015    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5016    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5017    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5018      return Op;
5019
5020    return getZeroVector(VT, Subtarget, DAG, dl);
5021  }
5022
5023  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5024  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5025  // vpcmpeqd on 256-bit vectors.
5026  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5027    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5028      return Op;
5029
5030    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5031  }
5032
5033  SDValue LD = isVectorBroadcast(Op, Subtarget);
5034  if (LD.getNode())
5035    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5036
5037  unsigned EVTBits = ExtVT.getSizeInBits();
5038
5039  unsigned NumZero  = 0;
5040  unsigned NumNonZero = 0;
5041  unsigned NonZeros = 0;
5042  bool IsAllConstants = true;
5043  SmallSet<SDValue, 8> Values;
5044  for (unsigned i = 0; i < NumElems; ++i) {
5045    SDValue Elt = Op.getOperand(i);
5046    if (Elt.getOpcode() == ISD::UNDEF)
5047      continue;
5048    Values.insert(Elt);
5049    if (Elt.getOpcode() != ISD::Constant &&
5050        Elt.getOpcode() != ISD::ConstantFP)
5051      IsAllConstants = false;
5052    if (X86::isZeroNode(Elt))
5053      NumZero++;
5054    else {
5055      NonZeros |= (1 << i);
5056      NumNonZero++;
5057    }
5058  }
5059
5060  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5061  if (NumNonZero == 0)
5062    return DAG.getUNDEF(VT);
5063
5064  // Special case for single non-zero, non-undef, element.
5065  if (NumNonZero == 1) {
5066    unsigned Idx = CountTrailingZeros_32(NonZeros);
5067    SDValue Item = Op.getOperand(Idx);
5068
5069    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5070    // the value are obviously zero, truncate the value to i32 and do the
5071    // insertion that way.  Only do this if the value is non-constant or if the
5072    // value is a constant being inserted into element 0.  It is cheaper to do
5073    // a constant pool load than it is to do a movd + shuffle.
5074    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5075        (!IsAllConstants || Idx == 0)) {
5076      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5077        // Handle SSE only.
5078        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5079        EVT VecVT = MVT::v4i32;
5080        unsigned VecElts = 4;
5081
5082        // Truncate the value (which may itself be a constant) to i32, and
5083        // convert it to a vector with movd (S2V+shuffle to zero extend).
5084        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5085        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5086        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5087
5088        // Now we have our 32-bit value zero extended in the low element of
5089        // a vector.  If Idx != 0, swizzle it into place.
5090        if (Idx != 0) {
5091          SmallVector<int, 4> Mask;
5092          Mask.push_back(Idx);
5093          for (unsigned i = 1; i != VecElts; ++i)
5094            Mask.push_back(i);
5095          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5096                                      DAG.getUNDEF(Item.getValueType()),
5097                                      &Mask[0]);
5098        }
5099        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5100      }
5101    }
5102
5103    // If we have a constant or non-constant insertion into the low element of
5104    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5105    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5106    // depending on what the source datatype is.
5107    if (Idx == 0) {
5108      if (NumZero == 0)
5109        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5110
5111      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5112          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5113        if (VT.getSizeInBits() == 256) {
5114          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5115          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5116                             Item, DAG.getIntPtrConstant(0));
5117        }
5118        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5119        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5120        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5121        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5122      }
5123
5124      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5125        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5126        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5127        if (VT.getSizeInBits() == 256) {
5128          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5129          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5130                                    DAG, dl);
5131        } else {
5132          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5133          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5134        }
5135        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5136      }
5137    }
5138
5139    // Is it a vector logical left shift?
5140    if (NumElems == 2 && Idx == 1 &&
5141        X86::isZeroNode(Op.getOperand(0)) &&
5142        !X86::isZeroNode(Op.getOperand(1))) {
5143      unsigned NumBits = VT.getSizeInBits();
5144      return getVShift(true, VT,
5145                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5146                                   VT, Op.getOperand(1)),
5147                       NumBits/2, DAG, *this, dl);
5148    }
5149
5150    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5151      return SDValue();
5152
5153    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5154    // is a non-constant being inserted into an element other than the low one,
5155    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5156    // movd/movss) to move this into the low element, then shuffle it into
5157    // place.
5158    if (EVTBits == 32) {
5159      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5160
5161      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5162      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5163      SmallVector<int, 8> MaskVec;
5164      for (unsigned i = 0; i < NumElems; i++)
5165        MaskVec.push_back(i == Idx ? 0 : 1);
5166      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5167    }
5168  }
5169
5170  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5171  if (Values.size() == 1) {
5172    if (EVTBits == 32) {
5173      // Instead of a shuffle like this:
5174      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5175      // Check if it's possible to issue this instead.
5176      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5177      unsigned Idx = CountTrailingZeros_32(NonZeros);
5178      SDValue Item = Op.getOperand(Idx);
5179      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5180        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5181    }
5182    return SDValue();
5183  }
5184
5185  // A vector full of immediates; various special cases are already
5186  // handled, so this is best done with a single constant-pool load.
5187  if (IsAllConstants)
5188    return SDValue();
5189
5190  // For AVX-length vectors, build the individual 128-bit pieces and use
5191  // shuffles to put them in place.
5192  if (VT.getSizeInBits() == 256) {
5193    SmallVector<SDValue, 32> V;
5194    for (unsigned i = 0; i != NumElems; ++i)
5195      V.push_back(Op.getOperand(i));
5196
5197    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5198
5199    // Build both the lower and upper subvector.
5200    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5201    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5202                                NumElems/2);
5203
5204    // Recreate the wider vector with the lower and upper part.
5205    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5206                                DAG.getConstant(0, MVT::i32), DAG, dl);
5207    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5208                              DAG, dl);
5209  }
5210
5211  // Let legalizer expand 2-wide build_vectors.
5212  if (EVTBits == 64) {
5213    if (NumNonZero == 1) {
5214      // One half is zero or undef.
5215      unsigned Idx = CountTrailingZeros_32(NonZeros);
5216      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5217                                 Op.getOperand(Idx));
5218      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5219    }
5220    return SDValue();
5221  }
5222
5223  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5224  if (EVTBits == 8 && NumElems == 16) {
5225    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5226                                        Subtarget, *this);
5227    if (V.getNode()) return V;
5228  }
5229
5230  if (EVTBits == 16 && NumElems == 8) {
5231    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5232                                      Subtarget, *this);
5233    if (V.getNode()) return V;
5234  }
5235
5236  // If element VT is == 32 bits, turn it into a number of shuffles.
5237  SmallVector<SDValue, 8> V(NumElems);
5238  if (NumElems == 4 && NumZero > 0) {
5239    for (unsigned i = 0; i < 4; ++i) {
5240      bool isZero = !(NonZeros & (1 << i));
5241      if (isZero)
5242        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5243      else
5244        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5245    }
5246
5247    for (unsigned i = 0; i < 2; ++i) {
5248      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5249        default: break;
5250        case 0:
5251          V[i] = V[i*2];  // Must be a zero vector.
5252          break;
5253        case 1:
5254          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5255          break;
5256        case 2:
5257          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5258          break;
5259        case 3:
5260          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5261          break;
5262      }
5263    }
5264
5265    bool Reverse1 = (NonZeros & 0x3) == 2;
5266    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5267    int MaskVec[] = {
5268      Reverse1 ? 1 : 0,
5269      Reverse1 ? 0 : 1,
5270      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5271      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5272    };
5273    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5274  }
5275
5276  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5277    // Check for a build vector of consecutive loads.
5278    for (unsigned i = 0; i < NumElems; ++i)
5279      V[i] = Op.getOperand(i);
5280
5281    // Check for elements which are consecutive loads.
5282    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5283    if (LD.getNode())
5284      return LD;
5285
5286    // For SSE 4.1, use insertps to put the high elements into the low element.
5287    if (getSubtarget()->hasSSE41()) {
5288      SDValue Result;
5289      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5290        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5291      else
5292        Result = DAG.getUNDEF(VT);
5293
5294      for (unsigned i = 1; i < NumElems; ++i) {
5295        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5296        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5297                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5298      }
5299      return Result;
5300    }
5301
5302    // Otherwise, expand into a number of unpckl*, start by extending each of
5303    // our (non-undef) elements to the full vector width with the element in the
5304    // bottom slot of the vector (which generates no code for SSE).
5305    for (unsigned i = 0; i < NumElems; ++i) {
5306      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5307        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5308      else
5309        V[i] = DAG.getUNDEF(VT);
5310    }
5311
5312    // Next, we iteratively mix elements, e.g. for v4f32:
5313    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5314    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5315    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5316    unsigned EltStride = NumElems >> 1;
5317    while (EltStride != 0) {
5318      for (unsigned i = 0; i < EltStride; ++i) {
5319        // If V[i+EltStride] is undef and this is the first round of mixing,
5320        // then it is safe to just drop this shuffle: V[i] is already in the
5321        // right place, the one element (since it's the first round) being
5322        // inserted as undef can be dropped.  This isn't safe for successive
5323        // rounds because they will permute elements within both vectors.
5324        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5325            EltStride == NumElems/2)
5326          continue;
5327
5328        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5329      }
5330      EltStride >>= 1;
5331    }
5332    return V[0];
5333  }
5334  return SDValue();
5335}
5336
5337// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5338// them in a MMX register.  This is better than doing a stack convert.
5339static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5340  DebugLoc dl = Op.getDebugLoc();
5341  EVT ResVT = Op.getValueType();
5342
5343  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5344         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5345  int Mask[2];
5346  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5347  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5348  InVec = Op.getOperand(1);
5349  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5350    unsigned NumElts = ResVT.getVectorNumElements();
5351    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5352    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5353                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5354  } else {
5355    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5356    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5357    Mask[0] = 0; Mask[1] = 2;
5358    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5359  }
5360  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5361}
5362
5363// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5364// to create 256-bit vectors from two other 128-bit ones.
5365static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5366  DebugLoc dl = Op.getDebugLoc();
5367  EVT ResVT = Op.getValueType();
5368
5369  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5370
5371  SDValue V1 = Op.getOperand(0);
5372  SDValue V2 = Op.getOperand(1);
5373  unsigned NumElems = ResVT.getVectorNumElements();
5374
5375  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5376                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5377  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5378                            DAG, dl);
5379}
5380
5381SDValue
5382X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5383  EVT ResVT = Op.getValueType();
5384
5385  assert(Op.getNumOperands() == 2);
5386  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5387         "Unsupported CONCAT_VECTORS for value type");
5388
5389  // We support concatenate two MMX registers and place them in a MMX register.
5390  // This is better than doing a stack convert.
5391  if (ResVT.is128BitVector())
5392    return LowerMMXCONCAT_VECTORS(Op, DAG);
5393
5394  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5395  // from two other 128-bit ones.
5396  return LowerAVXCONCAT_VECTORS(Op, DAG);
5397}
5398
5399// v8i16 shuffles - Prefer shuffles in the following order:
5400// 1. [all]   pshuflw, pshufhw, optional move
5401// 2. [ssse3] 1 x pshufb
5402// 3. [ssse3] 2 x pshufb + 1 x por
5403// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5404SDValue
5405X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5406                                            SelectionDAG &DAG) const {
5407  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5408  SDValue V1 = SVOp->getOperand(0);
5409  SDValue V2 = SVOp->getOperand(1);
5410  DebugLoc dl = SVOp->getDebugLoc();
5411  SmallVector<int, 8> MaskVals;
5412
5413  // Determine if more than 1 of the words in each of the low and high quadwords
5414  // of the result come from the same quadword of one of the two inputs.  Undef
5415  // mask values count as coming from any quadword, for better codegen.
5416  unsigned LoQuad[] = { 0, 0, 0, 0 };
5417  unsigned HiQuad[] = { 0, 0, 0, 0 };
5418  BitVector InputQuads(4);
5419  for (unsigned i = 0; i < 8; ++i) {
5420    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5421    int EltIdx = SVOp->getMaskElt(i);
5422    MaskVals.push_back(EltIdx);
5423    if (EltIdx < 0) {
5424      ++Quad[0];
5425      ++Quad[1];
5426      ++Quad[2];
5427      ++Quad[3];
5428      continue;
5429    }
5430    ++Quad[EltIdx / 4];
5431    InputQuads.set(EltIdx / 4);
5432  }
5433
5434  int BestLoQuad = -1;
5435  unsigned MaxQuad = 1;
5436  for (unsigned i = 0; i < 4; ++i) {
5437    if (LoQuad[i] > MaxQuad) {
5438      BestLoQuad = i;
5439      MaxQuad = LoQuad[i];
5440    }
5441  }
5442
5443  int BestHiQuad = -1;
5444  MaxQuad = 1;
5445  for (unsigned i = 0; i < 4; ++i) {
5446    if (HiQuad[i] > MaxQuad) {
5447      BestHiQuad = i;
5448      MaxQuad = HiQuad[i];
5449    }
5450  }
5451
5452  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5453  // of the two input vectors, shuffle them into one input vector so only a
5454  // single pshufb instruction is necessary. If There are more than 2 input
5455  // quads, disable the next transformation since it does not help SSSE3.
5456  bool V1Used = InputQuads[0] || InputQuads[1];
5457  bool V2Used = InputQuads[2] || InputQuads[3];
5458  if (Subtarget->hasSSSE3()) {
5459    if (InputQuads.count() == 2 && V1Used && V2Used) {
5460      BestLoQuad = InputQuads.find_first();
5461      BestHiQuad = InputQuads.find_next(BestLoQuad);
5462    }
5463    if (InputQuads.count() > 2) {
5464      BestLoQuad = -1;
5465      BestHiQuad = -1;
5466    }
5467  }
5468
5469  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5470  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5471  // words from all 4 input quadwords.
5472  SDValue NewV;
5473  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5474    int MaskV[] = {
5475      BestLoQuad < 0 ? 0 : BestLoQuad,
5476      BestHiQuad < 0 ? 1 : BestHiQuad
5477    };
5478    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5479                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5480                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5481    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5482
5483    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5484    // source words for the shuffle, to aid later transformations.
5485    bool AllWordsInNewV = true;
5486    bool InOrder[2] = { true, true };
5487    for (unsigned i = 0; i != 8; ++i) {
5488      int idx = MaskVals[i];
5489      if (idx != (int)i)
5490        InOrder[i/4] = false;
5491      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5492        continue;
5493      AllWordsInNewV = false;
5494      break;
5495    }
5496
5497    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5498    if (AllWordsInNewV) {
5499      for (int i = 0; i != 8; ++i) {
5500        int idx = MaskVals[i];
5501        if (idx < 0)
5502          continue;
5503        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5504        if ((idx != i) && idx < 4)
5505          pshufhw = false;
5506        if ((idx != i) && idx > 3)
5507          pshuflw = false;
5508      }
5509      V1 = NewV;
5510      V2Used = false;
5511      BestLoQuad = 0;
5512      BestHiQuad = 1;
5513    }
5514
5515    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5516    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5517    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5518      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5519      unsigned TargetMask = 0;
5520      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5521                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5522      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5523                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5524      V1 = NewV.getOperand(0);
5525      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5526    }
5527  }
5528
5529  // If we have SSSE3, and all words of the result are from 1 input vector,
5530  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5531  // is present, fall back to case 4.
5532  if (Subtarget->hasSSSE3()) {
5533    SmallVector<SDValue,16> pshufbMask;
5534
5535    // If we have elements from both input vectors, set the high bit of the
5536    // shuffle mask element to zero out elements that come from V2 in the V1
5537    // mask, and elements that come from V1 in the V2 mask, so that the two
5538    // results can be OR'd together.
5539    bool TwoInputs = V1Used && V2Used;
5540    for (unsigned i = 0; i != 8; ++i) {
5541      int EltIdx = MaskVals[i] * 2;
5542      if (TwoInputs && (EltIdx >= 16)) {
5543        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5544        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5545        continue;
5546      }
5547      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5548      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5549    }
5550    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5551    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5552                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5553                                 MVT::v16i8, &pshufbMask[0], 16));
5554    if (!TwoInputs)
5555      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5556
5557    // Calculate the shuffle mask for the second input, shuffle it, and
5558    // OR it with the first shuffled input.
5559    pshufbMask.clear();
5560    for (unsigned i = 0; i != 8; ++i) {
5561      int EltIdx = MaskVals[i] * 2;
5562      if (EltIdx < 16) {
5563        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5564        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5565        continue;
5566      }
5567      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5568      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5569    }
5570    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5571    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5572                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5573                                 MVT::v16i8, &pshufbMask[0], 16));
5574    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5575    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5576  }
5577
5578  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5579  // and update MaskVals with new element order.
5580  std::bitset<8> InOrder;
5581  if (BestLoQuad >= 0) {
5582    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5583    for (int i = 0; i != 4; ++i) {
5584      int idx = MaskVals[i];
5585      if (idx < 0) {
5586        InOrder.set(i);
5587      } else if ((idx / 4) == BestLoQuad) {
5588        MaskV[i] = idx & 3;
5589        InOrder.set(i);
5590      }
5591    }
5592    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5593                                &MaskV[0]);
5594
5595    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5596      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5597                               NewV.getOperand(0),
5598                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5599                               DAG);
5600  }
5601
5602  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5603  // and update MaskVals with the new element order.
5604  if (BestHiQuad >= 0) {
5605    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5606    for (unsigned i = 4; i != 8; ++i) {
5607      int idx = MaskVals[i];
5608      if (idx < 0) {
5609        InOrder.set(i);
5610      } else if ((idx / 4) == BestHiQuad) {
5611        MaskV[i] = (idx & 3) + 4;
5612        InOrder.set(i);
5613      }
5614    }
5615    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5616                                &MaskV[0]);
5617
5618    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5619      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5620                              NewV.getOperand(0),
5621                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5622                              DAG);
5623  }
5624
5625  // In case BestHi & BestLo were both -1, which means each quadword has a word
5626  // from each of the four input quadwords, calculate the InOrder bitvector now
5627  // before falling through to the insert/extract cleanup.
5628  if (BestLoQuad == -1 && BestHiQuad == -1) {
5629    NewV = V1;
5630    for (int i = 0; i != 8; ++i)
5631      if (MaskVals[i] < 0 || MaskVals[i] == i)
5632        InOrder.set(i);
5633  }
5634
5635  // The other elements are put in the right place using pextrw and pinsrw.
5636  for (unsigned i = 0; i != 8; ++i) {
5637    if (InOrder[i])
5638      continue;
5639    int EltIdx = MaskVals[i];
5640    if (EltIdx < 0)
5641      continue;
5642    SDValue ExtOp = (EltIdx < 8)
5643    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5644                  DAG.getIntPtrConstant(EltIdx))
5645    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5646                  DAG.getIntPtrConstant(EltIdx - 8));
5647    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5648                       DAG.getIntPtrConstant(i));
5649  }
5650  return NewV;
5651}
5652
5653// v16i8 shuffles - Prefer shuffles in the following order:
5654// 1. [ssse3] 1 x pshufb
5655// 2. [ssse3] 2 x pshufb + 1 x por
5656// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5657static
5658SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5659                                 SelectionDAG &DAG,
5660                                 const X86TargetLowering &TLI) {
5661  SDValue V1 = SVOp->getOperand(0);
5662  SDValue V2 = SVOp->getOperand(1);
5663  DebugLoc dl = SVOp->getDebugLoc();
5664  ArrayRef<int> MaskVals = SVOp->getMask();
5665
5666  // If we have SSSE3, case 1 is generated when all result bytes come from
5667  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5668  // present, fall back to case 3.
5669  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5670  bool V1Only = true;
5671  bool V2Only = true;
5672  for (unsigned i = 0; i < 16; ++i) {
5673    int EltIdx = MaskVals[i];
5674    if (EltIdx < 0)
5675      continue;
5676    if (EltIdx < 16)
5677      V2Only = false;
5678    else
5679      V1Only = false;
5680  }
5681
5682  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5683  if (TLI.getSubtarget()->hasSSSE3()) {
5684    SmallVector<SDValue,16> pshufbMask;
5685
5686    // If all result elements are from one input vector, then only translate
5687    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5688    //
5689    // Otherwise, we have elements from both input vectors, and must zero out
5690    // elements that come from V2 in the first mask, and V1 in the second mask
5691    // so that we can OR them together.
5692    bool TwoInputs = !(V1Only || V2Only);
5693    for (unsigned i = 0; i != 16; ++i) {
5694      int EltIdx = MaskVals[i];
5695      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5696        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5697        continue;
5698      }
5699      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5700    }
5701    // If all the elements are from V2, assign it to V1 and return after
5702    // building the first pshufb.
5703    if (V2Only)
5704      V1 = V2;
5705    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5706                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5707                                 MVT::v16i8, &pshufbMask[0], 16));
5708    if (!TwoInputs)
5709      return V1;
5710
5711    // Calculate the shuffle mask for the second input, shuffle it, and
5712    // OR it with the first shuffled input.
5713    pshufbMask.clear();
5714    for (unsigned i = 0; i != 16; ++i) {
5715      int EltIdx = MaskVals[i];
5716      if (EltIdx < 16) {
5717        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5718        continue;
5719      }
5720      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5721    }
5722    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5723                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5724                                 MVT::v16i8, &pshufbMask[0], 16));
5725    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5726  }
5727
5728  // No SSSE3 - Calculate in place words and then fix all out of place words
5729  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5730  // the 16 different words that comprise the two doublequadword input vectors.
5731  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5732  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5733  SDValue NewV = V2Only ? V2 : V1;
5734  for (int i = 0; i != 8; ++i) {
5735    int Elt0 = MaskVals[i*2];
5736    int Elt1 = MaskVals[i*2+1];
5737
5738    // This word of the result is all undef, skip it.
5739    if (Elt0 < 0 && Elt1 < 0)
5740      continue;
5741
5742    // This word of the result is already in the correct place, skip it.
5743    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5744      continue;
5745    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5746      continue;
5747
5748    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5749    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5750    SDValue InsElt;
5751
5752    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5753    // using a single extract together, load it and store it.
5754    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5755      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5756                           DAG.getIntPtrConstant(Elt1 / 2));
5757      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5758                        DAG.getIntPtrConstant(i));
5759      continue;
5760    }
5761
5762    // If Elt1 is defined, extract it from the appropriate source.  If the
5763    // source byte is not also odd, shift the extracted word left 8 bits
5764    // otherwise clear the bottom 8 bits if we need to do an or.
5765    if (Elt1 >= 0) {
5766      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5767                           DAG.getIntPtrConstant(Elt1 / 2));
5768      if ((Elt1 & 1) == 0)
5769        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5770                             DAG.getConstant(8,
5771                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5772      else if (Elt0 >= 0)
5773        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5774                             DAG.getConstant(0xFF00, MVT::i16));
5775    }
5776    // If Elt0 is defined, extract it from the appropriate source.  If the
5777    // source byte is not also even, shift the extracted word right 8 bits. If
5778    // Elt1 was also defined, OR the extracted values together before
5779    // inserting them in the result.
5780    if (Elt0 >= 0) {
5781      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5782                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5783      if ((Elt0 & 1) != 0)
5784        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5785                              DAG.getConstant(8,
5786                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5787      else if (Elt1 >= 0)
5788        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5789                             DAG.getConstant(0x00FF, MVT::i16));
5790      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5791                         : InsElt0;
5792    }
5793    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5794                       DAG.getIntPtrConstant(i));
5795  }
5796  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5797}
5798
5799/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5800/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5801/// done when every pair / quad of shuffle mask elements point to elements in
5802/// the right sequence. e.g.
5803/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5804static
5805SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5806                                 SelectionDAG &DAG, DebugLoc dl) {
5807  EVT VT = SVOp->getValueType(0);
5808  SDValue V1 = SVOp->getOperand(0);
5809  SDValue V2 = SVOp->getOperand(1);
5810  unsigned NumElems = VT.getVectorNumElements();
5811  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5812  EVT NewVT;
5813  switch (VT.getSimpleVT().SimpleTy) {
5814  default: llvm_unreachable("Unexpected!");
5815  case MVT::v4f32: NewVT = MVT::v2f64; break;
5816  case MVT::v4i32: NewVT = MVT::v2i64; break;
5817  case MVT::v8i16: NewVT = MVT::v4i32; break;
5818  case MVT::v16i8: NewVT = MVT::v4i32; break;
5819  }
5820
5821  int Scale = NumElems / NewWidth;
5822  SmallVector<int, 8> MaskVec;
5823  for (unsigned i = 0; i < NumElems; i += Scale) {
5824    int StartIdx = -1;
5825    for (int j = 0; j < Scale; ++j) {
5826      int EltIdx = SVOp->getMaskElt(i+j);
5827      if (EltIdx < 0)
5828        continue;
5829      if (StartIdx == -1)
5830        StartIdx = EltIdx - (EltIdx % Scale);
5831      if (EltIdx != StartIdx + j)
5832        return SDValue();
5833    }
5834    if (StartIdx == -1)
5835      MaskVec.push_back(-1);
5836    else
5837      MaskVec.push_back(StartIdx / Scale);
5838  }
5839
5840  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5841  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5842  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5843}
5844
5845/// getVZextMovL - Return a zero-extending vector move low node.
5846///
5847static SDValue getVZextMovL(EVT VT, EVT OpVT,
5848                            SDValue SrcOp, SelectionDAG &DAG,
5849                            const X86Subtarget *Subtarget, DebugLoc dl) {
5850  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5851    LoadSDNode *LD = NULL;
5852    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5853      LD = dyn_cast<LoadSDNode>(SrcOp);
5854    if (!LD) {
5855      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5856      // instead.
5857      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5858      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5859          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5860          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5861          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5862        // PR2108
5863        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5864        return DAG.getNode(ISD::BITCAST, dl, VT,
5865                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5866                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5867                                                   OpVT,
5868                                                   SrcOp.getOperand(0)
5869                                                          .getOperand(0))));
5870      }
5871    }
5872  }
5873
5874  return DAG.getNode(ISD::BITCAST, dl, VT,
5875                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5876                                 DAG.getNode(ISD::BITCAST, dl,
5877                                             OpVT, SrcOp)));
5878}
5879
5880/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5881/// which could not be matched by any known target speficic shuffle
5882static SDValue
5883LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5884  EVT VT = SVOp->getValueType(0);
5885
5886  unsigned NumElems = VT.getVectorNumElements();
5887  unsigned NumLaneElems = NumElems / 2;
5888
5889  int MinRange[2][2] = { { static_cast<int>(NumElems),
5890                           static_cast<int>(NumElems) },
5891                         { static_cast<int>(NumElems),
5892                           static_cast<int>(NumElems) } };
5893  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5894
5895  // Collect used ranges for each source in each lane
5896  for (unsigned l = 0; l < 2; ++l) {
5897    unsigned LaneStart = l*NumLaneElems;
5898    for (unsigned i = 0; i != NumLaneElems; ++i) {
5899      int Idx = SVOp->getMaskElt(i+LaneStart);
5900      if (Idx < 0)
5901        continue;
5902
5903      int Input = 0;
5904      if (Idx >= (int)NumElems) {
5905        Idx -= NumElems;
5906        Input = 1;
5907      }
5908
5909      if (Idx > MaxRange[l][Input])
5910        MaxRange[l][Input] = Idx;
5911      if (Idx < MinRange[l][Input])
5912        MinRange[l][Input] = Idx;
5913    }
5914  }
5915
5916  // Make sure each range is 128-bits
5917  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5918  for (unsigned l = 0; l < 2; ++l) {
5919    for (unsigned Input = 0; Input < 2; ++Input) {
5920      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5921        continue;
5922
5923      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5924        ExtractIdx[l][Input] = 0;
5925      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5926               MaxRange[l][Input] < (int)NumElems)
5927        ExtractIdx[l][Input] = NumLaneElems;
5928      else
5929        return SDValue();
5930    }
5931  }
5932
5933  DebugLoc dl = SVOp->getDebugLoc();
5934  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5935  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5936
5937  SDValue Ops[2][2];
5938  for (unsigned l = 0; l < 2; ++l) {
5939    for (unsigned Input = 0; Input < 2; ++Input) {
5940      if (ExtractIdx[l][Input] >= 0)
5941        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5942                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5943                                                DAG, dl);
5944      else
5945        Ops[l][Input] = DAG.getUNDEF(NVT);
5946    }
5947  }
5948
5949  // Generate 128-bit shuffles
5950  SmallVector<int, 16> Mask1, Mask2;
5951  for (unsigned i = 0; i != NumLaneElems; ++i) {
5952    int Elt = SVOp->getMaskElt(i);
5953    if (Elt >= (int)NumElems) {
5954      Elt %= NumLaneElems;
5955      Elt += NumLaneElems;
5956    } else if (Elt >= 0) {
5957      Elt %= NumLaneElems;
5958    }
5959    Mask1.push_back(Elt);
5960  }
5961  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
5962    int Elt = SVOp->getMaskElt(i);
5963    if (Elt >= (int)NumElems) {
5964      Elt %= NumLaneElems;
5965      Elt += NumLaneElems;
5966    } else if (Elt >= 0) {
5967      Elt %= NumLaneElems;
5968    }
5969    Mask2.push_back(Elt);
5970  }
5971
5972  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
5973  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
5974
5975  // Concatenate the result back
5976  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
5977                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5978  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
5979                            DAG, dl);
5980}
5981
5982/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5983/// 4 elements, and match them with several different shuffle types.
5984static SDValue
5985LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5986  SDValue V1 = SVOp->getOperand(0);
5987  SDValue V2 = SVOp->getOperand(1);
5988  DebugLoc dl = SVOp->getDebugLoc();
5989  EVT VT = SVOp->getValueType(0);
5990
5991  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5992
5993  std::pair<int, int> Locs[4];
5994  int Mask1[] = { -1, -1, -1, -1 };
5995  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
5996
5997  unsigned NumHi = 0;
5998  unsigned NumLo = 0;
5999  for (unsigned i = 0; i != 4; ++i) {
6000    int Idx = PermMask[i];
6001    if (Idx < 0) {
6002      Locs[i] = std::make_pair(-1, -1);
6003    } else {
6004      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6005      if (Idx < 4) {
6006        Locs[i] = std::make_pair(0, NumLo);
6007        Mask1[NumLo] = Idx;
6008        NumLo++;
6009      } else {
6010        Locs[i] = std::make_pair(1, NumHi);
6011        if (2+NumHi < 4)
6012          Mask1[2+NumHi] = Idx;
6013        NumHi++;
6014      }
6015    }
6016  }
6017
6018  if (NumLo <= 2 && NumHi <= 2) {
6019    // If no more than two elements come from either vector. This can be
6020    // implemented with two shuffles. First shuffle gather the elements.
6021    // The second shuffle, which takes the first shuffle as both of its
6022    // vector operands, put the elements into the right order.
6023    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6024
6025    int Mask2[] = { -1, -1, -1, -1 };
6026
6027    for (unsigned i = 0; i != 4; ++i)
6028      if (Locs[i].first != -1) {
6029        unsigned Idx = (i < 2) ? 0 : 4;
6030        Idx += Locs[i].first * 2 + Locs[i].second;
6031        Mask2[i] = Idx;
6032      }
6033
6034    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6035  } else if (NumLo == 3 || NumHi == 3) {
6036    // Otherwise, we must have three elements from one vector, call it X, and
6037    // one element from the other, call it Y.  First, use a shufps to build an
6038    // intermediate vector with the one element from Y and the element from X
6039    // that will be in the same half in the final destination (the indexes don't
6040    // matter). Then, use a shufps to build the final vector, taking the half
6041    // containing the element from Y from the intermediate, and the other half
6042    // from X.
6043    if (NumHi == 3) {
6044      // Normalize it so the 3 elements come from V1.
6045      CommuteVectorShuffleMask(PermMask, 4);
6046      std::swap(V1, V2);
6047    }
6048
6049    // Find the element from V2.
6050    unsigned HiIndex;
6051    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6052      int Val = PermMask[HiIndex];
6053      if (Val < 0)
6054        continue;
6055      if (Val >= 4)
6056        break;
6057    }
6058
6059    Mask1[0] = PermMask[HiIndex];
6060    Mask1[1] = -1;
6061    Mask1[2] = PermMask[HiIndex^1];
6062    Mask1[3] = -1;
6063    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6064
6065    if (HiIndex >= 2) {
6066      Mask1[0] = PermMask[0];
6067      Mask1[1] = PermMask[1];
6068      Mask1[2] = HiIndex & 1 ? 6 : 4;
6069      Mask1[3] = HiIndex & 1 ? 4 : 6;
6070      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6071    } else {
6072      Mask1[0] = HiIndex & 1 ? 2 : 0;
6073      Mask1[1] = HiIndex & 1 ? 0 : 2;
6074      Mask1[2] = PermMask[2];
6075      Mask1[3] = PermMask[3];
6076      if (Mask1[2] >= 0)
6077        Mask1[2] += 4;
6078      if (Mask1[3] >= 0)
6079        Mask1[3] += 4;
6080      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6081    }
6082  }
6083
6084  // Break it into (shuffle shuffle_hi, shuffle_lo).
6085  int LoMask[] = { -1, -1, -1, -1 };
6086  int HiMask[] = { -1, -1, -1, -1 };
6087
6088  int *MaskPtr = LoMask;
6089  unsigned MaskIdx = 0;
6090  unsigned LoIdx = 0;
6091  unsigned HiIdx = 2;
6092  for (unsigned i = 0; i != 4; ++i) {
6093    if (i == 2) {
6094      MaskPtr = HiMask;
6095      MaskIdx = 1;
6096      LoIdx = 0;
6097      HiIdx = 2;
6098    }
6099    int Idx = PermMask[i];
6100    if (Idx < 0) {
6101      Locs[i] = std::make_pair(-1, -1);
6102    } else if (Idx < 4) {
6103      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6104      MaskPtr[LoIdx] = Idx;
6105      LoIdx++;
6106    } else {
6107      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6108      MaskPtr[HiIdx] = Idx;
6109      HiIdx++;
6110    }
6111  }
6112
6113  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6114  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6115  int MaskOps[] = { -1, -1, -1, -1 };
6116  for (unsigned i = 0; i != 4; ++i)
6117    if (Locs[i].first != -1)
6118      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6119  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6120}
6121
6122static bool MayFoldVectorLoad(SDValue V) {
6123  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6124    V = V.getOperand(0);
6125  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6126    V = V.getOperand(0);
6127  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6128      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6129    // BUILD_VECTOR (load), undef
6130    V = V.getOperand(0);
6131  if (MayFoldLoad(V))
6132    return true;
6133  return false;
6134}
6135
6136// FIXME: the version above should always be used. Since there's
6137// a bug where several vector shuffles can't be folded because the
6138// DAG is not updated during lowering and a node claims to have two
6139// uses while it only has one, use this version, and let isel match
6140// another instruction if the load really happens to have more than
6141// one use. Remove this version after this bug get fixed.
6142// rdar://8434668, PR8156
6143static bool RelaxedMayFoldVectorLoad(SDValue V) {
6144  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6145    V = V.getOperand(0);
6146  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6147    V = V.getOperand(0);
6148  if (ISD::isNormalLoad(V.getNode()))
6149    return true;
6150  return false;
6151}
6152
6153/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6154/// a vector extract, and if both can be later optimized into a single load.
6155/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6156/// here because otherwise a target specific shuffle node is going to be
6157/// emitted for this shuffle, and the optimization not done.
6158/// FIXME: This is probably not the best approach, but fix the problem
6159/// until the right path is decided.
6160static
6161bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6162                                         const TargetLowering &TLI) {
6163  EVT VT = V.getValueType();
6164  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6165
6166  // Be sure that the vector shuffle is present in a pattern like this:
6167  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6168  if (!V.hasOneUse())
6169    return false;
6170
6171  SDNode *N = *V.getNode()->use_begin();
6172  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6173    return false;
6174
6175  SDValue EltNo = N->getOperand(1);
6176  if (!isa<ConstantSDNode>(EltNo))
6177    return false;
6178
6179  // If the bit convert changed the number of elements, it is unsafe
6180  // to examine the mask.
6181  bool HasShuffleIntoBitcast = false;
6182  if (V.getOpcode() == ISD::BITCAST) {
6183    EVT SrcVT = V.getOperand(0).getValueType();
6184    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6185      return false;
6186    V = V.getOperand(0);
6187    HasShuffleIntoBitcast = true;
6188  }
6189
6190  // Select the input vector, guarding against out of range extract vector.
6191  unsigned NumElems = VT.getVectorNumElements();
6192  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6193  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6194  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6195
6196  // If we are accessing the upper part of a YMM register
6197  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6198  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6199  // because the legalization of N did not happen yet.
6200  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6201    return false;
6202
6203  // Skip one more bit_convert if necessary
6204  if (V.getOpcode() == ISD::BITCAST)
6205    V = V.getOperand(0);
6206
6207  if (!ISD::isNormalLoad(V.getNode()))
6208    return false;
6209
6210  // Is the original load suitable?
6211  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6212
6213  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6214    return false;
6215
6216  if (!HasShuffleIntoBitcast)
6217    return true;
6218
6219  // If there's a bitcast before the shuffle, check if the load type and
6220  // alignment is valid.
6221  unsigned Align = LN0->getAlignment();
6222  unsigned NewAlign =
6223    TLI.getTargetData()->getABITypeAlignment(
6224                                  VT.getTypeForEVT(*DAG.getContext()));
6225
6226  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6227    return false;
6228
6229  return true;
6230}
6231
6232static
6233SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6234  EVT VT = Op.getValueType();
6235
6236  // Canonizalize to v2f64.
6237  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6238  return DAG.getNode(ISD::BITCAST, dl, VT,
6239                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6240                                          V1, DAG));
6241}
6242
6243static
6244SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6245                        bool HasSSE2) {
6246  SDValue V1 = Op.getOperand(0);
6247  SDValue V2 = Op.getOperand(1);
6248  EVT VT = Op.getValueType();
6249
6250  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6251
6252  if (HasSSE2 && VT == MVT::v2f64)
6253    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6254
6255  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6256  return DAG.getNode(ISD::BITCAST, dl, VT,
6257                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6258                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6259                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6260}
6261
6262static
6263SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6264  SDValue V1 = Op.getOperand(0);
6265  SDValue V2 = Op.getOperand(1);
6266  EVT VT = Op.getValueType();
6267
6268  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6269         "unsupported shuffle type");
6270
6271  if (V2.getOpcode() == ISD::UNDEF)
6272    V2 = V1;
6273
6274  // v4i32 or v4f32
6275  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6276}
6277
6278static
6279SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6280  SDValue V1 = Op.getOperand(0);
6281  SDValue V2 = Op.getOperand(1);
6282  EVT VT = Op.getValueType();
6283  unsigned NumElems = VT.getVectorNumElements();
6284
6285  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6286  // operand of these instructions is only memory, so check if there's a
6287  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6288  // same masks.
6289  bool CanFoldLoad = false;
6290
6291  // Trivial case, when V2 comes from a load.
6292  if (MayFoldVectorLoad(V2))
6293    CanFoldLoad = true;
6294
6295  // When V1 is a load, it can be folded later into a store in isel, example:
6296  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6297  //    turns into:
6298  //  (MOVLPSmr addr:$src1, VR128:$src2)
6299  // So, recognize this potential and also use MOVLPS or MOVLPD
6300  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6301    CanFoldLoad = true;
6302
6303  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6304  if (CanFoldLoad) {
6305    if (HasSSE2 && NumElems == 2)
6306      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6307
6308    if (NumElems == 4)
6309      // If we don't care about the second element, procede to use movss.
6310      if (SVOp->getMaskElt(1) != -1)
6311        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6312  }
6313
6314  // movl and movlp will both match v2i64, but v2i64 is never matched by
6315  // movl earlier because we make it strict to avoid messing with the movlp load
6316  // folding logic (see the code above getMOVLP call). Match it here then,
6317  // this is horrible, but will stay like this until we move all shuffle
6318  // matching to x86 specific nodes. Note that for the 1st condition all
6319  // types are matched with movsd.
6320  if (HasSSE2) {
6321    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6322    // as to remove this logic from here, as much as possible
6323    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6324      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6325    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6326  }
6327
6328  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6329
6330  // Invert the operand order and use SHUFPS to match it.
6331  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6332                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6333}
6334
6335static
6336SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6337                               const TargetLowering &TLI,
6338                               const X86Subtarget *Subtarget) {
6339  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6340  EVT VT = Op.getValueType();
6341  DebugLoc dl = Op.getDebugLoc();
6342  SDValue V1 = Op.getOperand(0);
6343  SDValue V2 = Op.getOperand(1);
6344
6345  if (isZeroShuffle(SVOp))
6346    return getZeroVector(VT, Subtarget, DAG, dl);
6347
6348  // Handle splat operations
6349  if (SVOp->isSplat()) {
6350    unsigned NumElem = VT.getVectorNumElements();
6351    int Size = VT.getSizeInBits();
6352    // Special case, this is the only place now where it's allowed to return
6353    // a vector_shuffle operation without using a target specific node, because
6354    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6355    // this be moved to DAGCombine instead?
