X86ISelLowering.cpp revision 607a7ab3da72a2eb53553a520507cbb8068dd1d8
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file is distributed under the University of Illinois Open Source
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#define DEBUG_TYPE "x86-isel"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetObjectFile.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalAlias.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalVariable.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Instructions.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/LLVMContext.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineJumpTableInfo.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineModuleInfo.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineRegisterInfo.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/PseudoSourceValue.h"
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCAsmInfo.h"
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCContext.h"
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCExpr.h"
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/MC/MCSymbol.h"
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/BitVector.h"
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/SmallSet.h"
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/Statistic.h"
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VectorExtras.h"
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/CommandLine.h"
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Debug.h"
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Dwarf.h"
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/ErrorHandling.h"
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/raw_ostream.h"
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace dwarf;
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteSTATISTIC(NumTailCalls, "Number of tail calls");
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic cl::opt<bool>
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteDisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Disable16Bit - 16-bit operations typically have a larger encoding than
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// corresponding 32-bit instructions, and 16-bit code is slow on some
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// processors. This is an experimental flag to disable 16-bit operations
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// (which forces them to be Legalized to 32-bit operations).
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic cl::opt<bool>
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteDisable16Bit("disable-16bit", cl::Hidden,
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette             cl::desc("Disable use of 16-bit instructions"));
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Forward declarations.
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette                       SDValue V2);
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  default: llvm_unreachable("unknown subtarget type");
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  case X86Subtarget::isDarwin:
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (TM.getSubtarget<X86Subtarget>().is64Bit())
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      return new X8664_MachoTargetObjectFile();
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileMachO();
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  case X86Subtarget::isELF:
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette   if (TM.getSubtarget<X86Subtarget>().is64Bit())
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette     return new X8664_ELFTargetObjectFile(TM);
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new X8632_ELFTargetObjectFile(TM);
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  case X86Subtarget::isMingw:
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  case X86Subtarget::isCygwin:
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  case X86Subtarget::isWindows:
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    return new TargetLoweringObjectFileCOFF();
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette}
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM, createTLOF(TM)) {
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf64 = Subtarget->hasSSE2();
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf32 = Subtarget->hasSSE1();
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  RegInfo = TM.getRegisterInfo();
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  TD = getTargetData();
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountType(MVT::i8);
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setBooleanContents(ZeroOrOneBooleanContent);
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSchedulingPreference(SchedulingForRegPressure);
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (!Disable16Bit)
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
125f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
126f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
127f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
128f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
129f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
130f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
131f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // We don't accept any truncstore of integer registers.
132f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
133f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (!Disable16Bit)
134f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
135f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    if (X86ScalarSSEf64) {
160      // We have an impenetrably clever algorithm for ui64->double only.
161      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
162    }
163    // We have an algorithm for SSE2, and we turn this into a 64-bit
164    // FILD for other targets.
165    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
166  }
167
168  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169  // this operation.
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
172
173  if (!UseSoftFloat) {
174    // SSE has no i16 to fp conversion, only i32
175    if (X86ScalarSSEf32) {
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
177      // f32 and f64 cases are Legal, f80 case is not
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    } else {
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    }
183  } else {
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
186  }
187
188  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
189  // are Legal, f80 is custom lowered.
190  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
191  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
192
193  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194  // this operation.
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
197
198  if (X86ScalarSSEf32) {
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
200    // f32 and f64 cases are Legal, f80 case is not
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  } else {
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  }
206
207  // Handle FP_TO_UINT by promoting the destination to a larger signed
208  // conversion.
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
212
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
216  } else if (!UseSoftFloat) {
217    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
218      // Expand FP_TO_UINT into a select.
219      // FIXME: We would like to use a Custom expander here eventually to do
220      // the optimal thing for SSE vs. the default expansion in the legalizer.
221      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
222    else
223      // With SSE3 we can use fisttpll to convert to a signed i64; without
224      // SSE, we're stuck with a fistpll.
225      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
226  }
227
228  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
229  if (!X86ScalarSSEf64) {
230    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
231    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
232  }
233
234  // Scalar integer divide and remainder are lowered to use operations that
235  // produce two results, to match the available instructions. This exposes
236  // the two-result form to trivial CSE, which is able to combine x/y and x%y
237  // into a single instruction.
238  //
239  // Scalar integer multiply-high is also lowered to use two-result
240  // operations, to match the available instructions. However, plain multiply
241  // (low) operations are left as Legal, as there are single-result
242  // instructions for this in x86. Using the two-result multiply instructions
243  // when both high and low results are needed must be arranged by dagcombine.
244  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
248  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
249  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
262  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
263  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
264  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
265  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
266  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
267  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
268
269  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
270  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
271  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
272  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
273  if (Subtarget->is64Bit())
274    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
276  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
277  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
278  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
280  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
281  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
282  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
283
284  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
287  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
288  if (Disable16Bit) {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
291  } else {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
294  }
295  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
296  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
297  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
298  if (Subtarget->is64Bit()) {
299    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
300    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
301    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
302  }
303
304  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
305  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
306
307  // These should be promoted to a larger select which is supported.
308  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
309  // X86 wants to expand cmov itself.
310  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
311  if (Disable16Bit)
312    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
313  else
314    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
320  if (Disable16Bit)
321    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
322  else
323    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
330    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
331  }
332  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
333
334  // Darwin ABI issue.
335  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
336  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
338  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
341  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
342  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
345    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
346    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
347    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
348    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
349  }
350  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
351  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
353  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
354  if (Subtarget->is64Bit()) {
355    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
357    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
358  }
359
360  if (Subtarget->hasSSE1())
361    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
362
363  if (!Subtarget->hasSSE2())
364    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
627    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
629    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
630    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
631
632    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
633    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
634    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
635    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
638    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
641
642    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
643    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
644
645    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
646    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
650    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
651    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
652
653    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
658    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
659    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
660
661    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
666    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
667    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
668
669    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
676    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
677    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
678
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
684
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
687    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
692    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
694
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
696
697    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
699    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
700    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
704  }
705
706  if (!UseSoftFloat && Subtarget->hasSSE1()) {
707    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
708
709    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
715    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
716    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
719    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
721  }
722
723  if (!UseSoftFloat && Subtarget->hasSSE2()) {
724    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
725
726    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
727    // registers cannot be used even for integer operations.
728    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
731    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
732
733    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
734    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
735    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
736    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
737    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
738    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
739    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
740    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
741    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
742    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
743    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
748    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
749
750    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
753    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
754
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
756    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
760
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
766
767    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
768    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
769      EVT VT = (MVT::SimpleValueType)i;
770      // Do not attempt to custom lower non-power-of-2 vectors
771      if (!isPowerOf2_32(VT.getVectorNumElements()))
772        continue;
773      // Do not attempt to custom lower non-128-bit vectors
774      if (!VT.is128BitVector())
775        continue;
776      setOperationAction(ISD::BUILD_VECTOR,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::VECTOR_SHUFFLE,
779                         VT.getSimpleVT().SimpleTy, Custom);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
781                         VT.getSimpleVT().SimpleTy, Custom);
782    }
783
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
785    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
788    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
790
791    if (Subtarget->is64Bit()) {
792      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
793      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
794    }
795
796    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
797    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
798      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
799      EVT VT = SVT;
800
801      // Do not attempt to promote non-128-bit vectors
802      if (!VT.is128BitVector()) {
803        continue;
804      }
805
806      setOperationAction(ISD::AND,    SVT, Promote);
807      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
808      setOperationAction(ISD::OR,     SVT, Promote);
809      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
810      setOperationAction(ISD::XOR,    SVT, Promote);
811      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
812      setOperationAction(ISD::LOAD,   SVT, Promote);
813      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
814      setOperationAction(ISD::SELECT, SVT, Promote);
815      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
816    }
817
818    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
819
820    // Custom lower v2i64 and v2f64 selects.
821    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
822    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
823    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
825
826    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
827    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
828    if (!DisableMMX && Subtarget->hasMMX()) {
829      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
830      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
831    }
832  }
833
834  if (Subtarget->hasSSE41()) {
835    // FIXME: Do we need to handle scalar-to-vector here?
836    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
837
838    // i8 and i16 vectors are custom , because the source register and source
839    // source memory operand types are not the same width.  f32 vectors are
840    // custom since the immediate controlling the insert encodes additional
841    // information.
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
843    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
844    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
846
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
848    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
849    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
851
852    if (Subtarget->is64Bit()) {
853      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
854      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
855    }
856  }
857
858  if (Subtarget->hasSSE42()) {
859    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
860  }
861
862  if (!UseSoftFloat && Subtarget->hasAVX()) {
863    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
864    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
865    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
866    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
867
868    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
869    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
870    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
871    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
872    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
874    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
875    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
876    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
877    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
878    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
879    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
880    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
881    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
882    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
883
884    // Operations to consider commented out -v16i16 v32i8
885    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
886    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
887    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
888    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
889    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
890    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
891    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
892    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
893    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
895    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
896    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
897    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
898    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
899
900    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
901    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
902    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
903    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
904
905    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
906    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
907    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
908    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
910
911    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
912    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
913    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
914    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
915    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
917
918#if 0
919    // Not sure we want to do this since there are no 256-bit integer
920    // operations in AVX
921
922    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
923    // This includes 256-bit vectors
924    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
925      EVT VT = (MVT::SimpleValueType)i;
926
927      // Do not attempt to custom lower non-power-of-2 vectors
928      if (!isPowerOf2_32(VT.getVectorNumElements()))
929        continue;
930
931      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
932      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
933      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
934    }
935
936    if (Subtarget->is64Bit()) {
937      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
938      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
939    }
940#endif
941
942#if 0
943    // Not sure we want to do this since there are no 256-bit integer
944    // operations in AVX
945
946    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
947    // Including 256-bit vectors
948    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
949      EVT VT = (MVT::SimpleValueType)i;
950
951      if (!VT.is256BitVector()) {
952        continue;
953      }
954      setOperationAction(ISD::AND,    VT, Promote);
955      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
956      setOperationAction(ISD::OR,     VT, Promote);
957      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
958      setOperationAction(ISD::XOR,    VT, Promote);
959      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
960      setOperationAction(ISD::LOAD,   VT, Promote);
961      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
962      setOperationAction(ISD::SELECT, VT, Promote);
963      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
964    }
965
966    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
967#endif
968  }
969
970  // We want to custom lower some of our intrinsics.
971  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
972
973  // Add/Sub/Mul with overflow operations are custom lowered.
974  setOperationAction(ISD::SADDO, MVT::i32, Custom);
975  setOperationAction(ISD::SADDO, MVT::i64, Custom);
976  setOperationAction(ISD::UADDO, MVT::i32, Custom);
977  setOperationAction(ISD::UADDO, MVT::i64, Custom);
978  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
979  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
980  setOperationAction(ISD::USUBO, MVT::i32, Custom);
981  setOperationAction(ISD::USUBO, MVT::i64, Custom);
982  setOperationAction(ISD::SMULO, MVT::i32, Custom);
983  setOperationAction(ISD::SMULO, MVT::i64, Custom);
984
985  if (!Subtarget->is64Bit()) {
986    // These libcalls are not available in 32-bit.
987    setLibcallName(RTLIB::SHL_I128, 0);
988    setLibcallName(RTLIB::SRL_I128, 0);
989    setLibcallName(RTLIB::SRA_I128, 0);
990  }
991
992  // We have target-specific dag combine patterns for the following nodes:
993  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
994  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
995  setTargetDAGCombine(ISD::BUILD_VECTOR);
996  setTargetDAGCombine(ISD::SELECT);
997  setTargetDAGCombine(ISD::SHL);
998  setTargetDAGCombine(ISD::SRA);
999  setTargetDAGCombine(ISD::SRL);
1000  setTargetDAGCombine(ISD::OR);
1001  setTargetDAGCombine(ISD::STORE);
1002  setTargetDAGCombine(ISD::MEMBARRIER);
1003  setTargetDAGCombine(ISD::ZERO_EXTEND);
1004  if (Subtarget->is64Bit())
1005    setTargetDAGCombine(ISD::MUL);
1006
1007  computeRegisterProperties();
1008
1009  // FIXME: These should be based on subtarget info. Plus, the values should
1010  // be smaller when we are in optimizing for size mode.
1011  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1012  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1013  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1014  setPrefLoopAlignment(16);
1015  benefitFromCodePlacementOpt = true;
1016}
1017
1018
1019MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1020  return MVT::i8;
1021}
1022
1023
1024/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1025/// the desired ByVal argument alignment.
1026static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1027  if (MaxAlign == 16)
1028    return;
1029  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1030    if (VTy->getBitWidth() == 128)
1031      MaxAlign = 16;
1032  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1033    unsigned EltAlign = 0;
1034    getMaxByValAlign(ATy->getElementType(), EltAlign);
1035    if (EltAlign > MaxAlign)
1036      MaxAlign = EltAlign;
1037  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1038    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1039      unsigned EltAlign = 0;
1040      getMaxByValAlign(STy->getElementType(i), EltAlign);
1041      if (EltAlign > MaxAlign)
1042        MaxAlign = EltAlign;
1043      if (MaxAlign == 16)
1044        break;
1045    }
1046  }
1047  return;
1048}
1049
1050/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1051/// function arguments in the caller parameter area. For X86, aggregates
1052/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1053/// are at 4-byte boundaries.
1054unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1055  if (Subtarget->is64Bit()) {
1056    // Max of 8 and alignment of type.
1057    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1058    if (TyAlign > 8)
1059      return TyAlign;
1060    return 8;
1061  }
1062
1063  unsigned Align = 4;
1064  if (Subtarget->hasSSE1())
1065    getMaxByValAlign(Ty, Align);
1066  return Align;
1067}
1068
1069/// getOptimalMemOpType - Returns the target specific optimal type for load
1070/// and store operations as a result of memset, memcpy, and memmove
1071/// lowering. If DstAlign is zero that means it's safe to destination
1072/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1073/// means there isn't a need to check it against alignment requirement,
1074/// probably because the source does not need to be loaded. If
1075/// 'NonScalarIntSafe' is true, that means it's safe to return a
1076/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1077/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1078/// constant so it does not need to be loaded.
1079/// It returns EVT::Other if SelectionDAG should be responsible for
1080/// determining the type.
1081EVT
1082X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1083                                       unsigned DstAlign, unsigned SrcAlign,
1084                                       bool NonScalarIntSafe,
1085                                       bool MemcpyStrSrc,
1086                                       SelectionDAG &DAG) const {
1087  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1088  // linux.  This is because the stack realignment code can't handle certain
1089  // cases like PR2962.  This should be removed when PR2962 is fixed.
1090  const Function *F = DAG.getMachineFunction().getFunction();
1091  if (NonScalarIntSafe &&
1092      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1093    if (Size >= 16 &&
1094        (Subtarget->isUnalignedMemAccessFast() ||
1095         ((DstAlign == 0 || DstAlign >= 16) &&
1096          (SrcAlign == 0 || SrcAlign >= 16))) &&
1097        Subtarget->getStackAlignment() >= 16) {
1098      if (Subtarget->hasSSE2())
1099        return MVT::v4i32;
1100      if (Subtarget->hasSSE1())
1101        return MVT::v4f32;
1102    } else if (!MemcpyStrSrc && Size >= 8 &&
1103               !Subtarget->is64Bit() &&
1104               Subtarget->getStackAlignment() >= 8 &&
1105               Subtarget->hasSSE2()) {
1106      // Do not use f64 to lower memcpy if source is string constant. It's
1107      // better to use i32 to avoid the loads.
1108      return MVT::f64;
1109    }
1110  }
1111  if (Subtarget->is64Bit() && Size >= 8)
1112    return MVT::i64;
1113  return MVT::i32;
1114}
1115
1116/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1117/// current function.  The returned value is a member of the
1118/// MachineJumpTableInfo::JTEntryKind enum.
1119unsigned X86TargetLowering::getJumpTableEncoding() const {
1120  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1121  // symbol.
1122  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1123      Subtarget->isPICStyleGOT())
1124    return MachineJumpTableInfo::EK_Custom32;
1125
1126  // Otherwise, use the normal jump table encoding heuristics.
1127  return TargetLowering::getJumpTableEncoding();
1128}
1129
1130/// getPICBaseSymbol - Return the X86-32 PIC base.
1131MCSymbol *
1132X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1133                                    MCContext &Ctx) const {
1134  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1135  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1136                               Twine(MF->getFunctionNumber())+"$pb");
1137}
1138
1139
1140const MCExpr *
1141X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1142                                             const MachineBasicBlock *MBB,
1143                                             unsigned uid,MCContext &Ctx) const{
1144  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1145         Subtarget->isPICStyleGOT());
1146  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1147  // entries.
1148  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1149                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1150}
1151
1152/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1153/// jumptable.
1154SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1155                                                    SelectionDAG &DAG) const {
1156  if (!Subtarget->is64Bit())
1157    // This doesn't have DebugLoc associated with it, but is not really the
1158    // same as a Register.
1159    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1160  return Table;
1161}
1162
1163/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1164/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1165/// MCExpr.
1166const MCExpr *X86TargetLowering::
1167getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1168                             MCContext &Ctx) const {
1169  // X86-64 uses RIP relative addressing based on the jump table label.
1170  if (Subtarget->isPICStyleRIPRel())
1171    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1172
1173  // Otherwise, the reference is relative to the PIC base.
1174  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1175}
1176
1177/// getFunctionAlignment - Return the Log2 alignment of this function.
1178unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1179  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1180}
1181
1182//===----------------------------------------------------------------------===//
1183//               Return Value Calling Convention Implementation
1184//===----------------------------------------------------------------------===//
1185
1186#include "X86GenCallingConv.inc"
1187
1188bool
1189X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1190                        const SmallVectorImpl<EVT> &OutTys,
1191                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1192                        SelectionDAG &DAG) {
1193  SmallVector<CCValAssign, 16> RVLocs;
1194  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1195                 RVLocs, *DAG.getContext());
1196  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1197}
1198
1199SDValue
1200X86TargetLowering::LowerReturn(SDValue Chain,
1201                               CallingConv::ID CallConv, bool isVarArg,
1202                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1203                               DebugLoc dl, SelectionDAG &DAG) {
1204
1205  SmallVector<CCValAssign, 16> RVLocs;
1206  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1207                 RVLocs, *DAG.getContext());
1208  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1209
1210  // Add the regs to the liveout set for the function.
1211  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1212  for (unsigned i = 0; i != RVLocs.size(); ++i)
1213    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1214      MRI.addLiveOut(RVLocs[i].getLocReg());
1215
1216  SDValue Flag;
1217
1218  SmallVector<SDValue, 6> RetOps;
1219  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1220  // Operand #1 = Bytes To Pop
1221  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1222
1223  // Copy the result values into the output registers.
1224  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1225    CCValAssign &VA = RVLocs[i];
1226    assert(VA.isRegLoc() && "Can only return in registers!");
1227    SDValue ValToCopy = Outs[i].Val;
1228
1229    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1230    // the RET instruction and handled by the FP Stackifier.
1231    if (VA.getLocReg() == X86::ST0 ||
1232        VA.getLocReg() == X86::ST1) {
1233      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1234      // change the value to the FP stack register class.
1235      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1236        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1237      RetOps.push_back(ValToCopy);
1238      // Don't emit a copytoreg.
1239      continue;
1240    }
1241
1242    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1243    // which is returned in RAX / RDX.
1244    if (Subtarget->is64Bit()) {
1245      EVT ValVT = ValToCopy.getValueType();
1246      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1247        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1248        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1249          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1250      }
1251    }
1252
1253    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1254    Flag = Chain.getValue(1);
1255  }
1256
1257  // The x86-64 ABI for returning structs by value requires that we copy
1258  // the sret argument into %rax for the return. We saved the argument into
1259  // a virtual register in the entry block, so now we copy the value out
1260  // and into %rax.
1261  if (Subtarget->is64Bit() &&
1262      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1263    MachineFunction &MF = DAG.getMachineFunction();
1264    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1265    unsigned Reg = FuncInfo->getSRetReturnReg();
1266    if (!Reg) {
1267      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1268      FuncInfo->setSRetReturnReg(Reg);
1269    }
1270    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1271
1272    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1273    Flag = Chain.getValue(1);
1274
1275    // RAX now acts like a return value.
1276    MRI.addLiveOut(X86::RAX);
1277  }
1278
1279  RetOps[0] = Chain;  // Update chain.
1280
1281  // Add the flag if we have it.
1282  if (Flag.getNode())
1283    RetOps.push_back(Flag);
1284
1285  return DAG.getNode(X86ISD::RET_FLAG, dl,
1286                     MVT::Other, &RetOps[0], RetOps.size());
1287}
1288
1289/// LowerCallResult - Lower the result values of a call into the
1290/// appropriate copies out of appropriate physical registers.
1291///
1292SDValue
1293X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1294                                   CallingConv::ID CallConv, bool isVarArg,
1295                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1296                                   DebugLoc dl, SelectionDAG &DAG,
1297                                   SmallVectorImpl<SDValue> &InVals) {
1298
1299  // Assign locations to each value returned by this call.
1300  SmallVector<CCValAssign, 16> RVLocs;
1301  bool Is64Bit = Subtarget->is64Bit();
1302  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1303                 RVLocs, *DAG.getContext());
1304  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1305
1306  // Copy all of the result registers out of their specified physreg.
1307  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1308    CCValAssign &VA = RVLocs[i];
1309    EVT CopyVT = VA.getValVT();
1310
1311    // If this is x86-64, and we disabled SSE, we can't return FP values
1312    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1313        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1314      report_fatal_error("SSE register return with SSE disabled");
1315    }
1316
1317    // If this is a call to a function that returns an fp value on the floating
1318    // point stack, but where we prefer to use the value in xmm registers, copy
1319    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1320    if ((VA.getLocReg() == X86::ST0 ||
1321         VA.getLocReg() == X86::ST1) &&
1322        isScalarFPTypeInSSEReg(VA.getValVT())) {
1323      CopyVT = MVT::f80;
1324    }
1325
1326    SDValue Val;
1327    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1328      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1329      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1330        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1331                                   MVT::v2i64, InFlag).getValue(1);
1332        Val = Chain.getValue(0);
1333        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1334                          Val, DAG.getConstant(0, MVT::i64));
1335      } else {
1336        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1337                                   MVT::i64, InFlag).getValue(1);
1338        Val = Chain.getValue(0);
1339      }
1340      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1341    } else {
1342      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1343                                 CopyVT, InFlag).getValue(1);
1344      Val = Chain.getValue(0);
1345    }
1346    InFlag = Chain.getValue(2);
1347
1348    if (CopyVT != VA.getValVT()) {
1349      // Round the F80 the right size, which also moves to the appropriate xmm
1350      // register.
1351      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1352                        // This truncation won't change the value.
1353                        DAG.getIntPtrConstant(1));
1354    }
1355
1356    InVals.push_back(Val);
1357  }
1358
1359  return Chain;
1360}
1361
1362
1363//===----------------------------------------------------------------------===//
1364//                C & StdCall & Fast Calling Convention implementation
1365//===----------------------------------------------------------------------===//
1366//  StdCall calling convention seems to be standard for many Windows' API
1367//  routines and around. It differs from C calling convention just a little:
1368//  callee should clean up the stack, not caller. Symbols should be also
1369//  decorated in some fancy way :) It doesn't support any vector arguments.
1370//  For info on fast calling convention see Fast Calling Convention (tail call)
1371//  implementation LowerX86_32FastCCCallTo.
1372
1373/// CallIsStructReturn - Determines whether a call uses struct return
1374/// semantics.
1375static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1376  if (Outs.empty())
1377    return false;
1378
1379  return Outs[0].Flags.isSRet();
1380}
1381
1382/// ArgsAreStructReturn - Determines whether a function uses struct
1383/// return semantics.
1384static bool
1385ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1386  if (Ins.empty())
1387    return false;
1388
1389  return Ins[0].Flags.isSRet();
1390}
1391
1392/// IsCalleePop - Determines whether the callee is required to pop its
1393/// own arguments. Callee pop is necessary to support tail calls.
1394bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1395  if (IsVarArg)
1396    return false;
1397
1398  switch (CallingConv) {
1399  default:
1400    return false;
1401  case CallingConv::X86_StdCall:
1402    return !Subtarget->is64Bit();
1403  case CallingConv::X86_FastCall:
1404    return !Subtarget->is64Bit();
1405  case CallingConv::Fast:
1406    return GuaranteedTailCallOpt;
1407  case CallingConv::GHC:
1408    return GuaranteedTailCallOpt;
1409  }
1410}
1411
1412/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1413/// given CallingConvention value.
1414CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1415  if (Subtarget->is64Bit()) {
1416    if (CC == CallingConv::GHC)
1417      return CC_X86_64_GHC;
1418    else if (Subtarget->isTargetWin64())
1419      return CC_X86_Win64_C;
1420    else
1421      return CC_X86_64_C;
1422  }
1423
1424  if (CC == CallingConv::X86_FastCall)
1425    return CC_X86_32_FastCall;
1426  else if (CC == CallingConv::Fast)
1427    return CC_X86_32_FastCC;
1428  else if (CC == CallingConv::GHC)
1429    return CC_X86_32_GHC;
1430  else
1431    return CC_X86_32_C;
1432}
1433
1434/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1435/// by "Src" to address "Dst" with size and alignment information specified by
1436/// the specific parameter attribute. The copy will be passed as a byval
1437/// function parameter.
1438static SDValue
1439CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1440                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1441                          DebugLoc dl) {
1442  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1443  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1444                       /*isVolatile*/false, /*AlwaysInline=*/true,
1445                       NULL, 0, NULL, 0);
1446}
1447
1448/// IsTailCallConvention - Return true if the calling convention is one that
1449/// supports tail call optimization.
1450static bool IsTailCallConvention(CallingConv::ID CC) {
1451  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1452}
1453
1454/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1455/// a tailcall target by changing its ABI.
1456static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1457  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1458}
1459
1460SDValue
1461X86TargetLowering::LowerMemArgument(SDValue Chain,
1462                                    CallingConv::ID CallConv,
1463                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1464                                    DebugLoc dl, SelectionDAG &DAG,
1465                                    const CCValAssign &VA,
1466                                    MachineFrameInfo *MFI,
1467                                    unsigned i) {
1468  // Create the nodes corresponding to a load from this parameter slot.
1469  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1470  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1471  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1472  EVT ValVT;
1473
1474  // If value is passed by pointer we have address passed instead of the value
1475  // itself.
1476  if (VA.getLocInfo() == CCValAssign::Indirect)
1477    ValVT = VA.getLocVT();
1478  else
1479    ValVT = VA.getValVT();
1480
1481  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1482  // changed with more analysis.
1483  // In case of tail call optimization mark all arguments mutable. Since they
1484  // could be overwritten by lowering of arguments in case of a tail call.
1485  if (Flags.isByVal()) {
1486    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1487                                    VA.getLocMemOffset(), isImmutable, false);
1488    return DAG.getFrameIndex(FI, getPointerTy());
1489  } else {
1490    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1491                                    VA.getLocMemOffset(), isImmutable, false);
1492    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1493    return DAG.getLoad(ValVT, dl, Chain, FIN,
1494                       PseudoSourceValue::getFixedStack(FI), 0,
1495                       false, false, 0);
1496  }
1497}
1498
1499SDValue
1500X86TargetLowering::LowerFormalArguments(SDValue Chain,
1501                                        CallingConv::ID CallConv,
1502                                        bool isVarArg,
1503                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1504                                        DebugLoc dl,
1505                                        SelectionDAG &DAG,
1506                                        SmallVectorImpl<SDValue> &InVals) {
1507  MachineFunction &MF = DAG.getMachineFunction();
1508  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1509
1510  const Function* Fn = MF.getFunction();
1511  if (Fn->hasExternalLinkage() &&
1512      Subtarget->isTargetCygMing() &&
1513      Fn->getName() == "main")
1514    FuncInfo->setForceFramePointer(true);
1515
1516  MachineFrameInfo *MFI = MF.getFrameInfo();
1517  bool Is64Bit = Subtarget->is64Bit();
1518  bool IsWin64 = Subtarget->isTargetWin64();
1519
1520  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1521         "Var args not supported with calling convention fastcc or ghc");
1522
1523  // Assign locations to all of the incoming arguments.
1524  SmallVector<CCValAssign, 16> ArgLocs;
1525  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1526                 ArgLocs, *DAG.getContext());
1527  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1528
1529  unsigned LastVal = ~0U;
1530  SDValue ArgValue;
1531  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1532    CCValAssign &VA = ArgLocs[i];
1533    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1534    // places.
1535    assert(VA.getValNo() != LastVal &&
1536           "Don't support value assigned to multiple locs yet");
1537    LastVal = VA.getValNo();
1538
1539    if (VA.isRegLoc()) {
1540      EVT RegVT = VA.getLocVT();
1541      TargetRegisterClass *RC = NULL;
1542      if (RegVT == MVT::i32)
1543        RC = X86::GR32RegisterClass;
1544      else if (Is64Bit && RegVT == MVT::i64)
1545        RC = X86::GR64RegisterClass;
1546      else if (RegVT == MVT::f32)
1547        RC = X86::FR32RegisterClass;
1548      else if (RegVT == MVT::f64)
1549        RC = X86::FR64RegisterClass;
1550      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1551        RC = X86::VR128RegisterClass;
1552      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1553        RC = X86::VR64RegisterClass;
1554      else
1555        llvm_unreachable("Unknown argument type!");
1556
1557      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1558      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1559
1560      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1561      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1562      // right size.
1563      if (VA.getLocInfo() == CCValAssign::SExt)
1564        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1565                               DAG.getValueType(VA.getValVT()));
1566      else if (VA.getLocInfo() == CCValAssign::ZExt)
1567        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1568                               DAG.getValueType(VA.getValVT()));
1569      else if (VA.getLocInfo() == CCValAssign::BCvt)
1570        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1571
1572      if (VA.isExtInLoc()) {
1573        // Handle MMX values passed in XMM regs.
1574        if (RegVT.isVector()) {
1575          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1576                                 ArgValue, DAG.getConstant(0, MVT::i64));
1577          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1578        } else
1579          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1580      }
1581    } else {
1582      assert(VA.isMemLoc());
1583      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1584    }
1585
1586    // If value is passed via pointer - do a load.
1587    if (VA.getLocInfo() == CCValAssign::Indirect)
1588      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1589                             false, false, 0);
1590
1591    InVals.push_back(ArgValue);
1592  }
1593
1594  // The x86-64 ABI for returning structs by value requires that we copy
1595  // the sret argument into %rax for the return. Save the argument into
1596  // a virtual register so that we can access it from the return points.
1597  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1598    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1599    unsigned Reg = FuncInfo->getSRetReturnReg();
1600    if (!Reg) {
1601      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1602      FuncInfo->setSRetReturnReg(Reg);
1603    }
1604    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1605    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1606  }
1607
1608  unsigned StackSize = CCInfo.getNextStackOffset();
1609  // Align stack specially for tail calls.
1610  if (FuncIsMadeTailCallSafe(CallConv))
1611    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1612
1613  // If the function takes variable number of arguments, make a frame index for
1614  // the start of the first vararg value... for expansion of llvm.va_start.
1615  if (isVarArg) {
1616    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1617      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1618    }
1619    if (Is64Bit) {
1620      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1621
1622      // FIXME: We should really autogenerate these arrays
1623      static const unsigned GPR64ArgRegsWin64[] = {
1624        X86::RCX, X86::RDX, X86::R8,  X86::R9
1625      };
1626      static const unsigned XMMArgRegsWin64[] = {
1627        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1628      };
1629      static const unsigned GPR64ArgRegs64Bit[] = {
1630        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1631      };
1632      static const unsigned XMMArgRegs64Bit[] = {
1633        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1634        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1635      };
1636      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1637
1638      if (IsWin64) {
1639        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1640        GPR64ArgRegs = GPR64ArgRegsWin64;
1641        XMMArgRegs = XMMArgRegsWin64;
1642      } else {
1643        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1644        GPR64ArgRegs = GPR64ArgRegs64Bit;
1645        XMMArgRegs = XMMArgRegs64Bit;
1646      }
1647      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1648                                                       TotalNumIntRegs);
1649      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1650                                                       TotalNumXMMRegs);
1651
1652      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1653      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1654             "SSE register cannot be used when SSE is disabled!");
1655      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1656             "SSE register cannot be used when SSE is disabled!");
1657      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1658        // Kernel mode asks for SSE to be disabled, so don't push them
1659        // on the stack.
1660        TotalNumXMMRegs = 0;
1661
1662      // For X86-64, if there are vararg parameters that are passed via
1663      // registers, then we must store them to their spots on the stack so they
1664      // may be loaded by deferencing the result of va_next.
1665      VarArgsGPOffset = NumIntRegs * 8;
1666      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1667      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1668                                                 TotalNumXMMRegs * 16, 16,
1669                                                 false);
1670
1671      // Store the integer parameter registers.
1672      SmallVector<SDValue, 8> MemOps;
1673      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1674      unsigned Offset = VarArgsGPOffset;
1675      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1676        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1677                                  DAG.getIntPtrConstant(Offset));
1678        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1679                                     X86::GR64RegisterClass);
1680        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1681        SDValue Store =
1682          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1683                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1684                       Offset, false, false, 0);
1685        MemOps.push_back(Store);
1686        Offset += 8;
1687      }
1688
1689      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1690        // Now store the XMM (fp + vector) parameter registers.
1691        SmallVector<SDValue, 11> SaveXMMOps;
1692        SaveXMMOps.push_back(Chain);
1693
1694        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1695        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1696        SaveXMMOps.push_back(ALVal);
1697
1698        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1699        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1700
1701        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1702          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1703                                       X86::VR128RegisterClass);
1704          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1705          SaveXMMOps.push_back(Val);
1706        }
1707        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1708                                     MVT::Other,
1709                                     &SaveXMMOps[0], SaveXMMOps.size()));
1710      }
1711
1712      if (!MemOps.empty())
1713        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1714                            &MemOps[0], MemOps.size());
1715    }
1716  }
1717
1718  // Some CCs need callee pop.
1719  if (IsCalleePop(isVarArg, CallConv)) {
1720    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1721  } else {
1722    BytesToPopOnReturn  = 0; // Callee pops nothing.
1723    // If this is an sret function, the return should pop the hidden pointer.
1724    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1725      BytesToPopOnReturn = 4;
1726  }
1727
1728  if (!Is64Bit) {
1729    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1730    if (CallConv == CallingConv::X86_FastCall)
1731      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1732  }
1733
1734  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1735
1736  return Chain;
1737}
1738
1739SDValue
1740X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1741                                    SDValue StackPtr, SDValue Arg,
1742                                    DebugLoc dl, SelectionDAG &DAG,
1743                                    const CCValAssign &VA,
1744                                    ISD::ArgFlagsTy Flags) {
1745  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1746  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1747  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1748  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1749  if (Flags.isByVal()) {
1750    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1751  }
1752  return DAG.getStore(Chain, dl, Arg, PtrOff,
1753                      PseudoSourceValue::getStack(), LocMemOffset,
1754                      false, false, 0);
1755}
1756
1757/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1758/// optimization is performed and it is required.
1759SDValue
1760X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1761                                           SDValue &OutRetAddr, SDValue Chain,
1762                                           bool IsTailCall, bool Is64Bit,
1763                                           int FPDiff, DebugLoc dl) {
1764  // Adjust the Return address stack slot.
1765  EVT VT = getPointerTy();
1766  OutRetAddr = getReturnAddressFrameIndex(DAG);
1767
1768  // Load the "old" Return address.
1769  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1770  return SDValue(OutRetAddr.getNode(), 1);
1771}
1772
1773/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1774/// optimization is performed and it is required (FPDiff!=0).
1775static SDValue
1776EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1777                         SDValue Chain, SDValue RetAddrFrIdx,
1778                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1779  // Store the return address to the appropriate stack slot.
1780  if (!FPDiff) return Chain;
1781  // Calculate the new stack slot for the return address.
1782  int SlotSize = Is64Bit ? 8 : 4;
1783  int NewReturnAddrFI =
1784    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1785  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1786  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1787  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1788                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1789                       false, false, 0);
1790  return Chain;
1791}
1792
1793SDValue
1794X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1795                             CallingConv::ID CallConv, bool isVarArg,
1796                             bool &isTailCall,
1797                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1798                             const SmallVectorImpl<ISD::InputArg> &Ins,
1799                             DebugLoc dl, SelectionDAG &DAG,
1800                             SmallVectorImpl<SDValue> &InVals) {
1801  MachineFunction &MF = DAG.getMachineFunction();
1802  bool Is64Bit        = Subtarget->is64Bit();
1803  bool IsStructRet    = CallIsStructReturn(Outs);
1804  bool IsSibcall      = false;
1805
1806  if (isTailCall) {
1807    // Check if it's really possible to do a tail call.
1808    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1809                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1810                                                   Outs, Ins, DAG);
1811
1812    // Sibcalls are automatically detected tailcalls which do not require
1813    // ABI changes.
1814    if (!GuaranteedTailCallOpt && isTailCall)
1815      IsSibcall = true;
1816
1817    if (isTailCall)
1818      ++NumTailCalls;
1819  }
1820
1821  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1822         "Var args not supported with calling convention fastcc or ghc");
1823
1824  // Analyze operands of the call, assigning locations to each operand.
1825  SmallVector<CCValAssign, 16> ArgLocs;
1826  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1827                 ArgLocs, *DAG.getContext());
1828  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1829
1830  // Get a count of how many bytes are to be pushed on the stack.
1831  unsigned NumBytes = CCInfo.getNextStackOffset();
1832  if (IsSibcall)
1833    // This is a sibcall. The memory operands are available in caller's
1834    // own caller's stack.
