X86ISelLowering.cpp revision 5f1d8abf759ab3553abe5e7ed40174bc57a985c8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
172  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
453  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
930
931    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
932    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
933    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
934
935    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
936    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
937  }
938
939  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
940    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
941
942  if (!UseSoftFloat && Subtarget->hasAVX()) {
943    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
944    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
948    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
949
950    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
952    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
953
954    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
958    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
959    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
960
961    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
965    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
966    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
967
968    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
969    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
970    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
971
972    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
973    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
974    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
975    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
976    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
977    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
978
979    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
980    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
981    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
982    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
983
984    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
985    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
987    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
988
989    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
990    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
991
992    setOperationAction(ISD::VSETCC,            MVT::v8i32, Custom);
993    setOperationAction(ISD::VSETCC,            MVT::v4i64, Custom);
994
995    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
996    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
997    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
998
999    // Custom lower several nodes for 256-bit types.
1000    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1001                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1002      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1003      EVT VT = SVT;
1004
1005      // Extract subvector is special because the value type
1006      // (result) is 128-bit but the source is 256-bit wide.
1007      if (VT.is128BitVector())
1008        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1009
1010      // Do not attempt to custom lower other non-256-bit vectors
1011      if (!VT.is256BitVector())
1012        continue;
1013
1014      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1015      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1016      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1017      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1018      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1019      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1020    }
1021
1022    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1023    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1024      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1025      EVT VT = SVT;
1026
1027      // Do not attempt to promote non-256-bit vectors
1028      if (!VT.is256BitVector())
1029        continue;
1030
1031      setOperationAction(ISD::AND,    SVT, Promote);
1032      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1033      setOperationAction(ISD::OR,     SVT, Promote);
1034      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1035      setOperationAction(ISD::XOR,    SVT, Promote);
1036      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1037      setOperationAction(ISD::LOAD,   SVT, Promote);
1038      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1039      setOperationAction(ISD::SELECT, SVT, Promote);
1040      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1041    }
1042  }
1043
1044  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1045  // of this type with custom code.
1046  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1047         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1048    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1049  }
1050
1051  // We want to custom lower some of our intrinsics.
1052  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1053
1054
1055  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1056  // handle type legalization for these operations here.
1057  //
1058  // FIXME: We really should do custom legalization for addition and
1059  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1060  // than generic legalization for 64-bit multiplication-with-overflow, though.
1061  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1062    // Add/Sub/Mul with overflow operations are custom lowered.
1063    MVT VT = IntVTs[i];
1064    setOperationAction(ISD::SADDO, VT, Custom);
1065    setOperationAction(ISD::UADDO, VT, Custom);
1066    setOperationAction(ISD::SSUBO, VT, Custom);
1067    setOperationAction(ISD::USUBO, VT, Custom);
1068    setOperationAction(ISD::SMULO, VT, Custom);
1069    setOperationAction(ISD::UMULO, VT, Custom);
1070  }
1071
1072  // There are no 8-bit 3-address imul/mul instructions
1073  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1074  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1075
1076  if (!Subtarget->is64Bit()) {
1077    // These libcalls are not available in 32-bit.
1078    setLibcallName(RTLIB::SHL_I128, 0);
1079    setLibcallName(RTLIB::SRL_I128, 0);
1080    setLibcallName(RTLIB::SRA_I128, 0);
1081  }
1082
1083  // We have target-specific dag combine patterns for the following nodes:
1084  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1085  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1086  setTargetDAGCombine(ISD::BUILD_VECTOR);
1087  setTargetDAGCombine(ISD::SELECT);
1088  setTargetDAGCombine(ISD::SHL);
1089  setTargetDAGCombine(ISD::SRA);
1090  setTargetDAGCombine(ISD::SRL);
1091  setTargetDAGCombine(ISD::OR);
1092  setTargetDAGCombine(ISD::AND);
1093  setTargetDAGCombine(ISD::ADD);
1094  setTargetDAGCombine(ISD::SUB);
1095  setTargetDAGCombine(ISD::STORE);
1096  setTargetDAGCombine(ISD::ZERO_EXTEND);
1097  setTargetDAGCombine(ISD::SINT_TO_FP);
1098  if (Subtarget->is64Bit())
1099    setTargetDAGCombine(ISD::MUL);
1100
1101  computeRegisterProperties();
1102
1103  // On Darwin, -Os means optimize for size without hurting performance,
1104  // do not reduce the limit.
1105  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1106  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1107  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1108  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1109  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1110  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1111  setPrefLoopAlignment(16);
1112  benefitFromCodePlacementOpt = true;
1113
1114  setPrefFunctionAlignment(4);
1115}
1116
1117
1118MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1119  return MVT::i8;
1120}
1121
1122
1123/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1124/// the desired ByVal argument alignment.
1125static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1126  if (MaxAlign == 16)
1127    return;
1128  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1129    if (VTy->getBitWidth() == 128)
1130      MaxAlign = 16;
1131  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1132    unsigned EltAlign = 0;
1133    getMaxByValAlign(ATy->getElementType(), EltAlign);
1134    if (EltAlign > MaxAlign)
1135      MaxAlign = EltAlign;
1136  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1137    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1138      unsigned EltAlign = 0;
1139      getMaxByValAlign(STy->getElementType(i), EltAlign);
1140      if (EltAlign > MaxAlign)
1141        MaxAlign = EltAlign;
1142      if (MaxAlign == 16)
1143        break;
1144    }
1145  }
1146  return;
1147}
1148
1149/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1150/// function arguments in the caller parameter area. For X86, aggregates
1151/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1152/// are at 4-byte boundaries.
1153unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1154  if (Subtarget->is64Bit()) {
1155    // Max of 8 and alignment of type.
1156    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1157    if (TyAlign > 8)
1158      return TyAlign;
1159    return 8;
1160  }
1161
1162  unsigned Align = 4;
1163  if (Subtarget->hasXMM())
1164    getMaxByValAlign(Ty, Align);
1165  return Align;
1166}
1167
1168/// getOptimalMemOpType - Returns the target specific optimal type for load
1169/// and store operations as a result of memset, memcpy, and memmove
1170/// lowering. If DstAlign is zero that means it's safe to destination
1171/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1172/// means there isn't a need to check it against alignment requirement,
1173/// probably because the source does not need to be loaded. If
1174/// 'NonScalarIntSafe' is true, that means it's safe to return a
1175/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1176/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1177/// constant so it does not need to be loaded.
1178/// It returns EVT::Other if the type should be determined using generic
1179/// target-independent logic.
1180EVT
1181X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1182                                       unsigned DstAlign, unsigned SrcAlign,
1183                                       bool NonScalarIntSafe,
1184                                       bool MemcpyStrSrc,
1185                                       MachineFunction &MF) const {
1186  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1187  // linux.  This is because the stack realignment code can't handle certain
1188  // cases like PR2962.  This should be removed when PR2962 is fixed.
1189  const Function *F = MF.getFunction();
1190  if (NonScalarIntSafe &&
1191      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1192    if (Size >= 16 &&
1193        (Subtarget->isUnalignedMemAccessFast() ||
1194         ((DstAlign == 0 || DstAlign >= 16) &&
1195          (SrcAlign == 0 || SrcAlign >= 16))) &&
1196        Subtarget->getStackAlignment() >= 16) {
1197      if (Subtarget->hasSSE2())
1198        return MVT::v4i32;
1199      if (Subtarget->hasSSE1())
1200        return MVT::v4f32;
1201    } else if (!MemcpyStrSrc && Size >= 8 &&
1202               !Subtarget->is64Bit() &&
1203               Subtarget->getStackAlignment() >= 8 &&
1204               Subtarget->hasXMMInt()) {
1205      // Do not use f64 to lower memcpy if source is string constant. It's
1206      // better to use i32 to avoid the loads.
1207      return MVT::f64;
1208    }
1209  }
1210  if (Subtarget->is64Bit() && Size >= 8)
1211    return MVT::i64;
1212  return MVT::i32;
1213}
1214
1215/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1216/// current function.  The returned value is a member of the
1217/// MachineJumpTableInfo::JTEntryKind enum.
1218unsigned X86TargetLowering::getJumpTableEncoding() const {
1219  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1220  // symbol.
1221  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1222      Subtarget->isPICStyleGOT())
1223    return MachineJumpTableInfo::EK_Custom32;
1224
1225  // Otherwise, use the normal jump table encoding heuristics.
1226  return TargetLowering::getJumpTableEncoding();
1227}
1228
1229const MCExpr *
1230X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1231                                             const MachineBasicBlock *MBB,
1232                                             unsigned uid,MCContext &Ctx) const{
1233  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1234         Subtarget->isPICStyleGOT());
1235  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1236  // entries.
1237  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1238                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1239}
1240
1241/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1242/// jumptable.
1243SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1244                                                    SelectionDAG &DAG) const {
1245  if (!Subtarget->is64Bit())
1246    // This doesn't have DebugLoc associated with it, but is not really the
1247    // same as a Register.
1248    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1249  return Table;
1250}
1251
1252/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1253/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1254/// MCExpr.
1255const MCExpr *X86TargetLowering::
1256getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1257                             MCContext &Ctx) const {
1258  // X86-64 uses RIP relative addressing based on the jump table label.
1259  if (Subtarget->isPICStyleRIPRel())
1260    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1261
1262  // Otherwise, the reference is relative to the PIC base.
1263  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1264}
1265
1266// FIXME: Why this routine is here? Move to RegInfo!
1267std::pair<const TargetRegisterClass*, uint8_t>
1268X86TargetLowering::findRepresentativeClass(EVT VT) const{
1269  const TargetRegisterClass *RRC = 0;
1270  uint8_t Cost = 1;
1271  switch (VT.getSimpleVT().SimpleTy) {
1272  default:
1273    return TargetLowering::findRepresentativeClass(VT);
1274  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1275    RRC = (Subtarget->is64Bit()
1276           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1277    break;
1278  case MVT::x86mmx:
1279    RRC = X86::VR64RegisterClass;
1280    break;
1281  case MVT::f32: case MVT::f64:
1282  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1283  case MVT::v4f32: case MVT::v2f64:
1284  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1285  case MVT::v4f64:
1286    RRC = X86::VR128RegisterClass;
1287    break;
1288  }
1289  return std::make_pair(RRC, Cost);
1290}
1291
1292bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1293                                               unsigned &Offset) const {
1294  if (!Subtarget->isTargetLinux())
1295    return false;
1296
1297  if (Subtarget->is64Bit()) {
1298    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1299    Offset = 0x28;
1300    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1301      AddressSpace = 256;
1302    else
1303      AddressSpace = 257;
1304  } else {
1305    // %gs:0x14 on i386
1306    Offset = 0x14;
1307    AddressSpace = 256;
1308  }
1309  return true;
1310}
1311
1312
1313//===----------------------------------------------------------------------===//
1314//               Return Value Calling Convention Implementation
1315//===----------------------------------------------------------------------===//
1316
1317#include "X86GenCallingConv.inc"
1318
1319bool
1320X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1321				  MachineFunction &MF, bool isVarArg,
1322                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1323                        LLVMContext &Context) const {
1324  SmallVector<CCValAssign, 16> RVLocs;
1325  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1326                 RVLocs, Context);
1327  return CCInfo.CheckReturn(Outs, RetCC_X86);
1328}
1329
1330SDValue
1331X86TargetLowering::LowerReturn(SDValue Chain,
1332                               CallingConv::ID CallConv, bool isVarArg,
1333                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1334                               const SmallVectorImpl<SDValue> &OutVals,
1335                               DebugLoc dl, SelectionDAG &DAG) const {
1336  MachineFunction &MF = DAG.getMachineFunction();
1337  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1338
1339  SmallVector<CCValAssign, 16> RVLocs;
1340  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1341                 RVLocs, *DAG.getContext());
1342  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1343
1344  // Add the regs to the liveout set for the function.
1345  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1346  for (unsigned i = 0; i != RVLocs.size(); ++i)
1347    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1348      MRI.addLiveOut(RVLocs[i].getLocReg());
1349
1350  SDValue Flag;
1351
1352  SmallVector<SDValue, 6> RetOps;
1353  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1354  // Operand #1 = Bytes To Pop
1355  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1356                   MVT::i16));
1357
1358  // Copy the result values into the output registers.
1359  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1360    CCValAssign &VA = RVLocs[i];
1361    assert(VA.isRegLoc() && "Can only return in registers!");
1362    SDValue ValToCopy = OutVals[i];
1363    EVT ValVT = ValToCopy.getValueType();
1364
1365    // If this is x86-64, and we disabled SSE, we can't return FP values,
1366    // or SSE or MMX vectors.
1367    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1368         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1369          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1370      report_fatal_error("SSE register return with SSE disabled");
1371    }
1372    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1373    // llvm-gcc has never done it right and no one has noticed, so this
1374    // should be OK for now.
1375    if (ValVT == MVT::f64 &&
1376        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1377      report_fatal_error("SSE2 register return with SSE2 disabled");
1378
1379    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1380    // the RET instruction and handled by the FP Stackifier.
1381    if (VA.getLocReg() == X86::ST0 ||
1382        VA.getLocReg() == X86::ST1) {
1383      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1384      // change the value to the FP stack register class.
1385      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1386        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1387      RetOps.push_back(ValToCopy);
1388      // Don't emit a copytoreg.
1389      continue;
1390    }
1391
1392    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1393    // which is returned in RAX / RDX.
1394    if (Subtarget->is64Bit()) {
1395      if (ValVT == MVT::x86mmx) {
1396        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1397          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1398          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1399                                  ValToCopy);
1400          // If we don't have SSE2 available, convert to v4f32 so the generated
1401          // register is legal.
1402          if (!Subtarget->hasSSE2())
1403            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1404        }
1405      }
1406    }
1407
1408    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1409    Flag = Chain.getValue(1);
1410  }
1411
1412  // The x86-64 ABI for returning structs by value requires that we copy
1413  // the sret argument into %rax for the return. We saved the argument into
1414  // a virtual register in the entry block, so now we copy the value out
1415  // and into %rax.
1416  if (Subtarget->is64Bit() &&
1417      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1418    MachineFunction &MF = DAG.getMachineFunction();
1419    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1420    unsigned Reg = FuncInfo->getSRetReturnReg();
1421    assert(Reg &&
1422           "SRetReturnReg should have been set in LowerFormalArguments().");
1423    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1424
1425    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1426    Flag = Chain.getValue(1);
1427
1428    // RAX now acts like a return value.
1429    MRI.addLiveOut(X86::RAX);
1430  }
1431
1432  RetOps[0] = Chain;  // Update chain.
1433
1434  // Add the flag if we have it.
1435  if (Flag.getNode())
1436    RetOps.push_back(Flag);
1437
1438  return DAG.getNode(X86ISD::RET_FLAG, dl,
1439                     MVT::Other, &RetOps[0], RetOps.size());
1440}
1441
1442bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1443  if (N->getNumValues() != 1)
1444    return false;
1445  if (!N->hasNUsesOfValue(1, 0))
1446    return false;
1447
1448  SDNode *Copy = *N->use_begin();
1449  if (Copy->getOpcode() != ISD::CopyToReg &&
1450      Copy->getOpcode() != ISD::FP_EXTEND)
1451    return false;
1452
1453  bool HasRet = false;
1454  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1455       UI != UE; ++UI) {
1456    if (UI->getOpcode() != X86ISD::RET_FLAG)
1457      return false;
1458    HasRet = true;
1459  }
1460
1461  return HasRet;
1462}
1463
1464EVT
1465X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1466                                            ISD::NodeType ExtendKind) const {
1467  MVT ReturnMVT;
1468  // TODO: Is this also valid on 32-bit?
1469  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1470    ReturnMVT = MVT::i8;
1471  else
1472    ReturnMVT = MVT::i32;
1473
1474  EVT MinVT = getRegisterType(Context, ReturnMVT);
1475  return VT.bitsLT(MinVT) ? MinVT : VT;
1476}
1477
1478/// LowerCallResult - Lower the result values of a call into the
1479/// appropriate copies out of appropriate physical registers.
1480///
1481SDValue
1482X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1483                                   CallingConv::ID CallConv, bool isVarArg,
1484                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1485                                   DebugLoc dl, SelectionDAG &DAG,
1486                                   SmallVectorImpl<SDValue> &InVals) const {
1487
1488  // Assign locations to each value returned by this call.
1489  SmallVector<CCValAssign, 16> RVLocs;
1490  bool Is64Bit = Subtarget->is64Bit();
1491  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1492		 getTargetMachine(), RVLocs, *DAG.getContext());
1493  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1494
1495  // Copy all of the result registers out of their specified physreg.
1496  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1497    CCValAssign &VA = RVLocs[i];
1498    EVT CopyVT = VA.getValVT();
1499
1500    // If this is x86-64, and we disabled SSE, we can't return FP values
1501    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1502        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1503      report_fatal_error("SSE register return with SSE disabled");
1504    }
1505
1506    SDValue Val;
1507
1508    // If this is a call to a function that returns an fp value on the floating
1509    // point stack, we must guarantee the the value is popped from the stack, so
1510    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1511    // if the return value is not used. We use the FpPOP_RETVAL instruction
1512    // instead.
1513    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1514      // If we prefer to use the value in xmm registers, copy it out as f80 and
1515      // use a truncate to move it from fp stack reg to xmm reg.
1516      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1517      SDValue Ops[] = { Chain, InFlag };
1518      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1519                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1520      Val = Chain.getValue(0);
1521
1522      // Round the f80 to the right size, which also moves it to the appropriate
1523      // xmm register.
1524      if (CopyVT != VA.getValVT())
1525        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1526                          // This truncation won't change the value.
1527                          DAG.getIntPtrConstant(1));
1528    } else {
1529      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1530                                 CopyVT, InFlag).getValue(1);
1531      Val = Chain.getValue(0);
1532    }
1533    InFlag = Chain.getValue(2);
1534    InVals.push_back(Val);
1535  }
1536
1537  return Chain;
1538}
1539
1540
1541//===----------------------------------------------------------------------===//
1542//                C & StdCall & Fast Calling Convention implementation
1543//===----------------------------------------------------------------------===//
1544//  StdCall calling convention seems to be standard for many Windows' API
1545//  routines and around. It differs from C calling convention just a little:
1546//  callee should clean up the stack, not caller. Symbols should be also
1547//  decorated in some fancy way :) It doesn't support any vector arguments.
1548//  For info on fast calling convention see Fast Calling Convention (tail call)
1549//  implementation LowerX86_32FastCCCallTo.
1550
1551/// CallIsStructReturn - Determines whether a call uses struct return
1552/// semantics.
1553static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1554  if (Outs.empty())
1555    return false;
1556
1557  return Outs[0].Flags.isSRet();
1558}
1559
1560/// ArgsAreStructReturn - Determines whether a function uses struct
1561/// return semantics.
1562static bool
1563ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1564  if (Ins.empty())
1565    return false;
1566
1567  return Ins[0].Flags.isSRet();
1568}
1569
1570/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1571/// by "Src" to address "Dst" with size and alignment information specified by
1572/// the specific parameter attribute. The copy will be passed as a byval
1573/// function parameter.
1574static SDValue
1575CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1576                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1577                          DebugLoc dl) {
1578  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1579
1580  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1581                       /*isVolatile*/false, /*AlwaysInline=*/true,
1582                       MachinePointerInfo(), MachinePointerInfo());
1583}
1584
1585/// IsTailCallConvention - Return true if the calling convention is one that
1586/// supports tail call optimization.
1587static bool IsTailCallConvention(CallingConv::ID CC) {
1588  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1589}
1590
1591bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1592  if (!CI->isTailCall())
1593    return false;
1594
1595  CallSite CS(CI);
1596  CallingConv::ID CalleeCC = CS.getCallingConv();
1597  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1598    return false;
1599
1600  return true;
1601}
1602
1603/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1604/// a tailcall target by changing its ABI.
1605static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1606  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1607}
1608
1609SDValue
1610X86TargetLowering::LowerMemArgument(SDValue Chain,
1611                                    CallingConv::ID CallConv,
1612                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1613                                    DebugLoc dl, SelectionDAG &DAG,
1614                                    const CCValAssign &VA,
1615                                    MachineFrameInfo *MFI,
1616                                    unsigned i) const {
1617  // Create the nodes corresponding to a load from this parameter slot.
1618  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1619  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1620  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1621  EVT ValVT;
1622
1623  // If value is passed by pointer we have address passed instead of the value
1624  // itself.
1625  if (VA.getLocInfo() == CCValAssign::Indirect)
1626    ValVT = VA.getLocVT();
1627  else
1628    ValVT = VA.getValVT();
1629
1630  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1631  // changed with more analysis.
1632  // In case of tail call optimization mark all arguments mutable. Since they
1633  // could be overwritten by lowering of arguments in case of a tail call.
1634  if (Flags.isByVal()) {
1635    unsigned Bytes = Flags.getByValSize();
1636    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1637    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1638    return DAG.getFrameIndex(FI, getPointerTy());
1639  } else {
1640    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1641                                    VA.getLocMemOffset(), isImmutable);
1642    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1643    return DAG.getLoad(ValVT, dl, Chain, FIN,
1644                       MachinePointerInfo::getFixedStack(FI),
1645                       false, false, 0);
1646  }
1647}
1648
1649SDValue
1650X86TargetLowering::LowerFormalArguments(SDValue Chain,
1651                                        CallingConv::ID CallConv,
1652                                        bool isVarArg,
1653                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1654                                        DebugLoc dl,
1655                                        SelectionDAG &DAG,
1656                                        SmallVectorImpl<SDValue> &InVals)
1657                                          const {
1658  MachineFunction &MF = DAG.getMachineFunction();
1659  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1660
1661  const Function* Fn = MF.getFunction();
1662  if (Fn->hasExternalLinkage() &&
1663      Subtarget->isTargetCygMing() &&
1664      Fn->getName() == "main")
1665    FuncInfo->setForceFramePointer(true);
1666
1667  MachineFrameInfo *MFI = MF.getFrameInfo();
1668  bool Is64Bit = Subtarget->is64Bit();
1669  bool IsWin64 = Subtarget->isTargetWin64();
1670
1671  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1672         "Var args not supported with calling convention fastcc or ghc");
1673
1674  // Assign locations to all of the incoming arguments.
1675  SmallVector<CCValAssign, 16> ArgLocs;
1676  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1677                 ArgLocs, *DAG.getContext());
1678
1679  // Allocate shadow area for Win64
1680  if (IsWin64) {
1681    CCInfo.AllocateStack(32, 8);
1682  }
1683
1684  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1685
1686  unsigned LastVal = ~0U;
1687  SDValue ArgValue;
1688  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1689    CCValAssign &VA = ArgLocs[i];
1690    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1691    // places.
1692    assert(VA.getValNo() != LastVal &&
1693           "Don't support value assigned to multiple locs yet");
1694    LastVal = VA.getValNo();
1695
1696    if (VA.isRegLoc()) {
1697      EVT RegVT = VA.getLocVT();
1698      TargetRegisterClass *RC = NULL;
1699      if (RegVT == MVT::i32)
1700        RC = X86::GR32RegisterClass;
1701      else if (Is64Bit && RegVT == MVT::i64)
1702        RC = X86::GR64RegisterClass;
1703      else if (RegVT == MVT::f32)
1704        RC = X86::FR32RegisterClass;
1705      else if (RegVT == MVT::f64)
1706        RC = X86::FR64RegisterClass;
1707      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1708        RC = X86::VR256RegisterClass;
1709      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1710        RC = X86::VR128RegisterClass;
1711      else if (RegVT == MVT::x86mmx)
1712        RC = X86::VR64RegisterClass;
1713      else
1714        llvm_unreachable("Unknown argument type!");
1715
1716      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1717      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1718
1719      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1720      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1721      // right size.
1722      if (VA.getLocInfo() == CCValAssign::SExt)
1723        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1724                               DAG.getValueType(VA.getValVT()));
1725      else if (VA.getLocInfo() == CCValAssign::ZExt)
1726        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1727                               DAG.getValueType(VA.getValVT()));
1728      else if (VA.getLocInfo() == CCValAssign::BCvt)
1729        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1730
1731      if (VA.isExtInLoc()) {
1732        // Handle MMX values passed in XMM regs.
1733        if (RegVT.isVector()) {
1734          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1735                                 ArgValue);
1736        } else
1737          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1738      }
1739    } else {
1740      assert(VA.isMemLoc());
1741      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1742    }
1743
1744    // If value is passed via pointer - do a load.
1745    if (VA.getLocInfo() == CCValAssign::Indirect)
1746      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1747                             MachinePointerInfo(), false, false, 0);
1748
1749    InVals.push_back(ArgValue);
1750  }
1751
1752  // The x86-64 ABI for returning structs by value requires that we copy
1753  // the sret argument into %rax for the return. Save the argument into
1754  // a virtual register so that we can access it from the return points.
1755  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1756    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1757    unsigned Reg = FuncInfo->getSRetReturnReg();
1758    if (!Reg) {
1759      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1760      FuncInfo->setSRetReturnReg(Reg);
1761    }
1762    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1763    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1764  }
1765
1766  unsigned StackSize = CCInfo.getNextStackOffset();
1767  // Align stack specially for tail calls.
1768  if (FuncIsMadeTailCallSafe(CallConv))
1769    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1770
1771  // If the function takes variable number of arguments, make a frame index for
1772  // the start of the first vararg value... for expansion of llvm.va_start.
1773  if (isVarArg) {
1774    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1775                    CallConv != CallingConv::X86_ThisCall)) {
1776      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1777    }
1778    if (Is64Bit) {
1779      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1780
1781      // FIXME: We should really autogenerate these arrays
1782      static const unsigned GPR64ArgRegsWin64[] = {
1783        X86::RCX, X86::RDX, X86::R8,  X86::R9
1784      };
1785      static const unsigned GPR64ArgRegs64Bit[] = {
1786        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1787      };
1788      static const unsigned XMMArgRegs64Bit[] = {
1789        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1790        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1791      };
1792      const unsigned *GPR64ArgRegs;
1793      unsigned NumXMMRegs = 0;
1794
1795      if (IsWin64) {
1796        // The XMM registers which might contain var arg parameters are shadowed
1797        // in their paired GPR.  So we only need to save the GPR to their home
1798        // slots.
1799        TotalNumIntRegs = 4;
1800        GPR64ArgRegs = GPR64ArgRegsWin64;
1801      } else {
1802        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1803        GPR64ArgRegs = GPR64ArgRegs64Bit;
1804
1805        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1806      }
1807      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1808                                                       TotalNumIntRegs);
1809
1810      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1811      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1812             "SSE register cannot be used when SSE is disabled!");
1813      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1814             "SSE register cannot be used when SSE is disabled!");
1815      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1816        // Kernel mode asks for SSE to be disabled, so don't push them
1817        // on the stack.
1818        TotalNumXMMRegs = 0;
1819
1820      if (IsWin64) {
1821        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1822        // Get to the caller-allocated home save location.  Add 8 to account
1823        // for the return address.
1824        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1825        FuncInfo->setRegSaveFrameIndex(
1826          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1827        // Fixup to set vararg frame on shadow area (4 x i64).
1828        if (NumIntRegs < 4)
1829          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1830      } else {
1831        // For X86-64, if there are vararg parameters that are passed via
1832        // registers, then we must store them to their spots on the stack so they
1833        // may be loaded by deferencing the result of va_next.
1834        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1835        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1836        FuncInfo->setRegSaveFrameIndex(
1837          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1838                               false));
1839      }
1840
1841      // Store the integer parameter registers.
1842      SmallVector<SDValue, 8> MemOps;
1843      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1844                                        getPointerTy());
1845      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1846      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1847        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1848                                  DAG.getIntPtrConstant(Offset));
1849        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1850                                     X86::GR64RegisterClass);
1851        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1852        SDValue Store =
1853          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1854                       MachinePointerInfo::getFixedStack(
1855                         FuncInfo->getRegSaveFrameIndex(), Offset),
1856                       false, false, 0);
1857        MemOps.push_back(Store);
1858        Offset += 8;
1859      }
1860
1861      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1862        // Now store the XMM (fp + vector) parameter registers.
1863        SmallVector<SDValue, 11> SaveXMMOps;
1864        SaveXMMOps.push_back(Chain);
1865
1866        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1867        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1868        SaveXMMOps.push_back(ALVal);
1869
1870        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1871                               FuncInfo->getRegSaveFrameIndex()));
1872        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1873                               FuncInfo->getVarArgsFPOffset()));
1874
1875        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1876          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1877                                       X86::VR128RegisterClass);
1878          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1879          SaveXMMOps.push_back(Val);
1880        }
1881        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1882                                     MVT::Other,
1883                                     &SaveXMMOps[0], SaveXMMOps.size()));
1884      }
1885
1886      if (!MemOps.empty())
1887        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1888                            &MemOps[0], MemOps.size());
1889    }
1890  }
1891
1892  // Some CCs need callee pop.
1893  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1894    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1895  } else {
1896    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1897    // If this is an sret function, the return should pop the hidden pointer.
1898    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1899      FuncInfo->setBytesToPopOnReturn(4);
1900  }
1901
1902  if (!Is64Bit) {
1903    // RegSaveFrameIndex is X86-64 only.
1904    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1905    if (CallConv == CallingConv::X86_FastCall ||
1906        CallConv == CallingConv::X86_ThisCall)
1907      // fastcc functions can't have varargs.
1908      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1909  }
1910
1911  return Chain;
1912}
1913
1914SDValue
1915X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1916                                    SDValue StackPtr, SDValue Arg,
1917                                    DebugLoc dl, SelectionDAG &DAG,
1918                                    const CCValAssign &VA,
1919                                    ISD::ArgFlagsTy Flags) const {
1920  unsigned LocMemOffset = VA.getLocMemOffset();
1921  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1922  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1923  if (Flags.isByVal())
1924    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1925
1926  return DAG.getStore(Chain, dl, Arg, PtrOff,
1927                      MachinePointerInfo::getStack(LocMemOffset),
1928                      false, false, 0);
1929}
1930
1931/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1932/// optimization is performed and it is required.
1933SDValue
1934X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1935                                           SDValue &OutRetAddr, SDValue Chain,
1936                                           bool IsTailCall, bool Is64Bit,
1937                                           int FPDiff, DebugLoc dl) const {
1938  // Adjust the Return address stack slot.
1939  EVT VT = getPointerTy();
1940  OutRetAddr = getReturnAddressFrameIndex(DAG);
1941
1942  // Load the "old" Return address.
1943  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1944                           false, false, 0);
1945  return SDValue(OutRetAddr.getNode(), 1);
1946}
1947
1948/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1949/// optimization is performed and it is required (FPDiff!=0).
1950static SDValue
1951EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1952                         SDValue Chain, SDValue RetAddrFrIdx,
1953                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1954  // Store the return address to the appropriate stack slot.
1955  if (!FPDiff) return Chain;
1956  // Calculate the new stack slot for the return address.
1957  int SlotSize = Is64Bit ? 8 : 4;
1958  int NewReturnAddrFI =
1959    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1960  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1961  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1962  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1963                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1964                       false, false, 0);
1965  return Chain;
1966}
1967
1968SDValue
1969X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1970                             CallingConv::ID CallConv, bool isVarArg,
1971                             bool &isTailCall,
1972                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1973                             const SmallVectorImpl<SDValue> &OutVals,
1974                             const SmallVectorImpl<ISD::InputArg> &Ins,
1975                             DebugLoc dl, SelectionDAG &DAG,
1976                             SmallVectorImpl<SDValue> &InVals) const {
1977  MachineFunction &MF = DAG.getMachineFunction();
1978  bool Is64Bit        = Subtarget->is64Bit();
1979  bool IsWin64        = Subtarget->isTargetWin64();
1980  bool IsStructRet    = CallIsStructReturn(Outs);
1981  bool IsSibcall      = false;
1982
1983  if (isTailCall) {
1984    // Check if it's really possible to do a tail call.
1985    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1986                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1987                                                   Outs, OutVals, Ins, DAG);
1988
1989    // Sibcalls are automatically detected tailcalls which do not require
1990    // ABI changes.
1991    if (!GuaranteedTailCallOpt && isTailCall)
1992      IsSibcall = true;
1993
1994    if (isTailCall)
1995      ++NumTailCalls;
1996  }
1997
1998  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1999         "Var args not supported with calling convention fastcc or ghc");
2000
2001  // Analyze operands of the call, assigning locations to each operand.
2002  SmallVector<CCValAssign, 16> ArgLocs;
2003  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2004                 ArgLocs, *DAG.getContext());
2005
2006  // Allocate shadow area for Win64
2007  if (IsWin64) {
2008    CCInfo.AllocateStack(32, 8);
2009  }
2010
2011  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2012
2013  // Get a count of how many bytes are to be pushed on the stack.
2014  unsigned NumBytes = CCInfo.getNextStackOffset();
2015  if (IsSibcall)
2016    // This is a sibcall. The memory operands are available in caller's
2017    // own caller's stack.
2018    NumBytes = 0;
2019  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2020    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2021
2022  int FPDiff = 0;
2023  if (isTailCall && !IsSibcall) {
2024    // Lower arguments at fp - stackoffset + fpdiff.
2025    unsigned NumBytesCallerPushed =
2026      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2027    FPDiff = NumBytesCallerPushed - NumBytes;
2028
2029    // Set the delta of movement of the returnaddr stackslot.
2030    // But only set if delta is greater than previous delta.
2031    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2032      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2033  }
2034
2035  if (!IsSibcall)
2036    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2037
2038  SDValue RetAddrFrIdx;
2039  // Load return address for tail calls.
2040  if (isTailCall && FPDiff)
2041    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2042                                    Is64Bit, FPDiff, dl);
2043
2044  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2045  SmallVector<SDValue, 8> MemOpChains;
2046  SDValue StackPtr;
2047
2048  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2049  // of tail call optimization arguments are handle later.
2050  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2051    CCValAssign &VA = ArgLocs[i];
2052    EVT RegVT = VA.getLocVT();
2053    SDValue Arg = OutVals[i];
2054    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2055    bool isByVal = Flags.isByVal();
2056
2057    // Promote the value if needed.
2058    switch (VA.getLocInfo()) {
2059    default: llvm_unreachable("Unknown loc info!");
2060    case CCValAssign::Full: break;
2061    case CCValAssign::SExt:
2062      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2063      break;
2064    case CCValAssign::ZExt:
2065      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2066      break;
2067    case CCValAssign::AExt:
2068      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2069        // Special case: passing MMX values in XMM registers.
2070        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2071        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2072        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2073      } else
2074        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2075      break;
2076    case CCValAssign::BCvt:
2077      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2078      break;
2079    case CCValAssign::Indirect: {
2080      // Store the argument.
2081      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2082      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2083      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2084                           MachinePointerInfo::getFixedStack(FI),
2085                           false, false, 0);
2086      Arg = SpillSlot;
2087      break;
2088    }
2089    }
2090
2091    if (VA.isRegLoc()) {
2092      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2093      if (isVarArg && IsWin64) {
2094        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2095        // shadow reg if callee is a varargs function.
2096        unsigned ShadowReg = 0;
2097        switch (VA.getLocReg()) {
2098        case X86::XMM0: ShadowReg = X86::RCX; break;
2099        case X86::XMM1: ShadowReg = X86::RDX; break;
2100        case X86::XMM2: ShadowReg = X86::R8; break;
2101        case X86::XMM3: ShadowReg = X86::R9; break;
2102        }
2103        if (ShadowReg)
2104          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2105      }
2106    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2107      assert(VA.isMemLoc());
2108      if (StackPtr.getNode() == 0)
2109        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2110      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2111                                             dl, DAG, VA, Flags));
2112    }
2113  }
2114
2115  if (!MemOpChains.empty())
2116    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2117                        &MemOpChains[0], MemOpChains.size());
2118
2119  // Build a sequence of copy-to-reg nodes chained together with token chain
2120  // and flag operands which copy the outgoing args into registers.
2121  SDValue InFlag;
2122  // Tail call byval lowering might overwrite argument registers so in case of
2123  // tail call optimization the copies to registers are lowered later.
2124  if (!isTailCall)
2125    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2126      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2127                               RegsToPass[i].second, InFlag);
2128      InFlag = Chain.getValue(1);
2129    }
2130
2131  if (Subtarget->isPICStyleGOT()) {
2132    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2133    // GOT pointer.
2134    if (!isTailCall) {
2135      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2136                               DAG.getNode(X86ISD::GlobalBaseReg,
2137                                           DebugLoc(), getPointerTy()),
2138                               InFlag);
2139      InFlag = Chain.getValue(1);
2140    } else {
2141      // If we are tail calling and generating PIC/GOT style code load the
2142      // address of the callee into ECX. The value in ecx is used as target of
2143      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2144      // for tail calls on PIC/GOT architectures. Normally we would just put the
2145      // address of GOT into ebx and then call target@PLT. But for tail calls
2146      // ebx would be restored (since ebx is callee saved) before jumping to the
2147      // target@PLT.
2148
2149      // Note: The actual moving to ECX is done further down.
2150      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2151      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2152          !G->getGlobal()->hasProtectedVisibility())
2153        Callee = LowerGlobalAddress(Callee, DAG);
2154      else if (isa<ExternalSymbolSDNode>(Callee))
2155        Callee = LowerExternalSymbol(Callee, DAG);
2156    }
2157  }
2158
2159  if (Is64Bit && isVarArg && !IsWin64) {
2160    // From AMD64 ABI document:
2161    // For calls that may call functions that use varargs or stdargs
2162    // (prototype-less calls or calls to functions containing ellipsis (...) in
2163    // the declaration) %al is used as hidden argument to specify the number
2164    // of SSE registers used. The contents of %al do not need to match exactly
2165    // the number of registers, but must be an ubound on the number of SSE
2166    // registers used and is in the range 0 - 8 inclusive.
2167
2168    // Count the number of XMM registers allocated.
2169    static const unsigned XMMArgRegs[] = {
2170      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2171      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2172    };
2173    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2174    assert((Subtarget->hasXMM() || !NumXMMRegs)
2175           && "SSE registers cannot be used when SSE is disabled");
2176
2177    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2178                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2179    InFlag = Chain.getValue(1);
2180  }
2181
2182
2183  // For tail calls lower the arguments to the 'real' stack slot.
2184  if (isTailCall) {
2185    // Force all the incoming stack arguments to be loaded from the stack
2186    // before any new outgoing arguments are stored to the stack, because the
2187    // outgoing stack slots may alias the incoming argument stack slots, and
2188    // the alias isn't otherwise explicit. This is slightly more conservative
2189    // than necessary, because it means that each store effectively depends
2190    // on every argument instead of just those arguments it would clobber.
2191    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2192
2193    SmallVector<SDValue, 8> MemOpChains2;
2194    SDValue FIN;
2195    int FI = 0;
2196    // Do not flag preceding copytoreg stuff together with the following stuff.
2197    InFlag = SDValue();
2198    if (GuaranteedTailCallOpt) {
2199      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2200        CCValAssign &VA = ArgLocs[i];
2201        if (VA.isRegLoc())
2202          continue;
2203        assert(VA.isMemLoc());
2204        SDValue Arg = OutVals[i];
2205        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2206        // Create frame index.
2207        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2208        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2209        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2210        FIN = DAG.getFrameIndex(FI, getPointerTy());
2211
2212        if (Flags.isByVal()) {
2213          // Copy relative to framepointer.
2214          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2215          if (StackPtr.getNode() == 0)
2216            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2217                                          getPointerTy());
2218          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2219
2220          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2221                                                           ArgChain,
2222                                                           Flags, DAG, dl));
2223        } else {
2224          // Store relative to framepointer.
2225          MemOpChains2.push_back(
2226            DAG.getStore(ArgChain, dl, Arg, FIN,
2227                         MachinePointerInfo::getFixedStack(FI),
2228                         false, false, 0));
2229        }
2230      }
2231    }
2232
2233    if (!MemOpChains2.empty())
2234      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2235                          &MemOpChains2[0], MemOpChains2.size());
2236
2237    // Copy arguments to their registers.
2238    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2239      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2240                               RegsToPass[i].second, InFlag);
2241      InFlag = Chain.getValue(1);
2242    }
2243    InFlag =SDValue();
2244
2245    // Store the return address to the appropriate stack slot.
2246    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2247                                     FPDiff, dl);
2248  }
2249
2250  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2251    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2252    // In the 64-bit large code model, we have to make all calls
2253    // through a register, since the call instruction's 32-bit
2254    // pc-relative offset may not be large enough to hold the whole
2255    // address.
2256  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2257    // If the callee is a GlobalAddress node (quite common, every direct call
2258    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2259    // it.
2260
2261    // We should use extra load for direct calls to dllimported functions in
2262    // non-JIT mode.
2263    const GlobalValue *GV = G->getGlobal();
2264    if (!GV->hasDLLImportLinkage()) {
2265      unsigned char OpFlags = 0;
2266      bool ExtraLoad = false;
2267      unsigned WrapperKind = ISD::DELETED_NODE;
2268
2269      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2270      // external symbols most go through the PLT in PIC mode.  If the symbol
2271      // has hidden or protected visibility, or if it is static or local, then
2272      // we don't need to use the PLT - we can directly call it.
2273      if (Subtarget->isTargetELF() &&
2274          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2275          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2276        OpFlags = X86II::MO_PLT;
2277      } else if (Subtarget->isPICStyleStubAny() &&
2278                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2279                 (!Subtarget->getTargetTriple().isMacOSX() ||
2280                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2281        // PC-relative references to external symbols should go through $stub,
2282        // unless we're building with the leopard linker or later, which
2283        // automatically synthesizes these stubs.
2284        OpFlags = X86II::MO_DARWIN_STUB;
2285      } else if (Subtarget->isPICStyleRIPRel() &&
2286                 isa<Function>(GV) &&
2287                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2288        // If the function is marked as non-lazy, generate an indirect call
2289        // which loads from the GOT directly. This avoids runtime overhead
2290        // at the cost of eager binding (and one extra byte of encoding).
2291        OpFlags = X86II::MO_GOTPCREL;
2292        WrapperKind = X86ISD::WrapperRIP;
2293        ExtraLoad = true;
2294      }
2295
2296      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2297                                          G->getOffset(), OpFlags);
2298
2299      // Add a wrapper if needed.
2300      if (WrapperKind != ISD::DELETED_NODE)
2301        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2302      // Add extra indirection if needed.
2303      if (ExtraLoad)
2304        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2305                             MachinePointerInfo::getGOT(),
2306                             false, false, 0);
2307    }
2308  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2309    unsigned char OpFlags = 0;
2310
2311    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2312    // external symbols should go through the PLT.
2313    if (Subtarget->isTargetELF() &&
2314        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2315      OpFlags = X86II::MO_PLT;
2316    } else if (Subtarget->isPICStyleStubAny() &&
2317               (!Subtarget->getTargetTriple().isMacOSX() ||
2318                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2319      // PC-relative references to external symbols should go through $stub,
2320      // unless we're building with the leopard linker or later, which
2321      // automatically synthesizes these stubs.
2322      OpFlags = X86II::MO_DARWIN_STUB;
2323    }
2324
2325    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2326                                         OpFlags);
2327  }
2328
2329  // Returns a chain & a flag for retval copy to use.
2330  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2331  SmallVector<SDValue, 8> Ops;
2332
2333  if (!IsSibcall && isTailCall) {
2334    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2335                           DAG.getIntPtrConstant(0, true), InFlag);
2336    InFlag = Chain.getValue(1);
2337  }
2338
2339  Ops.push_back(Chain);
2340  Ops.push_back(Callee);
2341
2342  if (isTailCall)
2343    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2344
2345  // Add argument registers to the end of the list so that they are known live
2346  // into the call.
2347  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2348    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2349                                  RegsToPass[i].second.getValueType()));
2350
2351  // Add an implicit use GOT pointer in EBX.
2352  if (!isTailCall && Subtarget->isPICStyleGOT())
2353    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2354
2355  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2356  if (Is64Bit && isVarArg && !IsWin64)
2357    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2358
2359  if (InFlag.getNode())
2360    Ops.push_back(InFlag);
2361
2362  if (isTailCall) {
2363    // We used to do:
2364    //// If this is the first return lowered for this function, add the regs
2365    //// to the liveout set for the function.
2366    // This isn't right, although it's probably harmless on x86; liveouts
2367    // should be computed from returns not tail calls.  Consider a void
2368    // function making a tail call to a function returning int.
2369    return DAG.getNode(X86ISD::TC_RETURN, dl,
2370                       NodeTys, &Ops[0], Ops.size());
2371  }
2372
2373  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2374  InFlag = Chain.getValue(1);
2375
2376  // Create the CALLSEQ_END node.
2377  unsigned NumBytesForCalleeToPush;
2378  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2379    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2380  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2381    // If this is a call to a struct-return function, the callee
2382    // pops the hidden struct pointer, so we have to push it back.
2383    // This is common for Darwin/X86, Linux & Mingw32 targets.
2384    NumBytesForCalleeToPush = 4;
2385  else
2386    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2387
2388  // Returns a flag for retval copy to use.
2389  if (!IsSibcall) {
2390    Chain = DAG.getCALLSEQ_END(Chain,
2391                               DAG.getIntPtrConstant(NumBytes, true),
2392                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2393                                                     true),
2394                               InFlag);
2395    InFlag = Chain.getValue(1);
2396  }
2397
2398  // Handle result values, copying them out of physregs into vregs that we
2399  // return.
2400  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2401                         Ins, dl, DAG, InVals);
2402}
2403
2404
2405//===----------------------------------------------------------------------===//
2406//                Fast Calling Convention (tail call) implementation
2407//===----------------------------------------------------------------------===//
2408
2409//  Like std call, callee cleans arguments, convention except that ECX is
2410//  reserved for storing the tail called function address. Only 2 registers are
2411//  free for argument passing (inreg). Tail call optimization is performed
2412//  provided:
2413//                * tailcallopt is enabled
2414//                * caller/callee are fastcc
2415//  On X86_64 architecture with GOT-style position independent code only local
2416//  (within module) calls are supported at the moment.
2417//  To keep the stack aligned according to platform abi the function
2418//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2419//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2420//  If a tail called function callee has more arguments than the caller the
2421//  caller needs to make sure that there is room to move the RETADDR to. This is
2422//  achieved by reserving an area the size of the argument delta right after the
2423//  original REtADDR, but before the saved framepointer or the spilled registers
2424//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2425//  stack layout:
2426//    arg1
2427//    arg2
2428//    RETADDR
2429//    [ new RETADDR
2430//      move area ]
2431//    (possible EBP)
2432//    ESI
2433//    EDI
2434//    local1 ..
2435
2436/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2437/// for a 16 byte align requirement.
2438unsigned
2439X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2440                                               SelectionDAG& DAG) const {
2441  MachineFunction &MF = DAG.getMachineFunction();
2442  const TargetMachine &TM = MF.getTarget();
2443  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2444  unsigned StackAlignment = TFI.getStackAlignment();
2445  uint64_t AlignMask = StackAlignment - 1;
2446  int64_t Offset = StackSize;
2447  uint64_t SlotSize = TD->getPointerSize();
2448  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2449    // Number smaller than 12 so just add the difference.
2450    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2451  } else {
2452    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2453    Offset = ((~AlignMask) & Offset) + StackAlignment +
2454      (StackAlignment-SlotSize);
2455  }
2456  return Offset;
2457}
2458
2459/// MatchingStackOffset - Return true if the given stack call argument is
2460/// already available in the same position (relatively) of the caller's
2461/// incoming argument stack.
2462static
2463bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2464                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2465                         const X86InstrInfo *TII) {
2466  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2467  int FI = INT_MAX;
2468  if (Arg.getOpcode() == ISD::CopyFromReg) {
2469    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2470    if (!TargetRegisterInfo::isVirtualRegister(VR))
2471      return false;
2472    MachineInstr *Def = MRI->getVRegDef(VR);
2473    if (!Def)
2474      return false;
2475    if (!Flags.isByVal()) {
2476      if (!TII->isLoadFromStackSlot(Def, FI))
2477        return false;
2478    } else {
2479      unsigned Opcode = Def->getOpcode();
2480      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2481          Def->getOperand(1).isFI()) {
2482        FI = Def->getOperand(1).getIndex();
2483        Bytes = Flags.getByValSize();
2484      } else
2485        return false;
2486    }
2487  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2488    if (Flags.isByVal())
2489      // ByVal argument is passed in as a pointer but it's now being
2490      // dereferenced. e.g.
2491      // define @foo(%struct.X* %A) {
2492      //   tail call @bar(%struct.X* byval %A)
2493      // }
2494      return false;
2495    SDValue Ptr = Ld->getBasePtr();
2496    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2497    if (!FINode)
2498      return false;
2499    FI = FINode->getIndex();
2500  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2501    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2502    FI = FINode->getIndex();
2503    Bytes = Flags.getByValSize();
2504  } else
2505    return false;
2506
2507  assert(FI != INT_MAX);
2508  if (!MFI->isFixedObjectIndex(FI))
2509    return false;
2510  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2511}
2512
2513/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2514/// for tail call optimization. Targets which want to do tail call
2515/// optimization should implement this function.