6356    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6357      return Op;
6358
6359    // Use vbroadcast whenever the splat comes from a foldable load
6360    SDValue LD = isVectorBroadcast(Op, Subtarget);
6361    if (LD.getNode())
6362      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6363
6364    // Handle splats by matching through known shuffle masks
6365    if ((Size == 128 && NumElem <= 4) ||
6366        (Size == 256 && NumElem < 8))
6367      return SDValue();
6368
6369    // All remaning splats are promoted to target supported vector shuffles.
6370    return PromoteSplat(SVOp, DAG);
6371  }
6372
6373  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6374  // do it!
6375  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6376    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6377    if (NewOp.getNode())
6378      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6379  } else if ((VT == MVT::v4i32 ||
6380             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6381    // FIXME: Figure out a cleaner way to do this.
6382    // Try to make use of movq to zero out the top part.
6383    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6384      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6385      if (NewOp.getNode()) {
6386        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6387          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6388                              DAG, Subtarget, dl);
6389      }
6390    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6391      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6392      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6393        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6394                            DAG, Subtarget, dl);
6395    }
6396  }
6397  return SDValue();
6398}
6399
6400SDValue
6401X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6402  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6403  SDValue V1 = Op.getOperand(0);
6404  SDValue V2 = Op.getOperand(1);
6405  EVT VT = Op.getValueType();
6406  DebugLoc dl = Op.getDebugLoc();
6407  unsigned NumElems = VT.getVectorNumElements();
6408  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6409  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6410  bool V1IsSplat = false;
6411  bool V2IsSplat = false;
6412  bool HasSSE2 = Subtarget->hasSSE2();
6413  bool HasAVX    = Subtarget->hasAVX();
6414  bool HasAVX2   = Subtarget->hasAVX2();
6415  MachineFunction &MF = DAG.getMachineFunction();
6416  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6417
6418  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6419
6420  if (V1IsUndef && V2IsUndef)
6421    return DAG.getUNDEF(VT);
6422
6423  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6424
6425  // Vector shuffle lowering takes 3 steps:
6426  //
6427  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6428  //    narrowing and commutation of operands should be handled.
6429  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6430  //    shuffle nodes.
6431  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6432  //    so the shuffle can be broken into other shuffles and the legalizer can
6433  //    try the lowering again.
6434  //
6435  // The general idea is that no vector_shuffle operation should be left to
6436  // be matched during isel, all of them must be converted to a target specific
6437  // node here.
6438
6439  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6440  // narrowing and commutation of operands should be handled. The actual code
6441  // doesn't include all of those, work in progress...
6442  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6443  if (NewOp.getNode())
6444    return NewOp;
6445
6446  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6447  // unpckh_undef). Only use pshufd if speed is more important than size.
6448  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6449    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6450  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6451    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6452
6453  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6454      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6455    return getMOVDDup(Op, dl, V1, DAG);
6456
6457  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6458    return getMOVHighToLow(Op, dl, DAG);
6459
6460  // Use to match splats
6461  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6462      (VT == MVT::v2f64 || VT == MVT::v2i64))
6463    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6464
6465  if (X86::isPSHUFDMask(SVOp)) {
6466    // The actual implementation will match the mask in the if above and then
6467    // during isel it can match several different instructions, not only pshufd
6468    // as its name says, sad but true, emulate the behavior for now...
6469    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6470        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6471
6472    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6473
6474    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6475      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6476
6477    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6478                                TargetMask, DAG);
6479  }
6480
6481  // Check if this can be converted into a logical shift.
6482  bool isLeft = false;
6483  unsigned ShAmt = 0;
6484  SDValue ShVal;
6485  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6486  if (isShift && ShVal.hasOneUse()) {
6487    // If the shifted value has multiple uses, it may be cheaper to use
6488    // v_set0 + movlhps or movhlps, etc.
6489    EVT EltVT = VT.getVectorElementType();
6490    ShAmt *= EltVT.getSizeInBits();
6491    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6492  }
6493
6494  if (X86::isMOVLMask(SVOp)) {
6495    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6496      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6497    if (!X86::isMOVLPMask(SVOp)) {
6498      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6499        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6500
6501      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6502        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6503    }
6504  }
6505
6506  // FIXME: fold these into legal mask.
6507  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6508    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6509
6510  if (X86::isMOVHLPSMask(SVOp))
6511    return getMOVHighToLow(Op, dl, DAG);
6512
6513  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6514    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6515
6516  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6517    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6518
6519  if (X86::isMOVLPMask(SVOp))
6520    return getMOVLP(Op, dl, DAG, HasSSE2);
6521
6522  if (ShouldXformToMOVHLPS(SVOp) ||
6523      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6524    return CommuteVectorShuffle(SVOp, DAG);
6525
6526  if (isShift) {
6527    // No better options. Use a vshldq / vsrldq.
6528    EVT EltVT = VT.getVectorElementType();
6529    ShAmt *= EltVT.getSizeInBits();
6530    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6531  }
6532
6533  bool Commuted = false;
6534  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6535  // 1,1,1,1 -> v8i16 though.
6536  V1IsSplat = isSplatVector(V1.getNode());
6537  V2IsSplat = isSplatVector(V2.getNode());
6538
6539  // Canonicalize the splat or undef, if present, to be on the RHS.
6540  if (V1IsSplat && !V2IsSplat) {
6541    Op = CommuteVectorShuffle(SVOp, DAG);
6542    SVOp = cast<ShuffleVectorSDNode>(Op);
6543    V1 = SVOp->getOperand(0);
6544    V2 = SVOp->getOperand(1);
6545    std::swap(V1IsSplat, V2IsSplat);
6546    Commuted = true;
6547  }
6548
6549  ArrayRef<int> M = SVOp->getMask();
6550
6551  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6552    // Shuffling low element of v1 into undef, just return v1.
6553    if (V2IsUndef)
6554      return V1;
6555    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6556    // the instruction selector will not match, so get a canonical MOVL with
6557    // swapped operands to undo the commute.
6558    return getMOVL(DAG, dl, VT, V2, V1);
6559  }
6560
6561  if (isUNPCKLMask(M, VT, HasAVX2))
6562    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6563
6564  if (isUNPCKHMask(M, VT, HasAVX2))
6565    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6566
6567  if (V2IsSplat) {
6568    // Normalize mask so all entries that point to V2 points to its first
6569    // element then try to match unpck{h|l} again. If match, return a
6570    // new vector_shuffle with the corrected mask.
6571    SDValue NewMask = NormalizeMask(SVOp, DAG);
6572    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6573    if (NSVOp != SVOp) {
6574      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6575        return NewMask;
6576      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6577        return NewMask;
6578      }
6579    }
6580  }
6581
6582  if (Commuted) {
6583    // Commute is back and try unpck* again.
6584    // FIXME: this seems wrong.
6585    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6586    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6587
6588    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6589      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6590
6591    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6592      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6593  }
6594
6595  // Normalize the node to match x86 shuffle ops if needed
6596  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6597    return CommuteVectorShuffle(SVOp, DAG);
6598
6599  // The checks below are all present in isShuffleMaskLegal, but they are
6600  // inlined here right now to enable us to directly emit target specific
6601  // nodes, and remove one by one until they don't return Op anymore.
6602
6603  if (isPALIGNRMask(M, VT, Subtarget))
6604    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6605                                getShufflePALIGNRImmediate(SVOp),
6606                                DAG);
6607
6608  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6609      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6610    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6611      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6612  }
6613
6614  if (isPSHUFHWMask(M, VT))
6615    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6616                                X86::getShufflePSHUFHWImmediate(SVOp),
6617                                DAG);
6618
6619  if (isPSHUFLWMask(M, VT))
6620    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6621                                X86::getShufflePSHUFLWImmediate(SVOp),
6622                                DAG);
6623
6624  if (isSHUFPMask(M, VT, HasAVX))
6625    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6626                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6627
6628  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6629    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6630  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6631    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6632
6633  //===--------------------------------------------------------------------===//
6634  // Generate target specific nodes for 128 or 256-bit shuffles only
6635  // supported in the AVX instruction set.
6636  //
6637
6638  // Handle VMOVDDUPY permutations
6639  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6640    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6641
6642  // Handle VPERMILPS/D* permutations
6643  if (isVPERMILPMask(M, VT, HasAVX))
6644    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6645                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6646
6647  // Handle VPERM2F128/VPERM2I128 permutations
6648  if (isVPERM2X128Mask(M, VT, HasAVX))
6649    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6650                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6651
6652  //===--------------------------------------------------------------------===//
6653  // Since no target specific shuffle was selected for this generic one,
6654  // lower it into other known shuffles. FIXME: this isn't true yet, but
6655  // this is the plan.
6656  //
6657
6658  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6659  if (VT == MVT::v8i16) {
6660    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6661    if (NewOp.getNode())
6662      return NewOp;
6663  }
6664
6665  if (VT == MVT::v16i8) {
6666    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6667    if (NewOp.getNode())
6668      return NewOp;
6669  }
6670
6671  // Handle all 128-bit wide vectors with 4 elements, and match them with
6672  // several different shuffle types.
6673  if (NumElems == 4 && VT.getSizeInBits() == 128)
6674    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6675
6676  // Handle general 256-bit shuffles
6677  if (VT.is256BitVector())
6678    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6679
6680  return SDValue();
6681}
6682
6683SDValue
6684X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6685                                                SelectionDAG &DAG) const {
6686  EVT VT = Op.getValueType();
6687  DebugLoc dl = Op.getDebugLoc();
6688
6689  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6690    return SDValue();
6691
6692  if (VT.getSizeInBits() == 8) {
6693    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6694                                    Op.getOperand(0), Op.getOperand(1));
6695    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6696                                    DAG.getValueType(VT));
6697    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6698  } else if (VT.getSizeInBits() == 16) {
6699    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6700    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6701    if (Idx == 0)
6702      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6703                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6704                                     DAG.getNode(ISD::BITCAST, dl,
6705                                                 MVT::v4i32,
6706                                                 Op.getOperand(0)),
6707                                     Op.getOperand(1)));
6708    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6709                                    Op.getOperand(0), Op.getOperand(1));
6710    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6711                                    DAG.getValueType(VT));
6712    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6713  } else if (VT == MVT::f32) {
6714    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6715    // the result back to FR32 register. It's only worth matching if the
6716    // result has a single use which is a store or a bitcast to i32.  And in
6717    // the case of a store, it's not worth it if the index is a constant 0,
6718    // because a MOVSSmr can be used instead, which is smaller and faster.
6719    if (!Op.hasOneUse())
6720      return SDValue();
6721    SDNode *User = *Op.getNode()->use_begin();
6722    if ((User->getOpcode() != ISD::STORE ||
6723         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6724          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6725        (User->getOpcode() != ISD::BITCAST ||
6726         User->getValueType(0) != MVT::i32))
6727      return SDValue();
6728    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6729                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6730                                              Op.getOperand(0)),
6731                                              Op.getOperand(1));
6732    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6733  } else if (VT == MVT::i32 || VT == MVT::i64) {
6734    // ExtractPS/pextrq works with constant index.
6735    if (isa<ConstantSDNode>(Op.getOperand(1)))
6736      return Op;
6737  }
6738  return SDValue();
6739}
6740
6741
6742SDValue
6743X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6744                                           SelectionDAG &DAG) const {
6745  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6746    return SDValue();
6747
6748  SDValue Vec = Op.getOperand(0);
6749  EVT VecVT = Vec.getValueType();
6750
6751  // If this is a 256-bit vector result, first extract the 128-bit vector and
6752  // then extract the element from the 128-bit vector.
6753  if (VecVT.getSizeInBits() == 256) {
6754    DebugLoc dl = Op.getNode()->getDebugLoc();
6755    unsigned NumElems = VecVT.getVectorNumElements();
6756    SDValue Idx = Op.getOperand(1);
6757    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6758
6759    // Get the 128-bit vector.
6760    bool Upper = IdxVal >= NumElems/2;
6761    Vec = Extract128BitVector(Vec,
6762                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6763
6764    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6765                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6766  }
6767
6768  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6769
6770  if (Subtarget->hasSSE41()) {
6771    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6772    if (Res.getNode())
6773      return Res;
6774  }
6775
6776  EVT VT = Op.getValueType();
6777  DebugLoc dl = Op.getDebugLoc();
6778  // TODO: handle v16i8.
6779  if (VT.getSizeInBits() == 16) {
6780    SDValue Vec = Op.getOperand(0);
6781    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6782    if (Idx == 0)
6783      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6784                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6785                                     DAG.getNode(ISD::BITCAST, dl,
6786                                                 MVT::v4i32, Vec),
6787                                     Op.getOperand(1)));
6788    // Transform it so it match pextrw which produces a 32-bit result.
6789    EVT EltVT = MVT::i32;
6790    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6791                                    Op.getOperand(0), Op.getOperand(1));
6792    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6793                                    DAG.getValueType(VT));
6794    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6795  } else if (VT.getSizeInBits() == 32) {
6796    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6797    if (Idx == 0)
6798      return Op;
6799
6800    // SHUFPS the element to the lowest double word, then movss.
6801    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6802    EVT VVT = Op.getOperand(0).getValueType();
6803    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6804                                       DAG.getUNDEF(VVT), Mask);
6805    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6806                       DAG.getIntPtrConstant(0));
6807  } else if (VT.getSizeInBits() == 64) {
6808    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6809    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6810    //        to match extract_elt for f64.
6811    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6812    if (Idx == 0)
6813      return Op;
6814
6815    // UNPCKHPD the element to the lowest double word, then movsd.
6816    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6817    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6818    int Mask[2] = { 1, -1 };
6819    EVT VVT = Op.getOperand(0).getValueType();
6820    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6821                                       DAG.getUNDEF(VVT), Mask);
6822    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6823                       DAG.getIntPtrConstant(0));
6824  }
6825
6826  return SDValue();
6827}
6828
6829SDValue
6830X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6831                                               SelectionDAG &DAG) const {
6832  EVT VT = Op.getValueType();
6833  EVT EltVT = VT.getVectorElementType();
6834  DebugLoc dl = Op.getDebugLoc();
6835
6836  SDValue N0 = Op.getOperand(0);
6837  SDValue N1 = Op.getOperand(1);
6838  SDValue N2 = Op.getOperand(2);
6839
6840  if (VT.getSizeInBits() == 256)
6841    return SDValue();
6842
6843  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6844      isa<ConstantSDNode>(N2)) {
6845    unsigned Opc;
6846    if (VT == MVT::v8i16)
6847      Opc = X86ISD::PINSRW;
6848    else if (VT == MVT::v16i8)
6849      Opc = X86ISD::PINSRB;
6850    else
6851      Opc = X86ISD::PINSRB;
6852
6853    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6854    // argument.
6855    if (N1.getValueType() != MVT::i32)
6856      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6857    if (N2.getValueType() != MVT::i32)
6858      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6859    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6860  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6861    // Bits [7:6] of the constant are the source select.  This will always be
6862    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6863    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6864    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6865    // Bits [5:4] of the constant are the destination select.  This is the
6866    //  value of the incoming immediate.
6867    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6868    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6869    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6870    // Create this as a scalar to vector..
6871    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6872    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6873  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6874             isa<ConstantSDNode>(N2)) {
6875    // PINSR* works with constant index.
6876    return Op;
6877  }
6878  return SDValue();
6879}
6880
6881SDValue
6882X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6883  EVT VT = Op.getValueType();
6884  EVT EltVT = VT.getVectorElementType();
6885
6886  DebugLoc dl = Op.getDebugLoc();
6887  SDValue N0 = Op.getOperand(0);
6888  SDValue N1 = Op.getOperand(1);
6889  SDValue N2 = Op.getOperand(2);
6890
6891  // If this is a 256-bit vector result, first extract the 128-bit vector,
6892  // insert the element into the extracted half and then place it back.
6893  if (VT.getSizeInBits() == 256) {
6894    if (!isa<ConstantSDNode>(N2))
6895      return SDValue();
6896
6897    // Get the desired 128-bit vector half.
6898    unsigned NumElems = VT.getVectorNumElements();
6899    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6900    bool Upper = IdxVal >= NumElems/2;
6901    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6902    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6903
6904    // Insert the element into the desired half.
6905    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6906                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6907
6908    // Insert the changed part back to the 256-bit vector
6909    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6910  }
6911
6912  if (Subtarget->hasSSE41())
6913    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6914
6915  if (EltVT == MVT::i8)
6916    return SDValue();
6917
6918  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6919    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6920    // as its second argument.
6921    if (N1.getValueType() != MVT::i32)
6922      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6923    if (N2.getValueType() != MVT::i32)
6924      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6925    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6926  }
6927  return SDValue();
6928}
6929
6930SDValue
6931X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6932  LLVMContext *Context = DAG.getContext();
6933  DebugLoc dl = Op.getDebugLoc();
6934  EVT OpVT = Op.getValueType();
6935
6936  // If this is a 256-bit vector result, first insert into a 128-bit
6937  // vector and then insert into the 256-bit vector.
6938  if (OpVT.getSizeInBits() > 128) {
6939    // Insert into a 128-bit vector.
6940    EVT VT128 = EVT::getVectorVT(*Context,
6941                                 OpVT.getVectorElementType(),
6942                                 OpVT.getVectorNumElements() / 2);
6943
6944    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6945
6946    // Insert the 128-bit vector.
6947    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6948                              DAG.getConstant(0, MVT::i32),
6949                              DAG, dl);
6950  }
6951
6952  if (Op.getValueType() == MVT::v1i64 &&
6953      Op.getOperand(0).getValueType() == MVT::i64)
6954    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6955
6956  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6957  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6958         "Expected an SSE type!");
6959  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6960                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6961}
6962
6963// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6964// a simple subregister reference or explicit instructions to grab
6965// upper bits of a vector.
6966SDValue
6967X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6968  if (Subtarget->hasAVX()) {
6969    DebugLoc dl = Op.getNode()->getDebugLoc();
6970    SDValue Vec = Op.getNode()->getOperand(0);
6971    SDValue Idx = Op.getNode()->getOperand(1);
6972
6973    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6974        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6975        return Extract128BitVector(Vec, Idx, DAG, dl);
6976    }
6977  }
6978  return SDValue();
6979}
6980
6981// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6982// simple superregister reference or explicit instructions to insert
6983// the upper bits of a vector.
6984SDValue
6985X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6986  if (Subtarget->hasAVX()) {
6987    DebugLoc dl = Op.getNode()->getDebugLoc();
6988    SDValue Vec = Op.getNode()->getOperand(0);
6989    SDValue SubVec = Op.getNode()->getOperand(1);
6990    SDValue Idx = Op.getNode()->getOperand(2);
6991
6992    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6993        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6994      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6995    }
6996  }
6997  return SDValue();
6998}
6999
7000// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7001// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7002// one of the above mentioned nodes. It has to be wrapped because otherwise
7003// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7004// be used to form addressing mode. These wrapped nodes will be selected
7005// into MOV32ri.
7006SDValue
7007X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7008  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7009
7010  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7011  // global base reg.
7012  unsigned char OpFlag = 0;
7013  unsigned WrapperKind = X86ISD::Wrapper;
7014  CodeModel::Model M = getTargetMachine().getCodeModel();
7015
7016  if (Subtarget->isPICStyleRIPRel() &&
7017      (M == CodeModel::Small || M == CodeModel::Kernel))
7018    WrapperKind = X86ISD::WrapperRIP;
7019  else if (Subtarget->isPICStyleGOT())
7020    OpFlag = X86II::MO_GOTOFF;
7021  else if (Subtarget->isPICStyleStubPIC())
7022    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7023
7024  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7025                                             CP->getAlignment(),
7026                                             CP->getOffset(), OpFlag);
7027  DebugLoc DL = CP->getDebugLoc();
7028  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7029  // With PIC, the address is actually $g + Offset.
7030  if (OpFlag) {
7031    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7032                         DAG.getNode(X86ISD::GlobalBaseReg,
7033                                     DebugLoc(), getPointerTy()),
7034                         Result);
7035  }
7036
7037  return Result;
7038}
7039
7040SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7041  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7042
7043  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7044  // global base reg.
7045  unsigned char OpFlag = 0;
7046  unsigned WrapperKind = X86ISD::Wrapper;
7047  CodeModel::Model M = getTargetMachine().getCodeModel();
7048
7049  if (Subtarget->isPICStyleRIPRel() &&
7050      (M == CodeModel::Small || M == CodeModel::Kernel))
7051    WrapperKind = X86ISD::WrapperRIP;
7052  else if (Subtarget->isPICStyleGOT())
7053    OpFlag = X86II::MO_GOTOFF;
7054  else if (Subtarget->isPICStyleStubPIC())
7055    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7056
7057  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7058                                          OpFlag);
7059  DebugLoc DL = JT->getDebugLoc();
7060  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7061
7062  // With PIC, the address is actually $g + Offset.
7063  if (OpFlag)
7064    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7065                         DAG.getNode(X86ISD::GlobalBaseReg,
7066                                     DebugLoc(), getPointerTy()),
7067                         Result);
7068
7069  return Result;
7070}
7071
7072SDValue
7073X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7074  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7075
7076  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7077  // global base reg.
7078  unsigned char OpFlag = 0;
7079  unsigned WrapperKind = X86ISD::Wrapper;
7080  CodeModel::Model M = getTargetMachine().getCodeModel();
7081
7082  if (Subtarget->isPICStyleRIPRel() &&
7083      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7084    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7085      OpFlag = X86II::MO_GOTPCREL;
7086    WrapperKind = X86ISD::WrapperRIP;
7087  } else if (Subtarget->isPICStyleGOT()) {
7088    OpFlag = X86II::MO_GOT;
7089  } else if (Subtarget->isPICStyleStubPIC()) {
7090    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7091  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7092    OpFlag = X86II::MO_DARWIN_NONLAZY;
7093  }
7094
7095  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7096
7097  DebugLoc DL = Op.getDebugLoc();
7098  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7099
7100
7101  // With PIC, the address is actually $g + Offset.
7102  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7103      !Subtarget->is64Bit()) {
7104    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7105                         DAG.getNode(X86ISD::GlobalBaseReg,
7106                                     DebugLoc(), getPointerTy()),
7107                         Result);
7108  }
7109
7110  // For symbols that require a load from a stub to get the address, emit the
7111  // load.
7112  if (isGlobalStubReference(OpFlag))
7113    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7114                         MachinePointerInfo::getGOT(), false, false, false, 0);
7115
7116  return Result;
7117}
7118
7119SDValue
7120X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7121  // Create the TargetBlockAddressAddress node.
7122  unsigned char OpFlags =
7123    Subtarget->ClassifyBlockAddressReference();
7124  CodeModel::Model M = getTargetMachine().getCodeModel();
7125  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7126  DebugLoc dl = Op.getDebugLoc();
7127  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7128                                       /*isTarget=*/true, OpFlags);
7129
7130  if (Subtarget->isPICStyleRIPRel() &&
7131      (M == CodeModel::Small || M == CodeModel::Kernel))
7132    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7133  else
7134    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7135
7136  // With PIC, the address is actually $g + Offset.
7137  if (isGlobalRelativeToPICBase(OpFlags)) {
7138    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7139                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7140                         Result);
7141  }
7142
7143  return Result;
7144}
7145
7146SDValue
7147X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7148                                      int64_t Offset,
7149                                      SelectionDAG &DAG) const {
7150  // Create the TargetGlobalAddress node, folding in the constant
7151  // offset if it is legal.
7152  unsigned char OpFlags =
7153    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7154  CodeModel::Model M = getTargetMachine().getCodeModel();
7155  SDValue Result;
7156  if (OpFlags == X86II::MO_NO_FLAG &&
7157      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7158    // A direct static reference to a global.
7159    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7160    Offset = 0;
7161  } else {
7162    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7163  }
7164
7165  if (Subtarget->isPICStyleRIPRel() &&
7166      (M == CodeModel::Small || M == CodeModel::Kernel))
7167    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7168  else
7169    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7170
7171  // With PIC, the address is actually $g + Offset.
7172  if (isGlobalRelativeToPICBase(OpFlags)) {
7173    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7174                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7175                         Result);
7176  }
7177
7178  // For globals that require a load from a stub to get the address, emit the
7179  // load.
7180  if (isGlobalStubReference(OpFlags))
7181    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7182                         MachinePointerInfo::getGOT(), false, false, false, 0);
7183
7184  // If there was a non-zero offset that we didn't fold, create an explicit
7185  // addition for it.
7186  if (Offset != 0)
7187    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7188                         DAG.getConstant(Offset, getPointerTy()));
7189
7190  return Result;
7191}
7192
7193SDValue
7194X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7195  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7196  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7197  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7198}
7199
7200static SDValue
7201GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7202           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7203           unsigned char OperandFlags) {
7204  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7205  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7206  DebugLoc dl = GA->getDebugLoc();
7207  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7208                                           GA->getValueType(0),
7209                                           GA->getOffset(),
7210                                           OperandFlags);
7211  if (InFlag) {
7212    SDValue Ops[] = { Chain,  TGA, *InFlag };
7213    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7214  } else {
7215    SDValue Ops[]  = { Chain, TGA };
7216    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7217  }
7218
7219  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7220  MFI->setAdjustsStack(true);
7221
7222  SDValue Flag = Chain.getValue(1);
7223  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7224}
7225
7226// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7227static SDValue
7228LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7229                                const EVT PtrVT) {
7230  SDValue InFlag;
7231  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7232  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7233                                     DAG.getNode(X86ISD::GlobalBaseReg,
7234                                                 DebugLoc(), PtrVT), InFlag);
7235  InFlag = Chain.getValue(1);
7236
7237  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7238}
7239
7240// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7241static SDValue
7242LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7243                                const EVT PtrVT) {
7244  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7245                    X86::RAX, X86II::MO_TLSGD);
7246}
7247
7248// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7249// "local exec" model.
7250static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7251                                   const EVT PtrVT, TLSModel::Model model,
7252                                   bool is64Bit) {
7253  DebugLoc dl = GA->getDebugLoc();
7254
7255  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7256  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7257                                                         is64Bit ? 257 : 256));
7258
7259  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7260                                      DAG.getIntPtrConstant(0),
7261                                      MachinePointerInfo(Ptr),
7262                                      false, false, false, 0);
7263
7264  unsigned char OperandFlags = 0;
7265  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7266  // initialexec.
7267  unsigned WrapperKind = X86ISD::Wrapper;
7268  if (model == TLSModel::LocalExec) {
7269    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7270  } else if (is64Bit) {
7271    assert(model == TLSModel::InitialExec);
7272    OperandFlags = X86II::MO_GOTTPOFF;
7273    WrapperKind = X86ISD::WrapperRIP;
7274  } else {
7275    assert(model == TLSModel::InitialExec);
7276    OperandFlags = X86II::MO_INDNTPOFF;
7277  }
7278
7279  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7280  // exec)
7281  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7282                                           GA->getValueType(0),
7283                                           GA->getOffset(), OperandFlags);
7284  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7285
7286  if (model == TLSModel::InitialExec)
7287    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7288                         MachinePointerInfo::getGOT(), false, false, false, 0);
7289
7290  // The address of the thread local variable is the add of the thread
7291  // pointer with the offset of the variable.
7292  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7293}
7294
7295SDValue
7296X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7297
7298  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7299  const GlobalValue *GV = GA->getGlobal();
7300
7301  if (Subtarget->isTargetELF()) {
7302    // TODO: implement the "local dynamic" model
7303    // TODO: implement the "initial exec"model for pic executables
7304
7305    // If GV is an alias then use the aliasee for determining
7306    // thread-localness.
7307    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7308      GV = GA->resolveAliasedGlobal(false);
7309
7310    TLSModel::Model model
7311      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7312
7313    switch (model) {
7314      case TLSModel::GeneralDynamic:
7315      case TLSModel::LocalDynamic: // not implemented
7316        if (Subtarget->is64Bit())
7317          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7318        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7319
7320      case TLSModel::InitialExec:
7321      case TLSModel::LocalExec:
7322        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7323                                   Subtarget->is64Bit());
7324    }
7325  } else if (Subtarget->isTargetDarwin()) {
7326    // Darwin only has one model of TLS.  Lower to that.
7327    unsigned char OpFlag = 0;
7328    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7329                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7330
7331    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7332    // global base reg.
7333    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7334                  !Subtarget->is64Bit();
7335    if (PIC32)
7336      OpFlag = X86II::MO_TLVP_PIC_BASE;
7337    else
7338      OpFlag = X86II::MO_TLVP;
7339    DebugLoc DL = Op.getDebugLoc();
7340    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7341                                                GA->getValueType(0),
7342                                                GA->getOffset(), OpFlag);
7343    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7344
7345    // With PIC32, the address is actually $g + Offset.
7346    if (PIC32)
7347      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7348                           DAG.getNode(X86ISD::GlobalBaseReg,
7349                                       DebugLoc(), getPointerTy()),
7350                           Offset);
7351
7352    // Lowering the machine isd will make sure everything is in the right
7353    // location.
7354    SDValue Chain = DAG.getEntryNode();
7355    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7356    SDValue Args[] = { Chain, Offset };
7357    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7358
7359    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7360    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7361    MFI->setAdjustsStack(true);
7362
7363    // And our return value (tls address) is in the standard call return value
7364    // location.
7365    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7366    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7367                              Chain.getValue(1));
7368  }
7369
7370  llvm_unreachable("TLS not implemented for this target.");
7371}
7372
7373
7374/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7375/// and take a 2 x i32 value to shift plus a shift amount.
7376SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7377  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7378  EVT VT = Op.getValueType();
7379  unsigned VTBits = VT.getSizeInBits();
7380  DebugLoc dl = Op.getDebugLoc();
7381  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7382  SDValue ShOpLo = Op.getOperand(0);
7383  SDValue ShOpHi = Op.getOperand(1);
7384  SDValue ShAmt  = Op.getOperand(2);
7385  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7386                                     DAG.getConstant(VTBits - 1, MVT::i8))
7387                       : DAG.getConstant(0, VT);
7388
7389  SDValue Tmp2, Tmp3;
7390  if (Op.getOpcode() == ISD::SHL_PARTS) {
7391    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7392    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7393  } else {
7394    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7395    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7396  }
7397
7398  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7399                                DAG.getConstant(VTBits, MVT::i8));
7400  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7401                             AndNode, DAG.getConstant(0, MVT::i8));
7402
7403  SDValue Hi, Lo;
7404  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7405  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7406  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7407
7408  if (Op.getOpcode() == ISD::SHL_PARTS) {
7409    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7410    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7411  } else {
7412    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7413    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7414  }
7415
7416  SDValue Ops[2] = { Lo, Hi };
7417  return DAG.getMergeValues(Ops, 2, dl);
7418}
7419
7420SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7421                                           SelectionDAG &DAG) const {
7422  EVT SrcVT = Op.getOperand(0).getValueType();
7423
7424  if (SrcVT.isVector())
7425    return SDValue();
7426
7427  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7428         "Unknown SINT_TO_FP to lower!");
7429
7430  // These are really Legal; return the operand so the caller accepts it as
7431  // Legal.
7432  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7433    return Op;
7434  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7435      Subtarget->is64Bit()) {
7436    return Op;
7437  }
7438
7439  DebugLoc dl = Op.getDebugLoc();
7440  unsigned Size = SrcVT.getSizeInBits()/8;
7441  MachineFunction &MF = DAG.getMachineFunction();
7442  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7443  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7444  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7445                               StackSlot,
7446                               MachinePointerInfo::getFixedStack(SSFI),
7447                               false, false, 0);
7448  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7449}
7450
7451SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7452                                     SDValue StackSlot,
7453                                     SelectionDAG &DAG) const {
7454  // Build the FILD
7455  DebugLoc DL = Op.getDebugLoc();
7456  SDVTList Tys;
7457  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7458  if (useSSE)
7459    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7460  else
7461    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7462
7463  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7464
7465  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7466  MachineMemOperand *MMO;
7467  if (FI) {
7468    int SSFI = FI->getIndex();
7469    MMO =
7470      DAG.getMachineFunction()
7471      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7472                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7473  } else {
7474    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7475    StackSlot = StackSlot.getOperand(1);
7476  }
7477  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7478  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7479                                           X86ISD::FILD, DL,
7480                                           Tys, Ops, array_lengthof(Ops),
7481                                           SrcVT, MMO);
7482
7483  if (useSSE) {
7484    Chain = Result.getValue(1);
7485    SDValue InFlag = Result.getValue(2);
7486
7487    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7488    // shouldn't be necessary except that RFP cannot be live across
7489    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7490    MachineFunction &MF = DAG.getMachineFunction();
7491    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7492    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7493    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7494    Tys = DAG.getVTList(MVT::Other);
7495    SDValue Ops[] = {
7496      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7497    };
7498    MachineMemOperand *MMO =
7499      DAG.getMachineFunction()
7500      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7501                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7502
7503    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7504                                    Ops, array_lengthof(Ops),
7505                                    Op.getValueType(), MMO);
7506    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7507                         MachinePointerInfo::getFixedStack(SSFI),
7508                         false, false, false, 0);
7509  }
7510
7511  return Result;
7512}
7513
7514// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7515SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7516                                               SelectionDAG &DAG) const {
7517  // This algorithm is not obvious. Here it is what we're trying to output:
7518  /*
7519     movq       %rax,  %xmm0
7520     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7521     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7522     #ifdef __SSE3__
7523       haddpd   %xmm0, %xmm0
7524     #else
7525       pshufd   $0x4e, %xmm0, %xmm1
7526       addpd    %xmm1, %xmm0
7527     #endif
7528  */
7529
7530  DebugLoc dl = Op.getDebugLoc();
7531  LLVMContext *Context = DAG.getContext();
7532
7533  // Build some magic constants.
7534  SmallVector<Constant*,4> CV0;
7535  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7536  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7537  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7538  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7539  Constant *C0 = ConstantVector::get(CV0);
7540  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7541
7542  SmallVector<Constant*,2> CV1;
7543  CV1.push_back(
7544        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7545  CV1.push_back(
7546        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7547  Constant *C1 = ConstantVector::get(CV1);
7548  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7549
7550  // Load the 64-bit value into an XMM register.
7551  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7552                            Op.getOperand(0));
7553  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7554                              MachinePointerInfo::getConstantPool(),
7555                              false, false, false, 16);
7556  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7557                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7558                              CLod0);
7559
7560  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7561                              MachinePointerInfo::getConstantPool(),
7562                              false, false, false, 16);
7563  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7564  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7565  SDValue Result;
7566
7567  if (Subtarget->hasSSE3()) {
7568    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7569    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7570  } else {
7571    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7572    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7573                                           S2F, 0x4E, DAG);
7574    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7575                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7576                         Sub);
7577  }
7578
7579  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7580                     DAG.getIntPtrConstant(0));
7581}
7582
7583// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7584SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7585                                               SelectionDAG &DAG) const {
7586  DebugLoc dl = Op.getDebugLoc();
7587  // FP constant to bias correct the final result.
7588  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7589                                   MVT::f64);
7590
7591  // Load the 32-bit value into an XMM register.
7592  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7593                             Op.getOperand(0));
7594
7595  // Zero out the upper parts of the register.
7596  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7597
7598  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7599                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7600                     DAG.getIntPtrConstant(0));
7601
7602  // Or the load with the bias.
7603  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7604                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7605                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7606                                                   MVT::v2f64, Load)),
7607                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7608                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7609                                                   MVT::v2f64, Bias)));
7610  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7611                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7612                   DAG.getIntPtrConstant(0));
7613
7614  // Subtract the bias.
7615  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7616
7617  // Handle final rounding.
7618  EVT DestVT = Op.getValueType();
7619
7620  if (DestVT.bitsLT(MVT::f64)) {
7621    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7622                       DAG.getIntPtrConstant(0));
7623  } else if (DestVT.bitsGT(MVT::f64)) {
7624    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7625  }
7626
7627  // Handle final rounding.
7628  return Sub;
7629}
7630
7631SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7632                                           SelectionDAG &DAG) const {
7633  SDValue N0 = Op.getOperand(0);
7634  DebugLoc dl = Op.getDebugLoc();
7635
7636  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7637  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7638  // the optimization here.
7639  if (DAG.SignBitIsZero(N0))
7640    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7641
7642  EVT SrcVT = N0.getValueType();
7643  EVT DstVT = Op.getValueType();
7644  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7645    return LowerUINT_TO_FP_i64(Op, DAG);
7646  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7647    return LowerUINT_TO_FP_i32(Op, DAG);
7648  else if (Subtarget->is64Bit() &&
7649           SrcVT == MVT::i64 && DstVT == MVT::f32)
7650    return SDValue();
7651
7652  // Make a 64-bit buffer, and use it to build an FILD.
7653  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7654  if (SrcVT == MVT::i32) {
7655    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7656    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7657                                     getPointerTy(), StackSlot, WordOff);
7658    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7659                                  StackSlot, MachinePointerInfo(),
7660                                  false, false, 0);
7661    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7662                                  OffsetSlot, MachinePointerInfo(),
7663                                  false, false, 0);
7664    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7665    return Fild;
7666  }
7667
7668  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7669  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7670                               StackSlot, MachinePointerInfo(),
7671                               false, false, 0);
7672  // For i64 source, we need to add the appropriate power of 2 if the input
7673  // was negative.  This is the same as the optimization in
7674  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7675  // we must be careful to do the computation in x87 extended precision, not
7676  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7677  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7678  MachineMemOperand *MMO =
7679    DAG.getMachineFunction()
7680    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7681                          MachineMemOperand::MOLoad, 8, 8);
7682
7683  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7684  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7685  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7686                                         MVT::i64, MMO);
7687
7688  APInt FF(32, 0x5F800000ULL);
7689
7690  // Check whether the sign bit is set.
7691  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7692                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7693                                 ISD::SETLT);
7694
7695  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7696  SDValue FudgePtr = DAG.getConstantPool(
7697                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7698                                         getPointerTy());
7699
7700  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7701  SDValue Zero = DAG.getIntPtrConstant(0);
7702  SDValue Four = DAG.getIntPtrConstant(4);
7703  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7704                               Zero, Four);
7705  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7706
7707  // Load the value out, extending it from f32 to f80.
7708  // FIXME: Avoid the extend by constructing the right constant pool?
7709  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7710                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7711                                 MVT::f32, false, false, 4);
7712  // Extend everything to 80 bits to force it to be done on x87.
7713  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7714  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7715}
7716
7717std::pair<SDValue,SDValue> X86TargetLowering::
7718FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7719  DebugLoc DL = Op.getDebugLoc();
7720
7721  EVT DstTy = Op.getValueType();
7722
7723  if (!IsSigned) {
7724    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7725    DstTy = MVT::i64;
7726  }
7727
7728  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7729         DstTy.getSimpleVT() >= MVT::i16 &&
7730         "Unknown FP_TO_SINT to lower!");
7731
7732  // These are really Legal.
7733  if (DstTy == MVT::i32 &&
7734      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7735    return std::make_pair(SDValue(), SDValue());
7736  if (Subtarget->is64Bit() &&
7737      DstTy == MVT::i64 &&
7738      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7739    return std::make_pair(SDValue(), SDValue());
7740
7741  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7742  // stack slot.
7743  MachineFunction &MF = DAG.getMachineFunction();
7744  unsigned MemSize = DstTy.getSizeInBits()/8;
7745  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7746  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7747
7748
7749
7750  unsigned Opc;
7751  switch (DstTy.getSimpleVT().SimpleTy) {
7752  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7753  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7754  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7755  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7756  }
7757
7758  SDValue Chain = DAG.getEntryNode();
7759  SDValue Value = Op.getOperand(0);
7760  EVT TheVT = Op.getOperand(0).getValueType();
7761  if (isScalarFPTypeInSSEReg(TheVT)) {
7762    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7763    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7764                         MachinePointerInfo::getFixedStack(SSFI),
7765                         false, false, 0);
7766    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7767    SDValue Ops[] = {
7768      Chain, StackSlot, DAG.getValueType(TheVT)
7769    };
7770
7771    MachineMemOperand *MMO =
7772      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7773                              MachineMemOperand::MOLoad, MemSize, MemSize);
7774    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7775                                    DstTy, MMO);
7776    Chain = Value.getValue(1);
7777    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7778    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7779  }
7780
7781  MachineMemOperand *MMO =
7782    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7783                            MachineMemOperand::MOStore, MemSize, MemSize);
7784
7785  // Build the FP_TO_INT*_IN_MEM
7786  SDValue Ops[] = { Chain, Value, StackSlot };
7787  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7788                                         Ops, 3, DstTy, MMO);
7789
7790  return std::make_pair(FIST, StackSlot);
7791}
7792
7793SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7794                                           SelectionDAG &DAG) const {
7795  if (Op.getValueType().isVector())
7796    return SDValue();
7797
7798  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7799  SDValue FIST = Vals.first, StackSlot = Vals.second;
7800  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7801  if (FIST.getNode() == 0) return Op;
7802
7803  // Load the result.
7804  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7805                     FIST, StackSlot, MachinePointerInfo(),
7806                     false, false, false, 0);
7807}
7808
7809SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7810                                           SelectionDAG &DAG) const {
7811  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7812  SDValue FIST = Vals.first, StackSlot = Vals.second;
7813  assert(FIST.getNode() && "Unexpected failure");
7814
7815  // Load the result.
