X86ISelLowering.cpp revision 60ef6c9295844038406c6083b67ea24b3646f2dd
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  // If the input is a buildvector just emit a smaller one.
89  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
90    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
91                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
92
93  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
94  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
95                               VecIdx);
96
97  return Result;
98}
99
100/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
101/// sets things up to match to an AVX VINSERTF128 instruction or a
102/// simple superregister reference.  Idx is an index in the 128 bits
103/// we want.  It need not be aligned to a 128-bit bounday.  That makes
104/// lowering INSERT_VECTOR_ELT operations easier.
105static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
106                                  unsigned IdxVal, SelectionDAG &DAG,
107                                  DebugLoc dl) {
108  // Inserting UNDEF is Result
109  if (Vec.getOpcode() == ISD::UNDEF)
110    return Result;
111
112  EVT VT = Vec.getValueType();
113  assert(VT.is128BitVector() && "Unexpected vector size!");
114
115  EVT ElVT = VT.getVectorElementType();
116  EVT ResultVT = Result.getValueType();
117
118  // Insert the relevant 128 bits.
119  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
120
121  // This is the index of the first element of the 128-bit chunk
122  // we want.
123  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
124                               * ElemsPerChunk);
125
126  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
127  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
128                     VecIdx);
129}
130
131/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
132/// instructions. This is used because creating CONCAT_VECTOR nodes of
133/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
134/// large BUILD_VECTORS.
135static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
136                                   unsigned NumElems, SelectionDAG &DAG,
137                                   DebugLoc dl) {
138  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
139  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
140}
141
142static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
143  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
144  bool is64Bit = Subtarget->is64Bit();
145
146  if (Subtarget->isTargetEnvMacho()) {
147    if (is64Bit)
148      return new X86_64MachoTargetObjectFile();
149    return new TargetLoweringObjectFileMachO();
150  }
151
152  if (Subtarget->isTargetLinux())
153    return new X86LinuxTargetObjectFile();
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166  RegInfo = TM.getRegisterInfo();
167  TD = getDataLayout();
168
169  resetOperationActions();
170}
171
172void X86TargetLowering::resetOperationActions() {
173  const TargetMachine &TM = getTargetMachine();
174  static bool FirstTimeThrough = true;
175
176  // If none of the target options have changed, then we don't need to reset the
177  // operation actions.
178  if (!FirstTimeThrough && TO == TM.Options) return;
179
180  if (!FirstTimeThrough) {
181    // Reinitialize the actions.
182    initActions();
183    FirstTimeThrough = false;
184  }
185
186  TO = TM.Options;
187
188  // Set up the TargetLowering object.
189  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
190
191  // X86 is weird, it always uses i8 for shift amounts and setcc results.
192  setBooleanContents(ZeroOrOneBooleanContent);
193  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
194  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
195
196  // For 64-bit since we have so many registers use the ILP scheduler, for
197  // 32-bit code use the register pressure specific scheduling.
198  // For Atom, always use ILP scheduling.
199  if (Subtarget->isAtom())
200    setSchedulingPreference(Sched::ILP);
201  else if (Subtarget->is64Bit())
202    setSchedulingPreference(Sched::ILP);
203  else
204    setSchedulingPreference(Sched::RegPressure);
205  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
206
207  // Bypass expensive divides on Atom when compiling with O2
208  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
209    addBypassSlowDiv(32, 8);
210    if (Subtarget->is64Bit())
211      addBypassSlowDiv(64, 16);
212  }
213
214  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
215    // Setup Windows compiler runtime calls.
216    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
217    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
218    setLibcallName(RTLIB::SREM_I64, "_allrem");
219    setLibcallName(RTLIB::UREM_I64, "_aullrem");
220    setLibcallName(RTLIB::MUL_I64, "_allmul");
221    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
222    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
223    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
224    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
225    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
226
227    // The _ftol2 runtime function has an unusual calling conv, which
228    // is modeled by a special pseudo-instruction.
229    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
230    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
231    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
232    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
233  }
234
235  if (Subtarget->isTargetDarwin()) {
236    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
237    setUseUnderscoreSetJmp(false);
238    setUseUnderscoreLongJmp(false);
239  } else if (Subtarget->isTargetMingw()) {
240    // MS runtime is weird: it exports _setjmp, but longjmp!
241    setUseUnderscoreSetJmp(true);
242    setUseUnderscoreLongJmp(false);
243  } else {
244    setUseUnderscoreSetJmp(true);
245    setUseUnderscoreLongJmp(true);
246  }
247
248  // Set up the register classes.
249  addRegisterClass(MVT::i8, &X86::GR8RegClass);
250  addRegisterClass(MVT::i16, &X86::GR16RegClass);
251  addRegisterClass(MVT::i32, &X86::GR32RegClass);
252  if (Subtarget->is64Bit())
253    addRegisterClass(MVT::i64, &X86::GR64RegClass);
254
255  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
256
257  // We don't accept any truncstore of integer registers.
258  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
259  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
260  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
261  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
262  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
263  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
264
265  // SETOEQ and SETUNE require checking two conditions.
266  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
267  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
268  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
269  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
272
273  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
274  // operation.
275  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
276  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
277  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
278
279  if (Subtarget->is64Bit()) {
280    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
281    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
282  } else if (!TM.Options.UseSoftFloat) {
283    // We have an algorithm for SSE2->double, and we turn this into a
284    // 64-bit FILD followed by conditional FADD for other targets.
285    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
286    // We have an algorithm for SSE2, and we turn this into a 64-bit
287    // FILD for other targets.
288    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
289  }
290
291  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
294  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
295
296  if (!TM.Options.UseSoftFloat) {
297    // SSE has no i16 to fp conversion, only i32
298    if (X86ScalarSSEf32) {
299      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
300      // f32 and f64 cases are Legal, f80 case is not
301      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
302    } else {
303      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
304      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
305    }
306  } else {
307    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
308    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
309  }
310
311  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
312  // are Legal, f80 is custom lowered.
313  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
314  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
315
316  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
317  // this operation.
318  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
319  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
320
321  if (X86ScalarSSEf32) {
322    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
323    // f32 and f64 cases are Legal, f80 case is not
324    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
325  } else {
326    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
327    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
328  }
329
330  // Handle FP_TO_UINT by promoting the destination to a larger signed
331  // conversion.
332  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
333  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
334  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
335
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
338    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
339  } else if (!TM.Options.UseSoftFloat) {
340    // Since AVX is a superset of SSE3, only check for SSE here.
341    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
342      // Expand FP_TO_UINT into a select.
343      // FIXME: We would like to use a Custom expander here eventually to do
344      // the optimal thing for SSE vs. the default expansion in the legalizer.
345      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
346    else
347      // With SSE3 we can use fisttpll to convert to a signed i64; without
348      // SSE, we're stuck with a fistpll.
349      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
350  }
351
352  if (isTargetFTOL()) {
353    // Use the _ftol2 runtime function, which has a pseudo-instruction
354    // to handle its weird calling convention.
355    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
356  }
357
358  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
359  if (!X86ScalarSSEf64) {
360    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
361    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
362    if (Subtarget->is64Bit()) {
363      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
364      // Without SSE, i64->f64 goes through memory.
365      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
366    }
367  }
368
369  // Scalar integer divide and remainder are lowered to use operations that
370  // produce two results, to match the available instructions. This exposes
371  // the two-result form to trivial CSE, which is able to combine x/y and x%y
372  // into a single instruction.
373  //
374  // Scalar integer multiply-high is also lowered to use two-result
375  // operations, to match the available instructions. However, plain multiply
376  // (low) operations are left as Legal, as there are single-result
377  // instructions for this in x86. Using the two-result multiply instructions
378  // when both high and low results are needed must be arranged by dagcombine.