2516bool
2517X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2518                                                     CallingConv::ID CalleeCC,
2519                                                     bool isVarArg,
2520                                                     bool isCalleeStructRet,
2521                                                     bool isCallerStructRet,
2522                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2523                                    const SmallVectorImpl<SDValue> &OutVals,
2524                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2525                                                     SelectionDAG& DAG) const {
2526  if (!IsTailCallConvention(CalleeCC) &&
2527      CalleeCC != CallingConv::C)
2528    return false;
2529
2530  // If -tailcallopt is specified, make fastcc functions tail-callable.
2531  const MachineFunction &MF = DAG.getMachineFunction();
2532  const Function *CallerF = DAG.getMachineFunction().getFunction();
2533  CallingConv::ID CallerCC = CallerF->getCallingConv();
2534  bool CCMatch = CallerCC == CalleeCC;
2535
2536  if (GuaranteedTailCallOpt) {
2537    if (IsTailCallConvention(CalleeCC) && CCMatch)
2538      return true;
2539    return false;
2540  }
2541
2542  // Look for obvious safe cases to perform tail call optimization that do not
2543  // require ABI changes. This is what gcc calls sibcall.
2544
2545  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2546  // emit a special epilogue.
2547  if (RegInfo->needsStackRealignment(MF))
2548    return false;
2549
2550  // Also avoid sibcall optimization if either caller or callee uses struct
2551  // return semantics.
2552  if (isCalleeStructRet || isCallerStructRet)
2553    return false;
2554
2555  // An stdcall caller is expected to clean up its arguments; the callee
2556  // isn't going to do that.
2557  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2558    return false;
2559
2560  // Do not sibcall optimize vararg calls unless all arguments are passed via
2561  // registers.
2562  if (isVarArg && !Outs.empty()) {
2563
2564    // Optimizing for varargs on Win64 is unlikely to be safe without
2565    // additional testing.
2566    if (Subtarget->isTargetWin64())
2567      return false;
2568
2569    SmallVector<CCValAssign, 16> ArgLocs;
2570    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2571		   getTargetMachine(), ArgLocs, *DAG.getContext());
2572
2573    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2574    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2575      if (!ArgLocs[i].isRegLoc())
2576        return false;
2577  }
2578
2579  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2580  // Therefore if it's not used by the call it is not safe to optimize this into
2581  // a sibcall.
2582  bool Unused = false;
2583  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2584    if (!Ins[i].Used) {
2585      Unused = true;
2586      break;
2587    }
2588  }
2589  if (Unused) {
2590    SmallVector<CCValAssign, 16> RVLocs;
2591    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2592		   getTargetMachine(), RVLocs, *DAG.getContext());
2593    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2594    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2595      CCValAssign &VA = RVLocs[i];
2596      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2597        return false;
2598    }
2599  }
2600
2601  // If the calling conventions do not match, then we'd better make sure the
2602  // results are returned in the same way as what the caller expects.
2603  if (!CCMatch) {
2604    SmallVector<CCValAssign, 16> RVLocs1;
2605    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2606		    getTargetMachine(), RVLocs1, *DAG.getContext());
2607    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2608
2609    SmallVector<CCValAssign, 16> RVLocs2;
2610    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2611		    getTargetMachine(), RVLocs2, *DAG.getContext());
2612    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2613
2614    if (RVLocs1.size() != RVLocs2.size())
2615      return false;
2616    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2617      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2618        return false;
2619      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2620        return false;
2621      if (RVLocs1[i].isRegLoc()) {
2622        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2623          return false;
2624      } else {
2625        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2626          return false;
2627      }
2628    }
2629  }
2630
2631  // If the callee takes no arguments then go on to check the results of the
2632  // call.
2633  if (!Outs.empty()) {
2634    // Check if stack adjustment is needed. For now, do not do this if any
2635    // argument is passed on the stack.
2636    SmallVector<CCValAssign, 16> ArgLocs;
2637    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2638		   getTargetMachine(), ArgLocs, *DAG.getContext());
2639
2640    // Allocate shadow area for Win64
2641    if (Subtarget->isTargetWin64()) {
2642      CCInfo.AllocateStack(32, 8);
2643    }
2644
2645    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2646    if (CCInfo.getNextStackOffset()) {
2647      MachineFunction &MF = DAG.getMachineFunction();
2648      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2649        return false;
2650
2651      // Check if the arguments are already laid out in the right way as
2652      // the caller's fixed stack objects.
2653      MachineFrameInfo *MFI = MF.getFrameInfo();
2654      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2655      const X86InstrInfo *TII =
2656        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2657      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2658        CCValAssign &VA = ArgLocs[i];
2659        SDValue Arg = OutVals[i];
2660        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2661        if (VA.getLocInfo() == CCValAssign::Indirect)
2662          return false;
2663        if (!VA.isRegLoc()) {
2664          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2665                                   MFI, MRI, TII))
2666            return false;
2667        }
2668      }
2669    }
2670
2671    // If the tailcall address may be in a register, then make sure it's
2672    // possible to register allocate for it. In 32-bit, the call address can
2673    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2674    // callee-saved registers are restored. These happen to be the same
2675    // registers used to pass 'inreg' arguments so watch out for those.
2676    if (!Subtarget->is64Bit() &&
2677        !isa<GlobalAddressSDNode>(Callee) &&
2678        !isa<ExternalSymbolSDNode>(Callee)) {
2679      unsigned NumInRegs = 0;
2680      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2681        CCValAssign &VA = ArgLocs[i];
2682        if (!VA.isRegLoc())
2683          continue;
2684        unsigned Reg = VA.getLocReg();
2685        switch (Reg) {
2686        default: break;
2687        case X86::EAX: case X86::EDX: case X86::ECX:
2688          if (++NumInRegs == 3)
2689            return false;
2690          break;
2691        }
2692      }
2693    }
2694  }
2695
2696  return true;
2697}
2698
2699FastISel *
2700X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2701  return X86::createFastISel(funcInfo);
2702}
2703
2704
2705//===----------------------------------------------------------------------===//
2706//                           Other Lowering Hooks
2707//===----------------------------------------------------------------------===//
2708
2709static bool MayFoldLoad(SDValue Op) {
2710  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2711}
2712
2713static bool MayFoldIntoStore(SDValue Op) {
2714  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2715}
2716
2717static bool isTargetShuffle(unsigned Opcode) {
2718  switch(Opcode) {
2719  default: return false;
2720  case X86ISD::PSHUFD:
2721  case X86ISD::PSHUFHW:
2722  case X86ISD::PSHUFLW:
2723  case X86ISD::SHUFPD:
2724  case X86ISD::PALIGN:
2725  case X86ISD::SHUFPS:
2726  case X86ISD::MOVLHPS:
2727  case X86ISD::MOVLHPD:
2728  case X86ISD::MOVHLPS:
2729  case X86ISD::MOVLPS:
2730  case X86ISD::MOVLPD:
2731  case X86ISD::MOVSHDUP:
2732  case X86ISD::MOVSLDUP:
2733  case X86ISD::MOVDDUP:
2734  case X86ISD::MOVSS:
2735  case X86ISD::MOVSD:
2736  case X86ISD::UNPCKLPS:
2737  case X86ISD::UNPCKLPD:
2738  case X86ISD::VUNPCKLPSY:
2739  case X86ISD::VUNPCKLPDY:
2740  case X86ISD::PUNPCKLWD:
2741  case X86ISD::PUNPCKLBW:
2742  case X86ISD::PUNPCKLDQ:
2743  case X86ISD::PUNPCKLQDQ:
2744  case X86ISD::UNPCKHPS:
2745  case X86ISD::UNPCKHPD:
2746  case X86ISD::VUNPCKHPSY:
2747  case X86ISD::VUNPCKHPDY:
2748  case X86ISD::PUNPCKHWD:
2749  case X86ISD::PUNPCKHBW:
2750  case X86ISD::PUNPCKHDQ:
2751  case X86ISD::PUNPCKHQDQ:
2752  case X86ISD::VPERMILPS:
2753  case X86ISD::VPERMILPSY:
2754  case X86ISD::VPERMILPD:
2755  case X86ISD::VPERMILPDY:
2756    return true;
2757  }
2758  return false;
2759}
2760
2761static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2762                                               SDValue V1, SelectionDAG &DAG) {
2763  switch(Opc) {
2764  default: llvm_unreachable("Unknown x86 shuffle node");
2765  case X86ISD::MOVSHDUP:
2766  case X86ISD::MOVSLDUP:
2767  case X86ISD::MOVDDUP:
2768    return DAG.getNode(Opc, dl, VT, V1);
2769  }
2770
2771  return SDValue();
2772}
2773
2774static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2775                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2776  switch(Opc) {
2777  default: llvm_unreachable("Unknown x86 shuffle node");
2778  case X86ISD::PSHUFD:
2779  case X86ISD::PSHUFHW:
2780  case X86ISD::PSHUFLW:
2781  case X86ISD::VPERMILPS:
2782  case X86ISD::VPERMILPSY:
2783  case X86ISD::VPERMILPD:
2784  case X86ISD::VPERMILPDY:
2785    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2786  }
2787
2788  return SDValue();
2789}
2790
2791static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2792               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2793  switch(Opc) {
2794  default: llvm_unreachable("Unknown x86 shuffle node");
2795  case X86ISD::PALIGN:
2796  case X86ISD::SHUFPD:
2797  case X86ISD::SHUFPS:
2798    return DAG.getNode(Opc, dl, VT, V1, V2,
2799                       DAG.getConstant(TargetMask, MVT::i8));
2800  }
2801  return SDValue();
2802}
2803
2804static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2805                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2806  switch(Opc) {
2807  default: llvm_unreachable("Unknown x86 shuffle node");
2808  case X86ISD::MOVLHPS:
2809  case X86ISD::MOVLHPD:
2810  case X86ISD::MOVHLPS:
2811  case X86ISD::MOVLPS:
2812  case X86ISD::MOVLPD:
2813  case X86ISD::MOVSS:
2814  case X86ISD::MOVSD:
2815  case X86ISD::UNPCKLPS:
2816  case X86ISD::UNPCKLPD:
2817  case X86ISD::VUNPCKLPSY:
2818  case X86ISD::VUNPCKLPDY:
2819  case X86ISD::PUNPCKLWD:
2820  case X86ISD::PUNPCKLBW:
2821  case X86ISD::PUNPCKLDQ:
2822  case X86ISD::PUNPCKLQDQ:
2823  case X86ISD::UNPCKHPS:
2824  case X86ISD::UNPCKHPD:
2825  case X86ISD::VUNPCKHPSY:
2826  case X86ISD::VUNPCKHPDY:
2827  case X86ISD::PUNPCKHWD:
2828  case X86ISD::PUNPCKHBW:
2829  case X86ISD::PUNPCKHDQ:
2830  case X86ISD::PUNPCKHQDQ:
2831    return DAG.getNode(Opc, dl, VT, V1, V2);
2832  }
2833  return SDValue();
2834}
2835
2836SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2837  MachineFunction &MF = DAG.getMachineFunction();
2838  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2839  int ReturnAddrIndex = FuncInfo->getRAIndex();
2840
2841  if (ReturnAddrIndex == 0) {
2842    // Set up a frame object for the return address.
2843    uint64_t SlotSize = TD->getPointerSize();
2844    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2845                                                           false);
2846    FuncInfo->setRAIndex(ReturnAddrIndex);
2847  }
2848
2849  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2850}
2851
2852
2853bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2854                                       bool hasSymbolicDisplacement) {
2855  // Offset should fit into 32 bit immediate field.
2856  if (!isInt<32>(Offset))
2857    return false;
2858
2859  // If we don't have a symbolic displacement - we don't have any extra
2860  // restrictions.
2861  if (!hasSymbolicDisplacement)
2862    return true;
2863
2864  // FIXME: Some tweaks might be needed for medium code model.
2865  if (M != CodeModel::Small && M != CodeModel::Kernel)
2866    return false;
2867
2868  // For small code model we assume that latest object is 16MB before end of 31
2869  // bits boundary. We may also accept pretty large negative constants knowing
2870  // that all objects are in the positive half of address space.
2871  if (M == CodeModel::Small && Offset < 16*1024*1024)
2872    return true;
2873
2874  // For kernel code model we know that all object resist in the negative half
2875  // of 32bits address space. We may not accept negative offsets, since they may
2876  // be just off and we may accept pretty large positive ones.
2877  if (M == CodeModel::Kernel && Offset > 0)
2878    return true;
2879
2880  return false;
2881}
2882
2883/// isCalleePop - Determines whether the callee is required to pop its
2884/// own arguments. Callee pop is necessary to support tail calls.
2885bool X86::isCalleePop(CallingConv::ID CallingConv,
2886                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2887  if (IsVarArg)
2888    return false;
2889
2890  switch (CallingConv) {
2891  default:
2892    return false;
2893  case CallingConv::X86_StdCall:
2894    return !is64Bit;
2895  case CallingConv::X86_FastCall:
2896    return !is64Bit;
2897  case CallingConv::X86_ThisCall:
2898    return !is64Bit;
2899  case CallingConv::Fast:
2900    return TailCallOpt;
2901  case CallingConv::GHC:
2902    return TailCallOpt;
2903  }
2904}
2905
2906/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2907/// specific condition code, returning the condition code and the LHS/RHS of the
2908/// comparison to make.
2909static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2910                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2911  if (!isFP) {
2912    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2913      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2914        // X > -1   -> X == 0, jump !sign.
2915        RHS = DAG.getConstant(0, RHS.getValueType());
2916        return X86::COND_NS;
2917      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2918        // X < 0   -> X == 0, jump on sign.
2919        return X86::COND_S;
2920      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2921        // X < 1   -> X <= 0
2922        RHS = DAG.getConstant(0, RHS.getValueType());
2923        return X86::COND_LE;
2924      }
2925    }
2926
2927    switch (SetCCOpcode) {
2928    default: llvm_unreachable("Invalid integer condition!");
2929    case ISD::SETEQ:  return X86::COND_E;
2930    case ISD::SETGT:  return X86::COND_G;
2931    case ISD::SETGE:  return X86::COND_GE;
2932    case ISD::SETLT:  return X86::COND_L;
2933    case ISD::SETLE:  return X86::COND_LE;
2934    case ISD::SETNE:  return X86::COND_NE;
2935    case ISD::SETULT: return X86::COND_B;
2936    case ISD::SETUGT: return X86::COND_A;
2937    case ISD::SETULE: return X86::COND_BE;
2938    case ISD::SETUGE: return X86::COND_AE;
2939    }
2940  }
2941
2942  // First determine if it is required or is profitable to flip the operands.
2943
2944  // If LHS is a foldable load, but RHS is not, flip the condition.
2945  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2946      !ISD::isNON_EXTLoad(RHS.getNode())) {
2947    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2948    std::swap(LHS, RHS);
2949  }
2950
2951  switch (SetCCOpcode) {
2952  default: break;
2953  case ISD::SETOLT:
2954  case ISD::SETOLE:
2955  case ISD::SETUGT:
2956  case ISD::SETUGE:
2957    std::swap(LHS, RHS);
2958    break;
2959  }
2960
2961  // On a floating point condition, the flags are set as follows:
2962  // ZF  PF  CF   op
2963  //  0 | 0 | 0 | X > Y
2964  //  0 | 0 | 1 | X < Y
2965  //  1 | 0 | 0 | X == Y
2966  //  1 | 1 | 1 | unordered
2967  switch (SetCCOpcode) {
2968  default: llvm_unreachable("Condcode should be pre-legalized away");
2969  case ISD::SETUEQ:
2970  case ISD::SETEQ:   return X86::COND_E;
2971  case ISD::SETOLT:              // flipped
2972  case ISD::SETOGT:
2973  case ISD::SETGT:   return X86::COND_A;
2974  case ISD::SETOLE:              // flipped
2975  case ISD::SETOGE:
2976  case ISD::SETGE:   return X86::COND_AE;
2977  case ISD::SETUGT:              // flipped
2978  case ISD::SETULT:
2979  case ISD::SETLT:   return X86::COND_B;
2980  case ISD::SETUGE:              // flipped
2981  case ISD::SETULE:
2982  case ISD::SETLE:   return X86::COND_BE;
2983  case ISD::SETONE:
2984  case ISD::SETNE:   return X86::COND_NE;
2985  case ISD::SETUO:   return X86::COND_P;
2986  case ISD::SETO:    return X86::COND_NP;
2987  case ISD::SETOEQ:
2988  case ISD::SETUNE:  return X86::COND_INVALID;
2989  }
2990}
2991
2992/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2993/// code. Current x86 isa includes the following FP cmov instructions:
2994/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2995static bool hasFPCMov(unsigned X86CC) {
2996  switch (X86CC) {
2997  default:
2998    return false;
2999  case X86::COND_B:
3000  case X86::COND_BE:
3001  case X86::COND_E:
3002  case X86::COND_P:
3003  case X86::COND_A:
3004  case X86::COND_AE:
3005  case X86::COND_NE:
3006  case X86::COND_NP:
3007    return true;
3008  }
3009}
3010
3011/// isFPImmLegal - Returns true if the target can instruction select the
3012/// specified FP immediate natively. If false, the legalizer will
3013/// materialize the FP immediate as a load from a constant pool.
3014bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3015  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3016    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3017      return true;
3018  }
3019  return false;
3020}
3021
3022/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3023/// the specified range (L, H].
3024static bool isUndefOrInRange(int Val, int Low, int Hi) {
3025  return (Val < 0) || (Val >= Low && Val < Hi);
3026}
3027
3028/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3029/// specified value.
3030static bool isUndefOrEqual(int Val, int CmpVal) {
3031  if (Val < 0 || Val == CmpVal)
3032    return true;
3033  return false;
3034}
3035
3036/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3037/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3038/// the second operand.
3039static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3040  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3041    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3042  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3043    return (Mask[0] < 2 && Mask[1] < 2);
3044  return false;
3045}
3046
3047bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3048  SmallVector<int, 8> M;
3049  N->getMask(M);
3050  return ::isPSHUFDMask(M, N->getValueType(0));
3051}
3052
3053/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3054/// is suitable for input to PSHUFHW.
3055static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3056  if (VT != MVT::v8i16)
3057    return false;
3058
3059  // Lower quadword copied in order or undef.
3060  for (int i = 0; i != 4; ++i)
3061    if (Mask[i] >= 0 && Mask[i] != i)
3062      return false;
3063
3064  // Upper quadword shuffled.
3065  for (int i = 4; i != 8; ++i)
3066    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3067      return false;
3068
3069  return true;
3070}
3071
3072bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3073  SmallVector<int, 8> M;
3074  N->getMask(M);
3075  return ::isPSHUFHWMask(M, N->getValueType(0));
3076}
3077
3078/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3079/// is suitable for input to PSHUFLW.
3080static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3081  if (VT != MVT::v8i16)
3082    return false;
3083
3084  // Upper quadword copied in order.
3085  for (int i = 4; i != 8; ++i)
3086    if (Mask[i] >= 0 && Mask[i] != i)
3087      return false;
3088
3089  // Lower quadword shuffled.
3090  for (int i = 0; i != 4; ++i)
3091    if (Mask[i] >= 4)
3092      return false;
3093
3094  return true;
3095}
3096
3097bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3098  SmallVector<int, 8> M;
3099  N->getMask(M);
3100  return ::isPSHUFLWMask(M, N->getValueType(0));
3101}
3102
3103/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3104/// is suitable for input to PALIGNR.
3105static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3106                          bool hasSSSE3) {
3107  int i, e = VT.getVectorNumElements();
3108  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3109    return false;
3110
3111  // Do not handle v2i64 / v2f64 shuffles with palignr.
3112  if (e < 4 || !hasSSSE3)
3113    return false;
3114
3115  for (i = 0; i != e; ++i)
3116    if (Mask[i] >= 0)
3117      break;
3118
3119  // All undef, not a palignr.
3120  if (i == e)
3121    return false;
3122
3123  // Make sure we're shifting in the right direction.
3124  if (Mask[i] <= i)
3125    return false;
3126
3127  int s = Mask[i] - i;
3128
3129  // Check the rest of the elements to see if they are consecutive.
3130  for (++i; i != e; ++i) {
3131    int m = Mask[i];
3132    if (m >= 0 && m != s+i)
3133      return false;
3134  }
3135  return true;
3136}
3137
3138/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3139/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3140static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3141  int NumElems = VT.getVectorNumElements();
3142  if (NumElems != 2 && NumElems != 4)
3143    return false;
3144
3145  int Half = NumElems / 2;
3146  for (int i = 0; i < Half; ++i)
3147    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3148      return false;
3149  for (int i = Half; i < NumElems; ++i)
3150    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3151      return false;
3152
3153  return true;
3154}
3155
3156bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3157  SmallVector<int, 8> M;
3158  N->getMask(M);
3159  return ::isSHUFPMask(M, N->getValueType(0));
3160}
3161
3162/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3163/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3164/// half elements to come from vector 1 (which would equal the dest.) and
3165/// the upper half to come from vector 2.
3166static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3167  int NumElems = VT.getVectorNumElements();
3168
3169  if (NumElems != 2 && NumElems != 4)
3170    return false;
3171
3172  int Half = NumElems / 2;
3173  for (int i = 0; i < Half; ++i)
3174    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3175      return false;
3176  for (int i = Half; i < NumElems; ++i)
3177    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3178      return false;
3179  return true;
3180}
3181
3182static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3183  SmallVector<int, 8> M;
3184  N->getMask(M);
3185  return isCommutedSHUFPMask(M, N->getValueType(0));
3186}
3187
3188/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3189/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3190bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3191  EVT VT = N->getValueType(0);
3192  unsigned NumElems = VT.getVectorNumElements();
3193
3194  if (VT.getSizeInBits() != 128)
3195    return false;
3196
3197  if (NumElems != 4)
3198    return false;
3199
3200  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3201  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3202         isUndefOrEqual(N->getMaskElt(1), 7) &&
3203         isUndefOrEqual(N->getMaskElt(2), 2) &&
3204         isUndefOrEqual(N->getMaskElt(3), 3);
3205}
3206
3207/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3208/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3209/// <2, 3, 2, 3>
3210bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3211  EVT VT = N->getValueType(0);
3212  unsigned NumElems = VT.getVectorNumElements();
3213
3214  if (VT.getSizeInBits() != 128)
3215    return false;
3216
3217  if (NumElems != 4)
3218    return false;
3219
3220  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3221         isUndefOrEqual(N->getMaskElt(1), 3) &&
3222         isUndefOrEqual(N->getMaskElt(2), 2) &&
3223         isUndefOrEqual(N->getMaskElt(3), 3);
3224}
3225
3226/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3227/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3228bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3229  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3230
3231  if (NumElems != 2 && NumElems != 4)
3232    return false;
3233
3234  for (unsigned i = 0; i < NumElems/2; ++i)
3235    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3236      return false;
3237
3238  for (unsigned i = NumElems/2; i < NumElems; ++i)
3239    if (!isUndefOrEqual(N->getMaskElt(i), i))
3240      return false;
3241
3242  return true;
3243}
3244
3245/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3246/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3247bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3248  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3249
3250  if ((NumElems != 2 && NumElems != 4)
3251      || N->getValueType(0).getSizeInBits() > 128)
3252    return false;
3253
3254  for (unsigned i = 0; i < NumElems/2; ++i)
3255    if (!isUndefOrEqual(N->getMaskElt(i), i))
3256      return false;
3257
3258  for (unsigned i = 0; i < NumElems/2; ++i)
3259    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3260      return false;
3261
3262  return true;
3263}
3264
3265/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3266/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3267static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3268                         bool V2IsSplat = false) {
3269  int NumElts = VT.getVectorNumElements();
3270
3271  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3272         "Unsupported vector type for unpckh");
3273
3274  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3275    return false;
3276
3277  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3278  // independently on 128-bit lanes.
3279  unsigned NumLanes = VT.getSizeInBits()/128;
3280  unsigned NumLaneElts = NumElts/NumLanes;
3281
3282  unsigned Start = 0;
3283  unsigned End = NumLaneElts;
3284  for (unsigned s = 0; s < NumLanes; ++s) {
3285    for (unsigned i = Start, j = s * NumLaneElts;
3286         i != End;
3287         i += 2, ++j) {
3288      int BitI  = Mask[i];
3289      int BitI1 = Mask[i+1];
3290      if (!isUndefOrEqual(BitI, j))
3291        return false;
3292      if (V2IsSplat) {
3293        if (!isUndefOrEqual(BitI1, NumElts))
3294          return false;
3295      } else {
3296        if (!isUndefOrEqual(BitI1, j + NumElts))
3297          return false;
3298      }
3299    }
3300    // Process the next 128 bits.
3301    Start += NumLaneElts;
3302    End += NumLaneElts;
3303  }
3304
3305  return true;
3306}
3307
3308bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3309  SmallVector<int, 8> M;
3310  N->getMask(M);
3311  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3312}
3313
3314/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3315/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3316static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3317                         bool V2IsSplat = false) {
3318  int NumElts = VT.getVectorNumElements();
3319
3320  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3321         "Unsupported vector type for unpckh");
3322
3323  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3324    return false;
3325
3326  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3327  // independently on 128-bit lanes.
3328  unsigned NumLanes = VT.getSizeInBits()/128;
3329  unsigned NumLaneElts = NumElts/NumLanes;
3330
3331  unsigned Start = 0;
3332  unsigned End = NumLaneElts;
3333  for (unsigned l = 0; l != NumLanes; ++l) {
3334    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3335                             i != End; i += 2, ++j) {
3336      int BitI  = Mask[i];
3337      int BitI1 = Mask[i+1];
3338      if (!isUndefOrEqual(BitI, j))
3339        return false;
3340      if (V2IsSplat) {
3341        if (isUndefOrEqual(BitI1, NumElts))
3342          return false;
3343      } else {
3344        if (!isUndefOrEqual(BitI1, j+NumElts))
3345          return false;
3346      }
3347    }
3348    // Process the next 128 bits.
3349    Start += NumLaneElts;
3350    End += NumLaneElts;
3351  }
3352  return true;
3353}
3354
3355bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3356  SmallVector<int, 8> M;
3357  N->getMask(M);
3358  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3359}
3360
3361/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3362/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3363/// <0, 0, 1, 1>
3364static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3365  int NumElems = VT.getVectorNumElements();
3366  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3367    return false;
3368
3369  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3370  // independently on 128-bit lanes.
3371  unsigned NumLanes = VT.getSizeInBits() / 128;
3372  unsigned NumLaneElts = NumElems / NumLanes;
3373
3374  for (unsigned s = 0; s < NumLanes; ++s) {
3375    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3376         i != NumLaneElts * (s + 1);
3377         i += 2, ++j) {
3378      int BitI  = Mask[i];
3379      int BitI1 = Mask[i+1];
3380
3381      if (!isUndefOrEqual(BitI, j))
3382        return false;
3383      if (!isUndefOrEqual(BitI1, j))
3384        return false;
3385    }
3386  }
3387
3388  return true;
3389}
3390
3391bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3392  SmallVector<int, 8> M;
3393  N->getMask(M);
3394  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3395}
3396
3397/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3398/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3399/// <2, 2, 3, 3>
3400static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3401  int NumElems = VT.getVectorNumElements();
3402  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3403    return false;
3404
3405  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3406    int BitI  = Mask[i];
3407    int BitI1 = Mask[i+1];
3408    if (!isUndefOrEqual(BitI, j))
3409      return false;
3410    if (!isUndefOrEqual(BitI1, j))
3411      return false;
3412  }
3413  return true;
3414}
3415
3416bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3417  SmallVector<int, 8> M;
3418  N->getMask(M);
3419  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3420}
3421
3422/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3423/// specifies a shuffle of elements that is suitable for input to MOVSS,
3424/// MOVSD, and MOVD, i.e. setting the lowest element.
3425static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3426  if (VT.getVectorElementType().getSizeInBits() < 32)
3427    return false;
3428
3429  int NumElts = VT.getVectorNumElements();
3430
3431  if (!isUndefOrEqual(Mask[0], NumElts))
3432    return false;
3433
3434  for (int i = 1; i < NumElts; ++i)
3435    if (!isUndefOrEqual(Mask[i], i))
3436      return false;
3437
3438  return true;
3439}
3440
3441bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3442  SmallVector<int, 8> M;
3443  N->getMask(M);
3444  return ::isMOVLMask(M, N->getValueType(0));
3445}
3446
3447/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3448/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3449/// Note that VPERMIL mask matching is different depending whether theunderlying
3450/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3451/// to the same elements of the low, but to the higher half of the source.
3452/// In VPERMILPD the two lanes could be shuffled independently of each other
3453/// with the same restriction that lanes can't be crossed.
3454static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3455                            const X86Subtarget *Subtarget) {
3456  int NumElts = VT.getVectorNumElements();
3457  int NumLanes = VT.getSizeInBits()/128;
3458
3459  if (!Subtarget->hasAVX())
3460    return false;
3461
3462  // Match any permutation of 128-bit vector with 64-bit types
3463  if (NumLanes == 1 && NumElts != 2)
3464    return false;
3465
3466  // Only match 256-bit with 32 types
3467  if (VT.getSizeInBits() == 256 && NumElts != 4)
3468    return false;
3469
3470  // The mask on the high lane is independent of the low. Both can match
3471  // any element in inside its own lane, but can't cross.
3472  int LaneSize = NumElts/NumLanes;
3473  for (int l = 0; l < NumLanes; ++l)
3474    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3475      int LaneStart = l*LaneSize;
3476      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3477        return false;
3478    }
3479
3480  return true;
3481}
3482
3483/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3484/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3485/// Note that VPERMIL mask matching is different depending whether theunderlying
3486/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3487/// to the same elements of the low, but to the higher half of the source.
3488/// In VPERMILPD the two lanes could be shuffled independently of each other
3489/// with the same restriction that lanes can't be crossed.
3490static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3491                            const X86Subtarget *Subtarget) {
3492  unsigned NumElts = VT.getVectorNumElements();
3493  unsigned NumLanes = VT.getSizeInBits()/128;
3494
3495  if (!Subtarget->hasAVX())
3496    return false;
3497
3498  // Match any permutation of 128-bit vector with 32-bit types
3499  if (NumLanes == 1 && NumElts != 4)
3500    return false;
3501
3502  // Only match 256-bit with 32 types
3503  if (VT.getSizeInBits() == 256 && NumElts != 8)
3504    return false;
3505
3506  // The mask on the high lane should be the same as the low. Actually,
3507  // they can differ if any of the corresponding index in a lane is undef
3508  // and the other stays in range.
3509  int LaneSize = NumElts/NumLanes;
3510  for (int i = 0; i < LaneSize; ++i) {
3511    int HighElt = i+LaneSize;
3512    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3513    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3514
3515    if (!HighValid || !LowValid)
3516      return false;
3517    if (Mask[i] < 0 || Mask[HighElt] < 0)
3518      continue;
3519    if (Mask[HighElt]-Mask[i] != LaneSize)
3520      return false;
3521  }
3522
3523  return true;
3524}
3525
3526/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3527/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3528static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3529  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3530  EVT VT = SVOp->getValueType(0);
3531
3532  int NumElts = VT.getVectorNumElements();
3533  int NumLanes = VT.getSizeInBits()/128;
3534  int LaneSize = NumElts/NumLanes;
3535
3536  // Although the mask is equal for both lanes do it twice to get the cases
3537  // where a mask will match because the same mask element is undef on the
3538  // first half but valid on the second. This would get pathological cases
3539  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3540  unsigned Mask = 0;
3541  for (int l = 0; l < NumLanes; ++l) {
3542    for (int i = 0; i < LaneSize; ++i) {
3543      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3544      if (MaskElt < 0)
3545        continue;
3546      if (MaskElt >= LaneSize)
3547        MaskElt -= LaneSize;
3548      Mask |= MaskElt << (i*2);
3549    }
3550  }
3551
3552  return Mask;
3553}
3554
3555/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3556/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3557static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3558  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3559  EVT VT = SVOp->getValueType(0);
3560
3561  int NumElts = VT.getVectorNumElements();
3562  int NumLanes = VT.getSizeInBits()/128;
3563
3564  unsigned Mask = 0;
3565  int LaneSize = NumElts/NumLanes;
3566  for (int l = 0; l < NumLanes; ++l)
3567    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3568      int MaskElt = SVOp->getMaskElt(i);
3569      if (MaskElt < 0)
3570        continue;
3571      Mask |= (MaskElt-l*LaneSize) << i;
3572    }
3573
3574  return Mask;
3575}
3576
3577/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3578/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3579/// element of vector 2 and the other elements to come from vector 1 in order.
3580static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3581                               bool V2IsSplat = false, bool V2IsUndef = false) {
3582  int NumOps = VT.getVectorNumElements();
3583  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3584    return false;
3585
3586  if (!isUndefOrEqual(Mask[0], 0))
3587    return false;
3588
3589  for (int i = 1; i < NumOps; ++i)
3590    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3591          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3592          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3593      return false;
3594
3595  return true;
3596}
3597
3598static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3599                           bool V2IsUndef = false) {
3600  SmallVector<int, 8> M;
3601  N->getMask(M);
3602  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3603}
3604
3605/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3606/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3607/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3608bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3609                         const X86Subtarget *Subtarget) {
3610  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3611    return false;
3612
3613  // The second vector must be undef
3614  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3615    return false;
3616
3617  EVT VT = N->getValueType(0);
3618  unsigned NumElems = VT.getVectorNumElements();
3619
3620  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3621      (VT.getSizeInBits() == 256 && NumElems != 8))
3622    return false;
3623
3624  // "i+1" is the value the indexed mask element must have
3625  for (unsigned i = 0; i < NumElems; i += 2)
3626    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3627        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3628      return false;
3629
3630  return true;
3631}
3632
3633/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3634/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3635/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3636bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3637                         const X86Subtarget *Subtarget) {
3638  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3639    return false;
3640
3641  // The second vector must be undef
3642  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3643    return false;
3644
3645  EVT VT = N->getValueType(0);
3646  unsigned NumElems = VT.getVectorNumElements();
3647
3648  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3649      (VT.getSizeInBits() == 256 && NumElems != 8))
3650    return false;
3651
3652  // "i" is the value the indexed mask element must have
3653  for (unsigned i = 0; i < NumElems; i += 2)
3654    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3655        !isUndefOrEqual(N->getMaskElt(i+1), i))
3656      return false;
3657
3658  return true;
3659}
3660
3661/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3662/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3663bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3664  int e = N->getValueType(0).getVectorNumElements() / 2;
3665
3666  for (int i = 0; i < e; ++i)
3667    if (!isUndefOrEqual(N->getMaskElt(i), i))
3668      return false;
3669  for (int i = 0; i < e; ++i)
3670    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3671      return false;
3672  return true;
3673}
3674
3675/// isVEXTRACTF128Index - Return true if the specified
3676/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3677/// suitable for input to VEXTRACTF128.
3678bool X86::isVEXTRACTF128Index(SDNode *N) {
3679  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3680    return false;
3681
3682  // The index should be aligned on a 128-bit boundary.
3683  uint64_t Index =
3684    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3685
3686  unsigned VL = N->getValueType(0).getVectorNumElements();
3687  unsigned VBits = N->getValueType(0).getSizeInBits();
3688  unsigned ElSize = VBits / VL;
3689  bool Result = (Index * ElSize) % 128 == 0;
3690
3691  return Result;
3692}
3693
3694/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3695/// operand specifies a subvector insert that is suitable for input to
3696/// VINSERTF128.
3697bool X86::isVINSERTF128Index(SDNode *N) {
3698  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3699    return false;
3700
3701  // The index should be aligned on a 128-bit boundary.
3702  uint64_t Index =
3703    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3704
3705  unsigned VL = N->getValueType(0).getVectorNumElements();
3706  unsigned VBits = N->getValueType(0).getSizeInBits();
3707  unsigned ElSize = VBits / VL;
3708  bool Result = (Index * ElSize) % 128 == 0;
3709
3710  return Result;
3711}
3712
3713/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3714/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3715unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3716  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3717  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3718
3719  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3720  unsigned Mask = 0;
3721  for (int i = 0; i < NumOperands; ++i) {
3722    int Val = SVOp->getMaskElt(NumOperands-i-1);
3723    if (Val < 0) Val = 0;
3724    if (Val >= NumOperands) Val -= NumOperands;
3725    Mask |= Val;
3726    if (i != NumOperands - 1)
3727      Mask <<= Shift;
3728  }
3729  return Mask;
3730}
3731
3732/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3733/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3734unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3735  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3736  unsigned Mask = 0;
3737  // 8 nodes, but we only care about the last 4.
3738  for (unsigned i = 7; i >= 4; --i) {
3739    int Val = SVOp->getMaskElt(i);
3740    if (Val >= 0)
3741      Mask |= (Val - 4);
3742    if (i != 4)
3743      Mask <<= 2;
3744  }
3745  return Mask;
3746}
3747
3748/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3749/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3750unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3751  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3752  unsigned Mask = 0;
3753  // 8 nodes, but we only care about the first 4.
3754  for (int i = 3; i >= 0; --i) {
3755    int Val = SVOp->getMaskElt(i);
3756    if (Val >= 0)
3757      Mask |= Val;
3758    if (i != 0)
3759      Mask <<= 2;
3760  }
3761  return Mask;
3762}
3763
3764/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3765/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3766unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3767  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3768  EVT VVT = N->getValueType(0);
3769  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3770  int Val = 0;
3771
3772  unsigned i, e;
3773  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3774    Val = SVOp->getMaskElt(i);
3775    if (Val >= 0)
3776      break;
3777  }
3778  assert(Val - i > 0 && "PALIGNR imm should be positive");
3779  return (Val - i) * EltSize;
3780}
3781
3782/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3783/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3784/// instructions.
3785unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3786  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3787    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3788
3789  uint64_t Index =
3790    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3791
3792  EVT VecVT = N->getOperand(0).getValueType();
3793  EVT ElVT = VecVT.getVectorElementType();
3794
3795  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3796  return Index / NumElemsPerChunk;
3797}
3798
3799/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3800/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3801/// instructions.
3802unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3803  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3804    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3805
3806  uint64_t Index =
3807    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3808
3809  EVT VecVT = N->getValueType(0);
3810  EVT ElVT = VecVT.getVectorElementType();
3811
3812  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3813  return Index / NumElemsPerChunk;
3814}
3815
3816/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3817/// constant +0.0.
3818bool X86::isZeroNode(SDValue Elt) {
3819  return ((isa<ConstantSDNode>(Elt) &&
3820           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3821          (isa<ConstantFPSDNode>(Elt) &&
3822           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3823}
3824
3825/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3826/// their permute mask.
3827static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3828                                    SelectionDAG &DAG) {
3829  EVT VT = SVOp->getValueType(0);
3830  unsigned NumElems = VT.getVectorNumElements();
3831  SmallVector<int, 8> MaskVec;
3832
3833  for (unsigned i = 0; i != NumElems; ++i) {
3834    int idx = SVOp->getMaskElt(i);
3835    if (idx < 0)
3836      MaskVec.push_back(idx);
3837    else if (idx < (int)NumElems)
3838      MaskVec.push_back(idx + NumElems);
3839    else
3840      MaskVec.push_back(idx - NumElems);
3841  }
3842  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3843                              SVOp->getOperand(0), &MaskVec[0]);
3844}
3845
3846/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3847/// the two vector operands have swapped position.
3848static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3849  unsigned NumElems = VT.getVectorNumElements();
3850  for (unsigned i = 0; i != NumElems; ++i) {
3851    int idx = Mask[i];
3852    if (idx < 0)
3853      continue;
3854    else if (idx < (int)NumElems)
3855      Mask[i] = idx + NumElems;
3856    else
3857      Mask[i] = idx - NumElems;
3858  }
3859}
3860
3861/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3862/// match movhlps. The lower half elements should come from upper half of
3863/// V1 (and in order), and the upper half elements should come from the upper
3864/// half of V2 (and in order).
3865static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3866  if (Op->getValueType(0).getVectorNumElements() != 4)
3867    return false;
3868  for (unsigned i = 0, e = 2; i != e; ++i)
3869    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3870      return false;
3871  for (unsigned i = 2; i != 4; ++i)
3872    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3873      return false;
3874  return true;
3875}
3876
3877/// isScalarLoadToVector - Returns true if the node is a scalar load that
3878/// is promoted to a vector. It also returns the LoadSDNode by reference if
3879/// required.
3880static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3881  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3882    return false;
3883  N = N->getOperand(0).getNode();
3884  if (!ISD::isNON_EXTLoad(N))
3885    return false;
3886  if (LD)
3887    *LD = cast<LoadSDNode>(N);
3888  return true;
3889}
3890
3891/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3892/// match movlp{s|d}. The lower half elements should come from lower half of
3893/// V1 (and in order), and the upper half elements should come from the upper
3894/// half of V2 (and in order). And since V1 will become the source of the
3895/// MOVLP, it must be either a vector load or a scalar load to vector.
3896static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3897                               ShuffleVectorSDNode *Op) {
3898  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3899    return false;
3900  // Is V2 is a vector load, don't do this transformation. We will try to use
3901  // load folding shufps op.
3902  if (ISD::isNON_EXTLoad(V2))
3903    return false;
3904
3905  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3906
3907  if (NumElems != 2 && NumElems != 4)
3908    return false;
3909  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3910    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3911      return false;
3912  for (unsigned i = NumElems/2; i != NumElems; ++i)
3913    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3914      return false;
3915  return true;
3916}
3917
3918/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3919/// all the same.
3920static bool isSplatVector(SDNode *N) {
3921  if (N->getOpcode() != ISD::BUILD_VECTOR)
3922    return false;
3923
3924  SDValue SplatValue = N->getOperand(0);
3925  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3926    if (N->getOperand(i) != SplatValue)
3927      return false;
3928  return true;
3929}
3930
3931/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3932/// to an zero vector.
3933/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3934static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3935  SDValue V1 = N->getOperand(0);
3936  SDValue V2 = N->getOperand(1);
3937  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3938  for (unsigned i = 0; i != NumElems; ++i) {
3939    int Idx = N->getMaskElt(i);
3940    if (Idx >= (int)NumElems) {
3941      unsigned Opc = V2.getOpcode();
3942      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3943        continue;
3944      if (Opc != ISD::BUILD_VECTOR ||
3945          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3946        return false;
3947    } else if (Idx >= 0) {
3948      unsigned Opc = V1.getOpcode();
3949      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3950        continue;
3951      if (Opc != ISD::BUILD_VECTOR ||
3952          !X86::isZeroNode(V1.getOperand(Idx)))
3953        return false;
3954    }
3955  }
3956  return true;
3957}
3958
3959/// getZeroVector - Returns a vector of specified type with all zero elements.
3960///
3961static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3962                             DebugLoc dl) {
3963  assert(VT.isVector() && "Expected a vector type");
3964
3965  // Always build SSE zero vectors as <4 x i32> bitcasted
3966  // to their dest type. This ensures they get CSE'd.
3967  SDValue Vec;
3968  if (VT.getSizeInBits() == 128) {  // SSE
3969    if (HasSSE2) {  // SSE2
3970      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3971      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3972    } else { // SSE1
3973      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3974      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3975    }
3976  } else if (VT.getSizeInBits() == 256) { // AVX
3977    // 256-bit logic and arithmetic instructions in AVX are
3978    // all floating-point, no support for integer ops. Default
3979    // to emitting fp zeroed vectors then.
3980    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3981    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3982    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3983  }
3984  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3985}
3986
3987/// getOnesVector - Returns a vector of specified type with all bits set.
3988/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
3989/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
3990/// original type, ensuring they get CSE'd.
3991static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3992  assert(VT.isVector() && "Expected a vector type");
3993  assert((VT.is128BitVector() || VT.is256BitVector())
3994         && "Expected a 128-bit or 256-bit vector type");
3995
3996  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3997  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3998                            Cst, Cst, Cst, Cst);
3999
4000  if (VT.is256BitVector()) {
4001    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4002                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4003    Vec = Insert128BitVector(InsV, Vec,
4004                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4005  }
4006
4007  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4008}
4009
4010/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4011/// that point to V2 points to its first element.
4012static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4013  EVT VT = SVOp->getValueType(0);
4014  unsigned NumElems = VT.getVectorNumElements();
4015
4016  bool Changed = false;
4017  SmallVector<int, 8> MaskVec;
4018  SVOp->getMask(MaskVec);
4019
4020  for (unsigned i = 0; i != NumElems; ++i) {
4021    if (MaskVec[i] > (int)NumElems) {
4022      MaskVec[i] = NumElems;
4023      Changed = true;
4024    }
4025  }
4026  if (Changed)
4027    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4028                                SVOp->getOperand(1), &MaskVec[0]);
4029  return SDValue(SVOp, 0);
4030}
4031
4032/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4033/// operation of specified width.
4034static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4035                       SDValue V2) {
4036  unsigned NumElems = VT.getVectorNumElements();
4037  SmallVector<int, 8> Mask;
4038  Mask.push_back(NumElems);
4039  for (unsigned i = 1; i != NumElems; ++i)
4040    Mask.push_back(i);
4041  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4042}
4043
4044/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4045static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4046                          SDValue V2) {
4047  unsigned NumElems = VT.getVectorNumElements();
4048  SmallVector<int, 8> Mask;
4049  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4050    Mask.push_back(i);
4051    Mask.push_back(i + NumElems);
4052  }
4053  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4054}
4055
4056/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4057static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4058                          SDValue V2) {
4059  unsigned NumElems = VT.getVectorNumElements();
4060  unsigned Half = NumElems/2;
4061  SmallVector<int, 8> Mask;
4062  for (unsigned i = 0; i != Half; ++i) {
4063    Mask.push_back(i + Half);
4064    Mask.push_back(i + NumElems + Half);
4065  }
4066  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4067}
4068
4069// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4070// a generic shuffle instruction because the target has no such instructions.
4071// Generate shuffles which repeat i16 and i8 several times until they can be
4072// represented by v4f32 and then be manipulated by target suported shuffles.
4073static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4074  EVT VT = V.getValueType();
4075  int NumElems = VT.getVectorNumElements();
4076  DebugLoc dl = V.getDebugLoc();
4077
4078  while (NumElems > 4) {
4079    if (EltNo < NumElems/2) {
4080      V = getUnpackl(DAG, dl, VT, V, V);
4081    } else {
4082      V = getUnpackh(DAG, dl, VT, V, V);
4083      EltNo -= NumElems/2;
4084    }
4085    NumElems >>= 1;
4086  }
4087  return V;
4088}
4089
4090/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4091static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4092  EVT VT = V.getValueType();
4093  DebugLoc dl = V.getDebugLoc();
4094  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4095         && "Vector size not supported");
4096
4097  bool Is128 = VT.getSizeInBits() == 128;
4098  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
4099  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
4100
4101  if (Is128) {
4102    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4103    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4104  } else {
4105    // The second half of indicies refer to the higher part, which is a
4106    // duplication of the lower one. This makes this shuffle a perfect match
4107    // for the VPERM instruction.
4108    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4109                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4110    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4111  }
4112
4113  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4114}
4115
4116/// PromoteVectorToScalarSplat - Since there's no native support for
4117/// scalar_to_vector for 256-bit AVX, a 128-bit scalar_to_vector +
4118/// INSERT_SUBVECTOR is generated. Recognize this idiom and do the
4119/// shuffle before the insertion, this yields less instructions in the end.
4120static SDValue PromoteVectorToScalarSplat(ShuffleVectorSDNode *SV,
4121                                          SelectionDAG &DAG) {
4122  EVT SrcVT = SV->getValueType(0);
4123  SDValue V1 = SV->getOperand(0);
4124  DebugLoc dl = SV->getDebugLoc();
4125  int NumElems = SrcVT.getVectorNumElements();
4126
4127  assert(SrcVT.is256BitVector() && "unknown howto handle vector type");
4128  assert(SV->isSplat() && "shuffle must be a splat");
4129
4130  int SplatIdx = SV->getSplatIndex();
4131  const int Mask[4] = { SplatIdx, SplatIdx, SplatIdx, SplatIdx };
4132
4133  EVT SVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
4134                             NumElems/2);
4135  SDValue SV1 = DAG.getVectorShuffle(SVT, dl, V1.getOperand(1),
4136                                     DAG.getUNDEF(SVT), Mask);
4137  SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), SV1,
4138                                    DAG.getConstant(0, MVT::i32), DAG, dl);
4139
4140  return Insert128BitVector(InsV, SV1,
4141                       DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4142}
4143
4144/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
4145/// v8i32, v16i16 or v32i8 to v8f32.
4146static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4147  EVT SrcVT = SV->getValueType(0);
4148  SDValue V1 = SV->getOperand(0);
4149  DebugLoc dl = SV->getDebugLoc();
4150
4151  int EltNo = SV->getSplatIndex();
4152  int NumElems = SrcVT.getVectorNumElements();
4153  unsigned Size = SrcVT.getSizeInBits();
4154
4155  // Extract the 128-bit part containing the splat element and update
4156  // the splat element index when it refers to the higher register.