7816  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7817                     FIST, StackSlot, MachinePointerInfo(),
7818                     false, false, false, 0);
7819}
7820
7821SDValue X86TargetLowering::LowerFABS(SDValue Op,
7822                                     SelectionDAG &DAG) const {
7823  LLVMContext *Context = DAG.getContext();
7824  DebugLoc dl = Op.getDebugLoc();
7825  EVT VT = Op.getValueType();
7826  EVT EltVT = VT;
7827  if (VT.isVector())
7828    EltVT = VT.getVectorElementType();
7829  Constant *C;
7830  if (EltVT == MVT::f64) {
7831    C = ConstantVector::getSplat(2,
7832                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7833  } else {
7834    C = ConstantVector::getSplat(4,
7835               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7836  }
7837  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7838  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7839                             MachinePointerInfo::getConstantPool(),
7840                             false, false, false, 16);
7841  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7842}
7843
7844SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7845  LLVMContext *Context = DAG.getContext();
7846  DebugLoc dl = Op.getDebugLoc();
7847  EVT VT = Op.getValueType();
7848  EVT EltVT = VT;
7849  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7850  if (VT.isVector()) {
7851    EltVT = VT.getVectorElementType();
7852    NumElts = VT.getVectorNumElements();
7853  }
7854  Constant *C;
7855  if (EltVT == MVT::f64)
7856    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7857  else
7858    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7859  C = ConstantVector::getSplat(NumElts, C);
7860  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7861  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7862                             MachinePointerInfo::getConstantPool(),
7863                             false, false, false, 16);
7864  if (VT.isVector()) {
7865    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7866    return DAG.getNode(ISD::BITCAST, dl, VT,
7867                       DAG.getNode(ISD::XOR, dl, XORVT,
7868                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7869                                Op.getOperand(0)),
7870                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7871  } else {
7872    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7873  }
7874}
7875
7876SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7877  LLVMContext *Context = DAG.getContext();
7878  SDValue Op0 = Op.getOperand(0);
7879  SDValue Op1 = Op.getOperand(1);
7880  DebugLoc dl = Op.getDebugLoc();
7881  EVT VT = Op.getValueType();
7882  EVT SrcVT = Op1.getValueType();
7883
7884  // If second operand is smaller, extend it first.
7885  if (SrcVT.bitsLT(VT)) {
7886    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7887    SrcVT = VT;
7888  }
7889  // And if it is bigger, shrink it first.
7890  if (SrcVT.bitsGT(VT)) {
7891    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7892    SrcVT = VT;
7893  }
7894
7895  // At this point the operands and the result should have the same
7896  // type, and that won't be f80 since that is not custom lowered.
7897
7898  // First get the sign bit of second operand.
7899  SmallVector<Constant*,4> CV;
7900  if (SrcVT == MVT::f64) {
7901    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7902    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7903  } else {
7904    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7905    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7906    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7907    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7908  }
7909  Constant *C = ConstantVector::get(CV);
7910  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7911  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7912                              MachinePointerInfo::getConstantPool(),
7913                              false, false, false, 16);
7914  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7915
7916  // Shift sign bit right or left if the two operands have different types.
7917  if (SrcVT.bitsGT(VT)) {
7918    // Op0 is MVT::f32, Op1 is MVT::f64.
7919    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7920    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7921                          DAG.getConstant(32, MVT::i32));
7922    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7923    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7924                          DAG.getIntPtrConstant(0));
7925  }
7926
7927  // Clear first operand sign bit.
7928  CV.clear();
7929  if (VT == MVT::f64) {
7930    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7931    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7932  } else {
7933    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7934    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7935    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7936    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7937  }
7938  C = ConstantVector::get(CV);
7939  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7940  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7941                              MachinePointerInfo::getConstantPool(),
7942                              false, false, false, 16);
7943  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7944
7945  // Or the value with the sign bit.
7946  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7947}
7948
7949SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7950  SDValue N0 = Op.getOperand(0);
7951  DebugLoc dl = Op.getDebugLoc();
7952  EVT VT = Op.getValueType();
7953
7954  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7955  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7956                                  DAG.getConstant(1, VT));
7957  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7958}
7959
7960/// Emit nodes that will be selected as "test Op0,Op0", or something
7961/// equivalent.
7962SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7963                                    SelectionDAG &DAG) const {
7964  DebugLoc dl = Op.getDebugLoc();
7965
7966  // CF and OF aren't always set the way we want. Determine which
7967  // of these we need.
7968  bool NeedCF = false;
7969  bool NeedOF = false;
7970  switch (X86CC) {
7971  default: break;
7972  case X86::COND_A: case X86::COND_AE:
7973  case X86::COND_B: case X86::COND_BE:
7974    NeedCF = true;
7975    break;
7976  case X86::COND_G: case X86::COND_GE:
7977  case X86::COND_L: case X86::COND_LE:
7978  case X86::COND_O: case X86::COND_NO:
7979    NeedOF = true;
7980    break;
7981  }
7982
7983  // See if we can use the EFLAGS value from the operand instead of
7984  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7985  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7986  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7987    // Emit a CMP with 0, which is the TEST pattern.
7988    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7989                       DAG.getConstant(0, Op.getValueType()));
7990
7991  unsigned Opcode = 0;
7992  unsigned NumOperands = 0;
7993  switch (Op.getNode()->getOpcode()) {
7994  case ISD::ADD:
7995    // Due to an isel shortcoming, be conservative if this add is likely to be
7996    // selected as part of a load-modify-store instruction. When the root node
7997    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7998    // uses of other nodes in the match, such as the ADD in this case. This
7999    // leads to the ADD being left around and reselected, with the result being
8000    // two adds in the output.  Alas, even if none our users are stores, that
8001    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8002    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8003    // climbing the DAG back to the root, and it doesn't seem to be worth the
8004    // effort.
8005    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8006         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8007      if (UI->getOpcode() != ISD::CopyToReg &&
8008          UI->getOpcode() != ISD::SETCC &&
8009          UI->getOpcode() != ISD::STORE)
8010        goto default_case;
8011
8012    if (ConstantSDNode *C =
8013        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8014      // An add of one will be selected as an INC.
8015      if (C->getAPIntValue() == 1) {
8016        Opcode = X86ISD::INC;
8017        NumOperands = 1;
8018        break;
8019      }
8020
8021      // An add of negative one (subtract of one) will be selected as a DEC.
8022      if (C->getAPIntValue().isAllOnesValue()) {
8023        Opcode = X86ISD::DEC;
8024        NumOperands = 1;
8025        break;
8026      }
8027    }
8028
8029    // Otherwise use a regular EFLAGS-setting add.
8030    Opcode = X86ISD::ADD;
8031    NumOperands = 2;
8032    break;
8033  case ISD::AND: {
8034    // If the primary and result isn't used, don't bother using X86ISD::AND,
8035    // because a TEST instruction will be better.
8036    bool NonFlagUse = false;
8037    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8038           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8039      SDNode *User = *UI;
8040      unsigned UOpNo = UI.getOperandNo();
8041      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8042        // Look pass truncate.
8043        UOpNo = User->use_begin().getOperandNo();
8044        User = *User->use_begin();
8045      }
8046
8047      if (User->getOpcode() != ISD::BRCOND &&
8048          User->getOpcode() != ISD::SETCC &&
8049          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8050        NonFlagUse = true;
8051        break;
8052      }
8053    }
8054
8055    if (!NonFlagUse)
8056      break;
8057  }
8058    // FALL THROUGH
8059  case ISD::SUB:
8060  case ISD::OR:
8061  case ISD::XOR:
8062    // Due to the ISEL shortcoming noted above, be conservative if this op is
8063    // likely to be selected as part of a load-modify-store instruction.
8064    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8065           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8066      if (UI->getOpcode() == ISD::STORE)
8067        goto default_case;
8068
8069    // Otherwise use a regular EFLAGS-setting instruction.
8070    switch (Op.getNode()->getOpcode()) {
8071    default: llvm_unreachable("unexpected operator!");
8072    case ISD::SUB: Opcode = X86ISD::SUB; break;
8073    case ISD::OR:  Opcode = X86ISD::OR;  break;
8074    case ISD::XOR: Opcode = X86ISD::XOR; break;
8075    case ISD::AND: Opcode = X86ISD::AND; break;
8076    }
8077
8078    NumOperands = 2;
8079    break;
8080  case X86ISD::ADD:
8081  case X86ISD::SUB:
8082  case X86ISD::INC:
8083  case X86ISD::DEC:
8084  case X86ISD::OR:
8085  case X86ISD::XOR:
8086  case X86ISD::AND:
8087    return SDValue(Op.getNode(), 1);
8088  default:
8089  default_case:
8090    break;
8091  }
8092
8093  if (Opcode == 0)
8094    // Emit a CMP with 0, which is the TEST pattern.
8095    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8096                       DAG.getConstant(0, Op.getValueType()));
8097
8098  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8099  SmallVector<SDValue, 4> Ops;
8100  for (unsigned i = 0; i != NumOperands; ++i)
8101    Ops.push_back(Op.getOperand(i));
8102
8103  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8104  DAG.ReplaceAllUsesWith(Op, New);
8105  return SDValue(New.getNode(), 1);
8106}
8107
8108/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8109/// equivalent.
8110SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8111                                   SelectionDAG &DAG) const {
8112  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8113    if (C->getAPIntValue() == 0)
8114      return EmitTest(Op0, X86CC, DAG);
8115
8116  DebugLoc dl = Op0.getDebugLoc();
8117  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8118}
8119
8120/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8121/// if it's possible.
8122SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8123                                     DebugLoc dl, SelectionDAG &DAG) const {
8124  SDValue Op0 = And.getOperand(0);
8125  SDValue Op1 = And.getOperand(1);
8126  if (Op0.getOpcode() == ISD::TRUNCATE)
8127    Op0 = Op0.getOperand(0);
8128  if (Op1.getOpcode() == ISD::TRUNCATE)
8129    Op1 = Op1.getOperand(0);
8130
8131  SDValue LHS, RHS;
8132  if (Op1.getOpcode() == ISD::SHL)
8133    std::swap(Op0, Op1);
8134  if (Op0.getOpcode() == ISD::SHL) {
8135    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8136      if (And00C->getZExtValue() == 1) {
8137        // If we looked past a truncate, check that it's only truncating away
8138        // known zeros.
8139        unsigned BitWidth = Op0.getValueSizeInBits();
8140        unsigned AndBitWidth = And.getValueSizeInBits();
8141        if (BitWidth > AndBitWidth) {
8142          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8143          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8144          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8145            return SDValue();
8146        }
8147        LHS = Op1;
8148        RHS = Op0.getOperand(1);
8149      }
8150  } else if (Op1.getOpcode() == ISD::Constant) {
8151    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8152    uint64_t AndRHSVal = AndRHS->getZExtValue();
8153    SDValue AndLHS = Op0;
8154
8155    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8156      LHS = AndLHS.getOperand(0);
8157      RHS = AndLHS.getOperand(1);
8158    }
8159
8160    // Use BT if the immediate can't be encoded in a TEST instruction.
8161    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8162      LHS = AndLHS;
8163      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8164    }
8165  }
8166
8167  if (LHS.getNode()) {
8168    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8169    // instruction.  Since the shift amount is in-range-or-undefined, we know
8170    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8171    // the encoding for the i16 version is larger than the i32 version.
8172    // Also promote i16 to i32 for performance / code size reason.
8173    if (LHS.getValueType() == MVT::i8 ||
8174        LHS.getValueType() == MVT::i16)
8175      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8176
8177    // If the operand types disagree, extend the shift amount to match.  Since
8178    // BT ignores high bits (like shifts) we can use anyextend.
8179    if (LHS.getValueType() != RHS.getValueType())
8180      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8181
8182    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8183    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8184    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8185                       DAG.getConstant(Cond, MVT::i8), BT);
8186  }
8187
8188  return SDValue();
8189}
8190
8191SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8192
8193  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8194
8195  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8196  SDValue Op0 = Op.getOperand(0);
8197  SDValue Op1 = Op.getOperand(1);
8198  DebugLoc dl = Op.getDebugLoc();
8199  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8200
8201  // Optimize to BT if possible.
8202  // Lower (X & (1 << N)) == 0 to BT(X, N).
8203  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8204  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8205  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8206      Op1.getOpcode() == ISD::Constant &&
8207      cast<ConstantSDNode>(Op1)->isNullValue() &&
8208      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8209    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8210    if (NewSetCC.getNode())
8211      return NewSetCC;
8212  }
8213
8214  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8215  // these.
8216  if (Op1.getOpcode() == ISD::Constant &&
8217      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8218       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8219      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8220
8221    // If the input is a setcc, then reuse the input setcc or use a new one with
8222    // the inverted condition.
8223    if (Op0.getOpcode() == X86ISD::SETCC) {
8224      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8225      bool Invert = (CC == ISD::SETNE) ^
8226        cast<ConstantSDNode>(Op1)->isNullValue();
8227      if (!Invert) return Op0;
8228
8229      CCode = X86::GetOppositeBranchCondition(CCode);
8230      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8231                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8232    }
8233  }
8234
8235  bool isFP = Op1.getValueType().isFloatingPoint();
8236  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8237  if (X86CC == X86::COND_INVALID)
8238    return SDValue();
8239
8240  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8241  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8242                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8243}
8244
8245// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8246// ones, and then concatenate the result back.
8247static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8248  EVT VT = Op.getValueType();
8249
8250  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8251         "Unsupported value type for operation");
8252
8253  int NumElems = VT.getVectorNumElements();
8254  DebugLoc dl = Op.getDebugLoc();
8255  SDValue CC = Op.getOperand(2);
8256  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8257  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8258
8259  // Extract the LHS vectors
8260  SDValue LHS = Op.getOperand(0);
8261  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8262  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8263
8264  // Extract the RHS vectors
8265  SDValue RHS = Op.getOperand(1);
8266  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8267  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8268
8269  // Issue the operation on the smaller types and concatenate the result back
8270  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8271  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8272  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8273                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8274                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8275}
8276
8277
8278SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8279  SDValue Cond;
8280  SDValue Op0 = Op.getOperand(0);
8281  SDValue Op1 = Op.getOperand(1);
8282  SDValue CC = Op.getOperand(2);
8283  EVT VT = Op.getValueType();
8284  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8285  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8286  DebugLoc dl = Op.getDebugLoc();
8287
8288  if (isFP) {
8289    unsigned SSECC = 8;
8290    EVT EltVT = Op0.getValueType().getVectorElementType();
8291    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8292
8293    bool Swap = false;
8294
8295    // SSE Condition code mapping:
8296    //  0 - EQ
8297    //  1 - LT
8298    //  2 - LE
8299    //  3 - UNORD
8300    //  4 - NEQ
8301    //  5 - NLT
8302    //  6 - NLE
8303    //  7 - ORD
8304    switch (SetCCOpcode) {
8305    default: break;
8306    case ISD::SETOEQ:
8307    case ISD::SETEQ:  SSECC = 0; break;
8308    case ISD::SETOGT:
8309    case ISD::SETGT: Swap = true; // Fallthrough
8310    case ISD::SETLT:
8311    case ISD::SETOLT: SSECC = 1; break;
8312    case ISD::SETOGE:
8313    case ISD::SETGE: Swap = true; // Fallthrough
8314    case ISD::SETLE:
8315    case ISD::SETOLE: SSECC = 2; break;
8316    case ISD::SETUO:  SSECC = 3; break;
8317    case ISD::SETUNE:
8318    case ISD::SETNE:  SSECC = 4; break;
8319    case ISD::SETULE: Swap = true;
8320    case ISD::SETUGE: SSECC = 5; break;
8321    case ISD::SETULT: Swap = true;
8322    case ISD::SETUGT: SSECC = 6; break;
8323    case ISD::SETO:   SSECC = 7; break;
8324    }
8325    if (Swap)
8326      std::swap(Op0, Op1);
8327
8328    // In the two special cases we can't handle, emit two comparisons.
8329    if (SSECC == 8) {
8330      if (SetCCOpcode == ISD::SETUEQ) {
8331        SDValue UNORD, EQ;
8332        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8333                            DAG.getConstant(3, MVT::i8));
8334        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8335                         DAG.getConstant(0, MVT::i8));
8336        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8337      } else if (SetCCOpcode == ISD::SETONE) {
8338        SDValue ORD, NEQ;
8339        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8340                          DAG.getConstant(7, MVT::i8));
8341        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8342                          DAG.getConstant(4, MVT::i8));
8343        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8344      }
8345      llvm_unreachable("Illegal FP comparison");
8346    }
8347    // Handle all other FP comparisons here.
8348    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8349                       DAG.getConstant(SSECC, MVT::i8));
8350  }
8351
8352  // Break 256-bit integer vector compare into smaller ones.
8353  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8354    return Lower256IntVSETCC(Op, DAG);
8355
8356  // We are handling one of the integer comparisons here.  Since SSE only has
8357  // GT and EQ comparisons for integer, swapping operands and multiple
8358  // operations may be required for some comparisons.
8359  unsigned Opc = 0;
8360  bool Swap = false, Invert = false, FlipSigns = false;
8361
8362  switch (SetCCOpcode) {
8363  default: break;
8364  case ISD::SETNE:  Invert = true;
8365  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8366  case ISD::SETLT:  Swap = true;
8367  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8368  case ISD::SETGE:  Swap = true;
8369  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8370  case ISD::SETULT: Swap = true;
8371  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8372  case ISD::SETUGE: Swap = true;
8373  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8374  }
8375  if (Swap)
8376    std::swap(Op0, Op1);
8377
8378  // Check that the operation in question is available (most are plain SSE2,
8379  // but PCMPGTQ and PCMPEQQ have different requirements).
8380  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8381    return SDValue();
8382  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8383    return SDValue();
8384
8385  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8386  // bits of the inputs before performing those operations.
8387  if (FlipSigns) {
8388    EVT EltVT = VT.getVectorElementType();
8389    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8390                                      EltVT);
8391    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8392    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8393                                    SignBits.size());
8394    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8395    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8396  }
8397
8398  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8399
8400  // If the logical-not of the result is required, perform that now.
8401  if (Invert)
8402    Result = DAG.getNOT(dl, Result, VT);
8403
8404  return Result;
8405}
8406
8407// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8408static bool isX86LogicalCmp(SDValue Op) {
8409  unsigned Opc = Op.getNode()->getOpcode();
8410  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8411    return true;
8412  if (Op.getResNo() == 1 &&
8413      (Opc == X86ISD::ADD ||
8414       Opc == X86ISD::SUB ||
8415       Opc == X86ISD::ADC ||
8416       Opc == X86ISD::SBB ||
8417       Opc == X86ISD::SMUL ||
8418       Opc == X86ISD::UMUL ||
8419       Opc == X86ISD::INC ||
8420       Opc == X86ISD::DEC ||
8421       Opc == X86ISD::OR ||
8422       Opc == X86ISD::XOR ||
8423       Opc == X86ISD::AND))
8424    return true;
8425
8426  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8427    return true;
8428
8429  return false;
8430}
8431
8432static bool isZero(SDValue V) {
8433  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8434  return C && C->isNullValue();
8435}
8436
8437static bool isAllOnes(SDValue V) {
8438  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8439  return C && C->isAllOnesValue();
8440}
8441
8442SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8443  bool addTest = true;
8444  SDValue Cond  = Op.getOperand(0);
8445  SDValue Op1 = Op.getOperand(1);
8446  SDValue Op2 = Op.getOperand(2);
8447  DebugLoc DL = Op.getDebugLoc();
8448  SDValue CC;
8449
8450  if (Cond.getOpcode() == ISD::SETCC) {
8451    SDValue NewCond = LowerSETCC(Cond, DAG);
8452    if (NewCond.getNode())
8453      Cond = NewCond;
8454  }
8455
8456  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8457  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8458  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8459  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8460  if (Cond.getOpcode() == X86ISD::SETCC &&
8461      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8462      isZero(Cond.getOperand(1).getOperand(1))) {
8463    SDValue Cmp = Cond.getOperand(1);
8464
8465    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8466
8467    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8468        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8469      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8470
8471      SDValue CmpOp0 = Cmp.getOperand(0);
8472      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8473                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8474
8475      SDValue Res =   // Res = 0 or -1.
8476        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8477                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8478
8479      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8480        Res = DAG.getNOT(DL, Res, Res.getValueType());
8481
8482      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8483      if (N2C == 0 || !N2C->isNullValue())
8484        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8485      return Res;
8486    }
8487  }
8488
8489  // Look past (and (setcc_carry (cmp ...)), 1).
8490  if (Cond.getOpcode() == ISD::AND &&
8491      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8492    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8493    if (C && C->getAPIntValue() == 1)
8494      Cond = Cond.getOperand(0);
8495  }
8496
8497  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8498  // setting operand in place of the X86ISD::SETCC.
8499  unsigned CondOpcode = Cond.getOpcode();
8500  if (CondOpcode == X86ISD::SETCC ||
8501      CondOpcode == X86ISD::SETCC_CARRY) {
8502    CC = Cond.getOperand(0);
8503
8504    SDValue Cmp = Cond.getOperand(1);
8505    unsigned Opc = Cmp.getOpcode();
8506    EVT VT = Op.getValueType();
8507
8508    bool IllegalFPCMov = false;
8509    if (VT.isFloatingPoint() && !VT.isVector() &&
8510        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8511      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8512
8513    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8514        Opc == X86ISD::BT) { // FIXME
8515      Cond = Cmp;
8516      addTest = false;
8517    }
8518  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8519             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8520             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8521              Cond.getOperand(0).getValueType() != MVT::i8)) {
8522    SDValue LHS = Cond.getOperand(0);
8523    SDValue RHS = Cond.getOperand(1);
8524    unsigned X86Opcode;
8525    unsigned X86Cond;
8526    SDVTList VTs;
8527    switch (CondOpcode) {
8528    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8529    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8530    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8531    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8532    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8533    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8534    default: llvm_unreachable("unexpected overflowing operator");
8535    }
8536    if (CondOpcode == ISD::UMULO)
8537      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8538                          MVT::i32);
8539    else
8540      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8541
8542    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8543
8544    if (CondOpcode == ISD::UMULO)
8545      Cond = X86Op.getValue(2);
8546    else
8547      Cond = X86Op.getValue(1);
8548
8549    CC = DAG.getConstant(X86Cond, MVT::i8);
8550    addTest = false;
8551  }
8552
8553  if (addTest) {
8554    // Look pass the truncate.
8555    if (Cond.getOpcode() == ISD::TRUNCATE)
8556      Cond = Cond.getOperand(0);
8557
8558    // We know the result of AND is compared against zero. Try to match
8559    // it to BT.
8560    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8561      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8562      if (NewSetCC.getNode()) {
8563        CC = NewSetCC.getOperand(0);
8564        Cond = NewSetCC.getOperand(1);
8565        addTest = false;
8566      }
8567    }
8568  }
8569
8570  if (addTest) {
8571    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8572    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8573  }
8574
8575  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8576  // a <  b ?  0 : -1 -> RES = setcc_carry
8577  // a >= b ? -1 :  0 -> RES = setcc_carry
8578  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8579  if (Cond.getOpcode() == X86ISD::CMP) {
8580    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8581
8582    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8583        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8584      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8585                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8586      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8587        return DAG.getNOT(DL, Res, Res.getValueType());
8588      return Res;
8589    }
8590  }
8591
8592  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8593  // condition is true.
8594  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8595  SDValue Ops[] = { Op2, Op1, CC, Cond };
8596  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8597}
8598
8599// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8600// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8601// from the AND / OR.
8602static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8603  Opc = Op.getOpcode();
8604  if (Opc != ISD::OR && Opc != ISD::AND)
8605    return false;
8606  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8607          Op.getOperand(0).hasOneUse() &&
8608          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8609          Op.getOperand(1).hasOneUse());
8610}
8611
8612// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8613// 1 and that the SETCC node has a single use.
8614static bool isXor1OfSetCC(SDValue Op) {
8615  if (Op.getOpcode() != ISD::XOR)
8616    return false;
8617  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8618  if (N1C && N1C->getAPIntValue() == 1) {
8619    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8620      Op.getOperand(0).hasOneUse();
8621  }
8622  return false;
8623}
8624
8625SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8626  bool addTest = true;
8627  SDValue Chain = Op.getOperand(0);
8628  SDValue Cond  = Op.getOperand(1);
8629  SDValue Dest  = Op.getOperand(2);
8630  DebugLoc dl = Op.getDebugLoc();
8631  SDValue CC;
8632  bool Inverted = false;
8633
8634  if (Cond.getOpcode() == ISD::SETCC) {
8635    // Check for setcc([su]{add,sub,mul}o == 0).
8636    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8637        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8638        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8639        Cond.getOperand(0).getResNo() == 1 &&
8640        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8641         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8642         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8643         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8644         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8645         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8646      Inverted = true;
8647      Cond = Cond.getOperand(0);
8648    } else {
8649      SDValue NewCond = LowerSETCC(Cond, DAG);
8650      if (NewCond.getNode())
8651        Cond = NewCond;
8652    }
8653  }
8654#if 0
8655  // FIXME: LowerXALUO doesn't handle these!!
8656  else if (Cond.getOpcode() == X86ISD::ADD  ||
8657           Cond.getOpcode() == X86ISD::SUB  ||
8658           Cond.getOpcode() == X86ISD::SMUL ||
8659           Cond.getOpcode() == X86ISD::UMUL)
8660    Cond = LowerXALUO(Cond, DAG);
8661#endif
8662
8663  // Look pass (and (setcc_carry (cmp ...)), 1).
8664  if (Cond.getOpcode() == ISD::AND &&
8665      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8666    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8667    if (C && C->getAPIntValue() == 1)
8668      Cond = Cond.getOperand(0);
8669  }
8670
8671  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8672  // setting operand in place of the X86ISD::SETCC.
8673  unsigned CondOpcode = Cond.getOpcode();
8674  if (CondOpcode == X86ISD::SETCC ||
8675      CondOpcode == X86ISD::SETCC_CARRY) {
8676    CC = Cond.getOperand(0);
8677
8678    SDValue Cmp = Cond.getOperand(1);
8679    unsigned Opc = Cmp.getOpcode();
8680    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8681    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8682      Cond = Cmp;
8683      addTest = false;
8684    } else {
8685      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8686      default: break;
8687      case X86::COND_O:
8688      case X86::COND_B:
8689        // These can only come from an arithmetic instruction with overflow,
8690        // e.g. SADDO, UADDO.
8691        Cond = Cond.getNode()->getOperand(1);
8692        addTest = false;
8693        break;
8694      }
8695    }
8696  }
8697  CondOpcode = Cond.getOpcode();
8698  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8699      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8700      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8701       Cond.getOperand(0).getValueType() != MVT::i8)) {
8702    SDValue LHS = Cond.getOperand(0);
8703    SDValue RHS = Cond.getOperand(1);
8704    unsigned X86Opcode;
8705    unsigned X86Cond;
8706    SDVTList VTs;
8707    switch (CondOpcode) {
8708    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8709    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8710    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8711    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8712    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8713    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8714    default: llvm_unreachable("unexpected overflowing operator");
8715    }
8716    if (Inverted)
8717      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8718    if (CondOpcode == ISD::UMULO)
8719      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8720                          MVT::i32);
8721    else
8722      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8723
8724    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8725
8726    if (CondOpcode == ISD::UMULO)
8727      Cond = X86Op.getValue(2);
8728    else
8729      Cond = X86Op.getValue(1);
8730
8731    CC = DAG.getConstant(X86Cond, MVT::i8);
8732    addTest = false;
8733  } else {
8734    unsigned CondOpc;
8735    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8736      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8737      if (CondOpc == ISD::OR) {
8738        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8739        // two branches instead of an explicit OR instruction with a
8740        // separate test.
8741        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8742            isX86LogicalCmp(Cmp)) {
8743          CC = Cond.getOperand(0).getOperand(0);
8744          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8745                              Chain, Dest, CC, Cmp);
8746          CC = Cond.getOperand(1).getOperand(0);
8747          Cond = Cmp;
8748          addTest = false;
8749        }
8750      } else { // ISD::AND
8751        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8752        // two branches instead of an explicit AND instruction with a
8753        // separate test. However, we only do this if this block doesn't
8754        // have a fall-through edge, because this requires an explicit
8755        // jmp when the condition is false.
8756        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8757            isX86LogicalCmp(Cmp) &&
8758            Op.getNode()->hasOneUse()) {
8759          X86::CondCode CCode =
8760            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8761          CCode = X86::GetOppositeBranchCondition(CCode);
8762          CC = DAG.getConstant(CCode, MVT::i8);
8763          SDNode *User = *Op.getNode()->use_begin();
8764          // Look for an unconditional branch following this conditional branch.
8765          // We need this because we need to reverse the successors in order
8766          // to implement FCMP_OEQ.
8767          if (User->getOpcode() == ISD::BR) {
8768            SDValue FalseBB = User->getOperand(1);
8769            SDNode *NewBR =
8770              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8771            assert(NewBR == User);
8772            (void)NewBR;
8773            Dest = FalseBB;
8774
8775            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8776                                Chain, Dest, CC, Cmp);
8777            X86::CondCode CCode =
8778              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8779            CCode = X86::GetOppositeBranchCondition(CCode);
8780            CC = DAG.getConstant(CCode, MVT::i8);
8781            Cond = Cmp;
8782            addTest = false;
8783          }
8784        }
8785      }
8786    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8787      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8788      // It should be transformed during dag combiner except when the condition
8789      // is set by a arithmetics with overflow node.
8790      X86::CondCode CCode =
8791        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8792      CCode = X86::GetOppositeBranchCondition(CCode);
8793      CC = DAG.getConstant(CCode, MVT::i8);
8794      Cond = Cond.getOperand(0).getOperand(1);
8795      addTest = false;
8796    } else if (Cond.getOpcode() == ISD::SETCC &&
8797               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8798      // For FCMP_OEQ, we can emit
8799      // two branches instead of an explicit AND instruction with a
8800      // separate test. However, we only do this if this block doesn't
8801      // have a fall-through edge, because this requires an explicit
8802      // jmp when the condition is false.
8803      if (Op.getNode()->hasOneUse()) {
8804        SDNode *User = *Op.getNode()->use_begin();
8805        // Look for an unconditional branch following this conditional branch.
8806        // We need this because we need to reverse the successors in order
8807        // to implement FCMP_OEQ.
8808        if (User->getOpcode() == ISD::BR) {
8809          SDValue FalseBB = User->getOperand(1);
8810          SDNode *NewBR =
8811            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8812          assert(NewBR == User);
8813          (void)NewBR;
8814          Dest = FalseBB;
8815
8816          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8817                                    Cond.getOperand(0), Cond.getOperand(1));
8818          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8819          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8820                              Chain, Dest, CC, Cmp);
8821          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8822          Cond = Cmp;
8823          addTest = false;
8824        }
8825      }
8826    } else if (Cond.getOpcode() == ISD::SETCC &&
8827               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8828      // For FCMP_UNE, we can emit
8829      // two branches instead of an explicit AND instruction with a
8830      // separate test. However, we only do this if this block doesn't
8831      // have a fall-through edge, because this requires an explicit
8832      // jmp when the condition is false.
8833      if (Op.getNode()->hasOneUse()) {
8834        SDNode *User = *Op.getNode()->use_begin();
8835        // Look for an unconditional branch following this conditional branch.
8836        // We need this because we need to reverse the successors in order
8837        // to implement FCMP_UNE.
8838        if (User->getOpcode() == ISD::BR) {
8839          SDValue FalseBB = User->getOperand(1);
8840          SDNode *NewBR =
8841            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8842          assert(NewBR == User);
8843          (void)NewBR;
8844
8845          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8846                                    Cond.getOperand(0), Cond.getOperand(1));
8847          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8848          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8849                              Chain, Dest, CC, Cmp);
8850          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8851          Cond = Cmp;
8852          addTest = false;
8853          Dest = FalseBB;
8854        }
8855      }
8856    }
8857  }
8858
8859  if (addTest) {
8860    // Look pass the truncate.
8861    if (Cond.getOpcode() == ISD::TRUNCATE)
8862      Cond = Cond.getOperand(0);
8863
8864    // We know the result of AND is compared against zero. Try to match
8865    // it to BT.
8866    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8867      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8868      if (NewSetCC.getNode()) {
8869        CC = NewSetCC.getOperand(0);
8870        Cond = NewSetCC.getOperand(1);
8871        addTest = false;
8872      }
8873    }
8874  }
8875
8876  if (addTest) {
8877    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8878    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8879  }
8880  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8881                     Chain, Dest, CC, Cond);
8882}
8883
8884
8885// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8886// Calls to _alloca is needed to probe the stack when allocating more than 4k
8887// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8888// that the guard pages used by the OS virtual memory manager are allocated in
8889// correct sequence.
8890SDValue
8891X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8892                                           SelectionDAG &DAG) const {
8893  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8894          getTargetMachine().Options.EnableSegmentedStacks) &&
8895         "This should be used only on Windows targets or when segmented stacks "
8896         "are being used");
8897  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8898  DebugLoc dl = Op.getDebugLoc();
8899
8900  // Get the inputs.
8901  SDValue Chain = Op.getOperand(0);
8902  SDValue Size  = Op.getOperand(1);
8903  // FIXME: Ensure alignment here
8904
8905  bool Is64Bit = Subtarget->is64Bit();
8906  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8907
8908  if (getTargetMachine().Options.EnableSegmentedStacks) {
8909    MachineFunction &MF = DAG.getMachineFunction();
8910    MachineRegisterInfo &MRI = MF.getRegInfo();
8911
8912    if (Is64Bit) {
8913      // The 64 bit implementation of segmented stacks needs to clobber both r10
8914      // r11. This makes it impossible to use it along with nested parameters.
8915      const Function *F = MF.getFunction();
8916
8917      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8918           I != E; I++)
8919        if (I->hasNestAttr())
8920          report_fatal_error("Cannot use segmented stacks with functions that "
8921                             "have nested arguments.");
8922    }
8923
8924    const TargetRegisterClass *AddrRegClass =
8925      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8926    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8927    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8928    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8929                                DAG.getRegister(Vreg, SPTy));
8930    SDValue Ops1[2] = { Value, Chain };
8931    return DAG.getMergeValues(Ops1, 2, dl);
8932  } else {
8933    SDValue Flag;
8934    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8935
8936    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8937    Flag = Chain.getValue(1);
8938    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8939
8940    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8941    Flag = Chain.getValue(1);
8942
8943    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8944
8945    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8946    return DAG.getMergeValues(Ops1, 2, dl);
8947  }
8948}
8949
8950SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8951  MachineFunction &MF = DAG.getMachineFunction();
8952  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8953
8954  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8955  DebugLoc DL = Op.getDebugLoc();
8956
8957  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8958    // vastart just stores the address of the VarArgsFrameIndex slot into the
8959    // memory location argument.
8960    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8961                                   getPointerTy());
8962    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8963                        MachinePointerInfo(SV), false, false, 0);
8964  }
8965
8966  // __va_list_tag:
8967  //   gp_offset         (0 - 6 * 8)
8968  //   fp_offset         (48 - 48 + 8 * 16)
8969  //   overflow_arg_area (point to parameters coming in memory).
8970  //   reg_save_area
8971  SmallVector<SDValue, 8> MemOps;
8972  SDValue FIN = Op.getOperand(1);
8973  // Store gp_offset
8974  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8975                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8976                                               MVT::i32),
8977                               FIN, MachinePointerInfo(SV), false, false, 0);
8978  MemOps.push_back(Store);
8979
8980  // Store fp_offset
8981  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8982                    FIN, DAG.getIntPtrConstant(4));
8983  Store = DAG.getStore(Op.getOperand(0), DL,
8984                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8985                                       MVT::i32),
8986                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8987  MemOps.push_back(Store);
8988
8989  // Store ptr to overflow_arg_area
8990  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8991                    FIN, DAG.getIntPtrConstant(4));
8992  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8993                                    getPointerTy());
8994  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8995                       MachinePointerInfo(SV, 8),
8996                       false, false, 0);
8997  MemOps.push_back(Store);
8998
8999  // Store ptr to reg_save_area.
9000  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9001                    FIN, DAG.getIntPtrConstant(8));
9002  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9003                                    getPointerTy());
9004  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9005                       MachinePointerInfo(SV, 16), false, false, 0);
9006  MemOps.push_back(Store);
9007  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9008                     &MemOps[0], MemOps.size());
9009}
9010
9011SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9012  assert(Subtarget->is64Bit() &&
9013         "LowerVAARG only handles 64-bit va_arg!");
9014  assert((Subtarget->isTargetLinux() ||
9015          Subtarget->isTargetDarwin()) &&
9016          "Unhandled target in LowerVAARG");
9017  assert(Op.getNode()->getNumOperands() == 4);
9018  SDValue Chain = Op.getOperand(0);
9019  SDValue SrcPtr = Op.getOperand(1);
9020  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9021  unsigned Align = Op.getConstantOperandVal(3);
9022  DebugLoc dl = Op.getDebugLoc();
9023
9024  EVT ArgVT = Op.getNode()->getValueType(0);
9025  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9026  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9027  uint8_t ArgMode;
9028
9029  // Decide which area this value should be read from.
9030  // TODO: Implement the AMD64 ABI in its entirety. This simple
9031  // selection mechanism works only for the basic types.
9032  if (ArgVT == MVT::f80) {
9033    llvm_unreachable("va_arg for f80 not yet implemented");
9034  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9035    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9036  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9037    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9038  } else {
9039    llvm_unreachable("Unhandled argument type in LowerVAARG");
9040  }
9041
9042  if (ArgMode == 2) {
9043    // Sanity Check: Make sure using fp_offset makes sense.
9044    assert(!getTargetMachine().Options.UseSoftFloat &&
9045           !(DAG.getMachineFunction()
9046                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9047           Subtarget->hasSSE1());
9048  }
9049
9050  // Insert VAARG_64 node into the DAG
9051  // VAARG_64 returns two values: Variable Argument Address, Chain
9052  SmallVector<SDValue, 11> InstOps;
9053  InstOps.push_back(Chain);
9054  InstOps.push_back(SrcPtr);
9055  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9056  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9057  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9058  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9059  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9060                                          VTs, &InstOps[0], InstOps.size(),
9061                                          MVT::i64,
9062                                          MachinePointerInfo(SV),
9063                                          /*Align=*/0,
9064                                          /*Volatile=*/false,
9065                                          /*ReadMem=*/true,
9066                                          /*WriteMem=*/true);
9067  Chain = VAARG.getValue(1);
9068
9069  // Load the next argument and return it
9070  return DAG.getLoad(ArgVT, dl,
9071                     Chain,
9072                     VAARG,
9073                     MachinePointerInfo(),
9074                     false, false, false, 0);
9075}
9076
9077SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9078  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9079  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9080  SDValue Chain = Op.getOperand(0);
9081  SDValue DstPtr = Op.getOperand(1);
9082  SDValue SrcPtr = Op.getOperand(2);
9083  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9084  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9085  DebugLoc DL = Op.getDebugLoc();
9086
9087  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9088                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9089                       false,
9090                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9091}
9092
9093// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9094// may or may not be a constant. Takes immediate version of shift as input.
9095static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9096                                   SDValue SrcOp, SDValue ShAmt,
9097                                   SelectionDAG &DAG) {
9098  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9099
9100  if (isa<ConstantSDNode>(ShAmt)) {
9101    switch (Opc) {
9102      default: llvm_unreachable("Unknown target vector shift node");
9103      case X86ISD::VSHLI:
9104      case X86ISD::VSRLI:
9105      case X86ISD::VSRAI:
9106        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9107    }
9108  }
9109
9110  // Change opcode to non-immediate version
9111  switch (Opc) {
9112    default: llvm_unreachable("Unknown target vector shift node");
9113    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9114    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9115    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9116  }
9117
9118  // Need to build a vector containing shift amount
9119  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9120  SDValue ShOps[4];
9121  ShOps[0] = ShAmt;
9122  ShOps[1] = DAG.getConstant(0, MVT::i32);
9123  ShOps[2] = DAG.getUNDEF(MVT::i32);
9124  ShOps[3] = DAG.getUNDEF(MVT::i32);
9125  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9126  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9127  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9128}
9129
9130SDValue
9131X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9132  DebugLoc dl = Op.getDebugLoc();
9133  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9134  switch (IntNo) {
9135  default: return SDValue();    // Don't custom lower most intrinsics.
9136  // Comparison intrinsics.