1835    NumBytes = 0;
1836  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1837    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1838
1839  int FPDiff = 0;
1840  if (isTailCall && !IsSibcall) {
1841    // Lower arguments at fp - stackoffset + fpdiff.
1842    unsigned NumBytesCallerPushed =
1843      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1844    FPDiff = NumBytesCallerPushed - NumBytes;
1845
1846    // Set the delta of movement of the returnaddr stackslot.
1847    // But only set if delta is greater than previous delta.
1848    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1849      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1850  }
1851
1852  if (!IsSibcall)
1853    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1854
1855  SDValue RetAddrFrIdx;
1856  // Load return adress for tail calls.
1857  if (isTailCall && FPDiff)
1858    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1859                                    Is64Bit, FPDiff, dl);
1860
1861  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1862  SmallVector<SDValue, 8> MemOpChains;
1863  SDValue StackPtr;
1864
1865  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1866  // of tail call optimization arguments are handle later.
1867  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1868    CCValAssign &VA = ArgLocs[i];
1869    EVT RegVT = VA.getLocVT();
1870    SDValue Arg = Outs[i].Val;
1871    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1872    bool isByVal = Flags.isByVal();
1873
1874    // Promote the value if needed.
1875    switch (VA.getLocInfo()) {
1876    default: llvm_unreachable("Unknown loc info!");
1877    case CCValAssign::Full: break;
1878    case CCValAssign::SExt:
1879      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1880      break;
1881    case CCValAssign::ZExt:
1882      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1883      break;
1884    case CCValAssign::AExt:
1885      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1886        // Special case: passing MMX values in XMM registers.
1887        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1888        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1889        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1890      } else
1891        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1892      break;
1893    case CCValAssign::BCvt:
1894      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1895      break;
1896    case CCValAssign::Indirect: {
1897      // Store the argument.
1898      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1899      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1900      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1901                           PseudoSourceValue::getFixedStack(FI), 0,
1902                           false, false, 0);
1903      Arg = SpillSlot;
1904      break;
1905    }
1906    }
1907
1908    if (VA.isRegLoc()) {
1909      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1910    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1911      assert(VA.isMemLoc());
1912      if (StackPtr.getNode() == 0)
1913        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1914      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1915                                             dl, DAG, VA, Flags));
1916    }
1917  }
1918
1919  if (!MemOpChains.empty())
1920    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1921                        &MemOpChains[0], MemOpChains.size());
1922
1923  // Build a sequence of copy-to-reg nodes chained together with token chain
1924  // and flag operands which copy the outgoing args into registers.
1925  SDValue InFlag;
1926  // Tail call byval lowering might overwrite argument registers so in case of
1927  // tail call optimization the copies to registers are lowered later.
1928  if (!isTailCall)
1929    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1930      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1931                               RegsToPass[i].second, InFlag);
1932      InFlag = Chain.getValue(1);
1933    }
1934
1935  if (Subtarget->isPICStyleGOT()) {
1936    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1937    // GOT pointer.
1938    if (!isTailCall) {
1939      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1940                               DAG.getNode(X86ISD::GlobalBaseReg,
1941                                           DebugLoc(), getPointerTy()),
1942                               InFlag);
1943      InFlag = Chain.getValue(1);
1944    } else {
1945      // If we are tail calling and generating PIC/GOT style code load the
1946      // address of the callee into ECX. The value in ecx is used as target of
1947      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1948      // for tail calls on PIC/GOT architectures. Normally we would just put the
1949      // address of GOT into ebx and then call target@PLT. But for tail calls
1950      // ebx would be restored (since ebx is callee saved) before jumping to the
1951      // target@PLT.
1952
1953      // Note: The actual moving to ECX is done further down.
1954      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1955      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1956          !G->getGlobal()->hasProtectedVisibility())
1957        Callee = LowerGlobalAddress(Callee, DAG);
1958      else if (isa<ExternalSymbolSDNode>(Callee))
1959        Callee = LowerExternalSymbol(Callee, DAG);
1960    }
1961  }
1962
1963  if (Is64Bit && isVarArg) {
1964    // From AMD64 ABI document:
1965    // For calls that may call functions that use varargs or stdargs
1966    // (prototype-less calls or calls to functions containing ellipsis (...) in
1967    // the declaration) %al is used as hidden argument to specify the number
1968    // of SSE registers used. The contents of %al do not need to match exactly
1969    // the number of registers, but must be an ubound on the number of SSE
1970    // registers used and is in the range 0 - 8 inclusive.
1971
1972    // FIXME: Verify this on Win64
1973    // Count the number of XMM registers allocated.
1974    static const unsigned XMMArgRegs[] = {
1975      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1976      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1977    };
1978    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1979    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1980           && "SSE registers cannot be used when SSE is disabled");
1981
1982    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1983                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1984    InFlag = Chain.getValue(1);
1985  }
1986
1987
1988  // For tail calls lower the arguments to the 'real' stack slot.
1989  if (isTailCall) {
1990    // Force all the incoming stack arguments to be loaded from the stack
1991    // before any new outgoing arguments are stored to the stack, because the
1992    // outgoing stack slots may alias the incoming argument stack slots, and
1993    // the alias isn't otherwise explicit. This is slightly more conservative
1994    // than necessary, because it means that each store effectively depends
1995    // on every argument instead of just those arguments it would clobber.
1996    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1997
1998    SmallVector<SDValue, 8> MemOpChains2;
1999    SDValue FIN;
2000    int FI = 0;
2001    // Do not flag preceeding copytoreg stuff together with the following stuff.
2002    InFlag = SDValue();
2003    if (GuaranteedTailCallOpt) {
2004      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2005        CCValAssign &VA = ArgLocs[i];
2006        if (VA.isRegLoc())
2007          continue;
2008        assert(VA.isMemLoc());
2009        SDValue Arg = Outs[i].Val;
2010        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2011        // Create frame index.
2012        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2013        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2014        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
2015        FIN = DAG.getFrameIndex(FI, getPointerTy());
2016
2017        if (Flags.isByVal()) {
2018          // Copy relative to framepointer.
2019          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2020          if (StackPtr.getNode() == 0)
2021            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2022                                          getPointerTy());
2023          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2024
2025          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2026                                                           ArgChain,
2027                                                           Flags, DAG, dl));
2028        } else {
2029          // Store relative to framepointer.
2030          MemOpChains2.push_back(
2031            DAG.getStore(ArgChain, dl, Arg, FIN,
2032                         PseudoSourceValue::getFixedStack(FI), 0,
2033                         false, false, 0));
2034        }
2035      }
2036    }
2037
2038    if (!MemOpChains2.empty())
2039      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2040                          &MemOpChains2[0], MemOpChains2.size());
2041
2042    // Copy arguments to their registers.
2043    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2044      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2045                               RegsToPass[i].second, InFlag);
2046      InFlag = Chain.getValue(1);
2047    }
2048    InFlag =SDValue();
2049
2050    // Store the return address to the appropriate stack slot.
2051    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2052                                     FPDiff, dl);
2053  }
2054
2055  bool WasGlobalOrExternal = false;
2056  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2057    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2058    // In the 64-bit large code model, we have to make all calls
2059    // through a register, since the call instruction's 32-bit
2060    // pc-relative offset may not be large enough to hold the whole
2061    // address.
2062  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2063    WasGlobalOrExternal = true;
2064    // If the callee is a GlobalAddress node (quite common, every direct call
2065    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2066    // it.
2067
2068    // We should use extra load for direct calls to dllimported functions in
2069    // non-JIT mode.
2070    const GlobalValue *GV = G->getGlobal();
2071    if (!GV->hasDLLImportLinkage()) {
2072      unsigned char OpFlags = 0;
2073
2074      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2075      // external symbols most go through the PLT in PIC mode.  If the symbol
2076      // has hidden or protected visibility, or if it is static or local, then
2077      // we don't need to use the PLT - we can directly call it.
2078      if (Subtarget->isTargetELF() &&
2079          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2080          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2081        OpFlags = X86II::MO_PLT;
2082      } else if (Subtarget->isPICStyleStubAny() &&
2083               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2084               Subtarget->getDarwinVers() < 9) {
2085        // PC-relative references to external symbols should go through $stub,
2086        // unless we're building with the leopard linker or later, which
2087        // automatically synthesizes these stubs.
2088        OpFlags = X86II::MO_DARWIN_STUB;
2089      }
2090
2091      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2092                                          G->getOffset(), OpFlags);
2093    }
2094  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2095    WasGlobalOrExternal = true;
2096    unsigned char OpFlags = 0;
2097
2098    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2099    // symbols should go through the PLT.
2100    if (Subtarget->isTargetELF() &&
2101        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2102      OpFlags = X86II::MO_PLT;
2103    } else if (Subtarget->isPICStyleStubAny() &&
2104             Subtarget->getDarwinVers() < 9) {
2105      // PC-relative references to external symbols should go through $stub,
2106      // unless we're building with the leopard linker or later, which
2107      // automatically synthesizes these stubs.
2108      OpFlags = X86II::MO_DARWIN_STUB;
2109    }
2110
2111    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2112                                         OpFlags);
2113  }
2114
2115  // Returns a chain & a flag for retval copy to use.
2116  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2117  SmallVector<SDValue, 8> Ops;
2118
2119  if (!IsSibcall && isTailCall) {
2120    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2121                           DAG.getIntPtrConstant(0, true), InFlag);
2122    InFlag = Chain.getValue(1);
2123  }
2124
2125  Ops.push_back(Chain);
2126  Ops.push_back(Callee);
2127
2128  if (isTailCall)
2129    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2130
2131  // Add argument registers to the end of the list so that they are known live
2132  // into the call.
2133  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2134    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2135                                  RegsToPass[i].second.getValueType()));
2136
2137  // Add an implicit use GOT pointer in EBX.
2138  if (!isTailCall && Subtarget->isPICStyleGOT())
2139    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2140
2141  // Add an implicit use of AL for x86 vararg functions.
2142  if (Is64Bit && isVarArg)
2143    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2144
2145  if (InFlag.getNode())
2146    Ops.push_back(InFlag);
2147
2148  if (isTailCall) {
2149    // If this is the first return lowered for this function, add the regs
2150    // to the liveout set for the function.
2151    if (MF.getRegInfo().liveout_empty()) {
2152      SmallVector<CCValAssign, 16> RVLocs;
2153      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2154                     *DAG.getContext());
2155      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2156      for (unsigned i = 0; i != RVLocs.size(); ++i)
2157        if (RVLocs[i].isRegLoc())
2158          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2159    }
2160    return DAG.getNode(X86ISD::TC_RETURN, dl,
2161                       NodeTys, &Ops[0], Ops.size());
2162  }
2163
2164  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2165  InFlag = Chain.getValue(1);
2166
2167  // Create the CALLSEQ_END node.
2168  unsigned NumBytesForCalleeToPush;
2169  if (IsCalleePop(isVarArg, CallConv))
2170    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2171  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2172    // If this is a call to a struct-return function, the callee
2173    // pops the hidden struct pointer, so we have to push it back.
2174    // This is common for Darwin/X86, Linux & Mingw32 targets.
2175    NumBytesForCalleeToPush = 4;
2176  else
2177    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2178
2179  // Returns a flag for retval copy to use.
2180  if (!IsSibcall) {
2181    Chain = DAG.getCALLSEQ_END(Chain,
2182                               DAG.getIntPtrConstant(NumBytes, true),
2183                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2184                                                     true),
2185                               InFlag);
2186    InFlag = Chain.getValue(1);
2187  }
2188
2189  // Handle result values, copying them out of physregs into vregs that we
2190  // return.
2191  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2192                         Ins, dl, DAG, InVals);
2193}
2194
2195
2196//===----------------------------------------------------------------------===//
2197//                Fast Calling Convention (tail call) implementation
2198//===----------------------------------------------------------------------===//
2199
2200//  Like std call, callee cleans arguments, convention except that ECX is
2201//  reserved for storing the tail called function address. Only 2 registers are
2202//  free for argument passing (inreg). Tail call optimization is performed
2203//  provided:
2204//                * tailcallopt is enabled
2205//                * caller/callee are fastcc
2206//  On X86_64 architecture with GOT-style position independent code only local
2207//  (within module) calls are supported at the moment.
2208//  To keep the stack aligned according to platform abi the function
2209//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2210//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2211//  If a tail called function callee has more arguments than the caller the
2212//  caller needs to make sure that there is room to move the RETADDR to. This is
2213//  achieved by reserving an area the size of the argument delta right after the
2214//  original REtADDR, but before the saved framepointer or the spilled registers
2215//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2216//  stack layout:
2217//    arg1
2218//    arg2
2219//    RETADDR
2220//    [ new RETADDR
2221//      move area ]
2222//    (possible EBP)
2223//    ESI
2224//    EDI
2225//    local1 ..
2226
2227/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2228/// for a 16 byte align requirement.
2229unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2230                                                        SelectionDAG& DAG) {
2231  MachineFunction &MF = DAG.getMachineFunction();
2232  const TargetMachine &TM = MF.getTarget();
2233  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2234  unsigned StackAlignment = TFI.getStackAlignment();
2235  uint64_t AlignMask = StackAlignment - 1;
2236  int64_t Offset = StackSize;
2237  uint64_t SlotSize = TD->getPointerSize();
2238  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2239    // Number smaller than 12 so just add the difference.
2240    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2241  } else {
2242    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2243    Offset = ((~AlignMask) & Offset) + StackAlignment +
2244      (StackAlignment-SlotSize);
2245  }
2246  return Offset;
2247}
2248
2249/// MatchingStackOffset - Return true if the given stack call argument is
2250/// already available in the same position (relatively) of the caller's
2251/// incoming argument stack.
2252static
2253bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2254                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2255                         const X86InstrInfo *TII) {
2256  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2257  int FI = INT_MAX;
2258  if (Arg.getOpcode() == ISD::CopyFromReg) {
2259    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2260    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2261      return false;
2262    MachineInstr *Def = MRI->getVRegDef(VR);
2263    if (!Def)
2264      return false;
2265    if (!Flags.isByVal()) {
2266      if (!TII->isLoadFromStackSlot(Def, FI))
2267        return false;
2268    } else {
2269      unsigned Opcode = Def->getOpcode();
2270      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2271          Def->getOperand(1).isFI()) {
2272        FI = Def->getOperand(1).getIndex();
2273        Bytes = Flags.getByValSize();
2274      } else
2275        return false;
2276    }
2277  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2278    if (Flags.isByVal())
2279      // ByVal argument is passed in as a pointer but it's now being
2280      // dereferenced. e.g.
2281      // define @foo(%struct.X* %A) {
2282      //   tail call @bar(%struct.X* byval %A)
2283      // }
2284      return false;
2285    SDValue Ptr = Ld->getBasePtr();
2286    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2287    if (!FINode)
2288      return false;
2289    FI = FINode->getIndex();
2290  } else
2291    return false;
2292
2293  assert(FI != INT_MAX);
2294  if (!MFI->isFixedObjectIndex(FI))
2295    return false;
2296  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2297}
2298
2299/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2300/// for tail call optimization. Targets which want to do tail call
2301/// optimization should implement this function.
2302bool
2303X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2304                                                     CallingConv::ID CalleeCC,
2305                                                     bool isVarArg,
2306                                                     bool isCalleeStructRet,
2307                                                     bool isCallerStructRet,
2308                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2309                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2310                                                     SelectionDAG& DAG) const {
2311  if (!IsTailCallConvention(CalleeCC) &&
2312      CalleeCC != CallingConv::C)
2313    return false;
2314
2315  // If -tailcallopt is specified, make fastcc functions tail-callable.
2316  const MachineFunction &MF = DAG.getMachineFunction();
2317  const Function *CallerF = DAG.getMachineFunction().getFunction();
2318  if (GuaranteedTailCallOpt) {
2319    if (IsTailCallConvention(CalleeCC) &&
2320        CallerF->getCallingConv() == CalleeCC)
2321      return true;
2322    return false;
2323  }
2324
2325  // Look for obvious safe cases to perform tail call optimization that does not
2326  // requite ABI changes. This is what gcc calls sibcall.
2327
2328  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2329  // emit a special epilogue.
2330  if (RegInfo->needsStackRealignment(MF))
2331    return false;
2332
2333  // Do not sibcall optimize vararg calls unless the call site is not passing any
2334  // arguments.
2335  if (isVarArg && !Outs.empty())
2336    return false;
2337
2338  // Also avoid sibcall optimization if either caller or callee uses struct
2339  // return semantics.
2340  if (isCalleeStructRet || isCallerStructRet)
2341    return false;
2342
2343  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2344  // Therefore if it's not used by the call it is not safe to optimize this into
2345  // a sibcall.
2346  bool Unused = false;
2347  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2348    if (!Ins[i].Used) {
2349      Unused = true;
2350      break;
2351    }
2352  }
2353  if (Unused) {
2354    SmallVector<CCValAssign, 16> RVLocs;
2355    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2356                   RVLocs, *DAG.getContext());
2357    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2358    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2359      CCValAssign &VA = RVLocs[i];
2360      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2361        return false;
2362    }
2363  }
2364
2365  // If the callee takes no arguments then go on to check the results of the
2366  // call.
2367  if (!Outs.empty()) {
2368    // Check if stack adjustment is needed. For now, do not do this if any
2369    // argument is passed on the stack.
2370    SmallVector<CCValAssign, 16> ArgLocs;
2371    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2372                   ArgLocs, *DAG.getContext());
2373    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2374    if (CCInfo.getNextStackOffset()) {
2375      MachineFunction &MF = DAG.getMachineFunction();
2376      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2377        return false;
2378      if (Subtarget->isTargetWin64())
2379        // Win64 ABI has additional complications.
2380        return false;
2381
2382      // Check if the arguments are already laid out in the right way as
2383      // the caller's fixed stack objects.
2384      MachineFrameInfo *MFI = MF.getFrameInfo();
2385      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2386      const X86InstrInfo *TII =
2387        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2388      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2389        CCValAssign &VA = ArgLocs[i];
2390        EVT RegVT = VA.getLocVT();
2391        SDValue Arg = Outs[i].Val;
2392        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2393        if (VA.getLocInfo() == CCValAssign::Indirect)
2394          return false;
2395        if (!VA.isRegLoc()) {
2396          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2397                                   MFI, MRI, TII))
2398            return false;
2399        }
2400      }
2401    }
2402  }
2403
2404  return true;
2405}
2406
2407FastISel *
2408X86TargetLowering::createFastISel(MachineFunction &mf,
2409                            DenseMap<const Value *, unsigned> &vm,
2410                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2411                            DenseMap<const AllocaInst *, int> &am
2412#ifndef NDEBUG
2413                          , SmallSet<const Instruction *, 8> &cil
2414#endif
2415                                  ) {
2416  return X86::createFastISel(mf, vm, bm, am
2417#ifndef NDEBUG
2418                             , cil
2419#endif
2420                             );
2421}
2422
2423
2424//===----------------------------------------------------------------------===//
2425//                           Other Lowering Hooks
2426//===----------------------------------------------------------------------===//
2427
2428
2429SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2430  MachineFunction &MF = DAG.getMachineFunction();
2431  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2432  int ReturnAddrIndex = FuncInfo->getRAIndex();
2433
2434  if (ReturnAddrIndex == 0) {
2435    // Set up a frame object for the return address.
2436    uint64_t SlotSize = TD->getPointerSize();
2437    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2438                                                           false, false);
2439    FuncInfo->setRAIndex(ReturnAddrIndex);
2440  }
2441
2442  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2443}
2444
2445
2446bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2447                                       bool hasSymbolicDisplacement) {
2448  // Offset should fit into 32 bit immediate field.
2449  if (!isInt<32>(Offset))
2450    return false;
2451
2452  // If we don't have a symbolic displacement - we don't have any extra
2453  // restrictions.
2454  if (!hasSymbolicDisplacement)
2455    return true;
2456
2457  // FIXME: Some tweaks might be needed for medium code model.
2458  if (M != CodeModel::Small && M != CodeModel::Kernel)
2459    return false;
2460
2461  // For small code model we assume that latest object is 16MB before end of 31
2462  // bits boundary. We may also accept pretty large negative constants knowing
2463  // that all objects are in the positive half of address space.
2464  if (M == CodeModel::Small && Offset < 16*1024*1024)
2465    return true;
2466
2467  // For kernel code model we know that all object resist in the negative half
2468  // of 32bits address space. We may not accept negative offsets, since they may
2469  // be just off and we may accept pretty large positive ones.
2470  if (M == CodeModel::Kernel && Offset > 0)
2471    return true;
2472
2473  return false;
2474}
2475
2476/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2477/// specific condition code, returning the condition code and the LHS/RHS of the
2478/// comparison to make.
2479static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2480                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2481  if (!isFP) {
2482    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2483      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2484        // X > -1   -> X == 0, jump !sign.
2485        RHS = DAG.getConstant(0, RHS.getValueType());
2486        return X86::COND_NS;
2487      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2488        // X < 0   -> X == 0, jump on sign.
2489        return X86::COND_S;
2490      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2491        // X < 1   -> X <= 0
2492        RHS = DAG.getConstant(0, RHS.getValueType());
2493        return X86::COND_LE;
2494      }
2495    }
2496
2497    switch (SetCCOpcode) {
2498    default: llvm_unreachable("Invalid integer condition!");
2499    case ISD::SETEQ:  return X86::COND_E;
2500    case ISD::SETGT:  return X86::COND_G;
2501    case ISD::SETGE:  return X86::COND_GE;
2502    case ISD::SETLT:  return X86::COND_L;
2503    case ISD::SETLE:  return X86::COND_LE;
2504    case ISD::SETNE:  return X86::COND_NE;
2505    case ISD::SETULT: return X86::COND_B;
2506    case ISD::SETUGT: return X86::COND_A;
2507    case ISD::SETULE: return X86::COND_BE;
2508    case ISD::SETUGE: return X86::COND_AE;
2509    }
2510  }
2511
2512  // First determine if it is required or is profitable to flip the operands.
2513
2514  // If LHS is a foldable load, but RHS is not, flip the condition.
2515  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2516      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2517    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2518    std::swap(LHS, RHS);
2519  }
2520
2521  switch (SetCCOpcode) {
2522  default: break;
2523  case ISD::SETOLT:
2524  case ISD::SETOLE:
2525  case ISD::SETUGT:
2526  case ISD::SETUGE:
2527    std::swap(LHS, RHS);
2528    break;
2529  }
2530
2531  // On a floating point condition, the flags are set as follows:
2532  // ZF  PF  CF   op
2533  //  0 | 0 | 0 | X > Y
2534  //  0 | 0 | 1 | X < Y
2535  //  1 | 0 | 0 | X == Y
2536  //  1 | 1 | 1 | unordered
2537  switch (SetCCOpcode) {
2538  default: llvm_unreachable("Condcode should be pre-legalized away");
2539  case ISD::SETUEQ:
2540  case ISD::SETEQ:   return X86::COND_E;
2541  case ISD::SETOLT:              // flipped
2542  case ISD::SETOGT:
2543  case ISD::SETGT:   return X86::COND_A;
2544  case ISD::SETOLE:              // flipped
2545  case ISD::SETOGE:
2546  case ISD::SETGE:   return X86::COND_AE;
2547  case ISD::SETUGT:              // flipped
2548  case ISD::SETULT:
2549  case ISD::SETLT:   return X86::COND_B;
2550  case ISD::SETUGE:              // flipped
2551  case ISD::SETULE:
2552  case ISD::SETLE:   return X86::COND_BE;
2553  case ISD::SETONE:
2554  case ISD::SETNE:   return X86::COND_NE;
2555  case ISD::SETUO:   return X86::COND_P;
2556  case ISD::SETO:    return X86::COND_NP;
2557  case ISD::SETOEQ:
2558  case ISD::SETUNE:  return X86::COND_INVALID;
2559  }
2560}
2561
2562/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2563/// code. Current x86 isa includes the following FP cmov instructions:
2564/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2565static bool hasFPCMov(unsigned X86CC) {
2566  switch (X86CC) {
2567  default:
2568    return false;
2569  case X86::COND_B:
2570  case X86::COND_BE:
2571  case X86::COND_E:
2572  case X86::COND_P:
2573  case X86::COND_A:
2574  case X86::COND_AE:
2575  case X86::COND_NE:
2576  case X86::COND_NP:
2577    return true;
2578  }
2579}
2580
2581/// isFPImmLegal - Returns true if the target can instruction select the
2582/// specified FP immediate natively. If false, the legalizer will
2583/// materialize the FP immediate as a load from a constant pool.
2584bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2585  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2586    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2587      return true;
2588  }
2589  return false;
2590}
2591
2592/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2593/// the specified range (L, H].
2594static bool isUndefOrInRange(int Val, int Low, int Hi) {
2595  return (Val < 0) || (Val >= Low && Val < Hi);
2596}
2597
2598/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2599/// specified value.
2600static bool isUndefOrEqual(int Val, int CmpVal) {
2601  if (Val < 0 || Val == CmpVal)
2602    return true;
2603  return false;
2604}
2605
2606/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2607/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2608/// the second operand.
2609static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2610  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2611    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2612  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2613    return (Mask[0] < 2 && Mask[1] < 2);
2614  return false;
2615}
2616
2617bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2618  SmallVector<int, 8> M;
2619  N->getMask(M);
2620  return ::isPSHUFDMask(M, N->getValueType(0));
2621}
2622
2623/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2624/// is suitable for input to PSHUFHW.
2625static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2626  if (VT != MVT::v8i16)
2627    return false;
2628
2629  // Lower quadword copied in order or undef.
2630  for (int i = 0; i != 4; ++i)
2631    if (Mask[i] >= 0 && Mask[i] != i)
2632      return false;
2633
2634  // Upper quadword shuffled.
2635  for (int i = 4; i != 8; ++i)
2636    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2637      return false;
2638
2639  return true;
2640}
2641
2642bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2643  SmallVector<int, 8> M;
2644  N->getMask(M);
2645  return ::isPSHUFHWMask(M, N->getValueType(0));
2646}
2647
2648/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2649/// is suitable for input to PSHUFLW.
2650static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2651  if (VT != MVT::v8i16)
2652    return false;
2653
2654  // Upper quadword copied in order.
2655  for (int i = 4; i != 8; ++i)
2656    if (Mask[i] >= 0 && Mask[i] != i)
2657      return false;
2658
2659  // Lower quadword shuffled.
2660  for (int i = 0; i != 4; ++i)
2661    if (Mask[i] >= 4)
2662      return false;
2663
2664  return true;
2665}
2666
2667bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2668  SmallVector<int, 8> M;
2669  N->getMask(M);
2670  return ::isPSHUFLWMask(M, N->getValueType(0));
2671}
2672
2673/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2674/// is suitable for input to PALIGNR.
2675static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2676                          bool hasSSSE3) {
2677  int i, e = VT.getVectorNumElements();
2678
2679  // Do not handle v2i64 / v2f64 shuffles with palignr.
2680  if (e < 4 || !hasSSSE3)
2681    return false;
2682
2683  for (i = 0; i != e; ++i)
2684    if (Mask[i] >= 0)
2685      break;
2686
2687  // All undef, not a palignr.
2688  if (i == e)
2689    return false;
2690
2691  // Determine if it's ok to perform a palignr with only the LHS, since we
2692  // don't have access to the actual shuffle elements to see if RHS is undef.
2693  bool Unary = Mask[i] < (int)e;
2694  bool NeedsUnary = false;
2695
2696  int s = Mask[i] - i;
2697
2698  // Check the rest of the elements to see if they are consecutive.
2699  for (++i; i != e; ++i) {
2700    int m = Mask[i];
2701    if (m < 0)
2702      continue;
2703
2704    Unary = Unary && (m < (int)e);
2705    NeedsUnary = NeedsUnary || (m < s);
2706
2707    if (NeedsUnary && !Unary)
2708      return false;
2709    if (Unary && m != ((s+i) & (e-1)))
2710      return false;
2711    if (!Unary && m != (s+i))
2712      return false;
2713  }
2714  return true;
2715}
2716
2717bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2718  SmallVector<int, 8> M;
2719  N->getMask(M);
2720  return ::isPALIGNRMask(M, N->getValueType(0), true);
2721}
2722
2723/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2724/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2725static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2726  int NumElems = VT.getVectorNumElements();
2727  if (NumElems != 2 && NumElems != 4)
2728    return false;
2729
2730  int Half = NumElems / 2;
2731  for (int i = 0; i < Half; ++i)
2732    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2733      return false;
2734  for (int i = Half; i < NumElems; ++i)
2735    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2736      return false;
2737
2738  return true;
2739}
2740
2741bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2742  SmallVector<int, 8> M;
2743  N->getMask(M);
2744  return ::isSHUFPMask(M, N->getValueType(0));
2745}
2746
2747/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2748/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2749/// half elements to come from vector 1 (which would equal the dest.) and
2750/// the upper half to come from vector 2.
2751static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2752  int NumElems = VT.getVectorNumElements();
2753
2754  if (NumElems != 2 && NumElems != 4)
2755    return false;
2756
2757  int Half = NumElems / 2;
2758  for (int i = 0; i < Half; ++i)
2759    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2760      return false;
2761  for (int i = Half; i < NumElems; ++i)
2762    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2763      return false;
2764  return true;
2765}
2766
2767static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2768  SmallVector<int, 8> M;
2769  N->getMask(M);
2770  return isCommutedSHUFPMask(M, N->getValueType(0));
2771}
2772
2773/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2774/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2775bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2776  if (N->getValueType(0).getVectorNumElements() != 4)
2777    return false;
2778
2779  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2780  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2781         isUndefOrEqual(N->getMaskElt(1), 7) &&
2782         isUndefOrEqual(N->getMaskElt(2), 2) &&
2783         isUndefOrEqual(N->getMaskElt(3), 3);
2784}
2785
2786/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2787/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2788/// <2, 3, 2, 3>
2789bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2790  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2791
2792  if (NumElems != 4)
2793    return false;
2794
2795  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2796  isUndefOrEqual(N->getMaskElt(1), 3) &&
2797  isUndefOrEqual(N->getMaskElt(2), 2) &&
2798  isUndefOrEqual(N->getMaskElt(3), 3);
2799}
2800
2801/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2802/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2803bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2804  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2805
2806  if (NumElems != 2 && NumElems != 4)
2807    return false;
2808
2809  for (unsigned i = 0; i < NumElems/2; ++i)
2810    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2811      return false;
2812
2813  for (unsigned i = NumElems/2; i < NumElems; ++i)
2814    if (!isUndefOrEqual(N->getMaskElt(i), i))
2815      return false;
2816
2817  return true;
2818}
2819
2820/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2821/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2822bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2823  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2824
2825  if (NumElems != 2 && NumElems != 4)
2826    return false;
2827
2828  for (unsigned i = 0; i < NumElems/2; ++i)
2829    if (!isUndefOrEqual(N->getMaskElt(i), i))
2830      return false;
2831
2832  for (unsigned i = 0; i < NumElems/2; ++i)
2833    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2834      return false;
2835
2836  return true;
2837}
2838
2839/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2840/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2841static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2842                         bool V2IsSplat = false) {
2843  int NumElts = VT.getVectorNumElements();
2844  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2845    return false;
2846
2847  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2848    int BitI  = Mask[i];
2849    int BitI1 = Mask[i+1];
2850    if (!isUndefOrEqual(BitI, j))
2851      return false;
2852    if (V2IsSplat) {
2853      if (!isUndefOrEqual(BitI1, NumElts))
2854        return false;
2855    } else {
2856      if (!isUndefOrEqual(BitI1, j + NumElts))
2857        return false;
2858    }
2859  }
2860  return true;
2861}
2862
2863bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2864  SmallVector<int, 8> M;
2865  N->getMask(M);
2866  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2867}
2868
2869/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2870/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2871static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2872                         bool V2IsSplat = false) {
2873  int NumElts = VT.getVectorNumElements();
2874  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2875    return false;
2876
2877  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2878    int BitI  = Mask[i];
2879    int BitI1 = Mask[i+1];
2880    if (!isUndefOrEqual(BitI, j + NumElts/2))
2881      return false;
2882    if (V2IsSplat) {
2883      if (isUndefOrEqual(BitI1, NumElts))
2884        return false;
2885    } else {
2886      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2887        return false;
2888    }
2889  }
2890  return true;
2891}
2892
2893bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2894  SmallVector<int, 8> M;
2895  N->getMask(M);
2896  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2897}
2898
2899/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2900/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2901/// <0, 0, 1, 1>
2902static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2903  int NumElems = VT.getVectorNumElements();
2904  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2905    return false;
2906
2907  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2908    int BitI  = Mask[i];
2909    int BitI1 = Mask[i+1];
2910    if (!isUndefOrEqual(BitI, j))
2911      return false;
2912    if (!isUndefOrEqual(BitI1, j))
2913      return false;
2914  }
2915  return true;
2916}
2917
2918bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2919  SmallVector<int, 8> M;
2920  N->getMask(M);
2921  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2922}
2923
2924/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2925/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2926/// <2, 2, 3, 3>
2927static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2928  int NumElems = VT.getVectorNumElements();
2929  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2930    return false;
2931
2932  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2933    int BitI  = Mask[i];
2934    int BitI1 = Mask[i+1];
2935    if (!isUndefOrEqual(BitI, j))
2936      return false;
2937    if (!isUndefOrEqual(BitI1, j))
2938      return false;
2939  }
2940  return true;
2941}
2942
2943bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2944  SmallVector<int, 8> M;
2945  N->getMask(M);
2946  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2947}
2948
2949/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2950/// specifies a shuffle of elements that is suitable for input to MOVSS,
2951/// MOVSD, and MOVD, i.e. setting the lowest element.
2952static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2953  if (VT.getVectorElementType().getSizeInBits() < 32)
2954    return false;
2955
2956  int NumElts = VT.getVectorNumElements();
2957
2958  if (!isUndefOrEqual(Mask[0], NumElts))
2959    return false;
2960
2961  for (int i = 1; i < NumElts; ++i)
2962    if (!isUndefOrEqual(Mask[i], i))
2963      return false;
2964
2965  return true;
2966}
2967
2968bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2969  SmallVector<int, 8> M;
2970  N->getMask(M);
2971  return ::isMOVLMask(M, N->getValueType(0));
2972}
2973
2974/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2975/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2976/// element of vector 2 and the other elements to come from vector 1 in order.
2977static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2978                               bool V2IsSplat = false, bool V2IsUndef = false) {
2979  int NumOps = VT.getVectorNumElements();
2980  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2981    return false;
2982
2983  if (!isUndefOrEqual(Mask[0], 0))
2984    return false;
2985
2986  for (int i = 1; i < NumOps; ++i)
2987    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2988          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2989          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2990      return false;
2991
2992  return true;
2993}
2994
2995static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2996                           bool V2IsUndef = false) {
2997  SmallVector<int, 8> M;
2998  N->getMask(M);
2999  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3000}
3001
3002/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3003/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3004bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3005  if (N->getValueType(0).getVectorNumElements() != 4)
3006    return false;
3007
3008  // Expect 1, 1, 3, 3
3009  for (unsigned i = 0; i < 2; ++i) {
3010    int Elt = N->getMaskElt(i);
3011    if (Elt >= 0 && Elt != 1)
3012      return false;
3013  }
3014
3015  bool HasHi = false;
3016  for (unsigned i = 2; i < 4; ++i) {
3017    int Elt = N->getMaskElt(i);
3018    if (Elt >= 0 && Elt != 3)
3019      return false;
3020    if (Elt == 3)
3021      HasHi = true;
3022  }
3023  // Don't use movshdup if it can be done with a shufps.
3024  // FIXME: verify that matching u, u, 3, 3 is what we want.
3025  return HasHi;
3026}
3027
3028/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3029/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3030bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3031  if (N->getValueType(0).getVectorNumElements() != 4)
3032    return false;
3033
3034  // Expect 0, 0, 2, 2
3035  for (unsigned i = 0; i < 2; ++i)
3036    if (N->getMaskElt(i) > 0)
3037      return false;
3038
3039  bool HasHi = false;
3040  for (unsigned i = 2; i < 4; ++i) {
3041    int Elt = N->getMaskElt(i);
3042    if (Elt >= 0 && Elt != 2)
3043      return false;
3044    if (Elt == 2)
3045      HasHi = true;
3046  }
3047  // Don't use movsldup if it can be done with a shufps.
3048  return HasHi;
3049}
3050
3051/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3052/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3053bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3054  int e = N->getValueType(0).getVectorNumElements() / 2;
3055
3056  for (int i = 0; i < e; ++i)
3057    if (!isUndefOrEqual(N->getMaskElt(i), i))
3058      return false;
3059  for (int i = 0; i < e; ++i)
3060    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3061      return false;
3062  return true;
3063}
3064
3065/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3066/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3067unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3068  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3069  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3070
3071  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3072  unsigned Mask = 0;
3073  for (int i = 0; i < NumOperands; ++i) {
3074    int Val = SVOp->getMaskElt(NumOperands-i-1);
3075    if (Val < 0) Val = 0;
3076    if (Val >= NumOperands) Val -= NumOperands;
3077    Mask |= Val;
3078    if (i != NumOperands - 1)
3079      Mask <<= Shift;
3080  }
3081  return Mask;
3082}
3083
3084/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3085/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3086unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3087  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3088  unsigned Mask = 0;
3089  // 8 nodes, but we only care about the last 4.
3090  for (unsigned i = 7; i >= 4; --i) {
3091    int Val = SVOp->getMaskElt(i);
3092    if (Val >= 0)
3093      Mask |= (Val - 4);
3094    if (i != 4)
3095      Mask <<= 2;
3096  }
3097  return Mask;
3098}
3099
3100/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3101/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3102unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3103  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3104  unsigned Mask = 0;
3105  // 8 nodes, but we only care about the first 4.