379  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
380    MVT VT = IntVTs[i];
381    setOperationAction(ISD::MULHS, VT, Expand);
382    setOperationAction(ISD::MULHU, VT, Expand);
383    setOperationAction(ISD::SDIV, VT, Expand);
384    setOperationAction(ISD::UDIV, VT, Expand);
385    setOperationAction(ISD::SREM, VT, Expand);
386    setOperationAction(ISD::UREM, VT, Expand);
387
388    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
389    setOperationAction(ISD::ADDC, VT, Custom);
390    setOperationAction(ISD::ADDE, VT, Custom);
391    setOperationAction(ISD::SUBC, VT, Custom);
392    setOperationAction(ISD::SUBE, VT, Custom);
393  }
394
395  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
396  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
397  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
398  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
399  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
400  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
401  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
402  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
403  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
404  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
405  if (Subtarget->is64Bit())
406    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
408  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
409  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
410  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
411  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
412  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
413  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
414  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
415
416  // Promote the i8 variants and force them on up to i32 which has a shorter
417  // encoding.
418  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
419  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
420  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
421  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
422  if (Subtarget->hasBMI()) {
423    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
424    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
425    if (Subtarget->is64Bit())
426      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
427  } else {
428    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
429    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
430    if (Subtarget->is64Bit())
431      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
432  }
433
434  if (Subtarget->hasLZCNT()) {
435    // When promoting the i8 variants, force them to i32 for a shorter
436    // encoding.
437    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
438    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
439    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
440    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
441    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
442    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
443    if (Subtarget->is64Bit())
444      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
445  } else {
446    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
447    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
448    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
449    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
450    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
451    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
452    if (Subtarget->is64Bit()) {
453      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
454      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
455    }
456  }
457
458  if (Subtarget->hasPOPCNT()) {
459    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
460  } else {
461    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
462    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
463    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
464    if (Subtarget->is64Bit())
465      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
466  }
467
468  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
469  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
470
471  // These should be promoted to a larger select which is supported.
472  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
473  // X86 wants to expand cmov itself.
474  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
475  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
476  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
477  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
478  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
479  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
480  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
481  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
482  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
483  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
484  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
485  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
486  if (Subtarget->is64Bit()) {
487    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
488    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
489  }
490  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
491  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
492  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
493  // support continuation, user-level threading, and etc.. As a result, no
494  // other SjLj exception interfaces are implemented and please don't build
495  // your own exception handling based on them.
496  // LLVM/Clang supports zero-cost DWARF exception handling.
497  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
498  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
499
500  // Darwin ABI issue.
501  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
502  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
503  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
504  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
505  if (Subtarget->is64Bit())
506    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
507  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
508  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
509  if (Subtarget->is64Bit()) {
510    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
511    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
512    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
513    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
514    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
515  }
516  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
517  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
518  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
519  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
520  if (Subtarget->is64Bit()) {
521    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
522    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
523    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
524  }
525
526  if (Subtarget->hasSSE1())
527    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
528
529  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
530
531  // Expand certain atomics
532  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
533    MVT VT = IntVTs[i];
534    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
535    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
536    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
537  }
538
539  if (!Subtarget->is64Bit()) {
540    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
541    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
542    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
543    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
544    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
545    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
546    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
547    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
548    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
549    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
550    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
551    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
552  }
553
554  if (Subtarget->hasCmpxchg16b()) {
555    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
556  }
557
558  // FIXME - use subtarget debug flags
559  if (!Subtarget->isTargetDarwin() &&
560      !Subtarget->isTargetELF() &&
561      !Subtarget->isTargetCygMing()) {
562    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
563  }
564
565  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
566  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
567  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
568  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
569  if (Subtarget->is64Bit()) {
570    setExceptionPointerRegister(X86::RAX);
571    setExceptionSelectorRegister(X86::RDX);
572  } else {
573    setExceptionPointerRegister(X86::EAX);
574    setExceptionSelectorRegister(X86::EDX);
575  }
576  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
577  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
578
579  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
580  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
581
582  setOperationAction(ISD::TRAP, MVT::Other, Legal);
583  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
584
585  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
586  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
587  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
588  if (Subtarget->is64Bit()) {
589    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
590    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
591  } else {
592    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
593    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
594  }
595
596  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
597  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
598
599  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
600    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
601                       MVT::i64 : MVT::i32, Custom);
602  else if (TM.Options.EnableSegmentedStacks)
603    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
604                       MVT::i64 : MVT::i32, Custom);
605  else
606    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
607                       MVT::i64 : MVT::i32, Expand);
608
609  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
610    // f32 and f64 use SSE.
611    // Set up the FP register classes.
612    addRegisterClass(MVT::f32, &X86::FR32RegClass);
613    addRegisterClass(MVT::f64, &X86::FR64RegClass);
614
615    // Use ANDPD to simulate FABS.
616    setOperationAction(ISD::FABS , MVT::f64, Custom);
617    setOperationAction(ISD::FABS , MVT::f32, Custom);
618
619    // Use XORP to simulate FNEG.
620    setOperationAction(ISD::FNEG , MVT::f64, Custom);
621    setOperationAction(ISD::FNEG , MVT::f32, Custom);
622
623    // Use ANDPD and ORPD to simulate FCOPYSIGN.
624    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
625    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
626
627    // Lower this to FGETSIGNx86 plus an AND.
628    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
629    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
630
631    // We don't support sin/cos/fmod
632    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
633    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
634    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
635    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
636    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
637    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
638
639    // Expand FP immediates into loads from the stack, except for the special
640    // cases we handle.
641    addLegalFPImmediate(APFloat(+0.0)); // xorpd
642    addLegalFPImmediate(APFloat(+0.0f)); // xorps
643  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
644    // Use SSE for f32, x87 for f64.
645    // Set up the FP register classes.
646    addRegisterClass(MVT::f32, &X86::FR32RegClass);
647    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
648
649    // Use ANDPS to simulate FABS.
650    setOperationAction(ISD::FABS , MVT::f32, Custom);
651
652    // Use XORP to simulate FNEG.
653    setOperationAction(ISD::FNEG , MVT::f32, Custom);
654
655    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
656
657    // Use ANDPS and ORPS to simulate FCOPYSIGN.
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
660
661    // We don't support sin/cos/fmod
662    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
663    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
664    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
665
666    // Special cases we handle for FP constants.
667    addLegalFPImmediate(APFloat(+0.0f)); // xorps
668    addLegalFPImmediate(APFloat(+0.0)); // FLD0
669    addLegalFPImmediate(APFloat(+1.0)); // FLD1
670    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
671    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
672
673    if (!TM.Options.UnsafeFPMath) {
674      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
675      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
676      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
677    }
678  } else if (!TM.Options.UseSoftFloat) {
679    // f32 and f64 in x87.
680    // Set up the FP register classes.
681    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
682    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
683
684    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
685    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
686    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
687    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
688
689    if (!TM.Options.UnsafeFPMath) {
690      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
691      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
692      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
693      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
694      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
695      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
696    }
697    addLegalFPImmediate(APFloat(+0.0)); // FLD0
698    addLegalFPImmediate(APFloat(+1.0)); // FLD1
699    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
700    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
701    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
702    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
703    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
704    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
705  }
706
707  // We don't support FMA.
708  setOperationAction(ISD::FMA, MVT::f64, Expand);
709  setOperationAction(ISD::FMA, MVT::f32, Expand);
710
711  // Long double always uses X87.