9137  case Intrinsic::x86_sse_comieq_ss:
9138  case Intrinsic::x86_sse_comilt_ss:
9139  case Intrinsic::x86_sse_comile_ss:
9140  case Intrinsic::x86_sse_comigt_ss:
9141  case Intrinsic::x86_sse_comige_ss:
9142  case Intrinsic::x86_sse_comineq_ss:
9143  case Intrinsic::x86_sse_ucomieq_ss:
9144  case Intrinsic::x86_sse_ucomilt_ss:
9145  case Intrinsic::x86_sse_ucomile_ss:
9146  case Intrinsic::x86_sse_ucomigt_ss:
9147  case Intrinsic::x86_sse_ucomige_ss:
9148  case Intrinsic::x86_sse_ucomineq_ss:
9149  case Intrinsic::x86_sse2_comieq_sd:
9150  case Intrinsic::x86_sse2_comilt_sd:
9151  case Intrinsic::x86_sse2_comile_sd:
9152  case Intrinsic::x86_sse2_comigt_sd:
9153  case Intrinsic::x86_sse2_comige_sd:
9154  case Intrinsic::x86_sse2_comineq_sd:
9155  case Intrinsic::x86_sse2_ucomieq_sd:
9156  case Intrinsic::x86_sse2_ucomilt_sd:
9157  case Intrinsic::x86_sse2_ucomile_sd:
9158  case Intrinsic::x86_sse2_ucomigt_sd:
9159  case Intrinsic::x86_sse2_ucomige_sd:
9160  case Intrinsic::x86_sse2_ucomineq_sd: {
9161    unsigned Opc = 0;
9162    ISD::CondCode CC = ISD::SETCC_INVALID;
9163    switch (IntNo) {
9164    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9165    case Intrinsic::x86_sse_comieq_ss:
9166    case Intrinsic::x86_sse2_comieq_sd:
9167      Opc = X86ISD::COMI;
9168      CC = ISD::SETEQ;
9169      break;
9170    case Intrinsic::x86_sse_comilt_ss:
9171    case Intrinsic::x86_sse2_comilt_sd:
9172      Opc = X86ISD::COMI;
9173      CC = ISD::SETLT;
9174      break;
9175    case Intrinsic::x86_sse_comile_ss:
9176    case Intrinsic::x86_sse2_comile_sd:
9177      Opc = X86ISD::COMI;
9178      CC = ISD::SETLE;
9179      break;
9180    case Intrinsic::x86_sse_comigt_ss:
9181    case Intrinsic::x86_sse2_comigt_sd:
9182      Opc = X86ISD::COMI;
9183      CC = ISD::SETGT;
9184      break;
9185    case Intrinsic::x86_sse_comige_ss:
9186    case Intrinsic::x86_sse2_comige_sd:
9187      Opc = X86ISD::COMI;
9188      CC = ISD::SETGE;
9189      break;
9190    case Intrinsic::x86_sse_comineq_ss:
9191    case Intrinsic::x86_sse2_comineq_sd:
9192      Opc = X86ISD::COMI;
9193      CC = ISD::SETNE;
9194      break;
9195    case Intrinsic::x86_sse_ucomieq_ss:
9196    case Intrinsic::x86_sse2_ucomieq_sd:
9197      Opc = X86ISD::UCOMI;
9198      CC = ISD::SETEQ;
9199      break;
9200    case Intrinsic::x86_sse_ucomilt_ss:
9201    case Intrinsic::x86_sse2_ucomilt_sd:
9202      Opc = X86ISD::UCOMI;
9203      CC = ISD::SETLT;
9204      break;
9205    case Intrinsic::x86_sse_ucomile_ss:
9206    case Intrinsic::x86_sse2_ucomile_sd:
9207      Opc = X86ISD::UCOMI;
9208      CC = ISD::SETLE;
9209      break;
9210    case Intrinsic::x86_sse_ucomigt_ss:
9211    case Intrinsic::x86_sse2_ucomigt_sd:
9212      Opc = X86ISD::UCOMI;
9213      CC = ISD::SETGT;
9214      break;
9215    case Intrinsic::x86_sse_ucomige_ss:
9216    case Intrinsic::x86_sse2_ucomige_sd:
9217      Opc = X86ISD::UCOMI;
9218      CC = ISD::SETGE;
9219      break;
9220    case Intrinsic::x86_sse_ucomineq_ss:
9221    case Intrinsic::x86_sse2_ucomineq_sd:
9222      Opc = X86ISD::UCOMI;
9223      CC = ISD::SETNE;
9224      break;
9225    }
9226
9227    SDValue LHS = Op.getOperand(1);
9228    SDValue RHS = Op.getOperand(2);
9229    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9230    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9231    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9232    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9233                                DAG.getConstant(X86CC, MVT::i8), Cond);
9234    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9235  }
9236  // XOP comparison intrinsics
9237  case Intrinsic::x86_xop_vpcomltb:
9238  case Intrinsic::x86_xop_vpcomltw:
9239  case Intrinsic::x86_xop_vpcomltd:
9240  case Intrinsic::x86_xop_vpcomltq:
9241  case Intrinsic::x86_xop_vpcomltub:
9242  case Intrinsic::x86_xop_vpcomltuw:
9243  case Intrinsic::x86_xop_vpcomltud:
9244  case Intrinsic::x86_xop_vpcomltuq:
9245  case Intrinsic::x86_xop_vpcomleb:
9246  case Intrinsic::x86_xop_vpcomlew:
9247  case Intrinsic::x86_xop_vpcomled:
9248  case Intrinsic::x86_xop_vpcomleq:
9249  case Intrinsic::x86_xop_vpcomleub:
9250  case Intrinsic::x86_xop_vpcomleuw:
9251  case Intrinsic::x86_xop_vpcomleud:
9252  case Intrinsic::x86_xop_vpcomleuq:
9253  case Intrinsic::x86_xop_vpcomgtb:
9254  case Intrinsic::x86_xop_vpcomgtw:
9255  case Intrinsic::x86_xop_vpcomgtd:
9256  case Intrinsic::x86_xop_vpcomgtq:
9257  case Intrinsic::x86_xop_vpcomgtub:
9258  case Intrinsic::x86_xop_vpcomgtuw:
9259  case Intrinsic::x86_xop_vpcomgtud:
9260  case Intrinsic::x86_xop_vpcomgtuq:
9261  case Intrinsic::x86_xop_vpcomgeb:
9262  case Intrinsic::x86_xop_vpcomgew:
9263  case Intrinsic::x86_xop_vpcomged:
9264  case Intrinsic::x86_xop_vpcomgeq:
9265  case Intrinsic::x86_xop_vpcomgeub:
9266  case Intrinsic::x86_xop_vpcomgeuw:
9267  case Intrinsic::x86_xop_vpcomgeud:
9268  case Intrinsic::x86_xop_vpcomgeuq:
9269  case Intrinsic::x86_xop_vpcomeqb:
9270  case Intrinsic::x86_xop_vpcomeqw:
9271  case Intrinsic::x86_xop_vpcomeqd:
9272  case Intrinsic::x86_xop_vpcomeqq:
9273  case Intrinsic::x86_xop_vpcomequb:
9274  case Intrinsic::x86_xop_vpcomequw:
9275  case Intrinsic::x86_xop_vpcomequd:
9276  case Intrinsic::x86_xop_vpcomequq:
9277  case Intrinsic::x86_xop_vpcomneb:
9278  case Intrinsic::x86_xop_vpcomnew:
9279  case Intrinsic::x86_xop_vpcomned:
9280  case Intrinsic::x86_xop_vpcomneq:
9281  case Intrinsic::x86_xop_vpcomneub:
9282  case Intrinsic::x86_xop_vpcomneuw:
9283  case Intrinsic::x86_xop_vpcomneud:
9284  case Intrinsic::x86_xop_vpcomneuq:
9285  case Intrinsic::x86_xop_vpcomfalseb:
9286  case Intrinsic::x86_xop_vpcomfalsew:
9287  case Intrinsic::x86_xop_vpcomfalsed:
9288  case Intrinsic::x86_xop_vpcomfalseq:
9289  case Intrinsic::x86_xop_vpcomfalseub:
9290  case Intrinsic::x86_xop_vpcomfalseuw:
9291  case Intrinsic::x86_xop_vpcomfalseud:
9292  case Intrinsic::x86_xop_vpcomfalseuq:
9293  case Intrinsic::x86_xop_vpcomtrueb:
9294  case Intrinsic::x86_xop_vpcomtruew:
9295  case Intrinsic::x86_xop_vpcomtrued:
9296  case Intrinsic::x86_xop_vpcomtrueq:
9297  case Intrinsic::x86_xop_vpcomtrueub:
9298  case Intrinsic::x86_xop_vpcomtrueuw:
9299  case Intrinsic::x86_xop_vpcomtrueud:
9300  case Intrinsic::x86_xop_vpcomtrueuq: {
9301    unsigned CC = 0;
9302    unsigned Opc = 0;
9303
9304    switch (IntNo) {
9305    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9306    case Intrinsic::x86_xop_vpcomltb:
9307    case Intrinsic::x86_xop_vpcomltw:
9308    case Intrinsic::x86_xop_vpcomltd:
9309    case Intrinsic::x86_xop_vpcomltq:
9310      CC = 0;
9311      Opc = X86ISD::VPCOM;
9312      break;
9313    case Intrinsic::x86_xop_vpcomltub:
9314    case Intrinsic::x86_xop_vpcomltuw:
9315    case Intrinsic::x86_xop_vpcomltud:
9316    case Intrinsic::x86_xop_vpcomltuq:
9317      CC = 0;
9318      Opc = X86ISD::VPCOMU;
9319      break;
9320    case Intrinsic::x86_xop_vpcomleb:
9321    case Intrinsic::x86_xop_vpcomlew:
9322    case Intrinsic::x86_xop_vpcomled:
9323    case Intrinsic::x86_xop_vpcomleq:
9324      CC = 1;
9325      Opc = X86ISD::VPCOM;
9326      break;
9327    case Intrinsic::x86_xop_vpcomleub:
9328    case Intrinsic::x86_xop_vpcomleuw:
9329    case Intrinsic::x86_xop_vpcomleud:
9330    case Intrinsic::x86_xop_vpcomleuq:
9331      CC = 1;
9332      Opc = X86ISD::VPCOMU;
9333      break;
9334    case Intrinsic::x86_xop_vpcomgtb:
9335    case Intrinsic::x86_xop_vpcomgtw:
9336    case Intrinsic::x86_xop_vpcomgtd:
9337    case Intrinsic::x86_xop_vpcomgtq:
9338      CC = 2;
9339      Opc = X86ISD::VPCOM;
9340      break;
9341    case Intrinsic::x86_xop_vpcomgtub:
9342    case Intrinsic::x86_xop_vpcomgtuw:
9343    case Intrinsic::x86_xop_vpcomgtud:
9344    case Intrinsic::x86_xop_vpcomgtuq:
9345      CC = 2;
9346      Opc = X86ISD::VPCOMU;
9347      break;
9348    case Intrinsic::x86_xop_vpcomgeb:
9349    case Intrinsic::x86_xop_vpcomgew:
9350    case Intrinsic::x86_xop_vpcomged:
9351    case Intrinsic::x86_xop_vpcomgeq:
9352      CC = 3;
9353      Opc = X86ISD::VPCOM;
9354      break;
9355    case Intrinsic::x86_xop_vpcomgeub:
9356    case Intrinsic::x86_xop_vpcomgeuw:
9357    case Intrinsic::x86_xop_vpcomgeud:
9358    case Intrinsic::x86_xop_vpcomgeuq:
9359      CC = 3;
9360      Opc = X86ISD::VPCOMU;
9361      break;
9362    case Intrinsic::x86_xop_vpcomeqb:
9363    case Intrinsic::x86_xop_vpcomeqw:
9364    case Intrinsic::x86_xop_vpcomeqd:
9365    case Intrinsic::x86_xop_vpcomeqq:
9366      CC = 4;
9367      Opc = X86ISD::VPCOM;
9368      break;
9369    case Intrinsic::x86_xop_vpcomequb:
9370    case Intrinsic::x86_xop_vpcomequw:
9371    case Intrinsic::x86_xop_vpcomequd:
9372    case Intrinsic::x86_xop_vpcomequq:
9373      CC = 4;
9374      Opc = X86ISD::VPCOMU;
9375      break;
9376    case Intrinsic::x86_xop_vpcomneb:
9377    case Intrinsic::x86_xop_vpcomnew:
9378    case Intrinsic::x86_xop_vpcomned:
9379    case Intrinsic::x86_xop_vpcomneq:
9380      CC = 5;
9381      Opc = X86ISD::VPCOM;
9382      break;
9383    case Intrinsic::x86_xop_vpcomneub:
9384    case Intrinsic::x86_xop_vpcomneuw:
9385    case Intrinsic::x86_xop_vpcomneud:
9386    case Intrinsic::x86_xop_vpcomneuq:
9387      CC = 5;
9388      Opc = X86ISD::VPCOMU;
9389      break;
9390    case Intrinsic::x86_xop_vpcomfalseb:
9391    case Intrinsic::x86_xop_vpcomfalsew:
9392    case Intrinsic::x86_xop_vpcomfalsed:
9393    case Intrinsic::x86_xop_vpcomfalseq:
9394      CC = 6;
9395      Opc = X86ISD::VPCOM;
9396      break;
9397    case Intrinsic::x86_xop_vpcomfalseub:
9398    case Intrinsic::x86_xop_vpcomfalseuw:
9399    case Intrinsic::x86_xop_vpcomfalseud:
9400    case Intrinsic::x86_xop_vpcomfalseuq:
9401      CC = 6;
9402      Opc = X86ISD::VPCOMU;
9403      break;
9404    case Intrinsic::x86_xop_vpcomtrueb:
9405    case Intrinsic::x86_xop_vpcomtruew:
9406    case Intrinsic::x86_xop_vpcomtrued:
9407    case Intrinsic::x86_xop_vpcomtrueq:
9408      CC = 7;
9409      Opc = X86ISD::VPCOM;
9410      break;
9411    case Intrinsic::x86_xop_vpcomtrueub:
9412    case Intrinsic::x86_xop_vpcomtrueuw:
9413    case Intrinsic::x86_xop_vpcomtrueud:
9414    case Intrinsic::x86_xop_vpcomtrueuq:
9415      CC = 7;
9416      Opc = X86ISD::VPCOMU;
9417      break;
9418    }
9419
9420    SDValue LHS = Op.getOperand(1);
9421    SDValue RHS = Op.getOperand(2);
9422    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9423                       DAG.getConstant(CC, MVT::i8));
9424  }
9425
9426  // Arithmetic intrinsics.
9427  case Intrinsic::x86_sse2_pmulu_dq:
9428  case Intrinsic::x86_avx2_pmulu_dq:
9429    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9430                       Op.getOperand(1), Op.getOperand(2));
9431  case Intrinsic::x86_sse3_hadd_ps:
9432  case Intrinsic::x86_sse3_hadd_pd:
9433  case Intrinsic::x86_avx_hadd_ps_256:
9434  case Intrinsic::x86_avx_hadd_pd_256:
9435    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9436                       Op.getOperand(1), Op.getOperand(2));
9437  case Intrinsic::x86_sse3_hsub_ps:
9438  case Intrinsic::x86_sse3_hsub_pd:
9439  case Intrinsic::x86_avx_hsub_ps_256:
9440  case Intrinsic::x86_avx_hsub_pd_256:
9441    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9442                       Op.getOperand(1), Op.getOperand(2));
9443  case Intrinsic::x86_ssse3_phadd_w_128:
9444  case Intrinsic::x86_ssse3_phadd_d_128:
9445  case Intrinsic::x86_avx2_phadd_w:
9446  case Intrinsic::x86_avx2_phadd_d:
9447    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9448                       Op.getOperand(1), Op.getOperand(2));
9449  case Intrinsic::x86_ssse3_phsub_w_128:
9450  case Intrinsic::x86_ssse3_phsub_d_128:
9451  case Intrinsic::x86_avx2_phsub_w:
9452  case Intrinsic::x86_avx2_phsub_d:
9453    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9454                       Op.getOperand(1), Op.getOperand(2));
9455  case Intrinsic::x86_avx2_psllv_d:
9456  case Intrinsic::x86_avx2_psllv_q:
9457  case Intrinsic::x86_avx2_psllv_d_256:
9458  case Intrinsic::x86_avx2_psllv_q_256:
9459    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9460                      Op.getOperand(1), Op.getOperand(2));
9461  case Intrinsic::x86_avx2_psrlv_d:
9462  case Intrinsic::x86_avx2_psrlv_q:
9463  case Intrinsic::x86_avx2_psrlv_d_256:
9464  case Intrinsic::x86_avx2_psrlv_q_256:
9465    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9466                      Op.getOperand(1), Op.getOperand(2));
9467  case Intrinsic::x86_avx2_psrav_d:
9468  case Intrinsic::x86_avx2_psrav_d_256:
9469    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9470                      Op.getOperand(1), Op.getOperand(2));
9471  case Intrinsic::x86_ssse3_pshuf_b_128:
9472  case Intrinsic::x86_avx2_pshuf_b:
9473    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9474                       Op.getOperand(1), Op.getOperand(2));
9475  case Intrinsic::x86_ssse3_psign_b_128:
9476  case Intrinsic::x86_ssse3_psign_w_128:
9477  case Intrinsic::x86_ssse3_psign_d_128:
9478  case Intrinsic::x86_avx2_psign_b:
9479  case Intrinsic::x86_avx2_psign_w:
9480  case Intrinsic::x86_avx2_psign_d:
9481    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9482                       Op.getOperand(1), Op.getOperand(2));
9483  case Intrinsic::x86_sse41_insertps:
9484    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9485                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9486  case Intrinsic::x86_avx_vperm2f128_ps_256:
9487  case Intrinsic::x86_avx_vperm2f128_pd_256:
9488  case Intrinsic::x86_avx_vperm2f128_si_256:
9489  case Intrinsic::x86_avx2_vperm2i128:
9490    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9491                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9492
9493  // ptest and testp intrinsics. The intrinsic these come from are designed to
9494  // return an integer value, not just an instruction so lower it to the ptest
9495  // or testp pattern and a setcc for the result.
9496  case Intrinsic::x86_sse41_ptestz:
9497  case Intrinsic::x86_sse41_ptestc:
9498  case Intrinsic::x86_sse41_ptestnzc:
9499  case Intrinsic::x86_avx_ptestz_256:
9500  case Intrinsic::x86_avx_ptestc_256:
9501  case Intrinsic::x86_avx_ptestnzc_256:
9502  case Intrinsic::x86_avx_vtestz_ps:
9503  case Intrinsic::x86_avx_vtestc_ps:
9504  case Intrinsic::x86_avx_vtestnzc_ps:
9505  case Intrinsic::x86_avx_vtestz_pd:
9506  case Intrinsic::x86_avx_vtestc_pd:
9507  case Intrinsic::x86_avx_vtestnzc_pd:
9508  case Intrinsic::x86_avx_vtestz_ps_256:
9509  case Intrinsic::x86_avx_vtestc_ps_256:
9510  case Intrinsic::x86_avx_vtestnzc_ps_256:
9511  case Intrinsic::x86_avx_vtestz_pd_256:
9512  case Intrinsic::x86_avx_vtestc_pd_256:
9513  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9514    bool IsTestPacked = false;
9515    unsigned X86CC = 0;
9516    switch (IntNo) {
9517    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9518    case Intrinsic::x86_avx_vtestz_ps:
9519    case Intrinsic::x86_avx_vtestz_pd:
9520    case Intrinsic::x86_avx_vtestz_ps_256:
9521    case Intrinsic::x86_avx_vtestz_pd_256:
9522      IsTestPacked = true; // Fallthrough
9523    case Intrinsic::x86_sse41_ptestz:
9524    case Intrinsic::x86_avx_ptestz_256:
9525      // ZF = 1
9526      X86CC = X86::COND_E;
9527      break;
9528    case Intrinsic::x86_avx_vtestc_ps:
9529    case Intrinsic::x86_avx_vtestc_pd:
9530    case Intrinsic::x86_avx_vtestc_ps_256:
9531    case Intrinsic::x86_avx_vtestc_pd_256:
9532      IsTestPacked = true; // Fallthrough
9533    case Intrinsic::x86_sse41_ptestc:
9534    case Intrinsic::x86_avx_ptestc_256:
9535      // CF = 1
9536      X86CC = X86::COND_B;
9537      break;
9538    case Intrinsic::x86_avx_vtestnzc_ps:
9539    case Intrinsic::x86_avx_vtestnzc_pd:
9540    case Intrinsic::x86_avx_vtestnzc_ps_256:
9541    case Intrinsic::x86_avx_vtestnzc_pd_256:
9542      IsTestPacked = true; // Fallthrough
9543    case Intrinsic::x86_sse41_ptestnzc:
9544    case Intrinsic::x86_avx_ptestnzc_256:
9545      // ZF and CF = 0
9546      X86CC = X86::COND_A;
9547      break;
9548    }
9549
9550    SDValue LHS = Op.getOperand(1);
9551    SDValue RHS = Op.getOperand(2);
9552    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9553    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9554    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9555    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9556    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9557  }
9558
9559  // SSE/AVX shift intrinsics
9560  case Intrinsic::x86_sse2_psll_w:
9561  case Intrinsic::x86_sse2_psll_d:
9562  case Intrinsic::x86_sse2_psll_q:
9563  case Intrinsic::x86_avx2_psll_w:
9564  case Intrinsic::x86_avx2_psll_d:
9565  case Intrinsic::x86_avx2_psll_q:
9566    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9567                       Op.getOperand(1), Op.getOperand(2));
9568  case Intrinsic::x86_sse2_psrl_w:
9569  case Intrinsic::x86_sse2_psrl_d:
9570  case Intrinsic::x86_sse2_psrl_q:
9571  case Intrinsic::x86_avx2_psrl_w:
9572  case Intrinsic::x86_avx2_psrl_d:
9573  case Intrinsic::x86_avx2_psrl_q:
9574    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9575                       Op.getOperand(1), Op.getOperand(2));
9576  case Intrinsic::x86_sse2_psra_w:
9577  case Intrinsic::x86_sse2_psra_d:
9578  case Intrinsic::x86_avx2_psra_w:
9579  case Intrinsic::x86_avx2_psra_d:
9580    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9581                       Op.getOperand(1), Op.getOperand(2));
9582  case Intrinsic::x86_sse2_pslli_w:
9583  case Intrinsic::x86_sse2_pslli_d:
9584  case Intrinsic::x86_sse2_pslli_q:
9585  case Intrinsic::x86_avx2_pslli_w:
9586  case Intrinsic::x86_avx2_pslli_d:
9587  case Intrinsic::x86_avx2_pslli_q:
9588    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9589                               Op.getOperand(1), Op.getOperand(2), DAG);
9590  case Intrinsic::x86_sse2_psrli_w:
9591  case Intrinsic::x86_sse2_psrli_d:
9592  case Intrinsic::x86_sse2_psrli_q:
9593  case Intrinsic::x86_avx2_psrli_w:
9594  case Intrinsic::x86_avx2_psrli_d:
9595  case Intrinsic::x86_avx2_psrli_q:
9596    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9597                               Op.getOperand(1), Op.getOperand(2), DAG);
9598  case Intrinsic::x86_sse2_psrai_w:
9599  case Intrinsic::x86_sse2_psrai_d:
9600  case Intrinsic::x86_avx2_psrai_w:
9601  case Intrinsic::x86_avx2_psrai_d:
9602    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9603                               Op.getOperand(1), Op.getOperand(2), DAG);
9604  // Fix vector shift instructions where the last operand is a non-immediate
9605  // i32 value.
9606  case Intrinsic::x86_mmx_pslli_w:
9607  case Intrinsic::x86_mmx_pslli_d:
9608  case Intrinsic::x86_mmx_pslli_q:
9609  case Intrinsic::x86_mmx_psrli_w:
9610  case Intrinsic::x86_mmx_psrli_d:
9611  case Intrinsic::x86_mmx_psrli_q:
9612  case Intrinsic::x86_mmx_psrai_w:
9613  case Intrinsic::x86_mmx_psrai_d: {
9614    SDValue ShAmt = Op.getOperand(2);
9615    if (isa<ConstantSDNode>(ShAmt))
9616      return SDValue();
9617
9618    unsigned NewIntNo = 0;
9619    switch (IntNo) {
9620    case Intrinsic::x86_mmx_pslli_w:
9621      NewIntNo = Intrinsic::x86_mmx_psll_w;
9622      break;
9623    case Intrinsic::x86_mmx_pslli_d:
9624      NewIntNo = Intrinsic::x86_mmx_psll_d;
9625      break;
9626    case Intrinsic::x86_mmx_pslli_q:
9627      NewIntNo = Intrinsic::x86_mmx_psll_q;
9628      break;
9629    case Intrinsic::x86_mmx_psrli_w:
9630      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9631      break;
9632    case Intrinsic::x86_mmx_psrli_d:
9633      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9634      break;
9635    case Intrinsic::x86_mmx_psrli_q:
9636      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9637      break;
9638    case Intrinsic::x86_mmx_psrai_w:
9639      NewIntNo = Intrinsic::x86_mmx_psra_w;
9640      break;
9641    case Intrinsic::x86_mmx_psrai_d:
9642      NewIntNo = Intrinsic::x86_mmx_psra_d;
9643      break;
9644    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9645    }
9646
9647    // The vector shift intrinsics with scalars uses 32b shift amounts but
9648    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9649    // to be zero.
9650    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9651                         DAG.getConstant(0, MVT::i32));
9652// FIXME this must be lowered to get rid of the invalid type.
9653
9654    EVT VT = Op.getValueType();
9655    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9656    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9657                       DAG.getConstant(NewIntNo, MVT::i32),
9658                       Op.getOperand(1), ShAmt);
9659  }
9660  }
9661}
9662
9663SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9664                                           SelectionDAG &DAG) const {
9665  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9666  MFI->setReturnAddressIsTaken(true);
9667
9668  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9669  DebugLoc dl = Op.getDebugLoc();
9670
9671  if (Depth > 0) {
9672    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9673    SDValue Offset =
9674      DAG.getConstant(TD->getPointerSize(),
9675                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9676    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9677                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9678                                   FrameAddr, Offset),
9679                       MachinePointerInfo(), false, false, false, 0);
9680  }
9681
9682  // Just load the return address.
9683  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9684  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9685                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9686}
9687
9688SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9689  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9690  MFI->setFrameAddressIsTaken(true);
9691
9692  EVT VT = Op.getValueType();
9693  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9694  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9695  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9696  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9697  while (Depth--)
9698    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9699                            MachinePointerInfo(),
9700                            false, false, false, 0);
9701  return FrameAddr;
9702}
9703
9704SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9705                                                     SelectionDAG &DAG) const {
9706  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9707}
9708
9709SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9710  MachineFunction &MF = DAG.getMachineFunction();
9711  SDValue Chain     = Op.getOperand(0);
9712  SDValue Offset    = Op.getOperand(1);
9713  SDValue Handler   = Op.getOperand(2);
9714  DebugLoc dl       = Op.getDebugLoc();
9715
9716  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9717                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9718                                     getPointerTy());
9719  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9720
9721  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9722                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9723  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9724  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9725                       false, false, 0);
9726  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9727  MF.getRegInfo().addLiveOut(StoreAddrReg);
9728
9729  return DAG.getNode(X86ISD::EH_RETURN, dl,
9730                     MVT::Other,
9731                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9732}
9733
9734SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9735                                                  SelectionDAG &DAG) const {
9736  return Op.getOperand(0);
9737}
9738
9739SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9740                                                SelectionDAG &DAG) const {
9741  SDValue Root = Op.getOperand(0);
9742  SDValue Trmp = Op.getOperand(1); // trampoline
9743  SDValue FPtr = Op.getOperand(2); // nested function
9744  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9745  DebugLoc dl  = Op.getDebugLoc();
9746
9747  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9748
9749  if (Subtarget->is64Bit()) {
9750    SDValue OutChains[6];
9751
9752    // Large code-model.
9753    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9754    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9755
9756    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9757    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9758
9759    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9760
9761    // Load the pointer to the nested function into R11.
9762    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9763    SDValue Addr = Trmp;
9764    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9765                                Addr, MachinePointerInfo(TrmpAddr),
9766                                false, false, 0);
9767
9768    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9769                       DAG.getConstant(2, MVT::i64));
9770    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9771                                MachinePointerInfo(TrmpAddr, 2),
9772                                false, false, 2);
9773
9774    // Load the 'nest' parameter value into R10.
9775    // R10 is specified in X86CallingConv.td
9776    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9777    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9778                       DAG.getConstant(10, MVT::i64));
9779    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9780                                Addr, MachinePointerInfo(TrmpAddr, 10),
9781                                false, false, 0);
9782
9783    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9784                       DAG.getConstant(12, MVT::i64));
9785    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9786                                MachinePointerInfo(TrmpAddr, 12),
9787                                false, false, 2);
9788
9789    // Jump to the nested function.
9790    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9791    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9792                       DAG.getConstant(20, MVT::i64));
9793    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9794                                Addr, MachinePointerInfo(TrmpAddr, 20),
9795                                false, false, 0);
9796
9797    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9798    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9799                       DAG.getConstant(22, MVT::i64));
9800    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9801                                MachinePointerInfo(TrmpAddr, 22),
9802                                false, false, 0);
9803
9804    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9805  } else {
9806    const Function *Func =
9807      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9808    CallingConv::ID CC = Func->getCallingConv();
9809    unsigned NestReg;
9810
9811    switch (CC) {
9812    default:
9813      llvm_unreachable("Unsupported calling convention");
9814    case CallingConv::C:
9815    case CallingConv::X86_StdCall: {
9816      // Pass 'nest' parameter in ECX.
9817      // Must be kept in sync with X86CallingConv.td
9818      NestReg = X86::ECX;
9819
9820      // Check that ECX wasn't needed by an 'inreg' parameter.
9821      FunctionType *FTy = Func->getFunctionType();
9822      const AttrListPtr &Attrs = Func->getAttributes();
9823
9824      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9825        unsigned InRegCount = 0;
9826        unsigned Idx = 1;
9827
9828        for (FunctionType::param_iterator I = FTy->param_begin(),
9829             E = FTy->param_end(); I != E; ++I, ++Idx)
9830          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9831            // FIXME: should only count parameters that are lowered to integers.
9832            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9833
9834        if (InRegCount > 2) {
9835          report_fatal_error("Nest register in use - reduce number of inreg"
9836                             " parameters!");
9837        }
9838      }
9839      break;
9840    }
9841    case CallingConv::X86_FastCall:
9842    case CallingConv::X86_ThisCall:
9843    case CallingConv::Fast:
9844      // Pass 'nest' parameter in EAX.
9845      // Must be kept in sync with X86CallingConv.td
9846      NestReg = X86::EAX;
9847      break;
9848    }
9849
9850    SDValue OutChains[4];
9851    SDValue Addr, Disp;
9852
9853    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9854                       DAG.getConstant(10, MVT::i32));
9855    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9856
9857    // This is storing the opcode for MOV32ri.
9858    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9859    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9860    OutChains[0] = DAG.getStore(Root, dl,
9861                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9862                                Trmp, MachinePointerInfo(TrmpAddr),
9863                                false, false, 0);
9864
9865    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9866                       DAG.getConstant(1, MVT::i32));
9867    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9868                                MachinePointerInfo(TrmpAddr, 1),
9869                                false, false, 1);
9870
9871    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9872    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9873                       DAG.getConstant(5, MVT::i32));
9874    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9875                                MachinePointerInfo(TrmpAddr, 5),
9876                                false, false, 1);
9877
9878    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9879                       DAG.getConstant(6, MVT::i32));
9880    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9881                                MachinePointerInfo(TrmpAddr, 6),
9882                                false, false, 1);
9883
9884    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9885  }
9886}
9887
9888SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9889                                            SelectionDAG &DAG) const {
9890  /*
9891   The rounding mode is in bits 11:10 of FPSR, and has the following
9892   settings:
9893     00 Round to nearest
9894     01 Round to -inf
9895     10 Round to +inf
9896     11 Round to 0
9897
9898  FLT_ROUNDS, on the other hand, expects the following:
9899    -1 Undefined
9900     0 Round to 0
9901     1 Round to nearest
9902     2 Round to +inf
9903     3 Round to -inf
9904
9905  To perform the conversion, we do:
9906    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9907  */
9908
9909  MachineFunction &MF = DAG.getMachineFunction();
9910  const TargetMachine &TM = MF.getTarget();
9911  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9912  unsigned StackAlignment = TFI.getStackAlignment();
9913  EVT VT = Op.getValueType();
9914  DebugLoc DL = Op.getDebugLoc();
9915
9916  // Save FP Control Word to stack slot
9917  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9918  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9919
9920
9921  MachineMemOperand *MMO =
9922   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9923                           MachineMemOperand::MOStore, 2, 2);
9924
9925  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9926  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9927                                          DAG.getVTList(MVT::Other),
9928                                          Ops, 2, MVT::i16, MMO);
9929
9930  // Load FP Control Word from stack slot
9931  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9932                            MachinePointerInfo(), false, false, false, 0);
9933
9934  // Transform as necessary
9935  SDValue CWD1 =
9936    DAG.getNode(ISD::SRL, DL, MVT::i16,
9937                DAG.getNode(ISD::AND, DL, MVT::i16,
9938                            CWD, DAG.getConstant(0x800, MVT::i16)),
9939                DAG.getConstant(11, MVT::i8));
9940  SDValue CWD2 =
9941    DAG.getNode(ISD::SRL, DL, MVT::i16,
9942                DAG.getNode(ISD::AND, DL, MVT::i16,
9943                            CWD, DAG.getConstant(0x400, MVT::i16)),
9944                DAG.getConstant(9, MVT::i8));
9945
9946  SDValue RetVal =
9947    DAG.getNode(ISD::AND, DL, MVT::i16,
9948                DAG.getNode(ISD::ADD, DL, MVT::i16,
9949                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9950                            DAG.getConstant(1, MVT::i16)),
9951                DAG.getConstant(3, MVT::i16));
9952
9953
9954  return DAG.getNode((VT.getSizeInBits() < 16 ?
9955                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9956}
9957
9958SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9959  EVT VT = Op.getValueType();
9960  EVT OpVT = VT;
9961  unsigned NumBits = VT.getSizeInBits();
9962  DebugLoc dl = Op.getDebugLoc();
9963
9964  Op = Op.getOperand(0);
9965  if (VT == MVT::i8) {
9966    // Zero extend to i32 since there is not an i8 bsr.
9967    OpVT = MVT::i32;
9968    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9969  }
9970
9971  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9972  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9973  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9974
9975  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9976  SDValue Ops[] = {
9977    Op,
9978    DAG.getConstant(NumBits+NumBits-1, OpVT),
9979    DAG.getConstant(X86::COND_E, MVT::i8),
9980    Op.getValue(1)
9981  };
9982  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9983
9984  // Finally xor with NumBits-1.
9985  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9986
9987  if (VT == MVT::i8)
9988    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9989  return Op;
9990}
9991
9992SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9993                                                SelectionDAG &DAG) const {
9994  EVT VT = Op.getValueType();
9995  EVT OpVT = VT;
9996  unsigned NumBits = VT.getSizeInBits();
9997  DebugLoc dl = Op.getDebugLoc();
9998
9999  Op = Op.getOperand(0);
10000  if (VT == MVT::i8) {
10001    // Zero extend to i32 since there is not an i8 bsr.
10002    OpVT = MVT::i32;
10003    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10004  }
10005
10006  // Issue a bsr (scan bits in reverse).
10007  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10008  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10009
10010  // And xor with NumBits-1.
10011  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10012
10013  if (VT == MVT::i8)
10014    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10015  return Op;
10016}
10017
10018SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10019  EVT VT = Op.getValueType();
10020  unsigned NumBits = VT.getSizeInBits();
10021  DebugLoc dl = Op.getDebugLoc();
10022  Op = Op.getOperand(0);
10023
10024  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10025  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10026  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10027
10028  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10029  SDValue Ops[] = {
10030    Op,
10031    DAG.getConstant(NumBits, VT),
10032    DAG.getConstant(X86::COND_E, MVT::i8),
10033    Op.getValue(1)
10034  };
10035  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10036}
10037
10038// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10039// ones, and then concatenate the result back.
10040static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10041  EVT VT = Op.getValueType();
10042
10043  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10044         "Unsupported value type for operation");
10045
10046  int NumElems = VT.getVectorNumElements();
10047  DebugLoc dl = Op.getDebugLoc();
10048  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10049  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10050
10051  // Extract the LHS vectors
10052  SDValue LHS = Op.getOperand(0);
10053  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10054  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10055
10056  // Extract the RHS vectors
10057  SDValue RHS = Op.getOperand(1);
10058  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10059  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10060
10061  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10062  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10063
10064  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10065                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10066                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10067}
10068
10069SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10070  assert(Op.getValueType().getSizeInBits() == 256 &&
10071         Op.getValueType().isInteger() &&
10072         "Only handle AVX 256-bit vector integer operation");
10073  return Lower256IntArith(Op, DAG);
10074}
10075
10076SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10077  assert(Op.getValueType().getSizeInBits() == 256 &&
10078         Op.getValueType().isInteger() &&
10079         "Only handle AVX 256-bit vector integer operation");
10080  return Lower256IntArith(Op, DAG);
10081}
10082
10083SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10084  EVT VT = Op.getValueType();
10085
10086  // Decompose 256-bit ops into smaller 128-bit ops.
10087  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10088    return Lower256IntArith(Op, DAG);
10089
10090  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10091         "Only know how to lower V2I64/V4I64 multiply");
10092
10093  DebugLoc dl = Op.getDebugLoc();
10094
10095  //  Ahi = psrlqi(a, 32);
10096  //  Bhi = psrlqi(b, 32);
10097  //
10098  //  AloBlo = pmuludq(a, b);
10099  //  AloBhi = pmuludq(a, Bhi);
10100  //  AhiBlo = pmuludq(Ahi, b);
10101
10102  //  AloBhi = psllqi(AloBhi, 32);
10103  //  AhiBlo = psllqi(AhiBlo, 32);
10104  //  return AloBlo + AloBhi + AhiBlo;
10105
10106  SDValue A = Op.getOperand(0);
10107  SDValue B = Op.getOperand(1);
10108
10109  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10110
10111  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10112  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10113
10114  // Bit cast to 32-bit vectors for MULUDQ
10115  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10116  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10117  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10118  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10119  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10120
10121  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10122  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10123  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10124
10125  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10126  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10127
10128  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10129  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10130}
10131
10132SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10133
10134  EVT VT = Op.getValueType();
10135  DebugLoc dl = Op.getDebugLoc();
10136  SDValue R = Op.getOperand(0);
10137  SDValue Amt = Op.getOperand(1);
10138  LLVMContext *Context = DAG.getContext();
10139
10140  if (!Subtarget->hasSSE2())
10141    return SDValue();
10142
10143  // Optimize shl/srl/sra with constant shift amount.
10144  if (isSplatVector(Amt.getNode())) {
10145    SDValue SclrAmt = Amt->getOperand(0);
10146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10147      uint64_t ShiftAmt = C->getZExtValue();
10148
10149      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10150          (Subtarget->hasAVX2() &&
10151           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10152        if (Op.getOpcode() == ISD::SHL)
10153          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10154                             DAG.getConstant(ShiftAmt, MVT::i32));
10155        if (Op.getOpcode() == ISD::SRL)
10156          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10157                             DAG.getConstant(ShiftAmt, MVT::i32));
10158        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10159          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10160                             DAG.getConstant(ShiftAmt, MVT::i32));
10161      }
10162
10163      if (VT == MVT::v16i8) {
10164        if (Op.getOpcode() == ISD::SHL) {
10165          // Make a large shift.
10166          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10167                                    DAG.getConstant(ShiftAmt, MVT::i32));
10168          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10169          // Zero out the rightmost bits.
10170          SmallVector<SDValue, 16> V(16,
10171                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10172                                                     MVT::i8));
10173          return DAG.getNode(ISD::AND, dl, VT, SHL,
10174                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10175        }
10176        if (Op.getOpcode() == ISD::SRL) {
10177          // Make a large shift.
10178          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10179                                    DAG.getConstant(ShiftAmt, MVT::i32));
10180          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10181          // Zero out the leftmost bits.
10182          SmallVector<SDValue, 16> V(16,
10183                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10184                                                     MVT::i8));
10185          return DAG.getNode(ISD::AND, dl, VT, SRL,
10186                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10187        }
10188        if (Op.getOpcode() == ISD::SRA) {
10189          if (ShiftAmt == 7) {
10190            // R s>> 7  ===  R s< 0
10191            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10192            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10193          }
10194
10195          // R s>> a === ((R u>> a) ^ m) - m
10196          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10197          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10198                                                         MVT::i8));
10199          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10200          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10201          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10202          return Res;
10203        }
10204      }
10205
10206      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10207        if (Op.getOpcode() == ISD::SHL) {
10208          // Make a large shift.
10209          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10210                                    DAG.getConstant(ShiftAmt, MVT::i32));
10211          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10212          // Zero out the rightmost bits.
10213          SmallVector<SDValue, 32> V(32,
10214                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10215                                                     MVT::i8));
10216          return DAG.getNode(ISD::AND, dl, VT, SHL,
10217                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10218        }
10219        if (Op.getOpcode() == ISD::SRL) {
10220          // Make a large shift.
10221          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10222                                    DAG.getConstant(ShiftAmt, MVT::i32));
10223          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10224          // Zero out the leftmost bits.
10225          SmallVector<SDValue, 32> V(32,
10226                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10227                                                     MVT::i8));
10228          return DAG.getNode(ISD::AND, dl, VT, SRL,
10229                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10230        }
10231        if (Op.getOpcode() == ISD::SRA) {
10232          if (ShiftAmt == 7) {
10233            // R s>> 7  ===  R s< 0
10234            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10235            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10236          }
10237
10238          // R s>> a === ((R u>> a) ^ m) - m
10239          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10240          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10241                                                         MVT::i8));
10242          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10243          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10244          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10245          return Res;
10246        }
10247      }
10248    }
10249  }
10250
10251  // Lower SHL with variable shift amount.