3106  for (int i = 3; i >= 0; --i) {
3107    int Val = SVOp->getMaskElt(i);
3108    if (Val >= 0)
3109      Mask |= Val;
3110    if (i != 0)
3111      Mask <<= 2;
3112  }
3113  return Mask;
3114}
3115
3116/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3117/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3118unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3119  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3120  EVT VVT = N->getValueType(0);
3121  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3122  int Val = 0;
3123
3124  unsigned i, e;
3125  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3126    Val = SVOp->getMaskElt(i);
3127    if (Val >= 0)
3128      break;
3129  }
3130  return (Val - i) * EltSize;
3131}
3132
3133/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3134/// constant +0.0.
3135bool X86::isZeroNode(SDValue Elt) {
3136  return ((isa<ConstantSDNode>(Elt) &&
3137           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3138          (isa<ConstantFPSDNode>(Elt) &&
3139           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3140}
3141
3142/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3143/// their permute mask.
3144static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3145                                    SelectionDAG &DAG) {
3146  EVT VT = SVOp->getValueType(0);
3147  unsigned NumElems = VT.getVectorNumElements();
3148  SmallVector<int, 8> MaskVec;
3149
3150  for (unsigned i = 0; i != NumElems; ++i) {
3151    int idx = SVOp->getMaskElt(i);
3152    if (idx < 0)
3153      MaskVec.push_back(idx);
3154    else if (idx < (int)NumElems)
3155      MaskVec.push_back(idx + NumElems);
3156    else
3157      MaskVec.push_back(idx - NumElems);
3158  }
3159  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3160                              SVOp->getOperand(0), &MaskVec[0]);
3161}
3162
3163/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3164/// the two vector operands have swapped position.
3165static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3166  unsigned NumElems = VT.getVectorNumElements();
3167  for (unsigned i = 0; i != NumElems; ++i) {
3168    int idx = Mask[i];
3169    if (idx < 0)
3170      continue;
3171    else if (idx < (int)NumElems)
3172      Mask[i] = idx + NumElems;
3173    else
3174      Mask[i] = idx - NumElems;
3175  }
3176}
3177
3178/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3179/// match movhlps. The lower half elements should come from upper half of
3180/// V1 (and in order), and the upper half elements should come from the upper
3181/// half of V2 (and in order).
3182static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3183  if (Op->getValueType(0).getVectorNumElements() != 4)
3184    return false;
3185  for (unsigned i = 0, e = 2; i != e; ++i)
3186    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3187      return false;
3188  for (unsigned i = 2; i != 4; ++i)
3189    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3190      return false;
3191  return true;
3192}
3193
3194/// isScalarLoadToVector - Returns true if the node is a scalar load that
3195/// is promoted to a vector. It also returns the LoadSDNode by reference if
3196/// required.
3197static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3198  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3199    return false;
3200  N = N->getOperand(0).getNode();
3201  if (!ISD::isNON_EXTLoad(N))
3202    return false;
3203  if (LD)
3204    *LD = cast<LoadSDNode>(N);
3205  return true;
3206}
3207
3208/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3209/// match movlp{s|d}. The lower half elements should come from lower half of
3210/// V1 (and in order), and the upper half elements should come from the upper
3211/// half of V2 (and in order). And since V1 will become the source of the
3212/// MOVLP, it must be either a vector load or a scalar load to vector.
3213static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3214                               ShuffleVectorSDNode *Op) {
3215  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3216    return false;
3217  // Is V2 is a vector load, don't do this transformation. We will try to use
3218  // load folding shufps op.
3219  if (ISD::isNON_EXTLoad(V2))
3220    return false;
3221
3222  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3223
3224  if (NumElems != 2 && NumElems != 4)
3225    return false;
3226  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3227    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3228      return false;
3229  for (unsigned i = NumElems/2; i != NumElems; ++i)
3230    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3231      return false;
3232  return true;
3233}
3234
3235/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3236/// all the same.
3237static bool isSplatVector(SDNode *N) {
3238  if (N->getOpcode() != ISD::BUILD_VECTOR)
3239    return false;
3240
3241  SDValue SplatValue = N->getOperand(0);
3242  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3243    if (N->getOperand(i) != SplatValue)
3244      return false;
3245  return true;
3246}
3247
3248/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3249/// to an zero vector.
3250/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3251static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3252  SDValue V1 = N->getOperand(0);
3253  SDValue V2 = N->getOperand(1);
3254  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3255  for (unsigned i = 0; i != NumElems; ++i) {
3256    int Idx = N->getMaskElt(i);
3257    if (Idx >= (int)NumElems) {
3258      unsigned Opc = V2.getOpcode();
3259      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3260        continue;
3261      if (Opc != ISD::BUILD_VECTOR ||
3262          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3263        return false;
3264    } else if (Idx >= 0) {
3265      unsigned Opc = V1.getOpcode();
3266      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3267        continue;
3268      if (Opc != ISD::BUILD_VECTOR ||
3269          !X86::isZeroNode(V1.getOperand(Idx)))
3270        return false;
3271    }
3272  }
3273  return true;
3274}
3275
3276/// getZeroVector - Returns a vector of specified type with all zero elements.
3277///
3278static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3279                             DebugLoc dl) {
3280  assert(VT.isVector() && "Expected a vector type");
3281
3282  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3283  // type.  This ensures they get CSE'd.
3284  SDValue Vec;
3285  if (VT.getSizeInBits() == 64) { // MMX
3286    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3287    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3288  } else if (HasSSE2) {  // SSE2
3289    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3290    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3291  } else { // SSE1
3292    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3293    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3294  }
3295  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3296}
3297
3298/// getOnesVector - Returns a vector of specified type with all bits set.
3299///
3300static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3301  assert(VT.isVector() && "Expected a vector type");
3302
3303  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3304  // type.  This ensures they get CSE'd.
3305  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3306  SDValue Vec;
3307  if (VT.getSizeInBits() == 64)  // MMX
3308    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3309  else                                              // SSE
3310    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3311  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3312}
3313
3314
3315/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3316/// that point to V2 points to its first element.
3317static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3318  EVT VT = SVOp->getValueType(0);
3319  unsigned NumElems = VT.getVectorNumElements();
3320
3321  bool Changed = false;
3322  SmallVector<int, 8> MaskVec;
3323  SVOp->getMask(MaskVec);
3324
3325  for (unsigned i = 0; i != NumElems; ++i) {
3326    if (MaskVec[i] > (int)NumElems) {
3327      MaskVec[i] = NumElems;
3328      Changed = true;
3329    }
3330  }
3331  if (Changed)
3332    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3333                                SVOp->getOperand(1), &MaskVec[0]);
3334  return SDValue(SVOp, 0);
3335}
3336
3337/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3338/// operation of specified width.
3339static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3340                       SDValue V2) {
3341  unsigned NumElems = VT.getVectorNumElements();
3342  SmallVector<int, 8> Mask;
3343  Mask.push_back(NumElems);
3344  for (unsigned i = 1; i != NumElems; ++i)
3345    Mask.push_back(i);
3346  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3347}
3348
3349/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3350static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3351                          SDValue V2) {
3352  unsigned NumElems = VT.getVectorNumElements();
3353  SmallVector<int, 8> Mask;
3354  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3355    Mask.push_back(i);
3356    Mask.push_back(i + NumElems);
3357  }
3358  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3359}
3360
3361/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3362static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3363                          SDValue V2) {
3364  unsigned NumElems = VT.getVectorNumElements();
3365  unsigned Half = NumElems/2;
3366  SmallVector<int, 8> Mask;
3367  for (unsigned i = 0; i != Half; ++i) {
3368    Mask.push_back(i + Half);
3369    Mask.push_back(i + NumElems + Half);
3370  }
3371  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3372}
3373
3374/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3375static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3376                            bool HasSSE2) {
3377  if (SV->getValueType(0).getVectorNumElements() <= 4)
3378    return SDValue(SV, 0);
3379
3380  EVT PVT = MVT::v4f32;
3381  EVT VT = SV->getValueType(0);
3382  DebugLoc dl = SV->getDebugLoc();
3383  SDValue V1 = SV->getOperand(0);
3384  int NumElems = VT.getVectorNumElements();
3385  int EltNo = SV->getSplatIndex();
3386
3387  // unpack elements to the correct location
3388  while (NumElems > 4) {
3389    if (EltNo < NumElems/2) {
3390      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3391    } else {
3392      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3393      EltNo -= NumElems/2;
3394    }
3395    NumElems >>= 1;
3396  }
3397
3398  // Perform the splat.
3399  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3400  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3401  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3402  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3403}
3404
3405/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3406/// vector of zero or undef vector.  This produces a shuffle where the low
3407/// element of V2 is swizzled into the zero/undef vector, landing at element
3408/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3409static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3410                                             bool isZero, bool HasSSE2,
3411                                             SelectionDAG &DAG) {
3412  EVT VT = V2.getValueType();
3413  SDValue V1 = isZero
3414    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3415  unsigned NumElems = VT.getVectorNumElements();
3416  SmallVector<int, 16> MaskVec;
3417  for (unsigned i = 0; i != NumElems; ++i)
3418    // If this is the insertion idx, put the low elt of V2 here.
3419    MaskVec.push_back(i == Idx ? NumElems : i);
3420  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3421}
3422
3423/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3424/// a shuffle that is zero.
3425static
3426unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3427                                  bool Low, SelectionDAG &DAG) {
3428  unsigned NumZeros = 0;
3429  for (int i = 0; i < NumElems; ++i) {
3430    unsigned Index = Low ? i : NumElems-i-1;
3431    int Idx = SVOp->getMaskElt(Index);
3432    if (Idx < 0) {
3433      ++NumZeros;
3434      continue;
3435    }
3436    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3437    if (Elt.getNode() && X86::isZeroNode(Elt))
3438      ++NumZeros;
3439    else
3440      break;
3441  }
3442  return NumZeros;
3443}
3444
3445/// isVectorShift - Returns true if the shuffle can be implemented as a
3446/// logical left or right shift of a vector.
3447/// FIXME: split into pslldqi, psrldqi, palignr variants.
3448static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3449                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3450  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3451
3452  isLeft = true;
3453  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3454  if (!NumZeros) {
3455    isLeft = false;
3456    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3457    if (!NumZeros)
3458      return false;
3459  }
3460  bool SeenV1 = false;
3461  bool SeenV2 = false;
3462  for (unsigned i = NumZeros; i < NumElems; ++i) {
3463    unsigned Val = isLeft ? (i - NumZeros) : i;
3464    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3465    if (Idx_ < 0)
3466      continue;
3467    unsigned Idx = (unsigned) Idx_;
3468    if (Idx < NumElems)
3469      SeenV1 = true;
3470    else {
3471      Idx -= NumElems;
3472      SeenV2 = true;
3473    }
3474    if (Idx != Val)
3475      return false;
3476  }
3477  if (SeenV1 && SeenV2)
3478    return false;
3479
3480  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3481  ShAmt = NumZeros;
3482  return true;
3483}
3484
3485
3486/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3487///
3488static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3489                                       unsigned NumNonZero, unsigned NumZero,
3490                                       SelectionDAG &DAG, TargetLowering &TLI) {
3491  if (NumNonZero > 8)
3492    return SDValue();
3493
3494  DebugLoc dl = Op.getDebugLoc();
3495  SDValue V(0, 0);
3496  bool First = true;
3497  for (unsigned i = 0; i < 16; ++i) {
3498    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3499    if (ThisIsNonZero && First) {
3500      if (NumZero)
3501        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3502      else
3503        V = DAG.getUNDEF(MVT::v8i16);
3504      First = false;
3505    }
3506
3507    if ((i & 1) != 0) {
3508      SDValue ThisElt(0, 0), LastElt(0, 0);
3509      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3510      if (LastIsNonZero) {
3511        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3512                              MVT::i16, Op.getOperand(i-1));
3513      }
3514      if (ThisIsNonZero) {
3515        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3516        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3517                              ThisElt, DAG.getConstant(8, MVT::i8));
3518        if (LastIsNonZero)
3519          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3520      } else
3521        ThisElt = LastElt;
3522
3523      if (ThisElt.getNode())
3524        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3525                        DAG.getIntPtrConstant(i/2));
3526    }
3527  }
3528
3529  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3530}
3531
3532/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3533///
3534static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3535                                       unsigned NumNonZero, unsigned NumZero,
3536                                       SelectionDAG &DAG, TargetLowering &TLI) {
3537  if (NumNonZero > 4)
3538    return SDValue();
3539
3540  DebugLoc dl = Op.getDebugLoc();
3541  SDValue V(0, 0);
3542  bool First = true;
3543  for (unsigned i = 0; i < 8; ++i) {
3544    bool isNonZero = (NonZeros & (1 << i)) != 0;
3545    if (isNonZero) {
3546      if (First) {
3547        if (NumZero)
3548          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3549        else
3550          V = DAG.getUNDEF(MVT::v8i16);
3551        First = false;
3552      }
3553      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3554                      MVT::v8i16, V, Op.getOperand(i),
3555                      DAG.getIntPtrConstant(i));
3556    }
3557  }
3558
3559  return V;
3560}
3561
3562/// getVShift - Return a vector logical shift node.
3563///
3564static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3565                         unsigned NumBits, SelectionDAG &DAG,
3566                         const TargetLowering &TLI, DebugLoc dl) {
3567  bool isMMX = VT.getSizeInBits() == 64;
3568  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3569  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3570  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3571  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3572                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3573                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3574}
3575
3576SDValue
3577X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3578                                          SelectionDAG &DAG) {
3579
3580  // Check if the scalar load can be widened into a vector load. And if
3581  // the address is "base + cst" see if the cst can be "absorbed" into
3582  // the shuffle mask.
3583  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3584    SDValue Ptr = LD->getBasePtr();
3585    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3586      return SDValue();
3587    EVT PVT = LD->getValueType(0);
3588    if (PVT != MVT::i32 && PVT != MVT::f32)
3589      return SDValue();
3590
3591    int FI = -1;
3592    int64_t Offset = 0;
3593    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3594      FI = FINode->getIndex();
3595      Offset = 0;
3596    } else if (Ptr.getOpcode() == ISD::ADD &&
3597               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3598               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3599      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3600      Offset = Ptr.getConstantOperandVal(1);
3601      Ptr = Ptr.getOperand(0);
3602    } else {
3603      return SDValue();
3604    }
3605
3606    SDValue Chain = LD->getChain();
3607    // Make sure the stack object alignment is at least 16.
3608    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3609    if (DAG.InferPtrAlignment(Ptr) < 16) {
3610      if (MFI->isFixedObjectIndex(FI)) {
3611        // Can't change the alignment. FIXME: It's possible to compute
3612        // the exact stack offset and reference FI + adjust offset instead.
3613        // If someone *really* cares about this. That's the way to implement it.
3614        return SDValue();
3615      } else {
3616        MFI->setObjectAlignment(FI, 16);
3617      }
3618    }
3619
3620    // (Offset % 16) must be multiple of 4. Then address is then
3621    // Ptr + (Offset & ~15).
3622    if (Offset < 0)
3623      return SDValue();
3624    if ((Offset % 16) & 3)
3625      return SDValue();
3626    int64_t StartOffset = Offset & ~15;
3627    if (StartOffset)
3628      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3629                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3630
3631    int EltNo = (Offset - StartOffset) >> 2;
3632    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3633    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3634    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3635                             false, false, 0);
3636    // Canonicalize it to a v4i32 shuffle.
3637    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3638    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3639                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3640                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3641  }
3642
3643  return SDValue();
3644}
3645
3646/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3647/// vector of type 'VT', see if the elements can be replaced by a single large
3648/// load which has the same value as a build_vector whose operands are 'elts'.
3649///
3650/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3651///
3652/// FIXME: we'd also like to handle the case where the last elements are zero
3653/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3654/// There's even a handy isZeroNode for that purpose.
3655static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3656                                        DebugLoc &dl, SelectionDAG &DAG) {
3657  EVT EltVT = VT.getVectorElementType();
3658  unsigned NumElems = Elts.size();
3659
3660  LoadSDNode *LDBase = NULL;
3661  unsigned LastLoadedElt = -1U;
3662
3663  // For each element in the initializer, see if we've found a load or an undef.
3664  // If we don't find an initial load element, or later load elements are
3665  // non-consecutive, bail out.
3666  for (unsigned i = 0; i < NumElems; ++i) {
3667    SDValue Elt = Elts[i];
3668
3669    if (!Elt.getNode() ||
3670        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3671      return SDValue();
3672    if (!LDBase) {
3673      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3674        return SDValue();
3675      LDBase = cast<LoadSDNode>(Elt.getNode());
3676      LastLoadedElt = i;
3677      continue;
3678    }
3679    if (Elt.getOpcode() == ISD::UNDEF)
3680      continue;
3681
3682    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3683    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3684      return SDValue();
3685    LastLoadedElt = i;
3686  }
3687
3688  // If we have found an entire vector of loads and undefs, then return a large
3689  // load of the entire vector width starting at the base pointer.  If we found
3690  // consecutive loads for the low half, generate a vzext_load node.
3691  if (LastLoadedElt == NumElems - 1) {
3692    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3693      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3694                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3695                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3696    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3697                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3698                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3699                       LDBase->getAlignment());
3700  } else if (NumElems == 4 && LastLoadedElt == 1) {
3701    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3702    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3703    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3704    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3705  }
3706  return SDValue();
3707}
3708
3709SDValue
3710X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3711  DebugLoc dl = Op.getDebugLoc();
3712  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3713  if (ISD::isBuildVectorAllZeros(Op.getNode())
3714      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3715    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3716    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3717    // eliminated on x86-32 hosts.
3718    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3719      return Op;
3720
3721    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3722      return getOnesVector(Op.getValueType(), DAG, dl);
3723    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3724  }
3725
3726  EVT VT = Op.getValueType();
3727  EVT ExtVT = VT.getVectorElementType();
3728  unsigned EVTBits = ExtVT.getSizeInBits();
3729
3730  unsigned NumElems = Op.getNumOperands();
3731  unsigned NumZero  = 0;
3732  unsigned NumNonZero = 0;
3733  unsigned NonZeros = 0;
3734  bool IsAllConstants = true;
3735  SmallSet<SDValue, 8> Values;
3736  for (unsigned i = 0; i < NumElems; ++i) {
3737    SDValue Elt = Op.getOperand(i);
3738    if (Elt.getOpcode() == ISD::UNDEF)
3739      continue;
3740    Values.insert(Elt);
3741    if (Elt.getOpcode() != ISD::Constant &&
3742        Elt.getOpcode() != ISD::ConstantFP)
3743      IsAllConstants = false;
3744    if (X86::isZeroNode(Elt))
3745      NumZero++;
3746    else {
3747      NonZeros |= (1 << i);
3748      NumNonZero++;
3749    }
3750  }
3751
3752  if (NumNonZero == 0) {
3753    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3754    return DAG.getUNDEF(VT);
3755  }
3756
3757  // Special case for single non-zero, non-undef, element.
3758  if (NumNonZero == 1) {
3759    unsigned Idx = CountTrailingZeros_32(NonZeros);
3760    SDValue Item = Op.getOperand(Idx);
3761
3762    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3763    // the value are obviously zero, truncate the value to i32 and do the
3764    // insertion that way.  Only do this if the value is non-constant or if the
3765    // value is a constant being inserted into element 0.  It is cheaper to do
3766    // a constant pool load than it is to do a movd + shuffle.
3767    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3768        (!IsAllConstants || Idx == 0)) {
3769      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3770        // Handle MMX and SSE both.
3771        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3772        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3773
3774        // Truncate the value (which may itself be a constant) to i32, and
3775        // convert it to a vector with movd (S2V+shuffle to zero extend).
3776        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3777        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3778        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3779                                           Subtarget->hasSSE2(), DAG);
3780
3781        // Now we have our 32-bit value zero extended in the low element of
3782        // a vector.  If Idx != 0, swizzle it into place.
3783        if (Idx != 0) {
3784          SmallVector<int, 4> Mask;
3785          Mask.push_back(Idx);
3786          for (unsigned i = 1; i != VecElts; ++i)
3787            Mask.push_back(i);
3788          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3789                                      DAG.getUNDEF(Item.getValueType()),
3790                                      &Mask[0]);
3791        }
3792        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3793      }
3794    }
3795
3796    // If we have a constant or non-constant insertion into the low element of
3797    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3798    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3799    // depending on what the source datatype is.
3800    if (Idx == 0) {
3801      if (NumZero == 0) {
3802        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3803      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3804          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3805        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3806        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3807        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3808                                           DAG);
3809      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3810        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3811        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3812        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3813        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3814                                           Subtarget->hasSSE2(), DAG);
3815        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3816      }
3817    }
3818
3819    // Is it a vector logical left shift?
3820    if (NumElems == 2 && Idx == 1 &&
3821        X86::isZeroNode(Op.getOperand(0)) &&
3822        !X86::isZeroNode(Op.getOperand(1))) {
3823      unsigned NumBits = VT.getSizeInBits();
3824      return getVShift(true, VT,
3825                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3826                                   VT, Op.getOperand(1)),
3827                       NumBits/2, DAG, *this, dl);
3828    }
3829
3830    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3831      return SDValue();
3832
3833    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3834    // is a non-constant being inserted into an element other than the low one,
3835    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3836    // movd/movss) to move this into the low element, then shuffle it into
3837    // place.
3838    if (EVTBits == 32) {
3839      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3840
3841      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3842      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3843                                         Subtarget->hasSSE2(), DAG);
3844      SmallVector<int, 8> MaskVec;
3845      for (unsigned i = 0; i < NumElems; i++)
3846        MaskVec.push_back(i == Idx ? 0 : 1);
3847      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3848    }
3849  }
3850
3851  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3852  if (Values.size() == 1) {
3853    if (EVTBits == 32) {
3854      // Instead of a shuffle like this:
3855      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3856      // Check if it's possible to issue this instead.
3857      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3858      unsigned Idx = CountTrailingZeros_32(NonZeros);
3859      SDValue Item = Op.getOperand(Idx);
3860      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3861        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3862    }
3863    return SDValue();
3864  }
3865
3866  // A vector full of immediates; various special cases are already
3867  // handled, so this is best done with a single constant-pool load.
3868  if (IsAllConstants)
3869    return SDValue();
3870
3871  // Let legalizer expand 2-wide build_vectors.
3872  if (EVTBits == 64) {
3873    if (NumNonZero == 1) {
3874      // One half is zero or undef.
3875      unsigned Idx = CountTrailingZeros_32(NonZeros);
3876      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3877                                 Op.getOperand(Idx));
3878      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3879                                         Subtarget->hasSSE2(), DAG);
3880    }
3881    return SDValue();
3882  }
3883
3884  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3885  if (EVTBits == 8 && NumElems == 16) {
3886    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3887                                        *this);
3888    if (V.getNode()) return V;
3889  }
3890
3891  if (EVTBits == 16 && NumElems == 8) {
3892    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3893                                        *this);
3894    if (V.getNode()) return V;
3895  }
3896
3897  // If element VT is == 32 bits, turn it into a number of shuffles.
3898  SmallVector<SDValue, 8> V;
3899  V.resize(NumElems);
3900  if (NumElems == 4 && NumZero > 0) {
3901    for (unsigned i = 0; i < 4; ++i) {
3902      bool isZero = !(NonZeros & (1 << i));
3903      if (isZero)
3904        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3905      else
3906        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3907    }
3908
3909    for (unsigned i = 0; i < 2; ++i) {
3910      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3911        default: break;
3912        case 0:
3913          V[i] = V[i*2];  // Must be a zero vector.
3914          break;
3915        case 1:
3916          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3917          break;
3918        case 2:
3919          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3920          break;
3921        case 3:
3922          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3923          break;
3924      }
3925    }
3926
3927    SmallVector<int, 8> MaskVec;
3928    bool Reverse = (NonZeros & 0x3) == 2;
3929    for (unsigned i = 0; i < 2; ++i)
3930      MaskVec.push_back(Reverse ? 1-i : i);
3931    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3932    for (unsigned i = 0; i < 2; ++i)
3933      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3934    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3935  }
3936
3937  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3938    // Check for a build vector of consecutive loads.
3939    for (unsigned i = 0; i < NumElems; ++i)
3940      V[i] = Op.getOperand(i);
3941
3942    // Check for elements which are consecutive loads.
3943    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3944    if (LD.getNode())
3945      return LD;
3946
3947    // For SSE 4.1, use inserts into undef.
3948    if (getSubtarget()->hasSSE41()) {
3949      V[0] = DAG.getUNDEF(VT);
3950      for (unsigned i = 0; i < NumElems; ++i)
3951        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3952          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3953                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3954      return V[0];
3955    }
3956
3957    // Otherwise, expand into a number of unpckl*
3958    // e.g. for v4f32
3959    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3960    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3961    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3962    for (unsigned i = 0; i < NumElems; ++i)
3963      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3964    NumElems >>= 1;
3965    while (NumElems != 0) {
3966      for (unsigned i = 0; i < NumElems; ++i)
3967        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3968      NumElems >>= 1;
3969    }
3970    return V[0];
3971  }
3972  return SDValue();
3973}
3974
3975SDValue
3976X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3977  // We support concatenate two MMX registers and place them in a MMX
3978  // register.  This is better than doing a stack convert.
3979  DebugLoc dl = Op.getDebugLoc();
3980  EVT ResVT = Op.getValueType();
3981  assert(Op.getNumOperands() == 2);
3982  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3983         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3984  int Mask[2];
3985  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3986  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3987  InVec = Op.getOperand(1);
3988  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3989    unsigned NumElts = ResVT.getVectorNumElements();
3990    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3991    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3992                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3993  } else {
3994    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3995    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3996    Mask[0] = 0; Mask[1] = 2;
3997    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3998  }
3999  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4000}
4001
4002// v8i16 shuffles - Prefer shuffles in the following order:
4003// 1. [all]   pshuflw, pshufhw, optional move
4004// 2. [ssse3] 1 x pshufb
4005// 3. [ssse3] 2 x pshufb + 1 x por
4006// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4007static
4008SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4009                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4010  SDValue V1 = SVOp->getOperand(0);
4011  SDValue V2 = SVOp->getOperand(1);
4012  DebugLoc dl = SVOp->getDebugLoc();
4013  SmallVector<int, 8> MaskVals;
4014
4015  // Determine if more than 1 of the words in each of the low and high quadwords
4016  // of the result come from the same quadword of one of the two inputs.  Undef
4017  // mask values count as coming from any quadword, for better codegen.
4018  SmallVector<unsigned, 4> LoQuad(4);
4019  SmallVector<unsigned, 4> HiQuad(4);
4020  BitVector InputQuads(4);
4021  for (unsigned i = 0; i < 8; ++i) {
4022    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4023    int EltIdx = SVOp->getMaskElt(i);
4024    MaskVals.push_back(EltIdx);
4025    if (EltIdx < 0) {
4026      ++Quad[0];
4027      ++Quad[1];
4028      ++Quad[2];
4029      ++Quad[3];
4030      continue;
4031    }
4032    ++Quad[EltIdx / 4];
4033    InputQuads.set(EltIdx / 4);
4034  }
4035
4036  int BestLoQuad = -1;
4037  unsigned MaxQuad = 1;
4038  for (unsigned i = 0; i < 4; ++i) {
4039    if (LoQuad[i] > MaxQuad) {
4040      BestLoQuad = i;
4041      MaxQuad = LoQuad[i];
4042    }
4043  }
4044
4045  int BestHiQuad = -1;
4046  MaxQuad = 1;
4047  for (unsigned i = 0; i < 4; ++i) {
4048    if (HiQuad[i] > MaxQuad) {
4049      BestHiQuad = i;
4050      MaxQuad = HiQuad[i];
4051    }
4052  }
4053
4054  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4055  // of the two input vectors, shuffle them into one input vector so only a
4056  // single pshufb instruction is necessary. If There are more than 2 input
4057  // quads, disable the next transformation since it does not help SSSE3.
4058  bool V1Used = InputQuads[0] || InputQuads[1];
4059  bool V2Used = InputQuads[2] || InputQuads[3];
4060  if (TLI.getSubtarget()->hasSSSE3()) {
4061    if (InputQuads.count() == 2 && V1Used && V2Used) {
4062      BestLoQuad = InputQuads.find_first();
4063      BestHiQuad = InputQuads.find_next(BestLoQuad);
4064    }
4065    if (InputQuads.count() > 2) {
4066      BestLoQuad = -1;
4067      BestHiQuad = -1;
4068    }
4069  }
4070
4071  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4072  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4073  // words from all 4 input quadwords.
4074  SDValue NewV;
4075  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4076    SmallVector<int, 8> MaskV;
4077    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4078    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4079    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4080                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4081                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4082    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4083
4084    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4085    // source words for the shuffle, to aid later transformations.
4086    bool AllWordsInNewV = true;
4087    bool InOrder[2] = { true, true };
4088    for (unsigned i = 0; i != 8; ++i) {
4089      int idx = MaskVals[i];
4090      if (idx != (int)i)
4091        InOrder[i/4] = false;
4092      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4093        continue;
4094      AllWordsInNewV = false;
4095      break;
4096    }
4097
4098    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4099    if (AllWordsInNewV) {
4100      for (int i = 0; i != 8; ++i) {
4101        int idx = MaskVals[i];
4102        if (idx < 0)
4103          continue;
4104        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4105        if ((idx != i) && idx < 4)
4106          pshufhw = false;
4107        if ((idx != i) && idx > 3)
4108          pshuflw = false;
4109      }
4110      V1 = NewV;
4111      V2Used = false;
4112      BestLoQuad = 0;
4113      BestHiQuad = 1;
4114    }
4115
4116    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4117    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4118    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4119      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4120                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4121    }
4122  }
4123
4124  // If we have SSSE3, and all words of the result are from 1 input vector,
4125  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4126  // is present, fall back to case 4.
4127  if (TLI.getSubtarget()->hasSSSE3()) {
4128    SmallVector<SDValue,16> pshufbMask;
4129
4130    // If we have elements from both input vectors, set the high bit of the
4131    // shuffle mask element to zero out elements that come from V2 in the V1
4132    // mask, and elements that come from V1 in the V2 mask, so that the two
4133    // results can be OR'd together.
4134    bool TwoInputs = V1Used && V2Used;
4135    for (unsigned i = 0; i != 8; ++i) {
4136      int EltIdx = MaskVals[i] * 2;
4137      if (TwoInputs && (EltIdx >= 16)) {
4138        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4139        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4140        continue;
4141      }
4142      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4143      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4144    }
4145    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4146    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4147                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4148                                 MVT::v16i8, &pshufbMask[0], 16));
4149    if (!TwoInputs)
4150      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4151
4152    // Calculate the shuffle mask for the second input, shuffle it, and
4153    // OR it with the first shuffled input.
4154    pshufbMask.clear();
4155    for (unsigned i = 0; i != 8; ++i) {
4156      int EltIdx = MaskVals[i] * 2;
4157      if (EltIdx < 16) {
4158        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4159        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4160        continue;
4161      }
4162      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4163      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4164    }
4165    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4166    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4167                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4168                                 MVT::v16i8, &pshufbMask[0], 16));
4169    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4170    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4171  }
4172
4173  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4174  // and update MaskVals with new element order.
4175  BitVector InOrder(8);
4176  if (BestLoQuad >= 0) {
4177    SmallVector<int, 8> MaskV;
4178    for (int i = 0; i != 4; ++i) {
4179      int idx = MaskVals[i];
4180      if (idx < 0) {
4181        MaskV.push_back(-1);
4182        InOrder.set(i);
4183      } else if ((idx / 4) == BestLoQuad) {
4184        MaskV.push_back(idx & 3);
4185        InOrder.set(i);
4186      } else {
4187        MaskV.push_back(-1);
4188      }
4189    }
4190    for (unsigned i = 4; i != 8; ++i)
4191      MaskV.push_back(i);
4192    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4193                                &MaskV[0]);
4194  }
4195
4196  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4197  // and update MaskVals with the new element order.
4198  if (BestHiQuad >= 0) {
4199    SmallVector<int, 8> MaskV;
4200    for (unsigned i = 0; i != 4; ++i)
4201      MaskV.push_back(i);
4202    for (unsigned i = 4; i != 8; ++i) {
4203      int idx = MaskVals[i];
4204      if (idx < 0) {
4205        MaskV.push_back(-1);
4206        InOrder.set(i);
4207      } else if ((idx / 4) == BestHiQuad) {
4208        MaskV.push_back((idx & 3) + 4);
4209        InOrder.set(i);
4210      } else {
4211        MaskV.push_back(-1);
4212      }
4213    }
4214    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4215                                &MaskV[0]);
4216  }
4217
4218  // In case BestHi & BestLo were both -1, which means each quadword has a word
4219  // from each of the four input quadwords, calculate the InOrder bitvector now
4220  // before falling through to the insert/extract cleanup.
4221  if (BestLoQuad == -1 && BestHiQuad == -1) {
4222    NewV = V1;
4223    for (int i = 0; i != 8; ++i)
4224      if (MaskVals[i] < 0 || MaskVals[i] == i)
4225        InOrder.set(i);
4226  }
4227
4228  // The other elements are put in the right place using pextrw and pinsrw.
4229  for (unsigned i = 0; i != 8; ++i) {
4230    if (InOrder[i])
4231      continue;
4232    int EltIdx = MaskVals[i];
4233    if (EltIdx < 0)
4234      continue;
4235    SDValue ExtOp = (EltIdx < 8)
4236    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4237                  DAG.getIntPtrConstant(EltIdx))
4238    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4239                  DAG.getIntPtrConstant(EltIdx - 8));
4240    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4241                       DAG.getIntPtrConstant(i));
4242  }
4243  return NewV;
4244}
4245
4246// v16i8 shuffles - Prefer shuffles in the following order:
4247// 1. [ssse3] 1 x pshufb
4248// 2. [ssse3] 2 x pshufb + 1 x por
4249// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4250static
4251SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4252                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4253  SDValue V1 = SVOp->getOperand(0);
4254  SDValue V2 = SVOp->getOperand(1);
4255  DebugLoc dl = SVOp->getDebugLoc();
4256  SmallVector<int, 16> MaskVals;
4257  SVOp->getMask(MaskVals);
4258
4259  // If we have SSSE3, case 1 is generated when all result bytes come from
4260  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4261  // present, fall back to case 3.
4262  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4263  bool V1Only = true;
4264  bool V2Only = true;
4265  for (unsigned i = 0; i < 16; ++i) {
4266    int EltIdx = MaskVals[i];
4267    if (EltIdx < 0)
4268      continue;
4269    if (EltIdx < 16)
4270      V2Only = false;
4271    else
4272      V1Only = false;
4273  }
4274
4275  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4276  if (TLI.getSubtarget()->hasSSSE3()) {
4277    SmallVector<SDValue,16> pshufbMask;
4278
4279    // If all result elements are from one input vector, then only translate
4280    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4281    //
4282    // Otherwise, we have elements from both input vectors, and must zero out
4283    // elements that come from V2 in the first mask, and V1 in the second mask
4284    // so that we can OR them together.
4285    bool TwoInputs = !(V1Only || V2Only);
4286    for (unsigned i = 0; i != 16; ++i) {
4287      int EltIdx = MaskVals[i];
4288      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4289        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4290        continue;
4291      }
4292      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4293    }
4294    // If all the elements are from V2, assign it to V1 and return after
4295    // building the first pshufb.
4296    if (V2Only)
4297      V1 = V2;
4298    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4299                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4300                                 MVT::v16i8, &pshufbMask[0], 16));
4301    if (!TwoInputs)
4302      return V1;
4303
4304    // Calculate the shuffle mask for the second input, shuffle it, and
4305    // OR it with the first shuffled input.
4306    pshufbMask.clear();
4307    for (unsigned i = 0; i != 16; ++i) {
4308      int EltIdx = MaskVals[i];
4309      if (EltIdx < 16) {
4310        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4311        continue;
4312      }
4313      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4314    }
4315    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4316                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4317                                 MVT::v16i8, &pshufbMask[0], 16));
4318    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4319  }
4320
4321  // No SSSE3 - Calculate in place words and then fix all out of place words
4322  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4323  // the 16 different words that comprise the two doublequadword input vectors.
4324  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4325  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4326  SDValue NewV = V2Only ? V2 : V1;
4327  for (int i = 0; i != 8; ++i) {
4328    int Elt0 = MaskVals[i*2];
4329    int Elt1 = MaskVals[i*2+1];
4330
4331    // This word of the result is all undef, skip it.
4332    if (Elt0 < 0 && Elt1 < 0)
4333      continue;
4334
4335    // This word of the result is already in the correct place, skip it.
4336    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4337      continue;
4338    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4339      continue;
4340
4341    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4342    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4343    SDValue InsElt;
4344
4345    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4346    // using a single extract together, load it and store it.
4347    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4348      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4349                           DAG.getIntPtrConstant(Elt1 / 2));
4350      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4351                        DAG.getIntPtrConstant(i));
4352      continue;
4353    }
4354
4355    // If Elt1 is defined, extract it from the appropriate source.  If the
4356    // source byte is not also odd, shift the extracted word left 8 bits
4357    // otherwise clear the bottom 8 bits if we need to do an or.
4358    if (Elt1 >= 0) {
4359      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4360                           DAG.getIntPtrConstant(Elt1 / 2));
4361      if ((Elt1 & 1) == 0)
4362        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4363                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4364      else if (Elt0 >= 0)
4365        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4366                             DAG.getConstant(0xFF00, MVT::i16));
4367    }
4368    // If Elt0 is defined, extract it from the appropriate source.  If the
4369    // source byte is not also even, shift the extracted word right 8 bits. If
4370    // Elt1 was also defined, OR the extracted values together before
4371    // inserting them in the result.