4157  if (Size == 256) {
4158    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4159    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4160    if (Idx > 0)
4161      EltNo -= NumElems/2;
4162  }
4163
4164  // Make this 128-bit vector duplicate i8 and i16 elements
4165  EVT EltVT = SrcVT.getVectorElementType();
4166  if (NumElems > 4 && (EltVT == MVT::i8 || EltVT == MVT::i16))
4167    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4168
4169  // Recreate the 256-bit vector and place the same 128-bit vector
4170  // into the low and high part. This is necessary because we want
4171  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
4172  // inside each separate v4f32 lane.
4173  if (Size == 256) {
4174    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4175                         DAG.getConstant(0, MVT::i32), DAG, dl);
4176    V1 = Insert128BitVector(InsV, V1,
4177               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4178  }
4179
4180  return getLegalSplat(DAG, V1, EltNo);
4181}
4182
4183/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4184/// vector of zero or undef vector.  This produces a shuffle where the low
4185/// element of V2 is swizzled into the zero/undef vector, landing at element
4186/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4187static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4188                                             bool isZero, bool HasSSE2,
4189                                             SelectionDAG &DAG) {
4190  EVT VT = V2.getValueType();
4191  SDValue V1 = isZero
4192    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4193  unsigned NumElems = VT.getVectorNumElements();
4194  SmallVector<int, 16> MaskVec;
4195  for (unsigned i = 0; i != NumElems; ++i)
4196    // If this is the insertion idx, put the low elt of V2 here.
4197    MaskVec.push_back(i == Idx ? NumElems : i);
4198  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4199}
4200
4201/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4202/// element of the result of the vector shuffle.
4203static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4204                                   unsigned Depth) {
4205  if (Depth == 6)
4206    return SDValue();  // Limit search depth.
4207
4208  SDValue V = SDValue(N, 0);
4209  EVT VT = V.getValueType();
4210  unsigned Opcode = V.getOpcode();
4211
4212  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4213  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4214    Index = SV->getMaskElt(Index);
4215
4216    if (Index < 0)
4217      return DAG.getUNDEF(VT.getVectorElementType());
4218
4219    int NumElems = VT.getVectorNumElements();
4220    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4221    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4222  }
4223
4224  // Recurse into target specific vector shuffles to find scalars.
4225  if (isTargetShuffle(Opcode)) {
4226    int NumElems = VT.getVectorNumElements();
4227    SmallVector<unsigned, 16> ShuffleMask;
4228    SDValue ImmN;
4229
4230    switch(Opcode) {
4231    case X86ISD::SHUFPS:
4232    case X86ISD::SHUFPD:
4233      ImmN = N->getOperand(N->getNumOperands()-1);
4234      DecodeSHUFPSMask(NumElems,
4235                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4236                       ShuffleMask);
4237      break;
4238    case X86ISD::PUNPCKHBW:
4239    case X86ISD::PUNPCKHWD:
4240    case X86ISD::PUNPCKHDQ:
4241    case X86ISD::PUNPCKHQDQ:
4242      DecodePUNPCKHMask(NumElems, ShuffleMask);
4243      break;
4244    case X86ISD::UNPCKHPS:
4245    case X86ISD::UNPCKHPD:
4246    case X86ISD::VUNPCKHPSY:
4247    case X86ISD::VUNPCKHPDY:
4248      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4249      break;
4250    case X86ISD::PUNPCKLBW:
4251    case X86ISD::PUNPCKLWD:
4252    case X86ISD::PUNPCKLDQ:
4253    case X86ISD::PUNPCKLQDQ:
4254      DecodePUNPCKLMask(VT, ShuffleMask);
4255      break;
4256    case X86ISD::UNPCKLPS:
4257    case X86ISD::UNPCKLPD:
4258    case X86ISD::VUNPCKLPSY:
4259    case X86ISD::VUNPCKLPDY:
4260      DecodeUNPCKLPMask(VT, ShuffleMask);
4261      break;
4262    case X86ISD::MOVHLPS:
4263      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4264      break;
4265    case X86ISD::MOVLHPS:
4266      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4267      break;
4268    case X86ISD::PSHUFD:
4269      ImmN = N->getOperand(N->getNumOperands()-1);
4270      DecodePSHUFMask(NumElems,
4271                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4272                      ShuffleMask);
4273      break;
4274    case X86ISD::PSHUFHW:
4275      ImmN = N->getOperand(N->getNumOperands()-1);
4276      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4277                        ShuffleMask);
4278      break;
4279    case X86ISD::PSHUFLW:
4280      ImmN = N->getOperand(N->getNumOperands()-1);
4281      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4282                        ShuffleMask);
4283      break;
4284    case X86ISD::MOVSS:
4285    case X86ISD::MOVSD: {
4286      // The index 0 always comes from the first element of the second source,
4287      // this is why MOVSS and MOVSD are used in the first place. The other
4288      // elements come from the other positions of the first source vector.
4289      unsigned OpNum = (Index == 0) ? 1 : 0;
4290      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4291                                 Depth+1);
4292    }
4293    case X86ISD::VPERMILPS:
4294      ImmN = N->getOperand(N->getNumOperands()-1);
4295      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4296                        ShuffleMask);
4297      break;
4298    case X86ISD::VPERMILPSY:
4299      ImmN = N->getOperand(N->getNumOperands()-1);
4300      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4301                        ShuffleMask);
4302      break;
4303    case X86ISD::VPERMILPD:
4304      ImmN = N->getOperand(N->getNumOperands()-1);
4305      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4306                        ShuffleMask);
4307      break;
4308    case X86ISD::VPERMILPDY:
4309      ImmN = N->getOperand(N->getNumOperands()-1);
4310      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4311                        ShuffleMask);
4312      break;
4313    default:
4314      assert("not implemented for target shuffle node");
4315      return SDValue();
4316    }
4317
4318    Index = ShuffleMask[Index];
4319    if (Index < 0)
4320      return DAG.getUNDEF(VT.getVectorElementType());
4321
4322    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4323    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4324                               Depth+1);
4325  }
4326
4327  // Actual nodes that may contain scalar elements
4328  if (Opcode == ISD::BITCAST) {
4329    V = V.getOperand(0);
4330    EVT SrcVT = V.getValueType();
4331    unsigned NumElems = VT.getVectorNumElements();
4332
4333    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4334      return SDValue();
4335  }
4336
4337  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4338    return (Index == 0) ? V.getOperand(0)
4339                          : DAG.getUNDEF(VT.getVectorElementType());
4340
4341  if (V.getOpcode() == ISD::BUILD_VECTOR)
4342    return V.getOperand(Index);
4343
4344  return SDValue();
4345}
4346
4347/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4348/// shuffle operation which come from a consecutively from a zero. The
4349/// search can start in two different directions, from left or right.
4350static
4351unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4352                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4353  int i = 0;
4354
4355  while (i < NumElems) {
4356    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4357    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4358    if (!(Elt.getNode() &&
4359         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4360      break;
4361    ++i;
4362  }
4363
4364  return i;
4365}
4366
4367/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4368/// MaskE correspond consecutively to elements from one of the vector operands,
4369/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4370static
4371bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4372                              int OpIdx, int NumElems, unsigned &OpNum) {
4373  bool SeenV1 = false;
4374  bool SeenV2 = false;
4375
4376  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4377    int Idx = SVOp->getMaskElt(i);
4378    // Ignore undef indicies
4379    if (Idx < 0)
4380      continue;
4381
4382    if (Idx < NumElems)
4383      SeenV1 = true;
4384    else
4385      SeenV2 = true;
4386
4387    // Only accept consecutive elements from the same vector
4388    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4389      return false;
4390  }
4391
4392  OpNum = SeenV1 ? 0 : 1;
4393  return true;
4394}
4395
4396/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4397/// logical left shift of a vector.
4398static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4399                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4400  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4401  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4402              false /* check zeros from right */, DAG);
4403  unsigned OpSrc;
4404
4405  if (!NumZeros)
4406    return false;
4407
4408  // Considering the elements in the mask that are not consecutive zeros,
4409  // check if they consecutively come from only one of the source vectors.
4410  //
4411  //               V1 = {X, A, B, C}     0
4412  //                         \  \  \    /
4413  //   vector_shuffle V1, V2 <1, 2, 3, X>
4414  //
4415  if (!isShuffleMaskConsecutive(SVOp,
4416            0,                   // Mask Start Index
4417            NumElems-NumZeros-1, // Mask End Index
4418            NumZeros,            // Where to start looking in the src vector
4419            NumElems,            // Number of elements in vector
4420            OpSrc))              // Which source operand ?
4421    return false;
4422
4423  isLeft = false;
4424  ShAmt = NumZeros;
4425  ShVal = SVOp->getOperand(OpSrc);
4426  return true;
4427}
4428
4429/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4430/// logical left shift of a vector.
4431static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4432                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4433  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4434  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4435              true /* check zeros from left */, DAG);
4436  unsigned OpSrc;
4437
4438  if (!NumZeros)
4439    return false;
4440
4441  // Considering the elements in the mask that are not consecutive zeros,
4442  // check if they consecutively come from only one of the source vectors.
4443  //
4444  //                           0    { A, B, X, X } = V2
4445  //                          / \    /  /
4446  //   vector_shuffle V1, V2 <X, X, 4, 5>
4447  //
4448  if (!isShuffleMaskConsecutive(SVOp,
4449            NumZeros,     // Mask Start Index
4450            NumElems-1,   // Mask End Index
4451            0,            // Where to start looking in the src vector
4452            NumElems,     // Number of elements in vector
4453            OpSrc))       // Which source operand ?
4454    return false;
4455
4456  isLeft = true;
4457  ShAmt = NumZeros;
4458  ShVal = SVOp->getOperand(OpSrc);
4459  return true;
4460}
4461
4462/// isVectorShift - Returns true if the shuffle can be implemented as a
4463/// logical left or right shift of a vector.
4464static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4465                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4466  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4467      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4468    return true;
4469
4470  return false;
4471}
4472
4473/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4474///
4475static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4476                                       unsigned NumNonZero, unsigned NumZero,
4477                                       SelectionDAG &DAG,
4478                                       const TargetLowering &TLI) {
4479  if (NumNonZero > 8)
4480    return SDValue();
4481
4482  DebugLoc dl = Op.getDebugLoc();
4483  SDValue V(0, 0);
4484  bool First = true;
4485  for (unsigned i = 0; i < 16; ++i) {
4486    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4487    if (ThisIsNonZero && First) {
4488      if (NumZero)
4489        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4490      else
4491        V = DAG.getUNDEF(MVT::v8i16);
4492      First = false;
4493    }
4494
4495    if ((i & 1) != 0) {
4496      SDValue ThisElt(0, 0), LastElt(0, 0);
4497      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4498      if (LastIsNonZero) {
4499        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4500                              MVT::i16, Op.getOperand(i-1));
4501      }
4502      if (ThisIsNonZero) {
4503        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4504        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4505                              ThisElt, DAG.getConstant(8, MVT::i8));
4506        if (LastIsNonZero)
4507          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4508      } else
4509        ThisElt = LastElt;
4510
4511      if (ThisElt.getNode())
4512        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4513                        DAG.getIntPtrConstant(i/2));
4514    }
4515  }
4516
4517  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4518}
4519
4520/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4521///
4522static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4523                                     unsigned NumNonZero, unsigned NumZero,
4524                                     SelectionDAG &DAG,
4525                                     const TargetLowering &TLI) {
4526  if (NumNonZero > 4)
4527    return SDValue();
4528
4529  DebugLoc dl = Op.getDebugLoc();
4530  SDValue V(0, 0);
4531  bool First = true;
4532  for (unsigned i = 0; i < 8; ++i) {
4533    bool isNonZero = (NonZeros & (1 << i)) != 0;
4534    if (isNonZero) {
4535      if (First) {
4536        if (NumZero)
4537          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4538        else
4539          V = DAG.getUNDEF(MVT::v8i16);
4540        First = false;
4541      }
4542      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4543                      MVT::v8i16, V, Op.getOperand(i),
4544                      DAG.getIntPtrConstant(i));
4545    }
4546  }
4547
4548  return V;
4549}
4550
4551/// getVShift - Return a vector logical shift node.
4552///
4553static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4554                         unsigned NumBits, SelectionDAG &DAG,
4555                         const TargetLowering &TLI, DebugLoc dl) {
4556  EVT ShVT = MVT::v2i64;
4557  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4558  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4559  return DAG.getNode(ISD::BITCAST, dl, VT,
4560                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4561                             DAG.getConstant(NumBits,
4562                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4563}
4564
4565SDValue
4566X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4567                                          SelectionDAG &DAG) const {
4568
4569  // Check if the scalar load can be widened into a vector load. And if
4570  // the address is "base + cst" see if the cst can be "absorbed" into
4571  // the shuffle mask.
4572  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4573    SDValue Ptr = LD->getBasePtr();
4574    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4575      return SDValue();
4576    EVT PVT = LD->getValueType(0);
4577    if (PVT != MVT::i32 && PVT != MVT::f32)
4578      return SDValue();
4579
4580    int FI = -1;
4581    int64_t Offset = 0;
4582    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4583      FI = FINode->getIndex();
4584      Offset = 0;
4585    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4586               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4587      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4588      Offset = Ptr.getConstantOperandVal(1);
4589      Ptr = Ptr.getOperand(0);
4590    } else {
4591      return SDValue();
4592    }
4593
4594    // FIXME: 256-bit vector instructions don't require a strict alignment,
4595    // improve this code to support it better.
4596    unsigned RequiredAlign = VT.getSizeInBits()/8;
4597    SDValue Chain = LD->getChain();
4598    // Make sure the stack object alignment is at least 16 or 32.
4599    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4600    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4601      if (MFI->isFixedObjectIndex(FI)) {
4602        // Can't change the alignment. FIXME: It's possible to compute
4603        // the exact stack offset and reference FI + adjust offset instead.
4604        // If someone *really* cares about this. That's the way to implement it.
4605        return SDValue();
4606      } else {
4607        MFI->setObjectAlignment(FI, RequiredAlign);
4608      }
4609    }
4610
4611    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4612    // Ptr + (Offset & ~15).
4613    if (Offset < 0)
4614      return SDValue();
4615    if ((Offset % RequiredAlign) & 3)
4616      return SDValue();
4617    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4618    if (StartOffset)
4619      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4620                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4621
4622    int EltNo = (Offset - StartOffset) >> 2;
4623    int NumElems = VT.getVectorNumElements();
4624
4625    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4626    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4627    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4628                             LD->getPointerInfo().getWithOffset(StartOffset),
4629                             false, false, 0);
4630
4631    // Canonicalize it to a v4i32 or v8i32 shuffle.
4632    SmallVector<int, 8> Mask;
4633    for (int i = 0; i < NumElems; ++i)
4634      Mask.push_back(EltNo);
4635
4636    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4637    return DAG.getNode(ISD::BITCAST, dl, NVT,
4638                       DAG.getVectorShuffle(CanonVT, dl, V1,
4639                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4640  }
4641
4642  return SDValue();
4643}
4644
4645/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4646/// vector of type 'VT', see if the elements can be replaced by a single large
4647/// load which has the same value as a build_vector whose operands are 'elts'.
4648///
4649/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4650///
4651/// FIXME: we'd also like to handle the case where the last elements are zero
4652/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4653/// There's even a handy isZeroNode for that purpose.
4654static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4655                                        DebugLoc &DL, SelectionDAG &DAG) {
4656  EVT EltVT = VT.getVectorElementType();
4657  unsigned NumElems = Elts.size();
4658
4659  LoadSDNode *LDBase = NULL;
4660  unsigned LastLoadedElt = -1U;
4661
4662  // For each element in the initializer, see if we've found a load or an undef.
4663  // If we don't find an initial load element, or later load elements are
4664  // non-consecutive, bail out.
4665  for (unsigned i = 0; i < NumElems; ++i) {
4666    SDValue Elt = Elts[i];
4667
4668    if (!Elt.getNode() ||
4669        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4670      return SDValue();
4671    if (!LDBase) {
4672      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4673        return SDValue();
4674      LDBase = cast<LoadSDNode>(Elt.getNode());
4675      LastLoadedElt = i;
4676      continue;
4677    }
4678    if (Elt.getOpcode() == ISD::UNDEF)
4679      continue;
4680
4681    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4682    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4683      return SDValue();
4684    LastLoadedElt = i;
4685  }
4686
4687  // If we have found an entire vector of loads and undefs, then return a large
4688  // load of the entire vector width starting at the base pointer.  If we found
4689  // consecutive loads for the low half, generate a vzext_load node.
4690  if (LastLoadedElt == NumElems - 1) {
4691    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4692      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4693                         LDBase->getPointerInfo(),
4694                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4695    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4696                       LDBase->getPointerInfo(),
4697                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4698                       LDBase->getAlignment());
4699  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4700             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4701    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4702    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4703    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4704                                              Ops, 2, MVT::i32,
4705                                              LDBase->getMemOperand());
4706    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4707  }
4708  return SDValue();
4709}
4710
4711SDValue
4712X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4713  DebugLoc dl = Op.getDebugLoc();
4714
4715  EVT VT = Op.getValueType();
4716  EVT ExtVT = VT.getVectorElementType();
4717  unsigned NumElems = Op.getNumOperands();
4718
4719  // Vectors containing all zeros can be matched by pxor and xorps later
4720  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4721    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4722    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4723    if (Op.getValueType() == MVT::v4i32 ||
4724        Op.getValueType() == MVT::v8i32)
4725      return Op;
4726
4727    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4728  }
4729
4730  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4731  // vectors or broken into v4i32 operations on 256-bit vectors.
4732  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4733    if (Op.getValueType() == MVT::v4i32)
4734      return Op;
4735
4736    return getOnesVector(Op.getValueType(), DAG, dl);
4737  }
4738
4739  unsigned EVTBits = ExtVT.getSizeInBits();
4740
4741  unsigned NumZero  = 0;
4742  unsigned NumNonZero = 0;
4743  unsigned NonZeros = 0;
4744  bool IsAllConstants = true;
4745  SmallSet<SDValue, 8> Values;
4746  for (unsigned i = 0; i < NumElems; ++i) {
4747    SDValue Elt = Op.getOperand(i);
4748    if (Elt.getOpcode() == ISD::UNDEF)
4749      continue;
4750    Values.insert(Elt);
4751    if (Elt.getOpcode() != ISD::Constant &&
4752        Elt.getOpcode() != ISD::ConstantFP)
4753      IsAllConstants = false;
4754    if (X86::isZeroNode(Elt))
4755      NumZero++;
4756    else {
4757      NonZeros |= (1 << i);
4758      NumNonZero++;
4759    }
4760  }
4761
4762  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4763  if (NumNonZero == 0)
4764    return DAG.getUNDEF(VT);
4765
4766  // Special case for single non-zero, non-undef, element.
4767  if (NumNonZero == 1) {
4768    unsigned Idx = CountTrailingZeros_32(NonZeros);
4769    SDValue Item = Op.getOperand(Idx);
4770
4771    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4772    // the value are obviously zero, truncate the value to i32 and do the
4773    // insertion that way.  Only do this if the value is non-constant or if the
4774    // value is a constant being inserted into element 0.  It is cheaper to do
4775    // a constant pool load than it is to do a movd + shuffle.
4776    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4777        (!IsAllConstants || Idx == 0)) {
4778      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4779        // Handle SSE only.
4780        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4781        EVT VecVT = MVT::v4i32;
4782        unsigned VecElts = 4;
4783
4784        // Truncate the value (which may itself be a constant) to i32, and
4785        // convert it to a vector with movd (S2V+shuffle to zero extend).
4786        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4787        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4788        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4789                                           Subtarget->hasSSE2(), DAG);
4790
4791        // Now we have our 32-bit value zero extended in the low element of
4792        // a vector.  If Idx != 0, swizzle it into place.
4793        if (Idx != 0) {
4794          SmallVector<int, 4> Mask;
4795          Mask.push_back(Idx);
4796          for (unsigned i = 1; i != VecElts; ++i)
4797            Mask.push_back(i);
4798          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4799                                      DAG.getUNDEF(Item.getValueType()),
4800                                      &Mask[0]);
4801        }
4802        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4803      }
4804    }
4805
4806    // If we have a constant or non-constant insertion into the low element of
4807    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4808    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4809    // depending on what the source datatype is.
4810    if (Idx == 0) {
4811      if (NumZero == 0) {
4812        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4813      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4814          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4815        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4816        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4817        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4818                                           DAG);
4819      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4820        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4821        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4822        EVT MiddleVT = MVT::v4i32;
4823        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4824        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4825                                           Subtarget->hasSSE2(), DAG);
4826        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4827      }
4828    }
4829
4830    // Is it a vector logical left shift?
4831    if (NumElems == 2 && Idx == 1 &&
4832        X86::isZeroNode(Op.getOperand(0)) &&
4833        !X86::isZeroNode(Op.getOperand(1))) {
4834      unsigned NumBits = VT.getSizeInBits();
4835      return getVShift(true, VT,
4836                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4837                                   VT, Op.getOperand(1)),
4838                       NumBits/2, DAG, *this, dl);
4839    }
4840
4841    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4842      return SDValue();
4843
4844    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4845    // is a non-constant being inserted into an element other than the low one,
4846    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4847    // movd/movss) to move this into the low element, then shuffle it into
4848    // place.
4849    if (EVTBits == 32) {
4850      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4851
4852      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4853      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4854                                         Subtarget->hasSSE2(), DAG);
4855      SmallVector<int, 8> MaskVec;
4856      for (unsigned i = 0; i < NumElems; i++)
4857        MaskVec.push_back(i == Idx ? 0 : 1);
4858      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4859    }
4860  }
4861
4862  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4863  if (Values.size() == 1) {
4864    if (EVTBits == 32) {
4865      // Instead of a shuffle like this:
4866      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4867      // Check if it's possible to issue this instead.
4868      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4869      unsigned Idx = CountTrailingZeros_32(NonZeros);
4870      SDValue Item = Op.getOperand(Idx);
4871      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4872        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4873    }
4874    return SDValue();
4875  }
4876
4877  // A vector full of immediates; various special cases are already
4878  // handled, so this is best done with a single constant-pool load.
4879  if (IsAllConstants)
4880    return SDValue();
4881
4882  // For AVX-length vectors, build the individual 128-bit pieces and use
4883  // shuffles to put them in place.
4884  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4885    SmallVector<SDValue, 32> V;
4886    for (unsigned i = 0; i < NumElems; ++i)
4887      V.push_back(Op.getOperand(i));
4888
4889    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4890
4891    // Build both the lower and upper subvector.
4892    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4893    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4894                                NumElems/2);
4895
4896    // Recreate the wider vector with the lower and upper part.
4897    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
4898                                DAG.getConstant(0, MVT::i32), DAG, dl);
4899    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
4900                              DAG, dl);
4901  }
4902
4903  // Let legalizer expand 2-wide build_vectors.
4904  if (EVTBits == 64) {
4905    if (NumNonZero == 1) {
4906      // One half is zero or undef.
4907      unsigned Idx = CountTrailingZeros_32(NonZeros);
4908      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4909                                 Op.getOperand(Idx));
4910      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4911                                         Subtarget->hasSSE2(), DAG);
4912    }
4913    return SDValue();
4914  }
4915
4916  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4917  if (EVTBits == 8 && NumElems == 16) {
4918    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4919                                        *this);
4920    if (V.getNode()) return V;
4921  }
4922
4923  if (EVTBits == 16 && NumElems == 8) {
4924    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4925                                      *this);
4926    if (V.getNode()) return V;
4927  }
4928
4929  // If element VT is == 32 bits, turn it into a number of shuffles.
4930  SmallVector<SDValue, 8> V;
4931  V.resize(NumElems);
4932  if (NumElems == 4 && NumZero > 0) {
4933    for (unsigned i = 0; i < 4; ++i) {
4934      bool isZero = !(NonZeros & (1 << i));
4935      if (isZero)
4936        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4937      else
4938        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4939    }
4940
4941    for (unsigned i = 0; i < 2; ++i) {
4942      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4943        default: break;
4944        case 0:
4945          V[i] = V[i*2];  // Must be a zero vector.
4946          break;
4947        case 1:
4948          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4949          break;
4950        case 2:
4951          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4952          break;
4953        case 3:
4954          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4955          break;
4956      }
4957    }
4958
4959    SmallVector<int, 8> MaskVec;
4960    bool Reverse = (NonZeros & 0x3) == 2;
4961    for (unsigned i = 0; i < 2; ++i)
4962      MaskVec.push_back(Reverse ? 1-i : i);
4963    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4964    for (unsigned i = 0; i < 2; ++i)
4965      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4966    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4967  }
4968
4969  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4970    // Check for a build vector of consecutive loads.
4971    for (unsigned i = 0; i < NumElems; ++i)
4972      V[i] = Op.getOperand(i);
4973
4974    // Check for elements which are consecutive loads.
4975    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4976    if (LD.getNode())
4977      return LD;
4978
4979    // For SSE 4.1, use insertps to put the high elements into the low element.
4980    if (getSubtarget()->hasSSE41()) {
4981      SDValue Result;
4982      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4983        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4984      else
4985        Result = DAG.getUNDEF(VT);
4986
4987      for (unsigned i = 1; i < NumElems; ++i) {
4988        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4989        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4990                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4991      }
4992      return Result;
4993    }
4994
4995    // Otherwise, expand into a number of unpckl*, start by extending each of
4996    // our (non-undef) elements to the full vector width with the element in the
4997    // bottom slot of the vector (which generates no code for SSE).
4998    for (unsigned i = 0; i < NumElems; ++i) {
4999      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5000        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5001      else
5002        V[i] = DAG.getUNDEF(VT);
5003    }
5004
5005    // Next, we iteratively mix elements, e.g. for v4f32:
5006    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5007    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5008    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5009    unsigned EltStride = NumElems >> 1;
5010    while (EltStride != 0) {
5011      for (unsigned i = 0; i < EltStride; ++i) {
5012        // If V[i+EltStride] is undef and this is the first round of mixing,
5013        // then it is safe to just drop this shuffle: V[i] is already in the
5014        // right place, the one element (since it's the first round) being
5015        // inserted as undef can be dropped.  This isn't safe for successive
5016        // rounds because they will permute elements within both vectors.
5017        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5018            EltStride == NumElems/2)
5019          continue;
5020
5021        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5022      }
5023      EltStride >>= 1;
5024    }
5025    return V[0];
5026  }
5027  return SDValue();
5028}
5029
5030// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5031// them in a MMX register.  This is better than doing a stack convert.
5032static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5033  DebugLoc dl = Op.getDebugLoc();
5034  EVT ResVT = Op.getValueType();
5035
5036  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5037         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5038  int Mask[2];
5039  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5040  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5041  InVec = Op.getOperand(1);
5042  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5043    unsigned NumElts = ResVT.getVectorNumElements();
5044    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5045    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5046                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5047  } else {
5048    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5049    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5050    Mask[0] = 0; Mask[1] = 2;
5051    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5052  }
5053  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5054}
5055
5056// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5057// to create 256-bit vectors from two other 128-bit ones.
5058static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5059  DebugLoc dl = Op.getDebugLoc();
5060  EVT ResVT = Op.getValueType();
5061
5062  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5063
5064  SDValue V1 = Op.getOperand(0);
5065  SDValue V2 = Op.getOperand(1);
5066  unsigned NumElems = ResVT.getVectorNumElements();
5067
5068  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5069                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5070  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5071                            DAG, dl);
5072}
5073
5074SDValue
5075X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5076  EVT ResVT = Op.getValueType();
5077
5078  assert(Op.getNumOperands() == 2);
5079  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5080         "Unsupported CONCAT_VECTORS for value type");
5081
5082  // We support concatenate two MMX registers and place them in a MMX register.
5083  // This is better than doing a stack convert.
5084  if (ResVT.is128BitVector())
5085    return LowerMMXCONCAT_VECTORS(Op, DAG);
5086
5087  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5088  // from two other 128-bit ones.
5089  return LowerAVXCONCAT_VECTORS(Op, DAG);
5090}
5091
5092// v8i16 shuffles - Prefer shuffles in the following order:
5093// 1. [all]   pshuflw, pshufhw, optional move
5094// 2. [ssse3] 1 x pshufb
5095// 3. [ssse3] 2 x pshufb + 1 x por
5096// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5097SDValue
5098X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5099                                            SelectionDAG &DAG) const {
5100  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5101  SDValue V1 = SVOp->getOperand(0);
5102  SDValue V2 = SVOp->getOperand(1);
5103  DebugLoc dl = SVOp->getDebugLoc();
5104  SmallVector<int, 8> MaskVals;
5105
5106  // Determine if more than 1 of the words in each of the low and high quadwords
5107  // of the result come from the same quadword of one of the two inputs.  Undef
5108  // mask values count as coming from any quadword, for better codegen.
5109  SmallVector<unsigned, 4> LoQuad(4);
5110  SmallVector<unsigned, 4> HiQuad(4);
5111  BitVector InputQuads(4);
5112  for (unsigned i = 0; i < 8; ++i) {
5113    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5114    int EltIdx = SVOp->getMaskElt(i);
5115    MaskVals.push_back(EltIdx);
5116    if (EltIdx < 0) {
5117      ++Quad[0];
5118      ++Quad[1];
5119      ++Quad[2];
5120      ++Quad[3];
5121      continue;
5122    }
5123    ++Quad[EltIdx / 4];
5124    InputQuads.set(EltIdx / 4);
5125  }
5126
5127  int BestLoQuad = -1;
5128  unsigned MaxQuad = 1;
5129  for (unsigned i = 0; i < 4; ++i) {
5130    if (LoQuad[i] > MaxQuad) {
5131      BestLoQuad = i;
5132      MaxQuad = LoQuad[i];
5133    }
5134  }
5135
5136  int BestHiQuad = -1;
5137  MaxQuad = 1;
5138  for (unsigned i = 0; i < 4; ++i) {
5139    if (HiQuad[i] > MaxQuad) {
5140      BestHiQuad = i;
5141      MaxQuad = HiQuad[i];
5142    }
5143  }
5144
5145  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5146  // of the two input vectors, shuffle them into one input vector so only a
5147  // single pshufb instruction is necessary. If There are more than 2 input
5148  // quads, disable the next transformation since it does not help SSSE3.
5149  bool V1Used = InputQuads[0] || InputQuads[1];
5150  bool V2Used = InputQuads[2] || InputQuads[3];
5151  if (Subtarget->hasSSSE3()) {
5152    if (InputQuads.count() == 2 && V1Used && V2Used) {
5153      BestLoQuad = InputQuads.find_first();
5154      BestHiQuad = InputQuads.find_next(BestLoQuad);
5155    }
5156    if (InputQuads.count() > 2) {
5157      BestLoQuad = -1;
5158      BestHiQuad = -1;
5159    }
5160  }
5161
5162  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5163  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5164  // words from all 4 input quadwords.
5165  SDValue NewV;
5166  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5167    SmallVector<int, 8> MaskV;
5168    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5169    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5170    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5171                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5172                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5173    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5174
5175    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5176    // source words for the shuffle, to aid later transformations.
5177    bool AllWordsInNewV = true;
5178    bool InOrder[2] = { true, true };
5179    for (unsigned i = 0; i != 8; ++i) {
5180      int idx = MaskVals[i];
5181      if (idx != (int)i)
5182        InOrder[i/4] = false;
5183      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5184        continue;
5185      AllWordsInNewV = false;
5186      break;
5187    }
5188
5189    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5190    if (AllWordsInNewV) {
5191      for (int i = 0; i != 8; ++i) {
5192        int idx = MaskVals[i];
5193        if (idx < 0)
5194          continue;
5195        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5196        if ((idx != i) && idx < 4)
5197          pshufhw = false;
5198        if ((idx != i) && idx > 3)
5199          pshuflw = false;
5200      }
5201      V1 = NewV;
5202      V2Used = false;
5203      BestLoQuad = 0;
5204      BestHiQuad = 1;
5205    }
5206
5207    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5208    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5209    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5210      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5211      unsigned TargetMask = 0;
5212      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5213                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5214      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5215                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5216      V1 = NewV.getOperand(0);
5217      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5218    }
5219  }
5220
5221  // If we have SSSE3, and all words of the result are from 1 input vector,
5222  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5223  // is present, fall back to case 4.
5224  if (Subtarget->hasSSSE3()) {
5225    SmallVector<SDValue,16> pshufbMask;
5226
5227    // If we have elements from both input vectors, set the high bit of the
5228    // shuffle mask element to zero out elements that come from V2 in the V1
5229    // mask, and elements that come from V1 in the V2 mask, so that the two
5230    // results can be OR'd together.
5231    bool TwoInputs = V1Used && V2Used;
5232    for (unsigned i = 0; i != 8; ++i) {
5233      int EltIdx = MaskVals[i] * 2;
5234      if (TwoInputs && (EltIdx >= 16)) {
5235        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5236        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5237        continue;
5238      }
5239      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5240      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5241    }
5242    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5243    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5244                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5245                                 MVT::v16i8, &pshufbMask[0], 16));
5246    if (!TwoInputs)
5247      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5248
5249    // Calculate the shuffle mask for the second input, shuffle it, and
5250    // OR it with the first shuffled input.
5251    pshufbMask.clear();
5252    for (unsigned i = 0; i != 8; ++i) {
5253      int EltIdx = MaskVals[i] * 2;
5254      if (EltIdx < 16) {
5255        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5256        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5257        continue;
5258      }
5259      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5260      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5261    }
5262    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5263    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5264                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5265                                 MVT::v16i8, &pshufbMask[0], 16));
5266    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5267    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5268  }
5269
5270  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5271  // and update MaskVals with new element order.
5272  BitVector InOrder(8);
5273  if (BestLoQuad >= 0) {
5274    SmallVector<int, 8> MaskV;
5275    for (int i = 0; i != 4; ++i) {
5276      int idx = MaskVals[i];
5277      if (idx < 0) {
5278        MaskV.push_back(-1);
5279        InOrder.set(i);
5280      } else if ((idx / 4) == BestLoQuad) {
5281        MaskV.push_back(idx & 3);
5282        InOrder.set(i);
5283      } else {
5284        MaskV.push_back(-1);
5285      }
5286    }
5287    for (unsigned i = 4; i != 8; ++i)
5288      MaskV.push_back(i);
5289    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5290                                &MaskV[0]);
5291
5292    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5293      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5294                               NewV.getOperand(0),
5295                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5296                               DAG);
5297  }
5298
5299  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5300  // and update MaskVals with the new element order.
5301  if (BestHiQuad >= 0) {
5302    SmallVector<int, 8> MaskV;
5303    for (unsigned i = 0; i != 4; ++i)
5304      MaskV.push_back(i);
5305    for (unsigned i = 4; i != 8; ++i) {
5306      int idx = MaskVals[i];
5307      if (idx < 0) {
5308        MaskV.push_back(-1);
5309        InOrder.set(i);
5310      } else if ((idx / 4) == BestHiQuad) {
5311        MaskV.push_back((idx & 3) + 4);
5312        InOrder.set(i);
5313      } else {
5314        MaskV.push_back(-1);
5315      }
5316    }
5317    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5318                                &MaskV[0]);
5319
5320    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5321      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5322                              NewV.getOperand(0),
5323                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5324                              DAG);
5325  }
5326
5327  // In case BestHi & BestLo were both -1, which means each quadword has a word
5328  // from each of the four input quadwords, calculate the InOrder bitvector now
5329  // before falling through to the insert/extract cleanup.
5330  if (BestLoQuad == -1 && BestHiQuad == -1) {
5331    NewV = V1;
5332    for (int i = 0; i != 8; ++i)
5333      if (MaskVals[i] < 0 || MaskVals[i] == i)
5334        InOrder.set(i);
5335  }
5336
5337  // The other elements are put in the right place using pextrw and pinsrw.
5338  for (unsigned i = 0; i != 8; ++i) {
5339    if (InOrder[i])
5340      continue;
5341    int EltIdx = MaskVals[i];
5342    if (EltIdx < 0)
5343      continue;
5344    SDValue ExtOp = (EltIdx < 8)
5345    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5346                  DAG.getIntPtrConstant(EltIdx))
5347    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5348                  DAG.getIntPtrConstant(EltIdx - 8));
5349    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5350                       DAG.getIntPtrConstant(i));
5351  }
5352  return NewV;
5353}
5354
5355// v16i8 shuffles - Prefer shuffles in the following order:
5356// 1. [ssse3] 1 x pshufb
5357// 2. [ssse3] 2 x pshufb + 1 x por
5358// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5359static
5360SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5361                                 SelectionDAG &DAG,
5362                                 const X86TargetLowering &TLI) {
5363  SDValue V1 = SVOp->getOperand(0);
5364  SDValue V2 = SVOp->getOperand(1);
5365  DebugLoc dl = SVOp->getDebugLoc();
5366  SmallVector<int, 16> MaskVals;
5367  SVOp->getMask(MaskVals);
5368
5369  // If we have SSSE3, case 1 is generated when all result bytes come from
5370  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5371  // present, fall back to case 3.
5372  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5373  bool V1Only = true;
5374  bool V2Only = true;
5375  for (unsigned i = 0; i < 16; ++i) {
5376    int EltIdx = MaskVals[i];
5377    if (EltIdx < 0)
5378      continue;
5379    if (EltIdx < 16)
5380      V2Only = false;
5381    else
5382      V1Only = false;
5383  }
5384
5385  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5386  if (TLI.getSubtarget()->hasSSSE3()) {
5387    SmallVector<SDValue,16> pshufbMask;
5388
5389    // If all result elements are from one input vector, then only translate
5390    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5391    //
5392    // Otherwise, we have elements from both input vectors, and must zero out
5393    // elements that come from V2 in the first mask, and V1 in the second mask
5394    // so that we can OR them together.
5395    bool TwoInputs = !(V1Only || V2Only);
5396    for (unsigned i = 0; i != 16; ++i) {
5397      int EltIdx = MaskVals[i];
5398      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5399        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5400        continue;
5401      }
5402      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5403    }
5404    // If all the elements are from V2, assign it to V1 and return after
5405    // building the first pshufb.
5406    if (V2Only)
5407      V1 = V2;
5408    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5409                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5410                                 MVT::v16i8, &pshufbMask[0], 16));
5411    if (!TwoInputs)
5412      return V1;
5413
5414    // Calculate the shuffle mask for the second input, shuffle it, and
5415    // OR it with the first shuffled input.
5416    pshufbMask.clear();
5417    for (unsigned i = 0; i != 16; ++i) {
5418      int EltIdx = MaskVals[i];
5419      if (EltIdx < 16) {
5420        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5421        continue;
5422      }
5423      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5424    }
5425    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5426                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5427                                 MVT::v16i8, &pshufbMask[0], 16));
5428    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5429  }
5430
5431  // No SSSE3 - Calculate in place words and then fix all out of place words
5432  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5433  // the 16 different words that comprise the two doublequadword input vectors.
5434  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5435  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5436  SDValue NewV = V2Only ? V2 : V1;
5437  for (int i = 0; i != 8; ++i) {
5438    int Elt0 = MaskVals[i*2];
5439    int Elt1 = MaskVals[i*2+1];
5440
5441    // This word of the result is all undef, skip it.
5442    if (Elt0 < 0 && Elt1 < 0)
5443      continue;
5444
5445    // This word of the result is already in the correct place, skip it.
5446    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5447      continue;
5448    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5449      continue;
5450
5451    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5452    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5453    SDValue InsElt;
5454
5455    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5456    // using a single extract together, load it and store it.
5457    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5458      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5459                           DAG.getIntPtrConstant(Elt1 / 2));
5460      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5461                        DAG.getIntPtrConstant(i));
5462      continue;
5463    }
5464
5465    // If Elt1 is defined, extract it from the appropriate source.  If the
5466    // source byte is not also odd, shift the extracted word left 8 bits
5467    // otherwise clear the bottom 8 bits if we need to do an or.
5468    if (Elt1 >= 0) {
5469      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5470                           DAG.getIntPtrConstant(Elt1 / 2));
5471      if ((Elt1 & 1) == 0)
5472        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5473                             DAG.getConstant(8,
5474                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5475      else if (Elt0 >= 0)
5476        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5477                             DAG.getConstant(0xFF00, MVT::i16));
5478    }
5479    // If Elt0 is defined, extract it from the appropriate source.  If the
5480    // source byte is not also even, shift the extracted word right 8 bits. If
5481    // Elt1 was also defined, OR the extracted values together before
5482    // inserting them in the result.
5483    if (Elt0 >= 0) {
5484      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5485                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5486      if ((Elt0 & 1) != 0)
5487        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5488                              DAG.getConstant(8,
5489                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5490      else if (Elt1 >= 0)
5491        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5492                             DAG.getConstant(0x00FF, MVT::i16));
5493      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5494                         : InsElt0;
5495    }
5496    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5497                       DAG.getIntPtrConstant(i));
5498  }
5499  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5500}
5501
5502/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5503/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5504/// done when every pair / quad of shuffle mask elements point to elements in
5505/// the right sequence. e.g.
5506/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5507static
5508SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5509                                 SelectionDAG &DAG, DebugLoc dl) {
5510  EVT VT = SVOp->getValueType(0);
5511  SDValue V1 = SVOp->getOperand(0);
5512  SDValue V2 = SVOp->getOperand(1);
5513  unsigned NumElems = VT.getVectorNumElements();
5514  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5515  EVT NewVT;
5516  switch (VT.getSimpleVT().SimpleTy) {
5517  default: assert(false && "Unexpected!");
5518  case MVT::v4f32: NewVT = MVT::v2f64; break;
5519  case MVT::v4i32: NewVT = MVT::v2i64; break;
5520  case MVT::v8i16: NewVT = MVT::v4i32; break;
5521  case MVT::v16i8: NewVT = MVT::v4i32; break;
5522  }
5523
5524  int Scale = NumElems / NewWidth;
5525  SmallVector<int, 8> MaskVec;
5526  for (unsigned i = 0; i < NumElems; i += Scale) {
5527    int StartIdx = -1;
5528    for (int j = 0; j < Scale; ++j) {
5529      int EltIdx = SVOp->getMaskElt(i+j);
5530      if (EltIdx < 0)
5531        continue;
5532      if (StartIdx == -1)
5533        StartIdx = EltIdx - (EltIdx % Scale);
5534      if (EltIdx != StartIdx + j)
5535        return SDValue();
5536    }
5537    if (StartIdx == -1)
5538      MaskVec.push_back(-1);
5539    else
5540      MaskVec.push_back(StartIdx / Scale);
5541  }
5542
5543  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5544  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5545  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5546}
5547
5548/// getVZextMovL - Return a zero-extending vector move low node.
5549///
5550static SDValue getVZextMovL(EVT VT, EVT OpVT,
5551                            SDValue SrcOp, SelectionDAG &DAG,
5552                            const X86Subtarget *Subtarget, DebugLoc dl) {
5553  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5554    LoadSDNode *LD = NULL;
5555    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5556      LD = dyn_cast<LoadSDNode>(SrcOp);
5557    if (!LD) {
5558      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5559      // instead.
5560      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5561      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5562          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5563          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5564          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5565        // PR2108
5566        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5567        return DAG.getNode(ISD::BITCAST, dl, VT,
5568                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5569                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5570                                                   OpVT,
5571                                                   SrcOp.getOperand(0)
5572                                                          .getOperand(0))));
5573      }
5574    }
5575  }
5576
5577  return DAG.getNode(ISD::BITCAST, dl, VT,
5578                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5579                                 DAG.getNode(ISD::BITCAST, dl,
5580                                             OpVT, SrcOp)));
5581}
5582
5583/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5584/// which could not be matched by any known target speficic shuffle
5585static SDValue
5586LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5587  return SDValue();
5588}
5589
5590/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5591/// 4 elements, and match them with several different shuffle types.
5592static SDValue
5593LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5594  SDValue V1 = SVOp->getOperand(0);
5595  SDValue V2 = SVOp->getOperand(1);
5596  DebugLoc dl = SVOp->getDebugLoc();
5597  EVT VT = SVOp->getValueType(0);
5598
5599  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5600
5601  SmallVector<std::pair<int, int>, 8> Locs;
5602  Locs.resize(4);
5603  SmallVector<int, 8> Mask1(4U, -1);
5604  SmallVector<int, 8> PermMask;
5605  SVOp->getMask(PermMask);
5606
5607  unsigned NumHi = 0;
5608  unsigned NumLo = 0;
5609  for (unsigned i = 0; i != 4; ++i) {
5610    int Idx = PermMask[i];
5611    if (Idx < 0) {
5612      Locs[i] = std::make_pair(-1, -1);
5613    } else {
5614      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5615      if (Idx < 4) {
5616        Locs[i] = std::make_pair(0, NumLo);
5617        Mask1[NumLo] = Idx;
5618        NumLo++;
5619      } else {
5620        Locs[i] = std::make_pair(1, NumHi);
5621        if (2+NumHi < 4)
5622          Mask1[2+NumHi] = Idx;
5623        NumHi++;
5624      }
5625    }
5626  }
5627
5628  if (NumLo <= 2 && NumHi <= 2) {
5629    // If no more than two elements come from either vector. This can be
5630    // implemented with two shuffles. First shuffle gather the elements.
5631    // The second shuffle, which takes the first shuffle as both of its
5632    // vector operands, put the elements into the right order.
5633    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5634
5635    SmallVector<int, 8> Mask2(4U, -1);
5636
5637    for (unsigned i = 0; i != 4; ++i) {
5638      if (Locs[i].first == -1)
5639        continue;
5640      else {
5641        unsigned Idx = (i < 2) ? 0 : 4;
5642        Idx += Locs[i].first * 2 + Locs[i].second;
5643        Mask2[i] = Idx;
5644      }
5645    }
5646
5647    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5648  } else if (NumLo == 3 || NumHi == 3) {
5649    // Otherwise, we must have three elements from one vector, call it X, and
5650    // one element from the other, call it Y.  First, use a shufps to build an
5651    // intermediate vector with the one element from Y and the element from X
5652    // that will be in the same half in the final destination (the indexes don't
5653    // matter). Then, use a shufps to build the final vector, taking the half
5654    // containing the element from Y from the intermediate, and the other half
5655    // from X.
5656    if (NumHi == 3) {
5657      // Normalize it so the 3 elements come from V1.
5658      CommuteVectorShuffleMask(PermMask, VT);
5659      std::swap(V1, V2);
5660    }
5661
5662    // Find the element from V2.
5663    unsigned HiIndex;
5664    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5665      int Val = PermMask[HiIndex];
5666      if (Val < 0)
5667        continue;
5668      if (Val >= 4)
5669        break;
5670    }
5671
5672    Mask1[0] = PermMask[HiIndex];
5673    Mask1[1] = -1;
5674    Mask1[2] = PermMask[HiIndex^1];
5675    Mask1[3] = -1;
5676    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5677
5678    if (HiIndex >= 2) {
5679      Mask1[0] = PermMask[0];
5680      Mask1[1] = PermMask[1];
5681      Mask1[2] = HiIndex & 1 ? 6 : 4;
5682      Mask1[3] = HiIndex & 1 ? 4 : 6;
5683      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5684    } else {
5685      Mask1[0] = HiIndex & 1 ? 2 : 0;
5686      Mask1[1] = HiIndex & 1 ? 0 : 2;
5687      Mask1[2] = PermMask[2];
5688      Mask1[3] = PermMask[3];
5689      if (Mask1[2] >= 0)
5690        Mask1[2] += 4;
5691      if (Mask1[3] >= 0)
5692        Mask1[3] += 4;
5693      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5694    }
5695  }
5696
5697  // Break it into (shuffle shuffle_hi, shuffle_lo).
5698  Locs.clear();
5699  Locs.resize(4);
5700  SmallVector<int,8> LoMask(4U, -1);
5701  SmallVector<int,8> HiMask(4U, -1);
5702
5703  SmallVector<int,8> *MaskPtr = &LoMask;
5704  unsigned MaskIdx = 0;
5705  unsigned LoIdx = 0;
5706  unsigned HiIdx = 2;
5707  for (unsigned i = 0; i != 4; ++i) {
5708    if (i == 2) {
5709      MaskPtr = &HiMask;
5710      MaskIdx = 1;
5711      LoIdx = 0;
5712      HiIdx = 2;
5713    }
5714    int Idx = PermMask[i];
5715    if (Idx < 0) {
5716      Locs[i] = std::make_pair(-1, -1);
5717    } else if (Idx < 4) {
5718      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5719      (*MaskPtr)[LoIdx] = Idx;
5720      LoIdx++;
5721    } else {
5722      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5723      (*MaskPtr)[HiIdx] = Idx;
5724      HiIdx++;
5725    }
5726  }
5727
5728  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5729  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5730  SmallVector<int, 8> MaskOps;
5731  for (unsigned i = 0; i != 4; ++i) {
5732    if (Locs[i].first == -1) {
5733      MaskOps.push_back(-1);
5734    } else {
5735      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5736      MaskOps.push_back(Idx);
5737    }
5738  }
5739  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5740}
5741
5742static bool MayFoldVectorLoad(SDValue V) {
5743  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5744    V = V.getOperand(0);
5745  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5746    V = V.getOperand(0);
5747  if (MayFoldLoad(V))
5748    return true;
5749  return false;
5750}
5751
5752// FIXME: the version above should always be used. Since there's
5753// a bug where several vector shuffles can't be folded because the
5754// DAG is not updated during lowering and a node claims to have two
5755// uses while it only has one, use this version, and let isel match
5756// another instruction if the load really happens to have more than
5757// one use. Remove this version after this bug get fixed.