712  if (!TM.Options.UseSoftFloat) {
713    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
714    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
715    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
716    {
717      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
718      addLegalFPImmediate(TmpFlt);  // FLD0
719      TmpFlt.changeSign();
720      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
721
722      bool ignored;
723      APFloat TmpFlt2(+1.0);
724      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
725                      &ignored);
726      addLegalFPImmediate(TmpFlt2);  // FLD1
727      TmpFlt2.changeSign();
728      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
729    }
730
731    if (!TM.Options.UnsafeFPMath) {
732      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
733      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
734      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
735    }
736
737    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
738    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
739    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
740    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
741    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
742    setOperationAction(ISD::FMA, MVT::f80, Expand);
743  }
744
745  // Always use a library call for pow.
746  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
747  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
748  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
749
750  setOperationAction(ISD::FLOG, MVT::f80, Expand);
751  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
752  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
753  setOperationAction(ISD::FEXP, MVT::f80, Expand);
754  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
755
756  // First set operation action for all vector types to either promote
757  // (for widening) or expand (for scalarization). Then we will selectively
758  // turn on ones that can be effectively codegen'd.
759  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
760           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
761    MVT VT = (MVT::SimpleValueType)i;
762    setOperationAction(ISD::ADD , VT, Expand);
763    setOperationAction(ISD::SUB , VT, Expand);
764    setOperationAction(ISD::FADD, VT, Expand);
765    setOperationAction(ISD::FNEG, VT, Expand);
766    setOperationAction(ISD::FSUB, VT, Expand);
767    setOperationAction(ISD::MUL , VT, Expand);
768    setOperationAction(ISD::FMUL, VT, Expand);
769    setOperationAction(ISD::SDIV, VT, Expand);
770    setOperationAction(ISD::UDIV, VT, Expand);
771    setOperationAction(ISD::FDIV, VT, Expand);
772    setOperationAction(ISD::SREM, VT, Expand);
773    setOperationAction(ISD::UREM, VT, Expand);
774    setOperationAction(ISD::LOAD, VT, Expand);
775    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
776    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
777    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
778    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
779    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
780    setOperationAction(ISD::FABS, VT, Expand);
781    setOperationAction(ISD::FSIN, VT, Expand);
782    setOperationAction(ISD::FSINCOS, VT, Expand);
783    setOperationAction(ISD::FCOS, VT, Expand);
784    setOperationAction(ISD::FSINCOS, VT, Expand);
785    setOperationAction(ISD::FREM, VT, Expand);
786    setOperationAction(ISD::FMA,  VT, Expand);
787    setOperationAction(ISD::FPOWI, VT, Expand);
788    setOperationAction(ISD::FSQRT, VT, Expand);
789    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
790    setOperationAction(ISD::FFLOOR, VT, Expand);
791    setOperationAction(ISD::FCEIL, VT, Expand);
792    setOperationAction(ISD::FTRUNC, VT, Expand);
793    setOperationAction(ISD::FRINT, VT, Expand);
794    setOperationAction(ISD::FNEARBYINT, VT, Expand);
795    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
796    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
797    setOperationAction(ISD::SDIVREM, VT, Expand);
798    setOperationAction(ISD::UDIVREM, VT, Expand);
799    setOperationAction(ISD::FPOW, VT, Expand);
800    setOperationAction(ISD::CTPOP, VT, Expand);
801    setOperationAction(ISD::CTTZ, VT, Expand);
802    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
803    setOperationAction(ISD::CTLZ, VT, Expand);
804    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
805    setOperationAction(ISD::SHL, VT, Expand);
806    setOperationAction(ISD::SRA, VT, Expand);
807    setOperationAction(ISD::SRL, VT, Expand);
808    setOperationAction(ISD::ROTL, VT, Expand);
809    setOperationAction(ISD::ROTR, VT, Expand);
810    setOperationAction(ISD::BSWAP, VT, Expand);
811    setOperationAction(ISD::SETCC, VT, Expand);
812    setOperationAction(ISD::FLOG, VT, Expand);
813    setOperationAction(ISD::FLOG2, VT, Expand);
814    setOperationAction(ISD::FLOG10, VT, Expand);
815    setOperationAction(ISD::FEXP, VT, Expand);
816    setOperationAction(ISD::FEXP2, VT, Expand);
817    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
818    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
819    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
820    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
821    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
822    setOperationAction(ISD::TRUNCATE, VT, Expand);
823    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
824    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
825    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
826    setOperationAction(ISD::VSELECT, VT, Expand);
827    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
828             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
829      setTruncStoreAction(VT,
830                          (MVT::SimpleValueType)InnerVT, Expand);
831    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
832    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
833    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
834  }
835
836  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
837  // with -msoft-float, disable use of MMX as well.
838  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
839    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
840    // No operations on x86mmx supported, everything uses intrinsics.
841  }
842
843  // MMX-sized vectors (other than x86mmx) are expected to be expanded
844  // into smaller operations.
845  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
846  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
847  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
848  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
849  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
850  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
851  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
852  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
853  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
854  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
855  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
856  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
857  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
858  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
859  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
860  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
861  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
862  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
863  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
864  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
865  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
866  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
867  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
868  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
869  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
870  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
871  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
872  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
873  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
874
875  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
876    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
877
878    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
879    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
880    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
881    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
882    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
883    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
884    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
885    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
887    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
888    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
889    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
890  }
891
892  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
893    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
894
895    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
896    // registers cannot be used even for integer operations.
897    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
898    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
899    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
900    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
901
902    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
903    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
904    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
905    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
906    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
907    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
908    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
909    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
910    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
911    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
912    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
913    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
914    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
915    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
916    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
917    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
918    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
919    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
920
921    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
922    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
923    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
924    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
925
926    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
927    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
928    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
929    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
930    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
931
932    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
933    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
934      MVT VT = (MVT::SimpleValueType)i;
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938      // Do not attempt to custom lower non-128-bit vectors
939      if (!VT.is128BitVector())
940        continue;
941      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
942      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
943      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
944    }
945
946    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
947    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
948    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
949    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
950    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
951    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
952
953    if (Subtarget->is64Bit()) {
954      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
955      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
956    }
957
958    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
959    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
960      MVT VT = (MVT::SimpleValueType)i;
961
962      // Do not attempt to promote non-128-bit vectors
963      if (!VT.is128BitVector())
964        continue;
965
966      setOperationAction(ISD::AND,    VT, Promote);
967      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
968      setOperationAction(ISD::OR,     VT, Promote);
969      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
970      setOperationAction(ISD::XOR,    VT, Promote);
971      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
972      setOperationAction(ISD::LOAD,   VT, Promote);
973      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
974      setOperationAction(ISD::SELECT, VT, Promote);
975      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
976    }
977
978    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
979
980    // Custom lower v2i64 and v2f64 selects.
981    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
982    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
983    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
984    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
985
986    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
987    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
988
989    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
990    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
991    // As there is no 64-bit GPR available, we need build a special custom
992    // sequence to convert from v2i32 to v2f32.
993    if (!Subtarget->is64Bit())
994      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
995
996    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
997    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
998
999    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1000  }
1001
1002  if (Subtarget->hasSSE41()) {
1003    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1004    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1005    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1006    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1007    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1008    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1009    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1010    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1011    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1012    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1013
1014    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1015    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1016    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1017    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1018    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1019    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1020    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1021    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1022    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1023    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1024
1025    // FIXME: Do we need to handle scalar-to-vector here?
1026    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1027
1028    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1029    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1030    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1031    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1032    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1033
1034    // i8 and i16 vectors are custom , because the source register and source
1035    // source memory operand types are not the same width.  f32 vectors are
1036    // custom since the immediate controlling the insert encodes additional
1037    // information.
1038    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1039    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1040    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1041    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1042
1043    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1044    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1045    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1046    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1047
1048    // FIXME: these should be Legal but thats only for the case where
1049    // the index is constant.  For now custom expand to deal with that.