4372    if (Elt0 >= 0) {
4373      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4374                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4375      if ((Elt0 & 1) != 0)
4376        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4377                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4378      else if (Elt1 >= 0)
4379        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4380                             DAG.getConstant(0x00FF, MVT::i16));
4381      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4382                         : InsElt0;
4383    }
4384    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4385                       DAG.getIntPtrConstant(i));
4386  }
4387  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4388}
4389
4390/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4391/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4392/// done when every pair / quad of shuffle mask elements point to elements in
4393/// the right sequence. e.g.
4394/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4395static
4396SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4397                                 SelectionDAG &DAG,
4398                                 TargetLowering &TLI, DebugLoc dl) {
4399  EVT VT = SVOp->getValueType(0);
4400  SDValue V1 = SVOp->getOperand(0);
4401  SDValue V2 = SVOp->getOperand(1);
4402  unsigned NumElems = VT.getVectorNumElements();
4403  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4404  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4405  EVT MaskEltVT = MaskVT.getVectorElementType();
4406  EVT NewVT = MaskVT;
4407  switch (VT.getSimpleVT().SimpleTy) {
4408  default: assert(false && "Unexpected!");
4409  case MVT::v4f32: NewVT = MVT::v2f64; break;
4410  case MVT::v4i32: NewVT = MVT::v2i64; break;
4411  case MVT::v8i16: NewVT = MVT::v4i32; break;
4412  case MVT::v16i8: NewVT = MVT::v4i32; break;
4413  }
4414
4415  if (NewWidth == 2) {
4416    if (VT.isInteger())
4417      NewVT = MVT::v2i64;
4418    else
4419      NewVT = MVT::v2f64;
4420  }
4421  int Scale = NumElems / NewWidth;
4422  SmallVector<int, 8> MaskVec;
4423  for (unsigned i = 0; i < NumElems; i += Scale) {
4424    int StartIdx = -1;
4425    for (int j = 0; j < Scale; ++j) {
4426      int EltIdx = SVOp->getMaskElt(i+j);
4427      if (EltIdx < 0)
4428        continue;
4429      if (StartIdx == -1)
4430        StartIdx = EltIdx - (EltIdx % Scale);
4431      if (EltIdx != StartIdx + j)
4432        return SDValue();
4433    }
4434    if (StartIdx == -1)
4435      MaskVec.push_back(-1);
4436    else
4437      MaskVec.push_back(StartIdx / Scale);
4438  }
4439
4440  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4441  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4442  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4443}
4444
4445/// getVZextMovL - Return a zero-extending vector move low node.
4446///
4447static SDValue getVZextMovL(EVT VT, EVT OpVT,
4448                            SDValue SrcOp, SelectionDAG &DAG,
4449                            const X86Subtarget *Subtarget, DebugLoc dl) {
4450  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4451    LoadSDNode *LD = NULL;
4452    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4453      LD = dyn_cast<LoadSDNode>(SrcOp);
4454    if (!LD) {
4455      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4456      // instead.
4457      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4458      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4459          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4460          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4461          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4462        // PR2108
4463        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4464        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4465                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4466                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4467                                                   OpVT,
4468                                                   SrcOp.getOperand(0)
4469                                                          .getOperand(0))));
4470      }
4471    }
4472  }
4473
4474  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4475                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4476                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4477                                             OpVT, SrcOp)));
4478}
4479
4480/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4481/// shuffles.
4482static SDValue
4483LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4484  SDValue V1 = SVOp->getOperand(0);
4485  SDValue V2 = SVOp->getOperand(1);
4486  DebugLoc dl = SVOp->getDebugLoc();
4487  EVT VT = SVOp->getValueType(0);
4488
4489  SmallVector<std::pair<int, int>, 8> Locs;
4490  Locs.resize(4);
4491  SmallVector<int, 8> Mask1(4U, -1);
4492  SmallVector<int, 8> PermMask;
4493  SVOp->getMask(PermMask);
4494
4495  unsigned NumHi = 0;
4496  unsigned NumLo = 0;
4497  for (unsigned i = 0; i != 4; ++i) {
4498    int Idx = PermMask[i];
4499    if (Idx < 0) {
4500      Locs[i] = std::make_pair(-1, -1);
4501    } else {
4502      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4503      if (Idx < 4) {
4504        Locs[i] = std::make_pair(0, NumLo);
4505        Mask1[NumLo] = Idx;
4506        NumLo++;
4507      } else {
4508        Locs[i] = std::make_pair(1, NumHi);
4509        if (2+NumHi < 4)
4510          Mask1[2+NumHi] = Idx;
4511        NumHi++;
4512      }
4513    }
4514  }
4515
4516  if (NumLo <= 2 && NumHi <= 2) {
4517    // If no more than two elements come from either vector. This can be
4518    // implemented with two shuffles. First shuffle gather the elements.
4519    // The second shuffle, which takes the first shuffle as both of its
4520    // vector operands, put the elements into the right order.
4521    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4522
4523    SmallVector<int, 8> Mask2(4U, -1);
4524
4525    for (unsigned i = 0; i != 4; ++i) {
4526      if (Locs[i].first == -1)
4527        continue;
4528      else {
4529        unsigned Idx = (i < 2) ? 0 : 4;
4530        Idx += Locs[i].first * 2 + Locs[i].second;
4531        Mask2[i] = Idx;
4532      }
4533    }
4534
4535    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4536  } else if (NumLo == 3 || NumHi == 3) {
4537    // Otherwise, we must have three elements from one vector, call it X, and
4538    // one element from the other, call it Y.  First, use a shufps to build an
4539    // intermediate vector with the one element from Y and the element from X
4540    // that will be in the same half in the final destination (the indexes don't
4541    // matter). Then, use a shufps to build the final vector, taking the half
4542    // containing the element from Y from the intermediate, and the other half
4543    // from X.
4544    if (NumHi == 3) {
4545      // Normalize it so the 3 elements come from V1.
4546      CommuteVectorShuffleMask(PermMask, VT);
4547      std::swap(V1, V2);
4548    }
4549
4550    // Find the element from V2.
4551    unsigned HiIndex;
4552    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4553      int Val = PermMask[HiIndex];
4554      if (Val < 0)
4555        continue;
4556      if (Val >= 4)
4557        break;
4558    }
4559
4560    Mask1[0] = PermMask[HiIndex];
4561    Mask1[1] = -1;
4562    Mask1[2] = PermMask[HiIndex^1];
4563    Mask1[3] = -1;
4564    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4565
4566    if (HiIndex >= 2) {
4567      Mask1[0] = PermMask[0];
4568      Mask1[1] = PermMask[1];
4569      Mask1[2] = HiIndex & 1 ? 6 : 4;
4570      Mask1[3] = HiIndex & 1 ? 4 : 6;
4571      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4572    } else {
4573      Mask1[0] = HiIndex & 1 ? 2 : 0;
4574      Mask1[1] = HiIndex & 1 ? 0 : 2;
4575      Mask1[2] = PermMask[2];
4576      Mask1[3] = PermMask[3];
4577      if (Mask1[2] >= 0)
4578        Mask1[2] += 4;
4579      if (Mask1[3] >= 0)
4580        Mask1[3] += 4;
4581      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4582    }
4583  }
4584
4585  // Break it into (shuffle shuffle_hi, shuffle_lo).
4586  Locs.clear();
4587  SmallVector<int,8> LoMask(4U, -1);
4588  SmallVector<int,8> HiMask(4U, -1);
4589
4590  SmallVector<int,8> *MaskPtr = &LoMask;
4591  unsigned MaskIdx = 0;
4592  unsigned LoIdx = 0;
4593  unsigned HiIdx = 2;
4594  for (unsigned i = 0; i != 4; ++i) {
4595    if (i == 2) {
4596      MaskPtr = &HiMask;
4597      MaskIdx = 1;
4598      LoIdx = 0;
4599      HiIdx = 2;
4600    }
4601    int Idx = PermMask[i];
4602    if (Idx < 0) {
4603      Locs[i] = std::make_pair(-1, -1);
4604    } else if (Idx < 4) {
4605      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4606      (*MaskPtr)[LoIdx] = Idx;
4607      LoIdx++;
4608    } else {
4609      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4610      (*MaskPtr)[HiIdx] = Idx;
4611      HiIdx++;
4612    }
4613  }
4614
4615  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4616  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4617  SmallVector<int, 8> MaskOps;
4618  for (unsigned i = 0; i != 4; ++i) {
4619    if (Locs[i].first == -1) {
4620      MaskOps.push_back(-1);
4621    } else {
4622      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4623      MaskOps.push_back(Idx);
4624    }
4625  }
4626  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4627}
4628
4629SDValue
4630X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4631  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4632  SDValue V1 = Op.getOperand(0);
4633  SDValue V2 = Op.getOperand(1);
4634  EVT VT = Op.getValueType();
4635  DebugLoc dl = Op.getDebugLoc();
4636  unsigned NumElems = VT.getVectorNumElements();
4637  bool isMMX = VT.getSizeInBits() == 64;
4638  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4639  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4640  bool V1IsSplat = false;
4641  bool V2IsSplat = false;
4642
4643  if (isZeroShuffle(SVOp))
4644    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4645
4646  // Promote splats to v4f32.
4647  if (SVOp->isSplat()) {
4648    if (isMMX || NumElems < 4)
4649      return Op;
4650    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4651  }
4652
4653  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4654  // do it!
4655  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4656    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4657    if (NewOp.getNode())
4658      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4659                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4660  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4661    // FIXME: Figure out a cleaner way to do this.
4662    // Try to make use of movq to zero out the top part.
4663    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4664      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4665      if (NewOp.getNode()) {
4666        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4667          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4668                              DAG, Subtarget, dl);
4669      }
4670    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4671      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4672      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4673        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4674                            DAG, Subtarget, dl);
4675    }
4676  }
4677
4678  if (X86::isPSHUFDMask(SVOp))
4679    return Op;
4680
4681  // Check if this can be converted into a logical shift.
4682  bool isLeft = false;
4683  unsigned ShAmt = 0;
4684  SDValue ShVal;
4685  bool isShift = getSubtarget()->hasSSE2() &&
4686    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4687  if (isShift && ShVal.hasOneUse()) {
4688    // If the shifted value has multiple uses, it may be cheaper to use
4689    // v_set0 + movlhps or movhlps, etc.
4690    EVT EltVT = VT.getVectorElementType();
4691    ShAmt *= EltVT.getSizeInBits();
4692    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4693  }
4694
4695  if (X86::isMOVLMask(SVOp)) {
4696    if (V1IsUndef)
4697      return V2;
4698    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4699      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4700    if (!isMMX)
4701      return Op;
4702  }
4703
4704  // FIXME: fold these into legal mask.
4705  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4706                 X86::isMOVSLDUPMask(SVOp) ||
4707                 X86::isMOVHLPSMask(SVOp) ||
4708                 X86::isMOVLHPSMask(SVOp) ||
4709                 X86::isMOVLPMask(SVOp)))
4710    return Op;
4711
4712  if (ShouldXformToMOVHLPS(SVOp) ||
4713      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4714    return CommuteVectorShuffle(SVOp, DAG);
4715
4716  if (isShift) {
4717    // No better options. Use a vshl / vsrl.
4718    EVT EltVT = VT.getVectorElementType();
4719    ShAmt *= EltVT.getSizeInBits();
4720    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4721  }
4722
4723  bool Commuted = false;
4724  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4725  // 1,1,1,1 -> v8i16 though.
4726  V1IsSplat = isSplatVector(V1.getNode());
4727  V2IsSplat = isSplatVector(V2.getNode());
4728
4729  // Canonicalize the splat or undef, if present, to be on the RHS.
4730  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4731    Op = CommuteVectorShuffle(SVOp, DAG);
4732    SVOp = cast<ShuffleVectorSDNode>(Op);
4733    V1 = SVOp->getOperand(0);
4734    V2 = SVOp->getOperand(1);
4735    std::swap(V1IsSplat, V2IsSplat);
4736    std::swap(V1IsUndef, V2IsUndef);
4737    Commuted = true;
4738  }
4739
4740  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4741    // Shuffling low element of v1 into undef, just return v1.
4742    if (V2IsUndef)
4743      return V1;
4744    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4745    // the instruction selector will not match, so get a canonical MOVL with
4746    // swapped operands to undo the commute.
4747    return getMOVL(DAG, dl, VT, V2, V1);
4748  }
4749
4750  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4751      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4752      X86::isUNPCKLMask(SVOp) ||
4753      X86::isUNPCKHMask(SVOp))
4754    return Op;
4755
4756  if (V2IsSplat) {
4757    // Normalize mask so all entries that point to V2 points to its first
4758    // element then try to match unpck{h|l} again. If match, return a
4759    // new vector_shuffle with the corrected mask.
4760    SDValue NewMask = NormalizeMask(SVOp, DAG);
4761    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4762    if (NSVOp != SVOp) {
4763      if (X86::isUNPCKLMask(NSVOp, true)) {
4764        return NewMask;
4765      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4766        return NewMask;
4767      }
4768    }
4769  }
4770
4771  if (Commuted) {
4772    // Commute is back and try unpck* again.
4773    // FIXME: this seems wrong.
4774    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4775    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4776    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4777        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4778        X86::isUNPCKLMask(NewSVOp) ||
4779        X86::isUNPCKHMask(NewSVOp))
4780      return NewOp;
4781  }
4782
4783  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4784
4785  // Normalize the node to match x86 shuffle ops if needed
4786  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4787    return CommuteVectorShuffle(SVOp, DAG);
4788
4789  // Check for legal shuffle and return?
4790  SmallVector<int, 16> PermMask;
4791  SVOp->getMask(PermMask);
4792  if (isShuffleMaskLegal(PermMask, VT))
4793    return Op;
4794
4795  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4796  if (VT == MVT::v8i16) {
4797    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4798    if (NewOp.getNode())
4799      return NewOp;
4800  }
4801
4802  if (VT == MVT::v16i8) {
4803    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4804    if (NewOp.getNode())
4805      return NewOp;
4806  }
4807
4808  // Handle all 4 wide cases with a number of shuffles except for MMX.
4809  if (NumElems == 4 && !isMMX)
4810    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4811
4812  return SDValue();
4813}
4814
4815SDValue
4816X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4817                                                SelectionDAG &DAG) {
4818  EVT VT = Op.getValueType();
4819  DebugLoc dl = Op.getDebugLoc();
4820  if (VT.getSizeInBits() == 8) {
4821    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4822                                    Op.getOperand(0), Op.getOperand(1));
4823    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4824                                    DAG.getValueType(VT));
4825    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4826  } else if (VT.getSizeInBits() == 16) {
4827    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4828    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4829    if (Idx == 0)
4830      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4831                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4832                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4833                                                 MVT::v4i32,
4834                                                 Op.getOperand(0)),
4835                                     Op.getOperand(1)));
4836    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4837                                    Op.getOperand(0), Op.getOperand(1));
4838    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4839                                    DAG.getValueType(VT));
4840    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4841  } else if (VT == MVT::f32) {
4842    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4843    // the result back to FR32 register. It's only worth matching if the
4844    // result has a single use which is a store or a bitcast to i32.  And in
4845    // the case of a store, it's not worth it if the index is a constant 0,
4846    // because a MOVSSmr can be used instead, which is smaller and faster.
4847    if (!Op.hasOneUse())
4848      return SDValue();
4849    SDNode *User = *Op.getNode()->use_begin();
4850    if ((User->getOpcode() != ISD::STORE ||
4851         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4852          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4853        (User->getOpcode() != ISD::BIT_CONVERT ||
4854         User->getValueType(0) != MVT::i32))
4855      return SDValue();
4856    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4857                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4858                                              Op.getOperand(0)),
4859                                              Op.getOperand(1));
4860    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4861  } else if (VT == MVT::i32) {
4862    // ExtractPS works with constant index.
4863    if (isa<ConstantSDNode>(Op.getOperand(1)))
4864      return Op;
4865  }
4866  return SDValue();
4867}
4868
4869
4870SDValue
4871X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4872  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4873    return SDValue();
4874
4875  if (Subtarget->hasSSE41()) {
4876    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4877    if (Res.getNode())
4878      return Res;
4879  }
4880
4881  EVT VT = Op.getValueType();
4882  DebugLoc dl = Op.getDebugLoc();
4883  // TODO: handle v16i8.
4884  if (VT.getSizeInBits() == 16) {
4885    SDValue Vec = Op.getOperand(0);
4886    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4887    if (Idx == 0)
4888      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4889                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4890                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4891                                                 MVT::v4i32, Vec),
4892                                     Op.getOperand(1)));
4893    // Transform it so it match pextrw which produces a 32-bit result.
4894    EVT EltVT = MVT::i32;
4895    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4896                                    Op.getOperand(0), Op.getOperand(1));
4897    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4898                                    DAG.getValueType(VT));
4899    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4900  } else if (VT.getSizeInBits() == 32) {
4901    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4902    if (Idx == 0)
4903      return Op;
4904
4905    // SHUFPS the element to the lowest double word, then movss.
4906    int Mask[4] = { Idx, -1, -1, -1 };
4907    EVT VVT = Op.getOperand(0).getValueType();
4908    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4909                                       DAG.getUNDEF(VVT), Mask);
4910    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4911                       DAG.getIntPtrConstant(0));
4912  } else if (VT.getSizeInBits() == 64) {
4913    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4914    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4915    //        to match extract_elt for f64.
4916    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4917    if (Idx == 0)
4918      return Op;
4919
4920    // UNPCKHPD the element to the lowest double word, then movsd.
4921    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4922    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4923    int Mask[2] = { 1, -1 };
4924    EVT VVT = Op.getOperand(0).getValueType();
4925    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4926                                       DAG.getUNDEF(VVT), Mask);
4927    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4928                       DAG.getIntPtrConstant(0));
4929  }
4930
4931  return SDValue();
4932}
4933
4934SDValue
4935X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4936  EVT VT = Op.getValueType();
4937  EVT EltVT = VT.getVectorElementType();
4938  DebugLoc dl = Op.getDebugLoc();
4939
4940  SDValue N0 = Op.getOperand(0);
4941  SDValue N1 = Op.getOperand(1);
4942  SDValue N2 = Op.getOperand(2);
4943
4944  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4945      isa<ConstantSDNode>(N2)) {
4946    unsigned Opc;
4947    if (VT == MVT::v8i16)
4948      Opc = X86ISD::PINSRW;
4949    else if (VT == MVT::v4i16)
4950      Opc = X86ISD::MMX_PINSRW;
4951    else if (VT == MVT::v16i8)
4952      Opc = X86ISD::PINSRB;
4953    else
4954      Opc = X86ISD::PINSRB;
4955
4956    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4957    // argument.
4958    if (N1.getValueType() != MVT::i32)
4959      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4960    if (N2.getValueType() != MVT::i32)
4961      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4962    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4963  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4964    // Bits [7:6] of the constant are the source select.  This will always be
4965    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4966    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4967    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4968    // Bits [5:4] of the constant are the destination select.  This is the
4969    //  value of the incoming immediate.
4970    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4971    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4972    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4973    // Create this as a scalar to vector..
4974    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4975    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4976  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4977    // PINSR* works with constant index.
4978    return Op;
4979  }
4980  return SDValue();
4981}
4982
4983SDValue
4984X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4985  EVT VT = Op.getValueType();
4986  EVT EltVT = VT.getVectorElementType();
4987
4988  if (Subtarget->hasSSE41())
4989    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4990
4991  if (EltVT == MVT::i8)
4992    return SDValue();
4993
4994  DebugLoc dl = Op.getDebugLoc();
4995  SDValue N0 = Op.getOperand(0);
4996  SDValue N1 = Op.getOperand(1);
4997  SDValue N2 = Op.getOperand(2);
4998
4999  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5000    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5001    // as its second argument.
5002    if (N1.getValueType() != MVT::i32)
5003      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5004    if (N2.getValueType() != MVT::i32)
5005      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5006    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5007                       dl, VT, N0, N1, N2);
5008  }
5009  return SDValue();
5010}
5011
5012SDValue
5013X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
5014  DebugLoc dl = Op.getDebugLoc();
5015  if (Op.getValueType() == MVT::v2f32)
5016    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
5017                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
5018                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
5019                                               Op.getOperand(0))));
5020
5021  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
5022    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5023
5024  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5025  EVT VT = MVT::v2i32;
5026  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5027  default: break;
5028  case MVT::v16i8:
5029  case MVT::v8i16:
5030    VT = MVT::v4i32;
5031    break;
5032  }
5033  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5034                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5035}
5036
5037// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5038// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5039// one of the above mentioned nodes. It has to be wrapped because otherwise
5040// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5041// be used to form addressing mode. These wrapped nodes will be selected
5042// into MOV32ri.
5043SDValue
5044X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
5045  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5046
5047  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5048  // global base reg.
5049  unsigned char OpFlag = 0;
5050  unsigned WrapperKind = X86ISD::Wrapper;
5051  CodeModel::Model M = getTargetMachine().getCodeModel();
5052
5053  if (Subtarget->isPICStyleRIPRel() &&
5054      (M == CodeModel::Small || M == CodeModel::Kernel))
5055    WrapperKind = X86ISD::WrapperRIP;
5056  else if (Subtarget->isPICStyleGOT())
5057    OpFlag = X86II::MO_GOTOFF;
5058  else if (Subtarget->isPICStyleStubPIC())
5059    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5060
5061  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5062                                             CP->getAlignment(),
5063                                             CP->getOffset(), OpFlag);
5064  DebugLoc DL = CP->getDebugLoc();
5065  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5066  // With PIC, the address is actually $g + Offset.
5067  if (OpFlag) {
5068    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5069                         DAG.getNode(X86ISD::GlobalBaseReg,
5070                                     DebugLoc(), getPointerTy()),
5071                         Result);
5072  }
5073
5074  return Result;
5075}
5076
5077SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
5078  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5079
5080  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5081  // global base reg.
5082  unsigned char OpFlag = 0;
5083  unsigned WrapperKind = X86ISD::Wrapper;
5084  CodeModel::Model M = getTargetMachine().getCodeModel();
5085
5086  if (Subtarget->isPICStyleRIPRel() &&
5087      (M == CodeModel::Small || M == CodeModel::Kernel))
5088    WrapperKind = X86ISD::WrapperRIP;
5089  else if (Subtarget->isPICStyleGOT())
5090    OpFlag = X86II::MO_GOTOFF;
5091  else if (Subtarget->isPICStyleStubPIC())
5092    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5093
5094  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5095                                          OpFlag);
5096  DebugLoc DL = JT->getDebugLoc();
5097  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5098
5099  // With PIC, the address is actually $g + Offset.
5100  if (OpFlag) {
5101    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5102                         DAG.getNode(X86ISD::GlobalBaseReg,
5103                                     DebugLoc(), getPointerTy()),
5104                         Result);
5105  }
5106
5107  return Result;
5108}
5109
5110SDValue
5111X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
5112  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5113
5114  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5115  // global base reg.
5116  unsigned char OpFlag = 0;
5117  unsigned WrapperKind = X86ISD::Wrapper;
5118  CodeModel::Model M = getTargetMachine().getCodeModel();
5119
5120  if (Subtarget->isPICStyleRIPRel() &&
5121      (M == CodeModel::Small || M == CodeModel::Kernel))
5122    WrapperKind = X86ISD::WrapperRIP;
5123  else if (Subtarget->isPICStyleGOT())
5124    OpFlag = X86II::MO_GOTOFF;
5125  else if (Subtarget->isPICStyleStubPIC())
5126    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5127
5128  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5129
5130  DebugLoc DL = Op.getDebugLoc();
5131  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5132
5133
5134  // With PIC, the address is actually $g + Offset.
5135  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5136      !Subtarget->is64Bit()) {
5137    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5138                         DAG.getNode(X86ISD::GlobalBaseReg,
5139                                     DebugLoc(), getPointerTy()),
5140                         Result);
5141  }
5142
5143  return Result;
5144}
5145
5146SDValue
5147X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5148  // Create the TargetBlockAddressAddress node.
5149  unsigned char OpFlags =
5150    Subtarget->ClassifyBlockAddressReference();
5151  CodeModel::Model M = getTargetMachine().getCodeModel();
5152  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5153  DebugLoc dl = Op.getDebugLoc();
5154  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5155                                       /*isTarget=*/true, OpFlags);
5156
5157  if (Subtarget->isPICStyleRIPRel() &&
5158      (M == CodeModel::Small || M == CodeModel::Kernel))
5159    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5160  else
5161    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5162
5163  // With PIC, the address is actually $g + Offset.
5164  if (isGlobalRelativeToPICBase(OpFlags)) {
5165    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5166                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5167                         Result);
5168  }
5169
5170  return Result;
5171}
5172
5173SDValue
5174X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5175                                      int64_t Offset,
5176                                      SelectionDAG &DAG) const {
5177  // Create the TargetGlobalAddress node, folding in the constant
5178  // offset if it is legal.
5179  unsigned char OpFlags =
5180    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5181  CodeModel::Model M = getTargetMachine().getCodeModel();
5182  SDValue Result;
5183  if (OpFlags == X86II::MO_NO_FLAG &&
5184      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5185    // A direct static reference to a global.
5186    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5187    Offset = 0;
5188  } else {
5189    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5190  }
5191
5192  if (Subtarget->isPICStyleRIPRel() &&
5193      (M == CodeModel::Small || M == CodeModel::Kernel))
5194    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5195  else
5196    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5197
5198  // With PIC, the address is actually $g + Offset.
5199  if (isGlobalRelativeToPICBase(OpFlags)) {
5200    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5201                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5202                         Result);
5203  }
5204
5205  // For globals that require a load from a stub to get the address, emit the
5206  // load.
5207  if (isGlobalStubReference(OpFlags))
5208    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5209                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5210
5211  // If there was a non-zero offset that we didn't fold, create an explicit
5212  // addition for it.
5213  if (Offset != 0)
5214    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5215                         DAG.getConstant(Offset, getPointerTy()));
5216
5217  return Result;
5218}
5219
5220SDValue
5221X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5222  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5223  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5224  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5225}
5226
5227static SDValue
5228GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5229           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5230           unsigned char OperandFlags) {
5231  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5232  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5233  DebugLoc dl = GA->getDebugLoc();
5234  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5235                                           GA->getValueType(0),
5236                                           GA->getOffset(),
5237                                           OperandFlags);
5238  if (InFlag) {
5239    SDValue Ops[] = { Chain,  TGA, *InFlag };
5240    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5241  } else {
5242    SDValue Ops[]  = { Chain, TGA };
5243    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5244  }
5245
5246  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5247  MFI->setHasCalls(true);
5248
5249  SDValue Flag = Chain.getValue(1);
5250  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5251}
5252
5253// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5254static SDValue
5255LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5256                                const EVT PtrVT) {
5257  SDValue InFlag;
5258  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5259  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5260                                     DAG.getNode(X86ISD::GlobalBaseReg,
5261                                                 DebugLoc(), PtrVT), InFlag);
5262  InFlag = Chain.getValue(1);
5263
5264  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5265}
5266
5267// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5268static SDValue
5269LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5270                                const EVT PtrVT) {
5271  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5272                    X86::RAX, X86II::MO_TLSGD);
5273}
5274
5275// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5276// "local exec" model.
5277static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5278                                   const EVT PtrVT, TLSModel::Model model,
5279                                   bool is64Bit) {
5280  DebugLoc dl = GA->getDebugLoc();
5281  // Get the Thread Pointer
5282  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5283                             DebugLoc(), PtrVT,
5284                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5285                                             MVT::i32));
5286
5287  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5288                                      NULL, 0, false, false, 0);
5289
5290  unsigned char OperandFlags = 0;
5291  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5292  // initialexec.
5293  unsigned WrapperKind = X86ISD::Wrapper;
5294  if (model == TLSModel::LocalExec) {
5295    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5296  } else if (is64Bit) {
5297    assert(model == TLSModel::InitialExec);
5298    OperandFlags = X86II::MO_GOTTPOFF;
5299    WrapperKind = X86ISD::WrapperRIP;
5300  } else {
5301    assert(model == TLSModel::InitialExec);
5302    OperandFlags = X86II::MO_INDNTPOFF;
5303  }
5304
5305  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5306  // exec)
5307  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5308                                           GA->getOffset(), OperandFlags);
5309  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5310
5311  if (model == TLSModel::InitialExec)
5312    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5313                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5314
5315  // The address of the thread local variable is the add of the thread
5316  // pointer with the offset of the variable.
5317  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5318}
5319
5320SDValue
5321X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5322  // TODO: implement the "local dynamic" model
5323  // TODO: implement the "initial exec"model for pic executables
5324  assert(Subtarget->isTargetELF() &&
5325         "TLS not implemented for non-ELF targets");
5326  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5327  const GlobalValue *GV = GA->getGlobal();
5328
5329  // If GV is an alias then use the aliasee for determining
5330  // thread-localness.
5331  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5332    GV = GA->resolveAliasedGlobal(false);
5333
5334  TLSModel::Model model = getTLSModel(GV,
5335                                      getTargetMachine().getRelocationModel());
5336
5337  switch (model) {
5338  case TLSModel::GeneralDynamic:
5339  case TLSModel::LocalDynamic: // not implemented
5340    if (Subtarget->is64Bit())
5341      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5342    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5343
5344  case TLSModel::InitialExec:
5345  case TLSModel::LocalExec:
5346    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5347                               Subtarget->is64Bit());
5348  }
5349
5350  llvm_unreachable("Unreachable");
5351  return SDValue();
5352}
5353
5354
5355/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5356/// take a 2 x i32 value to shift plus a shift amount.
5357SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5358  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5359  EVT VT = Op.getValueType();
5360  unsigned VTBits = VT.getSizeInBits();
5361  DebugLoc dl = Op.getDebugLoc();
5362  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5363  SDValue ShOpLo = Op.getOperand(0);
5364  SDValue ShOpHi = Op.getOperand(1);
5365  SDValue ShAmt  = Op.getOperand(2);
5366  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5367                                     DAG.getConstant(VTBits - 1, MVT::i8))
5368                       : DAG.getConstant(0, VT);
5369
5370  SDValue Tmp2, Tmp3;
5371  if (Op.getOpcode() == ISD::SHL_PARTS) {
5372    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5373    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5374  } else {
5375    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5376    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5377  }
5378
5379  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5380                                DAG.getConstant(VTBits, MVT::i8));
5381  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5382                             AndNode, DAG.getConstant(0, MVT::i8));
5383
5384  SDValue Hi, Lo;
5385  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5386  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5387  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5388
5389  if (Op.getOpcode() == ISD::SHL_PARTS) {
5390    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5391    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5392  } else {
5393    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5394    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5395  }
5396
5397  SDValue Ops[2] = { Lo, Hi };
5398  return DAG.getMergeValues(Ops, 2, dl);
5399}
5400
5401SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5402  EVT SrcVT = Op.getOperand(0).getValueType();
5403
5404  if (SrcVT.isVector()) {
5405    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5406      return Op;
5407    }
5408    return SDValue();
5409  }
5410
5411  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5412         "Unknown SINT_TO_FP to lower!");
5413
5414  // These are really Legal; return the operand so the caller accepts it as
5415  // Legal.
5416  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5417    return Op;
5418  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5419      Subtarget->is64Bit()) {
5420    return Op;
5421  }
5422
5423  DebugLoc dl = Op.getDebugLoc();
5424  unsigned Size = SrcVT.getSizeInBits()/8;
5425  MachineFunction &MF = DAG.getMachineFunction();
5426  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5427  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5428  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5429                               StackSlot,
5430                               PseudoSourceValue::getFixedStack(SSFI), 0,
5431                               false, false, 0);
5432  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5433}
5434
5435SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5436                                     SDValue StackSlot,
5437                                     SelectionDAG &DAG) {
5438  // Build the FILD
5439  DebugLoc dl = Op.getDebugLoc();
5440  SDVTList Tys;
5441  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5442  if (useSSE)
5443    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5444  else
5445    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5446  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5447  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5448                               Tys, Ops, array_lengthof(Ops));
5449
5450  if (useSSE) {
5451    Chain = Result.getValue(1);
5452    SDValue InFlag = Result.getValue(2);
5453
5454    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5455    // shouldn't be necessary except that RFP cannot be live across
5456    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5457    MachineFunction &MF = DAG.getMachineFunction();
5458    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5459    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5460    Tys = DAG.getVTList(MVT::Other);
5461    SDValue Ops[] = {
5462      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5463    };
5464    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5465    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5466                         PseudoSourceValue::getFixedStack(SSFI), 0,
5467                         false, false, 0);
5468  }
5469
5470  return Result;
5471}
5472
5473// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5474SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5475  // This algorithm is not obvious. Here it is in C code, more or less:
5476  /*
5477    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5478      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5479      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5480
5481      // Copy ints to xmm registers.
5482      __m128i xh = _mm_cvtsi32_si128( hi );
5483      __m128i xl = _mm_cvtsi32_si128( lo );
5484
5485      // Combine into low half of a single xmm register.
5486      __m128i x = _mm_unpacklo_epi32( xh, xl );
5487      __m128d d;
5488      double sd;
5489
5490      // Merge in appropriate exponents to give the integer bits the right
5491      // magnitude.
5492      x = _mm_unpacklo_epi32( x, exp );
5493
5494      // Subtract away the biases to deal with the IEEE-754 double precision
5495      // implicit 1.
5496      d = _mm_sub_pd( (__m128d) x, bias );
5497
5498      // All conversions up to here are exact. The correctly rounded result is
5499      // calculated using the current rounding mode using the following
5500      // horizontal add.
5501      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5502      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5503                                // store doesn't really need to be here (except
5504                                // maybe to zero the other double)
5505      return sd;
5506    }
5507  */
5508
5509  DebugLoc dl = Op.getDebugLoc();
5510  LLVMContext *Context = DAG.getContext();
5511
5512  // Build some magic constants.
5513  std::vector<Constant*> CV0;
5514  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5515  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5516  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5517  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5518  Constant *C0 = ConstantVector::get(CV0);
5519  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5520
5521  std::vector<Constant*> CV1;
5522  CV1.push_back(
5523    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5524  CV1.push_back(
5525    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5526  Constant *C1 = ConstantVector::get(CV1);
5527  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5528
5529  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5530                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5531                                        Op.getOperand(0),
5532                                        DAG.getIntPtrConstant(1)));
5533  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5534                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5535                                        Op.getOperand(0),
5536                                        DAG.getIntPtrConstant(0)));
5537  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5538  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5539                              PseudoSourceValue::getConstantPool(), 0,
5540                              false, false, 16);
5541  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5542  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5543  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5544                              PseudoSourceValue::getConstantPool(), 0,
5545                              false, false, 16);
5546  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5547
5548  // Add the halves; easiest way is to swap them into another reg first.
5549  int ShufMask[2] = { 1, -1 };
5550  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5551                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5552  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5553  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5554                     DAG.getIntPtrConstant(0));
5555}
5556
5557// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5558SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5559  DebugLoc dl = Op.getDebugLoc();
5560  // FP constant to bias correct the final result.
5561  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5562                                   MVT::f64);
5563
5564  // Load the 32-bit value into an XMM register.
5565  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5566                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5567                                         Op.getOperand(0),
5568                                         DAG.getIntPtrConstant(0)));
5569
5570  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5571                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5572                     DAG.getIntPtrConstant(0));
5573
5574  // Or the load with the bias.
5575  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5576                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5577                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5578                                                   MVT::v2f64, Load)),
5579                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5580                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5581                                                   MVT::v2f64, Bias)));
5582  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5583                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5584                   DAG.getIntPtrConstant(0));
5585
5586  // Subtract the bias.
5587  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5588
5589  // Handle final rounding.
5590  EVT DestVT = Op.getValueType();
5591
5592  if (DestVT.bitsLT(MVT::f64)) {
5593    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5594                       DAG.getIntPtrConstant(0));
5595  } else if (DestVT.bitsGT(MVT::f64)) {
5596    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5597  }
5598
5599  // Handle final rounding.
5600  return Sub;
5601}
5602
5603SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5604  SDValue N0 = Op.getOperand(0);
5605  DebugLoc dl = Op.getDebugLoc();
5606
5607  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5608  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5609  // the optimization here.
5610  if (DAG.SignBitIsZero(N0))
5611    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5612
5613  EVT SrcVT = N0.getValueType();
5614  if (SrcVT == MVT::i64) {
5615    // We only handle SSE2 f64 target here; caller can expand the rest.
5616    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5617      return SDValue();
5618
5619    return LowerUINT_TO_FP_i64(Op, DAG);
5620  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5621    return LowerUINT_TO_FP_i32(Op, DAG);
5622  }
5623
5624  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5625
5626  // Make a 64-bit buffer, and use it to build an FILD.
5627  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5628  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5629  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5630                                   getPointerTy(), StackSlot, WordOff);
5631  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5632                                StackSlot, NULL, 0, false, false, 0);
5633  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5634                                OffsetSlot, NULL, 0, false, false, 0);
5635  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5636}
5637
5638std::pair<SDValue,SDValue> X86TargetLowering::
5639FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5640  DebugLoc dl = Op.getDebugLoc();
5641
5642  EVT DstTy = Op.getValueType();
5643
5644  if (!IsSigned) {
5645    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5646    DstTy = MVT::i64;
5647  }
5648
5649  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5650         DstTy.getSimpleVT() >= MVT::i16 &&
5651         "Unknown FP_TO_SINT to lower!");
5652
5653  // These are really Legal.
5654  if (DstTy == MVT::i32 &&
5655      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5656    return std::make_pair(SDValue(), SDValue());
5657  if (Subtarget->is64Bit() &&
5658      DstTy == MVT::i64 &&
5659      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5660    return std::make_pair(SDValue(), SDValue());
5661
5662  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5663  // stack slot.