5758// rdar://8434668, PR8156
5759static bool RelaxedMayFoldVectorLoad(SDValue V) {
5760  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5761    V = V.getOperand(0);
5762  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5763    V = V.getOperand(0);
5764  if (ISD::isNormalLoad(V.getNode()))
5765    return true;
5766  return false;
5767}
5768
5769/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5770/// a vector extract, and if both can be later optimized into a single load.
5771/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5772/// here because otherwise a target specific shuffle node is going to be
5773/// emitted for this shuffle, and the optimization not done.
5774/// FIXME: This is probably not the best approach, but fix the problem
5775/// until the right path is decided.
5776static
5777bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5778                                         const TargetLowering &TLI) {
5779  EVT VT = V.getValueType();
5780  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5781
5782  // Be sure that the vector shuffle is present in a pattern like this:
5783  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5784  if (!V.hasOneUse())
5785    return false;
5786
5787  SDNode *N = *V.getNode()->use_begin();
5788  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5789    return false;
5790
5791  SDValue EltNo = N->getOperand(1);
5792  if (!isa<ConstantSDNode>(EltNo))
5793    return false;
5794
5795  // If the bit convert changed the number of elements, it is unsafe
5796  // to examine the mask.
5797  bool HasShuffleIntoBitcast = false;
5798  if (V.getOpcode() == ISD::BITCAST) {
5799    EVT SrcVT = V.getOperand(0).getValueType();
5800    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5801      return false;
5802    V = V.getOperand(0);
5803    HasShuffleIntoBitcast = true;
5804  }
5805
5806  // Select the input vector, guarding against out of range extract vector.
5807  unsigned NumElems = VT.getVectorNumElements();
5808  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5809  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5810  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5811
5812  // Skip one more bit_convert if necessary
5813  if (V.getOpcode() == ISD::BITCAST)
5814    V = V.getOperand(0);
5815
5816  if (ISD::isNormalLoad(V.getNode())) {
5817    // Is the original load suitable?
5818    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5819
5820    // FIXME: avoid the multi-use bug that is preventing lots of
5821    // of foldings to be detected, this is still wrong of course, but
5822    // give the temporary desired behavior, and if it happens that
5823    // the load has real more uses, during isel it will not fold, and
5824    // will generate poor code.
5825    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5826      return false;
5827
5828    if (!HasShuffleIntoBitcast)
5829      return true;
5830
5831    // If there's a bitcast before the shuffle, check if the load type and
5832    // alignment is valid.
5833    unsigned Align = LN0->getAlignment();
5834    unsigned NewAlign =
5835      TLI.getTargetData()->getABITypeAlignment(
5836                                    VT.getTypeForEVT(*DAG.getContext()));
5837
5838    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5839      return false;
5840  }
5841
5842  return true;
5843}
5844
5845static
5846SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5847  EVT VT = Op.getValueType();
5848
5849  // Canonizalize to v2f64.
5850  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5851  return DAG.getNode(ISD::BITCAST, dl, VT,
5852                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5853                                          V1, DAG));
5854}
5855
5856static
5857SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5858                        bool HasSSE2) {
5859  SDValue V1 = Op.getOperand(0);
5860  SDValue V2 = Op.getOperand(1);
5861  EVT VT = Op.getValueType();
5862
5863  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5864
5865  if (HasSSE2 && VT == MVT::v2f64)
5866    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5867
5868  // v4f32 or v4i32
5869  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5870}
5871
5872static
5873SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5874  SDValue V1 = Op.getOperand(0);
5875  SDValue V2 = Op.getOperand(1);
5876  EVT VT = Op.getValueType();
5877
5878  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5879         "unsupported shuffle type");
5880
5881  if (V2.getOpcode() == ISD::UNDEF)
5882    V2 = V1;
5883
5884  // v4i32 or v4f32
5885  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5886}
5887
5888static
5889SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5890  SDValue V1 = Op.getOperand(0);
5891  SDValue V2 = Op.getOperand(1);
5892  EVT VT = Op.getValueType();
5893  unsigned NumElems = VT.getVectorNumElements();
5894
5895  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5896  // operand of these instructions is only memory, so check if there's a
5897  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5898  // same masks.
5899  bool CanFoldLoad = false;
5900
5901  // Trivial case, when V2 comes from a load.
5902  if (MayFoldVectorLoad(V2))
5903    CanFoldLoad = true;
5904
5905  // When V1 is a load, it can be folded later into a store in isel, example:
5906  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5907  //    turns into:
5908  //  (MOVLPSmr addr:$src1, VR128:$src2)
5909  // So, recognize this potential and also use MOVLPS or MOVLPD
5910  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5911    CanFoldLoad = true;
5912
5913  // Both of them can't be memory operations though.
5914  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5915    CanFoldLoad = false;
5916
5917  if (CanFoldLoad) {
5918    if (HasSSE2 && NumElems == 2)
5919      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5920
5921    if (NumElems == 4)
5922      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5923  }
5924
5925  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5926  // movl and movlp will both match v2i64, but v2i64 is never matched by
5927  // movl earlier because we make it strict to avoid messing with the movlp load
5928  // folding logic (see the code above getMOVLP call). Match it here then,
5929  // this is horrible, but will stay like this until we move all shuffle
5930  // matching to x86 specific nodes. Note that for the 1st condition all
5931  // types are matched with movsd.
5932  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5933    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5934  else if (HasSSE2)
5935    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5936
5937
5938  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5939
5940  // Invert the operand order and use SHUFPS to match it.
5941  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5942                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5943}
5944
5945static inline unsigned getUNPCKLOpcode(EVT VT) {
5946  switch(VT.getSimpleVT().SimpleTy) {
5947  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5948  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5949  case MVT::v4f32: return X86ISD::UNPCKLPS;
5950  case MVT::v2f64: return X86ISD::UNPCKLPD;
5951  case MVT::v8i32: // Use fp unit for int unpack.
5952  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5953  case MVT::v4i64: // Use fp unit for int unpack.
5954  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5955  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5956  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5957  default:
5958    llvm_unreachable("Unknown type for unpckl");
5959  }
5960  return 0;
5961}
5962
5963static inline unsigned getUNPCKHOpcode(EVT VT) {
5964  switch(VT.getSimpleVT().SimpleTy) {
5965  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5966  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5967  case MVT::v4f32: return X86ISD::UNPCKHPS;
5968  case MVT::v2f64: return X86ISD::UNPCKHPD;
5969  case MVT::v8i32: // Use fp unit for int unpack.
5970  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
5971  case MVT::v4i64: // Use fp unit for int unpack.
5972  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
5973  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5974  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5975  default:
5976    llvm_unreachable("Unknown type for unpckh");
5977  }
5978  return 0;
5979}
5980
5981static inline unsigned getVPERMILOpcode(EVT VT) {
5982  switch(VT.getSimpleVT().SimpleTy) {
5983  case MVT::v4i32:
5984  case MVT::v4f32: return X86ISD::VPERMILPS;
5985  case MVT::v2i64:
5986  case MVT::v2f64: return X86ISD::VPERMILPD;
5987  case MVT::v8i32:
5988  case MVT::v8f32: return X86ISD::VPERMILPSY;
5989  case MVT::v4i64:
5990  case MVT::v4f64: return X86ISD::VPERMILPDY;
5991  default:
5992    llvm_unreachable("Unknown type for vpermil");
5993  }
5994  return 0;
5995}
5996
5997static
5998SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5999                               const TargetLowering &TLI,
6000                               const X86Subtarget *Subtarget) {
6001  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6002  EVT VT = Op.getValueType();
6003  DebugLoc dl = Op.getDebugLoc();
6004  SDValue V1 = Op.getOperand(0);
6005  SDValue V2 = Op.getOperand(1);
6006
6007  if (isZeroShuffle(SVOp))
6008    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6009
6010  // Handle splat operations
6011  if (SVOp->isSplat()) {
6012    unsigned NumElem = VT.getVectorNumElements();
6013    // Special case, this is the only place now where it's allowed to return
6014    // a vector_shuffle operation without using a target specific node, because
6015    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6016    // this be moved to DAGCombine instead?
6017    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6018      return Op;
6019
6020    // Since there's no native support for scalar_to_vector for 256-bit AVX, a
6021    // 128-bit scalar_to_vector + INSERT_SUBVECTOR is generated. Recognize this
6022    // idiom and do the shuffle before the insertion, this yields less
6023    // instructions in the end.
6024    if (VT.is256BitVector() &&
6025        V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
6026        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
6027        V1.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR)
6028      return PromoteVectorToScalarSplat(SVOp, DAG);
6029
6030    // Handle splats by matching through known shuffle masks
6031    if (VT.is128BitVector() && NumElem <= 4)
6032      return SDValue();
6033
6034    // All i16 and i8 vector types can't be used directly by a generic shuffle
6035    // instruction because the target has no such instruction. Generate shuffles
6036    // which repeat i16 and i8 several times until they fit in i32, and then can
6037    // be manipulated by target suported shuffles. After the insertion of the
6038    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
6039    return PromoteSplat(SVOp, DAG);
6040  }
6041
6042  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6043  // do it!
6044  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6045    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6046    if (NewOp.getNode())
6047      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6048  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6049    // FIXME: Figure out a cleaner way to do this.
6050    // Try to make use of movq to zero out the top part.
6051    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6052      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6053      if (NewOp.getNode()) {
6054        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6055          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6056                              DAG, Subtarget, dl);
6057      }
6058    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6059      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6060      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6061        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6062                            DAG, Subtarget, dl);
6063    }
6064  }
6065  return SDValue();
6066}
6067
6068SDValue
6069X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6070  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6071  SDValue V1 = Op.getOperand(0);
6072  SDValue V2 = Op.getOperand(1);
6073  EVT VT = Op.getValueType();
6074  DebugLoc dl = Op.getDebugLoc();
6075  unsigned NumElems = VT.getVectorNumElements();
6076  bool isMMX = VT.getSizeInBits() == 64;
6077  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6078  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6079  bool V1IsSplat = false;
6080  bool V2IsSplat = false;
6081  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6082  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6083  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6084  MachineFunction &MF = DAG.getMachineFunction();
6085  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6086
6087  // Shuffle operations on MMX not supported.
6088  if (isMMX)
6089    return Op;
6090
6091  // Vector shuffle lowering takes 3 steps:
6092  //
6093  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6094  //    narrowing and commutation of operands should be handled.
6095  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6096  //    shuffle nodes.
6097  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6098  //    so the shuffle can be broken into other shuffles and the legalizer can
6099  //    try the lowering again.
6100  //
6101  // The general ideia is that no vector_shuffle operation should be left to
6102  // be matched during isel, all of them must be converted to a target specific
6103  // node here.
6104
6105  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6106  // narrowing and commutation of operands should be handled. The actual code
6107  // doesn't include all of those, work in progress...
6108  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6109  if (NewOp.getNode())
6110    return NewOp;
6111
6112  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6113  // unpckh_undef). Only use pshufd if speed is more important than size.
6114  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6115    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6116  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6117    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6118
6119  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6120      RelaxedMayFoldVectorLoad(V1))
6121    return getMOVDDup(Op, dl, V1, DAG);
6122
6123  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6124    return getMOVHighToLow(Op, dl, DAG);
6125
6126  // Use to match splats
6127  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6128      (VT == MVT::v2f64 || VT == MVT::v2i64))
6129    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6130
6131  if (X86::isPSHUFDMask(SVOp)) {
6132    // The actual implementation will match the mask in the if above and then
6133    // during isel it can match several different instructions, not only pshufd
6134    // as its name says, sad but true, emulate the behavior for now...
6135    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6136        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6137
6138    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6139
6140    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6141      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6142
6143    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6144      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
6145                                  TargetMask, DAG);
6146
6147    if (VT == MVT::v4f32)
6148      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
6149                                  TargetMask, DAG);
6150  }
6151
6152  // Check if this can be converted into a logical shift.
6153  bool isLeft = false;
6154  unsigned ShAmt = 0;
6155  SDValue ShVal;
6156  bool isShift = getSubtarget()->hasSSE2() &&
6157    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6158  if (isShift && ShVal.hasOneUse()) {
6159    // If the shifted value has multiple uses, it may be cheaper to use
6160    // v_set0 + movlhps or movhlps, etc.
6161    EVT EltVT = VT.getVectorElementType();
6162    ShAmt *= EltVT.getSizeInBits();
6163    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6164  }
6165
6166  if (X86::isMOVLMask(SVOp)) {
6167    if (V1IsUndef)
6168      return V2;
6169    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6170      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6171    if (!X86::isMOVLPMask(SVOp)) {
6172      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6173        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6174
6175      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6176        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6177    }
6178  }
6179
6180  // FIXME: fold these into legal mask.
6181  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6182    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6183
6184  if (X86::isMOVHLPSMask(SVOp))
6185    return getMOVHighToLow(Op, dl, DAG);
6186
6187  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6188    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6189
6190  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6191    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6192
6193  if (X86::isMOVLPMask(SVOp))
6194    return getMOVLP(Op, dl, DAG, HasSSE2);
6195
6196  if (ShouldXformToMOVHLPS(SVOp) ||
6197      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6198    return CommuteVectorShuffle(SVOp, DAG);
6199
6200  if (isShift) {
6201    // No better options. Use a vshl / vsrl.
6202    EVT EltVT = VT.getVectorElementType();
6203    ShAmt *= EltVT.getSizeInBits();
6204    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6205  }
6206
6207  bool Commuted = false;
6208  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6209  // 1,1,1,1 -> v8i16 though.
6210  V1IsSplat = isSplatVector(V1.getNode());
6211  V2IsSplat = isSplatVector(V2.getNode());
6212
6213  // Canonicalize the splat or undef, if present, to be on the RHS.
6214  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6215    Op = CommuteVectorShuffle(SVOp, DAG);
6216    SVOp = cast<ShuffleVectorSDNode>(Op);
6217    V1 = SVOp->getOperand(0);
6218    V2 = SVOp->getOperand(1);
6219    std::swap(V1IsSplat, V2IsSplat);
6220    std::swap(V1IsUndef, V2IsUndef);
6221    Commuted = true;
6222  }
6223
6224  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6225    // Shuffling low element of v1 into undef, just return v1.
6226    if (V2IsUndef)
6227      return V1;
6228    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6229    // the instruction selector will not match, so get a canonical MOVL with
6230    // swapped operands to undo the commute.
6231    return getMOVL(DAG, dl, VT, V2, V1);
6232  }
6233
6234  if (X86::isUNPCKLMask(SVOp))
6235    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6236
6237  if (X86::isUNPCKHMask(SVOp))
6238    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6239
6240  if (V2IsSplat) {
6241    // Normalize mask so all entries that point to V2 points to its first
6242    // element then try to match unpck{h|l} again. If match, return a
6243    // new vector_shuffle with the corrected mask.
6244    SDValue NewMask = NormalizeMask(SVOp, DAG);
6245    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6246    if (NSVOp != SVOp) {
6247      if (X86::isUNPCKLMask(NSVOp, true)) {
6248        return NewMask;
6249      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6250        return NewMask;
6251      }
6252    }
6253  }
6254
6255  if (Commuted) {
6256    // Commute is back and try unpck* again.
6257    // FIXME: this seems wrong.
6258    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6259    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6260
6261    if (X86::isUNPCKLMask(NewSVOp))
6262      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6263
6264    if (X86::isUNPCKHMask(NewSVOp))
6265      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6266  }
6267
6268  // Normalize the node to match x86 shuffle ops if needed
6269  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6270    return CommuteVectorShuffle(SVOp, DAG);
6271
6272  // The checks below are all present in isShuffleMaskLegal, but they are
6273  // inlined here right now to enable us to directly emit target specific
6274  // nodes, and remove one by one until they don't return Op anymore.
6275  SmallVector<int, 16> M;
6276  SVOp->getMask(M);
6277
6278  if (isPALIGNRMask(M, VT, HasSSSE3))
6279    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6280                                X86::getShufflePALIGNRImmediate(SVOp),
6281                                DAG);
6282
6283  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6284      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6285    if (VT == MVT::v2f64)
6286      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6287    if (VT == MVT::v2i64)
6288      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6289  }
6290
6291  if (isPSHUFHWMask(M, VT))
6292    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6293                                X86::getShufflePSHUFHWImmediate(SVOp),
6294                                DAG);
6295
6296  if (isPSHUFLWMask(M, VT))
6297    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6298                                X86::getShufflePSHUFLWImmediate(SVOp),
6299                                DAG);
6300
6301  if (isSHUFPMask(M, VT)) {
6302    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6303    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6304      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6305                                  TargetMask, DAG);
6306    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6307      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6308                                  TargetMask, DAG);
6309  }
6310
6311  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6312    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6313  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6314    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6315
6316  //===--------------------------------------------------------------------===//
6317  // Generate target specific nodes for 128 or 256-bit shuffles only
6318  // supported in the AVX instruction set.
6319  //
6320
6321  // Handle VPERMILPS* permutations
6322  if (isVPERMILPSMask(M, VT, Subtarget))
6323    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6324                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6325
6326  // Handle VPERMILPD* permutations
6327  if (isVPERMILPDMask(M, VT, Subtarget))
6328    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6329                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6330
6331  //===--------------------------------------------------------------------===//
6332  // Since no target specific shuffle was selected for this generic one,
6333  // lower it into other known shuffles. FIXME: this isn't true yet, but
6334  // this is the plan.
6335  //
6336
6337  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6338  if (VT == MVT::v8i16) {
6339    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6340    if (NewOp.getNode())
6341      return NewOp;
6342  }
6343
6344  if (VT == MVT::v16i8) {
6345    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6346    if (NewOp.getNode())
6347      return NewOp;
6348  }
6349
6350  // Handle all 128-bit wide vectors with 4 elements, and match them with
6351  // several different shuffle types.
6352  if (NumElems == 4 && VT.getSizeInBits() == 128)
6353    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6354
6355  // Handle general 256-bit shuffles
6356  if (VT.is256BitVector())
6357    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6358
6359  return SDValue();
6360}
6361
6362SDValue
6363X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6364                                                SelectionDAG &DAG) const {
6365  EVT VT = Op.getValueType();
6366  DebugLoc dl = Op.getDebugLoc();
6367
6368  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6369    return SDValue();
6370
6371  if (VT.getSizeInBits() == 8) {
6372    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6373                                    Op.getOperand(0), Op.getOperand(1));
6374    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6375                                    DAG.getValueType(VT));
6376    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6377  } else if (VT.getSizeInBits() == 16) {
6378    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6379    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6380    if (Idx == 0)
6381      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6382                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6383                                     DAG.getNode(ISD::BITCAST, dl,
6384                                                 MVT::v4i32,
6385                                                 Op.getOperand(0)),
6386                                     Op.getOperand(1)));
6387    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6388                                    Op.getOperand(0), Op.getOperand(1));
6389    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6390                                    DAG.getValueType(VT));
6391    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6392  } else if (VT == MVT::f32) {
6393    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6394    // the result back to FR32 register. It's only worth matching if the
6395    // result has a single use which is a store or a bitcast to i32.  And in
6396    // the case of a store, it's not worth it if the index is a constant 0,
6397    // because a MOVSSmr can be used instead, which is smaller and faster.
6398    if (!Op.hasOneUse())
6399      return SDValue();
6400    SDNode *User = *Op.getNode()->use_begin();
6401    if ((User->getOpcode() != ISD::STORE ||
6402         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6403          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6404        (User->getOpcode() != ISD::BITCAST ||
6405         User->getValueType(0) != MVT::i32))
6406      return SDValue();
6407    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6408                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6409                                              Op.getOperand(0)),
6410                                              Op.getOperand(1));
6411    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6412  } else if (VT == MVT::i32) {
6413    // ExtractPS works with constant index.
6414    if (isa<ConstantSDNode>(Op.getOperand(1)))
6415      return Op;
6416  }
6417  return SDValue();
6418}
6419
6420
6421SDValue
6422X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6423                                           SelectionDAG &DAG) const {
6424  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6425    return SDValue();
6426
6427  SDValue Vec = Op.getOperand(0);
6428  EVT VecVT = Vec.getValueType();
6429
6430  // If this is a 256-bit vector result, first extract the 128-bit vector and
6431  // then extract the element from the 128-bit vector.
6432  if (VecVT.getSizeInBits() == 256) {
6433    DebugLoc dl = Op.getNode()->getDebugLoc();
6434    unsigned NumElems = VecVT.getVectorNumElements();
6435    SDValue Idx = Op.getOperand(1);
6436    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6437
6438    // Get the 128-bit vector.
6439    bool Upper = IdxVal >= NumElems/2;
6440    Vec = Extract128BitVector(Vec,
6441                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6442
6443    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6444                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6445  }
6446
6447  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6448
6449  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6450    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6451    if (Res.getNode())
6452      return Res;
6453  }
6454
6455  EVT VT = Op.getValueType();
6456  DebugLoc dl = Op.getDebugLoc();
6457  // TODO: handle v16i8.
6458  if (VT.getSizeInBits() == 16) {
6459    SDValue Vec = Op.getOperand(0);
6460    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6461    if (Idx == 0)
6462      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6463                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6464                                     DAG.getNode(ISD::BITCAST, dl,
6465                                                 MVT::v4i32, Vec),
6466                                     Op.getOperand(1)));
6467    // Transform it so it match pextrw which produces a 32-bit result.
6468    EVT EltVT = MVT::i32;
6469    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6470                                    Op.getOperand(0), Op.getOperand(1));
6471    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6472                                    DAG.getValueType(VT));
6473    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6474  } else if (VT.getSizeInBits() == 32) {
6475    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6476    if (Idx == 0)
6477      return Op;
6478
6479    // SHUFPS the element to the lowest double word, then movss.
6480    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6481    EVT VVT = Op.getOperand(0).getValueType();
6482    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6483                                       DAG.getUNDEF(VVT), Mask);
6484    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6485                       DAG.getIntPtrConstant(0));
6486  } else if (VT.getSizeInBits() == 64) {
6487    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6488    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6489    //        to match extract_elt for f64.
6490    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6491    if (Idx == 0)
6492      return Op;
6493
6494    // UNPCKHPD the element to the lowest double word, then movsd.
6495    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6496    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6497    int Mask[2] = { 1, -1 };
6498    EVT VVT = Op.getOperand(0).getValueType();
6499    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6500                                       DAG.getUNDEF(VVT), Mask);
6501    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6502                       DAG.getIntPtrConstant(0));
6503  }
6504
6505  return SDValue();
6506}
6507
6508SDValue
6509X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6510                                               SelectionDAG &DAG) const {
6511  EVT VT = Op.getValueType();
6512  EVT EltVT = VT.getVectorElementType();
6513  DebugLoc dl = Op.getDebugLoc();
6514
6515  SDValue N0 = Op.getOperand(0);
6516  SDValue N1 = Op.getOperand(1);
6517  SDValue N2 = Op.getOperand(2);
6518
6519  if (VT.getSizeInBits() == 256)
6520    return SDValue();
6521
6522  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6523      isa<ConstantSDNode>(N2)) {
6524    unsigned Opc;
6525    if (VT == MVT::v8i16)
6526      Opc = X86ISD::PINSRW;
6527    else if (VT == MVT::v16i8)
6528      Opc = X86ISD::PINSRB;
6529    else
6530      Opc = X86ISD::PINSRB;
6531
6532    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6533    // argument.
6534    if (N1.getValueType() != MVT::i32)
6535      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6536    if (N2.getValueType() != MVT::i32)
6537      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6538    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6539  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6540    // Bits [7:6] of the constant are the source select.  This will always be
6541    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6542    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6543    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6544    // Bits [5:4] of the constant are the destination select.  This is the
6545    //  value of the incoming immediate.
6546    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6547    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6548    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6549    // Create this as a scalar to vector..
6550    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6551    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6552  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6553    // PINSR* works with constant index.
6554    return Op;
6555  }
6556  return SDValue();
6557}
6558
6559SDValue
6560X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6561  EVT VT = Op.getValueType();
6562  EVT EltVT = VT.getVectorElementType();
6563
6564  DebugLoc dl = Op.getDebugLoc();
6565  SDValue N0 = Op.getOperand(0);
6566  SDValue N1 = Op.getOperand(1);
6567  SDValue N2 = Op.getOperand(2);
6568
6569  // If this is a 256-bit vector result, first extract the 128-bit vector,
6570  // insert the element into the extracted half and then place it back.
6571  if (VT.getSizeInBits() == 256) {
6572    if (!isa<ConstantSDNode>(N2))
6573      return SDValue();
6574
6575    // Get the desired 128-bit vector half.
6576    unsigned NumElems = VT.getVectorNumElements();
6577    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6578    bool Upper = IdxVal >= NumElems/2;
6579    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6580    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6581
6582    // Insert the element into the desired half.
6583    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6584                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6585
6586    // Insert the changed part back to the 256-bit vector
6587    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6588  }
6589
6590  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
6591    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6592
6593  if (EltVT == MVT::i8)
6594    return SDValue();
6595
6596  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6597    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6598    // as its second argument.
6599    if (N1.getValueType() != MVT::i32)
6600      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6601    if (N2.getValueType() != MVT::i32)
6602      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6603    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6604  }
6605  return SDValue();
6606}
6607
6608SDValue
6609X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6610  LLVMContext *Context = DAG.getContext();
6611  DebugLoc dl = Op.getDebugLoc();
6612  EVT OpVT = Op.getValueType();
6613
6614  // If this is a 256-bit vector result, first insert into a 128-bit
6615  // vector and then insert into the 256-bit vector.
6616  if (OpVT.getSizeInBits() > 128) {
6617    // Insert into a 128-bit vector.
6618    EVT VT128 = EVT::getVectorVT(*Context,
6619                                 OpVT.getVectorElementType(),
6620                                 OpVT.getVectorNumElements() / 2);
6621
6622    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6623
6624    // Insert the 128-bit vector.
6625    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6626                              DAG.getConstant(0, MVT::i32),
6627                              DAG, dl);
6628  }
6629
6630  if (Op.getValueType() == MVT::v1i64 &&
6631      Op.getOperand(0).getValueType() == MVT::i64)
6632    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6633
6634  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6635  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6636         "Expected an SSE type!");
6637  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6638                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6639}
6640
6641// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6642// a simple subregister reference or explicit instructions to grab
6643// upper bits of a vector.
6644SDValue
6645X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6646  if (Subtarget->hasAVX()) {
6647    DebugLoc dl = Op.getNode()->getDebugLoc();
6648    SDValue Vec = Op.getNode()->getOperand(0);
6649    SDValue Idx = Op.getNode()->getOperand(1);
6650
6651    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6652        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6653        return Extract128BitVector(Vec, Idx, DAG, dl);
6654    }
6655  }
6656  return SDValue();
6657}
6658
6659// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6660// simple superregister reference or explicit instructions to insert
6661// the upper bits of a vector.
6662SDValue
6663X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6664  if (Subtarget->hasAVX()) {
6665    DebugLoc dl = Op.getNode()->getDebugLoc();
6666    SDValue Vec = Op.getNode()->getOperand(0);
6667    SDValue SubVec = Op.getNode()->getOperand(1);
6668    SDValue Idx = Op.getNode()->getOperand(2);
6669
6670    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6671        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6672      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6673    }
6674  }
6675  return SDValue();
6676}
6677
6678// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6679// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6680// one of the above mentioned nodes. It has to be wrapped because otherwise
6681// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6682// be used to form addressing mode. These wrapped nodes will be selected
6683// into MOV32ri.
6684SDValue
6685X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6686  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6687
6688  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6689  // global base reg.
6690  unsigned char OpFlag = 0;
6691  unsigned WrapperKind = X86ISD::Wrapper;
6692  CodeModel::Model M = getTargetMachine().getCodeModel();
6693
6694  if (Subtarget->isPICStyleRIPRel() &&
6695      (M == CodeModel::Small || M == CodeModel::Kernel))
6696    WrapperKind = X86ISD::WrapperRIP;
6697  else if (Subtarget->isPICStyleGOT())
6698    OpFlag = X86II::MO_GOTOFF;
6699  else if (Subtarget->isPICStyleStubPIC())
6700    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6701
6702  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6703                                             CP->getAlignment(),
6704                                             CP->getOffset(), OpFlag);
6705  DebugLoc DL = CP->getDebugLoc();
6706  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6707  // With PIC, the address is actually $g + Offset.
6708  if (OpFlag) {
6709    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6710                         DAG.getNode(X86ISD::GlobalBaseReg,
6711                                     DebugLoc(), getPointerTy()),
6712                         Result);
6713  }
6714
6715  return Result;
6716}
6717
6718SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6719  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6720
6721  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6722  // global base reg.
6723  unsigned char OpFlag = 0;
6724  unsigned WrapperKind = X86ISD::Wrapper;
6725  CodeModel::Model M = getTargetMachine().getCodeModel();
6726
6727  if (Subtarget->isPICStyleRIPRel() &&
6728      (M == CodeModel::Small || M == CodeModel::Kernel))
6729    WrapperKind = X86ISD::WrapperRIP;
6730  else if (Subtarget->isPICStyleGOT())
6731    OpFlag = X86II::MO_GOTOFF;
6732  else if (Subtarget->isPICStyleStubPIC())
6733    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6734
6735  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6736                                          OpFlag);
6737  DebugLoc DL = JT->getDebugLoc();
6738  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6739
6740  // With PIC, the address is actually $g + Offset.
6741  if (OpFlag)
6742    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6743                         DAG.getNode(X86ISD::GlobalBaseReg,
6744                                     DebugLoc(), getPointerTy()),
6745                         Result);
6746
6747  return Result;
6748}
6749
6750SDValue
6751X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6752  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6753
6754  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6755  // global base reg.
6756  unsigned char OpFlag = 0;
6757  unsigned WrapperKind = X86ISD::Wrapper;
6758  CodeModel::Model M = getTargetMachine().getCodeModel();
6759
6760  if (Subtarget->isPICStyleRIPRel() &&
6761      (M == CodeModel::Small || M == CodeModel::Kernel)) {
6762    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
6763      OpFlag = X86II::MO_GOTPCREL;
6764    WrapperKind = X86ISD::WrapperRIP;
6765  } else if (Subtarget->isPICStyleGOT()) {
6766    OpFlag = X86II::MO_GOT;
6767  } else if (Subtarget->isPICStyleStubPIC()) {
6768    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
6769  } else if (Subtarget->isPICStyleStubNoDynamic()) {
6770    OpFlag = X86II::MO_DARWIN_NONLAZY;
6771  }
6772
6773  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6774
6775  DebugLoc DL = Op.getDebugLoc();
6776  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6777
6778
6779  // With PIC, the address is actually $g + Offset.
6780  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6781      !Subtarget->is64Bit()) {
6782    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6783                         DAG.getNode(X86ISD::GlobalBaseReg,
6784                                     DebugLoc(), getPointerTy()),
6785                         Result);
6786  }
6787
6788  // For symbols that require a load from a stub to get the address, emit the
6789  // load.
6790  if (isGlobalStubReference(OpFlag))
6791    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
6792                         MachinePointerInfo::getGOT(), false, false, 0);
6793
6794  return Result;
6795}
6796
6797SDValue
6798X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6799  // Create the TargetBlockAddressAddress node.
6800  unsigned char OpFlags =
6801    Subtarget->ClassifyBlockAddressReference();
6802  CodeModel::Model M = getTargetMachine().getCodeModel();
6803  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6804  DebugLoc dl = Op.getDebugLoc();
6805  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6806                                       /*isTarget=*/true, OpFlags);
6807
6808  if (Subtarget->isPICStyleRIPRel() &&
6809      (M == CodeModel::Small || M == CodeModel::Kernel))
6810    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6811  else
6812    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6813
6814  // With PIC, the address is actually $g + Offset.
6815  if (isGlobalRelativeToPICBase(OpFlags)) {
6816    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6817                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6818                         Result);
6819  }
6820
6821  return Result;
6822}
6823
6824SDValue
6825X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6826                                      int64_t Offset,
6827                                      SelectionDAG &DAG) const {
6828  // Create the TargetGlobalAddress node, folding in the constant
6829  // offset if it is legal.
6830  unsigned char OpFlags =
6831    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6832  CodeModel::Model M = getTargetMachine().getCodeModel();
6833  SDValue Result;
6834  if (OpFlags == X86II::MO_NO_FLAG &&
6835      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6836    // A direct static reference to a global.
6837    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6838    Offset = 0;
6839  } else {
6840    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6841  }
6842
6843  if (Subtarget->isPICStyleRIPRel() &&
6844      (M == CodeModel::Small || M == CodeModel::Kernel))
6845    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6846  else
6847    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6848
6849  // With PIC, the address is actually $g + Offset.
6850  if (isGlobalRelativeToPICBase(OpFlags)) {
6851    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6852                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6853                         Result);
6854  }
6855
6856  // For globals that require a load from a stub to get the address, emit the
6857  // load.
6858  if (isGlobalStubReference(OpFlags))
6859    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6860                         MachinePointerInfo::getGOT(), false, false, 0);
6861
6862  // If there was a non-zero offset that we didn't fold, create an explicit
6863  // addition for it.
6864  if (Offset != 0)
6865    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6866                         DAG.getConstant(Offset, getPointerTy()));
6867
6868  return Result;
6869}
6870
6871SDValue
6872X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6873  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6874  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6875  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6876}
6877
6878static SDValue
6879GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6880           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6881           unsigned char OperandFlags) {
6882  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6883  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6884  DebugLoc dl = GA->getDebugLoc();
6885  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6886                                           GA->getValueType(0),
6887                                           GA->getOffset(),
6888                                           OperandFlags);
6889  if (InFlag) {
6890    SDValue Ops[] = { Chain,  TGA, *InFlag };
6891    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6892  } else {
6893    SDValue Ops[]  = { Chain, TGA };
6894    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6895  }
6896
6897  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6898  MFI->setAdjustsStack(true);
6899
6900  SDValue Flag = Chain.getValue(1);
6901  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6902}
6903
6904// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6905static SDValue
6906LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6907                                const EVT PtrVT) {
6908  SDValue InFlag;
6909  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6910  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6911                                     DAG.getNode(X86ISD::GlobalBaseReg,
6912                                                 DebugLoc(), PtrVT), InFlag);
6913  InFlag = Chain.getValue(1);
6914
6915  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6916}
6917
6918// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6919static SDValue
6920LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6921                                const EVT PtrVT) {
6922  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6923                    X86::RAX, X86II::MO_TLSGD);
6924}
6925
6926// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6927// "local exec" model.
6928static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6929                                   const EVT PtrVT, TLSModel::Model model,
6930                                   bool is64Bit) {
6931  DebugLoc dl = GA->getDebugLoc();
6932
6933  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6934  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6935                                                         is64Bit ? 257 : 256));
6936
6937  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6938                                      DAG.getIntPtrConstant(0),
6939                                      MachinePointerInfo(Ptr), false, false, 0);
6940
6941  unsigned char OperandFlags = 0;
6942  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6943  // initialexec.
6944  unsigned WrapperKind = X86ISD::Wrapper;
6945  if (model == TLSModel::LocalExec) {
6946    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6947  } else if (is64Bit) {
6948    assert(model == TLSModel::InitialExec);
6949    OperandFlags = X86II::MO_GOTTPOFF;
6950    WrapperKind = X86ISD::WrapperRIP;
6951  } else {
6952    assert(model == TLSModel::InitialExec);
6953    OperandFlags = X86II::MO_INDNTPOFF;
6954  }
6955
6956  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6957  // exec)
6958  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6959                                           GA->getValueType(0),
6960                                           GA->getOffset(), OperandFlags);
6961  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6962
6963  if (model == TLSModel::InitialExec)
6964    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6965                         MachinePointerInfo::getGOT(), false, false, 0);
6966
6967  // The address of the thread local variable is the add of the thread
6968  // pointer with the offset of the variable.
6969  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6970}
6971
6972SDValue
6973X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6974
6975  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6976  const GlobalValue *GV = GA->getGlobal();
6977
6978  if (Subtarget->isTargetELF()) {
6979    // TODO: implement the "local dynamic" model
6980    // TODO: implement the "initial exec"model for pic executables
6981
6982    // If GV is an alias then use the aliasee for determining
6983    // thread-localness.
6984    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6985      GV = GA->resolveAliasedGlobal(false);
6986
6987    TLSModel::Model model
6988      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6989
6990    switch (model) {
6991      case TLSModel::GeneralDynamic:
6992      case TLSModel::LocalDynamic: // not implemented
6993        if (Subtarget->is64Bit())
6994          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6995        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6996
6997      case TLSModel::InitialExec:
6998      case TLSModel::LocalExec:
6999        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7000                                   Subtarget->is64Bit());
7001    }
7002  } else if (Subtarget->isTargetDarwin()) {
7003    // Darwin only has one model of TLS.  Lower to that.
7004    unsigned char OpFlag = 0;
7005    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7006                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7007
7008    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7009    // global base reg.
7010    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7011                  !Subtarget->is64Bit();
7012    if (PIC32)
7013      OpFlag = X86II::MO_TLVP_PIC_BASE;
7014    else
7015      OpFlag = X86II::MO_TLVP;
7016    DebugLoc DL = Op.getDebugLoc();
7017    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7018                                                GA->getValueType(0),
7019                                                GA->getOffset(), OpFlag);
7020    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7021
7022    // With PIC32, the address is actually $g + Offset.
7023    if (PIC32)
7024      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7025                           DAG.getNode(X86ISD::GlobalBaseReg,
7026                                       DebugLoc(), getPointerTy()),
7027                           Offset);
7028
7029    // Lowering the machine isd will make sure everything is in the right
7030    // location.
7031    SDValue Chain = DAG.getEntryNode();
7032    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7033    SDValue Args[] = { Chain, Offset };
7034    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7035
7036    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7037    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7038    MFI->setAdjustsStack(true);
7039
7040    // And our return value (tls address) is in the standard call return value
7041    // location.
7042    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7043    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7044  }
7045
7046  assert(false &&
7047         "TLS not implemented for this target.");
7048
7049  llvm_unreachable("Unreachable");
7050  return SDValue();
7051}
7052
7053
7054/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7055/// take a 2 x i32 value to shift plus a shift amount.
7056SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7057  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7058  EVT VT = Op.getValueType();
7059  unsigned VTBits = VT.getSizeInBits();
7060  DebugLoc dl = Op.getDebugLoc();
7061  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7062  SDValue ShOpLo = Op.getOperand(0);
7063  SDValue ShOpHi = Op.getOperand(1);
7064  SDValue ShAmt  = Op.getOperand(2);
7065  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7066                                     DAG.getConstant(VTBits - 1, MVT::i8))
7067                       : DAG.getConstant(0, VT);
7068
7069  SDValue Tmp2, Tmp3;
7070  if (Op.getOpcode() == ISD::SHL_PARTS) {
7071    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7072    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7073  } else {
7074    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7075    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7076  }
7077
7078  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7079                                DAG.getConstant(VTBits, MVT::i8));
7080  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7081                             AndNode, DAG.getConstant(0, MVT::i8));
7082
7083  SDValue Hi, Lo;
7084  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7085  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7086  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7087
7088  if (Op.getOpcode() == ISD::SHL_PARTS) {
7089    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7090    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7091  } else {
7092    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7093    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7094  }
7095
7096  SDValue Ops[2] = { Lo, Hi };
7097  return DAG.getMergeValues(Ops, 2, dl);
7098}
7099
7100SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7101                                           SelectionDAG &DAG) const {
7102  EVT SrcVT = Op.getOperand(0).getValueType();
7103
7104  if (SrcVT.isVector())
7105    return SDValue();
7106
7107  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7108         "Unknown SINT_TO_FP to lower!");
7109
7110  // These are really Legal; return the operand so the caller accepts it as
7111  // Legal.
7112  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7113    return Op;
7114  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7115      Subtarget->is64Bit()) {
7116    return Op;
7117  }
7118
7119  DebugLoc dl = Op.getDebugLoc();
7120  unsigned Size = SrcVT.getSizeInBits()/8;
7121  MachineFunction &MF = DAG.getMachineFunction();
7122  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7123  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7124  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7125                               StackSlot,
7126                               MachinePointerInfo::getFixedStack(SSFI),
7127                               false, false, 0);
7128  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7129}
7130
7131SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7132                                     SDValue StackSlot,
7133                                     SelectionDAG &DAG) const {
7134  // Build the FILD
7135  DebugLoc DL = Op.getDebugLoc();
7136  SDVTList Tys;
7137  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7138  if (useSSE)
7139    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7140  else
7141    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7142
7143  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7144
7145  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7146  MachineMemOperand *MMO;
7147  if (FI) {
7148    int SSFI = FI->getIndex();
7149    MMO =
7150      DAG.getMachineFunction()
7151      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7152                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7153  } else {
7154    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7155    StackSlot = StackSlot.getOperand(1);
7156  }
7157  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7158  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7159                                           X86ISD::FILD, DL,
7160                                           Tys, Ops, array_lengthof(Ops),
7161                                           SrcVT, MMO);
7162
7163  if (useSSE) {
7164    Chain = Result.getValue(1);
7165    SDValue InFlag = Result.getValue(2);
7166
7167    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7168    // shouldn't be necessary except that RFP cannot be live across
7169    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7170    MachineFunction &MF = DAG.getMachineFunction();
7171    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7172    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7173    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7174    Tys = DAG.getVTList(MVT::Other);
7175    SDValue Ops[] = {
7176      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7177    };
7178    MachineMemOperand *MMO =
7179      DAG.getMachineFunction()
7180      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7181                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7182
7183    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7184                                    Ops, array_lengthof(Ops),
7185                                    Op.getValueType(), MMO);
7186    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7187                         MachinePointerInfo::getFixedStack(SSFI),
7188                         false, false, 0);
7189  }
7190
7191  return Result;
7192}
7193
7194// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7195SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7196                                               SelectionDAG &DAG) const {
7197  // This algorithm is not obvious. Here it is in C code, more or less:
7198  /*
7199    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7200      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7201      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7202
7203      // Copy ints to xmm registers.
7204      __m128i xh = _mm_cvtsi32_si128( hi );
7205      __m128i xl = _mm_cvtsi32_si128( lo );
7206
7207      // Combine into low half of a single xmm register.
7208      __m128i x = _mm_unpacklo_epi32( xh, xl );
7209      __m128d d;
7210      double sd;
7211
7212      // Merge in appropriate exponents to give the integer bits the right
7213      // magnitude.
7214      x = _mm_unpacklo_epi32( x, exp );
7215
7216      // Subtract away the biases to deal with the IEEE-754 double precision
7217      // implicit 1.
7218      d = _mm_sub_pd( (__m128d) x, bias );
7219
7220      // All conversions up to here are exact. The correctly rounded result is
7221      // calculated using the current rounding mode using the following
7222      // horizontal add.
7223      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7224      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7225                                // store doesn't really need to be here (except
7226                                // maybe to zero the other double)
7227      return sd;
7228    }
7229  */
7230
7231  DebugLoc dl = Op.getDebugLoc();
7232  LLVMContext *Context = DAG.getContext();
7233
7234  // Build some magic constants.
7235  std::vector<Constant*> CV0;
7236  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7237  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7238  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7239  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7240  Constant *C0 = ConstantVector::get(CV0);
7241  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7242
7243  std::vector<Constant*> CV1;
7244  CV1.push_back(
7245    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7246  CV1.push_back(
7247    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7248  Constant *C1 = ConstantVector::get(CV1);
7249  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7250
7251  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7252                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7253                                        Op.getOperand(0),
7254                                        DAG.getIntPtrConstant(1)));
7255  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7256                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7257                                        Op.getOperand(0),
7258                                        DAG.getIntPtrConstant(0)));
7259  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7260  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7261                              MachinePointerInfo::getConstantPool(),
7262                              false, false, 16);
7263  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7264  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7265  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7266                              MachinePointerInfo::getConstantPool(),
7267                              false, false, 16);
7268  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7269
7270  // Add the halves; easiest way is to swap them into another reg first.
7271  int ShufMask[2] = { 1, -1 };
7272  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7273                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7274  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7275  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7276                     DAG.getIntPtrConstant(0));
7277}
7278
7279// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7280SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7281                                               SelectionDAG &DAG) const {
7282  DebugLoc dl = Op.getDebugLoc();
7283  // FP constant to bias correct the final result.
7284  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7285                                   MVT::f64);
7286
7287  // Load the 32-bit value into an XMM register.
7288  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7289                             Op.getOperand(0));
7290
7291  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7292                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7293                     DAG.getIntPtrConstant(0));
7294
7295  // Or the load with the bias.
7296  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7297                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7298                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7299                                                   MVT::v2f64, Load)),
7300                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7301                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7302                                                   MVT::v2f64, Bias)));
7303  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7304                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7305                   DAG.getIntPtrConstant(0));
7306
7307  // Subtract the bias.
7308  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7309
7310  // Handle final rounding.
7311  EVT DestVT = Op.getValueType();
7312
7313  if (DestVT.bitsLT(MVT::f64)) {
7314    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7315                       DAG.getIntPtrConstant(0));
7316  } else if (DestVT.bitsGT(MVT::f64)) {
7317    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7318  }
7319
7320  // Handle final rounding.
7321  return Sub;
7322}
7323
7324SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7325                                           SelectionDAG &DAG) const {
7326  SDValue N0 = Op.getOperand(0);
7327  DebugLoc dl = Op.getDebugLoc();
7328
7329  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7330  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7331  // the optimization here.
7332  if (DAG.SignBitIsZero(N0))
7333    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7334
7335  EVT SrcVT = N0.getValueType();
7336  EVT DstVT = Op.getValueType();
7337  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7338    return LowerUINT_TO_FP_i64(Op, DAG);
7339  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7340    return LowerUINT_TO_FP_i32(Op, DAG);
7341
7342  // Make a 64-bit buffer, and use it to build an FILD.
7343  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7344  if (SrcVT == MVT::i32) {
7345    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7346    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7347                                     getPointerTy(), StackSlot, WordOff);
7348    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7349                                  StackSlot, MachinePointerInfo(),
7350                                  false, false, 0);
7351    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7352                                  OffsetSlot, MachinePointerInfo(),
7353                                  false, false, 0);
7354    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7355    return Fild;
7356  }
7357
7358  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7359  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7360                                StackSlot, MachinePointerInfo(),
7361                               false, false, 0);
7362  // For i64 source, we need to add the appropriate power of 2 if the input
7363  // was negative.  This is the same as the optimization in
7364  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7365  // we must be careful to do the computation in x87 extended precision, not
7366  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7367  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7368  MachineMemOperand *MMO =
7369    DAG.getMachineFunction()
7370    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7371                          MachineMemOperand::MOLoad, 8, 8);
7372
7373  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7374  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7375  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7376                                         MVT::i64, MMO);
7377
7378  APInt FF(32, 0x5F800000ULL);
7379
7380  // Check whether the sign bit is set.
7381  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7382                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7383                                 ISD::SETLT);
7384
7385  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7386  SDValue FudgePtr = DAG.getConstantPool(
7387                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7388                                         getPointerTy());
7389
7390  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7391  SDValue Zero = DAG.getIntPtrConstant(0);
7392  SDValue Four = DAG.getIntPtrConstant(4);
7393  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7394                               Zero, Four);
7395  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7396
7397  // Load the value out, extending it from f32 to f80.
7398  // FIXME: Avoid the extend by constructing the right constant pool?
7399  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7400                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7401                                 MVT::f32, false, false, 4);
7402  // Extend everything to 80 bits to force it to be done on x87.
7403  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7404  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7405}
7406
7407std::pair<SDValue,SDValue> X86TargetLowering::
7408FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7409  DebugLoc DL = Op.getDebugLoc();
7410
7411  EVT DstTy = Op.getValueType();
7412
7413  if (!IsSigned) {
7414    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7415    DstTy = MVT::i64;
7416  }
7417
7418  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7419         DstTy.getSimpleVT() >= MVT::i16 &&
7420         "Unknown FP_TO_SINT to lower!");
7421
7422  // These are really Legal.
7423  if (DstTy == MVT::i32 &&
7424      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7425    return std::make_pair(SDValue(), SDValue());
7426  if (Subtarget->is64Bit() &&
7427      DstTy == MVT::i64 &&
7428      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7429    return std::make_pair(SDValue(), SDValue());
7430
7431  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7432  // stack slot.