1050    if (Subtarget->is64Bit()) {
1051      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1052      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1053    }
1054  }
1055
1056  if (Subtarget->hasSSE2()) {
1057    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1058    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1059
1060    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1061    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1062
1063    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1064    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1065
1066    // In the customized shift lowering, the legal cases in AVX2 will be
1067    // recognized.
1068    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1069    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1070
1071    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1072    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1073
1074    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1075
1076    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1077    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1078  }
1079
1080  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1081    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1082    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1083    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1084    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1085    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1086    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1087
1088    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1089    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1090    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1091
1092    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1093    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1094    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1095    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1096    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1097    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1098    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1099    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1100    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1101    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1102    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1103    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1104
1105    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1106    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1107    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1108    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1109    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1110    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1111    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1112    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1113    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1114    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1115    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1116    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1117
1118    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1119    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1120
1121    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1122
1123    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1124    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1125    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1126    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1127
1128    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1129    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1130    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1131
1132    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1133
1134    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1135    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1136
1137    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1138    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1139
1140    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1141    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1142
1143    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1144
1145    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1146    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1147    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1148    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1149
1150    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1151    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1152    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1153
1154    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1155    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1156    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1157    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1158
1159    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1160    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1161    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1162    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1163    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1164    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1165
1166    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1167      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1168      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1169      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1170      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1171      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1172      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1173    }
1174
1175    if (Subtarget->hasInt256()) {
1176      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1177      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1178      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1179      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1180
1181      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1182      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1183      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1184      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1185
1186      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1187      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1188      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1189      // Don't lower v32i8 because there is no 128-bit byte mul
1190
1191      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1192
1193      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1194    } else {
1195      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1196      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1197      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1198      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1199
1200      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1201      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1202      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1203      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1204
1205      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1206      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1207      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1208      // Don't lower v32i8 because there is no 128-bit byte mul
1209    }
1210
1211    // In the customized shift lowering, the legal cases in AVX2 will be
1212    // recognized.
1213    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1214    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1215
1216    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1217    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1218
1219    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1220
1221    // Custom lower several nodes for 256-bit types.
1222    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1223             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1224      MVT VT = (MVT::SimpleValueType)i;
1225
1226      // Extract subvector is special because the value type
1227      // (result) is 128-bit but the source is 256-bit wide.
1228      if (VT.is128BitVector())
1229        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1230
1231      // Do not attempt to custom lower other non-256-bit vectors
1232      if (!VT.is256BitVector())
1233        continue;
1234
1235      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1236      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1237      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1238      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1239      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1240      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1241      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1242    }
1243
1244    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1245    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1246      MVT VT = (MVT::SimpleValueType)i;
1247
1248      // Do not attempt to promote non-256-bit vectors
1249      if (!VT.is256BitVector())
1250        continue;
1251
1252      setOperationAction(ISD::AND,    VT, Promote);
1253      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1254      setOperationAction(ISD::OR,     VT, Promote);
1255      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1256      setOperationAction(ISD::XOR,    VT, Promote);
1257      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1258      setOperationAction(ISD::LOAD,   VT, Promote);
1259      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1260      setOperationAction(ISD::SELECT, VT, Promote);
1261      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1262    }
1263  }
1264
1265  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1266  // of this type with custom code.
1267  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1268           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1269    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1270                       Custom);
1271  }
1272
1273  // We want to custom lower some of our intrinsics.
1274  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1275  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1276
1277  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1278  // handle type legalization for these operations here.
1279  //
1280  // FIXME: We really should do custom legalization for addition and
1281  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1282  // than generic legalization for 64-bit multiplication-with-overflow, though.
1283  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1284    // Add/Sub/Mul with overflow operations are custom lowered.
1285    MVT VT = IntVTs[i];
1286    setOperationAction(ISD::SADDO, VT, Custom);
1287    setOperationAction(ISD::UADDO, VT, Custom);
1288    setOperationAction(ISD::SSUBO, VT, Custom);
1289    setOperationAction(ISD::USUBO, VT, Custom);
1290    setOperationAction(ISD::SMULO, VT, Custom);
1291    setOperationAction(ISD::UMULO, VT, Custom);
1292  }
1293
1294  // There are no 8-bit 3-address imul/mul instructions
1295  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1296  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1297
1298  if (!Subtarget->is64Bit()) {
1299    // These libcalls are not available in 32-bit.
1300    setLibcallName(RTLIB::SHL_I128, 0);
1301    setLibcallName(RTLIB::SRL_I128, 0);
1302    setLibcallName(RTLIB::SRA_I128, 0);
1303  }
1304
1305  // Combine sin / cos into one node or libcall if possible.
1306  if (Subtarget->hasSinCos()) {
1307    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1308    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1309    if (Subtarget->isTargetDarwin()) {
1310      // For MacOSX, we don't want to the normal expansion of a libcall to
1311      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1312      // traffic.
1313      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1314      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1315    }
1316  }
1317
1318  // We have target-specific dag combine patterns for the following nodes:
1319  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1320  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1321  setTargetDAGCombine(ISD::VSELECT);
1322  setTargetDAGCombine(ISD::SELECT);
1323  setTargetDAGCombine(ISD::SHL);
1324  setTargetDAGCombine(ISD::SRA);
1325  setTargetDAGCombine(ISD::SRL);
1326  setTargetDAGCombine(ISD::OR);
1327  setTargetDAGCombine(ISD::AND);
1328  setTargetDAGCombine(ISD::ADD);
1329  setTargetDAGCombine(ISD::FADD);
1330  setTargetDAGCombine(ISD::FSUB);
1331  setTargetDAGCombine(ISD::FMA);
1332  setTargetDAGCombine(ISD::SUB);
1333  setTargetDAGCombine(ISD::LOAD);
1334  setTargetDAGCombine(ISD::STORE);
1335  setTargetDAGCombine(ISD::ZERO_EXTEND);
1336  setTargetDAGCombine(ISD::ANY_EXTEND);
1337  setTargetDAGCombine(ISD::SIGN_EXTEND);
1338  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1339  setTargetDAGCombine(ISD::TRUNCATE);
1340  setTargetDAGCombine(ISD::SINT_TO_FP);
1341  setTargetDAGCombine(ISD::SETCC);
1342  if (Subtarget->is64Bit())
1343    setTargetDAGCombine(ISD::MUL);
1344  setTargetDAGCombine(ISD::XOR);
1345
1346  computeRegisterProperties();
1347
1348  // On Darwin, -Os means optimize for size without hurting performance,
1349  // do not reduce the limit.
1350  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1351  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1352  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1353  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1354  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1355  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1356  setPrefLoopAlignment(4); // 2^4 bytes.
1357
1358  // Predictable cmov don't hurt on atom because it's in-order.
1359  PredictableSelectIsExpensive = !Subtarget->isAtom();
1360
1361  setPrefFunctionAlignment(4); // 2^4 bytes.
1362}
1363
1364EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1365  if (!VT.isVector()) return MVT::i8;
1366  return VT.changeVectorElementTypeToInteger();
1367}
1368
1369/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1370/// the desired ByVal argument alignment.
1371static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1372  if (MaxAlign == 16)
1373    return;
1374  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1375    if (VTy->getBitWidth() == 128)
1376      MaxAlign = 16;
1377  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1378    unsigned EltAlign = 0;
1379    getMaxByValAlign(ATy->getElementType(), EltAlign);
1380    if (EltAlign > MaxAlign)
1381      MaxAlign = EltAlign;
1382  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1383    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1384      unsigned EltAlign = 0;
1385      getMaxByValAlign(STy->getElementType(i), EltAlign);
1386      if (EltAlign > MaxAlign)
1387        MaxAlign = EltAlign;
1388      if (MaxAlign == 16)
1389        break;
1390    }
1391  }
1392}
1393
1394/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1395/// function arguments in the caller parameter area. For X86, aggregates
1396/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1397/// are at 4-byte boundaries.