5664  MachineFunction &MF = DAG.getMachineFunction();
5665  unsigned MemSize = DstTy.getSizeInBits()/8;
5666  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5667  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5668
5669  unsigned Opc;
5670  switch (DstTy.getSimpleVT().SimpleTy) {
5671  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5672  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5673  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5674  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5675  }
5676
5677  SDValue Chain = DAG.getEntryNode();
5678  SDValue Value = Op.getOperand(0);
5679  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5680    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5681    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5682                         PseudoSourceValue::getFixedStack(SSFI), 0,
5683                         false, false, 0);
5684    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5685    SDValue Ops[] = {
5686      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5687    };
5688    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5689    Chain = Value.getValue(1);
5690    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5691    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5692  }
5693
5694  // Build the FP_TO_INT*_IN_MEM
5695  SDValue Ops[] = { Chain, Value, StackSlot };
5696  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5697
5698  return std::make_pair(FIST, StackSlot);
5699}
5700
5701SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5702  if (Op.getValueType().isVector()) {
5703    if (Op.getValueType() == MVT::v2i32 &&
5704        Op.getOperand(0).getValueType() == MVT::v2f64) {
5705      return Op;
5706    }
5707    return SDValue();
5708  }
5709
5710  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5711  SDValue FIST = Vals.first, StackSlot = Vals.second;
5712  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5713  if (FIST.getNode() == 0) return Op;
5714
5715  // Load the result.
5716  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5717                     FIST, StackSlot, NULL, 0, false, false, 0);
5718}
5719
5720SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5721  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5722  SDValue FIST = Vals.first, StackSlot = Vals.second;
5723  assert(FIST.getNode() && "Unexpected failure");
5724
5725  // Load the result.
5726  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5727                     FIST, StackSlot, NULL, 0, false, false, 0);
5728}
5729
5730SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5731  LLVMContext *Context = DAG.getContext();
5732  DebugLoc dl = Op.getDebugLoc();
5733  EVT VT = Op.getValueType();
5734  EVT EltVT = VT;
5735  if (VT.isVector())
5736    EltVT = VT.getVectorElementType();
5737  std::vector<Constant*> CV;
5738  if (EltVT == MVT::f64) {
5739    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5740    CV.push_back(C);
5741    CV.push_back(C);
5742  } else {
5743    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5744    CV.push_back(C);
5745    CV.push_back(C);
5746    CV.push_back(C);
5747    CV.push_back(C);
5748  }
5749  Constant *C = ConstantVector::get(CV);
5750  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5751  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5752                             PseudoSourceValue::getConstantPool(), 0,
5753                             false, false, 16);
5754  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5755}
5756
5757SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5758  LLVMContext *Context = DAG.getContext();
5759  DebugLoc dl = Op.getDebugLoc();
5760  EVT VT = Op.getValueType();
5761  EVT EltVT = VT;
5762  if (VT.isVector())
5763    EltVT = VT.getVectorElementType();
5764  std::vector<Constant*> CV;
5765  if (EltVT == MVT::f64) {
5766    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5767    CV.push_back(C);
5768    CV.push_back(C);
5769  } else {
5770    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5771    CV.push_back(C);
5772    CV.push_back(C);
5773    CV.push_back(C);
5774    CV.push_back(C);
5775  }
5776  Constant *C = ConstantVector::get(CV);
5777  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5778  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5779                             PseudoSourceValue::getConstantPool(), 0,
5780                             false, false, 16);
5781  if (VT.isVector()) {
5782    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5783                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5784                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5785                                Op.getOperand(0)),
5786                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5787  } else {
5788    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5789  }
5790}
5791
5792SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5793  LLVMContext *Context = DAG.getContext();
5794  SDValue Op0 = Op.getOperand(0);
5795  SDValue Op1 = Op.getOperand(1);
5796  DebugLoc dl = Op.getDebugLoc();
5797  EVT VT = Op.getValueType();
5798  EVT SrcVT = Op1.getValueType();
5799
5800  // If second operand is smaller, extend it first.
5801  if (SrcVT.bitsLT(VT)) {
5802    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5803    SrcVT = VT;
5804  }
5805  // And if it is bigger, shrink it first.
5806  if (SrcVT.bitsGT(VT)) {
5807    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5808    SrcVT = VT;
5809  }
5810
5811  // At this point the operands and the result should have the same
5812  // type, and that won't be f80 since that is not custom lowered.
5813
5814  // First get the sign bit of second operand.
5815  std::vector<Constant*> CV;
5816  if (SrcVT == MVT::f64) {
5817    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5818    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5819  } else {
5820    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5821    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5822    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5823    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5824  }
5825  Constant *C = ConstantVector::get(CV);
5826  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5827  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5828                              PseudoSourceValue::getConstantPool(), 0,
5829                              false, false, 16);
5830  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5831
5832  // Shift sign bit right or left if the two operands have different types.
5833  if (SrcVT.bitsGT(VT)) {
5834    // Op0 is MVT::f32, Op1 is MVT::f64.
5835    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5836    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5837                          DAG.getConstant(32, MVT::i32));
5838    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5839    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5840                          DAG.getIntPtrConstant(0));
5841  }
5842
5843  // Clear first operand sign bit.
5844  CV.clear();
5845  if (VT == MVT::f64) {
5846    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5847    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5848  } else {
5849    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5850    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5851    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5852    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5853  }
5854  C = ConstantVector::get(CV);
5855  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5856  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5857                              PseudoSourceValue::getConstantPool(), 0,
5858                              false, false, 16);
5859  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5860
5861  // Or the value with the sign bit.
5862  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5863}
5864
5865/// Emit nodes that will be selected as "test Op0,Op0", or something
5866/// equivalent.
5867SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5868                                    SelectionDAG &DAG) {
5869  DebugLoc dl = Op.getDebugLoc();
5870
5871  // CF and OF aren't always set the way we want. Determine which
5872  // of these we need.
5873  bool NeedCF = false;
5874  bool NeedOF = false;
5875  switch (X86CC) {
5876  case X86::COND_A: case X86::COND_AE:
5877  case X86::COND_B: case X86::COND_BE:
5878    NeedCF = true;
5879    break;
5880  case X86::COND_G: case X86::COND_GE:
5881  case X86::COND_L: case X86::COND_LE:
5882  case X86::COND_O: case X86::COND_NO:
5883    NeedOF = true;
5884    break;
5885  default: break;
5886  }
5887
5888  // See if we can use the EFLAGS value from the operand instead of
5889  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5890  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5891  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5892    unsigned Opcode = 0;
5893    unsigned NumOperands = 0;
5894    switch (Op.getNode()->getOpcode()) {
5895    case ISD::ADD:
5896      // Due to an isel shortcoming, be conservative if this add is likely to
5897      // be selected as part of a load-modify-store instruction. When the root
5898      // node in a match is a store, isel doesn't know how to remap non-chain
5899      // non-flag uses of other nodes in the match, such as the ADD in this
5900      // case. This leads to the ADD being left around and reselected, with
5901      // the result being two adds in the output.
5902      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5903           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5904        if (UI->getOpcode() == ISD::STORE)
5905          goto default_case;
5906      if (ConstantSDNode *C =
5907            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5908        // An add of one will be selected as an INC.
5909        if (C->getAPIntValue() == 1) {
5910          Opcode = X86ISD::INC;
5911          NumOperands = 1;
5912          break;
5913        }
5914        // An add of negative one (subtract of one) will be selected as a DEC.
5915        if (C->getAPIntValue().isAllOnesValue()) {
5916          Opcode = X86ISD::DEC;
5917          NumOperands = 1;
5918          break;
5919        }
5920      }
5921      // Otherwise use a regular EFLAGS-setting add.
5922      Opcode = X86ISD::ADD;
5923      NumOperands = 2;
5924      break;
5925    case ISD::AND: {
5926      // If the primary and result isn't used, don't bother using X86ISD::AND,
5927      // because a TEST instruction will be better.
5928      bool NonFlagUse = false;
5929      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5930             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5931        SDNode *User = *UI;
5932        unsigned UOpNo = UI.getOperandNo();
5933        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5934          // Look pass truncate.
5935          UOpNo = User->use_begin().getOperandNo();
5936          User = *User->use_begin();
5937        }
5938        if (User->getOpcode() != ISD::BRCOND &&
5939            User->getOpcode() != ISD::SETCC &&
5940            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5941          NonFlagUse = true;
5942          break;
5943        }
5944      }
5945      if (!NonFlagUse)
5946        break;
5947    }
5948    // FALL THROUGH
5949    case ISD::SUB:
5950    case ISD::OR:
5951    case ISD::XOR:
5952      // Due to the ISEL shortcoming noted above, be conservative if this op is
5953      // likely to be selected as part of a load-modify-store instruction.
5954      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5955           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5956        if (UI->getOpcode() == ISD::STORE)
5957          goto default_case;
5958      // Otherwise use a regular EFLAGS-setting instruction.
5959      switch (Op.getNode()->getOpcode()) {
5960      case ISD::SUB: Opcode = X86ISD::SUB; break;
5961      case ISD::OR:  Opcode = X86ISD::OR;  break;
5962      case ISD::XOR: Opcode = X86ISD::XOR; break;
5963      case ISD::AND: Opcode = X86ISD::AND; break;
5964      default: llvm_unreachable("unexpected operator!");
5965      }
5966      NumOperands = 2;
5967      break;
5968    case X86ISD::ADD:
5969    case X86ISD::SUB:
5970    case X86ISD::INC:
5971    case X86ISD::DEC:
5972    case X86ISD::OR:
5973    case X86ISD::XOR:
5974    case X86ISD::AND:
5975      return SDValue(Op.getNode(), 1);
5976    default:
5977    default_case:
5978      break;
5979    }
5980    if (Opcode != 0) {
5981      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5982      SmallVector<SDValue, 4> Ops;
5983      for (unsigned i = 0; i != NumOperands; ++i)
5984        Ops.push_back(Op.getOperand(i));
5985      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5986      DAG.ReplaceAllUsesWith(Op, New);
5987      return SDValue(New.getNode(), 1);
5988    }
5989  }
5990
5991  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5992  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5993                     DAG.getConstant(0, Op.getValueType()));
5994}
5995
5996/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5997/// equivalent.
5998SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5999                                   SelectionDAG &DAG) {
6000  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6001    if (C->getAPIntValue() == 0)
6002      return EmitTest(Op0, X86CC, DAG);
6003
6004  DebugLoc dl = Op0.getDebugLoc();
6005  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6006}
6007
6008/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6009/// if it's possible.
6010static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
6011                         DebugLoc dl, SelectionDAG &DAG) {
6012  SDValue Op0 = And.getOperand(0);
6013  SDValue Op1 = And.getOperand(1);
6014  if (Op0.getOpcode() == ISD::TRUNCATE)
6015    Op0 = Op0.getOperand(0);
6016  if (Op1.getOpcode() == ISD::TRUNCATE)
6017    Op1 = Op1.getOperand(0);
6018
6019  SDValue LHS, RHS;
6020  if (Op1.getOpcode() == ISD::SHL) {
6021    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
6022      if (And10C->getZExtValue() == 1) {
6023        LHS = Op0;
6024        RHS = Op1.getOperand(1);
6025      }
6026  } else if (Op0.getOpcode() == ISD::SHL) {
6027    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6028      if (And00C->getZExtValue() == 1) {
6029        LHS = Op1;
6030        RHS = Op0.getOperand(1);
6031      }
6032  } else if (Op1.getOpcode() == ISD::Constant) {
6033    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6034    SDValue AndLHS = Op0;
6035    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6036      LHS = AndLHS.getOperand(0);
6037      RHS = AndLHS.getOperand(1);
6038    }
6039  }
6040
6041  if (LHS.getNode()) {
6042    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
6043    // instruction.  Since the shift amount is in-range-or-undefined, we know
6044    // that doing a bittest on the i16 value is ok.  We extend to i32 because
6045    // the encoding for the i16 version is larger than the i32 version.
6046    if (LHS.getValueType() == MVT::i8)
6047      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6048
6049    // If the operand types disagree, extend the shift amount to match.  Since
6050    // BT ignores high bits (like shifts) we can use anyextend.
6051    if (LHS.getValueType() != RHS.getValueType())
6052      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6053
6054    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6055    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6056    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6057                       DAG.getConstant(Cond, MVT::i8), BT);
6058  }
6059
6060  return SDValue();
6061}
6062
6063SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
6064  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6065  SDValue Op0 = Op.getOperand(0);
6066  SDValue Op1 = Op.getOperand(1);
6067  DebugLoc dl = Op.getDebugLoc();
6068  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6069
6070  // Optimize to BT if possible.
6071  // Lower (X & (1 << N)) == 0 to BT(X, N).
6072  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6073  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6074  if (Op0.getOpcode() == ISD::AND &&
6075      Op0.hasOneUse() &&
6076      Op1.getOpcode() == ISD::Constant &&
6077      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
6078      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6079    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6080    if (NewSetCC.getNode())
6081      return NewSetCC;
6082  }
6083
6084  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6085  if (Op0.getOpcode() == X86ISD::SETCC &&
6086      Op1.getOpcode() == ISD::Constant &&
6087      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6088       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6089      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6090    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6091    bool Invert = (CC == ISD::SETNE) ^
6092      cast<ConstantSDNode>(Op1)->isNullValue();
6093    if (Invert)
6094      CCode = X86::GetOppositeBranchCondition(CCode);
6095    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6096                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6097  }
6098
6099  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6100  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6101  if (X86CC == X86::COND_INVALID)
6102    return SDValue();
6103
6104  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6105
6106  // Use sbb x, x to materialize carry bit into a GPR.
6107  if (X86CC == X86::COND_B)
6108    return DAG.getNode(ISD::AND, dl, MVT::i8,
6109                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6110                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6111                       DAG.getConstant(1, MVT::i8));
6112
6113  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6114                     DAG.getConstant(X86CC, MVT::i8), Cond);
6115}
6116
6117SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
6118  SDValue Cond;
6119  SDValue Op0 = Op.getOperand(0);
6120  SDValue Op1 = Op.getOperand(1);
6121  SDValue CC = Op.getOperand(2);
6122  EVT VT = Op.getValueType();
6123  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6124  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6125  DebugLoc dl = Op.getDebugLoc();
6126
6127  if (isFP) {
6128    unsigned SSECC = 8;
6129    EVT VT0 = Op0.getValueType();
6130    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6131    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6132    bool Swap = false;
6133
6134    switch (SetCCOpcode) {
6135    default: break;
6136    case ISD::SETOEQ:
6137    case ISD::SETEQ:  SSECC = 0; break;
6138    case ISD::SETOGT:
6139    case ISD::SETGT: Swap = true; // Fallthrough
6140    case ISD::SETLT:
6141    case ISD::SETOLT: SSECC = 1; break;
6142    case ISD::SETOGE:
6143    case ISD::SETGE: Swap = true; // Fallthrough
6144    case ISD::SETLE:
6145    case ISD::SETOLE: SSECC = 2; break;
6146    case ISD::SETUO:  SSECC = 3; break;
6147    case ISD::SETUNE:
6148    case ISD::SETNE:  SSECC = 4; break;
6149    case ISD::SETULE: Swap = true;
6150    case ISD::SETUGE: SSECC = 5; break;
6151    case ISD::SETULT: Swap = true;
6152    case ISD::SETUGT: SSECC = 6; break;
6153    case ISD::SETO:   SSECC = 7; break;
6154    }
6155    if (Swap)
6156      std::swap(Op0, Op1);
6157
6158    // In the two special cases we can't handle, emit two comparisons.
6159    if (SSECC == 8) {
6160      if (SetCCOpcode == ISD::SETUEQ) {
6161        SDValue UNORD, EQ;
6162        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6163        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6164        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6165      }
6166      else if (SetCCOpcode == ISD::SETONE) {
6167        SDValue ORD, NEQ;
6168        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6169        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6170        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6171      }
6172      llvm_unreachable("Illegal FP comparison");
6173    }
6174    // Handle all other FP comparisons here.
6175    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6176  }
6177
6178  // We are handling one of the integer comparisons here.  Since SSE only has
6179  // GT and EQ comparisons for integer, swapping operands and multiple
6180  // operations may be required for some comparisons.
6181  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6182  bool Swap = false, Invert = false, FlipSigns = false;
6183
6184  switch (VT.getSimpleVT().SimpleTy) {
6185  default: break;
6186  case MVT::v8i8:
6187  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6188  case MVT::v4i16:
6189  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6190  case MVT::v2i32:
6191  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6192  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6193  }
6194
6195  switch (SetCCOpcode) {
6196  default: break;
6197  case ISD::SETNE:  Invert = true;
6198  case ISD::SETEQ:  Opc = EQOpc; break;
6199  case ISD::SETLT:  Swap = true;
6200  case ISD::SETGT:  Opc = GTOpc; break;
6201  case ISD::SETGE:  Swap = true;
6202  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6203  case ISD::SETULT: Swap = true;
6204  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6205  case ISD::SETUGE: Swap = true;
6206  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6207  }
6208  if (Swap)
6209    std::swap(Op0, Op1);
6210
6211  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6212  // bits of the inputs before performing those operations.
6213  if (FlipSigns) {
6214    EVT EltVT = VT.getVectorElementType();
6215    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6216                                      EltVT);
6217    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6218    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6219                                    SignBits.size());
6220    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6221    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6222  }
6223
6224  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6225
6226  // If the logical-not of the result is required, perform that now.
6227  if (Invert)
6228    Result = DAG.getNOT(dl, Result, VT);
6229
6230  return Result;
6231}
6232
6233// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6234static bool isX86LogicalCmp(SDValue Op) {
6235  unsigned Opc = Op.getNode()->getOpcode();
6236  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6237    return true;
6238  if (Op.getResNo() == 1 &&
6239      (Opc == X86ISD::ADD ||
6240       Opc == X86ISD::SUB ||
6241       Opc == X86ISD::SMUL ||
6242       Opc == X86ISD::UMUL ||
6243       Opc == X86ISD::INC ||
6244       Opc == X86ISD::DEC ||
6245       Opc == X86ISD::OR ||
6246       Opc == X86ISD::XOR ||
6247       Opc == X86ISD::AND))
6248    return true;
6249
6250  return false;
6251}
6252
6253SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6254  bool addTest = true;
6255  SDValue Cond  = Op.getOperand(0);
6256  DebugLoc dl = Op.getDebugLoc();
6257  SDValue CC;
6258
6259  if (Cond.getOpcode() == ISD::SETCC) {
6260    SDValue NewCond = LowerSETCC(Cond, DAG);
6261    if (NewCond.getNode())
6262      Cond = NewCond;
6263  }
6264
6265  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6266  SDValue Op1 = Op.getOperand(1);
6267  SDValue Op2 = Op.getOperand(2);
6268  if (Cond.getOpcode() == X86ISD::SETCC &&
6269      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6270    SDValue Cmp = Cond.getOperand(1);
6271    if (Cmp.getOpcode() == X86ISD::CMP) {
6272      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6273      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6274      ConstantSDNode *RHSC =
6275        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6276      if (N1C && N1C->isAllOnesValue() &&
6277          N2C && N2C->isNullValue() &&
6278          RHSC && RHSC->isNullValue()) {
6279        SDValue CmpOp0 = Cmp.getOperand(0);
6280        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6281                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6282        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6283                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6284      }
6285    }
6286  }
6287
6288  // Look pass (and (setcc_carry (cmp ...)), 1).
6289  if (Cond.getOpcode() == ISD::AND &&
6290      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6291    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6292    if (C && C->getAPIntValue() == 1)
6293      Cond = Cond.getOperand(0);
6294  }
6295
6296  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6297  // setting operand in place of the X86ISD::SETCC.
6298  if (Cond.getOpcode() == X86ISD::SETCC ||
6299      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6300    CC = Cond.getOperand(0);
6301
6302    SDValue Cmp = Cond.getOperand(1);
6303    unsigned Opc = Cmp.getOpcode();
6304    EVT VT = Op.getValueType();
6305
6306    bool IllegalFPCMov = false;
6307    if (VT.isFloatingPoint() && !VT.isVector() &&
6308        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6309      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6310
6311    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6312        Opc == X86ISD::BT) { // FIXME
6313      Cond = Cmp;
6314      addTest = false;
6315    }
6316  }
6317
6318  if (addTest) {
6319    // Look pass the truncate.
6320    if (Cond.getOpcode() == ISD::TRUNCATE)
6321      Cond = Cond.getOperand(0);
6322
6323    // We know the result of AND is compared against zero. Try to match
6324    // it to BT.
6325    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6326      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6327      if (NewSetCC.getNode()) {
6328        CC = NewSetCC.getOperand(0);
6329        Cond = NewSetCC.getOperand(1);
6330        addTest = false;
6331      }
6332    }
6333  }
6334
6335  if (addTest) {
6336    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6337    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6338  }
6339
6340  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6341  // condition is true.
6342  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6343  SDValue Ops[] = { Op2, Op1, CC, Cond };
6344  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6345}
6346
6347// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6348// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6349// from the AND / OR.
6350static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6351  Opc = Op.getOpcode();
6352  if (Opc != ISD::OR && Opc != ISD::AND)
6353    return false;
6354  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6355          Op.getOperand(0).hasOneUse() &&
6356          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6357          Op.getOperand(1).hasOneUse());
6358}
6359
6360// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6361// 1 and that the SETCC node has a single use.
6362static bool isXor1OfSetCC(SDValue Op) {
6363  if (Op.getOpcode() != ISD::XOR)
6364    return false;
6365  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6366  if (N1C && N1C->getAPIntValue() == 1) {
6367    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6368      Op.getOperand(0).hasOneUse();
6369  }
6370  return false;
6371}
6372
6373SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6374  bool addTest = true;
6375  SDValue Chain = Op.getOperand(0);
6376  SDValue Cond  = Op.getOperand(1);
6377  SDValue Dest  = Op.getOperand(2);
6378  DebugLoc dl = Op.getDebugLoc();
6379  SDValue CC;
6380
6381  if (Cond.getOpcode() == ISD::SETCC) {
6382    SDValue NewCond = LowerSETCC(Cond, DAG);
6383    if (NewCond.getNode())
6384      Cond = NewCond;
6385  }
6386#if 0
6387  // FIXME: LowerXALUO doesn't handle these!!
6388  else if (Cond.getOpcode() == X86ISD::ADD  ||
6389           Cond.getOpcode() == X86ISD::SUB  ||
6390           Cond.getOpcode() == X86ISD::SMUL ||
6391           Cond.getOpcode() == X86ISD::UMUL)
6392    Cond = LowerXALUO(Cond, DAG);
6393#endif
6394
6395  // Look pass (and (setcc_carry (cmp ...)), 1).
6396  if (Cond.getOpcode() == ISD::AND &&
6397      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6398    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6399    if (C && C->getAPIntValue() == 1)
6400      Cond = Cond.getOperand(0);
6401  }
6402
6403  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6404  // setting operand in place of the X86ISD::SETCC.
6405  if (Cond.getOpcode() == X86ISD::SETCC ||
6406      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6407    CC = Cond.getOperand(0);
6408
6409    SDValue Cmp = Cond.getOperand(1);
6410    unsigned Opc = Cmp.getOpcode();
6411    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6412    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6413      Cond = Cmp;
6414      addTest = false;
6415    } else {
6416      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6417      default: break;
6418      case X86::COND_O:
6419      case X86::COND_B:
6420        // These can only come from an arithmetic instruction with overflow,
6421        // e.g. SADDO, UADDO.
6422        Cond = Cond.getNode()->getOperand(1);
6423        addTest = false;
6424        break;
6425      }
6426    }
6427  } else {
6428    unsigned CondOpc;
6429    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6430      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6431      if (CondOpc == ISD::OR) {
6432        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6433        // two branches instead of an explicit OR instruction with a
6434        // separate test.
6435        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6436            isX86LogicalCmp(Cmp)) {
6437          CC = Cond.getOperand(0).getOperand(0);
6438          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6439                              Chain, Dest, CC, Cmp);
6440          CC = Cond.getOperand(1).getOperand(0);
6441          Cond = Cmp;
6442          addTest = false;
6443        }
6444      } else { // ISD::AND
6445        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6446        // two branches instead of an explicit AND instruction with a
6447        // separate test. However, we only do this if this block doesn't
6448        // have a fall-through edge, because this requires an explicit
6449        // jmp when the condition is false.
6450        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6451            isX86LogicalCmp(Cmp) &&
6452            Op.getNode()->hasOneUse()) {
6453          X86::CondCode CCode =
6454            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6455          CCode = X86::GetOppositeBranchCondition(CCode);
6456          CC = DAG.getConstant(CCode, MVT::i8);
6457          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6458          // Look for an unconditional branch following this conditional branch.
6459          // We need this because we need to reverse the successors in order
6460          // to implement FCMP_OEQ.
6461          if (User.getOpcode() == ISD::BR) {
6462            SDValue FalseBB = User.getOperand(1);
6463            SDValue NewBR =
6464              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6465            assert(NewBR == User);
6466            Dest = FalseBB;
6467
6468            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6469                                Chain, Dest, CC, Cmp);
6470            X86::CondCode CCode =
6471              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6472            CCode = X86::GetOppositeBranchCondition(CCode);
6473            CC = DAG.getConstant(CCode, MVT::i8);
6474            Cond = Cmp;
6475            addTest = false;
6476          }
6477        }
6478      }
6479    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6480      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6481      // It should be transformed during dag combiner except when the condition
6482      // is set by a arithmetics with overflow node.
6483      X86::CondCode CCode =
6484        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6485      CCode = X86::GetOppositeBranchCondition(CCode);
6486      CC = DAG.getConstant(CCode, MVT::i8);
6487      Cond = Cond.getOperand(0).getOperand(1);
6488      addTest = false;
6489    }
6490  }
6491
6492  if (addTest) {
6493    // Look pass the truncate.
6494    if (Cond.getOpcode() == ISD::TRUNCATE)
6495      Cond = Cond.getOperand(0);
6496
6497    // We know the result of AND is compared against zero. Try to match
6498    // it to BT.
6499    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6500      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6501      if (NewSetCC.getNode()) {
6502        CC = NewSetCC.getOperand(0);
6503        Cond = NewSetCC.getOperand(1);
6504        addTest = false;
6505      }
6506    }
6507  }
6508
6509  if (addTest) {
6510    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6511    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6512  }
6513  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6514                     Chain, Dest, CC, Cond);
6515}
6516
6517
6518// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6519// Calls to _alloca is needed to probe the stack when allocating more than 4k
6520// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6521// that the guard pages used by the OS virtual memory manager are allocated in
6522// correct sequence.
6523SDValue
6524X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6525                                           SelectionDAG &DAG) {
6526  assert(Subtarget->isTargetCygMing() &&
6527         "This should be used only on Cygwin/Mingw targets");
6528  DebugLoc dl = Op.getDebugLoc();
6529
6530  // Get the inputs.
6531  SDValue Chain = Op.getOperand(0);
6532  SDValue Size  = Op.getOperand(1);
6533  // FIXME: Ensure alignment here
6534
6535  SDValue Flag;
6536
6537  EVT IntPtr = getPointerTy();
6538  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6539
6540  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6541  Flag = Chain.getValue(1);
6542
6543  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6544
6545  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6546  Flag = Chain.getValue(1);
6547
6548  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6549
6550  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6551  return DAG.getMergeValues(Ops1, 2, dl);
6552}
6553
6554SDValue
6555X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6556                                           SDValue Chain,
6557                                           SDValue Dst, SDValue Src,
6558                                           SDValue Size, unsigned Align,
6559                                           bool isVolatile,
6560                                           const Value *DstSV,
6561                                           uint64_t DstSVOff) {
6562  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6563
6564  // If not DWORD aligned or size is more than the threshold, call the library.
6565  // The libc version is likely to be faster for these cases. It can use the
6566  // address value and run time information about the CPU.
6567  if ((Align & 3) != 0 ||
6568      !ConstantSize ||
6569      ConstantSize->getZExtValue() >
6570        getSubtarget()->getMaxInlineSizeThreshold()) {
6571    SDValue InFlag(0, 0);
6572
6573    // Check to see if there is a specialized entry-point for memory zeroing.
6574    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6575
6576    if (const char *bzeroEntry =  V &&
6577        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6578      EVT IntPtr = getPointerTy();
6579      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6580      TargetLowering::ArgListTy Args;
6581      TargetLowering::ArgListEntry Entry;
6582      Entry.Node = Dst;
6583      Entry.Ty = IntPtrTy;
6584      Args.push_back(Entry);
6585      Entry.Node = Size;
6586      Args.push_back(Entry);
6587      std::pair<SDValue,SDValue> CallResult =
6588        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6589                    false, false, false, false,
6590                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6591                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6592      return CallResult.second;
6593    }
6594
6595    // Otherwise have the target-independent code call memset.
6596    return SDValue();
6597  }
6598
6599  uint64_t SizeVal = ConstantSize->getZExtValue();
6600  SDValue InFlag(0, 0);
6601  EVT AVT;
6602  SDValue Count;
6603  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6604  unsigned BytesLeft = 0;
6605  bool TwoRepStos = false;
6606  if (ValC) {
6607    unsigned ValReg;
6608    uint64_t Val = ValC->getZExtValue() & 255;
6609
6610    // If the value is a constant, then we can potentially use larger sets.
6611    switch (Align & 3) {
6612    case 2:   // WORD aligned
6613      AVT = MVT::i16;
6614      ValReg = X86::AX;
6615      Val = (Val << 8) | Val;
6616      break;
6617    case 0:  // DWORD aligned
6618      AVT = MVT::i32;
6619      ValReg = X86::EAX;
6620      Val = (Val << 8)  | Val;
6621      Val = (Val << 16) | Val;
6622      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6623        AVT = MVT::i64;
6624        ValReg = X86::RAX;
6625        Val = (Val << 32) | Val;
6626      }
6627      break;
6628    default:  // Byte aligned
6629      AVT = MVT::i8;
6630      ValReg = X86::AL;
6631      Count = DAG.getIntPtrConstant(SizeVal);
6632      break;
6633    }
6634
6635    if (AVT.bitsGT(MVT::i8)) {
6636      unsigned UBytes = AVT.getSizeInBits() / 8;
6637      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6638      BytesLeft = SizeVal % UBytes;
6639    }
6640
6641    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6642                              InFlag);
6643    InFlag = Chain.getValue(1);
6644  } else {
6645    AVT = MVT::i8;
6646    Count  = DAG.getIntPtrConstant(SizeVal);
6647    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6648    InFlag = Chain.getValue(1);
6649  }
6650
6651  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6652                                                              X86::ECX,
6653                            Count, InFlag);
6654  InFlag = Chain.getValue(1);
6655  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6656                                                              X86::EDI,
6657                            Dst, InFlag);
6658  InFlag = Chain.getValue(1);
6659
6660  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6661  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6662  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6663
6664  if (TwoRepStos) {
6665    InFlag = Chain.getValue(1);
6666    Count  = Size;
6667    EVT CVT = Count.getValueType();
6668    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6669                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6670    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6671                                                             X86::ECX,
6672                              Left, InFlag);
6673    InFlag = Chain.getValue(1);
6674    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6675    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6676    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6677  } else if (BytesLeft) {
6678    // Handle the last 1 - 7 bytes.
6679    unsigned Offset = SizeVal - BytesLeft;
6680    EVT AddrVT = Dst.getValueType();
6681    EVT SizeVT = Size.getValueType();
6682
6683    Chain = DAG.getMemset(Chain, dl,
6684                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6685                                      DAG.getConstant(Offset, AddrVT)),
6686                          Src,
6687                          DAG.getConstant(BytesLeft, SizeVT),
6688                          Align, isVolatile, DstSV, DstSVOff + Offset);
6689  }
6690
6691  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6692  return Chain;
6693}
6694
6695SDValue
6696X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6697                                      SDValue Chain, SDValue Dst, SDValue Src,
6698                                      SDValue Size, unsigned Align,
6699                                      bool isVolatile, bool AlwaysInline,
6700                                      const Value *DstSV, uint64_t DstSVOff,
6701                                      const Value *SrcSV, uint64_t SrcSVOff) {
6702  // This requires the copy size to be a constant, preferrably
6703  // within a subtarget-specific limit.
6704  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6705  if (!ConstantSize)
6706    return SDValue();
6707  uint64_t SizeVal = ConstantSize->getZExtValue();
6708  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6709    return SDValue();
6710
6711  /// If not DWORD aligned, call the library.
6712  if ((Align & 3) != 0)
6713    return SDValue();
6714
6715  // DWORD aligned
6716  EVT AVT = MVT::i32;
6717  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6718    AVT = MVT::i64;
6719
6720  unsigned UBytes = AVT.getSizeInBits() / 8;
6721  unsigned CountVal = SizeVal / UBytes;
6722  SDValue Count = DAG.getIntPtrConstant(CountVal);
6723  unsigned BytesLeft = SizeVal % UBytes;
6724
6725  SDValue InFlag(0, 0);
6726  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6727                                                              X86::ECX,
6728                            Count, InFlag);
6729  InFlag = Chain.getValue(1);
6730  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6731                                                              X86::EDI,
6732                            Dst, InFlag);
6733  InFlag = Chain.getValue(1);
6734  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6735                                                              X86::ESI,
6736                            Src, InFlag);
6737  InFlag = Chain.getValue(1);
6738
6739  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6740  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6741  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6742                                array_lengthof(Ops));
6743
6744  SmallVector<SDValue, 4> Results;
6745  Results.push_back(RepMovs);
6746  if (BytesLeft) {
6747    // Handle the last 1 - 7 bytes.
6748    unsigned Offset = SizeVal - BytesLeft;
6749    EVT DstVT = Dst.getValueType();
6750    EVT SrcVT = Src.getValueType();
6751    EVT SizeVT = Size.getValueType();
6752    Results.push_back(DAG.getMemcpy(Chain, dl,
6753                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6754                                                DAG.getConstant(Offset, DstVT)),
6755                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6756                                                DAG.getConstant(Offset, SrcVT)),
6757                                    DAG.getConstant(BytesLeft, SizeVT),
6758                                    Align, isVolatile, AlwaysInline,
6759                                    DstSV, DstSVOff + Offset,
6760                                    SrcSV, SrcSVOff + Offset));
6761  }
6762
6763  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6764                     &Results[0], Results.size());
6765}
6766
6767SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6768  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6769  DebugLoc dl = Op.getDebugLoc();
6770
6771  if (!Subtarget->is64Bit()) {
6772    // vastart just stores the address of the VarArgsFrameIndex slot into the
6773    // memory location argument.
6774    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6775    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6776                        false, false, 0);
6777  }
6778
6779  // __va_list_tag:
6780  //   gp_offset         (0 - 6 * 8)
6781  //   fp_offset         (48 - 48 + 8 * 16)
6782  //   overflow_arg_area (point to parameters coming in memory).
6783  //   reg_save_area
6784  SmallVector<SDValue, 8> MemOps;
6785  SDValue FIN = Op.getOperand(1);
6786  // Store gp_offset
6787  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6788                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6789                               FIN, SV, 0, false, false, 0);
6790  MemOps.push_back(Store);
6791
6792  // Store fp_offset
6793  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6794                    FIN, DAG.getIntPtrConstant(4));
6795  Store = DAG.getStore(Op.getOperand(0), dl,
6796                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6797                       FIN, SV, 0, false, false, 0);
6798  MemOps.push_back(Store);
6799
6800  // Store ptr to overflow_arg_area
6801  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6802                    FIN, DAG.getIntPtrConstant(4));
6803  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6804  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6805                       false, false, 0);
6806  MemOps.push_back(Store);
6807
6808  // Store ptr to reg_save_area.
6809  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6810                    FIN, DAG.getIntPtrConstant(8));
6811  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6812  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6813                       false, false, 0);
6814  MemOps.push_back(Store);
6815  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6816                     &MemOps[0], MemOps.size());
6817}
6818
6819SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6820  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6821  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6822  SDValue Chain = Op.getOperand(0);
6823  SDValue SrcPtr = Op.getOperand(1);
6824  SDValue SrcSV = Op.getOperand(2);
6825
6826  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6827  return SDValue();
6828}
6829
6830SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6831  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6832  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6833  SDValue Chain = Op.getOperand(0);
6834  SDValue DstPtr = Op.getOperand(1);
6835  SDValue SrcPtr = Op.getOperand(2);
6836  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6837  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6838  DebugLoc dl = Op.getDebugLoc();
6839
6840  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6841                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6842                       false, DstSV, 0, SrcSV, 0);
6843}
6844
6845SDValue
6846X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6847  DebugLoc dl = Op.getDebugLoc();
6848  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6849  switch (IntNo) {
6850  default: return SDValue();    // Don't custom lower most intrinsics.
6851  // Comparison intrinsics.