7433  MachineFunction &MF = DAG.getMachineFunction();
7434  unsigned MemSize = DstTy.getSizeInBits()/8;
7435  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7436  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7437
7438
7439
7440  unsigned Opc;
7441  switch (DstTy.getSimpleVT().SimpleTy) {
7442  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7443  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7444  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7445  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7446  }
7447
7448  SDValue Chain = DAG.getEntryNode();
7449  SDValue Value = Op.getOperand(0);
7450  EVT TheVT = Op.getOperand(0).getValueType();
7451  if (isScalarFPTypeInSSEReg(TheVT)) {
7452    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7453    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7454                         MachinePointerInfo::getFixedStack(SSFI),
7455                         false, false, 0);
7456    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7457    SDValue Ops[] = {
7458      Chain, StackSlot, DAG.getValueType(TheVT)
7459    };
7460
7461    MachineMemOperand *MMO =
7462      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7463                              MachineMemOperand::MOLoad, MemSize, MemSize);
7464    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7465                                    DstTy, MMO);
7466    Chain = Value.getValue(1);
7467    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7468    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7469  }
7470
7471  MachineMemOperand *MMO =
7472    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7473                            MachineMemOperand::MOStore, MemSize, MemSize);
7474
7475  // Build the FP_TO_INT*_IN_MEM
7476  SDValue Ops[] = { Chain, Value, StackSlot };
7477  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7478                                         Ops, 3, DstTy, MMO);
7479
7480  return std::make_pair(FIST, StackSlot);
7481}
7482
7483SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7484                                           SelectionDAG &DAG) const {
7485  if (Op.getValueType().isVector())
7486    return SDValue();
7487
7488  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7489  SDValue FIST = Vals.first, StackSlot = Vals.second;
7490  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7491  if (FIST.getNode() == 0) return Op;
7492
7493  // Load the result.
7494  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7495                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7496}
7497
7498SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7499                                           SelectionDAG &DAG) const {
7500  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7501  SDValue FIST = Vals.first, StackSlot = Vals.second;
7502  assert(FIST.getNode() && "Unexpected failure");
7503
7504  // Load the result.
7505  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7506                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7507}
7508
7509SDValue X86TargetLowering::LowerFABS(SDValue Op,
7510                                     SelectionDAG &DAG) const {
7511  LLVMContext *Context = DAG.getContext();
7512  DebugLoc dl = Op.getDebugLoc();
7513  EVT VT = Op.getValueType();
7514  EVT EltVT = VT;
7515  if (VT.isVector())
7516    EltVT = VT.getVectorElementType();
7517  std::vector<Constant*> CV;
7518  if (EltVT == MVT::f64) {
7519    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7520    CV.push_back(C);
7521    CV.push_back(C);
7522  } else {
7523    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7524    CV.push_back(C);
7525    CV.push_back(C);
7526    CV.push_back(C);
7527    CV.push_back(C);
7528  }
7529  Constant *C = ConstantVector::get(CV);
7530  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7531  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7532                             MachinePointerInfo::getConstantPool(),
7533                             false, false, 16);
7534  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7535}
7536
7537SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7538  LLVMContext *Context = DAG.getContext();
7539  DebugLoc dl = Op.getDebugLoc();
7540  EVT VT = Op.getValueType();
7541  EVT EltVT = VT;
7542  if (VT.isVector())
7543    EltVT = VT.getVectorElementType();
7544  std::vector<Constant*> CV;
7545  if (EltVT == MVT::f64) {
7546    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7547    CV.push_back(C);
7548    CV.push_back(C);
7549  } else {
7550    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7551    CV.push_back(C);
7552    CV.push_back(C);
7553    CV.push_back(C);
7554    CV.push_back(C);
7555  }
7556  Constant *C = ConstantVector::get(CV);
7557  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7558  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7559                             MachinePointerInfo::getConstantPool(),
7560                             false, false, 16);
7561  if (VT.isVector()) {
7562    return DAG.getNode(ISD::BITCAST, dl, VT,
7563                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7564                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7565                                Op.getOperand(0)),
7566                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7567  } else {
7568    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7569  }
7570}
7571
7572SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7573  LLVMContext *Context = DAG.getContext();
7574  SDValue Op0 = Op.getOperand(0);
7575  SDValue Op1 = Op.getOperand(1);
7576  DebugLoc dl = Op.getDebugLoc();
7577  EVT VT = Op.getValueType();
7578  EVT SrcVT = Op1.getValueType();
7579
7580  // If second operand is smaller, extend it first.
7581  if (SrcVT.bitsLT(VT)) {
7582    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7583    SrcVT = VT;
7584  }
7585  // And if it is bigger, shrink it first.
7586  if (SrcVT.bitsGT(VT)) {
7587    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7588    SrcVT = VT;
7589  }
7590
7591  // At this point the operands and the result should have the same
7592  // type, and that won't be f80 since that is not custom lowered.
7593
7594  // First get the sign bit of second operand.
7595  std::vector<Constant*> CV;
7596  if (SrcVT == MVT::f64) {
7597    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7598    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7599  } else {
7600    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7601    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7602    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7603    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7604  }
7605  Constant *C = ConstantVector::get(CV);
7606  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7607  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7608                              MachinePointerInfo::getConstantPool(),
7609                              false, false, 16);
7610  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7611
7612  // Shift sign bit right or left if the two operands have different types.
7613  if (SrcVT.bitsGT(VT)) {
7614    // Op0 is MVT::f32, Op1 is MVT::f64.
7615    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7616    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7617                          DAG.getConstant(32, MVT::i32));
7618    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7619    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7620                          DAG.getIntPtrConstant(0));
7621  }
7622
7623  // Clear first operand sign bit.
7624  CV.clear();
7625  if (VT == MVT::f64) {
7626    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7627    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7628  } else {
7629    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7630    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7631    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7632    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7633  }
7634  C = ConstantVector::get(CV);
7635  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7636  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7637                              MachinePointerInfo::getConstantPool(),
7638                              false, false, 16);
7639  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7640
7641  // Or the value with the sign bit.
7642  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7643}
7644
7645SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7646  SDValue N0 = Op.getOperand(0);
7647  DebugLoc dl = Op.getDebugLoc();
7648  EVT VT = Op.getValueType();
7649
7650  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7651  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7652                                  DAG.getConstant(1, VT));
7653  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7654}
7655
7656/// Emit nodes that will be selected as "test Op0,Op0", or something
7657/// equivalent.
7658SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7659                                    SelectionDAG &DAG) const {
7660  DebugLoc dl = Op.getDebugLoc();
7661
7662  // CF and OF aren't always set the way we want. Determine which
7663  // of these we need.
7664  bool NeedCF = false;
7665  bool NeedOF = false;
7666  switch (X86CC) {
7667  default: break;
7668  case X86::COND_A: case X86::COND_AE:
7669  case X86::COND_B: case X86::COND_BE:
7670    NeedCF = true;
7671    break;
7672  case X86::COND_G: case X86::COND_GE:
7673  case X86::COND_L: case X86::COND_LE:
7674  case X86::COND_O: case X86::COND_NO:
7675    NeedOF = true;
7676    break;
7677  }
7678
7679  // See if we can use the EFLAGS value from the operand instead of
7680  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7681  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7682  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7683    // Emit a CMP with 0, which is the TEST pattern.
7684    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7685                       DAG.getConstant(0, Op.getValueType()));
7686
7687  unsigned Opcode = 0;
7688  unsigned NumOperands = 0;
7689  switch (Op.getNode()->getOpcode()) {
7690  case ISD::ADD:
7691    // Due to an isel shortcoming, be conservative if this add is likely to be
7692    // selected as part of a load-modify-store instruction. When the root node
7693    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7694    // uses of other nodes in the match, such as the ADD in this case. This
7695    // leads to the ADD being left around and reselected, with the result being
7696    // two adds in the output.  Alas, even if none our users are stores, that
7697    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7698    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7699    // climbing the DAG back to the root, and it doesn't seem to be worth the
7700    // effort.
7701    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7702           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7703      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7704        goto default_case;
7705
7706    if (ConstantSDNode *C =
7707        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7708      // An add of one will be selected as an INC.
7709      if (C->getAPIntValue() == 1) {
7710        Opcode = X86ISD::INC;
7711        NumOperands = 1;
7712        break;
7713      }
7714
7715      // An add of negative one (subtract of one) will be selected as a DEC.
7716      if (C->getAPIntValue().isAllOnesValue()) {
7717        Opcode = X86ISD::DEC;
7718        NumOperands = 1;
7719        break;
7720      }
7721    }
7722
7723    // Otherwise use a regular EFLAGS-setting add.
7724    Opcode = X86ISD::ADD;
7725    NumOperands = 2;
7726    break;
7727  case ISD::AND: {
7728    // If the primary and result isn't used, don't bother using X86ISD::AND,
7729    // because a TEST instruction will be better.
7730    bool NonFlagUse = false;
7731    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7732           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7733      SDNode *User = *UI;
7734      unsigned UOpNo = UI.getOperandNo();
7735      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7736        // Look pass truncate.
7737        UOpNo = User->use_begin().getOperandNo();
7738        User = *User->use_begin();
7739      }
7740
7741      if (User->getOpcode() != ISD::BRCOND &&
7742          User->getOpcode() != ISD::SETCC &&
7743          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7744        NonFlagUse = true;
7745        break;
7746      }
7747    }
7748
7749    if (!NonFlagUse)
7750      break;
7751  }
7752    // FALL THROUGH
7753  case ISD::SUB:
7754  case ISD::OR:
7755  case ISD::XOR:
7756    // Due to the ISEL shortcoming noted above, be conservative if this op is
7757    // likely to be selected as part of a load-modify-store instruction.
7758    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7759           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7760      if (UI->getOpcode() == ISD::STORE)
7761        goto default_case;
7762
7763    // Otherwise use a regular EFLAGS-setting instruction.
7764    switch (Op.getNode()->getOpcode()) {
7765    default: llvm_unreachable("unexpected operator!");
7766    case ISD::SUB: Opcode = X86ISD::SUB; break;
7767    case ISD::OR:  Opcode = X86ISD::OR;  break;
7768    case ISD::XOR: Opcode = X86ISD::XOR; break;
7769    case ISD::AND: Opcode = X86ISD::AND; break;
7770    }
7771
7772    NumOperands = 2;
7773    break;
7774  case X86ISD::ADD:
7775  case X86ISD::SUB:
7776  case X86ISD::INC:
7777  case X86ISD::DEC:
7778  case X86ISD::OR:
7779  case X86ISD::XOR:
7780  case X86ISD::AND:
7781    return SDValue(Op.getNode(), 1);
7782  default:
7783  default_case:
7784    break;
7785  }
7786
7787  if (Opcode == 0)
7788    // Emit a CMP with 0, which is the TEST pattern.
7789    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7790                       DAG.getConstant(0, Op.getValueType()));
7791
7792  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7793  SmallVector<SDValue, 4> Ops;
7794  for (unsigned i = 0; i != NumOperands; ++i)
7795    Ops.push_back(Op.getOperand(i));
7796
7797  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7798  DAG.ReplaceAllUsesWith(Op, New);
7799  return SDValue(New.getNode(), 1);
7800}
7801
7802/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7803/// equivalent.
7804SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7805                                   SelectionDAG &DAG) const {
7806  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7807    if (C->getAPIntValue() == 0)
7808      return EmitTest(Op0, X86CC, DAG);
7809
7810  DebugLoc dl = Op0.getDebugLoc();
7811  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7812}
7813
7814/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7815/// if it's possible.
7816SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7817                                     DebugLoc dl, SelectionDAG &DAG) const {
7818  SDValue Op0 = And.getOperand(0);
7819  SDValue Op1 = And.getOperand(1);
7820  if (Op0.getOpcode() == ISD::TRUNCATE)
7821    Op0 = Op0.getOperand(0);
7822  if (Op1.getOpcode() == ISD::TRUNCATE)
7823    Op1 = Op1.getOperand(0);
7824
7825  SDValue LHS, RHS;
7826  if (Op1.getOpcode() == ISD::SHL)
7827    std::swap(Op0, Op1);
7828  if (Op0.getOpcode() == ISD::SHL) {
7829    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7830      if (And00C->getZExtValue() == 1) {
7831        // If we looked past a truncate, check that it's only truncating away
7832        // known zeros.
7833        unsigned BitWidth = Op0.getValueSizeInBits();
7834        unsigned AndBitWidth = And.getValueSizeInBits();
7835        if (BitWidth > AndBitWidth) {
7836          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7837          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7838          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7839            return SDValue();
7840        }
7841        LHS = Op1;
7842        RHS = Op0.getOperand(1);
7843      }
7844  } else if (Op1.getOpcode() == ISD::Constant) {
7845    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7846    SDValue AndLHS = Op0;
7847    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7848      LHS = AndLHS.getOperand(0);
7849      RHS = AndLHS.getOperand(1);
7850    }
7851  }
7852
7853  if (LHS.getNode()) {
7854    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7855    // instruction.  Since the shift amount is in-range-or-undefined, we know
7856    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7857    // the encoding for the i16 version is larger than the i32 version.
7858    // Also promote i16 to i32 for performance / code size reason.
7859    if (LHS.getValueType() == MVT::i8 ||
7860        LHS.getValueType() == MVT::i16)
7861      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7862
7863    // If the operand types disagree, extend the shift amount to match.  Since
7864    // BT ignores high bits (like shifts) we can use anyextend.
7865    if (LHS.getValueType() != RHS.getValueType())
7866      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7867
7868    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7869    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7870    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7871                       DAG.getConstant(Cond, MVT::i8), BT);
7872  }
7873
7874  return SDValue();
7875}
7876
7877SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7878  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7879  SDValue Op0 = Op.getOperand(0);
7880  SDValue Op1 = Op.getOperand(1);
7881  DebugLoc dl = Op.getDebugLoc();
7882  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7883
7884  // Optimize to BT if possible.
7885  // Lower (X & (1 << N)) == 0 to BT(X, N).
7886  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7887  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7888  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7889      Op1.getOpcode() == ISD::Constant &&
7890      cast<ConstantSDNode>(Op1)->isNullValue() &&
7891      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7892    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7893    if (NewSetCC.getNode())
7894      return NewSetCC;
7895  }
7896
7897  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7898  // these.
7899  if (Op1.getOpcode() == ISD::Constant &&
7900      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7901       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7902      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7903
7904    // If the input is a setcc, then reuse the input setcc or use a new one with
7905    // the inverted condition.
7906    if (Op0.getOpcode() == X86ISD::SETCC) {
7907      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7908      bool Invert = (CC == ISD::SETNE) ^
7909        cast<ConstantSDNode>(Op1)->isNullValue();
7910      if (!Invert) return Op0;
7911
7912      CCode = X86::GetOppositeBranchCondition(CCode);
7913      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7914                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7915    }
7916  }
7917
7918  bool isFP = Op1.getValueType().isFloatingPoint();
7919  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7920  if (X86CC == X86::COND_INVALID)
7921    return SDValue();
7922
7923  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7924  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7925                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7926}
7927
7928SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7929  SDValue Cond;
7930  SDValue Op0 = Op.getOperand(0);
7931  SDValue Op1 = Op.getOperand(1);
7932  SDValue CC = Op.getOperand(2);
7933  EVT VT = Op.getValueType();
7934  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7935  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7936  DebugLoc dl = Op.getDebugLoc();
7937
7938  if (isFP) {
7939    unsigned SSECC = 8;
7940    EVT EltVT = Op0.getValueType().getVectorElementType();
7941    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
7942
7943    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7944    bool Swap = false;
7945
7946    switch (SetCCOpcode) {
7947    default: break;
7948    case ISD::SETOEQ:
7949    case ISD::SETEQ:  SSECC = 0; break;
7950    case ISD::SETOGT:
7951    case ISD::SETGT: Swap = true; // Fallthrough
7952    case ISD::SETLT:
7953    case ISD::SETOLT: SSECC = 1; break;
7954    case ISD::SETOGE:
7955    case ISD::SETGE: Swap = true; // Fallthrough
7956    case ISD::SETLE:
7957    case ISD::SETOLE: SSECC = 2; break;
7958    case ISD::SETUO:  SSECC = 3; break;
7959    case ISD::SETUNE:
7960    case ISD::SETNE:  SSECC = 4; break;
7961    case ISD::SETULE: Swap = true;
7962    case ISD::SETUGE: SSECC = 5; break;
7963    case ISD::SETULT: Swap = true;
7964    case ISD::SETUGT: SSECC = 6; break;
7965    case ISD::SETO:   SSECC = 7; break;
7966    }
7967    if (Swap)
7968      std::swap(Op0, Op1);
7969
7970    // In the two special cases we can't handle, emit two comparisons.
7971    if (SSECC == 8) {
7972      if (SetCCOpcode == ISD::SETUEQ) {
7973        SDValue UNORD, EQ;
7974        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7975        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7976        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7977      }
7978      else if (SetCCOpcode == ISD::SETONE) {
7979        SDValue ORD, NEQ;
7980        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7981        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7982        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7983      }
7984      llvm_unreachable("Illegal FP comparison");
7985    }
7986    // Handle all other FP comparisons here.
7987    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7988  }
7989
7990  if (!isFP && VT.getSizeInBits() == 256)
7991    return SDValue();
7992
7993  // We are handling one of the integer comparisons here.  Since SSE only has
7994  // GT and EQ comparisons for integer, swapping operands and multiple
7995  // operations may be required for some comparisons.
7996  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7997  bool Swap = false, Invert = false, FlipSigns = false;
7998
7999  switch (VT.getSimpleVT().SimpleTy) {
8000  default: break;
8001  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8002  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8003  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8004  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8005  }
8006
8007  switch (SetCCOpcode) {
8008  default: break;
8009  case ISD::SETNE:  Invert = true;
8010  case ISD::SETEQ:  Opc = EQOpc; break;
8011  case ISD::SETLT:  Swap = true;
8012  case ISD::SETGT:  Opc = GTOpc; break;
8013  case ISD::SETGE:  Swap = true;
8014  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8015  case ISD::SETULT: Swap = true;
8016  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8017  case ISD::SETUGE: Swap = true;
8018  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8019  }
8020  if (Swap)
8021    std::swap(Op0, Op1);
8022
8023  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8024  // bits of the inputs before performing those operations.
8025  if (FlipSigns) {
8026    EVT EltVT = VT.getVectorElementType();
8027    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8028                                      EltVT);
8029    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8030    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8031                                    SignBits.size());
8032    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8033    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8034  }
8035
8036  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8037
8038  // If the logical-not of the result is required, perform that now.
8039  if (Invert)
8040    Result = DAG.getNOT(dl, Result, VT);
8041
8042  return Result;
8043}
8044
8045// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8046static bool isX86LogicalCmp(SDValue Op) {
8047  unsigned Opc = Op.getNode()->getOpcode();
8048  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8049    return true;
8050  if (Op.getResNo() == 1 &&
8051      (Opc == X86ISD::ADD ||
8052       Opc == X86ISD::SUB ||
8053       Opc == X86ISD::ADC ||
8054       Opc == X86ISD::SBB ||
8055       Opc == X86ISD::SMUL ||
8056       Opc == X86ISD::UMUL ||
8057       Opc == X86ISD::INC ||
8058       Opc == X86ISD::DEC ||
8059       Opc == X86ISD::OR ||
8060       Opc == X86ISD::XOR ||
8061       Opc == X86ISD::AND))
8062    return true;
8063
8064  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8065    return true;
8066
8067  return false;
8068}
8069
8070static bool isZero(SDValue V) {
8071  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8072  return C && C->isNullValue();
8073}
8074
8075static bool isAllOnes(SDValue V) {
8076  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8077  return C && C->isAllOnesValue();
8078}
8079
8080SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8081  bool addTest = true;
8082  SDValue Cond  = Op.getOperand(0);
8083  SDValue Op1 = Op.getOperand(1);
8084  SDValue Op2 = Op.getOperand(2);
8085  DebugLoc DL = Op.getDebugLoc();
8086  SDValue CC;
8087
8088  if (Cond.getOpcode() == ISD::SETCC) {
8089    SDValue NewCond = LowerSETCC(Cond, DAG);
8090    if (NewCond.getNode())
8091      Cond = NewCond;
8092  }
8093
8094  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8095  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8096  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8097  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8098  if (Cond.getOpcode() == X86ISD::SETCC &&
8099      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8100      isZero(Cond.getOperand(1).getOperand(1))) {
8101    SDValue Cmp = Cond.getOperand(1);
8102
8103    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8104
8105    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8106        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8107      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8108
8109      SDValue CmpOp0 = Cmp.getOperand(0);
8110      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8111                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8112
8113      SDValue Res =   // Res = 0 or -1.
8114        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8115                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8116
8117      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8118        Res = DAG.getNOT(DL, Res, Res.getValueType());
8119
8120      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8121      if (N2C == 0 || !N2C->isNullValue())
8122        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8123      return Res;
8124    }
8125  }
8126
8127  // Look past (and (setcc_carry (cmp ...)), 1).
8128  if (Cond.getOpcode() == ISD::AND &&
8129      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8130    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8131    if (C && C->getAPIntValue() == 1)
8132      Cond = Cond.getOperand(0);
8133  }
8134
8135  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8136  // setting operand in place of the X86ISD::SETCC.
8137  if (Cond.getOpcode() == X86ISD::SETCC ||
8138      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8139    CC = Cond.getOperand(0);
8140
8141    SDValue Cmp = Cond.getOperand(1);
8142    unsigned Opc = Cmp.getOpcode();
8143    EVT VT = Op.getValueType();
8144
8145    bool IllegalFPCMov = false;
8146    if (VT.isFloatingPoint() && !VT.isVector() &&
8147        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8148      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8149
8150    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8151        Opc == X86ISD::BT) { // FIXME
8152      Cond = Cmp;
8153      addTest = false;
8154    }
8155  }
8156
8157  if (addTest) {
8158    // Look pass the truncate.
8159    if (Cond.getOpcode() == ISD::TRUNCATE)
8160      Cond = Cond.getOperand(0);
8161
8162    // We know the result of AND is compared against zero. Try to match
8163    // it to BT.
8164    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8165      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8166      if (NewSetCC.getNode()) {
8167        CC = NewSetCC.getOperand(0);
8168        Cond = NewSetCC.getOperand(1);
8169        addTest = false;
8170      }
8171    }
8172  }
8173
8174  if (addTest) {
8175    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8176    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8177  }
8178
8179  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8180  // a <  b ?  0 : -1 -> RES = setcc_carry
8181  // a >= b ? -1 :  0 -> RES = setcc_carry
8182  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8183  if (Cond.getOpcode() == X86ISD::CMP) {
8184    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8185
8186    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8187        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8188      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8189                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8190      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8191        return DAG.getNOT(DL, Res, Res.getValueType());
8192      return Res;
8193    }
8194  }
8195
8196  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8197  // condition is true.
8198  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8199  SDValue Ops[] = { Op2, Op1, CC, Cond };
8200  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8201}
8202
8203// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8204// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8205// from the AND / OR.
8206static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8207  Opc = Op.getOpcode();
8208  if (Opc != ISD::OR && Opc != ISD::AND)
8209    return false;
8210  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8211          Op.getOperand(0).hasOneUse() &&
8212          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8213          Op.getOperand(1).hasOneUse());
8214}
8215
8216// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8217// 1 and that the SETCC node has a single use.
8218static bool isXor1OfSetCC(SDValue Op) {
8219  if (Op.getOpcode() != ISD::XOR)
8220    return false;
8221  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8222  if (N1C && N1C->getAPIntValue() == 1) {
8223    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8224      Op.getOperand(0).hasOneUse();
8225  }
8226  return false;
8227}
8228
8229SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8230  bool addTest = true;
8231  SDValue Chain = Op.getOperand(0);
8232  SDValue Cond  = Op.getOperand(1);
8233  SDValue Dest  = Op.getOperand(2);
8234  DebugLoc dl = Op.getDebugLoc();
8235  SDValue CC;
8236
8237  if (Cond.getOpcode() == ISD::SETCC) {
8238    SDValue NewCond = LowerSETCC(Cond, DAG);
8239    if (NewCond.getNode())
8240      Cond = NewCond;
8241  }
8242#if 0
8243  // FIXME: LowerXALUO doesn't handle these!!
8244  else if (Cond.getOpcode() == X86ISD::ADD  ||
8245           Cond.getOpcode() == X86ISD::SUB  ||
8246           Cond.getOpcode() == X86ISD::SMUL ||
8247           Cond.getOpcode() == X86ISD::UMUL)
8248    Cond = LowerXALUO(Cond, DAG);
8249#endif
8250
8251  // Look pass (and (setcc_carry (cmp ...)), 1).
8252  if (Cond.getOpcode() == ISD::AND &&
8253      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8254    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8255    if (C && C->getAPIntValue() == 1)
8256      Cond = Cond.getOperand(0);
8257  }
8258
8259  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8260  // setting operand in place of the X86ISD::SETCC.
8261  if (Cond.getOpcode() == X86ISD::SETCC ||
8262      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8263    CC = Cond.getOperand(0);
8264
8265    SDValue Cmp = Cond.getOperand(1);
8266    unsigned Opc = Cmp.getOpcode();
8267    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8268    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8269      Cond = Cmp;
8270      addTest = false;
8271    } else {
8272      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8273      default: break;
8274      case X86::COND_O:
8275      case X86::COND_B:
8276        // These can only come from an arithmetic instruction with overflow,
8277        // e.g. SADDO, UADDO.
8278        Cond = Cond.getNode()->getOperand(1);
8279        addTest = false;
8280        break;
8281      }
8282    }
8283  } else {
8284    unsigned CondOpc;
8285    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8286      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8287      if (CondOpc == ISD::OR) {
8288        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8289        // two branches instead of an explicit OR instruction with a
8290        // separate test.
8291        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8292            isX86LogicalCmp(Cmp)) {
8293          CC = Cond.getOperand(0).getOperand(0);
8294          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8295                              Chain, Dest, CC, Cmp);
8296          CC = Cond.getOperand(1).getOperand(0);
8297          Cond = Cmp;
8298          addTest = false;
8299        }
8300      } else { // ISD::AND
8301        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8302        // two branches instead of an explicit AND instruction with a
8303        // separate test. However, we only do this if this block doesn't
8304        // have a fall-through edge, because this requires an explicit
8305        // jmp when the condition is false.
8306        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8307            isX86LogicalCmp(Cmp) &&
8308            Op.getNode()->hasOneUse()) {
8309          X86::CondCode CCode =
8310            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8311          CCode = X86::GetOppositeBranchCondition(CCode);
8312          CC = DAG.getConstant(CCode, MVT::i8);
8313          SDNode *User = *Op.getNode()->use_begin();
8314          // Look for an unconditional branch following this conditional branch.
8315          // We need this because we need to reverse the successors in order
8316          // to implement FCMP_OEQ.
8317          if (User->getOpcode() == ISD::BR) {
8318            SDValue FalseBB = User->getOperand(1);
8319            SDNode *NewBR =
8320              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8321            assert(NewBR == User);
8322            (void)NewBR;
8323            Dest = FalseBB;
8324
8325            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8326                                Chain, Dest, CC, Cmp);
8327            X86::CondCode CCode =
8328              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8329            CCode = X86::GetOppositeBranchCondition(CCode);
8330            CC = DAG.getConstant(CCode, MVT::i8);
8331            Cond = Cmp;
8332            addTest = false;
8333          }
8334        }
8335      }
8336    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8337      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8338      // It should be transformed during dag combiner except when the condition
8339      // is set by a arithmetics with overflow node.
8340      X86::CondCode CCode =
8341        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8342      CCode = X86::GetOppositeBranchCondition(CCode);
8343      CC = DAG.getConstant(CCode, MVT::i8);
8344      Cond = Cond.getOperand(0).getOperand(1);
8345      addTest = false;
8346    }
8347  }
8348
8349  if (addTest) {
8350    // Look pass the truncate.
8351    if (Cond.getOpcode() == ISD::TRUNCATE)
8352      Cond = Cond.getOperand(0);
8353
8354    // We know the result of AND is compared against zero. Try to match
8355    // it to BT.
8356    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8357      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8358      if (NewSetCC.getNode()) {
8359        CC = NewSetCC.getOperand(0);
8360        Cond = NewSetCC.getOperand(1);
8361        addTest = false;
8362      }
8363    }
8364  }
8365
8366  if (addTest) {
8367    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8368    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8369  }
8370  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8371                     Chain, Dest, CC, Cond);
8372}
8373
8374
8375// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8376// Calls to _alloca is needed to probe the stack when allocating more than 4k
8377// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8378// that the guard pages used by the OS virtual memory manager are allocated in
8379// correct sequence.
8380SDValue
8381X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8382                                           SelectionDAG &DAG) const {
8383  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8384         "This should be used only on Windows targets");
8385  assert(!Subtarget->isTargetEnvMacho());
8386  DebugLoc dl = Op.getDebugLoc();
8387
8388  // Get the inputs.
8389  SDValue Chain = Op.getOperand(0);
8390  SDValue Size  = Op.getOperand(1);
8391  // FIXME: Ensure alignment here
8392
8393  SDValue Flag;
8394
8395  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8396  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8397
8398  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8399  Flag = Chain.getValue(1);
8400
8401  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8402
8403  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8404  Flag = Chain.getValue(1);
8405
8406  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8407
8408  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8409  return DAG.getMergeValues(Ops1, 2, dl);
8410}
8411
8412SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8413  MachineFunction &MF = DAG.getMachineFunction();
8414  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8415
8416  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8417  DebugLoc DL = Op.getDebugLoc();
8418
8419  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8420    // vastart just stores the address of the VarArgsFrameIndex slot into the
8421    // memory location argument.
8422    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8423                                   getPointerTy());
8424    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8425                        MachinePointerInfo(SV), false, false, 0);
8426  }
8427
8428  // __va_list_tag:
8429  //   gp_offset         (0 - 6 * 8)
8430  //   fp_offset         (48 - 48 + 8 * 16)
8431  //   overflow_arg_area (point to parameters coming in memory).
8432  //   reg_save_area
8433  SmallVector<SDValue, 8> MemOps;
8434  SDValue FIN = Op.getOperand(1);
8435  // Store gp_offset
8436  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8437                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8438                                               MVT::i32),
8439                               FIN, MachinePointerInfo(SV), false, false, 0);
8440  MemOps.push_back(Store);
8441
8442  // Store fp_offset
8443  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8444                    FIN, DAG.getIntPtrConstant(4));
8445  Store = DAG.getStore(Op.getOperand(0), DL,
8446                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8447                                       MVT::i32),
8448                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8449  MemOps.push_back(Store);
8450
8451  // Store ptr to overflow_arg_area
8452  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8453                    FIN, DAG.getIntPtrConstant(4));
8454  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8455                                    getPointerTy());
8456  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8457                       MachinePointerInfo(SV, 8),
8458                       false, false, 0);
8459  MemOps.push_back(Store);
8460
8461  // Store ptr to reg_save_area.
8462  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8463                    FIN, DAG.getIntPtrConstant(8));
8464  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8465                                    getPointerTy());
8466  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8467                       MachinePointerInfo(SV, 16), false, false, 0);
8468  MemOps.push_back(Store);
8469  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8470                     &MemOps[0], MemOps.size());
8471}
8472
8473SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8474  assert(Subtarget->is64Bit() &&
8475         "LowerVAARG only handles 64-bit va_arg!");
8476  assert((Subtarget->isTargetLinux() ||
8477          Subtarget->isTargetDarwin()) &&
8478          "Unhandled target in LowerVAARG");
8479  assert(Op.getNode()->getNumOperands() == 4);
8480  SDValue Chain = Op.getOperand(0);
8481  SDValue SrcPtr = Op.getOperand(1);
8482  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8483  unsigned Align = Op.getConstantOperandVal(3);
8484  DebugLoc dl = Op.getDebugLoc();
8485
8486  EVT ArgVT = Op.getNode()->getValueType(0);
8487  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8488  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8489  uint8_t ArgMode;
8490
8491  // Decide which area this value should be read from.
8492  // TODO: Implement the AMD64 ABI in its entirety. This simple
8493  // selection mechanism works only for the basic types.
8494  if (ArgVT == MVT::f80) {
8495    llvm_unreachable("va_arg for f80 not yet implemented");
8496  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8497    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8498  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8499    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8500  } else {
8501    llvm_unreachable("Unhandled argument type in LowerVAARG");
8502  }
8503
8504  if (ArgMode == 2) {
8505    // Sanity Check: Make sure using fp_offset makes sense.
8506    assert(!UseSoftFloat &&
8507           !(DAG.getMachineFunction()
8508                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8509           Subtarget->hasXMM());
8510  }
8511
8512  // Insert VAARG_64 node into the DAG
8513  // VAARG_64 returns two values: Variable Argument Address, Chain
8514  SmallVector<SDValue, 11> InstOps;
8515  InstOps.push_back(Chain);
8516  InstOps.push_back(SrcPtr);
8517  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8518  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8519  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8520  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8521  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8522                                          VTs, &InstOps[0], InstOps.size(),
8523                                          MVT::i64,
8524                                          MachinePointerInfo(SV),
8525                                          /*Align=*/0,
8526                                          /*Volatile=*/false,
8527                                          /*ReadMem=*/true,
8528                                          /*WriteMem=*/true);
8529  Chain = VAARG.getValue(1);
8530
8531  // Load the next argument and return it
8532  return DAG.getLoad(ArgVT, dl,
8533                     Chain,
8534                     VAARG,
8535                     MachinePointerInfo(),
8536                     false, false, 0);
8537}
8538
8539SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8540  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8541  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8542  SDValue Chain = Op.getOperand(0);
8543  SDValue DstPtr = Op.getOperand(1);
8544  SDValue SrcPtr = Op.getOperand(2);
8545  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8546  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8547  DebugLoc DL = Op.getDebugLoc();
8548
8549  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8550                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8551                       false,
8552                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8553}
8554
8555SDValue
8556X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8557  DebugLoc dl = Op.getDebugLoc();
8558  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8559  switch (IntNo) {
8560  default: return SDValue();    // Don't custom lower most intrinsics.
8561  // Comparison intrinsics.
8562  case Intrinsic::x86_sse_comieq_ss:
8563  case Intrinsic::x86_sse_comilt_ss:
8564  case Intrinsic::x86_sse_comile_ss:
8565  case Intrinsic::x86_sse_comigt_ss:
8566  case Intrinsic::x86_sse_comige_ss:
8567  case Intrinsic::x86_sse_comineq_ss:
8568  case Intrinsic::x86_sse_ucomieq_ss:
8569  case Intrinsic::x86_sse_ucomilt_ss:
8570  case Intrinsic::x86_sse_ucomile_ss:
8571  case Intrinsic::x86_sse_ucomigt_ss:
8572  case Intrinsic::x86_sse_ucomige_ss:
8573  case Intrinsic::x86_sse_ucomineq_ss:
8574  case Intrinsic::x86_sse2_comieq_sd:
8575  case Intrinsic::x86_sse2_comilt_sd:
8576  case Intrinsic::x86_sse2_comile_sd:
8577  case Intrinsic::x86_sse2_comigt_sd:
8578  case Intrinsic::x86_sse2_comige_sd:
8579  case Intrinsic::x86_sse2_comineq_sd:
8580  case Intrinsic::x86_sse2_ucomieq_sd:
8581  case Intrinsic::x86_sse2_ucomilt_sd:
8582  case Intrinsic::x86_sse2_ucomile_sd:
8583  case Intrinsic::x86_sse2_ucomigt_sd:
8584  case Intrinsic::x86_sse2_ucomige_sd:
8585  case Intrinsic::x86_sse2_ucomineq_sd: {
8586    unsigned Opc = 0;
8587    ISD::CondCode CC = ISD::SETCC_INVALID;
8588    switch (IntNo) {
8589    default: break;
8590    case Intrinsic::x86_sse_comieq_ss:
8591    case Intrinsic::x86_sse2_comieq_sd:
8592      Opc = X86ISD::COMI;
8593      CC = ISD::SETEQ;
8594      break;
8595    case Intrinsic::x86_sse_comilt_ss:
8596    case Intrinsic::x86_sse2_comilt_sd:
8597      Opc = X86ISD::COMI;
8598      CC = ISD::SETLT;
8599      break;
8600    case Intrinsic::x86_sse_comile_ss:
8601    case Intrinsic::x86_sse2_comile_sd:
8602      Opc = X86ISD::COMI;
8603      CC = ISD::SETLE;
8604      break;
8605    case Intrinsic::x86_sse_comigt_ss:
8606    case Intrinsic::x86_sse2_comigt_sd:
8607      Opc = X86ISD::COMI;
8608      CC = ISD::SETGT;
8609      break;
8610    case Intrinsic::x86_sse_comige_ss:
8611    case Intrinsic::x86_sse2_comige_sd:
8612      Opc = X86ISD::COMI;
8613      CC = ISD::SETGE;
8614      break;
8615    case Intrinsic::x86_sse_comineq_ss:
8616    case Intrinsic::x86_sse2_comineq_sd:
8617      Opc = X86ISD::COMI;
8618      CC = ISD::SETNE;
8619      break;
8620    case Intrinsic::x86_sse_ucomieq_ss:
8621    case Intrinsic::x86_sse2_ucomieq_sd:
8622      Opc = X86ISD::UCOMI;
8623      CC = ISD::SETEQ;
8624      break;
8625    case Intrinsic::x86_sse_ucomilt_ss:
8626    case Intrinsic::x86_sse2_ucomilt_sd:
8627      Opc = X86ISD::UCOMI;
8628      CC = ISD::SETLT;
8629      break;
8630    case Intrinsic::x86_sse_ucomile_ss:
8631    case Intrinsic::x86_sse2_ucomile_sd:
8632      Opc = X86ISD::UCOMI;
8633      CC = ISD::SETLE;
8634      break;
8635    case Intrinsic::x86_sse_ucomigt_ss:
8636    case Intrinsic::x86_sse2_ucomigt_sd:
8637      Opc = X86ISD::UCOMI;
8638      CC = ISD::SETGT;
8639      break;
8640    case Intrinsic::x86_sse_ucomige_ss:
8641    case Intrinsic::x86_sse2_ucomige_sd:
8642      Opc = X86ISD::UCOMI;
8643      CC = ISD::SETGE;
8644      break;
8645    case Intrinsic::x86_sse_ucomineq_ss:
8646    case Intrinsic::x86_sse2_ucomineq_sd:
8647      Opc = X86ISD::UCOMI;
8648      CC = ISD::SETNE;
8649      break;
8650    }
8651
8652    SDValue LHS = Op.getOperand(1);
8653    SDValue RHS = Op.getOperand(2);
8654    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8655    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8656    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8657    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8658                                DAG.getConstant(X86CC, MVT::i8), Cond);
8659    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8660  }
8661  // ptest and testp intrinsics. The intrinsic these come from are designed to
8662  // return an integer value, not just an instruction so lower it to the ptest
8663  // or testp pattern and a setcc for the result.
8664  case Intrinsic::x86_sse41_ptestz:
8665  case Intrinsic::x86_sse41_ptestc:
8666  case Intrinsic::x86_sse41_ptestnzc:
8667  case Intrinsic::x86_avx_ptestz_256:
8668  case Intrinsic::x86_avx_ptestc_256:
8669  case Intrinsic::x86_avx_ptestnzc_256:
8670  case Intrinsic::x86_avx_vtestz_ps:
8671  case Intrinsic::x86_avx_vtestc_ps:
8672  case Intrinsic::x86_avx_vtestnzc_ps:
8673  case Intrinsic::x86_avx_vtestz_pd:
8674  case Intrinsic::x86_avx_vtestc_pd:
8675  case Intrinsic::x86_avx_vtestnzc_pd:
8676  case Intrinsic::x86_avx_vtestz_ps_256:
8677  case Intrinsic::x86_avx_vtestc_ps_256:
8678  case Intrinsic::x86_avx_vtestnzc_ps_256:
8679  case Intrinsic::x86_avx_vtestz_pd_256:
8680  case Intrinsic::x86_avx_vtestc_pd_256:
8681  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8682    bool IsTestPacked = false;
8683    unsigned X86CC = 0;
8684    switch (IntNo) {
8685    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8686    case Intrinsic::x86_avx_vtestz_ps:
8687    case Intrinsic::x86_avx_vtestz_pd:
8688    case Intrinsic::x86_avx_vtestz_ps_256:
8689    case Intrinsic::x86_avx_vtestz_pd_256:
8690      IsTestPacked = true; // Fallthrough
8691    case Intrinsic::x86_sse41_ptestz:
8692    case Intrinsic::x86_avx_ptestz_256:
8693      // ZF = 1
8694      X86CC = X86::COND_E;
8695      break;
8696    case Intrinsic::x86_avx_vtestc_ps:
8697    case Intrinsic::x86_avx_vtestc_pd:
8698    case Intrinsic::x86_avx_vtestc_ps_256:
8699    case Intrinsic::x86_avx_vtestc_pd_256:
8700      IsTestPacked = true; // Fallthrough
8701    case Intrinsic::x86_sse41_ptestc:
8702    case Intrinsic::x86_avx_ptestc_256:
8703      // CF = 1
8704      X86CC = X86::COND_B;
8705      break;
8706    case Intrinsic::x86_avx_vtestnzc_ps:
8707    case Intrinsic::x86_avx_vtestnzc_pd:
8708    case Intrinsic::x86_avx_vtestnzc_ps_256:
8709    case Intrinsic::x86_avx_vtestnzc_pd_256:
8710      IsTestPacked = true; // Fallthrough
8711    case Intrinsic::x86_sse41_ptestnzc:
8712    case Intrinsic::x86_avx_ptestnzc_256:
8713      // ZF and CF = 0
8714      X86CC = X86::COND_A;
8715      break;
8716    }
8717
8718    SDValue LHS = Op.getOperand(1);
8719    SDValue RHS = Op.getOperand(2);
8720    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8721    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8722    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8723    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8724    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8725  }
8726
8727  // Fix vector shift instructions where the last operand is a non-immediate
8728  // i32 value.
8729  case Intrinsic::x86_sse2_pslli_w:
8730  case Intrinsic::x86_sse2_pslli_d:
8731  case Intrinsic::x86_sse2_pslli_q:
8732  case Intrinsic::x86_sse2_psrli_w:
8733  case Intrinsic::x86_sse2_psrli_d:
8734  case Intrinsic::x86_sse2_psrli_q:
8735  case Intrinsic::x86_sse2_psrai_w:
8736  case Intrinsic::x86_sse2_psrai_d:
8737  case Intrinsic::x86_mmx_pslli_w:
8738  case Intrinsic::x86_mmx_pslli_d:
8739  case Intrinsic::x86_mmx_pslli_q:
8740  case Intrinsic::x86_mmx_psrli_w:
8741  case Intrinsic::x86_mmx_psrli_d:
8742  case Intrinsic::x86_mmx_psrli_q:
8743  case Intrinsic::x86_mmx_psrai_w:
8744  case Intrinsic::x86_mmx_psrai_d: {
8745    SDValue ShAmt = Op.getOperand(2);
8746    if (isa<ConstantSDNode>(ShAmt))
8747      return SDValue();
8748
8749    unsigned NewIntNo = 0;
8750    EVT ShAmtVT = MVT::v4i32;
8751    switch (IntNo) {
8752    case Intrinsic::x86_sse2_pslli_w:
8753      NewIntNo = Intrinsic::x86_sse2_psll_w;
8754      break;
8755    case Intrinsic::x86_sse2_pslli_d:
8756      NewIntNo = Intrinsic::x86_sse2_psll_d;
8757      break;
8758    case Intrinsic::x86_sse2_pslli_q:
8759      NewIntNo = Intrinsic::x86_sse2_psll_q;
8760      break;
8761    case Intrinsic::x86_sse2_psrli_w:
8762      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8763      break;
8764    case Intrinsic::x86_sse2_psrli_d:
8765      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8766      break;
8767    case Intrinsic::x86_sse2_psrli_q:
8768      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8769      break;
8770    case Intrinsic::x86_sse2_psrai_w:
8771      NewIntNo = Intrinsic::x86_sse2_psra_w;
8772      break;
8773    case Intrinsic::x86_sse2_psrai_d:
8774      NewIntNo = Intrinsic::x86_sse2_psra_d;
8775      break;
8776    default: {
8777      ShAmtVT = MVT::v2i32;
8778      switch (IntNo) {
8779      case Intrinsic::x86_mmx_pslli_w:
8780        NewIntNo = Intrinsic::x86_mmx_psll_w;
8781        break;
8782      case Intrinsic::x86_mmx_pslli_d:
8783        NewIntNo = Intrinsic::x86_mmx_psll_d;
8784        break;
8785      case Intrinsic::x86_mmx_pslli_q:
8786        NewIntNo = Intrinsic::x86_mmx_psll_q;
8787        break;
8788      case Intrinsic::x86_mmx_psrli_w:
8789        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8790        break;
8791      case Intrinsic::x86_mmx_psrli_d:
8792        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8793        break;
8794      case Intrinsic::x86_mmx_psrli_q:
8795        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8796        break;
8797      case Intrinsic::x86_mmx_psrai_w:
8798        NewIntNo = Intrinsic::x86_mmx_psra_w;
8799        break;
8800      case Intrinsic::x86_mmx_psrai_d:
8801        NewIntNo = Intrinsic::x86_mmx_psra_d;
8802        break;
8803      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8804      }
8805      break;
8806    }
8807    }
8808
8809    // The vector shift intrinsics with scalars uses 32b shift amounts but
8810    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8811    // to be zero.
8812    SDValue ShOps[4];
8813    ShOps[0] = ShAmt;
8814    ShOps[1] = DAG.getConstant(0, MVT::i32);
8815    if (ShAmtVT == MVT::v4i32) {
8816      ShOps[2] = DAG.getUNDEF(MVT::i32);
8817      ShOps[3] = DAG.getUNDEF(MVT::i32);
8818      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8819    } else {
8820      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8821// FIXME this must be lowered to get rid of the invalid type.
8822    }
8823
8824    EVT VT = Op.getValueType();
8825    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8826    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8827                       DAG.getConstant(NewIntNo, MVT::i32),
8828                       Op.getOperand(1), ShAmt);
8829  }
8830  }
8831}
8832
8833SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8834                                           SelectionDAG &DAG) const {
8835  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8836  MFI->setReturnAddressIsTaken(true);
8837
8838  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8839  DebugLoc dl = Op.getDebugLoc();
8840
8841  if (Depth > 0) {
8842    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8843    SDValue Offset =
8844      DAG.getConstant(TD->getPointerSize(),
8845                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8846    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8847                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8848                                   FrameAddr, Offset),
8849                       MachinePointerInfo(), false, false, 0);
8850  }
8851
8852  // Just load the return address.
8853  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8854  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8855                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8856}
8857
8858SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8859  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8860  MFI->setFrameAddressIsTaken(true);
8861
8862  EVT VT = Op.getValueType();
8863  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8864  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8865  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8866  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8867  while (Depth--)
8868    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8869                            MachinePointerInfo(),
8870                            false, false, 0);
8871  return FrameAddr;
8872}
8873
8874SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8875                                                     SelectionDAG &DAG) const {
8876  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8877}
8878
8879SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8880  MachineFunction &MF = DAG.getMachineFunction();
8881  SDValue Chain     = Op.getOperand(0);
8882  SDValue Offset    = Op.getOperand(1);
8883  SDValue Handler   = Op.getOperand(2);
8884  DebugLoc dl       = Op.getDebugLoc();
8885
8886  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8887                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8888                                     getPointerTy());
8889  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8890
8891  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8892                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8893  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8894  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8895                       false, false, 0);
8896  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8897  MF.getRegInfo().addLiveOut(StoreAddrReg);
8898
8899  return DAG.getNode(X86ISD::EH_RETURN, dl,
8900                     MVT::Other,
8901                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8902}
8903
8904SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8905                                             SelectionDAG &DAG) const {
8906  SDValue Root = Op.getOperand(0);
8907  SDValue Trmp = Op.getOperand(1); // trampoline
8908  SDValue FPtr = Op.getOperand(2); // nested function
8909  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8910  DebugLoc dl  = Op.getDebugLoc();
8911
8912  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8913
8914  if (Subtarget->is64Bit()) {
8915    SDValue OutChains[6];
8916
8917    // Large code-model.
8918    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8919    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8920
8921    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8922    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8923
8924    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8925
8926    // Load the pointer to the nested function into R11.
8927    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8928    SDValue Addr = Trmp;
8929    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8930                                Addr, MachinePointerInfo(TrmpAddr),
8931                                false, false, 0);
8932
8933    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8934                       DAG.getConstant(2, MVT::i64));
8935    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8936                                MachinePointerInfo(TrmpAddr, 2),
8937                                false, false, 2);
8938
8939    // Load the 'nest' parameter value into R10.
8940    // R10 is specified in X86CallingConv.td
8941    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8942    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8943                       DAG.getConstant(10, MVT::i64));
8944    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8945                                Addr, MachinePointerInfo(TrmpAddr, 10),
8946                                false, false, 0);
8947
8948    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8949                       DAG.getConstant(12, MVT::i64));
8950    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8951                                MachinePointerInfo(TrmpAddr, 12),
8952                                false, false, 2);
8953
8954    // Jump to the nested function.
8955    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8956    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8957                       DAG.getConstant(20, MVT::i64));
8958    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8959                                Addr, MachinePointerInfo(TrmpAddr, 20),
8960                                false, false, 0);
8961
8962    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8963    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8964                       DAG.getConstant(22, MVT::i64));
8965    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8966                                MachinePointerInfo(TrmpAddr, 22),
8967                                false, false, 0);
8968
8969    SDValue Ops[] =
8970      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8971    return DAG.getMergeValues(Ops, 2, dl);
8972  } else {
8973    const Function *Func =
8974      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8975    CallingConv::ID CC = Func->getCallingConv();
8976    unsigned NestReg;
8977
8978    switch (CC) {
8979    default:
8980      llvm_unreachable("Unsupported calling convention");
8981    case CallingConv::C:
8982    case CallingConv::X86_StdCall: {
8983      // Pass 'nest' parameter in ECX.