10252  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10253    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10254                     DAG.getConstant(23, MVT::i32));
10255
10256    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10257    Constant *C = ConstantVector::getSplat(4, CI);
10258    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10259    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10260                                 MachinePointerInfo::getConstantPool(),
10261                                 false, false, false, 16);
10262
10263    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10264    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10265    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10266    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10267  }
10268  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10269    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10270
10271    // a = a << 5;
10272    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10273                     DAG.getConstant(5, MVT::i32));
10274    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10275
10276    // Turn 'a' into a mask suitable for VSELECT
10277    SDValue VSelM = DAG.getConstant(0x80, VT);
10278    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10279    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10280
10281    SDValue CM1 = DAG.getConstant(0x0f, VT);
10282    SDValue CM2 = DAG.getConstant(0x3f, VT);
10283
10284    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10285    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10286    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10287                            DAG.getConstant(4, MVT::i32), DAG);
10288    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10289    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10290
10291    // a += a
10292    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10293    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10294    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10295
10296    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10297    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10298    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10299                            DAG.getConstant(2, MVT::i32), DAG);
10300    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10301    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10302
10303    // a += a
10304    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10305    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10306    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10307
10308    // return VSELECT(r, r+r, a);
10309    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10310                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10311    return R;
10312  }
10313
10314  // Decompose 256-bit shifts into smaller 128-bit shifts.
10315  if (VT.getSizeInBits() == 256) {
10316    unsigned NumElems = VT.getVectorNumElements();
10317    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10318    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10319
10320    // Extract the two vectors
10321    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10322    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10323                                     DAG, dl);
10324
10325    // Recreate the shift amount vectors
10326    SDValue Amt1, Amt2;
10327    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10328      // Constant shift amount
10329      SmallVector<SDValue, 4> Amt1Csts;
10330      SmallVector<SDValue, 4> Amt2Csts;
10331      for (unsigned i = 0; i != NumElems/2; ++i)
10332        Amt1Csts.push_back(Amt->getOperand(i));
10333      for (unsigned i = NumElems/2; i != NumElems; ++i)
10334        Amt2Csts.push_back(Amt->getOperand(i));
10335
10336      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10337                                 &Amt1Csts[0], NumElems/2);
10338      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10339                                 &Amt2Csts[0], NumElems/2);
10340    } else {
10341      // Variable shift amount
10342      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10343      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10344                                 DAG, dl);
10345    }
10346
10347    // Issue new vector shifts for the smaller types
10348    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10349    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10350
10351    // Concatenate the result back
10352    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10353  }
10354
10355  return SDValue();
10356}
10357
10358SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10359  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10360  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10361  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10362  // has only one use.
10363  SDNode *N = Op.getNode();
10364  SDValue LHS = N->getOperand(0);
10365  SDValue RHS = N->getOperand(1);
10366  unsigned BaseOp = 0;
10367  unsigned Cond = 0;
10368  DebugLoc DL = Op.getDebugLoc();
10369  switch (Op.getOpcode()) {
10370  default: llvm_unreachable("Unknown ovf instruction!");
10371  case ISD::SADDO:
10372    // A subtract of one will be selected as a INC. Note that INC doesn't
10373    // set CF, so we can't do this for UADDO.
10374    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10375      if (C->isOne()) {
10376        BaseOp = X86ISD::INC;
10377        Cond = X86::COND_O;
10378        break;
10379      }
10380    BaseOp = X86ISD::ADD;
10381    Cond = X86::COND_O;
10382    break;
10383  case ISD::UADDO:
10384    BaseOp = X86ISD::ADD;
10385    Cond = X86::COND_B;
10386    break;
10387  case ISD::SSUBO:
10388    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10389    // set CF, so we can't do this for USUBO.
10390    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10391      if (C->isOne()) {
10392        BaseOp = X86ISD::DEC;
10393        Cond = X86::COND_O;
10394        break;
10395      }
10396    BaseOp = X86ISD::SUB;
10397    Cond = X86::COND_O;
10398    break;
10399  case ISD::USUBO:
10400    BaseOp = X86ISD::SUB;
10401    Cond = X86::COND_B;
10402    break;
10403  case ISD::SMULO:
10404    BaseOp = X86ISD::SMUL;
10405    Cond = X86::COND_O;
10406    break;
10407  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10408    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10409                                 MVT::i32);
10410    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10411
10412    SDValue SetCC =
10413      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10414                  DAG.getConstant(X86::COND_O, MVT::i32),
10415                  SDValue(Sum.getNode(), 2));
10416
10417    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10418  }
10419  }
10420
10421  // Also sets EFLAGS.
10422  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10423  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10424
10425  SDValue SetCC =
10426    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10427                DAG.getConstant(Cond, MVT::i32),
10428                SDValue(Sum.getNode(), 1));
10429
10430  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10431}
10432
10433SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10434                                                  SelectionDAG &DAG) const {
10435  DebugLoc dl = Op.getDebugLoc();
10436  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10437  EVT VT = Op.getValueType();
10438
10439  if (!Subtarget->hasSSE2() || !VT.isVector())
10440    return SDValue();
10441
10442  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10443                      ExtraVT.getScalarType().getSizeInBits();
10444  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10445
10446  switch (VT.getSimpleVT().SimpleTy) {
10447    default: return SDValue();
10448    case MVT::v8i32:
10449    case MVT::v16i16:
10450      if (!Subtarget->hasAVX())
10451        return SDValue();
10452      if (!Subtarget->hasAVX2()) {
10453        // needs to be split
10454        int NumElems = VT.getVectorNumElements();
10455        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10456        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10457
10458        // Extract the LHS vectors
10459        SDValue LHS = Op.getOperand(0);
10460        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10461        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10462
10463        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10464        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10465
10466        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10467        int ExtraNumElems = ExtraVT.getVectorNumElements();
10468        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10469                                   ExtraNumElems/2);
10470        SDValue Extra = DAG.getValueType(ExtraVT);
10471
10472        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10473        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10474
10475        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10476      }
10477      // fall through
10478    case MVT::v4i32:
10479    case MVT::v8i16: {
10480      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10481                                         Op.getOperand(0), ShAmt, DAG);
10482      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10483    }
10484  }
10485}
10486
10487
10488SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10489  DebugLoc dl = Op.getDebugLoc();
10490
10491  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10492  // There isn't any reason to disable it if the target processor supports it.
10493  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10494    SDValue Chain = Op.getOperand(0);
10495    SDValue Zero = DAG.getConstant(0, MVT::i32);
10496    SDValue Ops[] = {
10497      DAG.getRegister(X86::ESP, MVT::i32), // Base
10498      DAG.getTargetConstant(1, MVT::i8),   // Scale
10499      DAG.getRegister(0, MVT::i32),        // Index
10500      DAG.getTargetConstant(0, MVT::i32),  // Disp
10501      DAG.getRegister(0, MVT::i32),        // Segment.
10502      Zero,
10503      Chain
10504    };
10505    SDNode *Res =
10506      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10507                          array_lengthof(Ops));
10508    return SDValue(Res, 0);
10509  }
10510
10511  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10512  if (!isDev)
10513    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10514
10515  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10516  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10517  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10518  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10519
10520  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10521  if (!Op1 && !Op2 && !Op3 && Op4)
10522    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10523
10524  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10525  if (Op1 && !Op2 && !Op3 && !Op4)
10526    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10527
10528  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10529  //           (MFENCE)>;
10530  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10531}
10532
10533SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10534                                             SelectionDAG &DAG) const {
10535  DebugLoc dl = Op.getDebugLoc();
10536  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10537    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10538  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10539    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10540
10541  // The only fence that needs an instruction is a sequentially-consistent
10542  // cross-thread fence.
10543  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10544    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10545    // no-sse2). There isn't any reason to disable it if the target processor
10546    // supports it.
10547    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10548      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10549
10550    SDValue Chain = Op.getOperand(0);
10551    SDValue Zero = DAG.getConstant(0, MVT::i32);
10552    SDValue Ops[] = {
10553      DAG.getRegister(X86::ESP, MVT::i32), // Base
10554      DAG.getTargetConstant(1, MVT::i8),   // Scale
10555      DAG.getRegister(0, MVT::i32),        // Index
10556      DAG.getTargetConstant(0, MVT::i32),  // Disp
10557      DAG.getRegister(0, MVT::i32),        // Segment.
10558      Zero,
10559      Chain
10560    };
10561    SDNode *Res =
10562      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10563                         array_lengthof(Ops));
10564    return SDValue(Res, 0);
10565  }
10566
10567  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10568  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10569}
10570
10571
10572SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10573  EVT T = Op.getValueType();
10574  DebugLoc DL = Op.getDebugLoc();
10575  unsigned Reg = 0;
10576  unsigned size = 0;
10577  switch(T.getSimpleVT().SimpleTy) {
10578  default: llvm_unreachable("Invalid value type!");
10579  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10580  case MVT::i16: Reg = X86::AX;  size = 2; break;
10581  case MVT::i32: Reg = X86::EAX; size = 4; break;
10582  case MVT::i64:
10583    assert(Subtarget->is64Bit() && "Node not type legal!");
10584    Reg = X86::RAX; size = 8;
10585    break;
10586  }
10587  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10588                                    Op.getOperand(2), SDValue());
10589  SDValue Ops[] = { cpIn.getValue(0),
10590                    Op.getOperand(1),
10591                    Op.getOperand(3),
10592                    DAG.getTargetConstant(size, MVT::i8),
10593                    cpIn.getValue(1) };
10594  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10595  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10596  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10597                                           Ops, 5, T, MMO);
10598  SDValue cpOut =
10599    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10600  return cpOut;
10601}
10602
10603SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10604                                                 SelectionDAG &DAG) const {
10605  assert(Subtarget->is64Bit() && "Result not type legalized?");
10606  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10607  SDValue TheChain = Op.getOperand(0);
10608  DebugLoc dl = Op.getDebugLoc();
10609  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10610  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10611  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10612                                   rax.getValue(2));
10613  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10614                            DAG.getConstant(32, MVT::i8));
10615  SDValue Ops[] = {
10616    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10617    rdx.getValue(1)
10618  };
10619  return DAG.getMergeValues(Ops, 2, dl);
10620}
10621
10622SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10623                                            SelectionDAG &DAG) const {
10624  EVT SrcVT = Op.getOperand(0).getValueType();
10625  EVT DstVT = Op.getValueType();
10626  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10627         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10628  assert((DstVT == MVT::i64 ||
10629          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10630         "Unexpected custom BITCAST");
10631  // i64 <=> MMX conversions are Legal.
10632  if (SrcVT==MVT::i64 && DstVT.isVector())
10633    return Op;
10634  if (DstVT==MVT::i64 && SrcVT.isVector())
10635    return Op;
10636  // MMX <=> MMX conversions are Legal.
10637  if (SrcVT.isVector() && DstVT.isVector())
10638    return Op;
10639  // All other conversions need to be expanded.
10640  return SDValue();
10641}
10642
10643SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10644  SDNode *Node = Op.getNode();
10645  DebugLoc dl = Node->getDebugLoc();
10646  EVT T = Node->getValueType(0);
10647  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10648                              DAG.getConstant(0, T), Node->getOperand(2));
10649  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10650                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10651                       Node->getOperand(0),
10652                       Node->getOperand(1), negOp,
10653                       cast<AtomicSDNode>(Node)->getSrcValue(),
10654                       cast<AtomicSDNode>(Node)->getAlignment(),
10655                       cast<AtomicSDNode>(Node)->getOrdering(),
10656                       cast<AtomicSDNode>(Node)->getSynchScope());
10657}
10658
10659static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10660  SDNode *Node = Op.getNode();
10661  DebugLoc dl = Node->getDebugLoc();
10662  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10663
10664  // Convert seq_cst store -> xchg
10665  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10666  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10667  //        (The only way to get a 16-byte store is cmpxchg16b)
10668  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10669  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10670      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10671    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10672                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10673                                 Node->getOperand(0),
10674                                 Node->getOperand(1), Node->getOperand(2),
10675                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10676                                 cast<AtomicSDNode>(Node)->getOrdering(),
10677                                 cast<AtomicSDNode>(Node)->getSynchScope());
10678    return Swap.getValue(1);
10679  }
10680  // Other atomic stores have a simple pattern.
10681  return Op;
10682}
10683
10684static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10685  EVT VT = Op.getNode()->getValueType(0);
10686
10687  // Let legalize expand this if it isn't a legal type yet.
10688  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10689    return SDValue();
10690
10691  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10692
10693  unsigned Opc;
10694  bool ExtraOp = false;
10695  switch (Op.getOpcode()) {
10696  default: llvm_unreachable("Invalid code");
10697  case ISD::ADDC: Opc = X86ISD::ADD; break;
10698  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10699  case ISD::SUBC: Opc = X86ISD::SUB; break;
10700  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10701  }
10702
10703  if (!ExtraOp)
10704    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10705                       Op.getOperand(1));
10706  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10707                     Op.getOperand(1), Op.getOperand(2));
10708}
10709
10710/// LowerOperation - Provide custom lowering hooks for some operations.
10711///
10712SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10713  switch (Op.getOpcode()) {
10714  default: llvm_unreachable("Should not custom lower this!");
10715  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10716  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10717  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10718  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10719  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10720  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10721  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10722  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10723  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10724  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10725  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10726  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10727  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10728  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10729  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10730  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10731  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10732  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10733  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10734  case ISD::SHL_PARTS:
10735  case ISD::SRA_PARTS:
10736  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10737  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10738  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10739  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10740  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10741  case ISD::FABS:               return LowerFABS(Op, DAG);
10742  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10743  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10744  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10745  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10746  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10747  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10748  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10749  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10750  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10751  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10752  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10753  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10754  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10755  case ISD::FRAME_TO_ARGS_OFFSET:
10756                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10757  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10758  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10759  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10760  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10761  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10762  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10763  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10764  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10765  case ISD::MUL:                return LowerMUL(Op, DAG);
10766  case ISD::SRA:
10767  case ISD::SRL:
10768  case ISD::SHL:                return LowerShift(Op, DAG);
10769  case ISD::SADDO:
10770  case ISD::UADDO:
10771  case ISD::SSUBO:
10772  case ISD::USUBO:
10773  case ISD::SMULO:
10774  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10775  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10776  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10777  case ISD::ADDC:
10778  case ISD::ADDE:
10779  case ISD::SUBC:
10780  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10781  case ISD::ADD:                return LowerADD(Op, DAG);
10782  case ISD::SUB:                return LowerSUB(Op, DAG);
10783  }
10784}
10785
10786static void ReplaceATOMIC_LOAD(SDNode *Node,
10787                                  SmallVectorImpl<SDValue> &Results,
10788                                  SelectionDAG &DAG) {
10789  DebugLoc dl = Node->getDebugLoc();
10790  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10791
10792  // Convert wide load -> cmpxchg8b/cmpxchg16b
10793  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10794  //        (The only way to get a 16-byte load is cmpxchg16b)
10795  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10796  SDValue Zero = DAG.getConstant(0, VT);
10797  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10798                               Node->getOperand(0),
10799                               Node->getOperand(1), Zero, Zero,
10800                               cast<AtomicSDNode>(Node)->getMemOperand(),
10801                               cast<AtomicSDNode>(Node)->getOrdering(),
10802                               cast<AtomicSDNode>(Node)->getSynchScope());
10803  Results.push_back(Swap.getValue(0));
10804  Results.push_back(Swap.getValue(1));
10805}
10806
10807void X86TargetLowering::
10808ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10809                        SelectionDAG &DAG, unsigned NewOp) const {
10810  DebugLoc dl = Node->getDebugLoc();
10811  assert (Node->getValueType(0) == MVT::i64 &&
10812          "Only know how to expand i64 atomics");
10813
10814  SDValue Chain = Node->getOperand(0);
10815  SDValue In1 = Node->getOperand(1);
10816  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10817                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10818  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10819                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10820  SDValue Ops[] = { Chain, In1, In2L, In2H };
10821  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10822  SDValue Result =
10823    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10824                            cast<MemSDNode>(Node)->getMemOperand());
10825  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10826  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10827  Results.push_back(Result.getValue(2));
10828}
10829
10830/// ReplaceNodeResults - Replace a node with an illegal result type
10831/// with a new node built out of custom code.
10832void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10833                                           SmallVectorImpl<SDValue>&Results,
10834                                           SelectionDAG &DAG) const {
10835  DebugLoc dl = N->getDebugLoc();
10836  switch (N->getOpcode()) {
10837  default:
10838    llvm_unreachable("Do not know how to custom type legalize this operation!");
10839  case ISD::SIGN_EXTEND_INREG:
10840  case ISD::ADDC:
10841  case ISD::ADDE:
10842  case ISD::SUBC:
10843  case ISD::SUBE:
10844    // We don't want to expand or promote these.
10845    return;
10846  case ISD::FP_TO_SINT: {
10847    std::pair<SDValue,SDValue> Vals =
10848        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10849    SDValue FIST = Vals.first, StackSlot = Vals.second;
10850    if (FIST.getNode() != 0) {
10851      EVT VT = N->getValueType(0);
10852      // Return a load from the stack slot.
10853      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10854                                    MachinePointerInfo(),
10855                                    false, false, false, 0));
10856    }
10857    return;
10858  }
10859  case ISD::READCYCLECOUNTER: {
10860    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10861    SDValue TheChain = N->getOperand(0);
10862    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10863    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10864                                     rd.getValue(1));
10865    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10866                                     eax.getValue(2));
10867    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10868    SDValue Ops[] = { eax, edx };
10869    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10870    Results.push_back(edx.getValue(1));
10871    return;
10872  }
10873  case ISD::ATOMIC_CMP_SWAP: {
10874    EVT T = N->getValueType(0);
10875    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10876    bool Regs64bit = T == MVT::i128;
10877    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10878    SDValue cpInL, cpInH;
10879    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10880                        DAG.getConstant(0, HalfT));
10881    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10882                        DAG.getConstant(1, HalfT));
10883    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10884                             Regs64bit ? X86::RAX : X86::EAX,
10885                             cpInL, SDValue());
10886    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10887                             Regs64bit ? X86::RDX : X86::EDX,
10888                             cpInH, cpInL.getValue(1));
10889    SDValue swapInL, swapInH;
10890    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10891                          DAG.getConstant(0, HalfT));
10892    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10893                          DAG.getConstant(1, HalfT));
10894    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10895                               Regs64bit ? X86::RBX : X86::EBX,
10896                               swapInL, cpInH.getValue(1));
10897    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10898                               Regs64bit ? X86::RCX : X86::ECX,
10899                               swapInH, swapInL.getValue(1));
10900    SDValue Ops[] = { swapInH.getValue(0),
10901                      N->getOperand(1),
10902                      swapInH.getValue(1) };
10903    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10904    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10905    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10906                                  X86ISD::LCMPXCHG8_DAG;
10907    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10908                                             Ops, 3, T, MMO);
10909    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10910                                        Regs64bit ? X86::RAX : X86::EAX,
10911                                        HalfT, Result.getValue(1));
10912    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10913                                        Regs64bit ? X86::RDX : X86::EDX,
10914                                        HalfT, cpOutL.getValue(2));
10915    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10916    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10917    Results.push_back(cpOutH.getValue(1));
10918    return;
10919  }
10920  case ISD::ATOMIC_LOAD_ADD:
10921    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10922    return;
10923  case ISD::ATOMIC_LOAD_AND:
10924    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10925    return;
10926  case ISD::ATOMIC_LOAD_NAND:
10927    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10928    return;
10929  case ISD::ATOMIC_LOAD_OR:
10930    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10931    return;
10932  case ISD::ATOMIC_LOAD_SUB:
10933    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10934    return;
10935  case ISD::ATOMIC_LOAD_XOR:
10936    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10937    return;
10938  case ISD::ATOMIC_SWAP:
10939    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10940    return;
10941  case ISD::ATOMIC_LOAD:
10942    ReplaceATOMIC_LOAD(N, Results, DAG);
10943  }
10944}
10945
10946const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10947  switch (Opcode) {
10948  default: return NULL;
10949  case X86ISD::BSF:                return "X86ISD::BSF";
10950  case X86ISD::BSR:                return "X86ISD::BSR";
10951  case X86ISD::SHLD:               return "X86ISD::SHLD";
10952  case X86ISD::SHRD:               return "X86ISD::SHRD";
10953  case X86ISD::FAND:               return "X86ISD::FAND";
10954  case X86ISD::FOR:                return "X86ISD::FOR";
10955  case X86ISD::FXOR:               return "X86ISD::FXOR";
10956  case X86ISD::FSRL:               return "X86ISD::FSRL";
10957  case X86ISD::FILD:               return "X86ISD::FILD";
10958  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10959  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10960  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10961  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10962  case X86ISD::FLD:                return "X86ISD::FLD";
10963  case X86ISD::FST:                return "X86ISD::FST";
10964  case X86ISD::CALL:               return "X86ISD::CALL";
10965  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10966  case X86ISD::BT:                 return "X86ISD::BT";
10967  case X86ISD::CMP:                return "X86ISD::CMP";
10968  case X86ISD::COMI:               return "X86ISD::COMI";
10969  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10970  case X86ISD::SETCC:              return "X86ISD::SETCC";
10971  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10972  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10973  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10974  case X86ISD::CMOV:               return "X86ISD::CMOV";
10975  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10976  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10977  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10978  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10979  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10980  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10981  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10982  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10983  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10984  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10985  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10986  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10987  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10988  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10989  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10990  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10991  case X86ISD::HADD:               return "X86ISD::HADD";
10992  case X86ISD::HSUB:               return "X86ISD::HSUB";
10993  case X86ISD::FHADD:              return "X86ISD::FHADD";
10994  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10995  case X86ISD::FMAX:               return "X86ISD::FMAX";
10996  case X86ISD::FMIN:               return "X86ISD::FMIN";
10997  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10998  case X86ISD::FRCP:               return "X86ISD::FRCP";
10999  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11000  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11001  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11002  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11003  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11004  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11005  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11006  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11007  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11008  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11009  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11010  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11011  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11012  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11013  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11014  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11015  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11016  case X86ISD::VSHL:               return "X86ISD::VSHL";
11017  case X86ISD::VSRL:               return "X86ISD::VSRL";
11018  case X86ISD::VSRA:               return "X86ISD::VSRA";
11019  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11020  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11021  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11022  case X86ISD::CMPP:               return "X86ISD::CMPP";
11023  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11024  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11025  case X86ISD::ADD:                return "X86ISD::ADD";
11026  case X86ISD::SUB:                return "X86ISD::SUB";
11027  case X86ISD::ADC:                return "X86ISD::ADC";
11028  case X86ISD::SBB:                return "X86ISD::SBB";
11029  case X86ISD::SMUL:               return "X86ISD::SMUL";
11030  case X86ISD::UMUL:               return "X86ISD::UMUL";
11031  case X86ISD::INC:                return "X86ISD::INC";
11032  case X86ISD::DEC:                return "X86ISD::DEC";
11033  case X86ISD::OR:                 return "X86ISD::OR";
11034  case X86ISD::XOR:                return "X86ISD::XOR";
11035  case X86ISD::AND:                return "X86ISD::AND";
11036  case X86ISD::ANDN:               return "X86ISD::ANDN";
11037  case X86ISD::BLSI:               return "X86ISD::BLSI";
11038  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11039  case X86ISD::BLSR:               return "X86ISD::BLSR";
11040  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11041  case X86ISD::PTEST:              return "X86ISD::PTEST";
11042  case X86ISD::TESTP:              return "X86ISD::TESTP";
11043  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11044  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11045  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11046  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11047  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11048  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11049  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11050  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11051  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11052  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11053  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11054  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11055  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11056  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11057  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11058  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11059  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11060  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11061  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11062  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11063  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11064  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11065  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11066  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11067  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11068  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11069  }
11070}
11071
11072// isLegalAddressingMode - Return true if the addressing mode represented
11073// by AM is legal for this target, for a load/store of the specified type.
11074bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11075                                              Type *Ty) const {
11076  // X86 supports extremely general addressing modes.
11077  CodeModel::Model M = getTargetMachine().getCodeModel();
11078  Reloc::Model R = getTargetMachine().getRelocationModel();
11079
11080  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11081  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11082    return false;
11083
11084  if (AM.BaseGV) {
11085    unsigned GVFlags =
11086      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11087
11088    // If a reference to this global requires an extra load, we can't fold it.
11089    if (isGlobalStubReference(GVFlags))
11090      return false;
11091
11092    // If BaseGV requires a register for the PIC base, we cannot also have a
11093    // BaseReg specified.
11094    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11095      return false;
11096
11097    // If lower 4G is not available, then we must use rip-relative addressing.
11098    if ((M != CodeModel::Small || R != Reloc::Static) &&
11099        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11100      return false;
11101  }
11102
11103  switch (AM.Scale) {
11104  case 0:
11105  case 1:
11106  case 2:
11107  case 4:
11108  case 8:
11109    // These scales always work.
11110    break;
11111  case 3:
11112  case 5:
11113  case 9:
11114    // These scales are formed with basereg+scalereg.  Only accept if there is
11115    // no basereg yet.
11116    if (AM.HasBaseReg)
11117      return false;
11118    break;
11119  default:  // Other stuff never works.
11120    return false;
11121  }
11122
11123  return true;
11124}
11125
11126
11127bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11128  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11129    return false;
11130  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11131  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11132  if (NumBits1 <= NumBits2)
11133    return false;
11134  return true;
11135}
11136
11137bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11138  if (!VT1.isInteger() || !VT2.isInteger())
11139    return false;
11140  unsigned NumBits1 = VT1.getSizeInBits();
11141  unsigned NumBits2 = VT2.getSizeInBits();
11142  if (NumBits1 <= NumBits2)
11143    return false;
11144  return true;
11145}
11146
11147bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11148  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11149  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11150}
11151
11152bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11153  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11154  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11155}
11156
11157bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11158  // i16 instructions are longer (0x66 prefix) and potentially slower.
11159  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11160}
11161
11162/// isShuffleMaskLegal - Targets can use this to indicate that they only
11163/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11164/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11165/// are assumed to be legal.
11166bool
11167X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11168                                      EVT VT) const {
11169  // Very little shuffling can be done for 64-bit vectors right now.
11170  if (VT.getSizeInBits() == 64)
11171    return false;
11172
11173  // FIXME: pshufb, blends, shifts.
11174  return (VT.getVectorNumElements() == 2 ||
11175          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11176          isMOVLMask(M, VT) ||
11177          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11178          isPSHUFDMask(M, VT) ||
11179          isPSHUFHWMask(M, VT) ||
11180          isPSHUFLWMask(M, VT) ||
11181          isPALIGNRMask(M, VT, Subtarget) ||
11182          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11183          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11184          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11185          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11186}
11187
11188bool
11189X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11190                                          EVT VT) const {
11191  unsigned NumElts = VT.getVectorNumElements();
11192  // FIXME: This collection of masks seems suspect.
11193  if (NumElts == 2)
11194    return true;
11195  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11196    return (isMOVLMask(Mask, VT)  ||
11197            isCommutedMOVLMask(Mask, VT, true) ||
11198            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11199            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11200  }
11201  return false;
11202}
11203
11204//===----------------------------------------------------------------------===//
11205//                           X86 Scheduler Hooks
11206//===----------------------------------------------------------------------===//
11207
11208// private utility function
11209MachineBasicBlock *
11210X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11211                                                       MachineBasicBlock *MBB,
11212                                                       unsigned regOpc,
11213                                                       unsigned immOpc,
11214                                                       unsigned LoadOpc,
11215                                                       unsigned CXchgOpc,
11216                                                       unsigned notOpc,
11217                                                       unsigned EAXreg,
11218                                                       TargetRegisterClass *RC,
11219                                                       bool invSrc) const {
11220  // For the atomic bitwise operator, we generate
11221  //   thisMBB:
11222  //   newMBB:
11223  //     ld  t1 = [bitinstr.addr]
11224  //     op  t2 = t1, [bitinstr.val]
11225  //     mov EAX = t1
11226  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11227  //     bz  newMBB
11228  //     fallthrough -->nextMBB
11229  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11230  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11231  MachineFunction::iterator MBBIter = MBB;
11232  ++MBBIter;
11233
11234  /// First build the CFG
11235  MachineFunction *F = MBB->getParent();
11236  MachineBasicBlock *thisMBB = MBB;
11237  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11238  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11239  F->insert(MBBIter, newMBB);
11240  F->insert(MBBIter, nextMBB);
11241
11242  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11243  nextMBB->splice(nextMBB->begin(), thisMBB,
11244                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11245                  thisMBB->end());
11246  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11247
11248  // Update thisMBB to fall through to newMBB
11249  thisMBB->addSuccessor(newMBB);
11250
11251  // newMBB jumps to itself and fall through to nextMBB
11252  newMBB->addSuccessor(nextMBB);
11253  newMBB->addSuccessor(newMBB);
11254
11255  // Insert instructions into newMBB based on incoming instruction
11256  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11257         "unexpected number of operands");
11258  DebugLoc dl = bInstr->getDebugLoc();
11259  MachineOperand& destOper = bInstr->getOperand(0);
11260  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11261  int numArgs = bInstr->getNumOperands() - 1;
11262  for (int i=0; i < numArgs; ++i)
11263    argOpers[i] = &bInstr->getOperand(i+1);
11264
11265  // x86 address has 4 operands: base, index, scale, and displacement
11266  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11267  int valArgIndx = lastAddrIndx + 1;
11268
11269  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11270  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11271  for (int i=0; i <= lastAddrIndx; ++i)
11272    (*MIB).addOperand(*argOpers[i]);
11273
11274  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11275  if (invSrc) {
11276    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11277  }
11278  else
11279    tt = t1;
11280
11281  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11282  assert((argOpers[valArgIndx]->isReg() ||
11283          argOpers[valArgIndx]->isImm()) &&
11284         "invalid operand");
11285  if (argOpers[valArgIndx]->isReg())
11286    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11287  else
11288    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11289  MIB.addReg(tt);
11290  (*MIB).addOperand(*argOpers[valArgIndx]);
11291
11292  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11293  MIB.addReg(t1);
11294
11295  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11296  for (int i=0; i <= lastAddrIndx; ++i)
11297    (*MIB).addOperand(*argOpers[i]);
11298  MIB.addReg(t2);
11299  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11300  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11301                    bInstr->memoperands_end());
11302
11303  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11304  MIB.addReg(EAXreg);
11305
11306  // insert branch
11307  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11308
11309  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11310  return nextMBB;
11311}
11312
11313// private utility function:  64 bit atomics on 32 bit host.
11314MachineBasicBlock *
11315X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11316                                                       MachineBasicBlock *MBB,
11317                                                       unsigned regOpcL,
11318                                                       unsigned regOpcH,
11319                                                       unsigned immOpcL,
11320                                                       unsigned immOpcH,
11321                                                       bool invSrc) const {
11322  // For the atomic bitwise operator, we generate
11323  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11324  //     ld t1,t2 = [bitinstr.addr]
11325  //   newMBB:
11326  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11327  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11328  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11329  //     mov ECX, EBX <- t5, t6
11330  //     mov EAX, EDX <- t1, t2
11331  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11332  //     mov t3, t4 <- EAX, EDX
11333  //     bz  newMBB
11334  //     result in out1, out2
11335  //     fallthrough -->nextMBB
11336
11337  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11338  const unsigned LoadOpc = X86::MOV32rm;
11339  const unsigned NotOpc = X86::NOT32r;
11340  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11341  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11342  MachineFunction::iterator MBBIter = MBB;
11343  ++MBBIter;
11344
11345  /// First build the CFG
11346  MachineFunction *F = MBB->getParent();
11347  MachineBasicBlock *thisMBB = MBB;
11348  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11349  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11350  F->insert(MBBIter, newMBB);
11351  F->insert(MBBIter, nextMBB);
11352
11353  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11354  nextMBB->splice(nextMBB->begin(), thisMBB,
11355                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11356                  thisMBB->end());
11357  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11358
11359  // Update thisMBB to fall through to newMBB
11360  thisMBB->addSuccessor(newMBB);
11361
11362  // newMBB jumps to itself and fall through to nextMBB
11363  newMBB->addSuccessor(nextMBB);
11364  newMBB->addSuccessor(newMBB);
11365
11366  DebugLoc dl = bInstr->getDebugLoc();
11367  // Insert instructions into newMBB based on incoming instruction
11368  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11369  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11370         "unexpected number of operands");
11371  MachineOperand& dest1Oper = bInstr->getOperand(0);
11372  MachineOperand& dest2Oper = bInstr->getOperand(1);
11373  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11374  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11375    argOpers[i] = &bInstr->getOperand(i+2);
11376
11377    // We use some of the operands multiple times, so conservatively just
11378    // clear any kill flags that might be present.
11379    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11380      argOpers[i]->setIsKill(false);
11381  }
11382
11383  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11384  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11385
11386  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11387  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11388  for (int i=0; i <= lastAddrIndx; ++i)
11389    (*MIB).addOperand(*argOpers[i]);
11390  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11391  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11392  // add 4 to displacement.
11393  for (int i=0; i <= lastAddrIndx-2; ++i)
11394    (*MIB).addOperand(*argOpers[i]);
11395  MachineOperand newOp3 = *(argOpers[3]);
11396  if (newOp3.isImm())
11397    newOp3.setImm(newOp3.getImm()+4);
11398  else
11399    newOp3.setOffset(newOp3.getOffset()+4);
11400  (*MIB).addOperand(newOp3);
11401  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11402
11403  // t3/4 are defined later, at the bottom of the loop
11404  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11405  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11406  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11407    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11408  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11409    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11410
11411  // The subsequent operations should be using the destination registers of
11412  //the PHI instructions.
11413  if (invSrc) {
11414    t1 = F->getRegInfo().createVirtualRegister(RC);
11415    t2 = F->getRegInfo().createVirtualRegister(RC);
11416    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11417    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11418  } else {
11419    t1 = dest1Oper.getReg();
11420    t2 = dest2Oper.getReg();
11421  }
11422
11423  int valArgIndx = lastAddrIndx + 1;
11424  assert((argOpers[valArgIndx]->isReg() ||
11425          argOpers[valArgIndx]->isImm()) &&
11426         "invalid operand");
11427  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11428  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11429  if (argOpers[valArgIndx]->isReg())
11430    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11431  else
11432    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11433  if (regOpcL != X86::MOV32rr)
11434    MIB.addReg(t1);
11435  (*MIB).addOperand(*argOpers[valArgIndx]);
11436  assert(argOpers[valArgIndx + 1]->isReg() ==
11437         argOpers[valArgIndx]->isReg());
11438  assert(argOpers[valArgIndx + 1]->isImm() ==
11439         argOpers[valArgIndx]->isImm());
11440  if (argOpers[valArgIndx + 1]->isReg())
11441    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11442  else
11443    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11444  if (regOpcH != X86::MOV32rr)
11445    MIB.addReg(t2);
11446  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11447
11448  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11449  MIB.addReg(t1);
11450  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11451  MIB.addReg(t2);
11452
11453  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11454  MIB.addReg(t5);
11455  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11456  MIB.addReg(t6);
11457
11458  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11459  for (int i=0; i <= lastAddrIndx; ++i)
11460    (*MIB).addOperand(*argOpers[i]);
11461
11462  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11463  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11464                    bInstr->memoperands_end());
11465
11466  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11467  MIB.addReg(X86::EAX);
11468  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11469  MIB.addReg(X86::EDX);
11470
11471  // insert branch
11472  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11473
11474  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11475  return nextMBB;
11476}
11477
11478// private utility function
11479MachineBasicBlock *
11480X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11481                                                      MachineBasicBlock *MBB,
11482                                                      unsigned cmovOpc) const {
11483  // For the atomic min/max operator, we generate
11484  //   thisMBB:
11485  //   newMBB:
11486  //     ld t1 = [min/max.addr]
11487  //     mov t2 = [min/max.val]
11488  //     cmp  t1, t2
11489  //     cmov[cond] t2 = t1
11490  //     mov EAX = t1
11491  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11492  //     bz   newMBB
11493  //     fallthrough -->nextMBB
11494  //
11495  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11496  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11497  MachineFunction::iterator MBBIter = MBB;
11498  ++MBBIter;
11499
11500  /// First build the CFG
11501  MachineFunction *F = MBB->getParent();
11502  MachineBasicBlock *thisMBB = MBB;
11503  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11504  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11505  F->insert(MBBIter, newMBB);
11506  F->insert(MBBIter, nextMBB);
11507
11508  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11509  nextMBB->splice(nextMBB->begin(), thisMBB,
11510                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11511                  thisMBB->end());
11512  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11513
11514  // Update thisMBB to fall through to newMBB
11515  thisMBB->addSuccessor(newMBB);
11516
11517  // newMBB jumps to newMBB and fall through to nextMBB
11518  newMBB->addSuccessor(nextMBB);
11519  newMBB->addSuccessor(newMBB);
11520
11521  DebugLoc dl = mInstr->getDebugLoc();
11522  // Insert instructions into newMBB based on incoming instruction
11523  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11524         "unexpected number of operands");
11525  MachineOperand& destOper = mInstr->getOperand(0);
11526  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11527  int numArgs = mInstr->getNumOperands() - 1;
11528  for (int i=0; i < numArgs; ++i)
11529    argOpers[i] = &mInstr->getOperand(i+1);
11530
11531  // x86 address has 4 operands: base, index, scale, and displacement
11532  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11533  int valArgIndx = lastAddrIndx + 1;
11534
11535  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11536  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11537  for (int i=0; i <= lastAddrIndx; ++i)
11538    (*MIB).addOperand(*argOpers[i]);
11539
11540  // We only support register and immediate values
11541  assert((argOpers[valArgIndx]->isReg() ||
11542          argOpers[valArgIndx]->isImm()) &&
11543         "invalid operand");
11544
11545  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11546  if (argOpers[valArgIndx]->isReg())
11547    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11548  else
11549    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11550  (*MIB).addOperand(*argOpers[valArgIndx]);
11551
11552  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11553  MIB.addReg(t1);
11554
11555  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11556  MIB.addReg(t1);
11557  MIB.addReg(t2);
11558
11559  // Generate movc
11560  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11561  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11562  MIB.addReg(t2);
11563  MIB.addReg(t1);
11564
11565  // Cmp and exchange if none has modified the memory location
11566  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11567  for (int i=0; i <= lastAddrIndx; ++i)
11568    (*MIB).addOperand(*argOpers[i]);
11569  MIB.addReg(t3);
11570  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11571  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11572                    mInstr->memoperands_end());
11573
11574  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11575  MIB.addReg(X86::EAX);
11576
11577  // insert branch
11578  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11579
11580  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11581  return nextMBB;
11582}
11583
11584// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11585// or XMM0_V32I8 in AVX all of this code can be replaced with that
11586// in the .td file.
11587MachineBasicBlock *
11588X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11589                            unsigned numArgs, bool memArg) const {
11590  assert(Subtarget->hasSSE42() &&
11591         "Target must have SSE4.2 or AVX features enabled");
11592
11593  DebugLoc dl = MI->getDebugLoc();
11594  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11595  unsigned Opc;
11596  if (!Subtarget->hasAVX()) {
11597    if (memArg)
11598      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11599    else
11600      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11601  } else {
11602    if (memArg)
11603      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11604    else
11605      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11606  }
11607
11608  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11609  for (unsigned i = 0; i < numArgs; ++i) {
11610    MachineOperand &Op = MI->getOperand(i+1);
11611    if (!(Op.isReg() && Op.isImplicit()))
11612      MIB.addOperand(Op);
11613  }
11614  BuildMI(*BB, MI, dl,
11615    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11616             MI->getOperand(0).getReg())
11617    .addReg(X86::XMM0);
11618
11619  MI->eraseFromParent();
11620  return BB;
11621}
11622
11623MachineBasicBlock *
11624X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11625  DebugLoc dl = MI->getDebugLoc();
11626  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11627
11628  // Address into RAX/EAX, other two args into ECX, EDX.
11629  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11630  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11631  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11632  for (int i = 0; i < X86::AddrNumOperands; ++i)
11633    MIB.addOperand(MI->getOperand(i));
11634
11635  unsigned ValOps = X86::AddrNumOperands;
11636  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11637    .addReg(MI->getOperand(ValOps).getReg());
11638  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11639    .addReg(MI->getOperand(ValOps+1).getReg());
11640
11641  // The instruction doesn't actually take any operands though.
11642  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11643
11644  MI->eraseFromParent(); // The pseudo is gone now.
11645  return BB;
11646}
11647
11648MachineBasicBlock *
11649X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11650  DebugLoc dl = MI->getDebugLoc();
11651  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11652
11653  // First arg in ECX, the second in EAX.
11654  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11655    .addReg(MI->getOperand(0).getReg());
11656  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11657    .addReg(MI->getOperand(1).getReg());
11658
11659  // The instruction doesn't actually take any operands though.