6852  case Intrinsic::x86_sse_comieq_ss:
6853  case Intrinsic::x86_sse_comilt_ss:
6854  case Intrinsic::x86_sse_comile_ss:
6855  case Intrinsic::x86_sse_comigt_ss:
6856  case Intrinsic::x86_sse_comige_ss:
6857  case Intrinsic::x86_sse_comineq_ss:
6858  case Intrinsic::x86_sse_ucomieq_ss:
6859  case Intrinsic::x86_sse_ucomilt_ss:
6860  case Intrinsic::x86_sse_ucomile_ss:
6861  case Intrinsic::x86_sse_ucomigt_ss:
6862  case Intrinsic::x86_sse_ucomige_ss:
6863  case Intrinsic::x86_sse_ucomineq_ss:
6864  case Intrinsic::x86_sse2_comieq_sd:
6865  case Intrinsic::x86_sse2_comilt_sd:
6866  case Intrinsic::x86_sse2_comile_sd:
6867  case Intrinsic::x86_sse2_comigt_sd:
6868  case Intrinsic::x86_sse2_comige_sd:
6869  case Intrinsic::x86_sse2_comineq_sd:
6870  case Intrinsic::x86_sse2_ucomieq_sd:
6871  case Intrinsic::x86_sse2_ucomilt_sd:
6872  case Intrinsic::x86_sse2_ucomile_sd:
6873  case Intrinsic::x86_sse2_ucomigt_sd:
6874  case Intrinsic::x86_sse2_ucomige_sd:
6875  case Intrinsic::x86_sse2_ucomineq_sd: {
6876    unsigned Opc = 0;
6877    ISD::CondCode CC = ISD::SETCC_INVALID;
6878    switch (IntNo) {
6879    default: break;
6880    case Intrinsic::x86_sse_comieq_ss:
6881    case Intrinsic::x86_sse2_comieq_sd:
6882      Opc = X86ISD::COMI;
6883      CC = ISD::SETEQ;
6884      break;
6885    case Intrinsic::x86_sse_comilt_ss:
6886    case Intrinsic::x86_sse2_comilt_sd:
6887      Opc = X86ISD::COMI;
6888      CC = ISD::SETLT;
6889      break;
6890    case Intrinsic::x86_sse_comile_ss:
6891    case Intrinsic::x86_sse2_comile_sd:
6892      Opc = X86ISD::COMI;
6893      CC = ISD::SETLE;
6894      break;
6895    case Intrinsic::x86_sse_comigt_ss:
6896    case Intrinsic::x86_sse2_comigt_sd:
6897      Opc = X86ISD::COMI;
6898      CC = ISD::SETGT;
6899      break;
6900    case Intrinsic::x86_sse_comige_ss:
6901    case Intrinsic::x86_sse2_comige_sd:
6902      Opc = X86ISD::COMI;
6903      CC = ISD::SETGE;
6904      break;
6905    case Intrinsic::x86_sse_comineq_ss:
6906    case Intrinsic::x86_sse2_comineq_sd:
6907      Opc = X86ISD::COMI;
6908      CC = ISD::SETNE;
6909      break;
6910    case Intrinsic::x86_sse_ucomieq_ss:
6911    case Intrinsic::x86_sse2_ucomieq_sd:
6912      Opc = X86ISD::UCOMI;
6913      CC = ISD::SETEQ;
6914      break;
6915    case Intrinsic::x86_sse_ucomilt_ss:
6916    case Intrinsic::x86_sse2_ucomilt_sd:
6917      Opc = X86ISD::UCOMI;
6918      CC = ISD::SETLT;
6919      break;
6920    case Intrinsic::x86_sse_ucomile_ss:
6921    case Intrinsic::x86_sse2_ucomile_sd:
6922      Opc = X86ISD::UCOMI;
6923      CC = ISD::SETLE;
6924      break;
6925    case Intrinsic::x86_sse_ucomigt_ss:
6926    case Intrinsic::x86_sse2_ucomigt_sd:
6927      Opc = X86ISD::UCOMI;
6928      CC = ISD::SETGT;
6929      break;
6930    case Intrinsic::x86_sse_ucomige_ss:
6931    case Intrinsic::x86_sse2_ucomige_sd:
6932      Opc = X86ISD::UCOMI;
6933      CC = ISD::SETGE;
6934      break;
6935    case Intrinsic::x86_sse_ucomineq_ss:
6936    case Intrinsic::x86_sse2_ucomineq_sd:
6937      Opc = X86ISD::UCOMI;
6938      CC = ISD::SETNE;
6939      break;
6940    }
6941
6942    SDValue LHS = Op.getOperand(1);
6943    SDValue RHS = Op.getOperand(2);
6944    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6945    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6946    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6947    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6948                                DAG.getConstant(X86CC, MVT::i8), Cond);
6949    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6950  }
6951  // ptest intrinsics. The intrinsic these come from are designed to return
6952  // an integer value, not just an instruction so lower it to the ptest
6953  // pattern and a setcc for the result.
6954  case Intrinsic::x86_sse41_ptestz:
6955  case Intrinsic::x86_sse41_ptestc:
6956  case Intrinsic::x86_sse41_ptestnzc:{
6957    unsigned X86CC = 0;
6958    switch (IntNo) {
6959    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6960    case Intrinsic::x86_sse41_ptestz:
6961      // ZF = 1
6962      X86CC = X86::COND_E;
6963      break;
6964    case Intrinsic::x86_sse41_ptestc:
6965      // CF = 1
6966      X86CC = X86::COND_B;
6967      break;
6968    case Intrinsic::x86_sse41_ptestnzc:
6969      // ZF and CF = 0
6970      X86CC = X86::COND_A;
6971      break;
6972    }
6973
6974    SDValue LHS = Op.getOperand(1);
6975    SDValue RHS = Op.getOperand(2);
6976    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6977    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6978    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6979    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6980  }
6981
6982  // Fix vector shift instructions where the last operand is a non-immediate
6983  // i32 value.
6984  case Intrinsic::x86_sse2_pslli_w:
6985  case Intrinsic::x86_sse2_pslli_d:
6986  case Intrinsic::x86_sse2_pslli_q:
6987  case Intrinsic::x86_sse2_psrli_w:
6988  case Intrinsic::x86_sse2_psrli_d:
6989  case Intrinsic::x86_sse2_psrli_q:
6990  case Intrinsic::x86_sse2_psrai_w:
6991  case Intrinsic::x86_sse2_psrai_d:
6992  case Intrinsic::x86_mmx_pslli_w:
6993  case Intrinsic::x86_mmx_pslli_d:
6994  case Intrinsic::x86_mmx_pslli_q:
6995  case Intrinsic::x86_mmx_psrli_w:
6996  case Intrinsic::x86_mmx_psrli_d:
6997  case Intrinsic::x86_mmx_psrli_q:
6998  case Intrinsic::x86_mmx_psrai_w:
6999  case Intrinsic::x86_mmx_psrai_d: {
7000    SDValue ShAmt = Op.getOperand(2);
7001    if (isa<ConstantSDNode>(ShAmt))
7002      return SDValue();
7003
7004    unsigned NewIntNo = 0;
7005    EVT ShAmtVT = MVT::v4i32;
7006    switch (IntNo) {
7007    case Intrinsic::x86_sse2_pslli_w:
7008      NewIntNo = Intrinsic::x86_sse2_psll_w;
7009      break;
7010    case Intrinsic::x86_sse2_pslli_d:
7011      NewIntNo = Intrinsic::x86_sse2_psll_d;
7012      break;
7013    case Intrinsic::x86_sse2_pslli_q:
7014      NewIntNo = Intrinsic::x86_sse2_psll_q;
7015      break;
7016    case Intrinsic::x86_sse2_psrli_w:
7017      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7018      break;
7019    case Intrinsic::x86_sse2_psrli_d:
7020      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7021      break;
7022    case Intrinsic::x86_sse2_psrli_q:
7023      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7024      break;
7025    case Intrinsic::x86_sse2_psrai_w:
7026      NewIntNo = Intrinsic::x86_sse2_psra_w;
7027      break;
7028    case Intrinsic::x86_sse2_psrai_d:
7029      NewIntNo = Intrinsic::x86_sse2_psra_d;
7030      break;
7031    default: {
7032      ShAmtVT = MVT::v2i32;
7033      switch (IntNo) {
7034      case Intrinsic::x86_mmx_pslli_w:
7035        NewIntNo = Intrinsic::x86_mmx_psll_w;
7036        break;
7037      case Intrinsic::x86_mmx_pslli_d:
7038        NewIntNo = Intrinsic::x86_mmx_psll_d;
7039        break;
7040      case Intrinsic::x86_mmx_pslli_q:
7041        NewIntNo = Intrinsic::x86_mmx_psll_q;
7042        break;
7043      case Intrinsic::x86_mmx_psrli_w:
7044        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7045        break;
7046      case Intrinsic::x86_mmx_psrli_d:
7047        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7048        break;
7049      case Intrinsic::x86_mmx_psrli_q:
7050        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7051        break;
7052      case Intrinsic::x86_mmx_psrai_w:
7053        NewIntNo = Intrinsic::x86_mmx_psra_w;
7054        break;
7055      case Intrinsic::x86_mmx_psrai_d:
7056        NewIntNo = Intrinsic::x86_mmx_psra_d;
7057        break;
7058      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7059      }
7060      break;
7061    }
7062    }
7063
7064    // The vector shift intrinsics with scalars uses 32b shift amounts but
7065    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7066    // to be zero.
7067    SDValue ShOps[4];
7068    ShOps[0] = ShAmt;
7069    ShOps[1] = DAG.getConstant(0, MVT::i32);
7070    if (ShAmtVT == MVT::v4i32) {
7071      ShOps[2] = DAG.getUNDEF(MVT::i32);
7072      ShOps[3] = DAG.getUNDEF(MVT::i32);
7073      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7074    } else {
7075      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7076    }
7077
7078    EVT VT = Op.getValueType();
7079    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7080    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7081                       DAG.getConstant(NewIntNo, MVT::i32),
7082                       Op.getOperand(1), ShAmt);
7083  }
7084  }
7085}
7086
7087SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
7088  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7089  DebugLoc dl = Op.getDebugLoc();
7090
7091  if (Depth > 0) {
7092    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7093    SDValue Offset =
7094      DAG.getConstant(TD->getPointerSize(),
7095                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7096    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7097                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7098                                   FrameAddr, Offset),
7099                       NULL, 0, false, false, 0);
7100  }
7101
7102  // Just load the return address.
7103  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7104  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7105                     RetAddrFI, NULL, 0, false, false, 0);
7106}
7107
7108SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
7109  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7110  MFI->setFrameAddressIsTaken(true);
7111  EVT VT = Op.getValueType();
7112  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7113  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7114  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7115  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7116  while (Depth--)
7117    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7118                            false, false, 0);
7119  return FrameAddr;
7120}
7121
7122SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7123                                                     SelectionDAG &DAG) {
7124  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7125}
7126
7127SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7128{
7129  MachineFunction &MF = DAG.getMachineFunction();
7130  SDValue Chain     = Op.getOperand(0);
7131  SDValue Offset    = Op.getOperand(1);
7132  SDValue Handler   = Op.getOperand(2);
7133  DebugLoc dl       = Op.getDebugLoc();
7134
7135  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7136                                  getPointerTy());
7137  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7138
7139  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7140                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7141  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7142  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7143  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7144  MF.getRegInfo().addLiveOut(StoreAddrReg);
7145
7146  return DAG.getNode(X86ISD::EH_RETURN, dl,
7147                     MVT::Other,
7148                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7149}
7150
7151SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7152                                             SelectionDAG &DAG) {
7153  SDValue Root = Op.getOperand(0);
7154  SDValue Trmp = Op.getOperand(1); // trampoline
7155  SDValue FPtr = Op.getOperand(2); // nested function
7156  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7157  DebugLoc dl  = Op.getDebugLoc();
7158
7159  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7160
7161  if (Subtarget->is64Bit()) {
7162    SDValue OutChains[6];
7163
7164    // Large code-model.
7165    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7166    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7167
7168    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7169    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7170
7171    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7172
7173    // Load the pointer to the nested function into R11.
7174    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7175    SDValue Addr = Trmp;
7176    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7177                                Addr, TrmpAddr, 0, false, false, 0);
7178
7179    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7180                       DAG.getConstant(2, MVT::i64));
7181    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7182                                false, false, 2);
7183
7184    // Load the 'nest' parameter value into R10.
7185    // R10 is specified in X86CallingConv.td
7186    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7187    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7188                       DAG.getConstant(10, MVT::i64));
7189    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7190                                Addr, TrmpAddr, 10, false, false, 0);
7191
7192    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7193                       DAG.getConstant(12, MVT::i64));
7194    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7195                                false, false, 2);
7196
7197    // Jump to the nested function.
7198    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7199    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7200                       DAG.getConstant(20, MVT::i64));
7201    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7202                                Addr, TrmpAddr, 20, false, false, 0);
7203
7204    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7205    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7206                       DAG.getConstant(22, MVT::i64));
7207    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7208                                TrmpAddr, 22, false, false, 0);
7209
7210    SDValue Ops[] =
7211      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7212    return DAG.getMergeValues(Ops, 2, dl);
7213  } else {
7214    const Function *Func =
7215      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7216    CallingConv::ID CC = Func->getCallingConv();
7217    unsigned NestReg;
7218
7219    switch (CC) {
7220    default:
7221      llvm_unreachable("Unsupported calling convention");
7222    case CallingConv::C:
7223    case CallingConv::X86_StdCall: {
7224      // Pass 'nest' parameter in ECX.
7225      // Must be kept in sync with X86CallingConv.td
7226      NestReg = X86::ECX;
7227
7228      // Check that ECX wasn't needed by an 'inreg' parameter.
7229      const FunctionType *FTy = Func->getFunctionType();
7230      const AttrListPtr &Attrs = Func->getAttributes();
7231
7232      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7233        unsigned InRegCount = 0;
7234        unsigned Idx = 1;
7235
7236        for (FunctionType::param_iterator I = FTy->param_begin(),
7237             E = FTy->param_end(); I != E; ++I, ++Idx)
7238          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7239            // FIXME: should only count parameters that are lowered to integers.
7240            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7241
7242        if (InRegCount > 2) {
7243          report_fatal_error("Nest register in use - reduce number of inreg parameters!");
7244        }
7245      }
7246      break;
7247    }
7248    case CallingConv::X86_FastCall:
7249    case CallingConv::Fast:
7250      // Pass 'nest' parameter in EAX.
7251      // Must be kept in sync with X86CallingConv.td
7252      NestReg = X86::EAX;
7253      break;
7254    }
7255
7256    SDValue OutChains[4];
7257    SDValue Addr, Disp;
7258
7259    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7260                       DAG.getConstant(10, MVT::i32));
7261    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7262
7263    // This is storing the opcode for MOV32ri.
7264    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7265    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7266    OutChains[0] = DAG.getStore(Root, dl,
7267                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7268                                Trmp, TrmpAddr, 0, false, false, 0);
7269
7270    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7271                       DAG.getConstant(1, MVT::i32));
7272    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7273                                false, false, 1);
7274
7275    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7276    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7277                       DAG.getConstant(5, MVT::i32));
7278    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7279                                TrmpAddr, 5, false, false, 1);
7280
7281    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7282                       DAG.getConstant(6, MVT::i32));
7283    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7284                                false, false, 1);
7285
7286    SDValue Ops[] =
7287      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7288    return DAG.getMergeValues(Ops, 2, dl);
7289  }
7290}
7291
7292SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7293  /*
7294   The rounding mode is in bits 11:10 of FPSR, and has the following
7295   settings:
7296     00 Round to nearest
7297     01 Round to -inf
7298     10 Round to +inf
7299     11 Round to 0
7300
7301  FLT_ROUNDS, on the other hand, expects the following:
7302    -1 Undefined
7303     0 Round to 0
7304     1 Round to nearest
7305     2 Round to +inf
7306     3 Round to -inf
7307
7308  To perform the conversion, we do:
7309    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7310  */
7311
7312  MachineFunction &MF = DAG.getMachineFunction();
7313  const TargetMachine &TM = MF.getTarget();
7314  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7315  unsigned StackAlignment = TFI.getStackAlignment();
7316  EVT VT = Op.getValueType();
7317  DebugLoc dl = Op.getDebugLoc();
7318
7319  // Save FP Control Word to stack slot
7320  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7321  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7322
7323  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7324                              DAG.getEntryNode(), StackSlot);
7325
7326  // Load FP Control Word from stack slot
7327  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7328                            false, false, 0);
7329
7330  // Transform as necessary
7331  SDValue CWD1 =
7332    DAG.getNode(ISD::SRL, dl, MVT::i16,
7333                DAG.getNode(ISD::AND, dl, MVT::i16,
7334                            CWD, DAG.getConstant(0x800, MVT::i16)),
7335                DAG.getConstant(11, MVT::i8));
7336  SDValue CWD2 =
7337    DAG.getNode(ISD::SRL, dl, MVT::i16,
7338                DAG.getNode(ISD::AND, dl, MVT::i16,
7339                            CWD, DAG.getConstant(0x400, MVT::i16)),
7340                DAG.getConstant(9, MVT::i8));
7341
7342  SDValue RetVal =
7343    DAG.getNode(ISD::AND, dl, MVT::i16,
7344                DAG.getNode(ISD::ADD, dl, MVT::i16,
7345                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7346                            DAG.getConstant(1, MVT::i16)),
7347                DAG.getConstant(3, MVT::i16));
7348
7349
7350  return DAG.getNode((VT.getSizeInBits() < 16 ?
7351                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7352}
7353
7354SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7355  EVT VT = Op.getValueType();
7356  EVT OpVT = VT;
7357  unsigned NumBits = VT.getSizeInBits();
7358  DebugLoc dl = Op.getDebugLoc();
7359
7360  Op = Op.getOperand(0);
7361  if (VT == MVT::i8) {
7362    // Zero extend to i32 since there is not an i8 bsr.
7363    OpVT = MVT::i32;
7364    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7365  }
7366
7367  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7368  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7369  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7370
7371  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7372  SDValue Ops[] = {
7373    Op,
7374    DAG.getConstant(NumBits+NumBits-1, OpVT),
7375    DAG.getConstant(X86::COND_E, MVT::i8),
7376    Op.getValue(1)
7377  };
7378  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7379
7380  // Finally xor with NumBits-1.
7381  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7382
7383  if (VT == MVT::i8)
7384    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7385  return Op;
7386}
7387
7388SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7389  EVT VT = Op.getValueType();
7390  EVT OpVT = VT;
7391  unsigned NumBits = VT.getSizeInBits();
7392  DebugLoc dl = Op.getDebugLoc();
7393
7394  Op = Op.getOperand(0);
7395  if (VT == MVT::i8) {
7396    OpVT = MVT::i32;
7397    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7398  }
7399
7400  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7401  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7402  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7403
7404  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7405  SDValue Ops[] = {
7406    Op,
7407    DAG.getConstant(NumBits, OpVT),
7408    DAG.getConstant(X86::COND_E, MVT::i8),
7409    Op.getValue(1)
7410  };
7411  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7412
7413  if (VT == MVT::i8)
7414    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7415  return Op;
7416}
7417
7418SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7419  EVT VT = Op.getValueType();
7420  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7421  DebugLoc dl = Op.getDebugLoc();
7422
7423  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7424  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7425  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7426  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7427  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7428  //
7429  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7430  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7431  //  return AloBlo + AloBhi + AhiBlo;
7432
7433  SDValue A = Op.getOperand(0);
7434  SDValue B = Op.getOperand(1);
7435
7436  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7437                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7438                       A, DAG.getConstant(32, MVT::i32));
7439  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7440                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7441                       B, DAG.getConstant(32, MVT::i32));
7442  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7443                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7444                       A, B);
7445  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7446                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7447                       A, Bhi);
7448  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7449                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7450                       Ahi, B);
7451  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7452                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7453                       AloBhi, DAG.getConstant(32, MVT::i32));
7454  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7455                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7456                       AhiBlo, DAG.getConstant(32, MVT::i32));
7457  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7458  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7459  return Res;
7460}
7461
7462
7463SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7464  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7465  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7466  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7467  // has only one use.
7468  SDNode *N = Op.getNode();
7469  SDValue LHS = N->getOperand(0);
7470  SDValue RHS = N->getOperand(1);
7471  unsigned BaseOp = 0;
7472  unsigned Cond = 0;
7473  DebugLoc dl = Op.getDebugLoc();
7474
7475  switch (Op.getOpcode()) {
7476  default: llvm_unreachable("Unknown ovf instruction!");
7477  case ISD::SADDO:
7478    // A subtract of one will be selected as a INC. Note that INC doesn't
7479    // set CF, so we can't do this for UADDO.
7480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7481      if (C->getAPIntValue() == 1) {
7482        BaseOp = X86ISD::INC;
7483        Cond = X86::COND_O;
7484        break;
7485      }
7486    BaseOp = X86ISD::ADD;
7487    Cond = X86::COND_O;
7488    break;
7489  case ISD::UADDO:
7490    BaseOp = X86ISD::ADD;
7491    Cond = X86::COND_B;
7492    break;
7493  case ISD::SSUBO:
7494    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7495    // set CF, so we can't do this for USUBO.
7496    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7497      if (C->getAPIntValue() == 1) {
7498        BaseOp = X86ISD::DEC;
7499        Cond = X86::COND_O;
7500        break;
7501      }
7502    BaseOp = X86ISD::SUB;
7503    Cond = X86::COND_O;
7504    break;
7505  case ISD::USUBO:
7506    BaseOp = X86ISD::SUB;
7507    Cond = X86::COND_B;
7508    break;
7509  case ISD::SMULO:
7510    BaseOp = X86ISD::SMUL;
7511    Cond = X86::COND_O;
7512    break;
7513  case ISD::UMULO:
7514    BaseOp = X86ISD::UMUL;
7515    Cond = X86::COND_B;
7516    break;
7517  }
7518
7519  // Also sets EFLAGS.
7520  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7521  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7522
7523  SDValue SetCC =
7524    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7525                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7526
7527  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7528  return Sum;
7529}
7530
7531SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7532  EVT T = Op.getValueType();
7533  DebugLoc dl = Op.getDebugLoc();
7534  unsigned Reg = 0;
7535  unsigned size = 0;
7536  switch(T.getSimpleVT().SimpleTy) {
7537  default:
7538    assert(false && "Invalid value type!");
7539  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7540  case MVT::i16: Reg = X86::AX;  size = 2; break;
7541  case MVT::i32: Reg = X86::EAX; size = 4; break;
7542  case MVT::i64:
7543    assert(Subtarget->is64Bit() && "Node not type legal!");
7544    Reg = X86::RAX; size = 8;
7545    break;
7546  }
7547  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7548                                    Op.getOperand(2), SDValue());
7549  SDValue Ops[] = { cpIn.getValue(0),
7550                    Op.getOperand(1),
7551                    Op.getOperand(3),
7552                    DAG.getTargetConstant(size, MVT::i8),
7553                    cpIn.getValue(1) };
7554  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7555  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7556  SDValue cpOut =
7557    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7558  return cpOut;
7559}
7560
7561SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7562                                                 SelectionDAG &DAG) {
7563  assert(Subtarget->is64Bit() && "Result not type legalized?");
7564  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7565  SDValue TheChain = Op.getOperand(0);
7566  DebugLoc dl = Op.getDebugLoc();
7567  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7568  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7569  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7570                                   rax.getValue(2));
7571  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7572                            DAG.getConstant(32, MVT::i8));
7573  SDValue Ops[] = {
7574    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7575    rdx.getValue(1)
7576  };
7577  return DAG.getMergeValues(Ops, 2, dl);
7578}
7579
7580SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7581  SDNode *Node = Op.getNode();
7582  DebugLoc dl = Node->getDebugLoc();
7583  EVT T = Node->getValueType(0);
7584  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7585                              DAG.getConstant(0, T), Node->getOperand(2));
7586  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7587                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7588                       Node->getOperand(0),
7589                       Node->getOperand(1), negOp,
7590                       cast<AtomicSDNode>(Node)->getSrcValue(),
7591                       cast<AtomicSDNode>(Node)->getAlignment());
7592}
7593
7594/// LowerOperation - Provide custom lowering hooks for some operations.
7595///
7596SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7597  switch (Op.getOpcode()) {
7598  default: llvm_unreachable("Should not custom lower this!");
7599  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7600  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7601  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7602  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7603  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7604  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7605  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7606  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7607  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7608  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7609  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7610  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7611  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7612  case ISD::SHL_PARTS:
7613  case ISD::SRA_PARTS:
7614  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7615  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7616  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7617  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7618  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7619  case ISD::FABS:               return LowerFABS(Op, DAG);
7620  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7621  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7622  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7623  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7624  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7625  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7626  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7627  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7628  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7629  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7630  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7631  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7632  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7633  case ISD::FRAME_TO_ARGS_OFFSET:
7634                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7635  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7636  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7637  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7638  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7639  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7640  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7641  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7642  case ISD::SADDO:
7643  case ISD::UADDO:
7644  case ISD::SSUBO:
7645  case ISD::USUBO:
7646  case ISD::SMULO:
7647  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7648  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7649  }
7650}
7651
7652void X86TargetLowering::
7653ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7654                        SelectionDAG &DAG, unsigned NewOp) {
7655  EVT T = Node->getValueType(0);
7656  DebugLoc dl = Node->getDebugLoc();
7657  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7658
7659  SDValue Chain = Node->getOperand(0);
7660  SDValue In1 = Node->getOperand(1);
7661  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7662                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7663  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7664                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7665  SDValue Ops[] = { Chain, In1, In2L, In2H };
7666  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7667  SDValue Result =
7668    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7669                            cast<MemSDNode>(Node)->getMemOperand());
7670  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7671  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7672  Results.push_back(Result.getValue(2));
7673}
7674
7675/// ReplaceNodeResults - Replace a node with an illegal result type
7676/// with a new node built out of custom code.
7677void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7678                                           SmallVectorImpl<SDValue>&Results,
7679                                           SelectionDAG &DAG) {
7680  DebugLoc dl = N->getDebugLoc();
7681  switch (N->getOpcode()) {
7682  default:
7683    assert(false && "Do not know how to custom type legalize this operation!");
7684    return;
7685  case ISD::FP_TO_SINT: {
7686    std::pair<SDValue,SDValue> Vals =
7687        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7688    SDValue FIST = Vals.first, StackSlot = Vals.second;
7689    if (FIST.getNode() != 0) {
7690      EVT VT = N->getValueType(0);
7691      // Return a load from the stack slot.
7692      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7693                                    false, false, 0));
7694    }
7695    return;
7696  }
7697  case ISD::READCYCLECOUNTER: {
7698    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7699    SDValue TheChain = N->getOperand(0);
7700    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7701    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7702                                     rd.getValue(1));
7703    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7704                                     eax.getValue(2));
7705    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7706    SDValue Ops[] = { eax, edx };
7707    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7708    Results.push_back(edx.getValue(1));
7709    return;
7710  }
7711  case ISD::ATOMIC_CMP_SWAP: {
7712    EVT T = N->getValueType(0);
7713    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7714    SDValue cpInL, cpInH;
7715    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7716                        DAG.getConstant(0, MVT::i32));
7717    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7718                        DAG.getConstant(1, MVT::i32));
7719    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7720    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7721                             cpInL.getValue(1));
7722    SDValue swapInL, swapInH;
7723    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7724                          DAG.getConstant(0, MVT::i32));
7725    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7726                          DAG.getConstant(1, MVT::i32));
7727    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7728                               cpInH.getValue(1));
7729    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7730                               swapInL.getValue(1));
7731    SDValue Ops[] = { swapInH.getValue(0),
7732                      N->getOperand(1),
7733                      swapInH.getValue(1) };
7734    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7735    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7736    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7737                                        MVT::i32, Result.getValue(1));
7738    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7739                                        MVT::i32, cpOutL.getValue(2));
7740    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7741    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7742    Results.push_back(cpOutH.getValue(1));
7743    return;
7744  }
7745  case ISD::ATOMIC_LOAD_ADD:
7746    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7747    return;
7748  case ISD::ATOMIC_LOAD_AND:
7749    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7750    return;
7751  case ISD::ATOMIC_LOAD_NAND:
7752    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7753    return;
7754  case ISD::ATOMIC_LOAD_OR:
7755    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7756    return;
7757  case ISD::ATOMIC_LOAD_SUB:
7758    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7759    return;
7760  case ISD::ATOMIC_LOAD_XOR:
7761    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7762    return;
7763  case ISD::ATOMIC_SWAP:
7764    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7765    return;
7766  }
7767}
7768
7769const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7770  switch (Opcode) {
7771  default: return NULL;
7772  case X86ISD::BSF:                return "X86ISD::BSF";
7773  case X86ISD::BSR:                return "X86ISD::BSR";
7774  case X86ISD::SHLD:               return "X86ISD::SHLD";
7775  case X86ISD::SHRD:               return "X86ISD::SHRD";
7776  case X86ISD::FAND:               return "X86ISD::FAND";
7777  case X86ISD::FOR:                return "X86ISD::FOR";
7778  case X86ISD::FXOR:               return "X86ISD::FXOR";
7779  case X86ISD::FSRL:               return "X86ISD::FSRL";
7780  case X86ISD::FILD:               return "X86ISD::FILD";
7781  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7782  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7783  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7784  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7785  case X86ISD::FLD:                return "X86ISD::FLD";
7786  case X86ISD::FST:                return "X86ISD::FST";
7787  case X86ISD::CALL:               return "X86ISD::CALL";
7788  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7789  case X86ISD::BT:                 return "X86ISD::BT";
7790  case X86ISD::CMP:                return "X86ISD::CMP";
7791  case X86ISD::COMI:               return "X86ISD::COMI";
7792  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7793  case X86ISD::SETCC:              return "X86ISD::SETCC";
7794  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7795  case X86ISD::CMOV:               return "X86ISD::CMOV";
7796  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7797  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7798  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7799  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7800  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7801  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7802  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7803  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7804  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7805  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7806  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7807  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7808  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7809  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7810  case X86ISD::FMAX:               return "X86ISD::FMAX";
7811  case X86ISD::FMIN:               return "X86ISD::FMIN";
7812  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7813  case X86ISD::FRCP:               return "X86ISD::FRCP";
7814  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7815  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7816  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7817  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7818  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7819  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7820  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7821  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7822  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7823  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7824  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7825  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7826  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7827  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7828  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7829  case X86ISD::VSHL:               return "X86ISD::VSHL";
7830  case X86ISD::VSRL:               return "X86ISD::VSRL";
7831  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7832  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7833  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7834  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7835  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7836  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7837  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7838  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7839  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7840  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7841  case X86ISD::ADD:                return "X86ISD::ADD";
7842  case X86ISD::SUB:                return "X86ISD::SUB";
7843  case X86ISD::SMUL:               return "X86ISD::SMUL";
7844  case X86ISD::UMUL:               return "X86ISD::UMUL";
7845  case X86ISD::INC:                return "X86ISD::INC";
7846  case X86ISD::DEC:                return "X86ISD::DEC";
7847  case X86ISD::OR:                 return "X86ISD::OR";
7848  case X86ISD::XOR:                return "X86ISD::XOR";
7849  case X86ISD::AND:                return "X86ISD::AND";
7850  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7851  case X86ISD::PTEST:              return "X86ISD::PTEST";
7852  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7853  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7854  }
7855}
7856
7857// isLegalAddressingMode - Return true if the addressing mode represented
7858// by AM is legal for this target, for a load/store of the specified type.
7859bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7860                                              const Type *Ty) const {
7861  // X86 supports extremely general addressing modes.
7862  CodeModel::Model M = getTargetMachine().getCodeModel();
7863
7864  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7865  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7866    return false;
7867
7868  if (AM.BaseGV) {
7869    unsigned GVFlags =
7870      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7871
7872    // If a reference to this global requires an extra load, we can't fold it.
7873    if (isGlobalStubReference(GVFlags))
7874      return false;
7875
7876    // If BaseGV requires a register for the PIC base, we cannot also have a
7877    // BaseReg specified.
7878    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7879      return false;
7880
7881    // If lower 4G is not available, then we must use rip-relative addressing.
7882    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7883      return false;
7884  }
7885
7886  switch (AM.Scale) {
7887  case 0:
7888  case 1:
7889  case 2:
7890  case 4:
7891  case 8:
7892    // These scales always work.
7893    break;
7894  case 3:
7895  case 5:
7896  case 9:
7897    // These scales are formed with basereg+scalereg.  Only accept if there is
7898    // no basereg yet.
7899    if (AM.HasBaseReg)
7900      return false;
7901    break;
7902  default:  // Other stuff never works.
7903    return false;
7904  }
7905
7906  return true;
7907}
7908
7909
7910bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7911  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7912    return false;
7913  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7914  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7915  if (NumBits1 <= NumBits2)
7916    return false;
7917  return true;
7918}
7919
7920bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7921  if (!VT1.isInteger() || !VT2.isInteger())
7922    return false;
7923  unsigned NumBits1 = VT1.getSizeInBits();
7924  unsigned NumBits2 = VT2.getSizeInBits();
7925  if (NumBits1 <= NumBits2)
7926    return false;
7927  return true;
7928}
7929
7930bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7931  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7932  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7933}
7934
7935bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7936  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7937  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7938}
7939
7940bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7941  // i16 instructions are longer (0x66 prefix) and potentially slower.
7942  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7943}
7944
7945/// isShuffleMaskLegal - Targets can use this to indicate that they only
7946/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7947/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7948/// are assumed to be legal.
7949bool
7950X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7951                                      EVT VT) const {
7952  // Very little shuffling can be done for 64-bit vectors right now.
7953  if (VT.getSizeInBits() == 64)
7954    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
7955
7956  // FIXME: pshufb, blends, shifts.
7957  return (VT.getVectorNumElements() == 2 ||
7958          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7959          isMOVLMask(M, VT) ||
7960          isSHUFPMask(M, VT) ||
7961          isPSHUFDMask(M, VT) ||
7962          isPSHUFHWMask(M, VT) ||
7963          isPSHUFLWMask(M, VT) ||
7964          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7965          isUNPCKLMask(M, VT) ||
7966          isUNPCKHMask(M, VT) ||
7967          isUNPCKL_v_undef_Mask(M, VT) ||
7968          isUNPCKH_v_undef_Mask(M, VT));
7969}
7970
7971bool
7972X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7973                                          EVT VT) const {
7974  unsigned NumElts = VT.getVectorNumElements();
7975  // FIXME: This collection of masks seems suspect.
7976  if (NumElts == 2)
7977    return true;
7978  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7979    return (isMOVLMask(Mask, VT)  ||
7980            isCommutedMOVLMask(Mask, VT, true) ||
7981            isSHUFPMask(Mask, VT) ||
7982            isCommutedSHUFPMask(Mask, VT));
7983  }
7984  return false;
7985}
7986
7987//===----------------------------------------------------------------------===//
7988//                           X86 Scheduler Hooks
7989//===----------------------------------------------------------------------===//
7990
7991// private utility function
7992MachineBasicBlock *
7993X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7994                                                       MachineBasicBlock *MBB,
7995                                                       unsigned regOpc,
7996                                                       unsigned immOpc,
7997                                                       unsigned LoadOpc,
7998                                                       unsigned CXchgOpc,
7999                                                       unsigned copyOpc,
8000                                                       unsigned notOpc,
8001                                                       unsigned EAXreg,
8002                                                       TargetRegisterClass *RC,
8003                                                       bool invSrc) const {
8004  // For the atomic bitwise operator, we generate
8005  //   thisMBB:
8006  //   newMBB:
8007  //     ld  t1 = [bitinstr.addr]
8008  //     op  t2 = t1, [bitinstr.val]
8009  //     mov EAX = t1
8010  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8011  //     bz  newMBB
8012  //     fallthrough -->nextMBB
8013  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8014  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8015  MachineFunction::iterator MBBIter = MBB;
8016  ++MBBIter;
8017
8018  /// First build the CFG
8019  MachineFunction *F = MBB->getParent();
8020  MachineBasicBlock *thisMBB = MBB;
8021  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8022  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8023  F->insert(MBBIter, newMBB);
8024  F->insert(MBBIter, nextMBB);
8025
8026  // Move all successors to thisMBB to nextMBB
8027  nextMBB->transferSuccessors(thisMBB);
8028
8029  // Update thisMBB to fall through to newMBB
8030  thisMBB->addSuccessor(newMBB);
8031
8032  // newMBB jumps to itself and fall through to nextMBB
8033  newMBB->addSuccessor(nextMBB);
8034  newMBB->addSuccessor(newMBB);
8035
8036  // Insert instructions into newMBB based on incoming instruction
8037  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8038         "unexpected number of operands");
8039  DebugLoc dl = bInstr->getDebugLoc();
8040  MachineOperand& destOper = bInstr->getOperand(0);
8041  MachineOperand* argOpers[2 + X86AddrNumOperands];
8042  int numArgs = bInstr->getNumOperands() - 1;
8043  for (int i=0; i < numArgs; ++i)
8044    argOpers[i] = &bInstr->getOperand(i+1);
8045
8046  // x86 address has 4 operands: base, index, scale, and displacement
8047  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8048  int valArgIndx = lastAddrIndx + 1;
8049
8050  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8051  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8052  for (int i=0; i <= lastAddrIndx; ++i)
8053    (*MIB).addOperand(*argOpers[i]);
8054
8055  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8056  if (invSrc) {
8057    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8058  }
8059  else
8060    tt = t1;
8061
8062  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8063  assert((argOpers[valArgIndx]->isReg() ||
8064          argOpers[valArgIndx]->isImm()) &&
8065         "invalid operand");
8066  if (argOpers[valArgIndx]->isReg())
8067    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8068  else
8069    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8070  MIB.addReg(tt);
8071  (*MIB).addOperand(*argOpers[valArgIndx]);
8072
8073  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8074  MIB.addReg(t1);
8075
8076  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8077  for (int i=0; i <= lastAddrIndx; ++i)
8078    (*MIB).addOperand(*argOpers[i]);
8079  MIB.addReg(t2);
8080  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8081  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8082                    bInstr->memoperands_end());
8083
8084  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8085  MIB.addReg(EAXreg);
8086
8087  // insert branch
8088  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8089
8090  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8091  return nextMBB;
8092}
8093
8094// private utility function:  64 bit atomics on 32 bit host.