1398unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1399  if (Subtarget->is64Bit()) {
1400    // Max of 8 and alignment of type.
1401    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1402    if (TyAlign > 8)
1403      return TyAlign;
1404    return 8;
1405  }
1406
1407  unsigned Align = 4;
1408  if (Subtarget->hasSSE1())
1409    getMaxByValAlign(Ty, Align);
1410  return Align;
1411}
1412
1413/// getOptimalMemOpType - Returns the target specific optimal type for load
1414/// and store operations as a result of memset, memcpy, and memmove
1415/// lowering. If DstAlign is zero that means it's safe to destination
1416/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1417/// means there isn't a need to check it against alignment requirement,
1418/// probably because the source does not need to be loaded. If 'IsMemset' is
1419/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1420/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1421/// source is constant so it does not need to be loaded.
1422/// It returns EVT::Other if the type should be determined using generic
1423/// target-independent logic.
1424EVT
1425X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1426                                       unsigned DstAlign, unsigned SrcAlign,
1427                                       bool IsMemset, bool ZeroMemset,
1428                                       bool MemcpyStrSrc,
1429                                       MachineFunction &MF) const {
1430  const Function *F = MF.getFunction();
1431  if ((!IsMemset || ZeroMemset) &&
1432      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1433                                       Attribute::NoImplicitFloat)) {
1434    if (Size >= 16 &&
1435        (Subtarget->isUnalignedMemAccessFast() ||
1436         ((DstAlign == 0 || DstAlign >= 16) &&
1437          (SrcAlign == 0 || SrcAlign >= 16)))) {
1438      if (Size >= 32) {
1439        if (Subtarget->hasInt256())
1440          return MVT::v8i32;
1441        if (Subtarget->hasFp256())
1442          return MVT::v8f32;
1443      }
1444      if (Subtarget->hasSSE2())
1445        return MVT::v4i32;
1446      if (Subtarget->hasSSE1())
1447        return MVT::v4f32;
1448    } else if (!MemcpyStrSrc && Size >= 8 &&
1449               !Subtarget->is64Bit() &&
1450               Subtarget->hasSSE2()) {
1451      // Do not use f64 to lower memcpy if source is string constant. It's
1452      // better to use i32 to avoid the loads.
1453      return MVT::f64;
1454    }
1455  }
1456  if (Subtarget->is64Bit() && Size >= 8)
1457    return MVT::i64;
1458  return MVT::i32;
1459}
1460
1461bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1462  if (VT == MVT::f32)
1463    return X86ScalarSSEf32;
1464  else if (VT == MVT::f64)
1465    return X86ScalarSSEf64;
1466  return true;
1467}
1468
1469bool
1470X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1471  if (Fast)
1472    *Fast = Subtarget->isUnalignedMemAccessFast();
1473  return true;
1474}
1475
1476/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1477/// current function.  The returned value is a member of the
1478/// MachineJumpTableInfo::JTEntryKind enum.
1479unsigned X86TargetLowering::getJumpTableEncoding() const {
1480  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1481  // symbol.
1482  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1483      Subtarget->isPICStyleGOT())
1484    return MachineJumpTableInfo::EK_Custom32;
1485
1486  // Otherwise, use the normal jump table encoding heuristics.
1487  return TargetLowering::getJumpTableEncoding();
1488}
1489
1490const MCExpr *
1491X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1492                                             const MachineBasicBlock *MBB,
1493                                             unsigned uid,MCContext &Ctx) const{
1494  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1495         Subtarget->isPICStyleGOT());
1496  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1497  // entries.
1498  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1499                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1500}
1501
1502/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1503/// jumptable.
1504SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1505                                                    SelectionDAG &DAG) const {
1506  if (!Subtarget->is64Bit())
1507    // This doesn't have DebugLoc associated with it, but is not really the
1508    // same as a Register.
1509    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1510  return Table;
1511}
1512
1513/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1514/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1515/// MCExpr.
1516const MCExpr *X86TargetLowering::
1517getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1518                             MCContext &Ctx) const {
1519  // X86-64 uses RIP relative addressing based on the jump table label.
1520  if (Subtarget->isPICStyleRIPRel())
1521    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1522
1523  // Otherwise, the reference is relative to the PIC base.
1524  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1525}
1526
1527// FIXME: Why this routine is here? Move to RegInfo!
1528std::pair<const TargetRegisterClass*, uint8_t>
1529X86TargetLowering::findRepresentativeClass(MVT VT) const{
1530  const TargetRegisterClass *RRC = 0;
1531  uint8_t Cost = 1;
1532  switch (VT.SimpleTy) {
1533  default:
1534    return TargetLowering::findRepresentativeClass(VT);
1535  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1536    RRC = Subtarget->is64Bit() ?
1537      (const TargetRegisterClass*)&X86::GR64RegClass :
1538      (const TargetRegisterClass*)&X86::GR32RegClass;
1539    break;
1540  case MVT::x86mmx:
1541    RRC = &X86::VR64RegClass;
1542    break;
1543  case MVT::f32: case MVT::f64:
1544  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1545  case MVT::v4f32: case MVT::v2f64:
1546  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1547  case MVT::v4f64:
1548    RRC = &X86::VR128RegClass;
1549    break;
1550  }
1551  return std::make_pair(RRC, Cost);
1552}
1553
1554bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1555                                               unsigned &Offset) const {
1556  if (!Subtarget->isTargetLinux())
1557    return false;
1558
1559  if (Subtarget->is64Bit()) {
1560    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1561    Offset = 0x28;
1562    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1563      AddressSpace = 256;
1564    else
1565      AddressSpace = 257;
1566  } else {
1567    // %gs:0x14 on i386
1568    Offset = 0x14;
1569    AddressSpace = 256;
1570  }
1571  return true;
1572}
1573
1574//===----------------------------------------------------------------------===//
1575//               Return Value Calling Convention Implementation
1576//===----------------------------------------------------------------------===//
1577
1578#include "X86GenCallingConv.inc"
1579
1580bool
1581X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1582                                  MachineFunction &MF, bool isVarArg,
1583                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1584                        LLVMContext &Context) const {
1585  SmallVector<CCValAssign, 16> RVLocs;
1586  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1587                 RVLocs, Context);
1588  return CCInfo.CheckReturn(Outs, RetCC_X86);
1589}
1590
1591SDValue
1592X86TargetLowering::LowerReturn(SDValue Chain,
1593                               CallingConv::ID CallConv, bool isVarArg,
1594                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1595                               const SmallVectorImpl<SDValue> &OutVals,
1596                               DebugLoc dl, SelectionDAG &DAG) const {
1597  MachineFunction &MF = DAG.getMachineFunction();
1598  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1599
1600  SmallVector<CCValAssign, 16> RVLocs;
1601  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1602                 RVLocs, *DAG.getContext());
1603  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1604
1605  SDValue Flag;
1606  SmallVector<SDValue, 6> RetOps;
1607  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1608  // Operand #1 = Bytes To Pop
1609  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1610                   MVT::i16));
1611
1612  // Copy the result values into the output registers.
1613  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1614    CCValAssign &VA = RVLocs[i];
1615    assert(VA.isRegLoc() && "Can only return in registers!");
1616    SDValue ValToCopy = OutVals[i];
1617    EVT ValVT = ValToCopy.getValueType();
1618
1619    // Promote values to the appropriate types
1620    if (VA.getLocInfo() == CCValAssign::SExt)
1621      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1622    else if (VA.getLocInfo() == CCValAssign::ZExt)
1623      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1624    else if (VA.getLocInfo() == CCValAssign::AExt)
1625      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1626    else if (VA.getLocInfo() == CCValAssign::BCvt)
1627      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1628
1629    // If this is x86-64, and we disabled SSE, we can't return FP values,
1630    // or SSE or MMX vectors.