11660  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11661
11662  MI->eraseFromParent(); // The pseudo is gone now.
11663  return BB;
11664}
11665
11666MachineBasicBlock *
11667X86TargetLowering::EmitVAARG64WithCustomInserter(
11668                   MachineInstr *MI,
11669                   MachineBasicBlock *MBB) const {
11670  // Emit va_arg instruction on X86-64.
11671
11672  // Operands to this pseudo-instruction:
11673  // 0  ) Output        : destination address (reg)
11674  // 1-5) Input         : va_list address (addr, i64mem)
11675  // 6  ) ArgSize       : Size (in bytes) of vararg type
11676  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11677  // 8  ) Align         : Alignment of type
11678  // 9  ) EFLAGS (implicit-def)
11679
11680  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11681  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11682
11683  unsigned DestReg = MI->getOperand(0).getReg();
11684  MachineOperand &Base = MI->getOperand(1);
11685  MachineOperand &Scale = MI->getOperand(2);
11686  MachineOperand &Index = MI->getOperand(3);
11687  MachineOperand &Disp = MI->getOperand(4);
11688  MachineOperand &Segment = MI->getOperand(5);
11689  unsigned ArgSize = MI->getOperand(6).getImm();
11690  unsigned ArgMode = MI->getOperand(7).getImm();
11691  unsigned Align = MI->getOperand(8).getImm();
11692
11693  // Memory Reference
11694  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11695  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11696  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11697
11698  // Machine Information
11699  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11700  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11701  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11702  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11703  DebugLoc DL = MI->getDebugLoc();
11704
11705  // struct va_list {
11706  //   i32   gp_offset
11707  //   i32   fp_offset
11708  //   i64   overflow_area (address)
11709  //   i64   reg_save_area (address)
11710  // }
11711  // sizeof(va_list) = 24
11712  // alignment(va_list) = 8
11713
11714  unsigned TotalNumIntRegs = 6;
11715  unsigned TotalNumXMMRegs = 8;
11716  bool UseGPOffset = (ArgMode == 1);
11717  bool UseFPOffset = (ArgMode == 2);
11718  unsigned MaxOffset = TotalNumIntRegs * 8 +
11719                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11720
11721  /* Align ArgSize to a multiple of 8 */
11722  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11723  bool NeedsAlign = (Align > 8);
11724
11725  MachineBasicBlock *thisMBB = MBB;
11726  MachineBasicBlock *overflowMBB;
11727  MachineBasicBlock *offsetMBB;
11728  MachineBasicBlock *endMBB;
11729
11730  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11731  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11732  unsigned OffsetReg = 0;
11733
11734  if (!UseGPOffset && !UseFPOffset) {
11735    // If we only pull from the overflow region, we don't create a branch.
11736    // We don't need to alter control flow.
11737    OffsetDestReg = 0; // unused
11738    OverflowDestReg = DestReg;
11739
11740    offsetMBB = NULL;
11741    overflowMBB = thisMBB;
11742    endMBB = thisMBB;
11743  } else {
11744    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11745    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11746    // If not, pull from overflow_area. (branch to overflowMBB)
11747    //
11748    //       thisMBB
11749    //         |     .
11750    //         |        .
11751    //     offsetMBB   overflowMBB
11752    //         |        .
11753    //         |     .
11754    //        endMBB
11755
11756    // Registers for the PHI in endMBB
11757    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11758    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11759
11760    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11761    MachineFunction *MF = MBB->getParent();
11762    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11763    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11764    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11765
11766    MachineFunction::iterator MBBIter = MBB;
11767    ++MBBIter;
11768
11769    // Insert the new basic blocks
11770    MF->insert(MBBIter, offsetMBB);
11771    MF->insert(MBBIter, overflowMBB);
11772    MF->insert(MBBIter, endMBB);
11773
11774    // Transfer the remainder of MBB and its successor edges to endMBB.
11775    endMBB->splice(endMBB->begin(), thisMBB,
11776                    llvm::next(MachineBasicBlock::iterator(MI)),
11777                    thisMBB->end());
11778    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11779
11780    // Make offsetMBB and overflowMBB successors of thisMBB
11781    thisMBB->addSuccessor(offsetMBB);
11782    thisMBB->addSuccessor(overflowMBB);
11783
11784    // endMBB is a successor of both offsetMBB and overflowMBB
11785    offsetMBB->addSuccessor(endMBB);
11786    overflowMBB->addSuccessor(endMBB);
11787
11788    // Load the offset value into a register
11789    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11790    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11791      .addOperand(Base)
11792      .addOperand(Scale)
11793      .addOperand(Index)
11794      .addDisp(Disp, UseFPOffset ? 4 : 0)
11795      .addOperand(Segment)
11796      .setMemRefs(MMOBegin, MMOEnd);
11797
11798    // Check if there is enough room left to pull this argument.
11799    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11800      .addReg(OffsetReg)
11801      .addImm(MaxOffset + 8 - ArgSizeA8);
11802
11803    // Branch to "overflowMBB" if offset >= max
11804    // Fall through to "offsetMBB" otherwise
11805    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11806      .addMBB(overflowMBB);
11807  }
11808
11809  // In offsetMBB, emit code to use the reg_save_area.
11810  if (offsetMBB) {
11811    assert(OffsetReg != 0);
11812
11813    // Read the reg_save_area address.
11814    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11815    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11816      .addOperand(Base)
11817      .addOperand(Scale)
11818      .addOperand(Index)
11819      .addDisp(Disp, 16)
11820      .addOperand(Segment)
11821      .setMemRefs(MMOBegin, MMOEnd);
11822
11823    // Zero-extend the offset
11824    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11825      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11826        .addImm(0)
11827        .addReg(OffsetReg)
11828        .addImm(X86::sub_32bit);
11829
11830    // Add the offset to the reg_save_area to get the final address.
11831    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11832      .addReg(OffsetReg64)
11833      .addReg(RegSaveReg);
11834
11835    // Compute the offset for the next argument
11836    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11837    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11838      .addReg(OffsetReg)
11839      .addImm(UseFPOffset ? 16 : 8);
11840
11841    // Store it back into the va_list.
11842    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11843      .addOperand(Base)
11844      .addOperand(Scale)
11845      .addOperand(Index)
11846      .addDisp(Disp, UseFPOffset ? 4 : 0)
11847      .addOperand(Segment)
11848      .addReg(NextOffsetReg)
11849      .setMemRefs(MMOBegin, MMOEnd);
11850
11851    // Jump to endMBB
11852    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11853      .addMBB(endMBB);
11854  }
11855
11856  //
11857  // Emit code to use overflow area
11858  //
11859
11860  // Load the overflow_area address into a register.
11861  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11862  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11863    .addOperand(Base)
11864    .addOperand(Scale)
11865    .addOperand(Index)
11866    .addDisp(Disp, 8)
11867    .addOperand(Segment)
11868    .setMemRefs(MMOBegin, MMOEnd);
11869
11870  // If we need to align it, do so. Otherwise, just copy the address
11871  // to OverflowDestReg.
11872  if (NeedsAlign) {
11873    // Align the overflow address
11874    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11875    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11876
11877    // aligned_addr = (addr + (align-1)) & ~(align-1)
11878    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11879      .addReg(OverflowAddrReg)
11880      .addImm(Align-1);
11881
11882    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11883      .addReg(TmpReg)
11884      .addImm(~(uint64_t)(Align-1));
11885  } else {
11886    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11887      .addReg(OverflowAddrReg);
11888  }
11889
11890  // Compute the next overflow address after this argument.
11891  // (the overflow address should be kept 8-byte aligned)
11892  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11893  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11894    .addReg(OverflowDestReg)
11895    .addImm(ArgSizeA8);
11896
11897  // Store the new overflow address.
11898  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11899    .addOperand(Base)
11900    .addOperand(Scale)
11901    .addOperand(Index)
11902    .addDisp(Disp, 8)
11903    .addOperand(Segment)
11904    .addReg(NextAddrReg)
11905    .setMemRefs(MMOBegin, MMOEnd);
11906
11907  // If we branched, emit the PHI to the front of endMBB.
11908  if (offsetMBB) {
11909    BuildMI(*endMBB, endMBB->begin(), DL,
11910            TII->get(X86::PHI), DestReg)
11911      .addReg(OffsetDestReg).addMBB(offsetMBB)
11912      .addReg(OverflowDestReg).addMBB(overflowMBB);
11913  }
11914
11915  // Erase the pseudo instruction
11916  MI->eraseFromParent();
11917
11918  return endMBB;
11919}
11920
11921MachineBasicBlock *
11922X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11923                                                 MachineInstr *MI,
11924                                                 MachineBasicBlock *MBB) const {
11925  // Emit code to save XMM registers to the stack. The ABI says that the
11926  // number of registers to save is given in %al, so it's theoretically
11927  // possible to do an indirect jump trick to avoid saving all of them,
11928  // however this code takes a simpler approach and just executes all
11929  // of the stores if %al is non-zero. It's less code, and it's probably
11930  // easier on the hardware branch predictor, and stores aren't all that
11931  // expensive anyway.
11932
11933  // Create the new basic blocks. One block contains all the XMM stores,
11934  // and one block is the final destination regardless of whether any
11935  // stores were performed.
11936  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11937  MachineFunction *F = MBB->getParent();
11938  MachineFunction::iterator MBBIter = MBB;
11939  ++MBBIter;
11940  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11941  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11942  F->insert(MBBIter, XMMSaveMBB);
11943  F->insert(MBBIter, EndMBB);
11944
11945  // Transfer the remainder of MBB and its successor edges to EndMBB.
11946  EndMBB->splice(EndMBB->begin(), MBB,
11947                 llvm::next(MachineBasicBlock::iterator(MI)),
11948                 MBB->end());
11949  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11950
11951  // The original block will now fall through to the XMM save block.
11952  MBB->addSuccessor(XMMSaveMBB);
11953  // The XMMSaveMBB will fall through to the end block.
11954  XMMSaveMBB->addSuccessor(EndMBB);
11955
11956  // Now add the instructions.
11957  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11958  DebugLoc DL = MI->getDebugLoc();
11959
11960  unsigned CountReg = MI->getOperand(0).getReg();
11961  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11962  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11963
11964  if (!Subtarget->isTargetWin64()) {
11965    // If %al is 0, branch around the XMM save block.
11966    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11967    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11968    MBB->addSuccessor(EndMBB);
11969  }
11970
11971  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11972  // In the XMM save block, save all the XMM argument registers.
11973  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11974    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11975    MachineMemOperand *MMO =
11976      F->getMachineMemOperand(
11977          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11978        MachineMemOperand::MOStore,
11979        /*Size=*/16, /*Align=*/16);
11980    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11981      .addFrameIndex(RegSaveFrameIndex)
11982      .addImm(/*Scale=*/1)
11983      .addReg(/*IndexReg=*/0)
11984      .addImm(/*Disp=*/Offset)
11985      .addReg(/*Segment=*/0)
11986      .addReg(MI->getOperand(i).getReg())
11987      .addMemOperand(MMO);
11988  }
11989
11990  MI->eraseFromParent();   // The pseudo instruction is gone now.
11991
11992  return EndMBB;
11993}
11994
11995// The EFLAGS operand of SelectItr might be missing a kill marker
11996// because there were multiple uses of EFLAGS, and ISel didn't know
11997// which to mark. Figure out whether SelectItr should have had a
11998// kill marker, and set it if it should. Returns the correct kill
11999// marker value.
12000static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12001                                     MachineBasicBlock* BB,
12002                                     const TargetRegisterInfo* TRI) {
12003  // Scan forward through BB for a use/def of EFLAGS.
12004  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12005  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12006    const MachineInstr& mi = *miI;
12007    if (mi.readsRegister(X86::EFLAGS))
12008      return false;
12009    if (mi.definesRegister(X86::EFLAGS))
12010      break; // Should have kill-flag - update below.
12011  }
12012
12013  // If we hit the end of the block, check whether EFLAGS is live into a
12014  // successor.
12015  if (miI == BB->end()) {
12016    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12017                                          sEnd = BB->succ_end();
12018         sItr != sEnd; ++sItr) {
12019      MachineBasicBlock* succ = *sItr;
12020      if (succ->isLiveIn(X86::EFLAGS))
12021        return false;
12022    }
12023  }
12024
12025  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12026  // out. SelectMI should have a kill flag on EFLAGS.
12027  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12028  return true;
12029}
12030
12031MachineBasicBlock *
12032X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12033                                     MachineBasicBlock *BB) const {
12034  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12035  DebugLoc DL = MI->getDebugLoc();
12036
12037  // To "insert" a SELECT_CC instruction, we actually have to insert the
12038  // diamond control-flow pattern.  The incoming instruction knows the
12039  // destination vreg to set, the condition code register to branch on, the
12040  // true/false values to select between, and a branch opcode to use.
12041  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12042  MachineFunction::iterator It = BB;
12043  ++It;
12044
12045  //  thisMBB:
12046  //  ...
12047  //   TrueVal = ...
12048  //   cmpTY ccX, r1, r2
12049  //   bCC copy1MBB
12050  //   fallthrough --> copy0MBB
12051  MachineBasicBlock *thisMBB = BB;
12052  MachineFunction *F = BB->getParent();
12053  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12054  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12055  F->insert(It, copy0MBB);
12056  F->insert(It, sinkMBB);
12057
12058  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12059  // live into the sink and copy blocks.
12060  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12061  if (!MI->killsRegister(X86::EFLAGS) &&
12062      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12063    copy0MBB->addLiveIn(X86::EFLAGS);
12064    sinkMBB->addLiveIn(X86::EFLAGS);
12065  }
12066
12067  // Transfer the remainder of BB and its successor edges to sinkMBB.
12068  sinkMBB->splice(sinkMBB->begin(), BB,
12069                  llvm::next(MachineBasicBlock::iterator(MI)),
12070                  BB->end());
12071  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12072
12073  // Add the true and fallthrough blocks as its successors.
12074  BB->addSuccessor(copy0MBB);
12075  BB->addSuccessor(sinkMBB);
12076
12077  // Create the conditional branch instruction.
12078  unsigned Opc =
12079    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12080  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12081
12082  //  copy0MBB:
12083  //   %FalseValue = ...
12084  //   # fallthrough to sinkMBB
12085  copy0MBB->addSuccessor(sinkMBB);
12086
12087  //  sinkMBB:
12088  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12089  //  ...
12090  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12091          TII->get(X86::PHI), MI->getOperand(0).getReg())
12092    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12093    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12094
12095  MI->eraseFromParent();   // The pseudo instruction is gone now.
12096  return sinkMBB;
12097}
12098
12099MachineBasicBlock *
12100X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12101                                        bool Is64Bit) const {
12102  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12103  DebugLoc DL = MI->getDebugLoc();
12104  MachineFunction *MF = BB->getParent();
12105  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12106
12107  assert(getTargetMachine().Options.EnableSegmentedStacks);
12108
12109  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12110  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12111
12112  // BB:
12113  //  ... [Till the alloca]
12114  // If stacklet is not large enough, jump to mallocMBB
12115  //
12116  // bumpMBB:
12117  //  Allocate by subtracting from RSP
12118  //  Jump to continueMBB
12119  //
12120  // mallocMBB:
12121  //  Allocate by call to runtime
12122  //
12123  // continueMBB:
12124  //  ...
12125  //  [rest of original BB]
12126  //
12127
12128  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12129  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12130  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12131
12132  MachineRegisterInfo &MRI = MF->getRegInfo();
12133  const TargetRegisterClass *AddrRegClass =
12134    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12135
12136  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12137    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12138    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12139    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12140    sizeVReg = MI->getOperand(1).getReg(),
12141    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12142
12143  MachineFunction::iterator MBBIter = BB;
12144  ++MBBIter;
12145
12146  MF->insert(MBBIter, bumpMBB);
12147  MF->insert(MBBIter, mallocMBB);
12148  MF->insert(MBBIter, continueMBB);
12149
12150  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12151                      (MachineBasicBlock::iterator(MI)), BB->end());
12152  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12153
12154  // Add code to the main basic block to check if the stack limit has been hit,
12155  // and if so, jump to mallocMBB otherwise to bumpMBB.
12156  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12157  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12158    .addReg(tmpSPVReg).addReg(sizeVReg);
12159  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12160    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12161    .addReg(SPLimitVReg);
12162  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12163
12164  // bumpMBB simply decreases the stack pointer, since we know the current
12165  // stacklet has enough space.
12166  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12167    .addReg(SPLimitVReg);
12168  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12169    .addReg(SPLimitVReg);
12170  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12171
12172  // Calls into a routine in libgcc to allocate more space from the heap.
12173  if (Is64Bit) {
12174    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12175      .addReg(sizeVReg);
12176    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12177    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12178  } else {
12179    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12180      .addImm(12);
12181    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12182    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12183      .addExternalSymbol("__morestack_allocate_stack_space");
12184  }
12185
12186  if (!Is64Bit)
12187    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12188      .addImm(16);
12189
12190  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12191    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12192  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12193
12194  // Set up the CFG correctly.
12195  BB->addSuccessor(bumpMBB);
12196  BB->addSuccessor(mallocMBB);
12197  mallocMBB->addSuccessor(continueMBB);
12198  bumpMBB->addSuccessor(continueMBB);
12199
12200  // Take care of the PHI nodes.
12201  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12202          MI->getOperand(0).getReg())
12203    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12204    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12205
12206  // Delete the original pseudo instruction.
12207  MI->eraseFromParent();
12208
12209  // And we're done.
12210  return continueMBB;
12211}
12212
12213MachineBasicBlock *
12214X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12215                                          MachineBasicBlock *BB) const {
12216  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12217  DebugLoc DL = MI->getDebugLoc();
12218
12219  assert(!Subtarget->isTargetEnvMacho());
12220
12221  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12222  // non-trivial part is impdef of ESP.
12223
12224  if (Subtarget->isTargetWin64()) {
12225    if (Subtarget->isTargetCygMing()) {
12226      // ___chkstk(Mingw64):
12227      // Clobbers R10, R11, RAX and EFLAGS.
12228      // Updates RSP.
12229      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12230        .addExternalSymbol("___chkstk")
12231        .addReg(X86::RAX, RegState::Implicit)
12232        .addReg(X86::RSP, RegState::Implicit)
12233        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12234        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12235        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12236    } else {
12237      // __chkstk(MSVCRT): does not update stack pointer.
12238      // Clobbers R10, R11 and EFLAGS.
12239      // FIXME: RAX(allocated size) might be reused and not killed.
12240      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12241        .addExternalSymbol("__chkstk")
12242        .addReg(X86::RAX, RegState::Implicit)
12243        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12244      // RAX has the offset to subtracted from RSP.
12245      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12246        .addReg(X86::RSP)
12247        .addReg(X86::RAX);
12248    }
12249  } else {
12250    const char *StackProbeSymbol =
12251      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12252
12253    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12254      .addExternalSymbol(StackProbeSymbol)
12255      .addReg(X86::EAX, RegState::Implicit)
12256      .addReg(X86::ESP, RegState::Implicit)
12257      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12258      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12259      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12260  }
12261
12262  MI->eraseFromParent();   // The pseudo instruction is gone now.
12263  return BB;
12264}
12265
12266MachineBasicBlock *
12267X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12268                                      MachineBasicBlock *BB) const {
12269  // This is pretty easy.  We're taking the value that we received from
12270  // our load from the relocation, sticking it in either RDI (x86-64)
12271  // or EAX and doing an indirect call.  The return value will then
12272  // be in the normal return register.
12273  const X86InstrInfo *TII
12274    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12275  DebugLoc DL = MI->getDebugLoc();
12276  MachineFunction *F = BB->getParent();
12277
12278  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12279  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12280
12281  if (Subtarget->is64Bit()) {
12282    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12283                                      TII->get(X86::MOV64rm), X86::RDI)
12284    .addReg(X86::RIP)
12285    .addImm(0).addReg(0)
12286    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12287                      MI->getOperand(3).getTargetFlags())
12288    .addReg(0);
12289    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12290    addDirectMem(MIB, X86::RDI);
12291  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12292    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12293                                      TII->get(X86::MOV32rm), X86::EAX)
12294    .addReg(0)
12295    .addImm(0).addReg(0)
12296    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12297                      MI->getOperand(3).getTargetFlags())
12298    .addReg(0);
12299    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12300    addDirectMem(MIB, X86::EAX);
12301  } else {
12302    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12303                                      TII->get(X86::MOV32rm), X86::EAX)
12304    .addReg(TII->getGlobalBaseReg(F))
12305    .addImm(0).addReg(0)
12306    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12307                      MI->getOperand(3).getTargetFlags())
12308    .addReg(0);
12309    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12310    addDirectMem(MIB, X86::EAX);
12311  }
12312
12313  MI->eraseFromParent(); // The pseudo instruction is gone now.
12314  return BB;
12315}
12316
12317MachineBasicBlock *
12318X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12319                                               MachineBasicBlock *BB) const {
12320  switch (MI->getOpcode()) {
12321  default: llvm_unreachable("Unexpected instr type to insert");
12322  case X86::TAILJMPd64:
12323  case X86::TAILJMPr64:
12324  case X86::TAILJMPm64:
12325    llvm_unreachable("TAILJMP64 would not be touched here.");
12326  case X86::TCRETURNdi64:
12327  case X86::TCRETURNri64:
12328  case X86::TCRETURNmi64:
12329    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12330    // On AMD64, additional defs should be added before register allocation.
12331    if (!Subtarget->isTargetWin64()) {
12332      MI->addRegisterDefined(X86::RSI);
12333      MI->addRegisterDefined(X86::RDI);
12334      MI->addRegisterDefined(X86::XMM6);
12335      MI->addRegisterDefined(X86::XMM7);
12336      MI->addRegisterDefined(X86::XMM8);
12337      MI->addRegisterDefined(X86::XMM9);
12338      MI->addRegisterDefined(X86::XMM10);
12339      MI->addRegisterDefined(X86::XMM11);
12340      MI->addRegisterDefined(X86::XMM12);
12341      MI->addRegisterDefined(X86::XMM13);
12342      MI->addRegisterDefined(X86::XMM14);
12343      MI->addRegisterDefined(X86::XMM15);
12344    }
12345    return BB;
12346  case X86::WIN_ALLOCA:
12347    return EmitLoweredWinAlloca(MI, BB);
12348  case X86::SEG_ALLOCA_32:
12349    return EmitLoweredSegAlloca(MI, BB, false);
12350  case X86::SEG_ALLOCA_64:
12351    return EmitLoweredSegAlloca(MI, BB, true);
12352  case X86::TLSCall_32:
12353  case X86::TLSCall_64:
12354    return EmitLoweredTLSCall(MI, BB);
12355  case X86::CMOV_GR8:
12356  case X86::CMOV_FR32:
12357  case X86::CMOV_FR64:
12358  case X86::CMOV_V4F32:
12359  case X86::CMOV_V2F64:
12360  case X86::CMOV_V2I64:
12361  case X86::CMOV_V8F32:
12362  case X86::CMOV_V4F64:
12363  case X86::CMOV_V4I64:
12364  case X86::CMOV_GR16:
12365  case X86::CMOV_GR32:
12366  case X86::CMOV_RFP32:
12367  case X86::CMOV_RFP64:
12368  case X86::CMOV_RFP80:
12369    return EmitLoweredSelect(MI, BB);
12370
12371  case X86::FP32_TO_INT16_IN_MEM:
12372  case X86::FP32_TO_INT32_IN_MEM:
12373  case X86::FP32_TO_INT64_IN_MEM:
12374  case X86::FP64_TO_INT16_IN_MEM:
12375  case X86::FP64_TO_INT32_IN_MEM:
12376  case X86::FP64_TO_INT64_IN_MEM:
12377  case X86::FP80_TO_INT16_IN_MEM:
12378  case X86::FP80_TO_INT32_IN_MEM:
12379  case X86::FP80_TO_INT64_IN_MEM: {
12380    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12381    DebugLoc DL = MI->getDebugLoc();
12382
12383    // Change the floating point control register to use "round towards zero"
12384    // mode when truncating to an integer value.
12385    MachineFunction *F = BB->getParent();
12386    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12387    addFrameReference(BuildMI(*BB, MI, DL,
12388                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12389
12390    // Load the old value of the high byte of the control word...
12391    unsigned OldCW =
12392      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12393    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12394                      CWFrameIdx);
12395
12396    // Set the high part to be round to zero...
12397    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12398      .addImm(0xC7F);
12399
12400    // Reload the modified control word now...
12401    addFrameReference(BuildMI(*BB, MI, DL,
12402                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12403
12404    // Restore the memory image of control word to original value
12405    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12406      .addReg(OldCW);
12407
12408    // Get the X86 opcode to use.
12409    unsigned Opc;
12410    switch (MI->getOpcode()) {
12411    default: llvm_unreachable("illegal opcode!");
12412    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12413    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12414    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12415    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12416    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12417    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12418    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12419    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12420    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12421    }
12422
12423    X86AddressMode AM;
12424    MachineOperand &Op = MI->getOperand(0);
12425    if (Op.isReg()) {
12426      AM.BaseType = X86AddressMode::RegBase;
12427      AM.Base.Reg = Op.getReg();
12428    } else {
12429      AM.BaseType = X86AddressMode::FrameIndexBase;
12430      AM.Base.FrameIndex = Op.getIndex();
12431    }
12432    Op = MI->getOperand(1);
12433    if (Op.isImm())
12434      AM.Scale = Op.getImm();
12435    Op = MI->getOperand(2);
12436    if (Op.isImm())
12437      AM.IndexReg = Op.getImm();
12438    Op = MI->getOperand(3);
12439    if (Op.isGlobal()) {
12440      AM.GV = Op.getGlobal();
12441    } else {
12442      AM.Disp = Op.getImm();
12443    }
12444    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12445                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12446
12447    // Reload the original control word now.
12448    addFrameReference(BuildMI(*BB, MI, DL,
12449                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12450
12451    MI->eraseFromParent();   // The pseudo instruction is gone now.
12452    return BB;
12453  }
12454    // String/text processing lowering.
12455  case X86::PCMPISTRM128REG:
12456  case X86::VPCMPISTRM128REG:
12457    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12458  case X86::PCMPISTRM128MEM:
12459  case X86::VPCMPISTRM128MEM:
12460    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12461  case X86::PCMPESTRM128REG:
12462  case X86::VPCMPESTRM128REG:
12463    return EmitPCMP(MI, BB, 5, false /* in mem */);
12464  case X86::PCMPESTRM128MEM:
12465  case X86::VPCMPESTRM128MEM:
12466    return EmitPCMP(MI, BB, 5, true /* in mem */);
12467
12468    // Thread synchronization.
12469  case X86::MONITOR:
12470    return EmitMonitor(MI, BB);
12471  case X86::MWAIT:
12472    return EmitMwait(MI, BB);
12473
12474    // Atomic Lowering.
12475  case X86::ATOMAND32:
12476    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12477                                               X86::AND32ri, X86::MOV32rm,
12478                                               X86::LCMPXCHG32,
12479                                               X86::NOT32r, X86::EAX,
12480                                               X86::GR32RegisterClass);
12481  case X86::ATOMOR32:
12482    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12483                                               X86::OR32ri, X86::MOV32rm,
12484                                               X86::LCMPXCHG32,
12485                                               X86::NOT32r, X86::EAX,
12486                                               X86::GR32RegisterClass);
12487  case X86::ATOMXOR32:
12488    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12489                                               X86::XOR32ri, X86::MOV32rm,
12490                                               X86::LCMPXCHG32,
12491                                               X86::NOT32r, X86::EAX,
12492                                               X86::GR32RegisterClass);
12493  case X86::ATOMNAND32:
12494    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12495                                               X86::AND32ri, X86::MOV32rm,
12496                                               X86::LCMPXCHG32,
12497                                               X86::NOT32r, X86::EAX,
12498                                               X86::GR32RegisterClass, true);
12499  case X86::ATOMMIN32:
12500    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12501  case X86::ATOMMAX32:
12502    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12503  case X86::ATOMUMIN32:
12504    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12505  case X86::ATOMUMAX32:
12506    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12507
12508  case X86::ATOMAND16:
12509    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12510                                               X86::AND16ri, X86::MOV16rm,
12511                                               X86::LCMPXCHG16,
12512                                               X86::NOT16r, X86::AX,
12513                                               X86::GR16RegisterClass);
12514  case X86::ATOMOR16:
12515    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12516                                               X86::OR16ri, X86::MOV16rm,
12517                                               X86::LCMPXCHG16,
12518                                               X86::NOT16r, X86::AX,
12519                                               X86::GR16RegisterClass);
12520  case X86::ATOMXOR16:
12521    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12522                                               X86::XOR16ri, X86::MOV16rm,
12523                                               X86::LCMPXCHG16,
12524                                               X86::NOT16r, X86::AX,
12525                                               X86::GR16RegisterClass);
12526  case X86::ATOMNAND16:
12527    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12528                                               X86::AND16ri, X86::MOV16rm,
12529                                               X86::LCMPXCHG16,
12530                                               X86::NOT16r, X86::AX,
12531                                               X86::GR16RegisterClass, true);
12532  case X86::ATOMMIN16:
12533    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12534  case X86::ATOMMAX16:
12535    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12536  case X86::ATOMUMIN16:
12537    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12538  case X86::ATOMUMAX16:
12539    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12540
12541  case X86::ATOMAND8:
12542    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12543                                               X86::AND8ri, X86::MOV8rm,
12544                                               X86::LCMPXCHG8,
12545                                               X86::NOT8r, X86::AL,
12546                                               X86::GR8RegisterClass);
12547  case X86::ATOMOR8:
12548    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12549                                               X86::OR8ri, X86::MOV8rm,
12550                                               X86::LCMPXCHG8,
12551                                               X86::NOT8r, X86::AL,
12552                                               X86::GR8RegisterClass);
12553  case X86::ATOMXOR8:
12554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12555                                               X86::XOR8ri, X86::MOV8rm,
12556                                               X86::LCMPXCHG8,
12557                                               X86::NOT8r, X86::AL,
12558                                               X86::GR8RegisterClass);
12559  case X86::ATOMNAND8:
12560    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12561                                               X86::AND8ri, X86::MOV8rm,
12562                                               X86::LCMPXCHG8,
12563                                               X86::NOT8r, X86::AL,
12564                                               X86::GR8RegisterClass, true);
12565  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12566  // This group is for 64-bit host.
12567  case X86::ATOMAND64:
12568    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12569                                               X86::AND64ri32, X86::MOV64rm,
12570                                               X86::LCMPXCHG64,
12571                                               X86::NOT64r, X86::RAX,
12572                                               X86::GR64RegisterClass);
12573  case X86::ATOMOR64:
12574    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12575                                               X86::OR64ri32, X86::MOV64rm,
12576                                               X86::LCMPXCHG64,
12577                                               X86::NOT64r, X86::RAX,
12578                                               X86::GR64RegisterClass);
12579  case X86::ATOMXOR64:
12580    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12581                                               X86::XOR64ri32, X86::MOV64rm,
12582                                               X86::LCMPXCHG64,
12583                                               X86::NOT64r, X86::RAX,
12584                                               X86::GR64RegisterClass);
12585  case X86::ATOMNAND64:
12586    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12587                                               X86::AND64ri32, X86::MOV64rm,
12588                                               X86::LCMPXCHG64,
12589                                               X86::NOT64r, X86::RAX,
12590                                               X86::GR64RegisterClass, true);
12591  case X86::ATOMMIN64:
12592    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12593  case X86::ATOMMAX64:
12594    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12595  case X86::ATOMUMIN64:
12596    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12597  case X86::ATOMUMAX64:
12598    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12599
12600  // This group does 64-bit operations on a 32-bit host.
12601  case X86::ATOMAND6432:
12602    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12603                                               X86::AND32rr, X86::AND32rr,
12604                                               X86::AND32ri, X86::AND32ri,
12605                                               false);
12606  case X86::ATOMOR6432:
12607    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12608                                               X86::OR32rr, X86::OR32rr,
12609                                               X86::OR32ri, X86::OR32ri,
12610                                               false);
12611  case X86::ATOMXOR6432:
12612    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12613                                               X86::XOR32rr, X86::XOR32rr,
12614                                               X86::XOR32ri, X86::XOR32ri,
12615                                               false);
12616  case X86::ATOMNAND6432:
12617    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12618                                               X86::AND32rr, X86::AND32rr,
12619                                               X86::AND32ri, X86::AND32ri,
12620                                               true);
12621  case X86::ATOMADD6432:
12622    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12623                                               X86::ADD32rr, X86::ADC32rr,
12624                                               X86::ADD32ri, X86::ADC32ri,
12625                                               false);
12626  case X86::ATOMSUB6432:
12627    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12628                                               X86::SUB32rr, X86::SBB32rr,
12629                                               X86::SUB32ri, X86::SBB32ri,
12630                                               false);
12631  case X86::ATOMSWAP6432:
12632    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12633                                               X86::MOV32rr, X86::MOV32rr,
12634                                               X86::MOV32ri, X86::MOV32ri,
12635                                               false);
12636  case X86::VASTART_SAVE_XMM_REGS:
12637    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12638
12639  case X86::VAARG_64:
12640    return EmitVAARG64WithCustomInserter(MI, BB);
12641  }
12642}
12643
12644//===----------------------------------------------------------------------===//
12645//                           X86 Optimization Hooks
12646//===----------------------------------------------------------------------===//
12647
12648void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12649                                                       const APInt &Mask,
12650                                                       APInt &KnownZero,
12651                                                       APInt &KnownOne,
12652                                                       const SelectionDAG &DAG,
12653                                                       unsigned Depth) const {
12654  unsigned Opc = Op.getOpcode();
12655  assert((Opc >= ISD::BUILTIN_OP_END ||
12656          Opc == ISD::INTRINSIC_WO_CHAIN ||
12657          Opc == ISD::INTRINSIC_W_CHAIN ||
12658          Opc == ISD::INTRINSIC_VOID) &&
12659         "Should use MaskedValueIsZero if you don't know whether Op"
12660         " is a target node!");
12661
12662  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12663  switch (Opc) {
12664  default: break;
12665  case X86ISD::ADD:
12666  case X86ISD::SUB:
12667  case X86ISD::ADC:
12668  case X86ISD::SBB:
12669  case X86ISD::SMUL:
12670  case X86ISD::UMUL:
12671  case X86ISD::INC:
12672  case X86ISD::DEC:
12673  case X86ISD::OR:
12674  case X86ISD::XOR:
12675  case X86ISD::AND:
12676    // These nodes' second result is a boolean.
12677    if (Op.getResNo() == 0)
12678      break;
12679    // Fallthrough
12680  case X86ISD::SETCC:
12681    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12682                                       Mask.getBitWidth() - 1);
12683    break;
12684  case ISD::INTRINSIC_WO_CHAIN: {
12685    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12686    unsigned NumLoBits = 0;
12687    switch (IntId) {
12688    default: break;
12689    case Intrinsic::x86_sse_movmsk_ps:
12690    case Intrinsic::x86_avx_movmsk_ps_256:
12691    case Intrinsic::x86_sse2_movmsk_pd:
12692    case Intrinsic::x86_avx_movmsk_pd_256:
12693    case Intrinsic::x86_mmx_pmovmskb:
12694    case Intrinsic::x86_sse2_pmovmskb_128:
12695    case Intrinsic::x86_avx2_pmovmskb: {
12696      // High bits of movmskp{s|d}, pmovmskb are known zero.
12697      switch (IntId) {
12698        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12699        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12700        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12701        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12702        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12703        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12704        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12705        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12706      }
12707      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12708                                        Mask.getBitWidth() - NumLoBits);
12709      break;
12710    }
12711    }
12712    break;
12713  }
12714  }
12715}
12716
12717unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12718                                                         unsigned Depth) const {
12719  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12720  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12721    return Op.getValueType().getScalarType().getSizeInBits();
12722
12723  // Fallback case.
12724  return 1;
12725}
12726
12727/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12728/// node is a GlobalAddress + offset.
12729bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12730                                       const GlobalValue* &GA,
12731                                       int64_t &Offset) const {
12732  if (N->getOpcode() == X86ISD::Wrapper) {
12733    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12734      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12735      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12736      return true;
12737    }
12738  }
12739  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12740}
12741
12742/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12743/// same as extracting the high 128-bit part of 256-bit vector and then
12744/// inserting the result into the low part of a new 256-bit vector
12745static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12746  EVT VT = SVOp->getValueType(0);
12747  int NumElems = VT.getVectorNumElements();
12748
12749  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12750  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12751    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12752        SVOp->getMaskElt(j) >= 0)
12753      return false;
12754
12755  return true;
12756}
12757
12758/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12759/// same as extracting the low 128-bit part of 256-bit vector and then
12760/// inserting the result into the high part of a new 256-bit vector
12761static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12762  EVT VT = SVOp->getValueType(0);
12763  int NumElems = VT.getVectorNumElements();
12764
12765  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12766  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12767    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12768        SVOp->getMaskElt(j) >= 0)
12769      return false;
12770
12771  return true;
12772}
12773
12774/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12775static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12776                                        TargetLowering::DAGCombinerInfo &DCI,
12777                                        const X86Subtarget* Subtarget) {
12778  DebugLoc dl = N->getDebugLoc();
12779  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12780  SDValue V1 = SVOp->getOperand(0);
12781  SDValue V2 = SVOp->getOperand(1);
12782  EVT VT = SVOp->getValueType(0);
12783  int NumElems = VT.getVectorNumElements();
12784
12785  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12786      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12787    //
12788    //                   0,0,0,...
12789    //                      |
12790    //    V      UNDEF    BUILD_VECTOR    UNDEF
12791    //     \      /           \           /
12792    //  CONCAT_VECTOR         CONCAT_VECTOR
12793    //         \                  /
12794    //          \                /
12795    //          RESULT: V + zero extended
12796    //
12797    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12798        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12799        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12800      return SDValue();
12801
12802    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12803      return SDValue();
12804
12805    // To match the shuffle mask, the first half of the mask should
12806    // be exactly the first vector, and all the rest a splat with the
12807    // first element of the second one.
12808    for (int i = 0; i < NumElems/2; ++i)
12809      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12810          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12811        return SDValue();
12812
12813    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12814    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12815      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12816      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12817      SDValue ResNode =
12818        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12819                                Ld->getMemoryVT(),
12820                                Ld->getPointerInfo(),
12821                                Ld->getAlignment(),
12822                                false/*isVolatile*/, true/*ReadMem*/,
12823                                false/*WriteMem*/);
12824      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12825    }
12826
12827    // Emit a zeroed vector and insert the desired subvector on its
12828    // first half.
12829    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12830    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12831                         DAG.getConstant(0, MVT::i32), DAG, dl);
12832    return DCI.CombineTo(N, InsV);
12833  }
12834
12835  //===--------------------------------------------------------------------===//
12836  // Combine some shuffles into subvector extracts and inserts:
12837  //
12838
12839  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12840  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12841    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12842                                    DAG, dl);
12843    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12844                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12845    return DCI.CombineTo(N, InsV);
12846  }
12847
12848  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12849  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12850    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12851    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12852                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12853    return DCI.CombineTo(N, InsV);
12854  }
12855
12856  return SDValue();
12857}
12858
12859/// PerformShuffleCombine - Performs several different shuffle combines.
12860static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12861                                     TargetLowering::DAGCombinerInfo &DCI,
12862                                     const X86Subtarget *Subtarget) {
12863  DebugLoc dl = N->getDebugLoc();
12864  EVT VT = N->getValueType(0);
12865
12866  // Don't create instructions with illegal types after legalize types has run.
12867  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12868  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12869    return SDValue();
12870
12871  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12872  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12873      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12874    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12875
12876  // Only handle 128 wide vector from here on.
12877  if (VT.getSizeInBits() != 128)
12878    return SDValue();
12879
12880  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12881  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12882  // consecutive, non-overlapping, and in the right order.
12883  SmallVector<SDValue, 16> Elts;
12884  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12885    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12886
12887  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12888}
12889
12890
12891/// PerformTruncateCombine - Converts truncate operation to
12892/// a sequence of vector shuffle operations.
12893/// It is possible when we truncate 256-bit vector to 128-bit vector
12894
12895SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12896                                                  DAGCombinerInfo &DCI) const {
12897  if (!DCI.isBeforeLegalizeOps())
12898    return SDValue();
12899
12900  if (!Subtarget->hasAVX()) return SDValue();
12901
12902  EVT VT = N->getValueType(0);
12903  SDValue Op = N->getOperand(0);
12904  EVT OpVT = Op.getValueType();
12905  DebugLoc dl = N->getDebugLoc();
12906
12907  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12908
12909    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12910                          DAG.getIntPtrConstant(0));
12911
12912    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12913                          DAG.getIntPtrConstant(2));
12914
12915    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12916    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12917
12918    // PSHUFD
12919    int ShufMask1[] = {0, 2, 0, 0};
12920
12921    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12922                                ShufMask1);
12923    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12924                                ShufMask1);
12925
12926    // MOVLHPS
12927    int ShufMask2[] = {0, 1, 4, 5};
12928
12929    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12930  }
12931  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12932
12933    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12934                          DAG.getIntPtrConstant(0));
12935
12936    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12937                          DAG.getIntPtrConstant(4));
12938
12939    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12940    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12941
12942    // PSHUFB
12943    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12944                      -1, -1, -1, -1, -1, -1, -1, -1};
12945
12946    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
12947                                DAG.getUNDEF(MVT::v16i8),
12948                                ShufMask1);
12949    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
12950                                DAG.getUNDEF(MVT::v16i8),
12951                                ShufMask1);
12952
12953    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12954    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12955
12956    // MOVLHPS
12957    int ShufMask2[] = {0, 1, 4, 5};
12958
12959    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
12960    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
12961  }
12962
12963  return SDValue();
12964}
12965
12966/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12967/// generation and convert it from being a bunch of shuffles and extracts
12968/// to a simple store and scalar loads to extract the elements.