8984      // Must be kept in sync with X86CallingConv.td
8985      NestReg = X86::ECX;
8986
8987      // Check that ECX wasn't needed by an 'inreg' parameter.
8988      FunctionType *FTy = Func->getFunctionType();
8989      const AttrListPtr &Attrs = Func->getAttributes();
8990
8991      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8992        unsigned InRegCount = 0;
8993        unsigned Idx = 1;
8994
8995        for (FunctionType::param_iterator I = FTy->param_begin(),
8996             E = FTy->param_end(); I != E; ++I, ++Idx)
8997          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8998            // FIXME: should only count parameters that are lowered to integers.
8999            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9000
9001        if (InRegCount > 2) {
9002          report_fatal_error("Nest register in use - reduce number of inreg"
9003                             " parameters!");
9004        }
9005      }
9006      break;
9007    }
9008    case CallingConv::X86_FastCall:
9009    case CallingConv::X86_ThisCall:
9010    case CallingConv::Fast:
9011      // Pass 'nest' parameter in EAX.
9012      // Must be kept in sync with X86CallingConv.td
9013      NestReg = X86::EAX;
9014      break;
9015    }
9016
9017    SDValue OutChains[4];
9018    SDValue Addr, Disp;
9019
9020    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9021                       DAG.getConstant(10, MVT::i32));
9022    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9023
9024    // This is storing the opcode for MOV32ri.
9025    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9026    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9027    OutChains[0] = DAG.getStore(Root, dl,
9028                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9029                                Trmp, MachinePointerInfo(TrmpAddr),
9030                                false, false, 0);
9031
9032    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9033                       DAG.getConstant(1, MVT::i32));
9034    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9035                                MachinePointerInfo(TrmpAddr, 1),
9036                                false, false, 1);
9037
9038    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9039    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9040                       DAG.getConstant(5, MVT::i32));
9041    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9042                                MachinePointerInfo(TrmpAddr, 5),
9043                                false, false, 1);
9044
9045    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9046                       DAG.getConstant(6, MVT::i32));
9047    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9048                                MachinePointerInfo(TrmpAddr, 6),
9049                                false, false, 1);
9050
9051    SDValue Ops[] =
9052      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
9053    return DAG.getMergeValues(Ops, 2, dl);
9054  }
9055}
9056
9057SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9058                                            SelectionDAG &DAG) const {
9059  /*
9060   The rounding mode is in bits 11:10 of FPSR, and has the following
9061   settings:
9062     00 Round to nearest
9063     01 Round to -inf
9064     10 Round to +inf
9065     11 Round to 0
9066
9067  FLT_ROUNDS, on the other hand, expects the following:
9068    -1 Undefined
9069     0 Round to 0
9070     1 Round to nearest
9071     2 Round to +inf
9072     3 Round to -inf
9073
9074  To perform the conversion, we do:
9075    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9076  */
9077
9078  MachineFunction &MF = DAG.getMachineFunction();
9079  const TargetMachine &TM = MF.getTarget();
9080  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9081  unsigned StackAlignment = TFI.getStackAlignment();
9082  EVT VT = Op.getValueType();
9083  DebugLoc DL = Op.getDebugLoc();
9084
9085  // Save FP Control Word to stack slot
9086  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9087  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9088
9089
9090  MachineMemOperand *MMO =
9091   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9092                           MachineMemOperand::MOStore, 2, 2);
9093
9094  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9095  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9096                                          DAG.getVTList(MVT::Other),
9097                                          Ops, 2, MVT::i16, MMO);
9098
9099  // Load FP Control Word from stack slot
9100  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9101                            MachinePointerInfo(), false, false, 0);
9102
9103  // Transform as necessary
9104  SDValue CWD1 =
9105    DAG.getNode(ISD::SRL, DL, MVT::i16,
9106                DAG.getNode(ISD::AND, DL, MVT::i16,
9107                            CWD, DAG.getConstant(0x800, MVT::i16)),
9108                DAG.getConstant(11, MVT::i8));
9109  SDValue CWD2 =
9110    DAG.getNode(ISD::SRL, DL, MVT::i16,
9111                DAG.getNode(ISD::AND, DL, MVT::i16,
9112                            CWD, DAG.getConstant(0x400, MVT::i16)),
9113                DAG.getConstant(9, MVT::i8));
9114
9115  SDValue RetVal =
9116    DAG.getNode(ISD::AND, DL, MVT::i16,
9117                DAG.getNode(ISD::ADD, DL, MVT::i16,
9118                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9119                            DAG.getConstant(1, MVT::i16)),
9120                DAG.getConstant(3, MVT::i16));
9121
9122
9123  return DAG.getNode((VT.getSizeInBits() < 16 ?
9124                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9125}
9126
9127SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9128  EVT VT = Op.getValueType();
9129  EVT OpVT = VT;
9130  unsigned NumBits = VT.getSizeInBits();
9131  DebugLoc dl = Op.getDebugLoc();
9132
9133  Op = Op.getOperand(0);
9134  if (VT == MVT::i8) {
9135    // Zero extend to i32 since there is not an i8 bsr.
9136    OpVT = MVT::i32;
9137    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9138  }
9139
9140  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9141  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9142  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9143
9144  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9145  SDValue Ops[] = {
9146    Op,
9147    DAG.getConstant(NumBits+NumBits-1, OpVT),
9148    DAG.getConstant(X86::COND_E, MVT::i8),
9149    Op.getValue(1)
9150  };
9151  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9152
9153  // Finally xor with NumBits-1.
9154  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9155
9156  if (VT == MVT::i8)
9157    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9158  return Op;
9159}
9160
9161SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9162  EVT VT = Op.getValueType();
9163  EVT OpVT = VT;
9164  unsigned NumBits = VT.getSizeInBits();
9165  DebugLoc dl = Op.getDebugLoc();
9166
9167  Op = Op.getOperand(0);
9168  if (VT == MVT::i8) {
9169    OpVT = MVT::i32;
9170    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9171  }
9172
9173  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9174  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9175  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9176
9177  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9178  SDValue Ops[] = {
9179    Op,
9180    DAG.getConstant(NumBits, OpVT),
9181    DAG.getConstant(X86::COND_E, MVT::i8),
9182    Op.getValue(1)
9183  };
9184  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9185
9186  if (VT == MVT::i8)
9187    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9188  return Op;
9189}
9190
9191SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
9192  EVT VT = Op.getValueType();
9193  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9194  DebugLoc dl = Op.getDebugLoc();
9195
9196  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9197  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9198  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9199  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9200  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9201  //
9202  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9203  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9204  //  return AloBlo + AloBhi + AhiBlo;
9205
9206  SDValue A = Op.getOperand(0);
9207  SDValue B = Op.getOperand(1);
9208
9209  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9210                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9211                       A, DAG.getConstant(32, MVT::i32));
9212  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9213                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9214                       B, DAG.getConstant(32, MVT::i32));
9215  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9216                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9217                       A, B);
9218  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9219                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9220                       A, Bhi);
9221  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9222                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9223                       Ahi, B);
9224  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9225                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9226                       AloBhi, DAG.getConstant(32, MVT::i32));
9227  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9228                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9229                       AhiBlo, DAG.getConstant(32, MVT::i32));
9230  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9231  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9232  return Res;
9233}
9234
9235SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9236
9237  EVT VT = Op.getValueType();
9238  DebugLoc dl = Op.getDebugLoc();
9239  SDValue R = Op.getOperand(0);
9240  SDValue Amt = Op.getOperand(1);
9241  LLVMContext *Context = DAG.getContext();
9242
9243  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9244    return SDValue();
9245
9246  // Decompose 256-bit shifts into smaller 128-bit shifts.
9247  if (VT.getSizeInBits() == 256) {
9248    int NumElems = VT.getVectorNumElements();
9249    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9250    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9251
9252    // Extract the two vectors
9253    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9254    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9255                                     DAG, dl);
9256
9257    // Recreate the shift amount vectors
9258    SmallVector<SDValue, 4> Amt1Csts;
9259    SmallVector<SDValue, 4> Amt2Csts;
9260    for (int i = 0; i < NumElems/2; ++i)
9261      Amt1Csts.push_back(Amt->getOperand(i));
9262    for (int i = NumElems/2; i < NumElems; ++i)
9263      Amt2Csts.push_back(Amt->getOperand(i));
9264
9265    SDValue Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9266                               &Amt1Csts[0], NumElems/2);
9267    SDValue Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9268                               &Amt2Csts[0], NumElems/2);
9269
9270    // Issue new vector shifts for the smaller types
9271    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9272    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9273
9274    // Concatenate the result back
9275    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9276  }
9277
9278  // Optimize shl/srl/sra with constant shift amount.
9279  if (isSplatVector(Amt.getNode())) {
9280    SDValue SclrAmt = Amt->getOperand(0);
9281    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9282      uint64_t ShiftAmt = C->getZExtValue();
9283
9284      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9285       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9286                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9287                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9288
9289      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9290       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9291                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9292                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9293
9294      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9295       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9296                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9297                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9298
9299      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9300       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9301                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9302                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9303
9304      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9305       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9306                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9307                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9308
9309      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9310       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9311                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9312                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9313
9314      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9315       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9316                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9317                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9318
9319      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9320       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9321                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9322                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9323    }
9324  }
9325
9326  // Lower SHL with variable shift amount.
9327  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9328    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9329                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9330                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9331
9332    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9333
9334    std::vector<Constant*> CV(4, CI);
9335    Constant *C = ConstantVector::get(CV);
9336    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9337    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9338                                 MachinePointerInfo::getConstantPool(),
9339                                 false, false, 16);
9340
9341    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9342    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9343    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9344    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9345  }
9346  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9347    // a = a << 5;
9348    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9349                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9350                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9351
9352    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9353    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9354
9355    std::vector<Constant*> CVM1(16, CM1);
9356    std::vector<Constant*> CVM2(16, CM2);
9357    Constant *C = ConstantVector::get(CVM1);
9358    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9359    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9360                            MachinePointerInfo::getConstantPool(),
9361                            false, false, 16);
9362
9363    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9364    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9365    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9366                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9367                    DAG.getConstant(4, MVT::i32));
9368    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9369    // a += a
9370    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9371
9372    C = ConstantVector::get(CVM2);
9373    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9374    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9375                    MachinePointerInfo::getConstantPool(),
9376                    false, false, 16);
9377
9378    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9379    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9380    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9381                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9382                    DAG.getConstant(2, MVT::i32));
9383    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9384    // a += a
9385    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9386
9387    // return pblendv(r, r+r, a);
9388    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9389                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9390    return R;
9391  }
9392  return SDValue();
9393}
9394
9395SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9396  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9397  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9398  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9399  // has only one use.
9400  SDNode *N = Op.getNode();
9401  SDValue LHS = N->getOperand(0);
9402  SDValue RHS = N->getOperand(1);
9403  unsigned BaseOp = 0;
9404  unsigned Cond = 0;
9405  DebugLoc DL = Op.getDebugLoc();
9406  switch (Op.getOpcode()) {
9407  default: llvm_unreachable("Unknown ovf instruction!");
9408  case ISD::SADDO:
9409    // A subtract of one will be selected as a INC. Note that INC doesn't
9410    // set CF, so we can't do this for UADDO.
9411    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9412      if (C->isOne()) {
9413        BaseOp = X86ISD::INC;
9414        Cond = X86::COND_O;
9415        break;
9416      }
9417    BaseOp = X86ISD::ADD;
9418    Cond = X86::COND_O;
9419    break;
9420  case ISD::UADDO:
9421    BaseOp = X86ISD::ADD;
9422    Cond = X86::COND_B;
9423    break;
9424  case ISD::SSUBO:
9425    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9426    // set CF, so we can't do this for USUBO.
9427    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9428      if (C->isOne()) {
9429        BaseOp = X86ISD::DEC;
9430        Cond = X86::COND_O;
9431        break;
9432      }
9433    BaseOp = X86ISD::SUB;
9434    Cond = X86::COND_O;
9435    break;
9436  case ISD::USUBO:
9437    BaseOp = X86ISD::SUB;
9438    Cond = X86::COND_B;
9439    break;
9440  case ISD::SMULO:
9441    BaseOp = X86ISD::SMUL;
9442    Cond = X86::COND_O;
9443    break;
9444  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9445    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9446                                 MVT::i32);
9447    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9448
9449    SDValue SetCC =
9450      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9451                  DAG.getConstant(X86::COND_O, MVT::i32),
9452                  SDValue(Sum.getNode(), 2));
9453
9454    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9455  }
9456  }
9457
9458  // Also sets EFLAGS.
9459  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9460  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9461
9462  SDValue SetCC =
9463    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9464                DAG.getConstant(Cond, MVT::i32),
9465                SDValue(Sum.getNode(), 1));
9466
9467  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9468}
9469
9470SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9471  DebugLoc dl = Op.getDebugLoc();
9472  SDNode* Node = Op.getNode();
9473  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9474  EVT VT = Node->getValueType(0);
9475
9476  if (Subtarget->hasSSE2() && VT.isVector()) {
9477    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9478                        ExtraVT.getScalarType().getSizeInBits();
9479    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9480
9481    unsigned SHLIntrinsicsID = 0;
9482    unsigned SRAIntrinsicsID = 0;
9483    switch (VT.getSimpleVT().SimpleTy) {
9484      default:
9485        return SDValue();
9486      case MVT::v2i64: {
9487        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9488        SRAIntrinsicsID = 0;
9489        break;
9490      }
9491      case MVT::v4i32: {
9492        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9493        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9494        break;
9495      }
9496      case MVT::v8i16: {
9497        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9498        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9499        break;
9500      }
9501    }
9502
9503    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9504                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9505                         Node->getOperand(0), ShAmt);
9506
9507    // In case of 1 bit sext, no need to shr
9508    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9509
9510    if (SRAIntrinsicsID) {
9511      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9512                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9513                         Tmp1, ShAmt);
9514    }
9515    return Tmp1;
9516  }
9517
9518  return SDValue();
9519}
9520
9521
9522SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9523  DebugLoc dl = Op.getDebugLoc();
9524
9525  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9526  // There isn't any reason to disable it if the target processor supports it.
9527  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9528    SDValue Chain = Op.getOperand(0);
9529    SDValue Zero = DAG.getConstant(0, MVT::i32);
9530    SDValue Ops[] = {
9531      DAG.getRegister(X86::ESP, MVT::i32), // Base
9532      DAG.getTargetConstant(1, MVT::i8),   // Scale
9533      DAG.getRegister(0, MVT::i32),        // Index
9534      DAG.getTargetConstant(0, MVT::i32),  // Disp
9535      DAG.getRegister(0, MVT::i32),        // Segment.
9536      Zero,
9537      Chain
9538    };
9539    SDNode *Res =
9540      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9541                          array_lengthof(Ops));
9542    return SDValue(Res, 0);
9543  }
9544
9545  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9546  if (!isDev)
9547    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9548
9549  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9550  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9551  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9552  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9553
9554  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9555  if (!Op1 && !Op2 && !Op3 && Op4)
9556    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9557
9558  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9559  if (Op1 && !Op2 && !Op3 && !Op4)
9560    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9561
9562  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9563  //           (MFENCE)>;
9564  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9565}
9566
9567SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
9568                                             SelectionDAG &DAG) const {
9569  DebugLoc dl = Op.getDebugLoc();
9570  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
9571    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
9572  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
9573    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9574
9575  // The only fence that needs an instruction is a sequentially-consistent
9576  // cross-thread fence.
9577  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
9578    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
9579    // no-sse2). There isn't any reason to disable it if the target processor
9580    // supports it.
9581    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
9582      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9583
9584    SDValue Chain = Op.getOperand(0);
9585    SDValue Zero = DAG.getConstant(0, MVT::i32);
9586    SDValue Ops[] = {
9587      DAG.getRegister(X86::ESP, MVT::i32), // Base
9588      DAG.getTargetConstant(1, MVT::i8),   // Scale
9589      DAG.getRegister(0, MVT::i32),        // Index
9590      DAG.getTargetConstant(0, MVT::i32),  // Disp
9591      DAG.getRegister(0, MVT::i32),        // Segment.
9592      Zero,
9593      Chain
9594    };
9595    SDNode *Res =
9596      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9597                         array_lengthof(Ops));
9598    return SDValue(Res, 0);
9599  }
9600
9601  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
9602  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9603}
9604
9605
9606SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9607  EVT T = Op.getValueType();
9608  DebugLoc DL = Op.getDebugLoc();
9609  unsigned Reg = 0;
9610  unsigned size = 0;
9611  switch(T.getSimpleVT().SimpleTy) {
9612  default:
9613    assert(false && "Invalid value type!");
9614  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9615  case MVT::i16: Reg = X86::AX;  size = 2; break;
9616  case MVT::i32: Reg = X86::EAX; size = 4; break;
9617  case MVT::i64:
9618    assert(Subtarget->is64Bit() && "Node not type legal!");
9619    Reg = X86::RAX; size = 8;
9620    break;
9621  }
9622  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9623                                    Op.getOperand(2), SDValue());
9624  SDValue Ops[] = { cpIn.getValue(0),
9625                    Op.getOperand(1),
9626                    Op.getOperand(3),
9627                    DAG.getTargetConstant(size, MVT::i8),
9628                    cpIn.getValue(1) };
9629  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9630  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9631  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9632                                           Ops, 5, T, MMO);
9633  SDValue cpOut =
9634    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9635  return cpOut;
9636}
9637
9638SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9639                                                 SelectionDAG &DAG) const {
9640  assert(Subtarget->is64Bit() && "Result not type legalized?");
9641  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9642  SDValue TheChain = Op.getOperand(0);
9643  DebugLoc dl = Op.getDebugLoc();
9644  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9645  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9646  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9647                                   rax.getValue(2));
9648  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9649                            DAG.getConstant(32, MVT::i8));
9650  SDValue Ops[] = {
9651    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9652    rdx.getValue(1)
9653  };
9654  return DAG.getMergeValues(Ops, 2, dl);
9655}
9656
9657SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9658                                            SelectionDAG &DAG) const {
9659  EVT SrcVT = Op.getOperand(0).getValueType();
9660  EVT DstVT = Op.getValueType();
9661  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9662         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9663  assert((DstVT == MVT::i64 ||
9664          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9665         "Unexpected custom BITCAST");
9666  // i64 <=> MMX conversions are Legal.
9667  if (SrcVT==MVT::i64 && DstVT.isVector())
9668    return Op;
9669  if (DstVT==MVT::i64 && SrcVT.isVector())
9670    return Op;
9671  // MMX <=> MMX conversions are Legal.
9672  if (SrcVT.isVector() && DstVT.isVector())
9673    return Op;
9674  // All other conversions need to be expanded.
9675  return SDValue();
9676}
9677
9678SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9679  SDNode *Node = Op.getNode();
9680  DebugLoc dl = Node->getDebugLoc();
9681  EVT T = Node->getValueType(0);
9682  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9683                              DAG.getConstant(0, T), Node->getOperand(2));
9684  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9685                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9686                       Node->getOperand(0),
9687                       Node->getOperand(1), negOp,
9688                       cast<AtomicSDNode>(Node)->getSrcValue(),
9689                       cast<AtomicSDNode>(Node)->getAlignment(),
9690                       cast<AtomicSDNode>(Node)->getOrdering(),
9691                       cast<AtomicSDNode>(Node)->getSynchScope());
9692}
9693
9694static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9695  EVT VT = Op.getNode()->getValueType(0);
9696
9697  // Let legalize expand this if it isn't a legal type yet.
9698  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9699    return SDValue();
9700
9701  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9702
9703  unsigned Opc;
9704  bool ExtraOp = false;
9705  switch (Op.getOpcode()) {
9706  default: assert(0 && "Invalid code");
9707  case ISD::ADDC: Opc = X86ISD::ADD; break;
9708  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9709  case ISD::SUBC: Opc = X86ISD::SUB; break;
9710  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9711  }
9712
9713  if (!ExtraOp)
9714    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9715                       Op.getOperand(1));
9716  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9717                     Op.getOperand(1), Op.getOperand(2));
9718}
9719
9720/// LowerOperation - Provide custom lowering hooks for some operations.
9721///
9722SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9723  switch (Op.getOpcode()) {
9724  default: llvm_unreachable("Should not custom lower this!");
9725  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9726  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9727  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
9728  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9729  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9730  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9731  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9732  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9733  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9734  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9735  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9736  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9737  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9738  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9739  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9740  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9741  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9742  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9743  case ISD::SHL_PARTS:
9744  case ISD::SRA_PARTS:
9745  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9746  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9747  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9748  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9749  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9750  case ISD::FABS:               return LowerFABS(Op, DAG);
9751  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9752  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9753  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9754  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9755  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9756  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9757  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9758  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9759  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9760  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9761  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9762  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9763  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9764  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9765  case ISD::FRAME_TO_ARGS_OFFSET:
9766                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9767  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9768  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9769  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9770  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9771  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9772  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9773  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9774  case ISD::SRA:
9775  case ISD::SRL:
9776  case ISD::SHL:                return LowerShift(Op, DAG);
9777  case ISD::SADDO:
9778  case ISD::UADDO:
9779  case ISD::SSUBO:
9780  case ISD::USUBO:
9781  case ISD::SMULO:
9782  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9783  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9784  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9785  case ISD::ADDC:
9786  case ISD::ADDE:
9787  case ISD::SUBC:
9788  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9789  }
9790}
9791
9792void X86TargetLowering::
9793ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9794                        SelectionDAG &DAG, unsigned NewOp) const {
9795  EVT T = Node->getValueType(0);
9796  DebugLoc dl = Node->getDebugLoc();
9797  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9798
9799  SDValue Chain = Node->getOperand(0);
9800  SDValue In1 = Node->getOperand(1);
9801  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9802                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9803  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9804                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9805  SDValue Ops[] = { Chain, In1, In2L, In2H };
9806  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9807  SDValue Result =
9808    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9809                            cast<MemSDNode>(Node)->getMemOperand());
9810  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9811  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9812  Results.push_back(Result.getValue(2));
9813}
9814
9815/// ReplaceNodeResults - Replace a node with an illegal result type
9816/// with a new node built out of custom code.
9817void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9818                                           SmallVectorImpl<SDValue>&Results,
9819                                           SelectionDAG &DAG) const {
9820  DebugLoc dl = N->getDebugLoc();
9821  switch (N->getOpcode()) {
9822  default:
9823    assert(false && "Do not know how to custom type legalize this operation!");
9824    return;
9825  case ISD::SIGN_EXTEND_INREG:
9826  case ISD::ADDC:
9827  case ISD::ADDE:
9828  case ISD::SUBC:
9829  case ISD::SUBE:
9830    // We don't want to expand or promote these.
9831    return;
9832  case ISD::FP_TO_SINT: {
9833    std::pair<SDValue,SDValue> Vals =
9834        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9835    SDValue FIST = Vals.first, StackSlot = Vals.second;
9836    if (FIST.getNode() != 0) {
9837      EVT VT = N->getValueType(0);
9838      // Return a load from the stack slot.
9839      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9840                                    MachinePointerInfo(), false, false, 0));
9841    }
9842    return;
9843  }
9844  case ISD::READCYCLECOUNTER: {
9845    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9846    SDValue TheChain = N->getOperand(0);
9847    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9848    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9849                                     rd.getValue(1));
9850    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9851                                     eax.getValue(2));
9852    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9853    SDValue Ops[] = { eax, edx };
9854    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9855    Results.push_back(edx.getValue(1));
9856    return;
9857  }
9858  case ISD::ATOMIC_CMP_SWAP: {
9859    EVT T = N->getValueType(0);
9860    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9861    SDValue cpInL, cpInH;
9862    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9863                        DAG.getConstant(0, MVT::i32));
9864    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9865                        DAG.getConstant(1, MVT::i32));
9866    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9867    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9868                             cpInL.getValue(1));
9869    SDValue swapInL, swapInH;
9870    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9871                          DAG.getConstant(0, MVT::i32));
9872    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9873                          DAG.getConstant(1, MVT::i32));
9874    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9875                               cpInH.getValue(1));
9876    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9877                               swapInL.getValue(1));
9878    SDValue Ops[] = { swapInH.getValue(0),
9879                      N->getOperand(1),
9880                      swapInH.getValue(1) };
9881    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9882    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9883    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9884                                             Ops, 3, T, MMO);
9885    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9886                                        MVT::i32, Result.getValue(1));
9887    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9888                                        MVT::i32, cpOutL.getValue(2));
9889    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9890    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9891    Results.push_back(cpOutH.getValue(1));
9892    return;
9893  }
9894  case ISD::ATOMIC_LOAD_ADD:
9895    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9896    return;
9897  case ISD::ATOMIC_LOAD_AND:
9898    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9899    return;
9900  case ISD::ATOMIC_LOAD_NAND:
9901    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9902    return;
9903  case ISD::ATOMIC_LOAD_OR:
9904    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9905    return;
9906  case ISD::ATOMIC_LOAD_SUB:
9907    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9908    return;
9909  case ISD::ATOMIC_LOAD_XOR:
9910    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9911    return;
9912  case ISD::ATOMIC_SWAP:
9913    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9914    return;
9915  }
9916}
9917
9918const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9919  switch (Opcode) {
9920  default: return NULL;
9921  case X86ISD::BSF:                return "X86ISD::BSF";
9922  case X86ISD::BSR:                return "X86ISD::BSR";
9923  case X86ISD::SHLD:               return "X86ISD::SHLD";
9924  case X86ISD::SHRD:               return "X86ISD::SHRD";
9925  case X86ISD::FAND:               return "X86ISD::FAND";
9926  case X86ISD::FOR:                return "X86ISD::FOR";
9927  case X86ISD::FXOR:               return "X86ISD::FXOR";
9928  case X86ISD::FSRL:               return "X86ISD::FSRL";
9929  case X86ISD::FILD:               return "X86ISD::FILD";
9930  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9931  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9932  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9933  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9934  case X86ISD::FLD:                return "X86ISD::FLD";
9935  case X86ISD::FST:                return "X86ISD::FST";
9936  case X86ISD::CALL:               return "X86ISD::CALL";
9937  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9938  case X86ISD::BT:                 return "X86ISD::BT";
9939  case X86ISD::CMP:                return "X86ISD::CMP";
9940  case X86ISD::COMI:               return "X86ISD::COMI";
9941  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9942  case X86ISD::SETCC:              return "X86ISD::SETCC";
9943  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9944  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9945  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9946  case X86ISD::CMOV:               return "X86ISD::CMOV";
9947  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9948  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9949  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9950  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9951  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9952  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9953  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9954  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9955  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9956  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9957  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9958  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9959  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9960  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9961  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9962  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9963  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9964  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9965  case X86ISD::FMAX:               return "X86ISD::FMAX";
9966  case X86ISD::FMIN:               return "X86ISD::FMIN";
9967  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9968  case X86ISD::FRCP:               return "X86ISD::FRCP";
9969  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9970  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9971  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9972  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9973  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9974  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9975  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9976  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9977  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9978  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9979  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9980  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9981  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9982  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9983  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9984  case X86ISD::VSHL:               return "X86ISD::VSHL";
9985  case X86ISD::VSRL:               return "X86ISD::VSRL";
9986  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9987  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9988  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9989  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9990  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9991  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9992  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9993  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9994  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9995  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9996  case X86ISD::ADD:                return "X86ISD::ADD";
9997  case X86ISD::SUB:                return "X86ISD::SUB";
9998  case X86ISD::ADC:                return "X86ISD::ADC";
9999  case X86ISD::SBB:                return "X86ISD::SBB";
10000  case X86ISD::SMUL:               return "X86ISD::SMUL";
10001  case X86ISD::UMUL:               return "X86ISD::UMUL";
10002  case X86ISD::INC:                return "X86ISD::INC";
10003  case X86ISD::DEC:                return "X86ISD::DEC";
10004  case X86ISD::OR:                 return "X86ISD::OR";
10005  case X86ISD::XOR:                return "X86ISD::XOR";
10006  case X86ISD::AND:                return "X86ISD::AND";
10007  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10008  case X86ISD::PTEST:              return "X86ISD::PTEST";
10009  case X86ISD::TESTP:              return "X86ISD::TESTP";
10010  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10011  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10012  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10013  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10014  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10015  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10016  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10017  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10018  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10019  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10020  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10021  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10022  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10023  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10024  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10025  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10026  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10027  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10028  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10029  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10030  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10031  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10032  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10033  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10034  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10035  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10036  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10037  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10038  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10039  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10040  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10041  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10042  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10043  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10044  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10045  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10046  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10047  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10048  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10049  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10050  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10051  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10052  }
10053}
10054
10055// isLegalAddressingMode - Return true if the addressing mode represented
10056// by AM is legal for this target, for a load/store of the specified type.
10057bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10058                                              Type *Ty) const {
10059  // X86 supports extremely general addressing modes.
10060  CodeModel::Model M = getTargetMachine().getCodeModel();
10061  Reloc::Model R = getTargetMachine().getRelocationModel();
10062
10063  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10064  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10065    return false;
10066
10067  if (AM.BaseGV) {
10068    unsigned GVFlags =
10069      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10070
10071    // If a reference to this global requires an extra load, we can't fold it.
10072    if (isGlobalStubReference(GVFlags))
10073      return false;
10074
10075    // If BaseGV requires a register for the PIC base, we cannot also have a
10076    // BaseReg specified.
10077    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10078      return false;
10079
10080    // If lower 4G is not available, then we must use rip-relative addressing.
10081    if ((M != CodeModel::Small || R != Reloc::Static) &&
10082        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10083      return false;
10084  }
10085
10086  switch (AM.Scale) {
10087  case 0:
10088  case 1:
10089  case 2:
10090  case 4:
10091  case 8:
10092    // These scales always work.
10093    break;
10094  case 3:
10095  case 5:
10096  case 9:
10097    // These scales are formed with basereg+scalereg.  Only accept if there is
10098    // no basereg yet.
10099    if (AM.HasBaseReg)
10100      return false;
10101    break;
10102  default:  // Other stuff never works.
10103    return false;
10104  }
10105
10106  return true;
10107}
10108
10109
10110bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10111  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10112    return false;
10113  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10114  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10115  if (NumBits1 <= NumBits2)
10116    return false;
10117  return true;
10118}
10119
10120bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10121  if (!VT1.isInteger() || !VT2.isInteger())
10122    return false;
10123  unsigned NumBits1 = VT1.getSizeInBits();
10124  unsigned NumBits2 = VT2.getSizeInBits();
10125  if (NumBits1 <= NumBits2)
10126    return false;
10127  return true;
10128}
10129
10130bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10131  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10132  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10133}
10134
10135bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10136  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10137  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10138}
10139
10140bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10141  // i16 instructions are longer (0x66 prefix) and potentially slower.
10142  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10143}
10144
10145/// isShuffleMaskLegal - Targets can use this to indicate that they only
10146/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10147/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10148/// are assumed to be legal.
10149bool
10150X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10151                                      EVT VT) const {
10152  // Very little shuffling can be done for 64-bit vectors right now.
10153  if (VT.getSizeInBits() == 64)
10154    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10155
10156  // FIXME: pshufb, blends, shifts.
10157  return (VT.getVectorNumElements() == 2 ||
10158          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10159          isMOVLMask(M, VT) ||
10160          isSHUFPMask(M, VT) ||
10161          isPSHUFDMask(M, VT) ||
10162          isPSHUFHWMask(M, VT) ||
10163          isPSHUFLWMask(M, VT) ||
10164          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10165          isUNPCKLMask(M, VT) ||
10166          isUNPCKHMask(M, VT) ||
10167          isUNPCKL_v_undef_Mask(M, VT) ||
10168          isUNPCKH_v_undef_Mask(M, VT));
10169}
10170
10171bool
10172X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10173                                          EVT VT) const {
10174  unsigned NumElts = VT.getVectorNumElements();
10175  // FIXME: This collection of masks seems suspect.
10176  if (NumElts == 2)
10177    return true;
10178  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10179    return (isMOVLMask(Mask, VT)  ||
10180            isCommutedMOVLMask(Mask, VT, true) ||
10181            isSHUFPMask(Mask, VT) ||
10182            isCommutedSHUFPMask(Mask, VT));
10183  }
10184  return false;
10185}
10186
10187//===----------------------------------------------------------------------===//
10188//                           X86 Scheduler Hooks
10189//===----------------------------------------------------------------------===//
10190
10191// private utility function
10192MachineBasicBlock *
10193X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10194                                                       MachineBasicBlock *MBB,
10195                                                       unsigned regOpc,
10196                                                       unsigned immOpc,
10197                                                       unsigned LoadOpc,
10198                                                       unsigned CXchgOpc,
10199                                                       unsigned notOpc,
10200                                                       unsigned EAXreg,
10201                                                       TargetRegisterClass *RC,
10202                                                       bool invSrc) const {
10203  // For the atomic bitwise operator, we generate
10204  //   thisMBB:
10205  //   newMBB:
10206  //     ld  t1 = [bitinstr.addr]
10207  //     op  t2 = t1, [bitinstr.val]
10208  //     mov EAX = t1
10209  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10210  //     bz  newMBB
10211  //     fallthrough -->nextMBB
10212  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10213  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10214  MachineFunction::iterator MBBIter = MBB;
10215  ++MBBIter;
10216
10217  /// First build the CFG
10218  MachineFunction *F = MBB->getParent();
10219  MachineBasicBlock *thisMBB = MBB;
10220  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10221  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10222  F->insert(MBBIter, newMBB);
10223  F->insert(MBBIter, nextMBB);
10224
10225  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10226  nextMBB->splice(nextMBB->begin(), thisMBB,
10227                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10228                  thisMBB->end());
10229  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10230
10231  // Update thisMBB to fall through to newMBB
10232  thisMBB->addSuccessor(newMBB);
10233
10234  // newMBB jumps to itself and fall through to nextMBB
10235  newMBB->addSuccessor(nextMBB);
10236  newMBB->addSuccessor(newMBB);
10237
10238  // Insert instructions into newMBB based on incoming instruction
10239  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10240         "unexpected number of operands");
10241  DebugLoc dl = bInstr->getDebugLoc();
10242  MachineOperand& destOper = bInstr->getOperand(0);
10243  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10244  int numArgs = bInstr->getNumOperands() - 1;
10245  for (int i=0; i < numArgs; ++i)
10246    argOpers[i] = &bInstr->getOperand(i+1);
10247
10248  // x86 address has 4 operands: base, index, scale, and displacement
10249  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10250  int valArgIndx = lastAddrIndx + 1;
10251
10252  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10253  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10254  for (int i=0; i <= lastAddrIndx; ++i)
10255    (*MIB).addOperand(*argOpers[i]);
10256
10257  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10258  if (invSrc) {
10259    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10260  }
10261  else
10262    tt = t1;
10263
10264  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10265  assert((argOpers[valArgIndx]->isReg() ||
10266          argOpers[valArgIndx]->isImm()) &&
10267         "invalid operand");
10268  if (argOpers[valArgIndx]->isReg())
10269    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10270  else
10271    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10272  MIB.addReg(tt);
10273  (*MIB).addOperand(*argOpers[valArgIndx]);
10274
10275  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10276  MIB.addReg(t1);
10277
10278  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10279  for (int i=0; i <= lastAddrIndx; ++i)
10280    (*MIB).addOperand(*argOpers[i]);
10281  MIB.addReg(t2);
10282  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10283  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10284                    bInstr->memoperands_end());
10285
10286  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10287  MIB.addReg(EAXreg);
10288
10289  // insert branch
10290  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10291
10292  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10293  return nextMBB;
10294}
10295
10296// private utility function:  64 bit atomics on 32 bit host.
10297MachineBasicBlock *
10298X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10299                                                       MachineBasicBlock *MBB,
10300                                                       unsigned regOpcL,
10301                                                       unsigned regOpcH,
10302                                                       unsigned immOpcL,
10303                                                       unsigned immOpcH,
10304                                                       bool invSrc) const {
10305  // For the atomic bitwise operator, we generate
10306  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10307  //     ld t1,t2 = [bitinstr.addr]
10308  //   newMBB:
10309  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10310  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10311  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10312  //     mov ECX, EBX <- t5, t6
10313  //     mov EAX, EDX <- t1, t2
10314  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10315  //     mov t3, t4 <- EAX, EDX
10316  //     bz  newMBB
10317  //     result in out1, out2
10318  //     fallthrough -->nextMBB
10319
10320  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10321  const unsigned LoadOpc = X86::MOV32rm;
10322  const unsigned NotOpc = X86::NOT32r;
10323  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10324  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10325  MachineFunction::iterator MBBIter = MBB;
10326  ++MBBIter;
10327
10328  /// First build the CFG
10329  MachineFunction *F = MBB->getParent();
10330  MachineBasicBlock *thisMBB = MBB;
10331  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10332  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10333  F->insert(MBBIter, newMBB);
10334  F->insert(MBBIter, nextMBB);
10335
10336  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10337  nextMBB->splice(nextMBB->begin(), thisMBB,
10338                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10339                  thisMBB->end());
10340  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10341
10342  // Update thisMBB to fall through to newMBB
10343  thisMBB->addSuccessor(newMBB);
10344
10345  // newMBB jumps to itself and fall through to nextMBB
10346  newMBB->addSuccessor(nextMBB);
10347  newMBB->addSuccessor(newMBB);
10348
10349  DebugLoc dl = bInstr->getDebugLoc();
10350  // Insert instructions into newMBB based on incoming instruction
10351  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10352  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10353         "unexpected number of operands");
10354  MachineOperand& dest1Oper = bInstr->getOperand(0);
10355  MachineOperand& dest2Oper = bInstr->getOperand(1);
10356  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10357  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10358    argOpers[i] = &bInstr->getOperand(i+2);
10359
10360    // We use some of the operands multiple times, so conservatively just
10361    // clear any kill flags that might be present.
10362    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10363      argOpers[i]->setIsKill(false);
10364  }
10365
10366  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10367  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10368
10369  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10370  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10371  for (int i=0; i <= lastAddrIndx; ++i)
10372    (*MIB).addOperand(*argOpers[i]);
10373  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10374  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10375  // add 4 to displacement.
10376  for (int i=0; i <= lastAddrIndx-2; ++i)
10377    (*MIB).addOperand(*argOpers[i]);
10378  MachineOperand newOp3 = *(argOpers[3]);
10379  if (newOp3.isImm())
10380    newOp3.setImm(newOp3.getImm()+4);
10381  else
10382    newOp3.setOffset(newOp3.getOffset()+4);
10383  (*MIB).addOperand(newOp3);
10384  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10385
10386  // t3/4 are defined later, at the bottom of the loop
10387  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10388  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10389  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10390    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10391  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10392    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10393
10394  // The subsequent operations should be using the destination registers of
10395  //the PHI instructions.
10396  if (invSrc) {
10397    t1 = F->getRegInfo().createVirtualRegister(RC);
10398    t2 = F->getRegInfo().createVirtualRegister(RC);
10399    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10400    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10401  } else {
10402    t1 = dest1Oper.getReg();
10403    t2 = dest2Oper.getReg();
10404  }
10405
10406  int valArgIndx = lastAddrIndx + 1;
10407  assert((argOpers[valArgIndx]->isReg() ||
10408          argOpers[valArgIndx]->isImm()) &&
10409         "invalid operand");
10410  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10411  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10412  if (argOpers[valArgIndx]->isReg())
10413    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10414  else
10415    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10416  if (regOpcL != X86::MOV32rr)
10417    MIB.addReg(t1);
10418  (*MIB).addOperand(*argOpers[valArgIndx]);
10419  assert(argOpers[valArgIndx + 1]->isReg() ==
10420         argOpers[valArgIndx]->isReg());
10421  assert(argOpers[valArgIndx + 1]->isImm() ==
10422         argOpers[valArgIndx]->isImm());
10423  if (argOpers[valArgIndx + 1]->isReg())
10424    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10425  else
10426    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10427  if (regOpcH != X86::MOV32rr)
10428    MIB.addReg(t2);
10429  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10430
10431  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10432  MIB.addReg(t1);
10433  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10434  MIB.addReg(t2);
10435
10436  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10437  MIB.addReg(t5);
10438  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10439  MIB.addReg(t6);
10440
10441  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10442  for (int i=0; i <= lastAddrIndx; ++i)
10443    (*MIB).addOperand(*argOpers[i]);
10444
10445  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10446  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10447                    bInstr->memoperands_end());
10448
10449  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10450  MIB.addReg(X86::EAX);
10451  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10452  MIB.addReg(X86::EDX);
10453
10454  // insert branch
10455  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10456
10457  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10458  return nextMBB;
10459}
10460
10461// private utility function
10462MachineBasicBlock *
10463X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10464                                                      MachineBasicBlock *MBB,
10465                                                      unsigned cmovOpc) const {
10466  // For the atomic min/max operator, we generate
10467  //   thisMBB:
10468  //   newMBB:
10469  //     ld t1 = [min/max.addr]
10470  //     mov t2 = [min/max.val]
10471  //     cmp  t1, t2
10472  //     cmov[cond] t2 = t1
10473  //     mov EAX = t1
10474  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10475  //     bz   newMBB
10476  //     fallthrough -->nextMBB
10477  //
10478  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10479  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10480  MachineFunction::iterator MBBIter = MBB;
10481  ++MBBIter;
10482
10483  /// First build the CFG
10484  MachineFunction *F = MBB->getParent();
10485  MachineBasicBlock *thisMBB = MBB;
10486  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10487  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10488  F->insert(MBBIter, newMBB);
10489  F->insert(MBBIter, nextMBB);
10490
10491  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10492  nextMBB->splice(nextMBB->begin(), thisMBB,
10493                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10494                  thisMBB->end());
10495  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10496
10497  // Update thisMBB to fall through to newMBB
10498  thisMBB->addSuccessor(newMBB);
10499
10500  // newMBB jumps to newMBB and fall through to nextMBB
10501  newMBB->addSuccessor(nextMBB);
10502  newMBB->addSuccessor(newMBB);
10503
10504  DebugLoc dl = mInstr->getDebugLoc();
10505  // Insert instructions into newMBB based on incoming instruction
10506  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10507         "unexpected number of operands");
10508  MachineOperand& destOper = mInstr->getOperand(0);
10509  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10510  int numArgs = mInstr->getNumOperands() - 1;
10511  for (int i=0; i < numArgs; ++i)
10512    argOpers[i] = &mInstr->getOperand(i+1);
10513
10514  // x86 address has 4 operands: base, index, scale, and displacement
10515  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10516  int valArgIndx = lastAddrIndx + 1;
10517
10518  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10519  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10520  for (int i=0; i <= lastAddrIndx; ++i)
10521    (*MIB).addOperand(*argOpers[i]);
10522
10523  // We only support register and immediate values
10524  assert((argOpers[valArgIndx]->isReg() ||
10525          argOpers[valArgIndx]->isImm()) &&
10526         "invalid operand");
10527
10528  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10529  if (argOpers[valArgIndx]->isReg())
10530    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10531  else
10532    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10533  (*MIB).addOperand(*argOpers[valArgIndx]);
10534
10535  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10536  MIB.addReg(t1);
10537
10538  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10539  MIB.addReg(t1);
10540  MIB.addReg(t2);
10541
10542  // Generate movc
10543  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10544  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10545  MIB.addReg(t2);
10546  MIB.addReg(t1);
10547
10548  // Cmp and exchange if none has modified the memory location
10549  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10550  for (int i=0; i <= lastAddrIndx; ++i)
10551    (*MIB).addOperand(*argOpers[i]);
10552  MIB.addReg(t3);
10553  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10554  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10555                    mInstr->memoperands_end());
10556
10557  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10558  MIB.addReg(X86::EAX);
10559
10560  // insert branch
10561  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10562
10563  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10564  return nextMBB;
10565}
10566
10567// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10568// or XMM0_V32I8 in AVX all of this code can be replaced with that
10569// in the .td file.
10570MachineBasicBlock *
10571X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10572                            unsigned numArgs, bool memArg) const {
10573  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10574         "Target must have SSE4.2 or AVX features enabled");
10575
10576  DebugLoc dl = MI->getDebugLoc();
10577  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10578  unsigned Opc;
10579  if (!Subtarget->hasAVX()) {
10580    if (memArg)
10581      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10582    else
10583      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10584  } else {
10585    if (memArg)
10586      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10587    else
10588      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10589  }
10590
10591  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10592  for (unsigned i = 0; i < numArgs; ++i) {
10593    MachineOperand &Op = MI->getOperand(i+1);
10594    if (!(Op.isReg() && Op.isImplicit()))
10595      MIB.addOperand(Op);
10596  }
10597  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10598    .addReg(X86::XMM0);
10599
10600  MI->eraseFromParent();
10601  return BB;
10602}
10603
10604MachineBasicBlock *
10605X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10606  DebugLoc dl = MI->getDebugLoc();
10607  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10608
10609  // Address into RAX/EAX, other two args into ECX, EDX.
10610  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10611  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10612  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10613  for (int i = 0; i < X86::AddrNumOperands; ++i)
10614    MIB.addOperand(MI->getOperand(i));
10615
10616  unsigned ValOps = X86::AddrNumOperands;
10617  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10618    .addReg(MI->getOperand(ValOps).getReg());
10619  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10620    .addReg(MI->getOperand(ValOps+1).getReg());
10621
10622  // The instruction doesn't actually take any operands though.
10623  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10624
10625  MI->eraseFromParent(); // The pseudo is gone now.
10626  return BB;
10627}
10628
10629MachineBasicBlock *
10630X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10631  DebugLoc dl = MI->getDebugLoc();
10632  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10633
10634  // First arg in ECX, the second in EAX.
10635  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10636    .addReg(MI->getOperand(0).getReg());
10637  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10638    .addReg(MI->getOperand(1).getReg());
10639
10640  // The instruction doesn't actually take any operands though.
10641  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10642
10643  MI->eraseFromParent(); // The pseudo is gone now.
10644  return BB;
10645}
10646
10647MachineBasicBlock *
10648X86TargetLowering::EmitVAARG64WithCustomInserter(
10649                   MachineInstr *MI,
10650                   MachineBasicBlock *MBB) const {
10651  // Emit va_arg instruction on X86-64.
10652
10653  // Operands to this pseudo-instruction:
10654  // 0  ) Output        : destination address (reg)
10655  // 1-5) Input         : va_list address (addr, i64mem)
10656  // 6  ) ArgSize       : Size (in bytes) of vararg type
10657  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10658  // 8  ) Align         : Alignment of type
10659  // 9  ) EFLAGS (implicit-def)
10660
10661  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10662  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10663
10664  unsigned DestReg = MI->getOperand(0).getReg();
10665  MachineOperand &Base = MI->getOperand(1);
10666  MachineOperand &Scale = MI->getOperand(2);
10667  MachineOperand &Index = MI->getOperand(3);
10668  MachineOperand &Disp = MI->getOperand(4);
10669  MachineOperand &Segment = MI->getOperand(5);
10670  unsigned ArgSize = MI->getOperand(6).getImm();
10671  unsigned ArgMode = MI->getOperand(7).getImm();
10672  unsigned Align = MI->getOperand(8).getImm();
10673
10674  // Memory Reference
10675  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10676  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10677  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10678
10679  // Machine Information
10680  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10681  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10682  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10683  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10684  DebugLoc DL = MI->getDebugLoc();
10685
10686  // struct va_list {
10687  //   i32   gp_offset
10688  //   i32   fp_offset
10689  //   i64   overflow_area (address)
10690  //   i64   reg_save_area (address)
10691  // }
10692  // sizeof(va_list) = 24
10693  // alignment(va_list) = 8
10694
10695  unsigned TotalNumIntRegs = 6;
10696  unsigned TotalNumXMMRegs = 8;
10697  bool UseGPOffset = (ArgMode == 1);
10698  bool UseFPOffset = (ArgMode == 2);
10699  unsigned MaxOffset = TotalNumIntRegs * 8 +
10700                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10701
10702  /* Align ArgSize to a multiple of 8 */
10703  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10704  bool NeedsAlign = (Align > 8);
10705
10706  MachineBasicBlock *thisMBB = MBB;
10707  MachineBasicBlock *overflowMBB;
10708  MachineBasicBlock *offsetMBB;
10709  MachineBasicBlock *endMBB;
10710
10711  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10712  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10713  unsigned OffsetReg = 0;
10714
10715  if (!UseGPOffset && !UseFPOffset) {
10716    // If we only pull from the overflow region, we don't create a branch.
10717    // We don't need to alter control flow.
10718    OffsetDestReg = 0; // unused
10719    OverflowDestReg = DestReg;
10720
10721    offsetMBB = NULL;
10722    overflowMBB = thisMBB;
10723    endMBB = thisMBB;
10724  } else {
10725    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10726    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10727    // If not, pull from overflow_area. (branch to overflowMBB)
10728    //
10729    //       thisMBB
10730    //         |     .