8095MachineBasicBlock *
8096X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8097                                                       MachineBasicBlock *MBB,
8098                                                       unsigned regOpcL,
8099                                                       unsigned regOpcH,
8100                                                       unsigned immOpcL,
8101                                                       unsigned immOpcH,
8102                                                       bool invSrc) const {
8103  // For the atomic bitwise operator, we generate
8104  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8105  //     ld t1,t2 = [bitinstr.addr]
8106  //   newMBB:
8107  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8108  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8109  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8110  //     mov ECX, EBX <- t5, t6
8111  //     mov EAX, EDX <- t1, t2
8112  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8113  //     mov t3, t4 <- EAX, EDX
8114  //     bz  newMBB
8115  //     result in out1, out2
8116  //     fallthrough -->nextMBB
8117
8118  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8119  const unsigned LoadOpc = X86::MOV32rm;
8120  const unsigned copyOpc = X86::MOV32rr;
8121  const unsigned NotOpc = X86::NOT32r;
8122  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8123  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8124  MachineFunction::iterator MBBIter = MBB;
8125  ++MBBIter;
8126
8127  /// First build the CFG
8128  MachineFunction *F = MBB->getParent();
8129  MachineBasicBlock *thisMBB = MBB;
8130  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8131  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8132  F->insert(MBBIter, newMBB);
8133  F->insert(MBBIter, nextMBB);
8134
8135  // Move all successors to thisMBB to nextMBB
8136  nextMBB->transferSuccessors(thisMBB);
8137
8138  // Update thisMBB to fall through to newMBB
8139  thisMBB->addSuccessor(newMBB);
8140
8141  // newMBB jumps to itself and fall through to nextMBB
8142  newMBB->addSuccessor(nextMBB);
8143  newMBB->addSuccessor(newMBB);
8144
8145  DebugLoc dl = bInstr->getDebugLoc();
8146  // Insert instructions into newMBB based on incoming instruction
8147  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8148  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8149         "unexpected number of operands");
8150  MachineOperand& dest1Oper = bInstr->getOperand(0);
8151  MachineOperand& dest2Oper = bInstr->getOperand(1);
8152  MachineOperand* argOpers[2 + X86AddrNumOperands];
8153  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8154    argOpers[i] = &bInstr->getOperand(i+2);
8155
8156  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8157  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8158
8159  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8160  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8161  for (int i=0; i <= lastAddrIndx; ++i)
8162    (*MIB).addOperand(*argOpers[i]);
8163  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8164  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8165  // add 4 to displacement.
8166  for (int i=0; i <= lastAddrIndx-2; ++i)
8167    (*MIB).addOperand(*argOpers[i]);
8168  MachineOperand newOp3 = *(argOpers[3]);
8169  if (newOp3.isImm())
8170    newOp3.setImm(newOp3.getImm()+4);
8171  else
8172    newOp3.setOffset(newOp3.getOffset()+4);
8173  (*MIB).addOperand(newOp3);
8174  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8175
8176  // t3/4 are defined later, at the bottom of the loop
8177  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8178  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8179  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8180    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8181  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8182    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8183
8184  // The subsequent operations should be using the destination registers of
8185  //the PHI instructions.
8186  if (invSrc) {
8187    t1 = F->getRegInfo().createVirtualRegister(RC);
8188    t2 = F->getRegInfo().createVirtualRegister(RC);
8189    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8190    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8191  } else {
8192    t1 = dest1Oper.getReg();
8193    t2 = dest2Oper.getReg();
8194  }
8195
8196  int valArgIndx = lastAddrIndx + 1;
8197  assert((argOpers[valArgIndx]->isReg() ||
8198          argOpers[valArgIndx]->isImm()) &&
8199         "invalid operand");
8200  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8201  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8202  if (argOpers[valArgIndx]->isReg())
8203    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8204  else
8205    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8206  if (regOpcL != X86::MOV32rr)
8207    MIB.addReg(t1);
8208  (*MIB).addOperand(*argOpers[valArgIndx]);
8209  assert(argOpers[valArgIndx + 1]->isReg() ==
8210         argOpers[valArgIndx]->isReg());
8211  assert(argOpers[valArgIndx + 1]->isImm() ==
8212         argOpers[valArgIndx]->isImm());
8213  if (argOpers[valArgIndx + 1]->isReg())
8214    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8215  else
8216    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8217  if (regOpcH != X86::MOV32rr)
8218    MIB.addReg(t2);
8219  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8220
8221  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8222  MIB.addReg(t1);
8223  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8224  MIB.addReg(t2);
8225
8226  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8227  MIB.addReg(t5);
8228  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8229  MIB.addReg(t6);
8230
8231  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8232  for (int i=0; i <= lastAddrIndx; ++i)
8233    (*MIB).addOperand(*argOpers[i]);
8234
8235  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8236  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8237                    bInstr->memoperands_end());
8238
8239  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8240  MIB.addReg(X86::EAX);
8241  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8242  MIB.addReg(X86::EDX);
8243
8244  // insert branch
8245  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8246
8247  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8248  return nextMBB;
8249}
8250
8251// private utility function
8252MachineBasicBlock *
8253X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8254                                                      MachineBasicBlock *MBB,
8255                                                      unsigned cmovOpc) const {
8256  // For the atomic min/max operator, we generate
8257  //   thisMBB:
8258  //   newMBB:
8259  //     ld t1 = [min/max.addr]
8260  //     mov t2 = [min/max.val]
8261  //     cmp  t1, t2
8262  //     cmov[cond] t2 = t1
8263  //     mov EAX = t1
8264  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8265  //     bz   newMBB
8266  //     fallthrough -->nextMBB
8267  //
8268  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8269  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8270  MachineFunction::iterator MBBIter = MBB;
8271  ++MBBIter;
8272
8273  /// First build the CFG
8274  MachineFunction *F = MBB->getParent();
8275  MachineBasicBlock *thisMBB = MBB;
8276  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8277  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8278  F->insert(MBBIter, newMBB);
8279  F->insert(MBBIter, nextMBB);
8280
8281  // Move all successors of thisMBB to nextMBB
8282  nextMBB->transferSuccessors(thisMBB);
8283
8284  // Update thisMBB to fall through to newMBB
8285  thisMBB->addSuccessor(newMBB);
8286
8287  // newMBB jumps to newMBB and fall through to nextMBB
8288  newMBB->addSuccessor(nextMBB);
8289  newMBB->addSuccessor(newMBB);
8290
8291  DebugLoc dl = mInstr->getDebugLoc();
8292  // Insert instructions into newMBB based on incoming instruction
8293  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8294         "unexpected number of operands");
8295  MachineOperand& destOper = mInstr->getOperand(0);
8296  MachineOperand* argOpers[2 + X86AddrNumOperands];
8297  int numArgs = mInstr->getNumOperands() - 1;
8298  for (int i=0; i < numArgs; ++i)
8299    argOpers[i] = &mInstr->getOperand(i+1);
8300
8301  // x86 address has 4 operands: base, index, scale, and displacement
8302  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8303  int valArgIndx = lastAddrIndx + 1;
8304
8305  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8306  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8307  for (int i=0; i <= lastAddrIndx; ++i)
8308    (*MIB).addOperand(*argOpers[i]);
8309
8310  // We only support register and immediate values
8311  assert((argOpers[valArgIndx]->isReg() ||
8312          argOpers[valArgIndx]->isImm()) &&
8313         "invalid operand");
8314
8315  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8316  if (argOpers[valArgIndx]->isReg())
8317    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8318  else
8319    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8320  (*MIB).addOperand(*argOpers[valArgIndx]);
8321
8322  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8323  MIB.addReg(t1);
8324
8325  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8326  MIB.addReg(t1);
8327  MIB.addReg(t2);
8328
8329  // Generate movc
8330  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8331  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8332  MIB.addReg(t2);
8333  MIB.addReg(t1);
8334
8335  // Cmp and exchange if none has modified the memory location
8336  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8337  for (int i=0; i <= lastAddrIndx; ++i)
8338    (*MIB).addOperand(*argOpers[i]);
8339  MIB.addReg(t3);
8340  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8341  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8342                    mInstr->memoperands_end());
8343
8344  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8345  MIB.addReg(X86::EAX);
8346
8347  // insert branch
8348  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8349
8350  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8351  return nextMBB;
8352}
8353
8354// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8355// all of this code can be replaced with that in the .td file.
8356MachineBasicBlock *
8357X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8358                            unsigned numArgs, bool memArg) const {
8359
8360  MachineFunction *F = BB->getParent();
8361  DebugLoc dl = MI->getDebugLoc();
8362  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8363
8364  unsigned Opc;
8365  if (memArg)
8366    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8367  else
8368    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8369
8370  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8371
8372  for (unsigned i = 0; i < numArgs; ++i) {
8373    MachineOperand &Op = MI->getOperand(i+1);
8374
8375    if (!(Op.isReg() && Op.isImplicit()))
8376      MIB.addOperand(Op);
8377  }
8378
8379  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8380    .addReg(X86::XMM0);
8381
8382  F->DeleteMachineInstr(MI);
8383
8384  return BB;
8385}
8386
8387MachineBasicBlock *
8388X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8389                                                 MachineInstr *MI,
8390                                                 MachineBasicBlock *MBB) const {
8391  // Emit code to save XMM registers to the stack. The ABI says that the
8392  // number of registers to save is given in %al, so it's theoretically
8393  // possible to do an indirect jump trick to avoid saving all of them,
8394  // however this code takes a simpler approach and just executes all
8395  // of the stores if %al is non-zero. It's less code, and it's probably
8396  // easier on the hardware branch predictor, and stores aren't all that
8397  // expensive anyway.
8398
8399  // Create the new basic blocks. One block contains all the XMM stores,
8400  // and one block is the final destination regardless of whether any
8401  // stores were performed.
8402  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8403  MachineFunction *F = MBB->getParent();
8404  MachineFunction::iterator MBBIter = MBB;
8405  ++MBBIter;
8406  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8407  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8408  F->insert(MBBIter, XMMSaveMBB);
8409  F->insert(MBBIter, EndMBB);
8410
8411  // Set up the CFG.
8412  // Move any original successors of MBB to the end block.
8413  EndMBB->transferSuccessors(MBB);
8414  // The original block will now fall through to the XMM save block.
8415  MBB->addSuccessor(XMMSaveMBB);
8416  // The XMMSaveMBB will fall through to the end block.
8417  XMMSaveMBB->addSuccessor(EndMBB);
8418
8419  // Now add the instructions.
8420  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8421  DebugLoc DL = MI->getDebugLoc();
8422
8423  unsigned CountReg = MI->getOperand(0).getReg();
8424  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8425  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8426
8427  if (!Subtarget->isTargetWin64()) {
8428    // If %al is 0, branch around the XMM save block.
8429    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8430    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8431    MBB->addSuccessor(EndMBB);
8432  }
8433
8434  // In the XMM save block, save all the XMM argument registers.
8435  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8436    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8437    MachineMemOperand *MMO =
8438      F->getMachineMemOperand(
8439        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8440        MachineMemOperand::MOStore, Offset,
8441        /*Size=*/16, /*Align=*/16);
8442    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8443      .addFrameIndex(RegSaveFrameIndex)
8444      .addImm(/*Scale=*/1)
8445      .addReg(/*IndexReg=*/0)
8446      .addImm(/*Disp=*/Offset)
8447      .addReg(/*Segment=*/0)
8448      .addReg(MI->getOperand(i).getReg())
8449      .addMemOperand(MMO);
8450  }
8451
8452  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8453
8454  return EndMBB;
8455}
8456
8457MachineBasicBlock *
8458X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8459                                     MachineBasicBlock *BB,
8460                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8461  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8462  DebugLoc DL = MI->getDebugLoc();
8463
8464  // To "insert" a SELECT_CC instruction, we actually have to insert the
8465  // diamond control-flow pattern.  The incoming instruction knows the
8466  // destination vreg to set, the condition code register to branch on, the
8467  // true/false values to select between, and a branch opcode to use.
8468  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8469  MachineFunction::iterator It = BB;
8470  ++It;
8471
8472  //  thisMBB:
8473  //  ...
8474  //   TrueVal = ...
8475  //   cmpTY ccX, r1, r2
8476  //   bCC copy1MBB
8477  //   fallthrough --> copy0MBB
8478  MachineBasicBlock *thisMBB = BB;
8479  MachineFunction *F = BB->getParent();
8480  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8481  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8482  unsigned Opc =
8483    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8484  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8485  F->insert(It, copy0MBB);
8486  F->insert(It, sinkMBB);
8487  // Update machine-CFG edges by first adding all successors of the current
8488  // block to the new block which will contain the Phi node for the select.
8489  // Also inform sdisel of the edge changes.
8490  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8491         E = BB->succ_end(); I != E; ++I) {
8492    EM->insert(std::make_pair(*I, sinkMBB));
8493    sinkMBB->addSuccessor(*I);
8494  }
8495  // Next, remove all successors of the current block, and add the true
8496  // and fallthrough blocks as its successors.
8497  while (!BB->succ_empty())
8498    BB->removeSuccessor(BB->succ_begin());
8499  // Add the true and fallthrough blocks as its successors.
8500  BB->addSuccessor(copy0MBB);
8501  BB->addSuccessor(sinkMBB);
8502
8503  //  copy0MBB:
8504  //   %FalseValue = ...
8505  //   # fallthrough to sinkMBB
8506  BB = copy0MBB;
8507
8508  // Update machine-CFG edges
8509  BB->addSuccessor(sinkMBB);
8510
8511  //  sinkMBB:
8512  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8513  //  ...
8514  BB = sinkMBB;
8515  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8516    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8517    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8518
8519  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8520  return BB;
8521}
8522
8523MachineBasicBlock *
8524X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8525                                          MachineBasicBlock *BB,
8526                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8527  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8528  DebugLoc DL = MI->getDebugLoc();
8529  MachineFunction *F = BB->getParent();
8530
8531  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8532  // non-trivial part is impdef of ESP.
8533  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8534  // mingw-w64.
8535
8536  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8537    .addExternalSymbol("_alloca")
8538    .addReg(X86::EAX, RegState::Implicit)
8539    .addReg(X86::ESP, RegState::Implicit)
8540    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8541    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8542
8543  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8544  return BB;
8545}
8546
8547MachineBasicBlock *
8548X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8549                                               MachineBasicBlock *BB,
8550                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8551  switch (MI->getOpcode()) {
8552  default: assert(false && "Unexpected instr type to insert");
8553  case X86::MINGW_ALLOCA:
8554    return EmitLoweredMingwAlloca(MI, BB, EM);
8555  case X86::CMOV_GR8:
8556  case X86::CMOV_V1I64:
8557  case X86::CMOV_FR32:
8558  case X86::CMOV_FR64:
8559  case X86::CMOV_V4F32:
8560  case X86::CMOV_V2F64:
8561  case X86::CMOV_V2I64:
8562  case X86::CMOV_GR16:
8563  case X86::CMOV_GR32:
8564  case X86::CMOV_RFP32:
8565  case X86::CMOV_RFP64:
8566  case X86::CMOV_RFP80:
8567    return EmitLoweredSelect(MI, BB, EM);
8568
8569  case X86::FP32_TO_INT16_IN_MEM:
8570  case X86::FP32_TO_INT32_IN_MEM:
8571  case X86::FP32_TO_INT64_IN_MEM:
8572  case X86::FP64_TO_INT16_IN_MEM:
8573  case X86::FP64_TO_INT32_IN_MEM:
8574  case X86::FP64_TO_INT64_IN_MEM:
8575  case X86::FP80_TO_INT16_IN_MEM:
8576  case X86::FP80_TO_INT32_IN_MEM:
8577  case X86::FP80_TO_INT64_IN_MEM: {
8578    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8579    DebugLoc DL = MI->getDebugLoc();
8580
8581    // Change the floating point control register to use "round towards zero"
8582    // mode when truncating to an integer value.
8583    MachineFunction *F = BB->getParent();
8584    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8585    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8586
8587    // Load the old value of the high byte of the control word...
8588    unsigned OldCW =
8589      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8590    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8591                      CWFrameIdx);
8592
8593    // Set the high part to be round to zero...
8594    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8595      .addImm(0xC7F);
8596
8597    // Reload the modified control word now...
8598    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8599
8600    // Restore the memory image of control word to original value
8601    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8602      .addReg(OldCW);
8603
8604    // Get the X86 opcode to use.
8605    unsigned Opc;
8606    switch (MI->getOpcode()) {
8607    default: llvm_unreachable("illegal opcode!");
8608    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8609    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8610    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8611    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8612    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8613    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8614    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8615    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8616    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8617    }
8618
8619    X86AddressMode AM;
8620    MachineOperand &Op = MI->getOperand(0);
8621    if (Op.isReg()) {
8622      AM.BaseType = X86AddressMode::RegBase;
8623      AM.Base.Reg = Op.getReg();
8624    } else {
8625      AM.BaseType = X86AddressMode::FrameIndexBase;
8626      AM.Base.FrameIndex = Op.getIndex();
8627    }
8628    Op = MI->getOperand(1);
8629    if (Op.isImm())
8630      AM.Scale = Op.getImm();
8631    Op = MI->getOperand(2);
8632    if (Op.isImm())
8633      AM.IndexReg = Op.getImm();
8634    Op = MI->getOperand(3);
8635    if (Op.isGlobal()) {
8636      AM.GV = Op.getGlobal();
8637    } else {
8638      AM.Disp = Op.getImm();
8639    }
8640    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8641                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8642
8643    // Reload the original control word now.
8644    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8645
8646    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8647    return BB;
8648  }
8649    // DBG_VALUE.  Only the frame index case is done here.
8650  case X86::DBG_VALUE: {
8651    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8652    DebugLoc DL = MI->getDebugLoc();
8653    X86AddressMode AM;
8654    MachineFunction *F = BB->getParent();
8655    AM.BaseType = X86AddressMode::FrameIndexBase;
8656    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8657    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8658      addImm(MI->getOperand(1).getImm()).
8659      addMetadata(MI->getOperand(2).getMetadata());
8660    F->DeleteMachineInstr(MI);      // Remove pseudo.
8661    return BB;
8662  }
8663
8664    // String/text processing lowering.
8665  case X86::PCMPISTRM128REG:
8666    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8667  case X86::PCMPISTRM128MEM:
8668    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8669  case X86::PCMPESTRM128REG:
8670    return EmitPCMP(MI, BB, 5, false /* in mem */);
8671  case X86::PCMPESTRM128MEM:
8672    return EmitPCMP(MI, BB, 5, true /* in mem */);
8673
8674    // Atomic Lowering.
8675  case X86::ATOMAND32:
8676    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8677                                               X86::AND32ri, X86::MOV32rm,
8678                                               X86::LCMPXCHG32, X86::MOV32rr,
8679                                               X86::NOT32r, X86::EAX,
8680                                               X86::GR32RegisterClass);
8681  case X86::ATOMOR32:
8682    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8683                                               X86::OR32ri, X86::MOV32rm,
8684                                               X86::LCMPXCHG32, X86::MOV32rr,
8685                                               X86::NOT32r, X86::EAX,
8686                                               X86::GR32RegisterClass);
8687  case X86::ATOMXOR32:
8688    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8689                                               X86::XOR32ri, X86::MOV32rm,
8690                                               X86::LCMPXCHG32, X86::MOV32rr,
8691                                               X86::NOT32r, X86::EAX,
8692                                               X86::GR32RegisterClass);
8693  case X86::ATOMNAND32:
8694    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8695                                               X86::AND32ri, X86::MOV32rm,
8696                                               X86::LCMPXCHG32, X86::MOV32rr,
8697                                               X86::NOT32r, X86::EAX,
8698                                               X86::GR32RegisterClass, true);
8699  case X86::ATOMMIN32:
8700    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8701  case X86::ATOMMAX32:
8702    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8703  case X86::ATOMUMIN32:
8704    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8705  case X86::ATOMUMAX32:
8706    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8707
8708  case X86::ATOMAND16:
8709    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8710                                               X86::AND16ri, X86::MOV16rm,
8711                                               X86::LCMPXCHG16, X86::MOV16rr,
8712                                               X86::NOT16r, X86::AX,
8713                                               X86::GR16RegisterClass);
8714  case X86::ATOMOR16:
8715    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8716                                               X86::OR16ri, X86::MOV16rm,
8717                                               X86::LCMPXCHG16, X86::MOV16rr,
8718                                               X86::NOT16r, X86::AX,
8719                                               X86::GR16RegisterClass);
8720  case X86::ATOMXOR16:
8721    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8722                                               X86::XOR16ri, X86::MOV16rm,
8723                                               X86::LCMPXCHG16, X86::MOV16rr,
8724                                               X86::NOT16r, X86::AX,
8725                                               X86::GR16RegisterClass);
8726  case X86::ATOMNAND16:
8727    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8728                                               X86::AND16ri, X86::MOV16rm,
8729                                               X86::LCMPXCHG16, X86::MOV16rr,
8730                                               X86::NOT16r, X86::AX,
8731                                               X86::GR16RegisterClass, true);
8732  case X86::ATOMMIN16:
8733    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8734  case X86::ATOMMAX16:
8735    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8736  case X86::ATOMUMIN16:
8737    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8738  case X86::ATOMUMAX16:
8739    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8740
8741  case X86::ATOMAND8:
8742    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8743                                               X86::AND8ri, X86::MOV8rm,
8744                                               X86::LCMPXCHG8, X86::MOV8rr,
8745                                               X86::NOT8r, X86::AL,
8746                                               X86::GR8RegisterClass);
8747  case X86::ATOMOR8:
8748    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8749                                               X86::OR8ri, X86::MOV8rm,
8750                                               X86::LCMPXCHG8, X86::MOV8rr,
8751                                               X86::NOT8r, X86::AL,
8752                                               X86::GR8RegisterClass);
8753  case X86::ATOMXOR8:
8754    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8755                                               X86::XOR8ri, X86::MOV8rm,
8756                                               X86::LCMPXCHG8, X86::MOV8rr,
8757                                               X86::NOT8r, X86::AL,
8758                                               X86::GR8RegisterClass);
8759  case X86::ATOMNAND8:
8760    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8761                                               X86::AND8ri, X86::MOV8rm,
8762                                               X86::LCMPXCHG8, X86::MOV8rr,
8763                                               X86::NOT8r, X86::AL,
8764                                               X86::GR8RegisterClass, true);
8765  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8766  // This group is for 64-bit host.
8767  case X86::ATOMAND64:
8768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8769                                               X86::AND64ri32, X86::MOV64rm,
8770                                               X86::LCMPXCHG64, X86::MOV64rr,
8771                                               X86::NOT64r, X86::RAX,
8772                                               X86::GR64RegisterClass);
8773  case X86::ATOMOR64:
8774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8775                                               X86::OR64ri32, X86::MOV64rm,
8776                                               X86::LCMPXCHG64, X86::MOV64rr,
8777                                               X86::NOT64r, X86::RAX,
8778                                               X86::GR64RegisterClass);
8779  case X86::ATOMXOR64:
8780    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8781                                               X86::XOR64ri32, X86::MOV64rm,
8782                                               X86::LCMPXCHG64, X86::MOV64rr,
8783                                               X86::NOT64r, X86::RAX,
8784                                               X86::GR64RegisterClass);
8785  case X86::ATOMNAND64:
8786    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8787                                               X86::AND64ri32, X86::MOV64rm,
8788                                               X86::LCMPXCHG64, X86::MOV64rr,
8789                                               X86::NOT64r, X86::RAX,
8790                                               X86::GR64RegisterClass, true);
8791  case X86::ATOMMIN64:
8792    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8793  case X86::ATOMMAX64:
8794    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8795  case X86::ATOMUMIN64:
8796    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8797  case X86::ATOMUMAX64:
8798    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8799
8800  // This group does 64-bit operations on a 32-bit host.
8801  case X86::ATOMAND6432:
8802    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8803                                               X86::AND32rr, X86::AND32rr,
8804                                               X86::AND32ri, X86::AND32ri,
8805                                               false);
8806  case X86::ATOMOR6432:
8807    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8808                                               X86::OR32rr, X86::OR32rr,
8809                                               X86::OR32ri, X86::OR32ri,
8810                                               false);
8811  case X86::ATOMXOR6432:
8812    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8813                                               X86::XOR32rr, X86::XOR32rr,
8814                                               X86::XOR32ri, X86::XOR32ri,
8815                                               false);
8816  case X86::ATOMNAND6432:
8817    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8818                                               X86::AND32rr, X86::AND32rr,
8819                                               X86::AND32ri, X86::AND32ri,
8820                                               true);
8821  case X86::ATOMADD6432:
8822    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8823                                               X86::ADD32rr, X86::ADC32rr,
8824                                               X86::ADD32ri, X86::ADC32ri,
8825                                               false);
8826  case X86::ATOMSUB6432:
8827    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8828                                               X86::SUB32rr, X86::SBB32rr,
8829                                               X86::SUB32ri, X86::SBB32ri,
8830                                               false);
8831  case X86::ATOMSWAP6432:
8832    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8833                                               X86::MOV32rr, X86::MOV32rr,
8834                                               X86::MOV32ri, X86::MOV32ri,
8835                                               false);
8836  case X86::VASTART_SAVE_XMM_REGS:
8837    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8838  }
8839}
8840
8841//===----------------------------------------------------------------------===//
8842//                           X86 Optimization Hooks
8843//===----------------------------------------------------------------------===//
8844
8845void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8846                                                       const APInt &Mask,
8847                                                       APInt &KnownZero,
8848                                                       APInt &KnownOne,
8849                                                       const SelectionDAG &DAG,
8850                                                       unsigned Depth) const {
8851  unsigned Opc = Op.getOpcode();
8852  assert((Opc >= ISD::BUILTIN_OP_END ||
8853          Opc == ISD::INTRINSIC_WO_CHAIN ||
8854          Opc == ISD::INTRINSIC_W_CHAIN ||
8855          Opc == ISD::INTRINSIC_VOID) &&
8856         "Should use MaskedValueIsZero if you don't know whether Op"
8857         " is a target node!");
8858
8859  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8860  switch (Opc) {
8861  default: break;
8862  case X86ISD::ADD:
8863  case X86ISD::SUB:
8864  case X86ISD::SMUL:
8865  case X86ISD::UMUL:
8866  case X86ISD::INC:
8867  case X86ISD::DEC:
8868  case X86ISD::OR:
8869  case X86ISD::XOR:
8870  case X86ISD::AND:
8871    // These nodes' second result is a boolean.
8872    if (Op.getResNo() == 0)
8873      break;
8874    // Fallthrough
8875  case X86ISD::SETCC:
8876    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8877                                       Mask.getBitWidth() - 1);
8878    break;
8879  }
8880}
8881
8882/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8883/// node is a GlobalAddress + offset.
8884bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8885                                       const GlobalValue* &GA,
8886                                       int64_t &Offset) const {
8887  if (N->getOpcode() == X86ISD::Wrapper) {
8888    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8889      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8890      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8891      return true;
8892    }
8893  }
8894  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8895}
8896
8897/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8898/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8899/// if the load addresses are consecutive, non-overlapping, and in the right
8900/// order.
8901static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8902                                     const TargetLowering &TLI) {
8903  DebugLoc dl = N->getDebugLoc();
8904  EVT VT = N->getValueType(0);
8905  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8906
8907  if (VT.getSizeInBits() != 128)
8908    return SDValue();
8909
8910  SmallVector<SDValue, 16> Elts;
8911  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8912    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8913
8914  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8915}
8916
8917/// PerformShuffleCombine - Detect vector gather/scatter index generation
8918/// and convert it from being a bunch of shuffles and extracts to a simple
8919/// store and scalar loads to extract the elements.
8920static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8921                                                const TargetLowering &TLI) {
8922  SDValue InputVector = N->getOperand(0);
8923
8924  // Only operate on vectors of 4 elements, where the alternative shuffling
8925  // gets to be more expensive.
8926  if (InputVector.getValueType() != MVT::v4i32)
8927    return SDValue();
8928
8929  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8930  // single use which is a sign-extend or zero-extend, and all elements are
8931  // used.
8932  SmallVector<SDNode *, 4> Uses;
8933  unsigned ExtractedElements = 0;
8934  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8935       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8936    if (UI.getUse().getResNo() != InputVector.getResNo())
8937      return SDValue();
8938
8939    SDNode *Extract = *UI;
8940    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8941      return SDValue();
8942
8943    if (Extract->getValueType(0) != MVT::i32)
8944      return SDValue();
8945    if (!Extract->hasOneUse())
8946      return SDValue();
8947    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8948        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8949      return SDValue();
8950    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8951      return SDValue();
8952
8953    // Record which element was extracted.
8954    ExtractedElements |=
8955      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8956
8957    Uses.push_back(Extract);
8958  }
8959
8960  // If not all the elements were used, this may not be worthwhile.
8961  if (ExtractedElements != 15)
8962    return SDValue();
8963
8964  // Ok, we've now decided to do the transformation.
8965  DebugLoc dl = InputVector.getDebugLoc();
8966
8967  // Store the value to a temporary stack slot.
8968  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
8969  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
8970                            false, false, 0);
8971
8972  // Replace each use (extract) with a load of the appropriate element.
8973  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
8974       UE = Uses.end(); UI != UE; ++UI) {
8975    SDNode *Extract = *UI;
8976
8977    // Compute the element's address.
8978    SDValue Idx = Extract->getOperand(1);
8979    unsigned EltSize =
8980        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
8981    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
8982    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
8983
8984    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
8985
8986    // Load the scalar.
8987    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
8988                          NULL, 0, false, false, 0);
8989
8990    // Replace the exact with the load.
8991    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
8992  }
8993
8994  // The replacement was made in place; don't return anything.
8995  return SDValue();
8996}
8997
8998/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8999static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9000                                    const X86Subtarget *Subtarget) {
9001  DebugLoc DL = N->getDebugLoc();
9002  SDValue Cond = N->getOperand(0);
9003  // Get the LHS/RHS of the select.
9004  SDValue LHS = N->getOperand(1);
9005  SDValue RHS = N->getOperand(2);
9006
9007  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9008  // instructions match the semantics of the common C idiom x<y?x:y but not
9009  // x<=y?x:y, because of how they handle negative zero (which can be
9010  // ignored in unsafe-math mode).
9011  if (Subtarget->hasSSE2() &&
9012      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9013      Cond.getOpcode() == ISD::SETCC) {
9014    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9015
9016    unsigned Opcode = 0;
9017    // Check for x CC y ? x : y.
9018    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9019        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9020      switch (CC) {
9021      default: break;
9022      case ISD::SETULT:
9023        // Converting this to a min would handle NaNs incorrectly, and swapping
9024        // the operands would cause it to handle comparisons between positive
9025        // and negative zero incorrectly.
9026        if (!FiniteOnlyFPMath() &&
9027            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9028          if (!UnsafeFPMath &&
9029              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9030            break;
9031          std::swap(LHS, RHS);
9032        }
9033        Opcode = X86ISD::FMIN;
9034        break;
9035      case ISD::SETOLE:
9036        // Converting this to a min would handle comparisons between positive
9037        // and negative zero incorrectly.
9038        if (!UnsafeFPMath &&
9039            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9040          break;
9041        Opcode = X86ISD::FMIN;
9042        break;
9043      case ISD::SETULE:
9044        // Converting this to a min would handle both negative zeros and NaNs
9045        // incorrectly, but we can swap the operands to fix both.
9046        std::swap(LHS, RHS);
9047      case ISD::SETOLT:
9048      case ISD::SETLT:
9049      case ISD::SETLE:
9050        Opcode = X86ISD::FMIN;
9051        break;
9052
9053      case ISD::SETOGE:
9054        // Converting this to a max would handle comparisons between positive
9055        // and negative zero incorrectly.
9056        if (!UnsafeFPMath &&
9057            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9058          break;
9059        Opcode = X86ISD::FMAX;
9060        break;
9061      case ISD::SETUGT:
9062        // Converting this to a max would handle NaNs incorrectly, and swapping
9063        // the operands would cause it to handle comparisons between positive
9064        // and negative zero incorrectly.
9065        if (!FiniteOnlyFPMath() &&
9066            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9067          if (!UnsafeFPMath &&
9068              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9069            break;
9070          std::swap(LHS, RHS);
9071        }
9072        Opcode = X86ISD::FMAX;
9073        break;
9074      case ISD::SETUGE:
9075        // Converting this to a max would handle both negative zeros and NaNs
9076        // incorrectly, but we can swap the operands to fix both.
9077        std::swap(LHS, RHS);
9078      case ISD::SETOGT:
9079      case ISD::SETGT:
9080      case ISD::SETGE:
9081        Opcode = X86ISD::FMAX;
9082        break;
9083      }
9084    // Check for x CC y ? y : x -- a min/max with reversed arms.
9085    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9086               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9087      switch (CC) {
9088      default: break;
9089      case ISD::SETOGE:
9090        // Converting this to a min would handle comparisons between positive
9091        // and negative zero incorrectly, and swapping the operands would
9092        // cause it to handle NaNs incorrectly.
9093        if (!UnsafeFPMath &&
9094            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9095          if (!FiniteOnlyFPMath() &&
9096              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9097            break;
9098          std::swap(LHS, RHS);
9099        }
9100        Opcode = X86ISD::FMIN;
9101        break;
9102      case ISD::SETUGT:
9103        // Converting this to a min would handle NaNs incorrectly.
9104        if (!UnsafeFPMath &&
9105            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9106          break;
9107        Opcode = X86ISD::FMIN;
9108        break;
9109      case ISD::SETUGE:
9110        // Converting this to a min would handle both negative zeros and NaNs
9111        // incorrectly, but we can swap the operands to fix both.
9112        std::swap(LHS, RHS);
9113      case ISD::SETOGT:
9114      case ISD::SETGT:
9115      case ISD::SETGE:
9116        Opcode = X86ISD::FMIN;
9117        break;
9118
9119      case ISD::SETULT:
9120        // Converting this to a max would handle NaNs incorrectly.
9121        if (!FiniteOnlyFPMath() &&
9122            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9123          break;
9124        Opcode = X86ISD::FMAX;
9125        break;
9126      case ISD::SETOLE:
9127        // Converting this to a max would handle comparisons between positive
9128        // and negative zero incorrectly, and swapping the operands would
9129        // cause it to handle NaNs incorrectly.
9130        if (!UnsafeFPMath &&
9131            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9132          if (!FiniteOnlyFPMath() &&
9133              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9134            break;
9135          std::swap(LHS, RHS);
9136        }
9137        Opcode = X86ISD::FMAX;
9138        break;
9139      case ISD::SETULE:
9140        // Converting this to a max would handle both negative zeros and NaNs
9141        // incorrectly, but we can swap the operands to fix both.
9142        std::swap(LHS, RHS);
9143      case ISD::SETOLT:
9144      case ISD::SETLT:
9145      case ISD::SETLE:
9146        Opcode = X86ISD::FMAX;
9147        break;
9148      }
9149    }
9150
9151    if (Opcode)
9152      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9153  }
9154
9155  // If this is a select between two integer constants, try to do some
9156  // optimizations.
9157  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9158    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9159      // Don't do this for crazy integer types.
9160      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9161        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9162        // so that TrueC (the true value) is larger than FalseC.
9163        bool NeedsCondInvert = false;
9164
9165        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9166            // Efficiently invertible.
9167            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9168             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9169              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9170          NeedsCondInvert = true;
9171          std::swap(TrueC, FalseC);
9172        }
9173
9174        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9175        if (FalseC->getAPIntValue() == 0 &&
9176            TrueC->getAPIntValue().isPowerOf2()) {
9177          if (NeedsCondInvert) // Invert the condition if needed.
9178            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9179                               DAG.getConstant(1, Cond.getValueType()));
9180
9181          // Zero extend the condition if needed.
9182          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9183
9184          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9185          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9186                             DAG.getConstant(ShAmt, MVT::i8));
9187        }
9188
9189        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9190        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9191          if (NeedsCondInvert) // Invert the condition if needed.
9192            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9193                               DAG.getConstant(1, Cond.getValueType()));
9194
9195          // Zero extend the condition if needed.
9196          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9197                             FalseC->getValueType(0), Cond);
9198          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9199                             SDValue(FalseC, 0));
9200        }
9201
9202        // Optimize cases that will turn into an LEA instruction.  This requires
9203        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9204        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9205          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9206          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9207
9208          bool isFastMultiplier = false;
9209          if (Diff < 10) {
9210            switch ((unsigned char)Diff) {
9211              default: break;
9212              case 1:  // result = add base, cond
9213              case 2:  // result = lea base(    , cond*2)
9214              case 3:  // result = lea base(cond, cond*2)
9215              case 4:  // result = lea base(    , cond*4)
9216              case 5:  // result = lea base(cond, cond*4)
9217              case 8:  // result = lea base(    , cond*8)
9218              case 9:  // result = lea base(cond, cond*8)
9219                isFastMultiplier = true;
9220                break;
9221            }
9222          }
9223
9224          if (isFastMultiplier) {
9225            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9226            if (NeedsCondInvert) // Invert the condition if needed.
9227              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9228                                 DAG.getConstant(1, Cond.getValueType()));
9229
9230            // Zero extend the condition if needed.
9231            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9232                               Cond);
9233            // Scale the condition by the difference.
9234            if (Diff != 1)
9235              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9236                                 DAG.getConstant(Diff, Cond.getValueType()));
9237
9238            // Add the base if non-zero.
9239            if (FalseC->getAPIntValue() != 0)
9240              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9241                                 SDValue(FalseC, 0));
9242            return Cond;
9243          }
9244        }
9245      }
9246  }
9247
9248  return SDValue();
9249}
9250
9251/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9252static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9253                                  TargetLowering::DAGCombinerInfo &DCI) {
9254  DebugLoc DL = N->getDebugLoc();
9255
9256  // If the flag operand isn't dead, don't touch this CMOV.
9257  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9258    return SDValue();
9259
9260  // If this is a select between two integer constants, try to do some
9261  // optimizations.  Note that the operands are ordered the opposite of SELECT
9262  // operands.
9263  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9264    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9265      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9266      // larger than FalseC (the false value).
9267      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9268
9269      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9270        CC = X86::GetOppositeBranchCondition(CC);
9271        std::swap(TrueC, FalseC);
9272      }
9273
9274      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9275      // This is efficient for any integer data type (including i8/i16) and
9276      // shift amount.