12969static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12970                                                const TargetLowering &TLI) {
12971  SDValue InputVector = N->getOperand(0);
12972
12973  // Only operate on vectors of 4 elements, where the alternative shuffling
12974  // gets to be more expensive.
12975  if (InputVector.getValueType() != MVT::v4i32)
12976    return SDValue();
12977
12978  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12979  // single use which is a sign-extend or zero-extend, and all elements are
12980  // used.
12981  SmallVector<SDNode *, 4> Uses;
12982  unsigned ExtractedElements = 0;
12983  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12984       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12985    if (UI.getUse().getResNo() != InputVector.getResNo())
12986      return SDValue();
12987
12988    SDNode *Extract = *UI;
12989    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12990      return SDValue();
12991
12992    if (Extract->getValueType(0) != MVT::i32)
12993      return SDValue();
12994    if (!Extract->hasOneUse())
12995      return SDValue();
12996    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12997        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12998      return SDValue();
12999    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13000      return SDValue();
13001
13002    // Record which element was extracted.
13003    ExtractedElements |=
13004      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13005
13006    Uses.push_back(Extract);
13007  }
13008
13009  // If not all the elements were used, this may not be worthwhile.
13010  if (ExtractedElements != 15)
13011    return SDValue();
13012
13013  // Ok, we've now decided to do the transformation.
13014  DebugLoc dl = InputVector.getDebugLoc();
13015
13016  // Store the value to a temporary stack slot.
13017  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13018  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13019                            MachinePointerInfo(), false, false, 0);
13020
13021  // Replace each use (extract) with a load of the appropriate element.
13022  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13023       UE = Uses.end(); UI != UE; ++UI) {
13024    SDNode *Extract = *UI;
13025
13026    // cOMpute the element's address.
13027    SDValue Idx = Extract->getOperand(1);
13028    unsigned EltSize =
13029        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13030    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13031    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13032
13033    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13034                                     StackPtr, OffsetVal);
13035
13036    // Load the scalar.
13037    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13038                                     ScalarAddr, MachinePointerInfo(),
13039                                     false, false, false, 0);
13040
13041    // Replace the exact with the load.
13042    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13043  }
13044
13045  // The replacement was made in place; don't return anything.
13046  return SDValue();
13047}
13048
13049/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13050/// nodes.
13051static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13052                                    TargetLowering::DAGCombinerInfo &DCI,
13053                                    const X86Subtarget *Subtarget) {
13054  DebugLoc DL = N->getDebugLoc();
13055  SDValue Cond = N->getOperand(0);
13056  // Get the LHS/RHS of the select.
13057  SDValue LHS = N->getOperand(1);
13058  SDValue RHS = N->getOperand(2);
13059  EVT VT = LHS.getValueType();
13060
13061  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13062  // instructions match the semantics of the common C idiom x<y?x:y but not
13063  // x<=y?x:y, because of how they handle negative zero (which can be
13064  // ignored in unsafe-math mode).
13065  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13066      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13067      (Subtarget->hasSSE2() ||
13068       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13069    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13070
13071    unsigned Opcode = 0;
13072    // Check for x CC y ? x : y.
13073    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13074        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13075      switch (CC) {
13076      default: break;
13077      case ISD::SETULT:
13078        // Converting this to a min would handle NaNs incorrectly, and swapping
13079        // the operands would cause it to handle comparisons between positive
13080        // and negative zero incorrectly.
13081        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13082          if (!DAG.getTarget().Options.UnsafeFPMath &&
13083              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13084            break;
13085          std::swap(LHS, RHS);
13086        }
13087        Opcode = X86ISD::FMIN;
13088        break;
13089      case ISD::SETOLE:
13090        // Converting this to a min would handle comparisons between positive
13091        // and negative zero incorrectly.
13092        if (!DAG.getTarget().Options.UnsafeFPMath &&
13093            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13094          break;
13095        Opcode = X86ISD::FMIN;
13096        break;
13097      case ISD::SETULE:
13098        // Converting this to a min would handle both negative zeros and NaNs
13099        // incorrectly, but we can swap the operands to fix both.
13100        std::swap(LHS, RHS);
13101      case ISD::SETOLT:
13102      case ISD::SETLT:
13103      case ISD::SETLE:
13104        Opcode = X86ISD::FMIN;
13105        break;
13106
13107      case ISD::SETOGE:
13108        // Converting this to a max would handle comparisons between positive
13109        // and negative zero incorrectly.
13110        if (!DAG.getTarget().Options.UnsafeFPMath &&
13111            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13112          break;
13113        Opcode = X86ISD::FMAX;
13114        break;
13115      case ISD::SETUGT:
13116        // Converting this to a max would handle NaNs incorrectly, and swapping
13117        // the operands would cause it to handle comparisons between positive
13118        // and negative zero incorrectly.
13119        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13120          if (!DAG.getTarget().Options.UnsafeFPMath &&
13121              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13122            break;
13123          std::swap(LHS, RHS);
13124        }
13125        Opcode = X86ISD::FMAX;
13126        break;
13127      case ISD::SETUGE:
13128        // Converting this to a max would handle both negative zeros and NaNs
13129        // incorrectly, but we can swap the operands to fix both.
13130        std::swap(LHS, RHS);
13131      case ISD::SETOGT:
13132      case ISD::SETGT:
13133      case ISD::SETGE:
13134        Opcode = X86ISD::FMAX;
13135        break;
13136      }
13137    // Check for x CC y ? y : x -- a min/max with reversed arms.
13138    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13139               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13140      switch (CC) {
13141      default: break;
13142      case ISD::SETOGE:
13143        // Converting this to a min would handle comparisons between positive
13144        // and negative zero incorrectly, and swapping the operands would
13145        // cause it to handle NaNs incorrectly.
13146        if (!DAG.getTarget().Options.UnsafeFPMath &&
13147            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13148          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13149            break;
13150          std::swap(LHS, RHS);
13151        }
13152        Opcode = X86ISD::FMIN;
13153        break;
13154      case ISD::SETUGT:
13155        // Converting this to a min would handle NaNs incorrectly.
13156        if (!DAG.getTarget().Options.UnsafeFPMath &&
13157            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13158          break;
13159        Opcode = X86ISD::FMIN;
13160        break;
13161      case ISD::SETUGE:
13162        // Converting this to a min would handle both negative zeros and NaNs
13163        // incorrectly, but we can swap the operands to fix both.
13164        std::swap(LHS, RHS);
13165      case ISD::SETOGT:
13166      case ISD::SETGT:
13167      case ISD::SETGE:
13168        Opcode = X86ISD::FMIN;
13169        break;
13170
13171      case ISD::SETULT:
13172        // Converting this to a max would handle NaNs incorrectly.
13173        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13174          break;
13175        Opcode = X86ISD::FMAX;
13176        break;
13177      case ISD::SETOLE:
13178        // Converting this to a max would handle comparisons between positive
13179        // and negative zero incorrectly, and swapping the operands would
13180        // cause it to handle NaNs incorrectly.
13181        if (!DAG.getTarget().Options.UnsafeFPMath &&
13182            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13183          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13184            break;
13185          std::swap(LHS, RHS);
13186        }
13187        Opcode = X86ISD::FMAX;
13188        break;
13189      case ISD::SETULE:
13190        // Converting this to a max would handle both negative zeros and NaNs
13191        // incorrectly, but we can swap the operands to fix both.
13192        std::swap(LHS, RHS);
13193      case ISD::SETOLT:
13194      case ISD::SETLT:
13195      case ISD::SETLE:
13196        Opcode = X86ISD::FMAX;
13197        break;
13198      }
13199    }
13200
13201    if (Opcode)
13202      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13203  }
13204
13205  // If this is a select between two integer constants, try to do some
13206  // optimizations.
13207  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13208    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13209      // Don't do this for crazy integer types.
13210      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13211        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13212        // so that TrueC (the true value) is larger than FalseC.
13213        bool NeedsCondInvert = false;
13214
13215        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13216            // Efficiently invertible.
13217            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13218             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13219              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13220          NeedsCondInvert = true;
13221          std::swap(TrueC, FalseC);
13222        }
13223
13224        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13225        if (FalseC->getAPIntValue() == 0 &&
13226            TrueC->getAPIntValue().isPowerOf2()) {
13227          if (NeedsCondInvert) // Invert the condition if needed.
13228            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13229                               DAG.getConstant(1, Cond.getValueType()));
13230
13231          // Zero extend the condition if needed.
13232          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13233
13234          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13235          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13236                             DAG.getConstant(ShAmt, MVT::i8));
13237        }
13238
13239        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13240        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13241          if (NeedsCondInvert) // Invert the condition if needed.
13242            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13243                               DAG.getConstant(1, Cond.getValueType()));
13244
13245          // Zero extend the condition if needed.
13246          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13247                             FalseC->getValueType(0), Cond);
13248          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13249                             SDValue(FalseC, 0));
13250        }
13251
13252        // Optimize cases that will turn into an LEA instruction.  This requires
13253        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13254        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13255          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13256          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13257
13258          bool isFastMultiplier = false;
13259          if (Diff < 10) {
13260            switch ((unsigned char)Diff) {
13261              default: break;
13262              case 1:  // result = add base, cond
13263              case 2:  // result = lea base(    , cond*2)
13264              case 3:  // result = lea base(cond, cond*2)
13265              case 4:  // result = lea base(    , cond*4)
13266              case 5:  // result = lea base(cond, cond*4)
13267              case 8:  // result = lea base(    , cond*8)
13268              case 9:  // result = lea base(cond, cond*8)
13269                isFastMultiplier = true;
13270                break;
13271            }
13272          }
13273
13274          if (isFastMultiplier) {
13275            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13276            if (NeedsCondInvert) // Invert the condition if needed.
13277              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13278                                 DAG.getConstant(1, Cond.getValueType()));
13279
13280            // Zero extend the condition if needed.
13281            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13282                               Cond);
13283            // Scale the condition by the difference.
13284            if (Diff != 1)
13285              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13286                                 DAG.getConstant(Diff, Cond.getValueType()));
13287
13288            // Add the base if non-zero.
13289            if (FalseC->getAPIntValue() != 0)
13290              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13291                                 SDValue(FalseC, 0));
13292            return Cond;
13293          }
13294        }
13295      }
13296  }
13297
13298  // Canonicalize max and min:
13299  // (x > y) ? x : y -> (x >= y) ? x : y
13300  // (x < y) ? x : y -> (x <= y) ? x : y
13301  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13302  // the need for an extra compare
13303  // against zero. e.g.
13304  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13305  // subl   %esi, %edi
13306  // testl  %edi, %edi
13307  // movl   $0, %eax
13308  // cmovgl %edi, %eax
13309  // =>
13310  // xorl   %eax, %eax
13311  // subl   %esi, $edi
13312  // cmovsl %eax, %edi
13313  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13314      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13315      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13316    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13317    switch (CC) {
13318    default: break;
13319    case ISD::SETLT:
13320    case ISD::SETGT: {
13321      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13322      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13323                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13324      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13325    }
13326    }
13327  }
13328
13329  // If we know that this node is legal then we know that it is going to be
13330  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13331  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13332  // to simplify previous instructions.
13333  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13334  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13335      !DCI.isBeforeLegalize() &&
13336      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13337    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13338    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13339    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13340
13341    APInt KnownZero, KnownOne;
13342    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13343                                          DCI.isBeforeLegalizeOps());
13344    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13345        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13346      DCI.CommitTargetLoweringOpt(TLO);
13347  }
13348
13349  return SDValue();
13350}
13351
13352/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13353static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13354                                  TargetLowering::DAGCombinerInfo &DCI) {
13355  DebugLoc DL = N->getDebugLoc();
13356
13357  // If the flag operand isn't dead, don't touch this CMOV.
13358  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13359    return SDValue();
13360
13361  SDValue FalseOp = N->getOperand(0);
13362  SDValue TrueOp = N->getOperand(1);
13363  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13364  SDValue Cond = N->getOperand(3);
13365  if (CC == X86::COND_E || CC == X86::COND_NE) {
13366    switch (Cond.getOpcode()) {
13367    default: break;
13368    case X86ISD::BSR:
13369    case X86ISD::BSF:
13370      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13371      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13372        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13373    }
13374  }
13375
13376  // If this is a select between two integer constants, try to do some
13377  // optimizations.  Note that the operands are ordered the opposite of SELECT
13378  // operands.
13379  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13380    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13381      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13382      // larger than FalseC (the false value).
13383      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13384        CC = X86::GetOppositeBranchCondition(CC);
13385        std::swap(TrueC, FalseC);
13386      }
13387
13388      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13389      // This is efficient for any integer data type (including i8/i16) and
13390      // shift amount.
13391      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13392        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13393                           DAG.getConstant(CC, MVT::i8), Cond);
13394
13395        // Zero extend the condition if needed.
13396        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13397
13398        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13399        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13400                           DAG.getConstant(ShAmt, MVT::i8));
13401        if (N->getNumValues() == 2)  // Dead flag value?
13402          return DCI.CombineTo(N, Cond, SDValue());
13403        return Cond;
13404      }
13405
13406      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13407      // for any integer data type, including i8/i16.
13408      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13409        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13410                           DAG.getConstant(CC, MVT::i8), Cond);
13411
13412        // Zero extend the condition if needed.
13413        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13414                           FalseC->getValueType(0), Cond);
13415        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13416                           SDValue(FalseC, 0));
13417
13418        if (N->getNumValues() == 2)  // Dead flag value?
13419          return DCI.CombineTo(N, Cond, SDValue());
13420        return Cond;
13421      }
13422
13423      // Optimize cases that will turn into an LEA instruction.  This requires
13424      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13425      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13426        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13427        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13428
13429        bool isFastMultiplier = false;
13430        if (Diff < 10) {
13431          switch ((unsigned char)Diff) {
13432          default: break;
13433          case 1:  // result = add base, cond
13434          case 2:  // result = lea base(    , cond*2)
13435          case 3:  // result = lea base(cond, cond*2)
13436          case 4:  // result = lea base(    , cond*4)
13437          case 5:  // result = lea base(cond, cond*4)
13438          case 8:  // result = lea base(    , cond*8)
13439          case 9:  // result = lea base(cond, cond*8)
13440            isFastMultiplier = true;
13441            break;
13442          }
13443        }
13444
13445        if (isFastMultiplier) {
13446          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13447          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13448                             DAG.getConstant(CC, MVT::i8), Cond);
13449          // Zero extend the condition if needed.
13450          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13451                             Cond);
13452          // Scale the condition by the difference.
13453          if (Diff != 1)
13454            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13455                               DAG.getConstant(Diff, Cond.getValueType()));
13456
13457          // Add the base if non-zero.
13458          if (FalseC->getAPIntValue() != 0)
13459            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13460                               SDValue(FalseC, 0));
13461          if (N->getNumValues() == 2)  // Dead flag value?
13462            return DCI.CombineTo(N, Cond, SDValue());
13463          return Cond;
13464        }
13465      }
13466    }
13467  }
13468  return SDValue();
13469}
13470
13471
13472/// PerformMulCombine - Optimize a single multiply with constant into two
13473/// in order to implement it with two cheaper instructions, e.g.
13474/// LEA + SHL, LEA + LEA.
13475static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13476                                 TargetLowering::DAGCombinerInfo &DCI) {
13477  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13478    return SDValue();
13479
13480  EVT VT = N->getValueType(0);
13481  if (VT != MVT::i64)
13482    return SDValue();
13483
13484  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13485  if (!C)
13486    return SDValue();
13487  uint64_t MulAmt = C->getZExtValue();
13488  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13489    return SDValue();
13490
13491  uint64_t MulAmt1 = 0;
13492  uint64_t MulAmt2 = 0;
13493  if ((MulAmt % 9) == 0) {
13494    MulAmt1 = 9;
13495    MulAmt2 = MulAmt / 9;
13496  } else if ((MulAmt % 5) == 0) {
13497    MulAmt1 = 5;
13498    MulAmt2 = MulAmt / 5;
13499  } else if ((MulAmt % 3) == 0) {
13500    MulAmt1 = 3;
13501    MulAmt2 = MulAmt / 3;
13502  }
13503  if (MulAmt2 &&
13504      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13505    DebugLoc DL = N->getDebugLoc();
13506
13507    if (isPowerOf2_64(MulAmt2) &&
13508        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13509      // If second multiplifer is pow2, issue it first. We want the multiply by
13510      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13511      // is an add.
13512      std::swap(MulAmt1, MulAmt2);
13513
13514    SDValue NewMul;
13515    if (isPowerOf2_64(MulAmt1))
13516      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13517                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13518    else
13519      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13520                           DAG.getConstant(MulAmt1, VT));
13521
13522    if (isPowerOf2_64(MulAmt2))
13523      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13524                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13525    else
13526      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13527                           DAG.getConstant(MulAmt2, VT));
13528
13529    // Do not add new nodes to DAG combiner worklist.
13530    DCI.CombineTo(N, NewMul, false);
13531  }
13532  return SDValue();
13533}
13534
13535static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13536  SDValue N0 = N->getOperand(0);
13537  SDValue N1 = N->getOperand(1);
13538  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13539  EVT VT = N0.getValueType();
13540
13541  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13542  // since the result of setcc_c is all zero's or all ones.
13543  if (VT.isInteger() && !VT.isVector() &&
13544      N1C && N0.getOpcode() == ISD::AND &&
13545      N0.getOperand(1).getOpcode() == ISD::Constant) {
13546    SDValue N00 = N0.getOperand(0);
13547    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13548        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13549          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13550         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13551      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13552      APInt ShAmt = N1C->getAPIntValue();
13553      Mask = Mask.shl(ShAmt);
13554      if (Mask != 0)
13555        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13556                           N00, DAG.getConstant(Mask, VT));
13557    }
13558  }
13559
13560
13561  // Hardware support for vector shifts is sparse which makes us scalarize the
13562  // vector operations in many cases. Also, on sandybridge ADD is faster than
13563  // shl.
13564  // (shl V, 1) -> add V,V
13565  if (isSplatVector(N1.getNode())) {
13566    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13567    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13568    // We shift all of the values by one. In many cases we do not have
13569    // hardware support for this operation. This is better expressed as an ADD
13570    // of two values.
13571    if (N1C && (1 == N1C->getZExtValue())) {
13572      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13573    }
13574  }
13575
13576  return SDValue();
13577}
13578
13579/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13580///                       when possible.
13581static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13582                                   TargetLowering::DAGCombinerInfo &DCI,
13583                                   const X86Subtarget *Subtarget) {
13584  EVT VT = N->getValueType(0);
13585  if (N->getOpcode() == ISD::SHL) {
13586    SDValue V = PerformSHLCombine(N, DAG);
13587    if (V.getNode()) return V;
13588  }
13589
13590  // On X86 with SSE2 support, we can transform this to a vector shift if
13591  // all elements are shifted by the same amount.  We can't do this in legalize
13592  // because the a constant vector is typically transformed to a constant pool
13593  // so we have no knowledge of the shift amount.
13594  if (!Subtarget->hasSSE2())
13595    return SDValue();
13596
13597  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13598      (!Subtarget->hasAVX2() ||
13599       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13600    return SDValue();
13601
13602  SDValue ShAmtOp = N->getOperand(1);
13603  EVT EltVT = VT.getVectorElementType();
13604  DebugLoc DL = N->getDebugLoc();
13605  SDValue BaseShAmt = SDValue();
13606  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13607    unsigned NumElts = VT.getVectorNumElements();
13608    unsigned i = 0;
13609    for (; i != NumElts; ++i) {
13610      SDValue Arg = ShAmtOp.getOperand(i);
13611      if (Arg.getOpcode() == ISD::UNDEF) continue;
13612      BaseShAmt = Arg;
13613      break;
13614    }
13615    // Handle the case where the build_vector is all undef
13616    // FIXME: Should DAG allow this?
13617    if (i == NumElts)
13618      return SDValue();
13619
13620    for (; i != NumElts; ++i) {
13621      SDValue Arg = ShAmtOp.getOperand(i);
13622      if (Arg.getOpcode() == ISD::UNDEF) continue;
13623      if (Arg != BaseShAmt) {
13624        return SDValue();
13625      }
13626    }
13627  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13628             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13629    SDValue InVec = ShAmtOp.getOperand(0);
13630    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13631      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13632      unsigned i = 0;
13633      for (; i != NumElts; ++i) {
13634        SDValue Arg = InVec.getOperand(i);
13635        if (Arg.getOpcode() == ISD::UNDEF) continue;
13636        BaseShAmt = Arg;
13637        break;
13638      }
13639    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13640       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13641         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13642         if (C->getZExtValue() == SplatIdx)
13643           BaseShAmt = InVec.getOperand(1);
13644       }
13645    }
13646    if (BaseShAmt.getNode() == 0) {
13647      // Don't create instructions with illegal types after legalize
13648      // types has run.
13649      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13650          !DCI.isBeforeLegalize())
13651        return SDValue();
13652
13653      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13654                              DAG.getIntPtrConstant(0));
13655    }
13656  } else
13657    return SDValue();
13658
13659  // The shift amount is an i32.
13660  if (EltVT.bitsGT(MVT::i32))
13661    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13662  else if (EltVT.bitsLT(MVT::i32))
13663    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13664
13665  // The shift amount is identical so we can do a vector shift.
13666  SDValue  ValOp = N->getOperand(0);
13667  switch (N->getOpcode()) {
13668  default:
13669    llvm_unreachable("Unknown shift opcode!");
13670  case ISD::SHL:
13671    switch (VT.getSimpleVT().SimpleTy) {
13672    default: return SDValue();
13673    case MVT::v2i64:
13674    case MVT::v4i32:
13675    case MVT::v8i16:
13676    case MVT::v4i64:
13677    case MVT::v8i32:
13678    case MVT::v16i16:
13679      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13680    }
13681  case ISD::SRA:
13682    switch (VT.getSimpleVT().SimpleTy) {
13683    default: return SDValue();
13684    case MVT::v4i32:
13685    case MVT::v8i16:
13686    case MVT::v8i32:
13687    case MVT::v16i16:
13688      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13689    }
13690  case ISD::SRL:
13691    switch (VT.getSimpleVT().SimpleTy) {
13692    default: return SDValue();
13693    case MVT::v2i64:
13694    case MVT::v4i32:
13695    case MVT::v8i16:
13696    case MVT::v4i64:
13697    case MVT::v8i32:
13698    case MVT::v16i16:
13699      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13700    }
13701  }
13702}
13703
13704
13705// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13706// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13707// and friends.  Likewise for OR -> CMPNEQSS.
13708static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13709                            TargetLowering::DAGCombinerInfo &DCI,
13710                            const X86Subtarget *Subtarget) {
13711  unsigned opcode;
13712
13713  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13714  // we're requiring SSE2 for both.
13715  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13716    SDValue N0 = N->getOperand(0);
13717    SDValue N1 = N->getOperand(1);
13718    SDValue CMP0 = N0->getOperand(1);
13719    SDValue CMP1 = N1->getOperand(1);
13720    DebugLoc DL = N->getDebugLoc();
13721
13722    // The SETCCs should both refer to the same CMP.
13723    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13724      return SDValue();
13725
13726    SDValue CMP00 = CMP0->getOperand(0);
13727    SDValue CMP01 = CMP0->getOperand(1);
13728    EVT     VT    = CMP00.getValueType();
13729
13730    if (VT == MVT::f32 || VT == MVT::f64) {
13731      bool ExpectingFlags = false;
13732      // Check for any users that want flags:
13733      for (SDNode::use_iterator UI = N->use_begin(),
13734             UE = N->use_end();
13735           !ExpectingFlags && UI != UE; ++UI)
13736        switch (UI->getOpcode()) {
13737        default:
13738        case ISD::BR_CC:
13739        case ISD::BRCOND:
13740        case ISD::SELECT:
13741          ExpectingFlags = true;
13742          break;
13743        case ISD::CopyToReg:
13744        case ISD::SIGN_EXTEND:
13745        case ISD::ZERO_EXTEND:
13746        case ISD::ANY_EXTEND:
13747          break;
13748        }
13749
13750      if (!ExpectingFlags) {
13751        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13752        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13753
13754        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13755          X86::CondCode tmp = cc0;
13756          cc0 = cc1;
13757          cc1 = tmp;
13758        }
13759
13760        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13761            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13762          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13763          X86ISD::NodeType NTOperator = is64BitFP ?
13764            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13765          // FIXME: need symbolic constants for these magic numbers.
13766          // See X86ATTInstPrinter.cpp:printSSECC().
13767          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13768          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13769                                              DAG.getConstant(x86cc, MVT::i8));
13770          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13771                                              OnesOrZeroesF);
13772          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13773                                      DAG.getConstant(1, MVT::i32));
13774          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13775          return OneBitOfTruth;
13776        }
13777      }
13778    }
13779  }
13780  return SDValue();
13781}
13782
13783/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13784/// so it can be folded inside ANDNP.
13785static bool CanFoldXORWithAllOnes(const SDNode *N) {
13786  EVT VT = N->getValueType(0);
13787
13788  // Match direct AllOnes for 128 and 256-bit vectors
13789  if (ISD::isBuildVectorAllOnes(N))
13790    return true;
13791
13792  // Look through a bit convert.
13793  if (N->getOpcode() == ISD::BITCAST)
13794    N = N->getOperand(0).getNode();
13795
13796  // Sometimes the operand may come from a insert_subvector building a 256-bit
13797  // allones vector
13798  if (VT.getSizeInBits() == 256 &&
13799      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13800    SDValue V1 = N->getOperand(0);
13801    SDValue V2 = N->getOperand(1);
13802
13803    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13804        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13805        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13806        ISD::isBuildVectorAllOnes(V2.getNode()))
13807      return true;
13808  }
13809
13810  return false;
13811}
13812
13813static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13814                                 TargetLowering::DAGCombinerInfo &DCI,
13815                                 const X86Subtarget *Subtarget) {
13816  if (DCI.isBeforeLegalizeOps())
13817    return SDValue();
13818
13819  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13820  if (R.getNode())
13821    return R;
13822
13823  EVT VT = N->getValueType(0);
13824
13825  // Create ANDN, BLSI, and BLSR instructions
13826  // BLSI is X & (-X)
13827  // BLSR is X & (X-1)
13828  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13829    SDValue N0 = N->getOperand(0);
13830    SDValue N1 = N->getOperand(1);
13831    DebugLoc DL = N->getDebugLoc();
13832
13833    // Check LHS for not
13834    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13835      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13836    // Check RHS for not
13837    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13838      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13839
13840    // Check LHS for neg
13841    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13842        isZero(N0.getOperand(0)))
13843      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13844
13845    // Check RHS for neg
13846    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13847        isZero(N1.getOperand(0)))
13848      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13849
13850    // Check LHS for X-1
13851    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13852        isAllOnes(N0.getOperand(1)))
13853      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13854
13855    // Check RHS for X-1
13856    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13857        isAllOnes(N1.getOperand(1)))
13858      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13859
13860    return SDValue();
13861  }
13862
13863  // Want to form ANDNP nodes:
13864  // 1) In the hopes of then easily combining them with OR and AND nodes
13865  //    to form PBLEND/PSIGN.
13866  // 2) To match ANDN packed intrinsics
13867  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13868    return SDValue();
13869
13870  SDValue N0 = N->getOperand(0);
13871  SDValue N1 = N->getOperand(1);
13872  DebugLoc DL = N->getDebugLoc();
13873
13874  // Check LHS for vnot
13875  if (N0.getOpcode() == ISD::XOR &&
13876      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13877      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13878    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13879
13880  // Check RHS for vnot
13881  if (N1.getOpcode() == ISD::XOR &&
13882      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13883      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13884    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13885
13886  return SDValue();
13887}
13888
13889static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13890                                TargetLowering::DAGCombinerInfo &DCI,
13891                                const X86Subtarget *Subtarget) {
13892  if (DCI.isBeforeLegalizeOps())
13893    return SDValue();
13894
13895  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13896  if (R.getNode())
13897    return R;
13898
13899  EVT VT = N->getValueType(0);
13900
13901  SDValue N0 = N->getOperand(0);
13902  SDValue N1 = N->getOperand(1);
13903
13904  // look for psign/blend
13905  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13906    if (!Subtarget->hasSSSE3() ||
13907        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13908      return SDValue();
13909
13910    // Canonicalize pandn to RHS
13911    if (N0.getOpcode() == X86ISD::ANDNP)
13912      std::swap(N0, N1);
13913    // or (and (m, y), (pandn m, x))
13914    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13915      SDValue Mask = N1.getOperand(0);
13916      SDValue X    = N1.getOperand(1);
13917      SDValue Y;
13918      if (N0.getOperand(0) == Mask)
13919        Y = N0.getOperand(1);
13920      if (N0.getOperand(1) == Mask)
13921        Y = N0.getOperand(0);
13922
13923      // Check to see if the mask appeared in both the AND and ANDNP and
13924      if (!Y.getNode())
13925        return SDValue();
13926
13927      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13928      if (Mask.getOpcode() != ISD::BITCAST ||
13929          X.getOpcode() != ISD::BITCAST ||
13930          Y.getOpcode() != ISD::BITCAST)
13931        return SDValue();
13932
13933      // Look through mask bitcast.
13934      Mask = Mask.getOperand(0);
13935      EVT MaskVT = Mask.getValueType();
13936
13937      // Validate that the Mask operand is a vector sra node.
13938      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13939      // there is no psrai.b
13940      if (Mask.getOpcode() != X86ISD::VSRAI)
13941        return SDValue();
13942
13943      // Check that the SRA is all signbits.
13944      SDValue SraC = Mask.getOperand(1);
13945      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13946      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13947      if ((SraAmt + 1) != EltBits)
13948        return SDValue();
13949
13950      DebugLoc DL = N->getDebugLoc();
13951
13952      // Now we know we at least have a plendvb with the mask val.  See if
13953      // we can form a psignb/w/d.
13954      // psign = x.type == y.type == mask.type && y = sub(0, x);
13955      X = X.getOperand(0);
13956      Y = Y.getOperand(0);
13957      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13958          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13959          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
13960        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
13961               "Unsupported VT for PSIGN");
13962        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
13963        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13964      }
13965      // PBLENDVB only available on SSE 4.1
13966      if (!Subtarget->hasSSE41())
13967        return SDValue();
13968
13969      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13970
13971      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13972      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13973      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13974      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13975      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13976    }
13977  }
13978
13979  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13980    return SDValue();
13981
13982  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13983  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13984    std::swap(N0, N1);
13985  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13986    return SDValue();
13987  if (!N0.hasOneUse() || !N1.hasOneUse())
13988    return SDValue();
13989
13990  SDValue ShAmt0 = N0.getOperand(1);
13991  if (ShAmt0.getValueType() != MVT::i8)
13992    return SDValue();
13993  SDValue ShAmt1 = N1.getOperand(1);
13994  if (ShAmt1.getValueType() != MVT::i8)
13995    return SDValue();
13996  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13997    ShAmt0 = ShAmt0.getOperand(0);
13998  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13999    ShAmt1 = ShAmt1.getOperand(0);
14000
14001  DebugLoc DL = N->getDebugLoc();
14002  unsigned Opc = X86ISD::SHLD;
14003  SDValue Op0 = N0.getOperand(0);
14004  SDValue Op1 = N1.getOperand(0);
14005  if (ShAmt0.getOpcode() == ISD::SUB) {
14006    Opc = X86ISD::SHRD;
14007    std::swap(Op0, Op1);
14008    std::swap(ShAmt0, ShAmt1);
14009  }
14010
14011  unsigned Bits = VT.getSizeInBits();
14012  if (ShAmt1.getOpcode() == ISD::SUB) {
14013    SDValue Sum = ShAmt1.getOperand(0);
14014    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14015      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14016      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14017        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14018      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14019        return DAG.getNode(Opc, DL, VT,
14020                           Op0, Op1,
14021                           DAG.getNode(ISD::TRUNCATE, DL,
14022                                       MVT::i8, ShAmt0));
14023    }
14024  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14025    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14026    if (ShAmt0C &&
14027        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14028      return DAG.getNode(Opc, DL, VT,
14029                         N0.getOperand(0), N1.getOperand(0),
14030                         DAG.getNode(ISD::TRUNCATE, DL,
14031                                       MVT::i8, ShAmt0));
14032  }
14033
14034  return SDValue();
14035}
14036
14037// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14038static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14039                                 TargetLowering::DAGCombinerInfo &DCI,
14040                                 const X86Subtarget *Subtarget) {
14041  if (DCI.isBeforeLegalizeOps())
14042    return SDValue();
14043
14044  EVT VT = N->getValueType(0);
14045
14046  if (VT != MVT::i32 && VT != MVT::i64)
14047    return SDValue();
14048
14049  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14050
14051  // Create BLSMSK instructions by finding X ^ (X-1)
14052  SDValue N0 = N->getOperand(0);
14053  SDValue N1 = N->getOperand(1);
14054  DebugLoc DL = N->getDebugLoc();
14055
14056  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14057      isAllOnes(N0.getOperand(1)))
14058    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14059
14060  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14061      isAllOnes(N1.getOperand(1)))
14062    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14063
14064  return SDValue();
14065}
14066
14067/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14068static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14069                                   const X86Subtarget *Subtarget) {
14070  LoadSDNode *Ld = cast<LoadSDNode>(N);
14071  EVT RegVT = Ld->getValueType(0);
14072  EVT MemVT = Ld->getMemoryVT();
14073  DebugLoc dl = Ld->getDebugLoc();
14074  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14075
14076  ISD::LoadExtType Ext = Ld->getExtensionType();
14077
14078  // If this is a vector EXT Load then attempt to optimize it using a
14079  // shuffle. We need SSE4 for the shuffles.
14080  // TODO: It is possible to support ZExt by zeroing the undef values
14081  // during the shuffle phase or after the shuffle.
14082  if (RegVT.isVector() && RegVT.isInteger() &&
14083      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14084    assert(MemVT != RegVT && "Cannot extend to the same type");
14085    assert(MemVT.isVector() && "Must load a vector from memory");
14086
14087    unsigned NumElems = RegVT.getVectorNumElements();
14088    unsigned RegSz = RegVT.getSizeInBits();
14089    unsigned MemSz = MemVT.getSizeInBits();
14090    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14091    // All sizes must be a power of two
14092    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14093
14094    // Attempt to load the original value using a single load op.
14095    // Find a scalar type which is equal to the loaded word size.
14096    MVT SclrLoadTy = MVT::i8;
14097    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14098         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14099      MVT Tp = (MVT::SimpleValueType)tp;
14100      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14101        SclrLoadTy = Tp;
14102        break;
14103      }
14104    }
14105
14106    // Proceed if a load word is found.
14107    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14108
14109    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14110      RegSz/SclrLoadTy.getSizeInBits());
14111
14112    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14113                                  RegSz/MemVT.getScalarType().getSizeInBits());
14114    // Can't shuffle using an illegal type.
14115    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14116
14117    // Perform a single load.
14118    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14119                                  Ld->getBasePtr(),
14120                                  Ld->getPointerInfo(), Ld->isVolatile(),
14121                                  Ld->isNonTemporal(), Ld->isInvariant(),
14122                                  Ld->getAlignment());
14123
14124    // Insert the word loaded into a vector.
14125    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14126      LoadUnitVecVT, ScalarLoad);
14127
14128    // Bitcast the loaded value to a vector of the original element type, in
14129    // the size of the target vector type.
14130    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14131                                    ScalarInVector);
14132    unsigned SizeRatio = RegSz/MemSz;
14133
14134    // Redistribute the loaded elements into the different locations.
14135    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14136    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14137
14138    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14139                                DAG.getUNDEF(SlicedVec.getValueType()),
14140                                ShuffleVec.data());
14141
14142    // Bitcast to the requested type.
14143    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14144    // Replace the original load with the new sequence
14145    // and return the new chain.
14146    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14147    return SDValue(ScalarLoad.getNode(), 1);
14148  }
14149
14150  return SDValue();
14151}
14152
14153/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14154static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14155                                   const X86Subtarget *Subtarget) {
14156  StoreSDNode *St = cast<StoreSDNode>(N);
14157  EVT VT = St->getValue().getValueType();
14158  EVT StVT = St->getMemoryVT();
14159  DebugLoc dl = St->getDebugLoc();
14160  SDValue StoredVal = St->getOperand(1);
14161  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14162
14163  // If we are saving a concatenation of two XMM registers, perform two stores.
14164  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14165  // 128-bit ones. If in the future the cost becomes only one memory access the
14166  // first version would be better.
14167  if (VT.getSizeInBits() == 256 &&
14168    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14169    StoredVal.getNumOperands() == 2) {
14170
14171    SDValue Value0 = StoredVal.getOperand(0);
14172    SDValue Value1 = StoredVal.getOperand(1);
14173
14174    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14175    SDValue Ptr0 = St->getBasePtr();
14176    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14177
14178    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14179                                St->getPointerInfo(), St->isVolatile(),
14180                                St->isNonTemporal(), St->getAlignment());
14181    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14182                                St->getPointerInfo(), St->isVolatile(),
14183                                St->isNonTemporal(), St->getAlignment());
14184    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14185  }
14186
14187  // Optimize trunc store (of multiple scalars) to shuffle and store.
14188  // First, pack all of the elements in one place. Next, store to memory
14189  // in fewer chunks.
14190  if (St->isTruncatingStore() && VT.isVector()) {
14191    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14192    unsigned NumElems = VT.getVectorNumElements();
14193    assert(StVT != VT && "Cannot truncate to the same type");
14194    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14195    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14196
14197    // From, To sizes and ElemCount must be pow of two
14198    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14199    // We are going to use the original vector elt for storing.
14200    // Accumulated smaller vector elements must be a multiple of the store size.
14201    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14202
14203    unsigned SizeRatio  = FromSz / ToSz;
14204
14205    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14206
14207    // Create a type on which we perform the shuffle
14208    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14209            StVT.getScalarType(), NumElems*SizeRatio);
14210
14211    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14212
14213    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14214    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14215    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14216
14217    // Can't shuffle using an illegal type
14218    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14219
14220    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14221                                DAG.getUNDEF(WideVec.getValueType()),
14222                                ShuffleVec.data());
14223    // At this point all of the data is stored at the bottom of the
14224    // register. We now need to save it to mem.
14225
14226    // Find the largest store unit
14227    MVT StoreType = MVT::i8;
14228    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14229         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14230      MVT Tp = (MVT::SimpleValueType)tp;
14231      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14232        StoreType = Tp;
14233    }
14234
14235    // Bitcast the original vector into a vector of store-size units
14236    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14237            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14238    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14239    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14240    SmallVector<SDValue, 8> Chains;
14241    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14242                                        TLI.getPointerTy());
14243    SDValue Ptr = St->getBasePtr();
14244
14245    // Perform one or more big stores into memory.
14246    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14247      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14248                                   StoreType, ShuffWide,
14249                                   DAG.getIntPtrConstant(i));
14250      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14251                                St->getPointerInfo(), St->isVolatile(),
14252                                St->isNonTemporal(), St->getAlignment());
14253      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14254      Chains.push_back(Ch);
14255    }
14256
14257    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14258                               Chains.size());
14259  }
14260
14261
14262  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14263  // the FP state in cases where an emms may be missing.
14264  // A preferable solution to the general problem is to figure out the right
14265  // places to insert EMMS.  This qualifies as a quick hack.
14266
14267  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14268  if (VT.getSizeInBits() != 64)
14269    return SDValue();
14270
14271  const Function *F = DAG.getMachineFunction().getFunction();
14272  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14273  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14274                     && Subtarget->hasSSE2();
14275  if ((VT.isVector() ||
14276       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14277      isa<LoadSDNode>(St->getValue()) &&
14278      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14279      St->getChain().hasOneUse() && !St->isVolatile()) {
14280    SDNode* LdVal = St->getValue().getNode();
14281    LoadSDNode *Ld = 0;
14282    int TokenFactorIndex = -1;
14283    SmallVector<SDValue, 8> Ops;
14284    SDNode* ChainVal = St->getChain().getNode();
14285    // Must be a store of a load.  We currently handle two cases:  the load
14286    // is a direct child, and it's under an intervening TokenFactor.  It is
14287    // possible to dig deeper under nested TokenFactors.