10731    //         |        .
10732    //     offsetMBB   overflowMBB
10733    //         |        .
10734    //         |     .
10735    //        endMBB
10736
10737    // Registers for the PHI in endMBB
10738    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10739    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10740
10741    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10742    MachineFunction *MF = MBB->getParent();
10743    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10744    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10745    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10746
10747    MachineFunction::iterator MBBIter = MBB;
10748    ++MBBIter;
10749
10750    // Insert the new basic blocks
10751    MF->insert(MBBIter, offsetMBB);
10752    MF->insert(MBBIter, overflowMBB);
10753    MF->insert(MBBIter, endMBB);
10754
10755    // Transfer the remainder of MBB and its successor edges to endMBB.
10756    endMBB->splice(endMBB->begin(), thisMBB,
10757                    llvm::next(MachineBasicBlock::iterator(MI)),
10758                    thisMBB->end());
10759    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10760
10761    // Make offsetMBB and overflowMBB successors of thisMBB
10762    thisMBB->addSuccessor(offsetMBB);
10763    thisMBB->addSuccessor(overflowMBB);
10764
10765    // endMBB is a successor of both offsetMBB and overflowMBB
10766    offsetMBB->addSuccessor(endMBB);
10767    overflowMBB->addSuccessor(endMBB);
10768
10769    // Load the offset value into a register
10770    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10771    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10772      .addOperand(Base)
10773      .addOperand(Scale)
10774      .addOperand(Index)
10775      .addDisp(Disp, UseFPOffset ? 4 : 0)
10776      .addOperand(Segment)
10777      .setMemRefs(MMOBegin, MMOEnd);
10778
10779    // Check if there is enough room left to pull this argument.
10780    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10781      .addReg(OffsetReg)
10782      .addImm(MaxOffset + 8 - ArgSizeA8);
10783
10784    // Branch to "overflowMBB" if offset >= max
10785    // Fall through to "offsetMBB" otherwise
10786    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10787      .addMBB(overflowMBB);
10788  }
10789
10790  // In offsetMBB, emit code to use the reg_save_area.
10791  if (offsetMBB) {
10792    assert(OffsetReg != 0);
10793
10794    // Read the reg_save_area address.
10795    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10796    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10797      .addOperand(Base)
10798      .addOperand(Scale)
10799      .addOperand(Index)
10800      .addDisp(Disp, 16)
10801      .addOperand(Segment)
10802      .setMemRefs(MMOBegin, MMOEnd);
10803
10804    // Zero-extend the offset
10805    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10806      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10807        .addImm(0)
10808        .addReg(OffsetReg)
10809        .addImm(X86::sub_32bit);
10810
10811    // Add the offset to the reg_save_area to get the final address.
10812    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10813      .addReg(OffsetReg64)
10814      .addReg(RegSaveReg);
10815
10816    // Compute the offset for the next argument
10817    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10818    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10819      .addReg(OffsetReg)
10820      .addImm(UseFPOffset ? 16 : 8);
10821
10822    // Store it back into the va_list.
10823    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10824      .addOperand(Base)
10825      .addOperand(Scale)
10826      .addOperand(Index)
10827      .addDisp(Disp, UseFPOffset ? 4 : 0)
10828      .addOperand(Segment)
10829      .addReg(NextOffsetReg)
10830      .setMemRefs(MMOBegin, MMOEnd);
10831
10832    // Jump to endMBB
10833    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10834      .addMBB(endMBB);
10835  }
10836
10837  //
10838  // Emit code to use overflow area
10839  //
10840
10841  // Load the overflow_area address into a register.
10842  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10843  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10844    .addOperand(Base)
10845    .addOperand(Scale)
10846    .addOperand(Index)
10847    .addDisp(Disp, 8)
10848    .addOperand(Segment)
10849    .setMemRefs(MMOBegin, MMOEnd);
10850
10851  // If we need to align it, do so. Otherwise, just copy the address
10852  // to OverflowDestReg.
10853  if (NeedsAlign) {
10854    // Align the overflow address
10855    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10856    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10857
10858    // aligned_addr = (addr + (align-1)) & ~(align-1)
10859    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10860      .addReg(OverflowAddrReg)
10861      .addImm(Align-1);
10862
10863    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10864      .addReg(TmpReg)
10865      .addImm(~(uint64_t)(Align-1));
10866  } else {
10867    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10868      .addReg(OverflowAddrReg);
10869  }
10870
10871  // Compute the next overflow address after this argument.
10872  // (the overflow address should be kept 8-byte aligned)
10873  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10874  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10875    .addReg(OverflowDestReg)
10876    .addImm(ArgSizeA8);
10877
10878  // Store the new overflow address.
10879  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10880    .addOperand(Base)
10881    .addOperand(Scale)
10882    .addOperand(Index)
10883    .addDisp(Disp, 8)
10884    .addOperand(Segment)
10885    .addReg(NextAddrReg)
10886    .setMemRefs(MMOBegin, MMOEnd);
10887
10888  // If we branched, emit the PHI to the front of endMBB.
10889  if (offsetMBB) {
10890    BuildMI(*endMBB, endMBB->begin(), DL,
10891            TII->get(X86::PHI), DestReg)
10892      .addReg(OffsetDestReg).addMBB(offsetMBB)
10893      .addReg(OverflowDestReg).addMBB(overflowMBB);
10894  }
10895
10896  // Erase the pseudo instruction
10897  MI->eraseFromParent();
10898
10899  return endMBB;
10900}
10901
10902MachineBasicBlock *
10903X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10904                                                 MachineInstr *MI,
10905                                                 MachineBasicBlock *MBB) const {
10906  // Emit code to save XMM registers to the stack. The ABI says that the
10907  // number of registers to save is given in %al, so it's theoretically
10908  // possible to do an indirect jump trick to avoid saving all of them,
10909  // however this code takes a simpler approach and just executes all
10910  // of the stores if %al is non-zero. It's less code, and it's probably
10911  // easier on the hardware branch predictor, and stores aren't all that
10912  // expensive anyway.
10913
10914  // Create the new basic blocks. One block contains all the XMM stores,
10915  // and one block is the final destination regardless of whether any
10916  // stores were performed.
10917  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10918  MachineFunction *F = MBB->getParent();
10919  MachineFunction::iterator MBBIter = MBB;
10920  ++MBBIter;
10921  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10922  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10923  F->insert(MBBIter, XMMSaveMBB);
10924  F->insert(MBBIter, EndMBB);
10925
10926  // Transfer the remainder of MBB and its successor edges to EndMBB.
10927  EndMBB->splice(EndMBB->begin(), MBB,
10928                 llvm::next(MachineBasicBlock::iterator(MI)),
10929                 MBB->end());
10930  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10931
10932  // The original block will now fall through to the XMM save block.
10933  MBB->addSuccessor(XMMSaveMBB);
10934  // The XMMSaveMBB will fall through to the end block.
10935  XMMSaveMBB->addSuccessor(EndMBB);
10936
10937  // Now add the instructions.
10938  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10939  DebugLoc DL = MI->getDebugLoc();
10940
10941  unsigned CountReg = MI->getOperand(0).getReg();
10942  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10943  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10944
10945  if (!Subtarget->isTargetWin64()) {
10946    // If %al is 0, branch around the XMM save block.
10947    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10948    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10949    MBB->addSuccessor(EndMBB);
10950  }
10951
10952  // In the XMM save block, save all the XMM argument registers.
10953  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10954    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10955    MachineMemOperand *MMO =
10956      F->getMachineMemOperand(
10957          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10958        MachineMemOperand::MOStore,
10959        /*Size=*/16, /*Align=*/16);
10960    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10961      .addFrameIndex(RegSaveFrameIndex)
10962      .addImm(/*Scale=*/1)
10963      .addReg(/*IndexReg=*/0)
10964      .addImm(/*Disp=*/Offset)
10965      .addReg(/*Segment=*/0)
10966      .addReg(MI->getOperand(i).getReg())
10967      .addMemOperand(MMO);
10968  }
10969
10970  MI->eraseFromParent();   // The pseudo instruction is gone now.
10971
10972  return EndMBB;
10973}
10974
10975MachineBasicBlock *
10976X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10977                                     MachineBasicBlock *BB) const {
10978  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10979  DebugLoc DL = MI->getDebugLoc();
10980
10981  // To "insert" a SELECT_CC instruction, we actually have to insert the
10982  // diamond control-flow pattern.  The incoming instruction knows the
10983  // destination vreg to set, the condition code register to branch on, the
10984  // true/false values to select between, and a branch opcode to use.
10985  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10986  MachineFunction::iterator It = BB;
10987  ++It;
10988
10989  //  thisMBB:
10990  //  ...
10991  //   TrueVal = ...
10992  //   cmpTY ccX, r1, r2
10993  //   bCC copy1MBB
10994  //   fallthrough --> copy0MBB
10995  MachineBasicBlock *thisMBB = BB;
10996  MachineFunction *F = BB->getParent();
10997  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10998  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10999  F->insert(It, copy0MBB);
11000  F->insert(It, sinkMBB);
11001
11002  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11003  // live into the sink and copy blocks.
11004  const MachineFunction *MF = BB->getParent();
11005  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
11006  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
11007
11008  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
11009    const MachineOperand &MO = MI->getOperand(I);
11010    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
11011    unsigned Reg = MO.getReg();
11012    if (Reg != X86::EFLAGS) continue;
11013    copy0MBB->addLiveIn(Reg);
11014    sinkMBB->addLiveIn(Reg);
11015  }
11016
11017  // Transfer the remainder of BB and its successor edges to sinkMBB.
11018  sinkMBB->splice(sinkMBB->begin(), BB,
11019                  llvm::next(MachineBasicBlock::iterator(MI)),
11020                  BB->end());
11021  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11022
11023  // Add the true and fallthrough blocks as its successors.
11024  BB->addSuccessor(copy0MBB);
11025  BB->addSuccessor(sinkMBB);
11026
11027  // Create the conditional branch instruction.
11028  unsigned Opc =
11029    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11030  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11031
11032  //  copy0MBB:
11033  //   %FalseValue = ...
11034  //   # fallthrough to sinkMBB
11035  copy0MBB->addSuccessor(sinkMBB);
11036
11037  //  sinkMBB:
11038  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11039  //  ...
11040  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11041          TII->get(X86::PHI), MI->getOperand(0).getReg())
11042    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11043    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11044
11045  MI->eraseFromParent();   // The pseudo instruction is gone now.
11046  return sinkMBB;
11047}
11048
11049MachineBasicBlock *
11050X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11051                                          MachineBasicBlock *BB) const {
11052  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11053  DebugLoc DL = MI->getDebugLoc();
11054
11055  assert(!Subtarget->isTargetEnvMacho());
11056
11057  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11058  // non-trivial part is impdef of ESP.
11059
11060  if (Subtarget->isTargetWin64()) {
11061    if (Subtarget->isTargetCygMing()) {
11062      // ___chkstk(Mingw64):
11063      // Clobbers R10, R11, RAX and EFLAGS.
11064      // Updates RSP.
11065      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11066        .addExternalSymbol("___chkstk")
11067        .addReg(X86::RAX, RegState::Implicit)
11068        .addReg(X86::RSP, RegState::Implicit)
11069        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11070        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11071        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11072    } else {
11073      // __chkstk(MSVCRT): does not update stack pointer.
11074      // Clobbers R10, R11 and EFLAGS.
11075      // FIXME: RAX(allocated size) might be reused and not killed.
11076      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11077        .addExternalSymbol("__chkstk")
11078        .addReg(X86::RAX, RegState::Implicit)
11079        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11080      // RAX has the offset to subtracted from RSP.
11081      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11082        .addReg(X86::RSP)
11083        .addReg(X86::RAX);
11084    }
11085  } else {
11086    const char *StackProbeSymbol =
11087      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11088
11089    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11090      .addExternalSymbol(StackProbeSymbol)
11091      .addReg(X86::EAX, RegState::Implicit)
11092      .addReg(X86::ESP, RegState::Implicit)
11093      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11094      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11095      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11096  }
11097
11098  MI->eraseFromParent();   // The pseudo instruction is gone now.
11099  return BB;
11100}
11101
11102MachineBasicBlock *
11103X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11104                                      MachineBasicBlock *BB) const {
11105  // This is pretty easy.  We're taking the value that we received from
11106  // our load from the relocation, sticking it in either RDI (x86-64)
11107  // or EAX and doing an indirect call.  The return value will then
11108  // be in the normal return register.
11109  const X86InstrInfo *TII
11110    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11111  DebugLoc DL = MI->getDebugLoc();
11112  MachineFunction *F = BB->getParent();
11113
11114  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11115  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11116
11117  if (Subtarget->is64Bit()) {
11118    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11119                                      TII->get(X86::MOV64rm), X86::RDI)
11120    .addReg(X86::RIP)
11121    .addImm(0).addReg(0)
11122    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11123                      MI->getOperand(3).getTargetFlags())
11124    .addReg(0);
11125    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11126    addDirectMem(MIB, X86::RDI);
11127  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11128    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11129                                      TII->get(X86::MOV32rm), X86::EAX)
11130    .addReg(0)
11131    .addImm(0).addReg(0)
11132    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11133                      MI->getOperand(3).getTargetFlags())
11134    .addReg(0);
11135    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11136    addDirectMem(MIB, X86::EAX);
11137  } else {
11138    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11139                                      TII->get(X86::MOV32rm), X86::EAX)
11140    .addReg(TII->getGlobalBaseReg(F))
11141    .addImm(0).addReg(0)
11142    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11143                      MI->getOperand(3).getTargetFlags())
11144    .addReg(0);
11145    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11146    addDirectMem(MIB, X86::EAX);
11147  }
11148
11149  MI->eraseFromParent(); // The pseudo instruction is gone now.
11150  return BB;
11151}
11152
11153MachineBasicBlock *
11154X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11155                                               MachineBasicBlock *BB) const {
11156  switch (MI->getOpcode()) {
11157  default: assert(false && "Unexpected instr type to insert");
11158  case X86::TAILJMPd64:
11159  case X86::TAILJMPr64:
11160  case X86::TAILJMPm64:
11161    assert(!"TAILJMP64 would not be touched here.");
11162  case X86::TCRETURNdi64:
11163  case X86::TCRETURNri64:
11164  case X86::TCRETURNmi64:
11165    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11166    // On AMD64, additional defs should be added before register allocation.
11167    if (!Subtarget->isTargetWin64()) {
11168      MI->addRegisterDefined(X86::RSI);
11169      MI->addRegisterDefined(X86::RDI);
11170      MI->addRegisterDefined(X86::XMM6);
11171      MI->addRegisterDefined(X86::XMM7);
11172      MI->addRegisterDefined(X86::XMM8);
11173      MI->addRegisterDefined(X86::XMM9);
11174      MI->addRegisterDefined(X86::XMM10);
11175      MI->addRegisterDefined(X86::XMM11);
11176      MI->addRegisterDefined(X86::XMM12);
11177      MI->addRegisterDefined(X86::XMM13);
11178      MI->addRegisterDefined(X86::XMM14);
11179      MI->addRegisterDefined(X86::XMM15);
11180    }
11181    return BB;
11182  case X86::WIN_ALLOCA:
11183    return EmitLoweredWinAlloca(MI, BB);
11184  case X86::TLSCall_32:
11185  case X86::TLSCall_64:
11186    return EmitLoweredTLSCall(MI, BB);
11187  case X86::CMOV_GR8:
11188  case X86::CMOV_FR32:
11189  case X86::CMOV_FR64:
11190  case X86::CMOV_V4F32:
11191  case X86::CMOV_V2F64:
11192  case X86::CMOV_V2I64:
11193  case X86::CMOV_V8F32:
11194  case X86::CMOV_V4F64:
11195  case X86::CMOV_V4I64:
11196  case X86::CMOV_GR16:
11197  case X86::CMOV_GR32:
11198  case X86::CMOV_RFP32:
11199  case X86::CMOV_RFP64:
11200  case X86::CMOV_RFP80:
11201    return EmitLoweredSelect(MI, BB);
11202
11203  case X86::FP32_TO_INT16_IN_MEM:
11204  case X86::FP32_TO_INT32_IN_MEM:
11205  case X86::FP32_TO_INT64_IN_MEM:
11206  case X86::FP64_TO_INT16_IN_MEM:
11207  case X86::FP64_TO_INT32_IN_MEM:
11208  case X86::FP64_TO_INT64_IN_MEM:
11209  case X86::FP80_TO_INT16_IN_MEM:
11210  case X86::FP80_TO_INT32_IN_MEM:
11211  case X86::FP80_TO_INT64_IN_MEM: {
11212    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11213    DebugLoc DL = MI->getDebugLoc();
11214
11215    // Change the floating point control register to use "round towards zero"
11216    // mode when truncating to an integer value.
11217    MachineFunction *F = BB->getParent();
11218    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11219    addFrameReference(BuildMI(*BB, MI, DL,
11220                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11221
11222    // Load the old value of the high byte of the control word...
11223    unsigned OldCW =
11224      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11225    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11226                      CWFrameIdx);
11227
11228    // Set the high part to be round to zero...
11229    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11230      .addImm(0xC7F);
11231
11232    // Reload the modified control word now...
11233    addFrameReference(BuildMI(*BB, MI, DL,
11234                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11235
11236    // Restore the memory image of control word to original value
11237    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11238      .addReg(OldCW);
11239
11240    // Get the X86 opcode to use.
11241    unsigned Opc;
11242    switch (MI->getOpcode()) {
11243    default: llvm_unreachable("illegal opcode!");
11244    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11245    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11246    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11247    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11248    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11249    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11250    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11251    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11252    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11253    }
11254
11255    X86AddressMode AM;
11256    MachineOperand &Op = MI->getOperand(0);
11257    if (Op.isReg()) {
11258      AM.BaseType = X86AddressMode::RegBase;
11259      AM.Base.Reg = Op.getReg();
11260    } else {
11261      AM.BaseType = X86AddressMode::FrameIndexBase;
11262      AM.Base.FrameIndex = Op.getIndex();
11263    }
11264    Op = MI->getOperand(1);
11265    if (Op.isImm())
11266      AM.Scale = Op.getImm();
11267    Op = MI->getOperand(2);
11268    if (Op.isImm())
11269      AM.IndexReg = Op.getImm();
11270    Op = MI->getOperand(3);
11271    if (Op.isGlobal()) {
11272      AM.GV = Op.getGlobal();
11273    } else {
11274      AM.Disp = Op.getImm();
11275    }
11276    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11277                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11278
11279    // Reload the original control word now.
11280    addFrameReference(BuildMI(*BB, MI, DL,
11281                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11282
11283    MI->eraseFromParent();   // The pseudo instruction is gone now.
11284    return BB;
11285  }
11286    // String/text processing lowering.
11287  case X86::PCMPISTRM128REG:
11288  case X86::VPCMPISTRM128REG:
11289    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11290  case X86::PCMPISTRM128MEM:
11291  case X86::VPCMPISTRM128MEM:
11292    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11293  case X86::PCMPESTRM128REG:
11294  case X86::VPCMPESTRM128REG:
11295    return EmitPCMP(MI, BB, 5, false /* in mem */);
11296  case X86::PCMPESTRM128MEM:
11297  case X86::VPCMPESTRM128MEM:
11298    return EmitPCMP(MI, BB, 5, true /* in mem */);
11299
11300    // Thread synchronization.
11301  case X86::MONITOR:
11302    return EmitMonitor(MI, BB);
11303  case X86::MWAIT:
11304    return EmitMwait(MI, BB);
11305
11306    // Atomic Lowering.
11307  case X86::ATOMAND32:
11308    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11309                                               X86::AND32ri, X86::MOV32rm,
11310                                               X86::LCMPXCHG32,
11311                                               X86::NOT32r, X86::EAX,
11312                                               X86::GR32RegisterClass);
11313  case X86::ATOMOR32:
11314    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11315                                               X86::OR32ri, X86::MOV32rm,
11316                                               X86::LCMPXCHG32,
11317                                               X86::NOT32r, X86::EAX,
11318                                               X86::GR32RegisterClass);
11319  case X86::ATOMXOR32:
11320    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11321                                               X86::XOR32ri, X86::MOV32rm,
11322                                               X86::LCMPXCHG32,
11323                                               X86::NOT32r, X86::EAX,
11324                                               X86::GR32RegisterClass);
11325  case X86::ATOMNAND32:
11326    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11327                                               X86::AND32ri, X86::MOV32rm,
11328                                               X86::LCMPXCHG32,
11329                                               X86::NOT32r, X86::EAX,
11330                                               X86::GR32RegisterClass, true);
11331  case X86::ATOMMIN32:
11332    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11333  case X86::ATOMMAX32:
11334    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11335  case X86::ATOMUMIN32:
11336    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11337  case X86::ATOMUMAX32:
11338    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11339
11340  case X86::ATOMAND16:
11341    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11342                                               X86::AND16ri, X86::MOV16rm,
11343                                               X86::LCMPXCHG16,
11344                                               X86::NOT16r, X86::AX,
11345                                               X86::GR16RegisterClass);
11346  case X86::ATOMOR16:
11347    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11348                                               X86::OR16ri, X86::MOV16rm,
11349                                               X86::LCMPXCHG16,
11350                                               X86::NOT16r, X86::AX,
11351                                               X86::GR16RegisterClass);
11352  case X86::ATOMXOR16:
11353    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11354                                               X86::XOR16ri, X86::MOV16rm,
11355                                               X86::LCMPXCHG16,
11356                                               X86::NOT16r, X86::AX,
11357                                               X86::GR16RegisterClass);
11358  case X86::ATOMNAND16:
11359    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11360                                               X86::AND16ri, X86::MOV16rm,
11361                                               X86::LCMPXCHG16,
11362                                               X86::NOT16r, X86::AX,
11363                                               X86::GR16RegisterClass, true);
11364  case X86::ATOMMIN16:
11365    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11366  case X86::ATOMMAX16:
11367    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11368  case X86::ATOMUMIN16:
11369    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11370  case X86::ATOMUMAX16:
11371    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11372
11373  case X86::ATOMAND8:
11374    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11375                                               X86::AND8ri, X86::MOV8rm,
11376                                               X86::LCMPXCHG8,
11377                                               X86::NOT8r, X86::AL,
11378                                               X86::GR8RegisterClass);
11379  case X86::ATOMOR8:
11380    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11381                                               X86::OR8ri, X86::MOV8rm,
11382                                               X86::LCMPXCHG8,
11383                                               X86::NOT8r, X86::AL,
11384                                               X86::GR8RegisterClass);
11385  case X86::ATOMXOR8:
11386    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11387                                               X86::XOR8ri, X86::MOV8rm,
11388                                               X86::LCMPXCHG8,
11389                                               X86::NOT8r, X86::AL,
11390                                               X86::GR8RegisterClass);
11391  case X86::ATOMNAND8:
11392    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11393                                               X86::AND8ri, X86::MOV8rm,
11394                                               X86::LCMPXCHG8,
11395                                               X86::NOT8r, X86::AL,
11396                                               X86::GR8RegisterClass, true);
11397  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11398  // This group is for 64-bit host.
11399  case X86::ATOMAND64:
11400    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11401                                               X86::AND64ri32, X86::MOV64rm,
11402                                               X86::LCMPXCHG64,
11403                                               X86::NOT64r, X86::RAX,
11404                                               X86::GR64RegisterClass);
11405  case X86::ATOMOR64:
11406    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11407                                               X86::OR64ri32, X86::MOV64rm,
11408                                               X86::LCMPXCHG64,
11409                                               X86::NOT64r, X86::RAX,
11410                                               X86::GR64RegisterClass);
11411  case X86::ATOMXOR64:
11412    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11413                                               X86::XOR64ri32, X86::MOV64rm,
11414                                               X86::LCMPXCHG64,
11415                                               X86::NOT64r, X86::RAX,
11416                                               X86::GR64RegisterClass);
11417  case X86::ATOMNAND64:
11418    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11419                                               X86::AND64ri32, X86::MOV64rm,
11420                                               X86::LCMPXCHG64,
11421                                               X86::NOT64r, X86::RAX,
11422                                               X86::GR64RegisterClass, true);
11423  case X86::ATOMMIN64:
11424    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11425  case X86::ATOMMAX64:
11426    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11427  case X86::ATOMUMIN64:
11428    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11429  case X86::ATOMUMAX64:
11430    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11431
11432  // This group does 64-bit operations on a 32-bit host.
11433  case X86::ATOMAND6432:
11434    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11435                                               X86::AND32rr, X86::AND32rr,
11436                                               X86::AND32ri, X86::AND32ri,
11437                                               false);
11438  case X86::ATOMOR6432:
11439    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11440                                               X86::OR32rr, X86::OR32rr,
11441                                               X86::OR32ri, X86::OR32ri,
11442                                               false);
11443  case X86::ATOMXOR6432:
11444    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11445                                               X86::XOR32rr, X86::XOR32rr,
11446                                               X86::XOR32ri, X86::XOR32ri,
11447                                               false);
11448  case X86::ATOMNAND6432:
11449    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11450                                               X86::AND32rr, X86::AND32rr,
11451                                               X86::AND32ri, X86::AND32ri,
11452                                               true);
11453  case X86::ATOMADD6432:
11454    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11455                                               X86::ADD32rr, X86::ADC32rr,
11456                                               X86::ADD32ri, X86::ADC32ri,
11457                                               false);
11458  case X86::ATOMSUB6432:
11459    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11460                                               X86::SUB32rr, X86::SBB32rr,
11461                                               X86::SUB32ri, X86::SBB32ri,
11462                                               false);
11463  case X86::ATOMSWAP6432:
11464    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11465                                               X86::MOV32rr, X86::MOV32rr,
11466                                               X86::MOV32ri, X86::MOV32ri,
11467                                               false);
11468  case X86::VASTART_SAVE_XMM_REGS:
11469    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11470
11471  case X86::VAARG_64:
11472    return EmitVAARG64WithCustomInserter(MI, BB);
11473  }
11474}
11475
11476//===----------------------------------------------------------------------===//
11477//                           X86 Optimization Hooks
11478//===----------------------------------------------------------------------===//
11479
11480void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11481                                                       const APInt &Mask,
11482                                                       APInt &KnownZero,
11483                                                       APInt &KnownOne,
11484                                                       const SelectionDAG &DAG,
11485                                                       unsigned Depth) const {
11486  unsigned Opc = Op.getOpcode();
11487  assert((Opc >= ISD::BUILTIN_OP_END ||
11488          Opc == ISD::INTRINSIC_WO_CHAIN ||
11489          Opc == ISD::INTRINSIC_W_CHAIN ||
11490          Opc == ISD::INTRINSIC_VOID) &&
11491         "Should use MaskedValueIsZero if you don't know whether Op"
11492         " is a target node!");
11493
11494  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11495  switch (Opc) {
11496  default: break;
11497  case X86ISD::ADD:
11498  case X86ISD::SUB:
11499  case X86ISD::ADC:
11500  case X86ISD::SBB:
11501  case X86ISD::SMUL:
11502  case X86ISD::UMUL:
11503  case X86ISD::INC:
11504  case X86ISD::DEC:
11505  case X86ISD::OR:
11506  case X86ISD::XOR:
11507  case X86ISD::AND:
11508    // These nodes' second result is a boolean.
11509    if (Op.getResNo() == 0)
11510      break;
11511    // Fallthrough
11512  case X86ISD::SETCC:
11513    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11514                                       Mask.getBitWidth() - 1);
11515    break;
11516  }
11517}
11518
11519unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11520                                                         unsigned Depth) const {
11521  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11522  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11523    return Op.getValueType().getScalarType().getSizeInBits();
11524
11525  // Fallback case.
11526  return 1;
11527}
11528
11529/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11530/// node is a GlobalAddress + offset.
11531bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11532                                       const GlobalValue* &GA,
11533                                       int64_t &Offset) const {
11534  if (N->getOpcode() == X86ISD::Wrapper) {
11535    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11536      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11537      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11538      return true;
11539    }
11540  }
11541  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11542}
11543
11544/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11545static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11546                                        TargetLowering::DAGCombinerInfo &DCI) {
11547  DebugLoc dl = N->getDebugLoc();
11548  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11549  SDValue V1 = SVOp->getOperand(0);
11550  SDValue V2 = SVOp->getOperand(1);
11551  EVT VT = SVOp->getValueType(0);
11552
11553  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11554      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11555    //
11556    //                   0,0,0,...
11557    //                      |
11558    //    V      UNDEF    BUILD_VECTOR    UNDEF
11559    //     \      /           \           /
11560    //  CONCAT_VECTOR         CONCAT_VECTOR
11561    //         \                  /
11562    //          \                /
11563    //          RESULT: V + zero extended
11564    //
11565    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11566        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11567        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11568      return SDValue();
11569
11570    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11571      return SDValue();
11572
11573    // To match the shuffle mask, the first half of the mask should
11574    // be exactly the first vector, and all the rest a splat with the
11575    // first element of the second one.
11576    int NumElems = VT.getVectorNumElements();
11577    for (int i = 0; i < NumElems/2; ++i)
11578      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11579          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11580        return SDValue();
11581
11582    // Emit a zeroed vector and insert the desired subvector on its
11583    // first half.
11584    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11585    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11586                         DAG.getConstant(0, MVT::i32), DAG, dl);
11587    return DCI.CombineTo(N, InsV);
11588  }
11589
11590  return SDValue();
11591}
11592
11593/// PerformShuffleCombine - Performs several different shuffle combines.
11594static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11595                                     TargetLowering::DAGCombinerInfo &DCI) {
11596  DebugLoc dl = N->getDebugLoc();
11597  EVT VT = N->getValueType(0);
11598
11599  // Don't create instructions with illegal types after legalize types has run.
11600  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11601  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11602    return SDValue();
11603
11604  // Only handle pure VECTOR_SHUFFLE nodes.
11605  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11606    return PerformShuffleCombine256(N, DAG, DCI);
11607
11608  // Only handle 128 wide vector from here on.
11609  if (VT.getSizeInBits() != 128)
11610    return SDValue();
11611
11612  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11613  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11614  // consecutive, non-overlapping, and in the right order.
11615  SmallVector<SDValue, 16> Elts;
11616  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11617    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11618
11619  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11620}
11621
11622/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11623/// generation and convert it from being a bunch of shuffles and extracts
11624/// to a simple store and scalar loads to extract the elements.
11625static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11626                                                const TargetLowering &TLI) {
11627  SDValue InputVector = N->getOperand(0);
11628
11629  // Only operate on vectors of 4 elements, where the alternative shuffling
11630  // gets to be more expensive.
11631  if (InputVector.getValueType() != MVT::v4i32)
11632    return SDValue();
11633
11634  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11635  // single use which is a sign-extend or zero-extend, and all elements are
11636  // used.
11637  SmallVector<SDNode *, 4> Uses;
11638  unsigned ExtractedElements = 0;
11639  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11640       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11641    if (UI.getUse().getResNo() != InputVector.getResNo())
11642      return SDValue();
11643
11644    SDNode *Extract = *UI;
11645    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11646      return SDValue();
11647
11648    if (Extract->getValueType(0) != MVT::i32)
11649      return SDValue();
11650    if (!Extract->hasOneUse())
11651      return SDValue();
11652    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11653        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11654      return SDValue();
11655    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11656      return SDValue();
11657
11658    // Record which element was extracted.
11659    ExtractedElements |=
11660      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11661
11662    Uses.push_back(Extract);
11663  }
11664
11665  // If not all the elements were used, this may not be worthwhile.
11666  if (ExtractedElements != 15)
11667    return SDValue();
11668
11669  // Ok, we've now decided to do the transformation.
11670  DebugLoc dl = InputVector.getDebugLoc();
11671
11672  // Store the value to a temporary stack slot.
11673  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11674  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11675                            MachinePointerInfo(), false, false, 0);
11676
11677  // Replace each use (extract) with a load of the appropriate element.
11678  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11679       UE = Uses.end(); UI != UE; ++UI) {
11680    SDNode *Extract = *UI;
11681
11682    // cOMpute the element's address.
11683    SDValue Idx = Extract->getOperand(1);
11684    unsigned EltSize =
11685        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11686    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11687    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11688
11689    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11690                                     StackPtr, OffsetVal);
11691
11692    // Load the scalar.
11693    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11694                                     ScalarAddr, MachinePointerInfo(),
11695                                     false, false, 0);
11696
11697    // Replace the exact with the load.
11698    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11699  }
11700
11701  // The replacement was made in place; don't return anything.
11702  return SDValue();
11703}
11704
11705/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11706static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11707                                    const X86Subtarget *Subtarget) {
11708  DebugLoc DL = N->getDebugLoc();
11709  SDValue Cond = N->getOperand(0);
11710  // Get the LHS/RHS of the select.
11711  SDValue LHS = N->getOperand(1);
11712  SDValue RHS = N->getOperand(2);
11713
11714  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11715  // instructions match the semantics of the common C idiom x<y?x:y but not
11716  // x<=y?x:y, because of how they handle negative zero (which can be
11717  // ignored in unsafe-math mode).
11718  if (Subtarget->hasSSE2() &&
11719      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11720      Cond.getOpcode() == ISD::SETCC) {
11721    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11722
11723    unsigned Opcode = 0;
11724    // Check for x CC y ? x : y.
11725    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11726        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11727      switch (CC) {
11728      default: break;
11729      case ISD::SETULT:
11730        // Converting this to a min would handle NaNs incorrectly, and swapping
11731        // the operands would cause it to handle comparisons between positive
11732        // and negative zero incorrectly.
11733        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11734          if (!UnsafeFPMath &&
11735              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11736            break;
11737          std::swap(LHS, RHS);
11738        }
11739        Opcode = X86ISD::FMIN;
11740        break;
11741      case ISD::SETOLE:
11742        // Converting this to a min would handle comparisons between positive
11743        // and negative zero incorrectly.
11744        if (!UnsafeFPMath &&
11745            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11746          break;
11747        Opcode = X86ISD::FMIN;
11748        break;
11749      case ISD::SETULE:
11750        // Converting this to a min would handle both negative zeros and NaNs
11751        // incorrectly, but we can swap the operands to fix both.
11752        std::swap(LHS, RHS);
11753      case ISD::SETOLT:
11754      case ISD::SETLT:
11755      case ISD::SETLE:
11756        Opcode = X86ISD::FMIN;
11757        break;
11758
11759      case ISD::SETOGE:
11760        // Converting this to a max would handle comparisons between positive
11761        // and negative zero incorrectly.
11762        if (!UnsafeFPMath &&
11763            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11764          break;
11765        Opcode = X86ISD::FMAX;
11766        break;
11767      case ISD::SETUGT:
11768        // Converting this to a max would handle NaNs incorrectly, and swapping
11769        // the operands would cause it to handle comparisons between positive
11770        // and negative zero incorrectly.
11771        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11772          if (!UnsafeFPMath &&
11773              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11774            break;
11775          std::swap(LHS, RHS);
11776        }
11777        Opcode = X86ISD::FMAX;
11778        break;
11779      case ISD::SETUGE:
11780        // Converting this to a max would handle both negative zeros and NaNs
11781        // incorrectly, but we can swap the operands to fix both.
11782        std::swap(LHS, RHS);
11783      case ISD::SETOGT:
11784      case ISD::SETGT:
11785      case ISD::SETGE:
11786        Opcode = X86ISD::FMAX;
11787        break;
11788      }
11789    // Check for x CC y ? y : x -- a min/max with reversed arms.
11790    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11791               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11792      switch (CC) {
11793      default: break;
11794      case ISD::SETOGE:
11795        // Converting this to a min would handle comparisons between positive
11796        // and negative zero incorrectly, and swapping the operands would
11797        // cause it to handle NaNs incorrectly.
11798        if (!UnsafeFPMath &&
11799            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11800          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11801            break;
11802          std::swap(LHS, RHS);
11803        }
11804        Opcode = X86ISD::FMIN;
11805        break;
11806      case ISD::SETUGT:
11807        // Converting this to a min would handle NaNs incorrectly.
11808        if (!UnsafeFPMath &&
11809            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11810          break;
11811        Opcode = X86ISD::FMIN;
11812        break;
11813      case ISD::SETUGE:
11814        // Converting this to a min would handle both negative zeros and NaNs
11815        // incorrectly, but we can swap the operands to fix both.
11816        std::swap(LHS, RHS);
11817      case ISD::SETOGT:
11818      case ISD::SETGT:
11819      case ISD::SETGE:
11820        Opcode = X86ISD::FMIN;
11821        break;
11822
11823      case ISD::SETULT:
11824        // Converting this to a max would handle NaNs incorrectly.
11825        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11826          break;
11827        Opcode = X86ISD::FMAX;
11828        break;
11829      case ISD::SETOLE:
11830        // Converting this to a max would handle comparisons between positive
11831        // and negative zero incorrectly, and swapping the operands would
11832        // cause it to handle NaNs incorrectly.
11833        if (!UnsafeFPMath &&
11834            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11835          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11836            break;
11837          std::swap(LHS, RHS);
11838        }
11839        Opcode = X86ISD::FMAX;
11840        break;
11841      case ISD::SETULE:
11842        // Converting this to a max would handle both negative zeros and NaNs
11843        // incorrectly, but we can swap the operands to fix both.
11844        std::swap(LHS, RHS);
11845      case ISD::SETOLT:
11846      case ISD::SETLT:
11847      case ISD::SETLE:
11848        Opcode = X86ISD::FMAX;
11849        break;
11850      }
11851    }
11852
11853    if (Opcode)
11854      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11855  }
11856
11857  // If this is a select between two integer constants, try to do some
11858  // optimizations.
11859  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11860    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11861      // Don't do this for crazy integer types.
11862      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11863        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11864        // so that TrueC (the true value) is larger than FalseC.
11865        bool NeedsCondInvert = false;
11866
11867        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11868            // Efficiently invertible.
11869            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11870             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11871              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11872          NeedsCondInvert = true;
11873          std::swap(TrueC, FalseC);
11874        }
11875
11876        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11877        if (FalseC->getAPIntValue() == 0 &&
11878            TrueC->getAPIntValue().isPowerOf2()) {
11879          if (NeedsCondInvert) // Invert the condition if needed.
11880            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11881                               DAG.getConstant(1, Cond.getValueType()));
11882
11883          // Zero extend the condition if needed.
11884          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11885
11886          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11887          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11888                             DAG.getConstant(ShAmt, MVT::i8));
11889        }
11890
11891        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11892        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11893          if (NeedsCondInvert) // Invert the condition if needed.
11894            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11895                               DAG.getConstant(1, Cond.getValueType()));
11896
11897          // Zero extend the condition if needed.
11898          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11899                             FalseC->getValueType(0), Cond);
11900          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11901                             SDValue(FalseC, 0));
11902        }
11903
11904        // Optimize cases that will turn into an LEA instruction.  This requires
11905        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11906        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11907          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11908          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11909
11910          bool isFastMultiplier = false;
11911          if (Diff < 10) {
11912            switch ((unsigned char)Diff) {
11913              default: break;
11914              case 1:  // result = add base, cond
11915              case 2:  // result = lea base(    , cond*2)
11916              case 3:  // result = lea base(cond, cond*2)
11917              case 4:  // result = lea base(    , cond*4)
11918              case 5:  // result = lea base(cond, cond*4)
11919              case 8:  // result = lea base(    , cond*8)
11920              case 9:  // result = lea base(cond, cond*8)
11921                isFastMultiplier = true;
11922                break;
11923            }
11924          }
11925
11926          if (isFastMultiplier) {
11927            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11928            if (NeedsCondInvert) // Invert the condition if needed.
11929              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11930                                 DAG.getConstant(1, Cond.getValueType()));
11931
11932            // Zero extend the condition if needed.
11933            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11934                               Cond);
11935            // Scale the condition by the difference.
11936            if (Diff != 1)
11937              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11938                                 DAG.getConstant(Diff, Cond.getValueType()));
11939
11940            // Add the base if non-zero.
11941            if (FalseC->getAPIntValue() != 0)
11942              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11943                                 SDValue(FalseC, 0));
11944            return Cond;
11945          }
11946        }
11947      }
11948  }
11949
11950  return SDValue();
11951}
11952
11953/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11954static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11955                                  TargetLowering::DAGCombinerInfo &DCI) {
11956  DebugLoc DL = N->getDebugLoc();
11957
11958  // If the flag operand isn't dead, don't touch this CMOV.
11959  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11960    return SDValue();
11961
11962  SDValue FalseOp = N->getOperand(0);
11963  SDValue TrueOp = N->getOperand(1);
11964  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11965  SDValue Cond = N->getOperand(3);
11966  if (CC == X86::COND_E || CC == X86::COND_NE) {
11967    switch (Cond.getOpcode()) {
11968    default: break;
11969    case X86ISD::BSR:
11970    case X86ISD::BSF:
11971      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11972      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11973        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11974    }
11975  }
11976
11977  // If this is a select between two integer constants, try to do some
11978  // optimizations.  Note that the operands are ordered the opposite of SELECT
11979  // operands.
11980  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11981    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11982      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11983      // larger than FalseC (the false value).
11984      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11985        CC = X86::GetOppositeBranchCondition(CC);
11986        std::swap(TrueC, FalseC);
11987      }
11988
11989      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11990      // This is efficient for any integer data type (including i8/i16) and
11991      // shift amount.
11992      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11993        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11994                           DAG.getConstant(CC, MVT::i8), Cond);
11995
11996        // Zero extend the condition if needed.
11997        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11998
11999        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12000        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12001                           DAG.getConstant(ShAmt, MVT::i8));
12002        if (N->getNumValues() == 2)  // Dead flag value?
12003          return DCI.CombineTo(N, Cond, SDValue());
12004        return Cond;
12005      }
12006
12007      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12008      // for any integer data type, including i8/i16.
12009      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12010        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12011                           DAG.getConstant(CC, MVT::i8), Cond);
12012
12013        // Zero extend the condition if needed.
12014        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12015                           FalseC->getValueType(0), Cond);
12016        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12017                           SDValue(FalseC, 0));
12018
12019        if (N->getNumValues() == 2)  // Dead flag value?
12020          return DCI.CombineTo(N, Cond, SDValue());
12021        return Cond;
12022      }
12023
12024      // Optimize cases that will turn into an LEA instruction.  This requires
12025      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12026      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12027        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12028        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12029
12030        bool isFastMultiplier = false;
12031        if (Diff < 10) {
12032          switch ((unsigned char)Diff) {
12033          default: break;
12034          case 1:  // result = add base, cond
12035          case 2:  // result = lea base(    , cond*2)
12036          case 3:  // result = lea base(cond, cond*2)
12037          case 4:  // result = lea base(    , cond*4)
12038          case 5:  // result = lea base(cond, cond*4)
12039          case 8:  // result = lea base(    , cond*8)
12040          case 9:  // result = lea base(cond, cond*8)
12041            isFastMultiplier = true;
12042            break;
12043          }
12044        }
12045
12046        if (isFastMultiplier) {
12047          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12048          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12049                             DAG.getConstant(CC, MVT::i8), Cond);
12050          // Zero extend the condition if needed.
12051          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12052                             Cond);
12053          // Scale the condition by the difference.
12054          if (Diff != 1)
12055            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12056                               DAG.getConstant(Diff, Cond.getValueType()));
12057
12058          // Add the base if non-zero.
12059          if (FalseC->getAPIntValue() != 0)
12060            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12061                               SDValue(FalseC, 0));
12062          if (N->getNumValues() == 2)  // Dead flag value?
12063            return DCI.CombineTo(N, Cond, SDValue());
12064          return Cond;
12065        }
12066      }
12067    }
12068  }
12069  return SDValue();
12070}
12071
12072
12073/// PerformMulCombine - Optimize a single multiply with constant into two
12074/// in order to implement it with two cheaper instructions, e.g.
12075/// LEA + SHL, LEA + LEA.
12076static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12077                                 TargetLowering::DAGCombinerInfo &DCI) {
12078  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12079    return SDValue();
12080
12081  EVT VT = N->getValueType(0);
12082  if (VT != MVT::i64)
12083    return SDValue();
12084
12085  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12086  if (!C)
12087    return SDValue();
12088  uint64_t MulAmt = C->getZExtValue();
12089  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12090    return SDValue();
12091
12092  uint64_t MulAmt1 = 0;
12093  uint64_t MulAmt2 = 0;
12094  if ((MulAmt % 9) == 0) {
12095    MulAmt1 = 9;
12096    MulAmt2 = MulAmt / 9;
12097  } else if ((MulAmt % 5) == 0) {
12098    MulAmt1 = 5;
12099    MulAmt2 = MulAmt / 5;
12100  } else if ((MulAmt % 3) == 0) {
12101    MulAmt1 = 3;
12102    MulAmt2 = MulAmt / 3;
12103  }
12104  if (MulAmt2 &&
12105      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12106    DebugLoc DL = N->getDebugLoc();
12107
12108    if (isPowerOf2_64(MulAmt2) &&
12109        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12110      // If second multiplifer is pow2, issue it first. We want the multiply by
12111      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12112      // is an add.
12113      std::swap(MulAmt1, MulAmt2);
12114
12115    SDValue NewMul;
12116    if (isPowerOf2_64(MulAmt1))
12117      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12118                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12119    else
12120      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12121                           DAG.getConstant(MulAmt1, VT));
12122
12123    if (isPowerOf2_64(MulAmt2))
12124      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12125                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12126    else
12127      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12128                           DAG.getConstant(MulAmt2, VT));
12129
12130    // Do not add new nodes to DAG combiner worklist.
12131    DCI.CombineTo(N, NewMul, false);
12132  }
12133  return SDValue();
12134}
12135
12136static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12137  SDValue N0 = N->getOperand(0);
12138  SDValue N1 = N->getOperand(1);
12139  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12140  EVT VT = N0.getValueType();
12141
12142  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12143  // since the result of setcc_c is all zero's or all ones.
12144  if (N1C && N0.getOpcode() == ISD::AND &&
12145      N0.getOperand(1).getOpcode() == ISD::Constant) {
12146    SDValue N00 = N0.getOperand(0);
12147    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12148        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12149          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12150         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12151      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12152      APInt ShAmt = N1C->getAPIntValue();
12153      Mask = Mask.shl(ShAmt);
12154      if (Mask != 0)
12155        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12156                           N00, DAG.getConstant(Mask, VT));
12157    }
12158  }
12159
12160  return SDValue();
12161}
12162
12163/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12164///                       when possible.
12165static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12166                                   const X86Subtarget *Subtarget) {
12167  EVT VT = N->getValueType(0);
12168  if (!VT.isVector() && VT.isInteger() &&
12169      N->getOpcode() == ISD::SHL)
12170    return PerformSHLCombine(N, DAG);
12171
12172  // On X86 with SSE2 support, we can transform this to a vector shift if
12173  // all elements are shifted by the same amount.  We can't do this in legalize
12174  // because the a constant vector is typically transformed to a constant pool
12175  // so we have no knowledge of the shift amount.
12176  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
12177    return SDValue();
12178
12179  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12180    return SDValue();
12181
12182  SDValue ShAmtOp = N->getOperand(1);
12183  EVT EltVT = VT.getVectorElementType();
12184  DebugLoc DL = N->getDebugLoc();
12185  SDValue BaseShAmt = SDValue();
12186  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12187    unsigned NumElts = VT.getVectorNumElements();
12188    unsigned i = 0;
12189    for (; i != NumElts; ++i) {
12190      SDValue Arg = ShAmtOp.getOperand(i);
12191      if (Arg.getOpcode() == ISD::UNDEF) continue;
12192      BaseShAmt = Arg;
12193      break;
12194    }
12195    for (; i != NumElts; ++i) {
12196      SDValue Arg = ShAmtOp.getOperand(i);
12197      if (Arg.getOpcode() == ISD::UNDEF) continue;
12198      if (Arg != BaseShAmt) {
12199        return SDValue();
12200      }
12201    }
12202  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12203             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12204    SDValue InVec = ShAmtOp.getOperand(0);
12205    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12206      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12207      unsigned i = 0;
12208      for (; i != NumElts; ++i) {
12209        SDValue Arg = InVec.getOperand(i);
12210        if (Arg.getOpcode() == ISD::UNDEF) continue;
12211        BaseShAmt = Arg;
12212        break;
12213      }
12214    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12215       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12216         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12217         if (C->getZExtValue() == SplatIdx)
12218           BaseShAmt = InVec.getOperand(1);
12219       }
12220    }
12221    if (BaseShAmt.getNode() == 0)
12222      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12223                              DAG.getIntPtrConstant(0));
12224  } else
12225    return SDValue();
12226
12227  // The shift amount is an i32.
12228  if (EltVT.bitsGT(MVT::i32))
12229    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12230  else if (EltVT.bitsLT(MVT::i32))
12231    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12232
12233  // The shift amount is identical so we can do a vector shift.