9277      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9278        SDValue Cond = N->getOperand(3);
9279        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9280                           DAG.getConstant(CC, MVT::i8), Cond);
9281
9282        // Zero extend the condition if needed.
9283        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9284
9285        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9286        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9287                           DAG.getConstant(ShAmt, MVT::i8));
9288        if (N->getNumValues() == 2)  // Dead flag value?
9289          return DCI.CombineTo(N, Cond, SDValue());
9290        return Cond;
9291      }
9292
9293      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9294      // for any integer data type, including i8/i16.
9295      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9296        SDValue Cond = N->getOperand(3);
9297        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9298                           DAG.getConstant(CC, MVT::i8), Cond);
9299
9300        // Zero extend the condition if needed.
9301        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9302                           FalseC->getValueType(0), Cond);
9303        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9304                           SDValue(FalseC, 0));
9305
9306        if (N->getNumValues() == 2)  // Dead flag value?
9307          return DCI.CombineTo(N, Cond, SDValue());
9308        return Cond;
9309      }
9310
9311      // Optimize cases that will turn into an LEA instruction.  This requires
9312      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9313      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9314        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9315        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9316
9317        bool isFastMultiplier = false;
9318        if (Diff < 10) {
9319          switch ((unsigned char)Diff) {
9320          default: break;
9321          case 1:  // result = add base, cond
9322          case 2:  // result = lea base(    , cond*2)
9323          case 3:  // result = lea base(cond, cond*2)
9324          case 4:  // result = lea base(    , cond*4)
9325          case 5:  // result = lea base(cond, cond*4)
9326          case 8:  // result = lea base(    , cond*8)
9327          case 9:  // result = lea base(cond, cond*8)
9328            isFastMultiplier = true;
9329            break;
9330          }
9331        }
9332
9333        if (isFastMultiplier) {
9334          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9335          SDValue Cond = N->getOperand(3);
9336          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9337                             DAG.getConstant(CC, MVT::i8), Cond);
9338          // Zero extend the condition if needed.
9339          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9340                             Cond);
9341          // Scale the condition by the difference.
9342          if (Diff != 1)
9343            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9344                               DAG.getConstant(Diff, Cond.getValueType()));
9345
9346          // Add the base if non-zero.
9347          if (FalseC->getAPIntValue() != 0)
9348            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9349                               SDValue(FalseC, 0));
9350          if (N->getNumValues() == 2)  // Dead flag value?
9351            return DCI.CombineTo(N, Cond, SDValue());
9352          return Cond;
9353        }
9354      }
9355    }
9356  }
9357  return SDValue();
9358}
9359
9360
9361/// PerformMulCombine - Optimize a single multiply with constant into two
9362/// in order to implement it with two cheaper instructions, e.g.
9363/// LEA + SHL, LEA + LEA.
9364static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9365                                 TargetLowering::DAGCombinerInfo &DCI) {
9366  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9367    return SDValue();
9368
9369  EVT VT = N->getValueType(0);
9370  if (VT != MVT::i64)
9371    return SDValue();
9372
9373  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9374  if (!C)
9375    return SDValue();
9376  uint64_t MulAmt = C->getZExtValue();
9377  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9378    return SDValue();
9379
9380  uint64_t MulAmt1 = 0;
9381  uint64_t MulAmt2 = 0;
9382  if ((MulAmt % 9) == 0) {
9383    MulAmt1 = 9;
9384    MulAmt2 = MulAmt / 9;
9385  } else if ((MulAmt % 5) == 0) {
9386    MulAmt1 = 5;
9387    MulAmt2 = MulAmt / 5;
9388  } else if ((MulAmt % 3) == 0) {
9389    MulAmt1 = 3;
9390    MulAmt2 = MulAmt / 3;
9391  }
9392  if (MulAmt2 &&
9393      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9394    DebugLoc DL = N->getDebugLoc();
9395
9396    if (isPowerOf2_64(MulAmt2) &&
9397        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9398      // If second multiplifer is pow2, issue it first. We want the multiply by
9399      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9400      // is an add.
9401      std::swap(MulAmt1, MulAmt2);
9402
9403    SDValue NewMul;
9404    if (isPowerOf2_64(MulAmt1))
9405      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9406                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9407    else
9408      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9409                           DAG.getConstant(MulAmt1, VT));
9410
9411    if (isPowerOf2_64(MulAmt2))
9412      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9413                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9414    else
9415      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9416                           DAG.getConstant(MulAmt2, VT));
9417
9418    // Do not add new nodes to DAG combiner worklist.
9419    DCI.CombineTo(N, NewMul, false);
9420  }
9421  return SDValue();
9422}
9423
9424static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9425  SDValue N0 = N->getOperand(0);
9426  SDValue N1 = N->getOperand(1);
9427  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9428  EVT VT = N0.getValueType();
9429
9430  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9431  // since the result of setcc_c is all zero's or all ones.
9432  if (N1C && N0.getOpcode() == ISD::AND &&
9433      N0.getOperand(1).getOpcode() == ISD::Constant) {
9434    SDValue N00 = N0.getOperand(0);
9435    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9436        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9437          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9438         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9439      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9440      APInt ShAmt = N1C->getAPIntValue();
9441      Mask = Mask.shl(ShAmt);
9442      if (Mask != 0)
9443        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9444                           N00, DAG.getConstant(Mask, VT));
9445    }
9446  }
9447
9448  return SDValue();
9449}
9450
9451/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9452///                       when possible.
9453static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9454                                   const X86Subtarget *Subtarget) {
9455  EVT VT = N->getValueType(0);
9456  if (!VT.isVector() && VT.isInteger() &&
9457      N->getOpcode() == ISD::SHL)
9458    return PerformSHLCombine(N, DAG);
9459
9460  // On X86 with SSE2 support, we can transform this to a vector shift if
9461  // all elements are shifted by the same amount.  We can't do this in legalize
9462  // because the a constant vector is typically transformed to a constant pool
9463  // so we have no knowledge of the shift amount.
9464  if (!Subtarget->hasSSE2())
9465    return SDValue();
9466
9467  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9468    return SDValue();
9469
9470  SDValue ShAmtOp = N->getOperand(1);
9471  EVT EltVT = VT.getVectorElementType();
9472  DebugLoc DL = N->getDebugLoc();
9473  SDValue BaseShAmt = SDValue();
9474  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9475    unsigned NumElts = VT.getVectorNumElements();
9476    unsigned i = 0;
9477    for (; i != NumElts; ++i) {
9478      SDValue Arg = ShAmtOp.getOperand(i);
9479      if (Arg.getOpcode() == ISD::UNDEF) continue;
9480      BaseShAmt = Arg;
9481      break;
9482    }
9483    for (; i != NumElts; ++i) {
9484      SDValue Arg = ShAmtOp.getOperand(i);
9485      if (Arg.getOpcode() == ISD::UNDEF) continue;
9486      if (Arg != BaseShAmt) {
9487        return SDValue();
9488      }
9489    }
9490  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9491             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9492    SDValue InVec = ShAmtOp.getOperand(0);
9493    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9494      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9495      unsigned i = 0;
9496      for (; i != NumElts; ++i) {
9497        SDValue Arg = InVec.getOperand(i);
9498        if (Arg.getOpcode() == ISD::UNDEF) continue;
9499        BaseShAmt = Arg;
9500        break;
9501      }
9502    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9503       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9504         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9505         if (C->getZExtValue() == SplatIdx)
9506           BaseShAmt = InVec.getOperand(1);
9507       }
9508    }
9509    if (BaseShAmt.getNode() == 0)
9510      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9511                              DAG.getIntPtrConstant(0));
9512  } else
9513    return SDValue();
9514
9515  // The shift amount is an i32.
9516  if (EltVT.bitsGT(MVT::i32))
9517    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9518  else if (EltVT.bitsLT(MVT::i32))
9519    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9520
9521  // The shift amount is identical so we can do a vector shift.
9522  SDValue  ValOp = N->getOperand(0);
9523  switch (N->getOpcode()) {
9524  default:
9525    llvm_unreachable("Unknown shift opcode!");
9526    break;
9527  case ISD::SHL:
9528    if (VT == MVT::v2i64)
9529      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9530                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9531                         ValOp, BaseShAmt);
9532    if (VT == MVT::v4i32)
9533      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9534                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9535                         ValOp, BaseShAmt);
9536    if (VT == MVT::v8i16)
9537      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9538                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9539                         ValOp, BaseShAmt);
9540    break;
9541  case ISD::SRA:
9542    if (VT == MVT::v4i32)
9543      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9544                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9545                         ValOp, BaseShAmt);
9546    if (VT == MVT::v8i16)
9547      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9548                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9549                         ValOp, BaseShAmt);
9550    break;
9551  case ISD::SRL:
9552    if (VT == MVT::v2i64)
9553      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9554                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9555                         ValOp, BaseShAmt);
9556    if (VT == MVT::v4i32)
9557      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9558                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9559                         ValOp, BaseShAmt);
9560    if (VT ==  MVT::v8i16)
9561      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9562                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9563                         ValOp, BaseShAmt);
9564    break;
9565  }
9566  return SDValue();
9567}
9568
9569static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9570                                const X86Subtarget *Subtarget) {
9571  EVT VT = N->getValueType(0);
9572  if (VT != MVT::i64 || !Subtarget->is64Bit())
9573    return SDValue();
9574
9575  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9576  SDValue N0 = N->getOperand(0);
9577  SDValue N1 = N->getOperand(1);
9578  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9579    std::swap(N0, N1);
9580  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9581    return SDValue();
9582
9583  SDValue ShAmt0 = N0.getOperand(1);
9584  if (ShAmt0.getValueType() != MVT::i8)
9585    return SDValue();
9586  SDValue ShAmt1 = N1.getOperand(1);
9587  if (ShAmt1.getValueType() != MVT::i8)
9588    return SDValue();
9589  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9590    ShAmt0 = ShAmt0.getOperand(0);
9591  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9592    ShAmt1 = ShAmt1.getOperand(0);
9593
9594  DebugLoc DL = N->getDebugLoc();
9595  unsigned Opc = X86ISD::SHLD;
9596  SDValue Op0 = N0.getOperand(0);
9597  SDValue Op1 = N1.getOperand(0);
9598  if (ShAmt0.getOpcode() == ISD::SUB) {
9599    Opc = X86ISD::SHRD;
9600    std::swap(Op0, Op1);
9601    std::swap(ShAmt0, ShAmt1);
9602  }
9603
9604  if (ShAmt1.getOpcode() == ISD::SUB) {
9605    SDValue Sum = ShAmt1.getOperand(0);
9606    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9607      if (SumC->getSExtValue() == 64 &&
9608          ShAmt1.getOperand(1) == ShAmt0)
9609        return DAG.getNode(Opc, DL, VT,
9610                           Op0, Op1,
9611                           DAG.getNode(ISD::TRUNCATE, DL,
9612                                       MVT::i8, ShAmt0));
9613    }
9614  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9615    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9616    if (ShAmt0C &&
9617        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9618      return DAG.getNode(Opc, DL, VT,
9619                         N0.getOperand(0), N1.getOperand(0),
9620                         DAG.getNode(ISD::TRUNCATE, DL,
9621                                       MVT::i8, ShAmt0));
9622  }
9623
9624  return SDValue();
9625}
9626
9627/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9628static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9629                                   const X86Subtarget *Subtarget) {
9630  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9631  // the FP state in cases where an emms may be missing.
9632  // A preferable solution to the general problem is to figure out the right
9633  // places to insert EMMS.  This qualifies as a quick hack.
9634
9635  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9636  StoreSDNode *St = cast<StoreSDNode>(N);
9637  EVT VT = St->getValue().getValueType();
9638  if (VT.getSizeInBits() != 64)
9639    return SDValue();
9640
9641  const Function *F = DAG.getMachineFunction().getFunction();
9642  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9643  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9644    && Subtarget->hasSSE2();
9645  if ((VT.isVector() ||
9646       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9647      isa<LoadSDNode>(St->getValue()) &&
9648      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9649      St->getChain().hasOneUse() && !St->isVolatile()) {
9650    SDNode* LdVal = St->getValue().getNode();
9651    LoadSDNode *Ld = 0;
9652    int TokenFactorIndex = -1;
9653    SmallVector<SDValue, 8> Ops;
9654    SDNode* ChainVal = St->getChain().getNode();
9655    // Must be a store of a load.  We currently handle two cases:  the load
9656    // is a direct child, and it's under an intervening TokenFactor.  It is
9657    // possible to dig deeper under nested TokenFactors.
9658    if (ChainVal == LdVal)
9659      Ld = cast<LoadSDNode>(St->getChain());
9660    else if (St->getValue().hasOneUse() &&
9661             ChainVal->getOpcode() == ISD::TokenFactor) {
9662      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9663        if (ChainVal->getOperand(i).getNode() == LdVal) {
9664          TokenFactorIndex = i;
9665          Ld = cast<LoadSDNode>(St->getValue());
9666        } else
9667          Ops.push_back(ChainVal->getOperand(i));
9668      }
9669    }
9670
9671    if (!Ld || !ISD::isNormalLoad(Ld))
9672      return SDValue();
9673
9674    // If this is not the MMX case, i.e. we are just turning i64 load/store
9675    // into f64 load/store, avoid the transformation if there are multiple
9676    // uses of the loaded value.
9677    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9678      return SDValue();
9679
9680    DebugLoc LdDL = Ld->getDebugLoc();
9681    DebugLoc StDL = N->getDebugLoc();
9682    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9683    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9684    // pair instead.
9685    if (Subtarget->is64Bit() || F64IsLegal) {
9686      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9687      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9688                                  Ld->getBasePtr(), Ld->getSrcValue(),
9689                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9690                                  Ld->isNonTemporal(), Ld->getAlignment());
9691      SDValue NewChain = NewLd.getValue(1);
9692      if (TokenFactorIndex != -1) {
9693        Ops.push_back(NewChain);
9694        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9695                               Ops.size());
9696      }
9697      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9698                          St->getSrcValue(), St->getSrcValueOffset(),
9699                          St->isVolatile(), St->isNonTemporal(),
9700                          St->getAlignment());
9701    }
9702
9703    // Otherwise, lower to two pairs of 32-bit loads / stores.
9704    SDValue LoAddr = Ld->getBasePtr();
9705    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9706                                 DAG.getConstant(4, MVT::i32));
9707
9708    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9709                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9710                               Ld->isVolatile(), Ld->isNonTemporal(),
9711                               Ld->getAlignment());
9712    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9713                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9714                               Ld->isVolatile(), Ld->isNonTemporal(),
9715                               MinAlign(Ld->getAlignment(), 4));
9716
9717    SDValue NewChain = LoLd.getValue(1);
9718    if (TokenFactorIndex != -1) {
9719      Ops.push_back(LoLd);
9720      Ops.push_back(HiLd);
9721      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9722                             Ops.size());
9723    }
9724
9725    LoAddr = St->getBasePtr();
9726    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9727                         DAG.getConstant(4, MVT::i32));
9728
9729    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9730                                St->getSrcValue(), St->getSrcValueOffset(),
9731                                St->isVolatile(), St->isNonTemporal(),
9732                                St->getAlignment());
9733    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9734                                St->getSrcValue(),
9735                                St->getSrcValueOffset() + 4,
9736                                St->isVolatile(),
9737                                St->isNonTemporal(),
9738                                MinAlign(St->getAlignment(), 4));
9739    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9740  }
9741  return SDValue();
9742}
9743
9744/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9745/// X86ISD::FXOR nodes.
9746static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9747  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9748  // F[X]OR(0.0, x) -> x
9749  // F[X]OR(x, 0.0) -> x
9750  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9751    if (C->getValueAPF().isPosZero())
9752      return N->getOperand(1);
9753  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9754    if (C->getValueAPF().isPosZero())
9755      return N->getOperand(0);
9756  return SDValue();
9757}
9758
9759/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9760static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9761  // FAND(0.0, x) -> 0.0
9762  // FAND(x, 0.0) -> 0.0
9763  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9764    if (C->getValueAPF().isPosZero())
9765      return N->getOperand(0);
9766  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9767    if (C->getValueAPF().isPosZero())
9768      return N->getOperand(1);
9769  return SDValue();
9770}
9771
9772static SDValue PerformBTCombine(SDNode *N,
9773                                SelectionDAG &DAG,
9774                                TargetLowering::DAGCombinerInfo &DCI) {
9775  // BT ignores high bits in the bit index operand.
9776  SDValue Op1 = N->getOperand(1);
9777  if (Op1.hasOneUse()) {
9778    unsigned BitWidth = Op1.getValueSizeInBits();
9779    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9780    APInt KnownZero, KnownOne;
9781    TargetLowering::TargetLoweringOpt TLO(DAG);
9782    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9783    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9784        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9785      DCI.CommitTargetLoweringOpt(TLO);
9786  }
9787  return SDValue();
9788}
9789
9790static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9791  SDValue Op = N->getOperand(0);
9792  if (Op.getOpcode() == ISD::BIT_CONVERT)
9793    Op = Op.getOperand(0);
9794  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9795  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9796      VT.getVectorElementType().getSizeInBits() ==
9797      OpVT.getVectorElementType().getSizeInBits()) {
9798    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9799  }
9800  return SDValue();
9801}
9802
9803// On X86 and X86-64, atomic operations are lowered to locked instructions.
9804// Locked instructions, in turn, have implicit fence semantics (all memory
9805// operations are flushed before issuing the locked instruction, and the
9806// are not buffered), so we can fold away the common pattern of
9807// fence-atomic-fence.
9808static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9809  SDValue atomic = N->getOperand(0);
9810  switch (atomic.getOpcode()) {
9811    case ISD::ATOMIC_CMP_SWAP:
9812    case ISD::ATOMIC_SWAP:
9813    case ISD::ATOMIC_LOAD_ADD:
9814    case ISD::ATOMIC_LOAD_SUB:
9815    case ISD::ATOMIC_LOAD_AND:
9816    case ISD::ATOMIC_LOAD_OR:
9817    case ISD::ATOMIC_LOAD_XOR:
9818    case ISD::ATOMIC_LOAD_NAND:
9819    case ISD::ATOMIC_LOAD_MIN:
9820    case ISD::ATOMIC_LOAD_MAX:
9821    case ISD::ATOMIC_LOAD_UMIN:
9822    case ISD::ATOMIC_LOAD_UMAX:
9823      break;
9824    default:
9825      return SDValue();
9826  }
9827
9828  SDValue fence = atomic.getOperand(0);
9829  if (fence.getOpcode() != ISD::MEMBARRIER)
9830    return SDValue();
9831
9832  switch (atomic.getOpcode()) {
9833    case ISD::ATOMIC_CMP_SWAP:
9834      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9835                                    atomic.getOperand(1), atomic.getOperand(2),
9836                                    atomic.getOperand(3));
9837    case ISD::ATOMIC_SWAP:
9838    case ISD::ATOMIC_LOAD_ADD:
9839    case ISD::ATOMIC_LOAD_SUB:
9840    case ISD::ATOMIC_LOAD_AND:
9841    case ISD::ATOMIC_LOAD_OR:
9842    case ISD::ATOMIC_LOAD_XOR:
9843    case ISD::ATOMIC_LOAD_NAND:
9844    case ISD::ATOMIC_LOAD_MIN:
9845    case ISD::ATOMIC_LOAD_MAX:
9846    case ISD::ATOMIC_LOAD_UMIN:
9847    case ISD::ATOMIC_LOAD_UMAX:
9848      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9849                                    atomic.getOperand(1), atomic.getOperand(2));
9850    default:
9851      return SDValue();
9852  }
9853}
9854
9855static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9856  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9857  //           (and (i32 x86isd::setcc_carry), 1)
9858  // This eliminates the zext. This transformation is necessary because
9859  // ISD::SETCC is always legalized to i8.
9860  DebugLoc dl = N->getDebugLoc();
9861  SDValue N0 = N->getOperand(0);
9862  EVT VT = N->getValueType(0);
9863  if (N0.getOpcode() == ISD::AND &&
9864      N0.hasOneUse() &&
9865      N0.getOperand(0).hasOneUse()) {
9866    SDValue N00 = N0.getOperand(0);
9867    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9868      return SDValue();
9869    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9870    if (!C || C->getZExtValue() != 1)
9871      return SDValue();
9872    return DAG.getNode(ISD::AND, dl, VT,
9873                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9874                                   N00.getOperand(0), N00.getOperand(1)),
9875                       DAG.getConstant(1, VT));
9876  }
9877
9878  return SDValue();
9879}
9880
9881SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9882                                             DAGCombinerInfo &DCI) const {
9883  SelectionDAG &DAG = DCI.DAG;
9884  switch (N->getOpcode()) {
9885  default: break;
9886  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9887  case ISD::EXTRACT_VECTOR_ELT:
9888                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9889  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9890  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9891  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9892  case ISD::SHL:
9893  case ISD::SRA:
9894  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9895  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9896  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9897  case X86ISD::FXOR:
9898  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9899  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9900  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9901  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9902  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9903  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9904  }
9905
9906  return SDValue();
9907}
9908
9909//===----------------------------------------------------------------------===//
9910//                           X86 Inline Assembly Support
9911//===----------------------------------------------------------------------===//
9912
9913static bool LowerToBSwap(CallInst *CI) {
9914  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9915  // we will turn this bswap into something that will be lowered to logical ops
9916  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9917  // so don't worry about this.
9918
9919  // Verify this is a simple bswap.
9920  if (CI->getNumOperands() != 2 ||
9921      CI->getType() != CI->getOperand(1)->getType() ||
9922      !CI->getType()->isIntegerTy())
9923    return false;
9924
9925  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9926  if (!Ty || Ty->getBitWidth() % 16 != 0)
9927    return false;
9928
9929  // Okay, we can do this xform, do so now.
9930  const Type *Tys[] = { Ty };
9931  Module *M = CI->getParent()->getParent()->getParent();
9932  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9933
9934  Value *Op = CI->getOperand(1);
9935  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9936
9937  CI->replaceAllUsesWith(Op);
9938  CI->eraseFromParent();
9939  return true;
9940}
9941
9942bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9943  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9944  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9945
9946  std::string AsmStr = IA->getAsmString();
9947
9948  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9949  SmallVector<StringRef, 4> AsmPieces;
9950  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9951
9952  switch (AsmPieces.size()) {
9953  default: return false;
9954  case 1:
9955    AsmStr = AsmPieces[0];
9956    AsmPieces.clear();
9957    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9958
9959    // bswap $0
9960    if (AsmPieces.size() == 2 &&
9961        (AsmPieces[0] == "bswap" ||
9962         AsmPieces[0] == "bswapq" ||
9963         AsmPieces[0] == "bswapl") &&
9964        (AsmPieces[1] == "$0" ||
9965         AsmPieces[1] == "${0:q}")) {
9966      // No need to check constraints, nothing other than the equivalent of
9967      // "=r,0" would be valid here.
9968      return LowerToBSwap(CI);
9969    }
9970    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9971    if (CI->getType()->isIntegerTy(16) &&
9972        AsmPieces.size() == 3 &&
9973        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
9974        AsmPieces[1] == "$$8," &&
9975        AsmPieces[2] == "${0:w}" &&
9976        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
9977      AsmPieces.clear();
9978      const std::string &Constraints = IA->getConstraintString();
9979      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
9980      std::sort(AsmPieces.begin(), AsmPieces.end());
9981      if (AsmPieces.size() == 4 &&
9982          AsmPieces[0] == "~{cc}" &&
9983          AsmPieces[1] == "~{dirflag}" &&
9984          AsmPieces[2] == "~{flags}" &&
9985          AsmPieces[3] == "~{fpsr}") {
9986        return LowerToBSwap(CI);
9987      }
9988    }
9989    break;
9990  case 3:
9991    if (CI->getType()->isIntegerTy(64) &&
9992        Constraints.size() >= 2 &&
9993        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9994        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9995      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9996      SmallVector<StringRef, 4> Words;
9997      SplitString(AsmPieces[0], Words, " \t");
9998      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9999        Words.clear();
10000        SplitString(AsmPieces[1], Words, " \t");
10001        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10002          Words.clear();
10003          SplitString(AsmPieces[2], Words, " \t,");
10004          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10005              Words[2] == "%edx") {
10006            return LowerToBSwap(CI);
10007          }
10008        }
10009      }
10010    }
10011    break;
10012  }
10013  return false;
10014}
10015
10016
10017
10018/// getConstraintType - Given a constraint letter, return the type of
10019/// constraint it is for this target.
10020X86TargetLowering::ConstraintType
10021X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10022  if (Constraint.size() == 1) {
10023    switch (Constraint[0]) {
10024    case 'A':
10025      return C_Register;
10026    case 'f':
10027    case 'r':
10028    case 'R':
10029    case 'l':
10030    case 'q':
10031    case 'Q':
10032    case 'x':
10033    case 'y':
10034    case 'Y':
10035      return C_RegisterClass;
10036    case 'e':
10037    case 'Z':
10038      return C_Other;
10039    default:
10040      break;
10041    }
10042  }
10043  return TargetLowering::getConstraintType(Constraint);
10044}
10045
10046/// LowerXConstraint - try to replace an X constraint, which matches anything,
10047/// with another that has more specific requirements based on the type of the
10048/// corresponding operand.
10049const char *X86TargetLowering::
10050LowerXConstraint(EVT ConstraintVT) const {
10051  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10052  // 'f' like normal targets.
10053  if (ConstraintVT.isFloatingPoint()) {
10054    if (Subtarget->hasSSE2())
10055      return "Y";
10056    if (Subtarget->hasSSE1())
10057      return "x";
10058  }
10059
10060  return TargetLowering::LowerXConstraint(ConstraintVT);
10061}
10062
10063/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10064/// vector.  If it is invalid, don't add anything to Ops.
10065void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10066                                                     char Constraint,
10067                                                     bool hasMemory,
10068                                                     std::vector<SDValue>&Ops,
10069                                                     SelectionDAG &DAG) const {
10070  SDValue Result(0, 0);
10071
10072  switch (Constraint) {
10073  default: break;
10074  case 'I':
10075    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10076      if (C->getZExtValue() <= 31) {
10077        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10078        break;
10079      }
10080    }
10081    return;
10082  case 'J':
10083    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10084      if (C->getZExtValue() <= 63) {
10085        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10086        break;
10087      }
10088    }
10089    return;
10090  case 'K':
10091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10092      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10093        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10094        break;
10095      }
10096    }
10097    return;
10098  case 'N':
10099    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10100      if (C->getZExtValue() <= 255) {
10101        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10102        break;
10103      }
10104    }
10105    return;
10106  case 'e': {
10107    // 32-bit signed value
10108    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10109      const ConstantInt *CI = C->getConstantIntValue();
10110      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10111                                  C->getSExtValue())) {
10112        // Widen to 64 bits here to get it sign extended.
10113        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10114        break;
10115      }
10116    // FIXME gcc accepts some relocatable values here too, but only in certain
10117    // memory models; it's complicated.
10118    }
10119    return;
10120  }
10121  case 'Z': {
10122    // 32-bit unsigned value
10123    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10124      const ConstantInt *CI = C->getConstantIntValue();
10125      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10126                                  C->getZExtValue())) {
10127        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10128        break;
10129      }
10130    }
10131    // FIXME gcc accepts some relocatable values here too, but only in certain
10132    // memory models; it's complicated.
10133    return;
10134  }
10135  case 'i': {
10136    // Literal immediates are always ok.
10137    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10138      // Widen to 64 bits here to get it sign extended.
10139      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10140      break;
10141    }
10142
10143    // If we are in non-pic codegen mode, we allow the address of a global (with
10144    // an optional displacement) to be used with 'i'.
10145    GlobalAddressSDNode *GA = 0;
10146    int64_t Offset = 0;
10147
10148    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10149    while (1) {
10150      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10151        Offset += GA->getOffset();
10152        break;
10153      } else if (Op.getOpcode() == ISD::ADD) {
10154        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10155          Offset += C->getZExtValue();
10156          Op = Op.getOperand(0);
10157          continue;
10158        }
10159      } else if (Op.getOpcode() == ISD::SUB) {
10160        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10161          Offset += -C->getZExtValue();
10162          Op = Op.getOperand(0);
10163          continue;
10164        }
10165      }
10166
10167      // Otherwise, this isn't something we can handle, reject it.
10168      return;
10169    }
10170
10171    const GlobalValue *GV = GA->getGlobal();
10172    // If we require an extra load to get this address, as in PIC mode, we
10173    // can't accept it.
10174    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10175                                                        getTargetMachine())))
10176      return;
10177
10178    if (hasMemory)
10179      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10180    else
10181      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10182    Result = Op;
10183    break;
10184  }
10185  }
10186
10187  if (Result.getNode()) {
10188    Ops.push_back(Result);
10189    return;
10190  }
10191  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10192                                                      Ops, DAG);
10193}
10194
10195std::vector<unsigned> X86TargetLowering::
10196getRegClassForInlineAsmConstraint(const std::string &Constraint,
10197                                  EVT VT) const {
10198  if (Constraint.size() == 1) {
10199    // FIXME: not handling fp-stack yet!
10200    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10201    default: break;  // Unknown constraint letter
10202    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10203      if (Subtarget->is64Bit()) {
10204        if (VT == MVT::i32)
10205          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10206                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10207                                       X86::R10D,X86::R11D,X86::R12D,
10208                                       X86::R13D,X86::R14D,X86::R15D,
10209                                       X86::EBP, X86::ESP, 0);
10210        else if (VT == MVT::i16)
10211          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10212                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10213                                       X86::R10W,X86::R11W,X86::R12W,
10214                                       X86::R13W,X86::R14W,X86::R15W,
10215                                       X86::BP,  X86::SP, 0);
10216        else if (VT == MVT::i8)
10217          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10218                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10219                                       X86::R10B,X86::R11B,X86::R12B,
10220                                       X86::R13B,X86::R14B,X86::R15B,
10221                                       X86::BPL, X86::SPL, 0);
10222
10223        else if (VT == MVT::i64)
10224          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10225                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10226                                       X86::R10, X86::R11, X86::R12,
10227                                       X86::R13, X86::R14, X86::R15,
10228                                       X86::RBP, X86::RSP, 0);
10229
10230        break;
10231      }
10232      // 32-bit fallthrough
10233    case 'Q':   // Q_REGS
10234      if (VT == MVT::i32)
10235        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10236      else if (VT == MVT::i16)
10237        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10238      else if (VT == MVT::i8)
10239        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10240      else if (VT == MVT::i64)
10241        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10242      break;
10243    }
10244  }
10245
10246  return std::vector<unsigned>();
10247}
10248
10249std::pair<unsigned, const TargetRegisterClass*>
10250X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10251                                                EVT VT) const {
10252  // First, see if this is a constraint that directly corresponds to an LLVM
10253  // register class.
10254  if (Constraint.size() == 1) {
10255    // GCC Constraint Letters
10256    switch (Constraint[0]) {
10257    default: break;
10258    case 'r':   // GENERAL_REGS
10259    case 'l':   // INDEX_REGS
10260      if (VT == MVT::i8)
10261        return std::make_pair(0U, X86::GR8RegisterClass);
10262      if (VT == MVT::i16)
10263        return std::make_pair(0U, X86::GR16RegisterClass);
10264      if (VT == MVT::i32 || !Subtarget->is64Bit())
10265        return std::make_pair(0U, X86::GR32RegisterClass);
10266      return std::make_pair(0U, X86::GR64RegisterClass);
10267    case 'R':   // LEGACY_REGS
10268      if (VT == MVT::i8)
10269        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10270      if (VT == MVT::i16)
10271        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10272      if (VT == MVT::i32 || !Subtarget->is64Bit())
10273        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10274      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10275    case 'f':  // FP Stack registers.
10276      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10277      // value to the correct fpstack register class.
10278      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10279        return std::make_pair(0U, X86::RFP32RegisterClass);
10280      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10281        return std::make_pair(0U, X86::RFP64RegisterClass);
10282      return std::make_pair(0U, X86::RFP80RegisterClass);
10283    case 'y':   // MMX_REGS if MMX allowed.
10284      if (!Subtarget->hasMMX()) break;
10285      return std::make_pair(0U, X86::VR64RegisterClass);
10286    case 'Y':   // SSE_REGS if SSE2 allowed
10287      if (!Subtarget->hasSSE2()) break;
10288      // FALL THROUGH.
10289    case 'x':   // SSE_REGS if SSE1 allowed
10290      if (!Subtarget->hasSSE1()) break;
10291
10292      switch (VT.getSimpleVT().SimpleTy) {
10293      default: break;
10294      // Scalar SSE types.
10295      case MVT::f32:
10296      case MVT::i32:
10297        return std::make_pair(0U, X86::FR32RegisterClass);
10298      case MVT::f64:
10299      case MVT::i64:
10300        return std::make_pair(0U, X86::FR64RegisterClass);
10301      // Vector types.
10302      case MVT::v16i8:
10303      case MVT::v8i16:
10304      case MVT::v4i32:
10305      case MVT::v2i64:
10306      case MVT::v4f32:
10307      case MVT::v2f64:
10308        return std::make_pair(0U, X86::VR128RegisterClass);
10309      }
10310      break;
10311    }
10312  }
10313
10314  // Use the default implementation in TargetLowering to convert the register
10315  // constraint into a member of a register class.
10316  std::pair<unsigned, const TargetRegisterClass*> Res;
10317  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10318
10319  // Not found as a standard register?
10320  if (Res.second == 0) {
10321    // Map st(0) -> st(7) -> ST0
10322    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10323        tolower(Constraint[1]) == 's' &&
10324        tolower(Constraint[2]) == 't' &&
10325        Constraint[3] == '(' &&
10326        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10327        Constraint[5] == ')' &&
10328        Constraint[6] == '}') {
10329
10330      Res.first = X86::ST0+Constraint[4]-'0';
10331      Res.second = X86::RFP80RegisterClass;
10332      return Res;
10333    }
10334
10335    // GCC allows "st(0)" to be called just plain "st".
10336    if (StringRef("{st}").equals_lower(Constraint)) {
10337      Res.first = X86::ST0;
10338      Res.second = X86::RFP80RegisterClass;
10339      return Res;
10340    }
10341
10342    // flags -> EFLAGS
10343    if (StringRef("{flags}").equals_lower(Constraint)) {
10344      Res.first = X86::EFLAGS;
10345      Res.second = X86::CCRRegisterClass;
10346      return Res;
10347    }
10348
10349    // 'A' means EAX + EDX.
10350    if (Constraint == "A") {
10351      Res.first = X86::EAX;
10352      Res.second = X86::GR32_ADRegisterClass;
10353      return Res;
10354    }
10355    return Res;
10356  }
10357
10358  // Otherwise, check to see if this is a register class of the wrong value
10359  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10360  // turn into {ax},{dx}.
10361  if (Res.second->hasType(VT))
10362    return Res;   // Correct type already, nothing to do.
10363
10364  // All of the single-register GCC register classes map their values onto
10365  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10366  // really want an 8-bit or 32-bit register, map to the appropriate register
10367  // class and return the appropriate register.
10368  if (Res.second == X86::GR16RegisterClass) {
10369    if (VT == MVT::i8) {
10370      unsigned DestReg = 0;
10371      switch (Res.first) {
10372      default: break;
10373      case X86::AX: DestReg = X86::AL; break;
10374      case X86::DX: DestReg = X86::DL; break;
10375      case X86::CX: DestReg = X86::CL; break;
10376      case X86::BX: DestReg = X86::BL; break;
10377      }
10378      if (DestReg) {
10379        Res.first = DestReg;
10380        Res.second = X86::GR8RegisterClass;
10381      }
10382    } else if (VT == MVT::i32) {
10383      unsigned DestReg = 0;
10384      switch (Res.first) {
10385      default: break;
10386      case X86::AX: DestReg = X86::EAX; break;
10387      case X86::DX: DestReg = X86::EDX; break;
10388      case X86::CX: DestReg = X86::ECX; break;
10389      case X86::BX: DestReg = X86::EBX; break;
10390      case X86::SI: DestReg = X86::ESI; break;
10391      case X86::DI: DestReg = X86::EDI; break;
10392      case X86::BP: DestReg = X86::EBP; break;
10393      case X86::SP: DestReg = X86::ESP; break;
10394      }
10395      if (DestReg) {
10396        Res.first = DestReg;
10397        Res.second = X86::GR32RegisterClass;
10398      }
10399    } else if (VT == MVT::i64) {
10400      unsigned DestReg = 0;
10401      switch (Res.first) {
10402      default: break;
10403      case X86::AX: DestReg = X86::RAX; break;
10404      case X86::DX: DestReg = X86::RDX; break;
10405      case X86::CX: DestReg = X86::RCX; break;
10406      case X86::BX: DestReg = X86::RBX; break;
10407      case X86::SI: DestReg = X86::RSI; break;
10408      case X86::DI: DestReg = X86::RDI; break;
10409      case X86::BP: DestReg = X86::RBP; break;
10410      case X86::SP: DestReg = X86::RSP; break;
10411      }
10412      if (DestReg) {
10413        Res.first = DestReg;
10414        Res.second = X86::GR64RegisterClass;
10415      }
10416    }
10417  } else if (Res.second == X86::FR32RegisterClass ||
10418             Res.second == X86::FR64RegisterClass ||
10419             Res.second == X86::VR128RegisterClass) {
10420    // Handle references to XMM physical registers that got mapped into the
10421    // wrong class.  This can happen with constraints like {xmm0} where the
10422    // target independent register mapper will just pick the first match it can
10423    // find, ignoring the required type.
10424    if (VT == MVT::f32)
10425      Res.second = X86::FR32RegisterClass;
10426    else if (VT == MVT::f64)
10427      Res.second = X86::FR64RegisterClass;
10428    else if (X86::VR128RegisterClass->hasType(VT))
10429      Res.second = X86::VR128RegisterClass;
10430  }
10431
10432  return Res;
10433}
10434