14288    if (ChainVal == LdVal)
14289      Ld = cast<LoadSDNode>(St->getChain());
14290    else if (St->getValue().hasOneUse() &&
14291             ChainVal->getOpcode() == ISD::TokenFactor) {
14292      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14293        if (ChainVal->getOperand(i).getNode() == LdVal) {
14294          TokenFactorIndex = i;
14295          Ld = cast<LoadSDNode>(St->getValue());
14296        } else
14297          Ops.push_back(ChainVal->getOperand(i));
14298      }
14299    }
14300
14301    if (!Ld || !ISD::isNormalLoad(Ld))
14302      return SDValue();
14303
14304    // If this is not the MMX case, i.e. we are just turning i64 load/store
14305    // into f64 load/store, avoid the transformation if there are multiple
14306    // uses of the loaded value.
14307    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14308      return SDValue();
14309
14310    DebugLoc LdDL = Ld->getDebugLoc();
14311    DebugLoc StDL = N->getDebugLoc();
14312    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14313    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14314    // pair instead.
14315    if (Subtarget->is64Bit() || F64IsLegal) {
14316      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14317      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14318                                  Ld->getPointerInfo(), Ld->isVolatile(),
14319                                  Ld->isNonTemporal(), Ld->isInvariant(),
14320                                  Ld->getAlignment());
14321      SDValue NewChain = NewLd.getValue(1);
14322      if (TokenFactorIndex != -1) {
14323        Ops.push_back(NewChain);
14324        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14325                               Ops.size());
14326      }
14327      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14328                          St->getPointerInfo(),
14329                          St->isVolatile(), St->isNonTemporal(),
14330                          St->getAlignment());
14331    }
14332
14333    // Otherwise, lower to two pairs of 32-bit loads / stores.
14334    SDValue LoAddr = Ld->getBasePtr();
14335    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14336                                 DAG.getConstant(4, MVT::i32));
14337
14338    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14339                               Ld->getPointerInfo(),
14340                               Ld->isVolatile(), Ld->isNonTemporal(),
14341                               Ld->isInvariant(), Ld->getAlignment());
14342    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14343                               Ld->getPointerInfo().getWithOffset(4),
14344                               Ld->isVolatile(), Ld->isNonTemporal(),
14345                               Ld->isInvariant(),
14346                               MinAlign(Ld->getAlignment(), 4));
14347
14348    SDValue NewChain = LoLd.getValue(1);
14349    if (TokenFactorIndex != -1) {
14350      Ops.push_back(LoLd);
14351      Ops.push_back(HiLd);
14352      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14353                             Ops.size());
14354    }
14355
14356    LoAddr = St->getBasePtr();
14357    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14358                         DAG.getConstant(4, MVT::i32));
14359
14360    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14361                                St->getPointerInfo(),
14362                                St->isVolatile(), St->isNonTemporal(),
14363                                St->getAlignment());
14364    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14365                                St->getPointerInfo().getWithOffset(4),
14366                                St->isVolatile(),
14367                                St->isNonTemporal(),
14368                                MinAlign(St->getAlignment(), 4));
14369    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14370  }
14371  return SDValue();
14372}
14373
14374/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14375/// and return the operands for the horizontal operation in LHS and RHS.  A
14376/// horizontal operation performs the binary operation on successive elements
14377/// of its first operand, then on successive elements of its second operand,
14378/// returning the resulting values in a vector.  For example, if
14379///   A = < float a0, float a1, float a2, float a3 >
14380/// and
14381///   B = < float b0, float b1, float b2, float b3 >
14382/// then the result of doing a horizontal operation on A and B is
14383///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14384/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14385/// A horizontal-op B, for some already available A and B, and if so then LHS is
14386/// set to A, RHS to B, and the routine returns 'true'.
14387/// Note that the binary operation should have the property that if one of the
14388/// operands is UNDEF then the result is UNDEF.
14389static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14390  // Look for the following pattern: if
14391  //   A = < float a0, float a1, float a2, float a3 >
14392  //   B = < float b0, float b1, float b2, float b3 >
14393  // and
14394  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14395  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14396  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14397  // which is A horizontal-op B.
14398
14399  // At least one of the operands should be a vector shuffle.
14400  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14401      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14402    return false;
14403
14404  EVT VT = LHS.getValueType();
14405
14406  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14407         "Unsupported vector type for horizontal add/sub");
14408
14409  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14410  // operate independently on 128-bit lanes.
14411  unsigned NumElts = VT.getVectorNumElements();
14412  unsigned NumLanes = VT.getSizeInBits()/128;
14413  unsigned NumLaneElts = NumElts / NumLanes;
14414  assert((NumLaneElts % 2 == 0) &&
14415         "Vector type should have an even number of elements in each lane");
14416  unsigned HalfLaneElts = NumLaneElts/2;
14417
14418  // View LHS in the form
14419  //   LHS = VECTOR_SHUFFLE A, B, LMask
14420  // If LHS is not a shuffle then pretend it is the shuffle
14421  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14422  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14423  // type VT.
14424  SDValue A, B;
14425  SmallVector<int, 16> LMask(NumElts);
14426  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14427    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14428      A = LHS.getOperand(0);
14429    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14430      B = LHS.getOperand(1);
14431    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14432    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14433  } else {
14434    if (LHS.getOpcode() != ISD::UNDEF)
14435      A = LHS;
14436    for (unsigned i = 0; i != NumElts; ++i)
14437      LMask[i] = i;
14438  }
14439
14440  // Likewise, view RHS in the form
14441  //   RHS = VECTOR_SHUFFLE C, D, RMask
14442  SDValue C, D;
14443  SmallVector<int, 16> RMask(NumElts);
14444  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14445    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14446      C = RHS.getOperand(0);
14447    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14448      D = RHS.getOperand(1);
14449    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14450    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14451  } else {
14452    if (RHS.getOpcode() != ISD::UNDEF)
14453      C = RHS;
14454    for (unsigned i = 0; i != NumElts; ++i)
14455      RMask[i] = i;
14456  }
14457
14458  // Check that the shuffles are both shuffling the same vectors.
14459  if (!(A == C && B == D) && !(A == D && B == C))
14460    return false;
14461
14462  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14463  if (!A.getNode() && !B.getNode())
14464    return false;
14465
14466  // If A and B occur in reverse order in RHS, then "swap" them (which means
14467  // rewriting the mask).
14468  if (A != C)
14469    CommuteVectorShuffleMask(RMask, NumElts);
14470
14471  // At this point LHS and RHS are equivalent to
14472  //   LHS = VECTOR_SHUFFLE A, B, LMask
14473  //   RHS = VECTOR_SHUFFLE A, B, RMask
14474  // Check that the masks correspond to performing a horizontal operation.
14475  for (unsigned i = 0; i != NumElts; ++i) {
14476    int LIdx = LMask[i], RIdx = RMask[i];
14477
14478    // Ignore any UNDEF components.
14479    if (LIdx < 0 || RIdx < 0 ||
14480        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14481        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14482      continue;
14483
14484    // Check that successive elements are being operated on.  If not, this is
14485    // not a horizontal operation.
14486    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14487    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14488    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14489    if (!(LIdx == Index && RIdx == Index + 1) &&
14490        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14491      return false;
14492  }
14493
14494  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14495  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14496  return true;
14497}
14498
14499/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14500static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14501                                  const X86Subtarget *Subtarget) {
14502  EVT VT = N->getValueType(0);
14503  SDValue LHS = N->getOperand(0);
14504  SDValue RHS = N->getOperand(1);
14505
14506  // Try to synthesize horizontal adds from adds of shuffles.
14507  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14508       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14509      isHorizontalBinOp(LHS, RHS, true))
14510    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14511  return SDValue();
14512}
14513
14514/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14515static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14516                                  const X86Subtarget *Subtarget) {
14517  EVT VT = N->getValueType(0);
14518  SDValue LHS = N->getOperand(0);
14519  SDValue RHS = N->getOperand(1);
14520
14521  // Try to synthesize horizontal subs from subs of shuffles.
14522  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14523       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14524      isHorizontalBinOp(LHS, RHS, false))
14525    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14526  return SDValue();
14527}
14528
14529/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14530/// X86ISD::FXOR nodes.
14531static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14532  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14533  // F[X]OR(0.0, x) -> x
14534  // F[X]OR(x, 0.0) -> x
14535  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14536    if (C->getValueAPF().isPosZero())
14537      return N->getOperand(1);
14538  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14539    if (C->getValueAPF().isPosZero())
14540      return N->getOperand(0);
14541  return SDValue();
14542}
14543
14544/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14545static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14546  // FAND(0.0, x) -> 0.0
14547  // FAND(x, 0.0) -> 0.0
14548  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14549    if (C->getValueAPF().isPosZero())
14550      return N->getOperand(0);
14551  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14552    if (C->getValueAPF().isPosZero())
14553      return N->getOperand(1);
14554  return SDValue();
14555}
14556
14557static SDValue PerformBTCombine(SDNode *N,
14558                                SelectionDAG &DAG,
14559                                TargetLowering::DAGCombinerInfo &DCI) {
14560  // BT ignores high bits in the bit index operand.
14561  SDValue Op1 = N->getOperand(1);
14562  if (Op1.hasOneUse()) {
14563    unsigned BitWidth = Op1.getValueSizeInBits();
14564    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14565    APInt KnownZero, KnownOne;
14566    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14567                                          !DCI.isBeforeLegalizeOps());
14568    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14569    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14570        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14571      DCI.CommitTargetLoweringOpt(TLO);
14572  }
14573  return SDValue();
14574}
14575
14576static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14577  SDValue Op = N->getOperand(0);
14578  if (Op.getOpcode() == ISD::BITCAST)
14579    Op = Op.getOperand(0);
14580  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14581  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14582      VT.getVectorElementType().getSizeInBits() ==
14583      OpVT.getVectorElementType().getSizeInBits()) {
14584    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14585  }
14586  return SDValue();
14587}
14588
14589static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14590                                  TargetLowering::DAGCombinerInfo &DCI,
14591                                  const X86Subtarget *Subtarget) {
14592  if (!DCI.isBeforeLegalizeOps())
14593    return SDValue();
14594
14595  if (!Subtarget->hasAVX()) return SDValue();
14596
14597   // Optimize vectors in AVX mode
14598   // Sign extend  v8i16 to v8i32 and
14599   //              v4i32 to v4i64
14600   //
14601   // Divide input vector into two parts
14602   // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14603   // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14604   // concat the vectors to original VT
14605
14606  EVT VT = N->getValueType(0);
14607  SDValue Op = N->getOperand(0);
14608  EVT OpVT = Op.getValueType();
14609  DebugLoc dl = N->getDebugLoc();
14610
14611  if (((VT == MVT::v4i64) && (OpVT == MVT::v4i32)) ||
14612    ((VT == MVT::v8i32) && (OpVT == MVT::v8i16))) {
14613
14614    unsigned NumElems = OpVT.getVectorNumElements();
14615    SmallVector<int,8> ShufMask1(NumElems, -1);
14616    for (unsigned i=0; i< NumElems/2; i++) ShufMask1[i] = i;
14617
14618    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14619                                ShufMask1.data());
14620
14621    SmallVector<int,8> ShufMask2(NumElems, -1);
14622    for (unsigned i=0; i< NumElems/2; i++) ShufMask2[i] = i+NumElems/2;
14623
14624    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14625                                ShufMask2.data());
14626
14627    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14628      VT.getVectorNumElements()/2);
14629
14630    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14631    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14632
14633    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14634  }
14635  return SDValue();
14636}
14637
14638static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14639                                  const X86Subtarget *Subtarget) {
14640  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14641  //           (and (i32 x86isd::setcc_carry), 1)
14642  // This eliminates the zext. This transformation is necessary because
14643  // ISD::SETCC is always legalized to i8.
14644  DebugLoc dl = N->getDebugLoc();
14645  SDValue N0 = N->getOperand(0);
14646  EVT VT = N->getValueType(0);
14647  EVT OpVT = N0.getValueType();
14648
14649  if (N0.getOpcode() == ISD::AND &&
14650      N0.hasOneUse() &&
14651      N0.getOperand(0).hasOneUse()) {
14652    SDValue N00 = N0.getOperand(0);
14653    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14654      return SDValue();
14655    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14656    if (!C || C->getZExtValue() != 1)
14657      return SDValue();
14658    return DAG.getNode(ISD::AND, dl, VT,
14659                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14660                                   N00.getOperand(0), N00.getOperand(1)),
14661                       DAG.getConstant(1, VT));
14662  }
14663  // Optimize vectors in AVX mode:
14664  //
14665  //   v8i16 -> v8i32
14666  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14667  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14668  //   Concat upper and lower parts.
14669  //
14670  //   v4i32 -> v4i64
14671  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14672  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14673  //   Concat upper and lower parts.
14674  //
14675  if (Subtarget->hasAVX()) {
14676
14677    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14678      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14679
14680      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14681      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14682      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14683
14684      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14685        VT.getVectorNumElements()/2);
14686
14687      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14688      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14689
14690      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14691    }
14692  }
14693
14694
14695  return SDValue();
14696}
14697
14698// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14699static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14700  unsigned X86CC = N->getConstantOperandVal(0);
14701  SDValue EFLAG = N->getOperand(1);
14702  DebugLoc DL = N->getDebugLoc();
14703
14704  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14705  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14706  // cases.
14707  if (X86CC == X86::COND_B)
14708    return DAG.getNode(ISD::AND, DL, MVT::i8,
14709                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14710                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14711                       DAG.getConstant(1, MVT::i8));
14712
14713  return SDValue();
14714}
14715
14716static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14717                                        const X86TargetLowering *XTLI) {
14718  SDValue Op0 = N->getOperand(0);
14719  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14720  // a 32-bit target where SSE doesn't support i64->FP operations.
14721  if (Op0.getOpcode() == ISD::LOAD) {
14722    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14723    EVT VT = Ld->getValueType(0);
14724    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14725        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14726        !XTLI->getSubtarget()->is64Bit() &&
14727        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14728      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14729                                          Ld->getChain(), Op0, DAG);
14730      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14731      return FILDChain;
14732    }
14733  }
14734  return SDValue();
14735}
14736
14737// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14738static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14739                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14740  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14741  // the result is either zero or one (depending on the input carry bit).
14742  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14743  if (X86::isZeroNode(N->getOperand(0)) &&
14744      X86::isZeroNode(N->getOperand(1)) &&
14745      // We don't have a good way to replace an EFLAGS use, so only do this when
14746      // dead right now.
14747      SDValue(N, 1).use_empty()) {
14748    DebugLoc DL = N->getDebugLoc();
14749    EVT VT = N->getValueType(0);
14750    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14751    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14752                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14753                                           DAG.getConstant(X86::COND_B,MVT::i8),
14754                                           N->getOperand(2)),
14755                               DAG.getConstant(1, VT));
14756    return DCI.CombineTo(N, Res1, CarryOut);
14757  }
14758
14759  return SDValue();
14760}
14761
14762// fold (add Y, (sete  X, 0)) -> adc  0, Y
14763//      (add Y, (setne X, 0)) -> sbb -1, Y
14764//      (sub (sete  X, 0), Y) -> sbb  0, Y
14765//      (sub (setne X, 0), Y) -> adc -1, Y
14766static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14767  DebugLoc DL = N->getDebugLoc();
14768
14769  // Look through ZExts.
14770  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14771  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14772    return SDValue();
14773
14774  SDValue SetCC = Ext.getOperand(0);
14775  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14776    return SDValue();
14777
14778  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14779  if (CC != X86::COND_E && CC != X86::COND_NE)
14780    return SDValue();
14781
14782  SDValue Cmp = SetCC.getOperand(1);
14783  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14784      !X86::isZeroNode(Cmp.getOperand(1)) ||
14785      !Cmp.getOperand(0).getValueType().isInteger())
14786    return SDValue();
14787
14788  SDValue CmpOp0 = Cmp.getOperand(0);
14789  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14790                               DAG.getConstant(1, CmpOp0.getValueType()));
14791
14792  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14793  if (CC == X86::COND_NE)
14794    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14795                       DL, OtherVal.getValueType(), OtherVal,
14796                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14797  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14798                     DL, OtherVal.getValueType(), OtherVal,
14799                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14800}
14801
14802/// PerformADDCombine - Do target-specific dag combines on integer adds.
14803static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14804                                 const X86Subtarget *Subtarget) {
14805  EVT VT = N->getValueType(0);
14806  SDValue Op0 = N->getOperand(0);
14807  SDValue Op1 = N->getOperand(1);
14808
14809  // Try to synthesize horizontal adds from adds of shuffles.
14810  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14811       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14812      isHorizontalBinOp(Op0, Op1, true))
14813    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14814
14815  return OptimizeConditionalInDecrement(N, DAG);
14816}
14817
14818static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14819                                 const X86Subtarget *Subtarget) {
14820  SDValue Op0 = N->getOperand(0);
14821  SDValue Op1 = N->getOperand(1);
14822
14823  // X86 can't encode an immediate LHS of a sub. See if we can push the
14824  // negation into a preceding instruction.
14825  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14826    // If the RHS of the sub is a XOR with one use and a constant, invert the
14827    // immediate. Then add one to the LHS of the sub so we can turn
14828    // X-Y -> X+~Y+1, saving one register.
14829    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14830        isa<ConstantSDNode>(Op1.getOperand(1))) {
14831      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14832      EVT VT = Op0.getValueType();
14833      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14834                                   Op1.getOperand(0),
14835                                   DAG.getConstant(~XorC, VT));
14836      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14837                         DAG.getConstant(C->getAPIntValue()+1, VT));
14838    }
14839  }
14840
14841  // Try to synthesize horizontal adds from adds of shuffles.
14842  EVT VT = N->getValueType(0);
14843  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14844       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14845      isHorizontalBinOp(Op0, Op1, true))
14846    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14847
14848  return OptimizeConditionalInDecrement(N, DAG);
14849}
14850
14851SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14852                                             DAGCombinerInfo &DCI) const {
14853  SelectionDAG &DAG = DCI.DAG;
14854  switch (N->getOpcode()) {
14855  default: break;
14856  case ISD::EXTRACT_VECTOR_ELT:
14857    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14858  case ISD::VSELECT:
14859  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14860  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14861  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14862  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14863  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14864  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14865  case ISD::SHL:
14866  case ISD::SRA:
14867  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
14868  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14869  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14870  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14871  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14872  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14873  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14874  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14875  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14876  case X86ISD::FXOR:
14877  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14878  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14879  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14880  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14881  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14882  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
14883  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
14884  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14885  case X86ISD::SHUFP:       // Handle all target specific shuffles
14886  case X86ISD::PALIGN:
14887  case X86ISD::UNPCKH:
14888  case X86ISD::UNPCKL:
14889  case X86ISD::MOVHLPS:
14890  case X86ISD::MOVLHPS:
14891  case X86ISD::PSHUFD:
14892  case X86ISD::PSHUFHW:
14893  case X86ISD::PSHUFLW:
14894  case X86ISD::MOVSS:
14895  case X86ISD::MOVSD:
14896  case X86ISD::VPERMILP:
14897  case X86ISD::VPERM2X128:
14898  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14899  }
14900
14901  return SDValue();
14902}
14903
14904/// isTypeDesirableForOp - Return true if the target has native support for
14905/// the specified value type and it is 'desirable' to use the type for the
14906/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14907/// instruction encodings are longer and some i16 instructions are slow.
14908bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14909  if (!isTypeLegal(VT))
14910    return false;
14911  if (VT != MVT::i16)
14912    return true;
14913
14914  switch (Opc) {
14915  default:
14916    return true;
14917  case ISD::LOAD:
14918  case ISD::SIGN_EXTEND:
14919  case ISD::ZERO_EXTEND:
14920  case ISD::ANY_EXTEND:
14921  case ISD::SHL:
14922  case ISD::SRL:
14923  case ISD::SUB:
14924  case ISD::ADD:
14925  case ISD::MUL:
14926  case ISD::AND:
14927  case ISD::OR:
14928  case ISD::XOR:
14929    return false;
14930  }
14931}
14932
14933/// IsDesirableToPromoteOp - This method query the target whether it is
14934/// beneficial for dag combiner to promote the specified node. If true, it
14935/// should return the desired promotion type by reference.
14936bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14937  EVT VT = Op.getValueType();
14938  if (VT != MVT::i16)
14939    return false;
14940
14941  bool Promote = false;
14942  bool Commute = false;
14943  switch (Op.getOpcode()) {
14944  default: break;
14945  case ISD::LOAD: {
14946    LoadSDNode *LD = cast<LoadSDNode>(Op);
14947    // If the non-extending load has a single use and it's not live out, then it
14948    // might be folded.
14949    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14950                                                     Op.hasOneUse()*/) {
14951      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14952             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14953        // The only case where we'd want to promote LOAD (rather then it being
14954        // promoted as an operand is when it's only use is liveout.
14955        if (UI->getOpcode() != ISD::CopyToReg)
14956          return false;
14957      }
14958    }
14959    Promote = true;
14960    break;
14961  }
14962  case ISD::SIGN_EXTEND:
14963  case ISD::ZERO_EXTEND:
14964  case ISD::ANY_EXTEND:
14965    Promote = true;
14966    break;
14967  case ISD::SHL:
14968  case ISD::SRL: {
14969    SDValue N0 = Op.getOperand(0);
14970    // Look out for (store (shl (load), x)).
14971    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14972      return false;
14973    Promote = true;
14974    break;
14975  }
14976  case ISD::ADD:
14977  case ISD::MUL:
14978  case ISD::AND:
14979  case ISD::OR:
14980  case ISD::XOR:
14981    Commute = true;
14982    // fallthrough
14983  case ISD::SUB: {
14984    SDValue N0 = Op.getOperand(0);
14985    SDValue N1 = Op.getOperand(1);
14986    if (!Commute && MayFoldLoad(N1))
14987      return false;
14988    // Avoid disabling potential load folding opportunities.
14989    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14990      return false;
14991    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14992      return false;
14993    Promote = true;
14994  }
14995  }
14996
14997  PVT = MVT::i32;
14998  return Promote;
14999}
15000
15001//===----------------------------------------------------------------------===//
15002//                           X86 Inline Assembly Support
15003//===----------------------------------------------------------------------===//
15004
15005namespace {
15006  // Helper to match a string separated by whitespace.
15007  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15008    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15009
15010    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15011      StringRef piece(*args[i]);
15012      if (!s.startswith(piece)) // Check if the piece matches.
15013        return false;
15014
15015      s = s.substr(piece.size());
15016      StringRef::size_type pos = s.find_first_not_of(" \t");
15017      if (pos == 0) // We matched a prefix.
15018        return false;
15019
15020      s = s.substr(pos);
15021    }
15022
15023    return s.empty();
15024  }
15025  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15026}
15027
15028bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15029  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15030
15031  std::string AsmStr = IA->getAsmString();
15032
15033  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15034  if (!Ty || Ty->getBitWidth() % 16 != 0)
15035    return false;
15036
15037  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15038  SmallVector<StringRef, 4> AsmPieces;
15039  SplitString(AsmStr, AsmPieces, ";\n");
15040
15041  switch (AsmPieces.size()) {
15042  default: return false;
15043  case 1:
15044    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15045    // we will turn this bswap into something that will be lowered to logical
15046    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15047    // lower so don't worry about this.
15048    // bswap $0
15049    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15050        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15051        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15052        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15053        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15054        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15055      // No need to check constraints, nothing other than the equivalent of
15056      // "=r,0" would be valid here.
15057      return IntrinsicLowering::LowerToByteSwap(CI);
15058    }
15059
15060    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15061    if (CI->getType()->isIntegerTy(16) &&
15062        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15063        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15064         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15065      AsmPieces.clear();
15066      const std::string &ConstraintsStr = IA->getConstraintString();
15067      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15068      std::sort(AsmPieces.begin(), AsmPieces.end());
15069      if (AsmPieces.size() == 4 &&
15070          AsmPieces[0] == "~{cc}" &&
15071          AsmPieces[1] == "~{dirflag}" &&
15072          AsmPieces[2] == "~{flags}" &&
15073          AsmPieces[3] == "~{fpsr}")
15074      return IntrinsicLowering::LowerToByteSwap(CI);
15075    }
15076    break;
15077  case 3:
15078    if (CI->getType()->isIntegerTy(32) &&
15079        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15080        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15081        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15082        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15083      AsmPieces.clear();
15084      const std::string &ConstraintsStr = IA->getConstraintString();
15085      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15086      std::sort(AsmPieces.begin(), AsmPieces.end());
15087      if (AsmPieces.size() == 4 &&
15088          AsmPieces[0] == "~{cc}" &&
15089          AsmPieces[1] == "~{dirflag}" &&
15090          AsmPieces[2] == "~{flags}" &&
15091          AsmPieces[3] == "~{fpsr}")
15092        return IntrinsicLowering::LowerToByteSwap(CI);
15093    }
15094
15095    if (CI->getType()->isIntegerTy(64)) {
15096      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15097      if (Constraints.size() >= 2 &&
15098          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15099          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15100        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15101        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15102            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15103            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15104          return IntrinsicLowering::LowerToByteSwap(CI);
15105      }
15106    }
15107    break;
15108  }
15109  return false;
15110}
15111
15112
15113
15114/// getConstraintType - Given a constraint letter, return the type of
15115/// constraint it is for this target.
15116X86TargetLowering::ConstraintType
15117X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15118  if (Constraint.size() == 1) {
15119    switch (Constraint[0]) {
15120    case 'R':
15121    case 'q':
15122    case 'Q':
15123    case 'f':
15124    case 't':
15125    case 'u':
15126    case 'y':
15127    case 'x':
15128    case 'Y':
15129    case 'l':
15130      return C_RegisterClass;
15131    case 'a':
15132    case 'b':
15133    case 'c':
15134    case 'd':
15135    case 'S':
15136    case 'D':
15137    case 'A':
15138      return C_Register;
15139    case 'I':
15140    case 'J':
15141    case 'K':
15142    case 'L':
15143    case 'M':
15144    case 'N':
15145    case 'G':
15146    case 'C':
15147    case 'e':
15148    case 'Z':
15149      return C_Other;
15150    default:
15151      break;
15152    }
15153  }
15154  return TargetLowering::getConstraintType(Constraint);
15155}
15156
15157/// Examine constraint type and operand type and determine a weight value.
15158/// This object must already have been set up with the operand type
15159/// and the current alternative constraint selected.
15160TargetLowering::ConstraintWeight
15161  X86TargetLowering::getSingleConstraintMatchWeight(
15162    AsmOperandInfo &info, const char *constraint) const {
15163  ConstraintWeight weight = CW_Invalid;
15164  Value *CallOperandVal = info.CallOperandVal;
15165    // If we don't have a value, we can't do a match,
15166    // but allow it at the lowest weight.
15167  if (CallOperandVal == NULL)
15168    return CW_Default;
15169  Type *type = CallOperandVal->getType();
15170  // Look at the constraint type.
15171  switch (*constraint) {
15172  default:
15173    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15174  case 'R':
15175  case 'q':
15176  case 'Q':
15177  case 'a':
15178  case 'b':
15179  case 'c':
15180  case 'd':
15181  case 'S':
15182  case 'D':
15183  case 'A':
15184    if (CallOperandVal->getType()->isIntegerTy())
15185      weight = CW_SpecificReg;
15186    break;
15187  case 'f':
15188  case 't':
15189  case 'u':
15190      if (type->isFloatingPointTy())
15191        weight = CW_SpecificReg;
15192      break;
15193  case 'y':
15194      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15195        weight = CW_SpecificReg;
15196      break;
15197  case 'x':
15198  case 'Y':
15199    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15200        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15201      weight = CW_Register;
15202    break;
15203  case 'I':
15204    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15205      if (C->getZExtValue() <= 31)
15206        weight = CW_Constant;
15207    }
15208    break;
15209  case 'J':
15210    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15211      if (C->getZExtValue() <= 63)
15212        weight = CW_Constant;
15213    }
15214    break;
15215  case 'K':
15216    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15217      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15218        weight = CW_Constant;
15219    }
15220    break;
15221  case 'L':
15222    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15223      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15224        weight = CW_Constant;
15225    }
15226    break;
15227  case 'M':
15228    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15229      if (C->getZExtValue() <= 3)
15230        weight = CW_Constant;
15231    }
15232    break;
15233  case 'N':
15234    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15235      if (C->getZExtValue() <= 0xff)
15236        weight = CW_Constant;
15237    }
15238    break;
15239  case 'G':
15240  case 'C':
15241    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15242      weight = CW_Constant;
15243    }
15244    break;
15245  case 'e':
15246    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15247      if ((C->getSExtValue() >= -0x80000000LL) &&
15248          (C->getSExtValue() <= 0x7fffffffLL))
15249        weight = CW_Constant;
15250    }
15251    break;
15252  case 'Z':
15253    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15254      if (C->getZExtValue() <= 0xffffffff)
15255        weight = CW_Constant;
15256    }
15257    break;
15258  }
15259  return weight;
15260}
15261
15262/// LowerXConstraint - try to replace an X constraint, which matches anything,
15263/// with another that has more specific requirements based on the type of the
15264/// corresponding operand.
15265const char *X86TargetLowering::
15266LowerXConstraint(EVT ConstraintVT) const {
15267  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15268  // 'f' like normal targets.
15269  if (ConstraintVT.isFloatingPoint()) {
15270    if (Subtarget->hasSSE2())
15271      return "Y";
15272    if (Subtarget->hasSSE1())
15273      return "x";
15274  }
15275
15276  return TargetLowering::LowerXConstraint(ConstraintVT);
15277}
15278
15279/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15280/// vector.  If it is invalid, don't add anything to Ops.
15281void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15282                                                     std::string &Constraint,
15283                                                     std::vector<SDValue>&Ops,
15284                                                     SelectionDAG &DAG) const {
15285  SDValue Result(0, 0);
15286
15287  // Only support length 1 constraints for now.
15288  if (Constraint.length() > 1) return;
15289
15290  char ConstraintLetter = Constraint[0];
15291  switch (ConstraintLetter) {
15292  default: break;
15293  case 'I':
15294    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15295      if (C->getZExtValue() <= 31) {
15296        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15297        break;
15298      }
15299    }
15300    return;
15301  case 'J':
15302    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15303      if (C->getZExtValue() <= 63) {
15304        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15305        break;
15306      }
15307    }
15308    return;
15309  case 'K':
15310    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15311      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15312        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15313        break;
15314      }
15315    }
15316    return;
15317  case 'N':
15318    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15319      if (C->getZExtValue() <= 255) {
15320        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15321        break;
15322      }
15323    }
15324    return;
15325  case 'e': {
15326    // 32-bit signed value
15327    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15328      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15329                                           C->getSExtValue())) {
15330        // Widen to 64 bits here to get it sign extended.
15331        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15332        break;
15333      }
15334    // FIXME gcc accepts some relocatable values here too, but only in certain
15335    // memory models; it's complicated.
15336    }
15337    return;
15338  }
15339  case 'Z': {
15340    // 32-bit unsigned value
15341    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15342      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15343                                           C->getZExtValue())) {
15344        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15345        break;
15346      }
15347    }
15348    // FIXME gcc accepts some relocatable values here too, but only in certain
15349    // memory models; it's complicated.
15350    return;
15351  }
15352  case 'i': {
15353    // Literal immediates are always ok.
15354    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15355      // Widen to 64 bits here to get it sign extended.
15356      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15357      break;
15358    }
15359
15360    // In any sort of PIC mode addresses need to be computed at runtime by
15361    // adding in a register or some sort of table lookup.  These can't
15362    // be used as immediates.
15363    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15364      return;
15365
15366    // If we are in non-pic codegen mode, we allow the address of a global (with
15367    // an optional displacement) to be used with 'i'.
15368    GlobalAddressSDNode *GA = 0;
15369    int64_t Offset = 0;
15370
15371    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15372    while (1) {
15373      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15374        Offset += GA->getOffset();
15375        break;
15376      } else if (Op.getOpcode() == ISD::ADD) {
15377        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15378          Offset += C->getZExtValue();
15379          Op = Op.getOperand(0);
15380          continue;
15381        }
15382      } else if (Op.getOpcode() == ISD::SUB) {
15383        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15384          Offset += -C->getZExtValue();
15385          Op = Op.getOperand(0);
15386          continue;
15387        }
15388      }
15389
15390      // Otherwise, this isn't something we can handle, reject it.
15391      return;
15392    }
15393
15394    const GlobalValue *GV = GA->getGlobal();
15395    // If we require an extra load to get this address, as in PIC mode, we
15396    // can't accept it.
15397    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15398                                                        getTargetMachine())))
15399      return;
15400
15401    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15402                                        GA->getValueType(0), Offset);
15403    break;
15404  }
15405  }
15406
15407  if (Result.getNode()) {
15408    Ops.push_back(Result);
15409    return;
15410  }
15411  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15412}
15413
15414std::pair<unsigned, const TargetRegisterClass*>
15415X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15416                                                EVT VT) const {
15417  // First, see if this is a constraint that directly corresponds to an LLVM
15418  // register class.
15419  if (Constraint.size() == 1) {
15420    // GCC Constraint Letters
15421    switch (Constraint[0]) {
15422    default: break;
15423      // TODO: Slight differences here in allocation order and leaving
15424      // RIP in the class. Do they matter any more here than they do
15425      // in the normal allocation?
15426    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15427      if (Subtarget->is64Bit()) {
15428	if (VT == MVT::i32 || VT == MVT::f32)
15429	  return std::make_pair(0U, X86::GR32RegisterClass);
15430	else if (VT == MVT::i16)
15431	  return std::make_pair(0U, X86::GR16RegisterClass);
15432	else if (VT == MVT::i8 || VT == MVT::i1)
15433	  return std::make_pair(0U, X86::GR8RegisterClass);
15434	else if (VT == MVT::i64 || VT == MVT::f64)
15435	  return std::make_pair(0U, X86::GR64RegisterClass);
15436	break;
15437      }
15438      // 32-bit fallthrough
15439    case 'Q':   // Q_REGS
15440      if (VT == MVT::i32 || VT == MVT::f32)
15441	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15442      else if (VT == MVT::i16)
15443	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15444      else if (VT == MVT::i8 || VT == MVT::i1)
15445	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15446      else if (VT == MVT::i64)
15447	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15448      break;
15449    case 'r':   // GENERAL_REGS
15450    case 'l':   // INDEX_REGS
15451      if (VT == MVT::i8 || VT == MVT::i1)
15452        return std::make_pair(0U, X86::GR8RegisterClass);
15453      if (VT == MVT::i16)
15454        return std::make_pair(0U, X86::GR16RegisterClass);
15455      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15456        return std::make_pair(0U, X86::GR32RegisterClass);
15457      return std::make_pair(0U, X86::GR64RegisterClass);
15458    case 'R':   // LEGACY_REGS
15459      if (VT == MVT::i8 || VT == MVT::i1)
15460        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15461      if (VT == MVT::i16)
15462        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15463      if (VT == MVT::i32 || !Subtarget->is64Bit())
15464        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15465      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15466    case 'f':  // FP Stack registers.
15467      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15468      // value to the correct fpstack register class.
15469      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15470        return std::make_pair(0U, X86::RFP32RegisterClass);
15471      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15472        return std::make_pair(0U, X86::RFP64RegisterClass);
15473      return std::make_pair(0U, X86::RFP80RegisterClass);
15474    case 'y':   // MMX_REGS if MMX allowed.
15475      if (!Subtarget->hasMMX()) break;
15476      return std::make_pair(0U, X86::VR64RegisterClass);
15477    case 'Y':   // SSE_REGS if SSE2 allowed
15478      if (!Subtarget->hasSSE2()) break;
15479      // FALL THROUGH.
15480    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15481      if (!Subtarget->hasSSE1()) break;
15482
15483      switch (VT.getSimpleVT().SimpleTy) {
15484      default: break;
15485      // Scalar SSE types.
15486      case MVT::f32:
15487      case MVT::i32:
15488        return std::make_pair(0U, X86::FR32RegisterClass);
15489      case MVT::f64:
15490      case MVT::i64:
15491        return std::make_pair(0U, X86::FR64RegisterClass);
15492      // Vector types.
15493      case MVT::v16i8:
15494      case MVT::v8i16:
15495      case MVT::v4i32:
15496      case MVT::v2i64:
15497      case MVT::v4f32:
15498      case MVT::v2f64:
15499        return std::make_pair(0U, X86::VR128RegisterClass);
15500      // AVX types.
15501      case MVT::v32i8:
15502      case MVT::v16i16:
15503      case MVT::v8i32:
15504      case MVT::v4i64:
15505      case MVT::v8f32:
15506      case MVT::v4f64:
15507        return std::make_pair(0U, X86::VR256RegisterClass);
15508
15509      }
15510      break;
15511    }
15512  }
15513
15514  // Use the default implementation in TargetLowering to convert the register
15515  // constraint into a member of a register class.
15516  std::pair<unsigned, const TargetRegisterClass*> Res;
15517  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15518
15519  // Not found as a standard register?
15520  if (Res.second == 0) {
15521    // Map st(0) -> st(7) -> ST0
15522    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15523        tolower(Constraint[1]) == 's' &&
15524        tolower(Constraint[2]) == 't' &&
15525        Constraint[3] == '(' &&
15526        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15527        Constraint[5] == ')' &&
15528        Constraint[6] == '}') {
15529
15530      Res.first = X86::ST0+Constraint[4]-'0';
15531      Res.second = X86::RFP80RegisterClass;
15532      return Res;
15533    }
15534
15535    // GCC allows "st(0)" to be called just plain "st".
15536    if (StringRef("{st}").equals_lower(Constraint)) {
15537      Res.first = X86::ST0;
15538      Res.second = X86::RFP80RegisterClass;
15539      return Res;
15540    }
15541
15542    // flags -> EFLAGS
15543    if (StringRef("{flags}").equals_lower(Constraint)) {
15544      Res.first = X86::EFLAGS;
15545      Res.second = X86::CCRRegisterClass;
15546      return Res;
15547    }
15548
15549    // 'A' means EAX + EDX.
15550    if (Constraint == "A") {
15551      Res.first = X86::EAX;
15552      Res.second = X86::GR32_ADRegisterClass;
15553      return Res;
15554    }
15555    return Res;
15556  }
15557
15558  // Otherwise, check to see if this is a register class of the wrong value
15559  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15560  // turn into {ax},{dx}.
15561  if (Res.second->hasType(VT))
15562    return Res;   // Correct type already, nothing to do.
15563
15564  // All of the single-register GCC register classes map their values onto
15565  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15566  // really want an 8-bit or 32-bit register, map to the appropriate register
15567  // class and return the appropriate register.
15568  if (Res.second == X86::GR16RegisterClass) {
15569    if (VT == MVT::i8) {
15570      unsigned DestReg = 0;
15571      switch (Res.first) {
15572      default: break;
15573      case X86::AX: DestReg = X86::AL; break;
15574      case X86::DX: DestReg = X86::DL; break;
15575      case X86::CX: DestReg = X86::CL; break;
15576      case X86::BX: DestReg = X86::BL; break;
15577      }
15578      if (DestReg) {
15579        Res.first = DestReg;
15580        Res.second = X86::GR8RegisterClass;
15581      }
15582    } else if (VT == MVT::i32) {
15583      unsigned DestReg = 0;
15584      switch (Res.first) {
15585      default: break;
15586      case X86::AX: DestReg = X86::EAX; break;
15587      case X86::DX: DestReg = X86::EDX; break;
15588      case X86::CX: DestReg = X86::ECX; break;
15589      case X86::BX: DestReg = X86::EBX; break;
15590      case X86::SI: DestReg = X86::ESI; break;
15591      case X86::DI: DestReg = X86::EDI; break;
15592      case X86::BP: DestReg = X86::EBP; break;
15593      case X86::SP: DestReg = X86::ESP; break;
15594      }
15595      if (DestReg) {
15596        Res.first = DestReg;
15597        Res.second = X86::GR32RegisterClass;
15598      }
15599    } else if (VT == MVT::i64) {
15600      unsigned DestReg = 0;
15601      switch (Res.first) {
15602      default: break;
15603      case X86::AX: DestReg = X86::RAX; break;
15604      case X86::DX: DestReg = X86::RDX; break;
15605      case X86::CX: DestReg = X86::RCX; break;
15606      case X86::BX: DestReg = X86::RBX; break;
15607      case X86::SI: DestReg = X86::RSI; break;
15608      case X86::DI: DestReg = X86::RDI; break;
15609      case X86::BP: DestReg = X86::RBP; break;
15610      case X86::SP: DestReg = X86::RSP; break;
15611      }
15612      if (DestReg) {
15613        Res.first = DestReg;
15614        Res.second = X86::GR64RegisterClass;
15615      }
15616    }
15617  } else if (Res.second == X86::FR32RegisterClass ||
15618             Res.second == X86::FR64RegisterClass ||
15619             Res.second == X86::VR128RegisterClass) {
15620    // Handle references to XMM physical registers that got mapped into the
15621    // wrong class.  This can happen with constraints like {xmm0} where the
15622    // target independent register mapper will just pick the first match it can
15623    // find, ignoring the required type.
15624    if (VT == MVT::f32)
15625      Res.second = X86::FR32RegisterClass;
15626    else if (VT == MVT::f64)
15627      Res.second = X86::FR64RegisterClass;
15628    else if (X86::VR128RegisterClass->hasType(VT))
15629      Res.second = X86::VR128RegisterClass;
15630  }
15631
15632  return Res;
15633}
15634