1631    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1632         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1633          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1634      report_fatal_error("SSE register return with SSE disabled");
1635    }
1636    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1637    // llvm-gcc has never done it right and no one has noticed, so this
1638    // should be OK for now.
1639    if (ValVT == MVT::f64 &&
1640        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1641      report_fatal_error("SSE2 register return with SSE2 disabled");
1642
1643    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1644    // the RET instruction and handled by the FP Stackifier.
1645    if (VA.getLocReg() == X86::ST0 ||
1646        VA.getLocReg() == X86::ST1) {
1647      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1648      // change the value to the FP stack register class.
1649      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1650        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1651      RetOps.push_back(ValToCopy);
1652      // Don't emit a copytoreg.
1653      continue;
1654    }
1655
1656    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1657    // which is returned in RAX / RDX.
1658    if (Subtarget->is64Bit()) {
1659      if (ValVT == MVT::x86mmx) {
1660        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1661          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1662          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1663                                  ValToCopy);
1664          // If we don't have SSE2 available, convert to v4f32 so the generated
1665          // register is legal.
1666          if (!Subtarget->hasSSE2())
1667            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1668        }
1669      }
1670    }
1671
1672    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1673    Flag = Chain.getValue(1);
1674    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1675  }
1676
1677  // The x86-64 ABIs require that for returning structs by value we copy
1678  // the sret argument into %rax/%eax (depending on ABI) for the return.
1679  // Win32 requires us to put the sret argument to %eax as well.
1680  // We saved the argument into a virtual register in the entry block,
1681  // so now we copy the value out and into %rax/%eax.
1682  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1683      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1684    MachineFunction &MF = DAG.getMachineFunction();
1685    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1686    unsigned Reg = FuncInfo->getSRetReturnReg();
1687    assert(Reg &&
1688           "SRetReturnReg should have been set in LowerFormalArguments().");
1689    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1690
1691    unsigned RetValReg
1692        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1693          X86::RAX : X86::EAX;
1694    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1695    Flag = Chain.getValue(1);
1696
1697    // RAX/EAX now acts like a return value.
1698    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1699  }
1700
1701  RetOps[0] = Chain;  // Update chain.
1702
1703  // Add the flag if we have it.
1704  if (Flag.getNode())
1705    RetOps.push_back(Flag);
1706
1707  return DAG.getNode(X86ISD::RET_FLAG, dl,
1708                     MVT::Other, &RetOps[0], RetOps.size());
1709}
1710
1711bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1712  if (N->getNumValues() != 1)
1713    return false;
1714  if (!N->hasNUsesOfValue(1, 0))
1715    return false;
1716
1717  SDValue TCChain = Chain;
1718  SDNode *Copy = *N->use_begin();
1719  if (Copy->getOpcode() == ISD::CopyToReg) {
1720    // If the copy has a glue operand, we conservatively assume it isn't safe to
1721    // perform a tail call.
1722    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1723      return false;
1724    TCChain = Copy->getOperand(0);
1725  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1726    return false;
1727
1728  bool HasRet = false;
1729  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1730       UI != UE; ++UI) {
1731    if (UI->getOpcode() != X86ISD::RET_FLAG)
1732      return false;
1733    HasRet = true;
1734  }
1735
1736  if (!HasRet)
1737    return false;
1738
1739  Chain = TCChain;
1740  return true;
1741}
1742
1743MVT
1744X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1745                                            ISD::NodeType ExtendKind) const {
1746  MVT ReturnMVT;
1747  // TODO: Is this also valid on 32-bit?
1748  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1749    ReturnMVT = MVT::i8;
1750  else
1751    ReturnMVT = MVT::i32;
1752
1753  MVT MinVT = getRegisterType(ReturnMVT);
1754  return VT.bitsLT(MinVT) ? MinVT : VT;
1755}
1756
1757/// LowerCallResult - Lower the result values of a call into the
1758/// appropriate copies out of appropriate physical registers.
1759///
1760SDValue
1761X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1762                                   CallingConv::ID CallConv, bool isVarArg,
1763                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1764                                   DebugLoc dl, SelectionDAG &DAG,
1765                                   SmallVectorImpl<SDValue> &InVals) const {
1766
1767  // Assign locations to each value returned by this call.
1768  SmallVector<CCValAssign, 16> RVLocs;
1769  bool Is64Bit = Subtarget->is64Bit();
1770  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1771                 getTargetMachine(), RVLocs, *DAG.getContext());
1772  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1773
1774  // Copy all of the result registers out of their specified physreg.
1775  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1776    CCValAssign &VA = RVLocs[i];
1777    EVT CopyVT = VA.getValVT();
1778
1779    // If this is x86-64, and we disabled SSE, we can't return FP values
1780    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1781        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1782      report_fatal_error("SSE register return with SSE disabled");
1783    }
1784
1785    SDValue Val;
1786
1787    // If this is a call to a function that returns an fp value on the floating
1788    // point stack, we must guarantee the value is popped from the stack, so
1789    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1790    // if the return value is not used. We use the FpPOP_RETVAL instruction
1791    // instead.
1792    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1793      // If we prefer to use the value in xmm registers, copy it out as f80 and
1794      // use a truncate to move it from fp stack reg to xmm reg.
1795      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1796      SDValue Ops[] = { Chain, InFlag };
1797      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1798                                         MVT::Other, MVT::Glue, Ops), 1);
1799      Val = Chain.getValue(0);
1800
1801      // Round the f80 to the right size, which also moves it to the appropriate
1802      // xmm register.
1803      if (CopyVT != VA.getValVT())
1804        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1805                          // This truncation won't change the value.
1806                          DAG.getIntPtrConstant(1));
1807    } else {
1808      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1809                                 CopyVT, InFlag).getValue(1);
1810      Val = Chain.getValue(0);
1811    }
1812    InFlag = Chain.getValue(2);
1813    InVals.push_back(Val);
1814  }
1815
1816  return Chain;
1817}
1818
1819//===----------------------------------------------------------------------===//
1820//                C & StdCall & Fast Calling Convention implementation
1821//===----------------------------------------------------------------------===//
1822//  StdCall calling convention seems to be standard for many Windows' API
1823//  routines and around. It differs from C calling convention just a little:
1824//  callee should clean up the stack, not caller. Symbols should be also
1825//  decorated in some fancy way :) It doesn't support any vector arguments.
1826//  For info on fast calling convention see Fast Calling Convention (tail call)
1827//  implementation LowerX86_32FastCCCallTo.
1828
1829/// CallIsStructReturn - Determines whether a call uses struct return
1830/// semantics.
1831enum StructReturnType {
1832  NotStructReturn,
1833  RegStructReturn,
1834  StackStructReturn
1835};
1836static StructReturnType
1837callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1838  if (Outs.empty())
1839    return NotStructReturn;
1840
1841  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1842  if (!Flags.isSRet())
1843    return NotStructReturn;
1844  if (Flags.isInReg())
1845    return RegStructReturn;
1846  return StackStructReturn;
1847}
1848
1849/// ArgsAreStructReturn - Determines whether a function uses struct
1850/// return semantics.
1851static StructReturnType
1852argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1853  if (Ins.empty())
1854    return NotStructReturn;
1855
1856  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1857  if (!Flags.isSRet())
1858    return NotStructReturn;
1859  if (Flags.isInReg())
1860    return RegStructReturn;
1861  return StackStructReturn;
1862}
1863
1864/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1865/// by "Src" to address "Dst" with size and alignment information specified by
1866/// the specific parameter attribute. The copy will be passed as a byval
1867/// function parameter.