12234  SDValue  ValOp = N->getOperand(0);
12235  switch (N->getOpcode()) {
12236  default:
12237    llvm_unreachable("Unknown shift opcode!");
12238    break;
12239  case ISD::SHL:
12240    if (VT == MVT::v2i64)
12241      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12242                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12243                         ValOp, BaseShAmt);
12244    if (VT == MVT::v4i32)
12245      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12246                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12247                         ValOp, BaseShAmt);
12248    if (VT == MVT::v8i16)
12249      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12250                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12251                         ValOp, BaseShAmt);
12252    break;
12253  case ISD::SRA:
12254    if (VT == MVT::v4i32)
12255      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12256                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12257                         ValOp, BaseShAmt);
12258    if (VT == MVT::v8i16)
12259      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12260                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12261                         ValOp, BaseShAmt);
12262    break;
12263  case ISD::SRL:
12264    if (VT == MVT::v2i64)
12265      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12266                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12267                         ValOp, BaseShAmt);
12268    if (VT == MVT::v4i32)
12269      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12270                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12271                         ValOp, BaseShAmt);
12272    if (VT ==  MVT::v8i16)
12273      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12274                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12275                         ValOp, BaseShAmt);
12276    break;
12277  }
12278  return SDValue();
12279}
12280
12281
12282// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12283// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12284// and friends.  Likewise for OR -> CMPNEQSS.
12285static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12286                            TargetLowering::DAGCombinerInfo &DCI,
12287                            const X86Subtarget *Subtarget) {
12288  unsigned opcode;
12289
12290  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12291  // we're requiring SSE2 for both.
12292  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12293    SDValue N0 = N->getOperand(0);
12294    SDValue N1 = N->getOperand(1);
12295    SDValue CMP0 = N0->getOperand(1);
12296    SDValue CMP1 = N1->getOperand(1);
12297    DebugLoc DL = N->getDebugLoc();
12298
12299    // The SETCCs should both refer to the same CMP.
12300    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12301      return SDValue();
12302
12303    SDValue CMP00 = CMP0->getOperand(0);
12304    SDValue CMP01 = CMP0->getOperand(1);
12305    EVT     VT    = CMP00.getValueType();
12306
12307    if (VT == MVT::f32 || VT == MVT::f64) {
12308      bool ExpectingFlags = false;
12309      // Check for any users that want flags:
12310      for (SDNode::use_iterator UI = N->use_begin(),
12311             UE = N->use_end();
12312           !ExpectingFlags && UI != UE; ++UI)
12313        switch (UI->getOpcode()) {
12314        default:
12315        case ISD::BR_CC:
12316        case ISD::BRCOND:
12317        case ISD::SELECT:
12318          ExpectingFlags = true;
12319          break;
12320        case ISD::CopyToReg:
12321        case ISD::SIGN_EXTEND:
12322        case ISD::ZERO_EXTEND:
12323        case ISD::ANY_EXTEND:
12324          break;
12325        }
12326
12327      if (!ExpectingFlags) {
12328        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12329        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12330
12331        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12332          X86::CondCode tmp = cc0;
12333          cc0 = cc1;
12334          cc1 = tmp;
12335        }
12336
12337        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12338            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12339          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12340          X86ISD::NodeType NTOperator = is64BitFP ?
12341            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12342          // FIXME: need symbolic constants for these magic numbers.
12343          // See X86ATTInstPrinter.cpp:printSSECC().
12344          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12345          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12346                                              DAG.getConstant(x86cc, MVT::i8));
12347          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12348                                              OnesOrZeroesF);
12349          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12350                                      DAG.getConstant(1, MVT::i32));
12351          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12352          return OneBitOfTruth;
12353        }
12354      }
12355    }
12356  }
12357  return SDValue();
12358}
12359
12360/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12361/// so it can be folded inside ANDNP.
12362static bool CanFoldXORWithAllOnes(const SDNode *N) {
12363  EVT VT = N->getValueType(0);
12364
12365  // Match direct AllOnes for 128 and 256-bit vectors
12366  if (ISD::isBuildVectorAllOnes(N))
12367    return true;
12368
12369  // Look through a bit convert.
12370  if (N->getOpcode() == ISD::BITCAST)
12371    N = N->getOperand(0).getNode();
12372
12373  // Sometimes the operand may come from a insert_subvector building a 256-bit
12374  // allones vector
12375  if (VT.getSizeInBits() == 256 &&
12376      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
12377    SDValue V1 = N->getOperand(0);
12378    SDValue V2 = N->getOperand(1);
12379
12380    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12381        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12382        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12383        ISD::isBuildVectorAllOnes(V2.getNode()))
12384      return true;
12385  }
12386
12387  return false;
12388}
12389
12390static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12391                                 TargetLowering::DAGCombinerInfo &DCI,
12392                                 const X86Subtarget *Subtarget) {
12393  if (DCI.isBeforeLegalizeOps())
12394    return SDValue();
12395
12396  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12397  if (R.getNode())
12398    return R;
12399
12400  // Want to form ANDNP nodes:
12401  // 1) In the hopes of then easily combining them with OR and AND nodes
12402  //    to form PBLEND/PSIGN.
12403  // 2) To match ANDN packed intrinsics
12404  EVT VT = N->getValueType(0);
12405  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12406    return SDValue();
12407
12408  SDValue N0 = N->getOperand(0);
12409  SDValue N1 = N->getOperand(1);
12410  DebugLoc DL = N->getDebugLoc();
12411
12412  // Check LHS for vnot
12413  if (N0.getOpcode() == ISD::XOR &&
12414      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12415      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
12416    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12417
12418  // Check RHS for vnot
12419  if (N1.getOpcode() == ISD::XOR &&
12420      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12421      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
12422    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12423
12424  return SDValue();
12425}
12426
12427static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12428                                TargetLowering::DAGCombinerInfo &DCI,
12429                                const X86Subtarget *Subtarget) {
12430  if (DCI.isBeforeLegalizeOps())
12431    return SDValue();
12432
12433  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12434  if (R.getNode())
12435    return R;
12436
12437  EVT VT = N->getValueType(0);
12438  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12439    return SDValue();
12440
12441  SDValue N0 = N->getOperand(0);
12442  SDValue N1 = N->getOperand(1);
12443
12444  // look for psign/blend
12445  if (Subtarget->hasSSSE3()) {
12446    if (VT == MVT::v2i64) {
12447      // Canonicalize pandn to RHS
12448      if (N0.getOpcode() == X86ISD::ANDNP)
12449        std::swap(N0, N1);
12450      // or (and (m, x), (pandn m, y))
12451      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12452        SDValue Mask = N1.getOperand(0);
12453        SDValue X    = N1.getOperand(1);
12454        SDValue Y;
12455        if (N0.getOperand(0) == Mask)
12456          Y = N0.getOperand(1);
12457        if (N0.getOperand(1) == Mask)
12458          Y = N0.getOperand(0);
12459
12460        // Check to see if the mask appeared in both the AND and ANDNP and
12461        if (!Y.getNode())
12462          return SDValue();
12463
12464        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12465        if (Mask.getOpcode() != ISD::BITCAST ||
12466            X.getOpcode() != ISD::BITCAST ||
12467            Y.getOpcode() != ISD::BITCAST)
12468          return SDValue();
12469
12470        // Look through mask bitcast.
12471        Mask = Mask.getOperand(0);
12472        EVT MaskVT = Mask.getValueType();
12473
12474        // Validate that the Mask operand is a vector sra node.  The sra node
12475        // will be an intrinsic.
12476        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12477          return SDValue();
12478
12479        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12480        // there is no psrai.b
12481        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12482        case Intrinsic::x86_sse2_psrai_w:
12483        case Intrinsic::x86_sse2_psrai_d:
12484          break;
12485        default: return SDValue();
12486        }
12487
12488        // Check that the SRA is all signbits.
12489        SDValue SraC = Mask.getOperand(2);
12490        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12491        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12492        if ((SraAmt + 1) != EltBits)
12493          return SDValue();
12494
12495        DebugLoc DL = N->getDebugLoc();
12496
12497        // Now we know we at least have a plendvb with the mask val.  See if
12498        // we can form a psignb/w/d.
12499        // psign = x.type == y.type == mask.type && y = sub(0, x);
12500        X = X.getOperand(0);
12501        Y = Y.getOperand(0);
12502        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12503            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12504            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12505          unsigned Opc = 0;
12506          switch (EltBits) {
12507          case 8: Opc = X86ISD::PSIGNB; break;
12508          case 16: Opc = X86ISD::PSIGNW; break;
12509          case 32: Opc = X86ISD::PSIGND; break;
12510          default: break;
12511          }
12512          if (Opc) {
12513            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12514            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12515          }
12516        }
12517        // PBLENDVB only available on SSE 4.1
12518        if (!Subtarget->hasSSE41())
12519          return SDValue();
12520
12521        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12522        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12523        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12524        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12525        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12526      }
12527    }
12528  }
12529
12530  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12531  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12532    std::swap(N0, N1);
12533  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12534    return SDValue();
12535  if (!N0.hasOneUse() || !N1.hasOneUse())
12536    return SDValue();
12537
12538  SDValue ShAmt0 = N0.getOperand(1);
12539  if (ShAmt0.getValueType() != MVT::i8)
12540    return SDValue();
12541  SDValue ShAmt1 = N1.getOperand(1);
12542  if (ShAmt1.getValueType() != MVT::i8)
12543    return SDValue();
12544  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12545    ShAmt0 = ShAmt0.getOperand(0);
12546  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12547    ShAmt1 = ShAmt1.getOperand(0);
12548
12549  DebugLoc DL = N->getDebugLoc();
12550  unsigned Opc = X86ISD::SHLD;
12551  SDValue Op0 = N0.getOperand(0);
12552  SDValue Op1 = N1.getOperand(0);
12553  if (ShAmt0.getOpcode() == ISD::SUB) {
12554    Opc = X86ISD::SHRD;
12555    std::swap(Op0, Op1);
12556    std::swap(ShAmt0, ShAmt1);
12557  }
12558
12559  unsigned Bits = VT.getSizeInBits();
12560  if (ShAmt1.getOpcode() == ISD::SUB) {
12561    SDValue Sum = ShAmt1.getOperand(0);
12562    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12563      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12564      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12565        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12566      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12567        return DAG.getNode(Opc, DL, VT,
12568                           Op0, Op1,
12569                           DAG.getNode(ISD::TRUNCATE, DL,
12570                                       MVT::i8, ShAmt0));
12571    }
12572  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12573    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12574    if (ShAmt0C &&
12575        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12576      return DAG.getNode(Opc, DL, VT,
12577                         N0.getOperand(0), N1.getOperand(0),
12578                         DAG.getNode(ISD::TRUNCATE, DL,
12579                                       MVT::i8, ShAmt0));
12580  }
12581
12582  return SDValue();
12583}
12584
12585/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12586static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12587                                   const X86Subtarget *Subtarget) {
12588  StoreSDNode *St = cast<StoreSDNode>(N);
12589  EVT VT = St->getValue().getValueType();
12590  EVT StVT = St->getMemoryVT();
12591  DebugLoc dl = St->getDebugLoc();
12592
12593  // Optimize trunc store (of multiple scalars) to shuffle and store.
12594  // First, pack all of the elements in one place. Next, store to memory
12595  // in fewer chunks.
12596  if (St->isTruncatingStore() && VT.isVector()) {
12597    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12598    unsigned NumElems = VT.getVectorNumElements();
12599    assert(StVT != VT && "Cannot truncate to the same type");
12600    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
12601    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
12602
12603    // From, To sizes and ElemCount must be pow of two
12604    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
12605    // We are going to use the original vector elt for storing.
12606    // accumulated smaller vector elements must be a multiple of bigger size.
12607    if (0 != (NumElems * ToSz) % FromSz) return SDValue();
12608    unsigned SizeRatio  = FromSz / ToSz;
12609
12610    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
12611
12612    // Create a type on which we perform the shuffle
12613    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
12614            StVT.getScalarType(), NumElems*SizeRatio);
12615
12616    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
12617
12618    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
12619    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
12620    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
12621
12622    // Can't shuffle using an illegal type
12623    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
12624
12625    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
12626                                DAG.getUNDEF(WideVec.getValueType()),
12627                                ShuffleVec.data());
12628    // At this point all of the data is stored at the bottom of the
12629    // register. We now need to save it to mem.
12630
12631    // Find the largest store unit
12632    MVT StoreType = MVT::i8;
12633    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
12634         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
12635      MVT Tp = (MVT::SimpleValueType)tp;
12636      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
12637        StoreType = Tp;
12638    }
12639
12640    // Bitcast the original vector into a vector of store-size units
12641    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
12642            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
12643    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
12644    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
12645    SmallVector<SDValue, 8> Chains;
12646    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
12647                                        TLI.getPointerTy());
12648    SDValue Ptr = St->getBasePtr();
12649
12650    // Perform one or more big stores into memory.
12651    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
12652      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
12653                                   StoreType, ShuffWide,
12654                                   DAG.getIntPtrConstant(i));
12655      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
12656                                St->getPointerInfo(), St->isVolatile(),
12657                                St->isNonTemporal(), St->getAlignment());
12658      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12659      Chains.push_back(Ch);
12660    }
12661
12662    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
12663                               Chains.size());
12664  }
12665
12666
12667  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12668  // the FP state in cases where an emms may be missing.
12669  // A preferable solution to the general problem is to figure out the right
12670  // places to insert EMMS.  This qualifies as a quick hack.
12671
12672  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12673  if (VT.getSizeInBits() != 64)
12674    return SDValue();
12675
12676  const Function *F = DAG.getMachineFunction().getFunction();
12677  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12678  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12679    && Subtarget->hasSSE2();
12680  if ((VT.isVector() ||
12681       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12682      isa<LoadSDNode>(St->getValue()) &&
12683      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12684      St->getChain().hasOneUse() && !St->isVolatile()) {
12685    SDNode* LdVal = St->getValue().getNode();
12686    LoadSDNode *Ld = 0;
12687    int TokenFactorIndex = -1;
12688    SmallVector<SDValue, 8> Ops;
12689    SDNode* ChainVal = St->getChain().getNode();
12690    // Must be a store of a load.  We currently handle two cases:  the load
12691    // is a direct child, and it's under an intervening TokenFactor.  It is
12692    // possible to dig deeper under nested TokenFactors.
12693    if (ChainVal == LdVal)
12694      Ld = cast<LoadSDNode>(St->getChain());
12695    else if (St->getValue().hasOneUse() &&
12696             ChainVal->getOpcode() == ISD::TokenFactor) {
12697      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12698        if (ChainVal->getOperand(i).getNode() == LdVal) {
12699          TokenFactorIndex = i;
12700          Ld = cast<LoadSDNode>(St->getValue());
12701        } else
12702          Ops.push_back(ChainVal->getOperand(i));
12703      }
12704    }
12705
12706    if (!Ld || !ISD::isNormalLoad(Ld))
12707      return SDValue();
12708
12709    // If this is not the MMX case, i.e. we are just turning i64 load/store
12710    // into f64 load/store, avoid the transformation if there are multiple
12711    // uses of the loaded value.
12712    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12713      return SDValue();
12714
12715    DebugLoc LdDL = Ld->getDebugLoc();
12716    DebugLoc StDL = N->getDebugLoc();
12717    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12718    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12719    // pair instead.
12720    if (Subtarget->is64Bit() || F64IsLegal) {
12721      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12722      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12723                                  Ld->getPointerInfo(), Ld->isVolatile(),
12724                                  Ld->isNonTemporal(), Ld->getAlignment());
12725      SDValue NewChain = NewLd.getValue(1);
12726      if (TokenFactorIndex != -1) {
12727        Ops.push_back(NewChain);
12728        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12729                               Ops.size());
12730      }
12731      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12732                          St->getPointerInfo(),
12733                          St->isVolatile(), St->isNonTemporal(),
12734                          St->getAlignment());
12735    }
12736
12737    // Otherwise, lower to two pairs of 32-bit loads / stores.
12738    SDValue LoAddr = Ld->getBasePtr();
12739    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12740                                 DAG.getConstant(4, MVT::i32));
12741
12742    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12743                               Ld->getPointerInfo(),
12744                               Ld->isVolatile(), Ld->isNonTemporal(),
12745                               Ld->getAlignment());
12746    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12747                               Ld->getPointerInfo().getWithOffset(4),
12748                               Ld->isVolatile(), Ld->isNonTemporal(),
12749                               MinAlign(Ld->getAlignment(), 4));
12750
12751    SDValue NewChain = LoLd.getValue(1);
12752    if (TokenFactorIndex != -1) {
12753      Ops.push_back(LoLd);
12754      Ops.push_back(HiLd);
12755      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12756                             Ops.size());
12757    }
12758
12759    LoAddr = St->getBasePtr();
12760    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12761                         DAG.getConstant(4, MVT::i32));
12762
12763    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12764                                St->getPointerInfo(),
12765                                St->isVolatile(), St->isNonTemporal(),
12766                                St->getAlignment());
12767    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12768                                St->getPointerInfo().getWithOffset(4),
12769                                St->isVolatile(),
12770                                St->isNonTemporal(),
12771                                MinAlign(St->getAlignment(), 4));
12772    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12773  }
12774  return SDValue();
12775}
12776
12777/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12778/// X86ISD::FXOR nodes.
12779static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12780  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12781  // F[X]OR(0.0, x) -> x
12782  // F[X]OR(x, 0.0) -> x
12783  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12784    if (C->getValueAPF().isPosZero())
12785      return N->getOperand(1);
12786  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12787    if (C->getValueAPF().isPosZero())
12788      return N->getOperand(0);
12789  return SDValue();
12790}
12791
12792/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12793static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12794  // FAND(0.0, x) -> 0.0
12795  // FAND(x, 0.0) -> 0.0
12796  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12797    if (C->getValueAPF().isPosZero())
12798      return N->getOperand(0);
12799  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12800    if (C->getValueAPF().isPosZero())
12801      return N->getOperand(1);
12802  return SDValue();
12803}
12804
12805static SDValue PerformBTCombine(SDNode *N,
12806                                SelectionDAG &DAG,
12807                                TargetLowering::DAGCombinerInfo &DCI) {
12808  // BT ignores high bits in the bit index operand.
12809  SDValue Op1 = N->getOperand(1);
12810  if (Op1.hasOneUse()) {
12811    unsigned BitWidth = Op1.getValueSizeInBits();
12812    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12813    APInt KnownZero, KnownOne;
12814    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12815                                          !DCI.isBeforeLegalizeOps());
12816    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12817    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12818        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12819      DCI.CommitTargetLoweringOpt(TLO);
12820  }
12821  return SDValue();
12822}
12823
12824static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12825  SDValue Op = N->getOperand(0);
12826  if (Op.getOpcode() == ISD::BITCAST)
12827    Op = Op.getOperand(0);
12828  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12829  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12830      VT.getVectorElementType().getSizeInBits() ==
12831      OpVT.getVectorElementType().getSizeInBits()) {
12832    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12833  }
12834  return SDValue();
12835}
12836
12837static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12838  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12839  //           (and (i32 x86isd::setcc_carry), 1)
12840  // This eliminates the zext. This transformation is necessary because
12841  // ISD::SETCC is always legalized to i8.
12842  DebugLoc dl = N->getDebugLoc();
12843  SDValue N0 = N->getOperand(0);
12844  EVT VT = N->getValueType(0);
12845  if (N0.getOpcode() == ISD::AND &&
12846      N0.hasOneUse() &&
12847      N0.getOperand(0).hasOneUse()) {
12848    SDValue N00 = N0.getOperand(0);
12849    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12850      return SDValue();
12851    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12852    if (!C || C->getZExtValue() != 1)
12853      return SDValue();
12854    return DAG.getNode(ISD::AND, dl, VT,
12855                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12856                                   N00.getOperand(0), N00.getOperand(1)),
12857                       DAG.getConstant(1, VT));
12858  }
12859
12860  return SDValue();
12861}
12862
12863// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12864static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12865  unsigned X86CC = N->getConstantOperandVal(0);
12866  SDValue EFLAG = N->getOperand(1);
12867  DebugLoc DL = N->getDebugLoc();
12868
12869  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12870  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12871  // cases.
12872  if (X86CC == X86::COND_B)
12873    return DAG.getNode(ISD::AND, DL, MVT::i8,
12874                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12875                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12876                       DAG.getConstant(1, MVT::i8));
12877
12878  return SDValue();
12879}
12880
12881static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12882                                        const X86TargetLowering *XTLI) {
12883  SDValue Op0 = N->getOperand(0);
12884  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12885  // a 32-bit target where SSE doesn't support i64->FP operations.
12886  if (Op0.getOpcode() == ISD::LOAD) {
12887    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12888    EVT VT = Ld->getValueType(0);
12889    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12890        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12891        !XTLI->getSubtarget()->is64Bit() &&
12892        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12893      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12894                                          Ld->getChain(), Op0, DAG);
12895      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12896      return FILDChain;
12897    }
12898  }
12899  return SDValue();
12900}
12901
12902// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12903static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12904                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12905  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12906  // the result is either zero or one (depending on the input carry bit).
12907  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12908  if (X86::isZeroNode(N->getOperand(0)) &&
12909      X86::isZeroNode(N->getOperand(1)) &&
12910      // We don't have a good way to replace an EFLAGS use, so only do this when
12911      // dead right now.
12912      SDValue(N, 1).use_empty()) {
12913    DebugLoc DL = N->getDebugLoc();
12914    EVT VT = N->getValueType(0);
12915    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12916    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12917                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12918                                           DAG.getConstant(X86::COND_B,MVT::i8),
12919                                           N->getOperand(2)),
12920                               DAG.getConstant(1, VT));
12921    return DCI.CombineTo(N, Res1, CarryOut);
12922  }
12923
12924  return SDValue();
12925}
12926
12927// fold (add Y, (sete  X, 0)) -> adc  0, Y
12928//      (add Y, (setne X, 0)) -> sbb -1, Y
12929//      (sub (sete  X, 0), Y) -> sbb  0, Y
12930//      (sub (setne X, 0), Y) -> adc -1, Y
12931static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
12932  DebugLoc DL = N->getDebugLoc();
12933
12934  // Look through ZExts.
12935  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12936  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12937    return SDValue();
12938
12939  SDValue SetCC = Ext.getOperand(0);
12940  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12941    return SDValue();
12942
12943  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12944  if (CC != X86::COND_E && CC != X86::COND_NE)
12945    return SDValue();
12946
12947  SDValue Cmp = SetCC.getOperand(1);
12948  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12949      !X86::isZeroNode(Cmp.getOperand(1)) ||
12950      !Cmp.getOperand(0).getValueType().isInteger())
12951    return SDValue();
12952
12953  SDValue CmpOp0 = Cmp.getOperand(0);
12954  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12955                               DAG.getConstant(1, CmpOp0.getValueType()));
12956
12957  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12958  if (CC == X86::COND_NE)
12959    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12960                       DL, OtherVal.getValueType(), OtherVal,
12961                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12962  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12963                     DL, OtherVal.getValueType(), OtherVal,
12964                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12965}
12966
12967static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
12968  SDValue Op0 = N->getOperand(0);
12969  SDValue Op1 = N->getOperand(1);
12970
12971  // X86 can't encode an immediate LHS of a sub. See if we can push the
12972  // negation into a preceding instruction.
12973  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
12974    uint64_t Op0C = C->getSExtValue();
12975
12976    // If the RHS of the sub is a XOR with one use and a constant, invert the
12977    // immediate. Then add one to the LHS of the sub so we can turn
12978    // X-Y -> X+~Y+1, saving one register.
12979    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
12980        isa<ConstantSDNode>(Op1.getOperand(1))) {
12981      uint64_t XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getSExtValue();
12982      EVT VT = Op0.getValueType();
12983      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
12984                                   Op1.getOperand(0),
12985                                   DAG.getConstant(~XorC, VT));
12986      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
12987                         DAG.getConstant(Op0C+1, VT));
12988    }
12989  }
12990
12991  return OptimizeConditionalInDecrement(N, DAG);
12992}
12993
12994SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12995                                             DAGCombinerInfo &DCI) const {
12996  SelectionDAG &DAG = DCI.DAG;
12997  switch (N->getOpcode()) {
12998  default: break;
12999  case ISD::EXTRACT_VECTOR_ELT:
13000    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13001  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13002  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13003  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13004  case ISD::SUB:            return PerformSubCombine(N, DAG);
13005  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13006  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13007  case ISD::SHL:
13008  case ISD::SRA:
13009  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13010  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13011  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13012  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13013  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13014  case X86ISD::FXOR:
13015  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13016  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13017  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13018  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13019  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13020  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13021  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13022  case X86ISD::SHUFPD:
13023  case X86ISD::PALIGN:
13024  case X86ISD::PUNPCKHBW:
13025  case X86ISD::PUNPCKHWD:
13026  case X86ISD::PUNPCKHDQ:
13027  case X86ISD::PUNPCKHQDQ:
13028  case X86ISD::UNPCKHPS:
13029  case X86ISD::UNPCKHPD:
13030  case X86ISD::VUNPCKHPSY:
13031  case X86ISD::VUNPCKHPDY:
13032  case X86ISD::PUNPCKLBW:
13033  case X86ISD::PUNPCKLWD:
13034  case X86ISD::PUNPCKLDQ:
13035  case X86ISD::PUNPCKLQDQ:
13036  case X86ISD::UNPCKLPS:
13037  case X86ISD::UNPCKLPD:
13038  case X86ISD::VUNPCKLPSY:
13039  case X86ISD::VUNPCKLPDY:
13040  case X86ISD::MOVHLPS:
13041  case X86ISD::MOVLHPS:
13042  case X86ISD::PSHUFD:
13043  case X86ISD::PSHUFHW:
13044  case X86ISD::PSHUFLW:
13045  case X86ISD::MOVSS:
13046  case X86ISD::MOVSD:
13047  case X86ISD::VPERMILPS:
13048  case X86ISD::VPERMILPSY:
13049  case X86ISD::VPERMILPD:
13050  case X86ISD::VPERMILPDY:
13051  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
13052  }
13053
13054  return SDValue();
13055}
13056
13057/// isTypeDesirableForOp - Return true if the target has native support for
13058/// the specified value type and it is 'desirable' to use the type for the
13059/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
13060/// instruction encodings are longer and some i16 instructions are slow.
13061bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
13062  if (!isTypeLegal(VT))
13063    return false;
13064  if (VT != MVT::i16)
13065    return true;
13066
13067  switch (Opc) {
13068  default:
13069    return true;
13070  case ISD::LOAD:
13071  case ISD::SIGN_EXTEND:
13072  case ISD::ZERO_EXTEND:
13073  case ISD::ANY_EXTEND:
13074  case ISD::SHL:
13075  case ISD::SRL:
13076  case ISD::SUB:
13077  case ISD::ADD:
13078  case ISD::MUL:
13079  case ISD::AND:
13080  case ISD::OR:
13081  case ISD::XOR:
13082    return false;
13083  }
13084}
13085
13086/// IsDesirableToPromoteOp - This method query the target whether it is
13087/// beneficial for dag combiner to promote the specified node. If true, it
13088/// should return the desired promotion type by reference.
13089bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13090  EVT VT = Op.getValueType();
13091  if (VT != MVT::i16)
13092    return false;
13093
13094  bool Promote = false;
13095  bool Commute = false;
13096  switch (Op.getOpcode()) {
13097  default: break;
13098  case ISD::LOAD: {
13099    LoadSDNode *LD = cast<LoadSDNode>(Op);
13100    // If the non-extending load has a single use and it's not live out, then it
13101    // might be folded.
13102    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13103                                                     Op.hasOneUse()*/) {
13104      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13105             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13106        // The only case where we'd want to promote LOAD (rather then it being
13107        // promoted as an operand is when it's only use is liveout.
13108        if (UI->getOpcode() != ISD::CopyToReg)
13109          return false;
13110      }
13111    }
13112    Promote = true;
13113    break;
13114  }
13115  case ISD::SIGN_EXTEND:
13116  case ISD::ZERO_EXTEND:
13117  case ISD::ANY_EXTEND:
13118    Promote = true;
13119    break;
13120  case ISD::SHL:
13121  case ISD::SRL: {
13122    SDValue N0 = Op.getOperand(0);
13123    // Look out for (store (shl (load), x)).
13124    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13125      return false;
13126    Promote = true;
13127    break;
13128  }
13129  case ISD::ADD:
13130  case ISD::MUL:
13131  case ISD::AND:
13132  case ISD::OR:
13133  case ISD::XOR:
13134    Commute = true;
13135    // fallthrough
13136  case ISD::SUB: {
13137    SDValue N0 = Op.getOperand(0);
13138    SDValue N1 = Op.getOperand(1);
13139    if (!Commute && MayFoldLoad(N1))
13140      return false;
13141    // Avoid disabling potential load folding opportunities.
13142    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
13143      return false;
13144    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
13145      return false;
13146    Promote = true;
13147  }
13148  }
13149
13150  PVT = MVT::i32;
13151  return Promote;
13152}
13153
13154//===----------------------------------------------------------------------===//
13155//                           X86 Inline Assembly Support
13156//===----------------------------------------------------------------------===//
13157
13158bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
13159  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13160
13161  std::string AsmStr = IA->getAsmString();
13162
13163  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
13164  SmallVector<StringRef, 4> AsmPieces;
13165  SplitString(AsmStr, AsmPieces, ";\n");
13166
13167  switch (AsmPieces.size()) {
13168  default: return false;
13169  case 1:
13170    AsmStr = AsmPieces[0];
13171    AsmPieces.clear();
13172    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
13173
13174    // FIXME: this should verify that we are targeting a 486 or better.  If not,
13175    // we will turn this bswap into something that will be lowered to logical ops
13176    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
13177    // so don't worry about this.
13178    // bswap $0
13179    if (AsmPieces.size() == 2 &&
13180        (AsmPieces[0] == "bswap" ||
13181         AsmPieces[0] == "bswapq" ||
13182         AsmPieces[0] == "bswapl") &&
13183        (AsmPieces[1] == "$0" ||
13184         AsmPieces[1] == "${0:q}")) {
13185      // No need to check constraints, nothing other than the equivalent of
13186      // "=r,0" would be valid here.
13187      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13188      if (!Ty || Ty->getBitWidth() % 16 != 0)
13189        return false;
13190      return IntrinsicLowering::LowerToByteSwap(CI);
13191    }
13192    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
13193    if (CI->getType()->isIntegerTy(16) &&
13194        AsmPieces.size() == 3 &&
13195        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
13196        AsmPieces[1] == "$$8," &&
13197        AsmPieces[2] == "${0:w}" &&
13198        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13199      AsmPieces.clear();
13200      const std::string &ConstraintsStr = IA->getConstraintString();
13201      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13202      std::sort(AsmPieces.begin(), AsmPieces.end());
13203      if (AsmPieces.size() == 4 &&
13204          AsmPieces[0] == "~{cc}" &&
13205          AsmPieces[1] == "~{dirflag}" &&
13206          AsmPieces[2] == "~{flags}" &&
13207          AsmPieces[3] == "~{fpsr}") {
13208        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13209        if (!Ty || Ty->getBitWidth() % 16 != 0)
13210          return false;
13211        return IntrinsicLowering::LowerToByteSwap(CI);
13212      }
13213    }
13214    break;
13215  case 3:
13216    if (CI->getType()->isIntegerTy(32) &&
13217        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13218      SmallVector<StringRef, 4> Words;
13219      SplitString(AsmPieces[0], Words, " \t,");
13220      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13221          Words[2] == "${0:w}") {
13222        Words.clear();
13223        SplitString(AsmPieces[1], Words, " \t,");
13224        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
13225            Words[2] == "$0") {
13226          Words.clear();
13227          SplitString(AsmPieces[2], Words, " \t,");
13228          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13229              Words[2] == "${0:w}") {
13230            AsmPieces.clear();
13231            const std::string &ConstraintsStr = IA->getConstraintString();
13232            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13233            std::sort(AsmPieces.begin(), AsmPieces.end());
13234            if (AsmPieces.size() == 4 &&
13235                AsmPieces[0] == "~{cc}" &&
13236                AsmPieces[1] == "~{dirflag}" &&
13237                AsmPieces[2] == "~{flags}" &&
13238                AsmPieces[3] == "~{fpsr}") {
13239              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13240              if (!Ty || Ty->getBitWidth() % 16 != 0)
13241                return false;
13242              return IntrinsicLowering::LowerToByteSwap(CI);
13243            }
13244          }
13245        }
13246      }
13247    }
13248
13249    if (CI->getType()->isIntegerTy(64)) {
13250      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
13251      if (Constraints.size() >= 2 &&
13252          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
13253          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
13254        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
13255        SmallVector<StringRef, 4> Words;
13256        SplitString(AsmPieces[0], Words, " \t");
13257        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
13258          Words.clear();
13259          SplitString(AsmPieces[1], Words, " \t");
13260          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
13261            Words.clear();
13262            SplitString(AsmPieces[2], Words, " \t,");
13263            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
13264                Words[2] == "%edx") {
13265              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13266              if (!Ty || Ty->getBitWidth() % 16 != 0)
13267                return false;
13268              return IntrinsicLowering::LowerToByteSwap(CI);
13269            }
13270          }
13271        }
13272      }
13273    }
13274    break;
13275  }
13276  return false;
13277}
13278
13279
13280
13281/// getConstraintType - Given a constraint letter, return the type of
13282/// constraint it is for this target.
13283X86TargetLowering::ConstraintType
13284X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13285  if (Constraint.size() == 1) {
13286    switch (Constraint[0]) {
13287    case 'R':
13288    case 'q':
13289    case 'Q':
13290    case 'f':
13291    case 't':
13292    case 'u':
13293    case 'y':
13294    case 'x':
13295    case 'Y':
13296    case 'l':
13297      return C_RegisterClass;
13298    case 'a':
13299    case 'b':
13300    case 'c':
13301    case 'd':
13302    case 'S':
13303    case 'D':
13304    case 'A':
13305      return C_Register;
13306    case 'I':
13307    case 'J':
13308    case 'K':
13309    case 'L':
13310    case 'M':
13311    case 'N':
13312    case 'G':
13313    case 'C':
13314    case 'e':
13315    case 'Z':
13316      return C_Other;
13317    default:
13318      break;
13319    }
13320  }
13321  return TargetLowering::getConstraintType(Constraint);
13322}
13323
13324/// Examine constraint type and operand type and determine a weight value.
13325/// This object must already have been set up with the operand type
13326/// and the current alternative constraint selected.
13327TargetLowering::ConstraintWeight
13328  X86TargetLowering::getSingleConstraintMatchWeight(
13329    AsmOperandInfo &info, const char *constraint) const {
13330  ConstraintWeight weight = CW_Invalid;
13331  Value *CallOperandVal = info.CallOperandVal;
13332    // If we don't have a value, we can't do a match,
13333    // but allow it at the lowest weight.
13334  if (CallOperandVal == NULL)
13335    return CW_Default;
13336  Type *type = CallOperandVal->getType();
13337  // Look at the constraint type.
13338  switch (*constraint) {
13339  default:
13340    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13341  case 'R':
13342  case 'q':
13343  case 'Q':
13344  case 'a':
13345  case 'b':
13346  case 'c':
13347  case 'd':
13348  case 'S':
13349  case 'D':
13350  case 'A':
13351    if (CallOperandVal->getType()->isIntegerTy())
13352      weight = CW_SpecificReg;
13353    break;
13354  case 'f':
13355  case 't':
13356  case 'u':
13357      if (type->isFloatingPointTy())
13358        weight = CW_SpecificReg;
13359      break;
13360  case 'y':
13361      if (type->isX86_MMXTy() && Subtarget->hasMMX())
13362        weight = CW_SpecificReg;
13363      break;
13364  case 'x':
13365  case 'Y':
13366    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
13367      weight = CW_Register;
13368    break;
13369  case 'I':
13370    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
13371      if (C->getZExtValue() <= 31)
13372        weight = CW_Constant;
13373    }
13374    break;
13375  case 'J':
13376    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13377      if (C->getZExtValue() <= 63)
13378        weight = CW_Constant;
13379    }
13380    break;
13381  case 'K':
13382    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13383      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13384        weight = CW_Constant;
13385    }
13386    break;
13387  case 'L':
13388    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13389      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
13390        weight = CW_Constant;
13391    }
13392    break;
13393  case 'M':
13394    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13395      if (C->getZExtValue() <= 3)
13396        weight = CW_Constant;
13397    }
13398    break;
13399  case 'N':
13400    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13401      if (C->getZExtValue() <= 0xff)
13402        weight = CW_Constant;
13403    }
13404    break;
13405  case 'G':
13406  case 'C':
13407    if (dyn_cast<ConstantFP>(CallOperandVal)) {
13408      weight = CW_Constant;
13409    }
13410    break;
13411  case 'e':
13412    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13413      if ((C->getSExtValue() >= -0x80000000LL) &&
13414          (C->getSExtValue() <= 0x7fffffffLL))
13415        weight = CW_Constant;
13416    }
13417    break;
13418  case 'Z':
13419    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13420      if (C->getZExtValue() <= 0xffffffff)
13421        weight = CW_Constant;
13422    }
13423    break;
13424  }
13425  return weight;
13426}
13427
13428/// LowerXConstraint - try to replace an X constraint, which matches anything,
13429/// with another that has more specific requirements based on the type of the
13430/// corresponding operand.
13431const char *X86TargetLowering::
13432LowerXConstraint(EVT ConstraintVT) const {
13433  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
13434  // 'f' like normal targets.
13435  if (ConstraintVT.isFloatingPoint()) {
13436    if (Subtarget->hasXMMInt())
13437      return "Y";
13438    if (Subtarget->hasXMM())
13439      return "x";
13440  }
13441
13442  return TargetLowering::LowerXConstraint(ConstraintVT);
13443}
13444
13445/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13446/// vector.  If it is invalid, don't add anything to Ops.
13447void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13448                                                     std::string &Constraint,
13449                                                     std::vector<SDValue>&Ops,
13450                                                     SelectionDAG &DAG) const {
13451  SDValue Result(0, 0);
13452
13453  // Only support length 1 constraints for now.
13454  if (Constraint.length() > 1) return;
13455
13456  char ConstraintLetter = Constraint[0];
13457  switch (ConstraintLetter) {
13458  default: break;
13459  case 'I':
13460    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13461      if (C->getZExtValue() <= 31) {
13462        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13463        break;
13464      }
13465    }
13466    return;
13467  case 'J':
13468    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13469      if (C->getZExtValue() <= 63) {
13470        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13471        break;
13472      }
13473    }
13474    return;
13475  case 'K':
13476    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13477      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
13478        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13479        break;
13480      }
13481    }
13482    return;
13483  case 'N':
13484    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13485      if (C->getZExtValue() <= 255) {
13486        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13487        break;
13488      }
13489    }
13490    return;
13491  case 'e': {
13492    // 32-bit signed value
13493    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13494      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13495                                           C->getSExtValue())) {
13496        // Widen to 64 bits here to get it sign extended.
13497        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
13498        break;
13499      }
13500    // FIXME gcc accepts some relocatable values here too, but only in certain
13501    // memory models; it's complicated.
13502    }
13503    return;
13504  }
13505  case 'Z': {
13506    // 32-bit unsigned value
13507    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13508      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13509                                           C->getZExtValue())) {
13510        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13511        break;
13512      }
13513    }
13514    // FIXME gcc accepts some relocatable values here too, but only in certain
13515    // memory models; it's complicated.
13516    return;
13517  }
13518  case 'i': {
13519    // Literal immediates are always ok.
13520    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13521      // Widen to 64 bits here to get it sign extended.
13522      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13523      break;
13524    }
13525
13526    // In any sort of PIC mode addresses need to be computed at runtime by
13527    // adding in a register or some sort of table lookup.  These can't
13528    // be used as immediates.
13529    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13530      return;
13531
13532    // If we are in non-pic codegen mode, we allow the address of a global (with
13533    // an optional displacement) to be used with 'i'.
13534    GlobalAddressSDNode *GA = 0;
13535    int64_t Offset = 0;
13536
13537    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13538    while (1) {
13539      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13540        Offset += GA->getOffset();
13541        break;
13542      } else if (Op.getOpcode() == ISD::ADD) {
13543        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13544          Offset += C->getZExtValue();
13545          Op = Op.getOperand(0);
13546          continue;
13547        }
13548      } else if (Op.getOpcode() == ISD::SUB) {
13549        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13550          Offset += -C->getZExtValue();
13551          Op = Op.getOperand(0);
13552          continue;
13553        }
13554      }
13555
13556      // Otherwise, this isn't something we can handle, reject it.
13557      return;
13558    }
13559
13560    const GlobalValue *GV = GA->getGlobal();
13561    // If we require an extra load to get this address, as in PIC mode, we
13562    // can't accept it.
13563    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13564                                                        getTargetMachine())))
13565      return;
13566
13567    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13568                                        GA->getValueType(0), Offset);
13569    break;
13570  }
13571  }
13572
13573  if (Result.getNode()) {
13574    Ops.push_back(Result);
13575    return;
13576  }
13577  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13578}
13579
13580std::pair<unsigned, const TargetRegisterClass*>
13581X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13582                                                EVT VT) const {
13583  // First, see if this is a constraint that directly corresponds to an LLVM
13584  // register class.
13585  if (Constraint.size() == 1) {
13586    // GCC Constraint Letters
13587    switch (Constraint[0]) {
13588    default: break;
13589      // TODO: Slight differences here in allocation order and leaving
13590      // RIP in the class. Do they matter any more here than they do
13591      // in the normal allocation?
13592    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13593      if (Subtarget->is64Bit()) {
13594	if (VT == MVT::i32 || VT == MVT::f32)
13595	  return std::make_pair(0U, X86::GR32RegisterClass);
13596	else if (VT == MVT::i16)
13597	  return std::make_pair(0U, X86::GR16RegisterClass);
13598	else if (VT == MVT::i8 || VT == MVT::i1)
13599	  return std::make_pair(0U, X86::GR8RegisterClass);
13600	else if (VT == MVT::i64 || VT == MVT::f64)
13601	  return std::make_pair(0U, X86::GR64RegisterClass);
13602	break;
13603      }
13604      // 32-bit fallthrough
13605    case 'Q':   // Q_REGS
13606      if (VT == MVT::i32 || VT == MVT::f32)
13607	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13608      else if (VT == MVT::i16)
13609	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13610      else if (VT == MVT::i8 || VT == MVT::i1)
13611	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13612      else if (VT == MVT::i64)
13613	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13614      break;
13615    case 'r':   // GENERAL_REGS
13616    case 'l':   // INDEX_REGS
13617      if (VT == MVT::i8 || VT == MVT::i1)
13618        return std::make_pair(0U, X86::GR8RegisterClass);
13619      if (VT == MVT::i16)
13620        return std::make_pair(0U, X86::GR16RegisterClass);
13621      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13622        return std::make_pair(0U, X86::GR32RegisterClass);
13623      return std::make_pair(0U, X86::GR64RegisterClass);
13624    case 'R':   // LEGACY_REGS
13625      if (VT == MVT::i8 || VT == MVT::i1)
13626        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13627      if (VT == MVT::i16)
13628        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13629      if (VT == MVT::i32 || !Subtarget->is64Bit())
13630        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13631      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13632    case 'f':  // FP Stack registers.
13633      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13634      // value to the correct fpstack register class.
13635      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13636        return std::make_pair(0U, X86::RFP32RegisterClass);
13637      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13638        return std::make_pair(0U, X86::RFP64RegisterClass);
13639      return std::make_pair(0U, X86::RFP80RegisterClass);
13640    case 'y':   // MMX_REGS if MMX allowed.
13641      if (!Subtarget->hasMMX()) break;
13642      return std::make_pair(0U, X86::VR64RegisterClass);
13643    case 'Y':   // SSE_REGS if SSE2 allowed
13644      if (!Subtarget->hasXMMInt()) break;
13645      // FALL THROUGH.
13646    case 'x':   // SSE_REGS if SSE1 allowed
13647      if (!Subtarget->hasXMM()) break;
13648
13649      switch (VT.getSimpleVT().SimpleTy) {
13650      default: break;
13651      // Scalar SSE types.
13652      case MVT::f32:
13653      case MVT::i32:
13654        return std::make_pair(0U, X86::FR32RegisterClass);
13655      case MVT::f64:
13656      case MVT::i64:
13657        return std::make_pair(0U, X86::FR64RegisterClass);
13658      // Vector types.
13659      case MVT::v16i8:
13660      case MVT::v8i16:
13661      case MVT::v4i32:
13662      case MVT::v2i64:
13663      case MVT::v4f32:
13664      case MVT::v2f64:
13665        return std::make_pair(0U, X86::VR128RegisterClass);
13666      }
13667      break;
13668    }
13669  }
13670
13671  // Use the default implementation in TargetLowering to convert the register
13672  // constraint into a member of a register class.
13673  std::pair<unsigned, const TargetRegisterClass*> Res;
13674  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13675
13676  // Not found as a standard register?
13677  if (Res.second == 0) {
13678    // Map st(0) -> st(7) -> ST0
13679    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13680        tolower(Constraint[1]) == 's' &&
13681        tolower(Constraint[2]) == 't' &&
13682        Constraint[3] == '(' &&
13683        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13684        Constraint[5] == ')' &&
13685        Constraint[6] == '}') {
13686
13687      Res.first = X86::ST0+Constraint[4]-'0';
13688      Res.second = X86::RFP80RegisterClass;
13689      return Res;
13690    }
13691
13692    // GCC allows "st(0)" to be called just plain "st".
13693    if (StringRef("{st}").equals_lower(Constraint)) {
13694      Res.first = X86::ST0;
13695      Res.second = X86::RFP80RegisterClass;
13696      return Res;
13697    }
13698
13699    // flags -> EFLAGS
13700    if (StringRef("{flags}").equals_lower(Constraint)) {
13701      Res.first = X86::EFLAGS;
13702      Res.second = X86::CCRRegisterClass;
13703      return Res;
13704    }
13705
13706    // 'A' means EAX + EDX.
13707    if (Constraint == "A") {
13708      Res.first = X86::EAX;
13709      Res.second = X86::GR32_ADRegisterClass;
13710      return Res;
13711    }
13712    return Res;
13713  }
13714
13715  // Otherwise, check to see if this is a register class of the wrong value
13716  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13717  // turn into {ax},{dx}.
13718  if (Res.second->hasType(VT))
13719    return Res;   // Correct type already, nothing to do.
13720
13721  // All of the single-register GCC register classes map their values onto
13722  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13723  // really want an 8-bit or 32-bit register, map to the appropriate register
13724  // class and return the appropriate register.
13725  if (Res.second == X86::GR16RegisterClass) {
13726    if (VT == MVT::i8) {
13727      unsigned DestReg = 0;
13728      switch (Res.first) {
13729      default: break;
13730      case X86::AX: DestReg = X86::AL; break;
13731      case X86::DX: DestReg = X86::DL; break;
13732      case X86::CX: DestReg = X86::CL; break;
13733      case X86::BX: DestReg = X86::BL; break;
13734      }
13735      if (DestReg) {
13736        Res.first = DestReg;
13737        Res.second = X86::GR8RegisterClass;
13738      }
13739    } else if (VT == MVT::i32) {
13740      unsigned DestReg = 0;
13741      switch (Res.first) {
13742      default: break;
13743      case X86::AX: DestReg = X86::EAX; break;
13744      case X86::DX: DestReg = X86::EDX; break;
13745      case X86::CX: DestReg = X86::ECX; break;
13746      case X86::BX: DestReg = X86::EBX; break;
13747      case X86::SI: DestReg = X86::ESI; break;
13748      case X86::DI: DestReg = X86::EDI; break;
13749      case X86::BP: DestReg = X86::EBP; break;
13750      case X86::SP: DestReg = X86::ESP; break;
13751      }
13752      if (DestReg) {
13753        Res.first = DestReg;
13754        Res.second = X86::GR32RegisterClass;
13755      }
13756    } else if (VT == MVT::i64) {
13757      unsigned DestReg = 0;
13758      switch (Res.first) {
13759      default: break;
13760      case X86::AX: DestReg = X86::RAX; break;
13761      case X86::DX: DestReg = X86::RDX; break;
13762      case X86::CX: DestReg = X86::RCX; break;
13763      case X86::BX: DestReg = X86::RBX; break;
13764      case X86::SI: DestReg = X86::RSI; break;
13765      case X86::DI: DestReg = X86::RDI; break;
13766      case X86::BP: DestReg = X86::RBP; break;
13767      case X86::SP: DestReg = X86::RSP; break;
13768      }
13769      if (DestReg) {
13770        Res.first = DestReg;
13771        Res.second = X86::GR64RegisterClass;
13772      }
13773    }
13774  } else if (Res.second == X86::FR32RegisterClass ||
13775             Res.second == X86::FR64RegisterClass ||
13776             Res.second == X86::VR128RegisterClass) {
13777    // Handle references to XMM physical registers that got mapped into the
13778    // wrong class.  This can happen with constraints like {xmm0} where the
13779    // target independent register mapper will just pick the first match it can
13780    // find, ignoring the required type.
13781    if (VT == MVT::f32)
13782      Res.second = X86::FR32RegisterClass;
13783    else if (VT == MVT::f64)
13784      Res.second = X86::FR64RegisterClass;
13785    else if (X86::VR128RegisterClass->hasType(VT))
13786      Res.second = X86::VR128RegisterClass;
13787  }
13788
13789  return Res;
13790}
13791