1868static SDValue
1869CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1870                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1871                          DebugLoc dl) {
1872  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1873
1874  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1875                       /*isVolatile*/false, /*AlwaysInline=*/true,
1876                       MachinePointerInfo(), MachinePointerInfo());
1877}
1878
1879/// IsTailCallConvention - Return true if the calling convention is one that
1880/// supports tail call optimization.
1881static bool IsTailCallConvention(CallingConv::ID CC) {
1882  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1883          CC == CallingConv::HiPE);
1884}
1885
1886bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1887  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1888    return false;
1889
1890  CallSite CS(CI);
1891  CallingConv::ID CalleeCC = CS.getCallingConv();
1892  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1893    return false;
1894
1895  return true;
1896}
1897
1898/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1899/// a tailcall target by changing its ABI.
1900static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1901                                   bool GuaranteedTailCallOpt) {
1902  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1903}
1904
1905SDValue
1906X86TargetLowering::LowerMemArgument(SDValue Chain,
1907                                    CallingConv::ID CallConv,
1908                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1909                                    DebugLoc dl, SelectionDAG &DAG,
1910                                    const CCValAssign &VA,
1911                                    MachineFrameInfo *MFI,
1912                                    unsigned i) const {
1913  // Create the nodes corresponding to a load from this parameter slot.
1914  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1915  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1916                              getTargetMachine().Options.GuaranteedTailCallOpt);
1917  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1918  EVT ValVT;
1919
1920  // If value is passed by pointer we have address passed instead of the value
1921  // itself.
1922  if (VA.getLocInfo() == CCValAssign::Indirect)
1923    ValVT = VA.getLocVT();
1924  else
1925    ValVT = VA.getValVT();
1926
1927  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1928  // changed with more analysis.
1929  // In case of tail call optimization mark all arguments mutable. Since they
1930  // could be overwritten by lowering of arguments in case of a tail call.
1931  if (Flags.isByVal()) {
1932    unsigned Bytes = Flags.getByValSize();
1933    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1934    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1935    return DAG.getFrameIndex(FI, getPointerTy());
1936  } else {
1937    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1938                                    VA.getLocMemOffset(), isImmutable);
1939    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1940    return DAG.getLoad(ValVT, dl, Chain, FIN,
1941                       MachinePointerInfo::getFixedStack(FI),
1942                       false, false, false, 0);
1943  }
1944}
1945
1946SDValue
1947X86TargetLowering::LowerFormalArguments(SDValue Chain,
1948                                        CallingConv::ID CallConv,
1949                                        bool isVarArg,
1950                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1951                                        DebugLoc dl,
1952                                        SelectionDAG &DAG,
1953                                        SmallVectorImpl<SDValue> &InVals)
1954                                          const {
1955  MachineFunction &MF = DAG.getMachineFunction();
1956  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1957
1958  const Function* Fn = MF.getFunction();
1959  if (Fn->hasExternalLinkage() &&
1960      Subtarget->isTargetCygMing() &&
1961      Fn->getName() == "main")
1962    FuncInfo->setForceFramePointer(true);
1963
1964  MachineFrameInfo *MFI = MF.getFrameInfo();
1965  bool Is64Bit = Subtarget->is64Bit();
1966  bool IsWindows = Subtarget->isTargetWindows();
1967  bool IsWin64 = Subtarget->isTargetWin64();
1968
1969  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1970         "Var args not supported with calling convention fastcc, ghc or hipe");
1971
1972  // Assign locations to all of the incoming arguments.
1973  SmallVector<CCValAssign, 16> ArgLocs;
1974  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1975                 ArgLocs, *DAG.getContext());
1976
1977  // Allocate shadow area for Win64
1978  if (IsWin64) {
1979    CCInfo.AllocateStack(32, 8);
1980  }
1981
1982  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1983
1984  unsigned LastVal = ~0U;
1985  SDValue ArgValue;
1986  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1987    CCValAssign &VA = ArgLocs[i];
1988    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1989    // places.
1990    assert(VA.getValNo() != LastVal &&
1991           "Don't support value assigned to multiple locs yet");
1992    (void)LastVal;
1993    LastVal = VA.getValNo();
1994
1995    if (VA.isRegLoc()) {
1996      EVT RegVT = VA.getLocVT();
1997      const TargetRegisterClass *RC;
1998      if (RegVT == MVT::i32)
1999        RC = &X86::GR32RegClass;
2000      else if (Is64Bit && RegVT == MVT::i64)
2001        RC = &X86::GR64RegClass;
2002      else if (RegVT == MVT::f32)
2003        RC = &X86::FR32RegClass;
2004      else if (RegVT == MVT::f64)
2005        RC = &X86::FR64RegClass;
2006      else if (RegVT.is256BitVector())
2007        RC = &X86::VR256RegClass;
2008      else if (RegVT.is128BitVector())
2009        RC = &X86::VR128RegClass;
2010      else if (RegVT == MVT::x86mmx)
2011        RC = &X86::VR64RegClass;
2012      else
2013        llvm_unreachable("Unknown argument type!");
2014
2015      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2016      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2017
2018      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2019      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2020      // right size.
2021      if (VA.getLocInfo() == CCValAssign::SExt)
2022        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2023                               DAG.getValueType(VA.getValVT()));
2024      else if (VA.getLocInfo() == CCValAssign::ZExt)
2025        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2026                               DAG.getValueType(VA.getValVT()));
2027      else if (VA.getLocInfo() == CCValAssign::BCvt)
2028        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2029
2030      if (VA.isExtInLoc()) {
2031        // Handle MMX values passed in XMM regs.
2032        if (RegVT.isVector())
2033          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2034        else
2035          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2036      }
2037    } else {
2038      assert(VA.isMemLoc());
2039      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2040    }
2041
2042    // If value is passed via pointer - do a load.
2043    if (VA.getLocInfo() == CCValAssign::Indirect)
2044      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2045                             MachinePointerInfo(), false, false, false, 0);
2046
2047    InVals.push_back(ArgValue);
2048  }
2049
2050  // The x86-64 ABIs require that for returning structs by value we copy
2051  // the sret argument into %rax/%eax (depending on ABI) for the return.
2052  // Win32 requires us to put the sret argument to %eax as well.
2053  // Save the argument into a virtual register so that we can access it
2054  // from the return points.
2055  if (MF.getFunction()->hasStructRetAttr() &&
2056      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2057    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2058    unsigned Reg = FuncInfo->getSRetReturnReg();
2059    if (!Reg) {
2060      MVT PtrTy = getPointerTy();
2061      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2062      FuncInfo->setSRetReturnReg(Reg);
2063    }
2064    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2065    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2066  }
2067
2068  unsigned StackSize = CCInfo.getNextStackOffset();
2069  // Align stack specially for tail calls.
2070  if (FuncIsMadeTailCallSafe(CallConv,
2071                             MF.getTarget().Options.GuaranteedTailCallOpt))
2072    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2073
2074  // If the function takes variable number of arguments, make a frame index for
2075  // the start of the first vararg value... for expansion of llvm.va_start.
2076  if (isVarArg) {
2077    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2078                    CallConv != CallingConv::X86_ThisCall)) {
2079      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2080    }
2081    if (Is64Bit) {
2082      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2083
2084      // FIXME: We should really autogenerate these arrays
2085      static const uint16_t GPR64ArgRegsWin64[] = {
2086        X86::RCX, X86::RDX, X86::R8,  X86::R9
2087      };
2088      static const uint16_t GPR64ArgRegs64Bit[] = {
2089        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2090      };
2091      static const uint16_t XMMArgRegs64Bit[] = {
2092        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2093        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2094      };
2095      const uint16_t *GPR64ArgRegs;
2096      unsigned NumXMMRegs = 0;
2097
2098      if (IsWin64) {
2099        // The XMM registers which might contain var arg parameters are shadowed
2100        // in their paired GPR.  So we only need to save the GPR to their home
2101        // slots.
2102        TotalNumIntRegs = 4;
2103        GPR64ArgRegs = GPR64ArgRegsWin64;
2104      } else {
2105        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2106        GPR64ArgRegs = GPR64ArgRegs64Bit;
2107
2108        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2109                                                TotalNumXMMRegs);
2110      }
2111      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2112                                                       TotalNumIntRegs);
2113
2114      bool NoImplicitFloatOps = Fn->getAttributes().
2115        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2116      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2117             "SSE register cannot be used when SSE is disabled!");
2118      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2119               NoImplicitFloatOps) &&
2120             "SSE register cannot be used when SSE is disabled!");
2121      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2122          !Subtarget->hasSSE1())
2123        // Kernel mode asks for SSE to be disabled, so don't push them
2124        // on the stack.
2125        TotalNumXMMRegs = 0;
2126
2127      if (IsWin64) {
2128        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2129        // Get to the caller-allocated home save location.  Add 8 to account
2130        // for the return address.
2131        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2132        FuncInfo->setRegSaveFrameIndex(
2133          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2134        // Fixup to set vararg frame on shadow area (4 x i64).
2135        if (NumIntRegs < 4)
2136          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2137      } else {
2138        // For X86-64, if there are vararg parameters that are passed via
2139        // registers, then we must store them to their spots on the stack so
2140        // they may be loaded by deferencing the result of va_next.
2141        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2142        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2143        FuncInfo->setRegSaveFrameIndex(
2144          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2145                               false));
2146      }
2147
2148      // Store the integer parameter registers.
2149      SmallVector<SDValue, 8> MemOps;
2150      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2151                                        getPointerTy());
2152      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2153      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2154        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2155                                  DAG.getIntPtrConstant(Offset));
2156        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2157                                     &X86::GR64RegClass);
2158        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2159        SDValue Store =
2160          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2161                       MachinePointerInfo::getFixedStack(
2162                         FuncInfo->getRegSaveFrameIndex(), Offset),
2163                       false, false, 0);
2164        MemOps.push_back(Store);
2165        Offset += 8;
2166      }
2167
2168      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2169        // Now store the XMM (fp + vector) parameter registers.
2170        SmallVector<SDValue, 11> SaveXMMOps;
2171        SaveXMMOps.push_back(Chain);
2172
2173        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2174        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2175        SaveXMMOps.push_back(ALVal);
2176
2177        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2178                               FuncInfo->getRegSaveFrameIndex()));
2179        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2180                               FuncInfo->getVarArgsFPOffset()));
2181
2182        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2183          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2184                                       &X86::VR128RegClass);
2185          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2186          SaveXMMOps.push_back(Val);
2187        }
2188        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2189                                     MVT::Other,
2190                                     &SaveXMMOps[0], SaveXMMOps.size()));
2191      }
2192
2193      if (!MemOps.empty())
2194        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2195                            &MemOps[0], MemOps.size());
2196    }
2197  }
2198
2199  // Some CCs need callee pop.
2200  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2201                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2202    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2203  } else {
2204    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2205    // If this is an sret function, the return should pop the hidden pointer.
2206    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2207        argsAreStructReturn(Ins) == StackStructReturn)
2208      FuncInfo->setBytesToPopOnReturn(4);
2209  }
2210
2211  if (!Is64Bit) {
2212    // RegSaveFrameIndex is X86-64 only.
2213    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2214    if (CallConv == CallingConv::X86_FastCall ||
2215        CallConv == CallingConv::X86_ThisCall)
2216      // fastcc functions can't have varargs.
2217      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2218  }
2219
2220  FuncInfo->setArgumentStackSize(StackSize);
2221
2222  return Chain;
2223}
2224
2225SDValue
2226X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2227                                    SDValue StackPtr, SDValue Arg,
2228                                    DebugLoc dl, SelectionDAG &DAG,
2229                                    const CCValAssign &VA,
2230                                    ISD::ArgFlagsTy Flags) const {
2231  unsigned LocMemOffset = VA.getLocMemOffset();
2232  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2233  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2234  if (Flags.isByVal())
2235    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2236
2237  return DAG.getStore(Chain, dl, Arg, PtrOff,
2238                      MachinePointerInfo::getStack(LocMemOffset),
2239                      false, false, 0);
2240}
2241
2242/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2243/// optimization is performed and it is required.
2244SDValue
2245X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2246                                           SDValue &OutRetAddr, SDValue Chain,
2247                                           bool IsTailCall, bool Is64Bit,
2248                                           int FPDiff, DebugLoc dl) const {
2249  // Adjust the Return address stack slot.
2250  EVT VT = getPointerTy();
2251  OutRetAddr = getReturnAddressFrameIndex(DAG);
2252
2253  // Load the "old" Return address.
2254  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2255                           false, false, false, 0);
2256  return SDValue(OutRetAddr.getNode(), 1);
2257}
2258
2259/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2260/// optimization is performed and it is required (FPDiff!=0).
2261static SDValue
2262EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2263                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2264                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2265  // Store the return address to the appropriate stack slot.
2266  if (!FPDiff) return Chain;
2267  // Calculate the new stack slot for the return address.
2268  int NewReturnAddrFI =
2269    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2270  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2271  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2272                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2273                       false, false, 0);
2274  return Chain;
2275}
2276
2277SDValue
2278X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2279                             SmallVectorImpl<SDValue> &InVals) const {
2280  SelectionDAG &DAG                     = CLI.DAG;
2281  DebugLoc &dl                          = CLI.DL;
2282  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2283  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2284  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2285  SDValue Chain                         = CLI.Chain;
2286  SDValue Callee                        = CLI.Callee;
2287  CallingConv::ID CallConv              = CLI.CallConv;
2288  bool &isTailCall                      = CLI.IsTailCall;
2289  bool isVarArg                         = CLI.IsVarArg;
2290
2291  MachineFunction &MF = DAG.getMachineFunction();
2292  bool Is64Bit        = Subtarget->is64Bit();
2293  bool IsWin64        = Subtarget->isTargetWin64();
2294  bool IsWindows      = Subtarget->isTargetWindows();
2295  StructReturnType SR = callIsStructReturn(Outs);
2296  bool IsSibcall      = false;
2297
2298  if (MF.getTarget().Options.DisableTailCalls)
2299    isTailCall = false;
2300
2301  if (isTailCall) {
2302    // Check if it's really possible to do a tail call.
2303    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2304                    isVarArg, SR != NotStructReturn,
2305                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2306                    Outs, OutVals, Ins, DAG);
2307
2308    // Sibcalls are automatically detected tailcalls which do not require
2309    // ABI changes.
2310    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2311      IsSibcall = true;
2312
2313    if (isTailCall)
2314      ++NumTailCalls;
2315  }
2316
2317  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2318         "Var args not supported with calling convention fastcc, ghc or hipe");
2319
2320  // Analyze operands of the call, assigning locations to each operand.
2321  SmallVector<CCValAssign, 16> ArgLocs;
2322  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2323                 ArgLocs, *DAG.getContext());
2324
2325  // Allocate shadow area for Win64
2326  if (IsWin64) {
2327    CCInfo.AllocateStack(32, 8);
2328  }
2329
2330  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2331
2332  // Get a count of how many bytes are to be pushed on the stack.
2333  unsigned NumBytes = CCInfo.getNextStackOffset();
2334  if (IsSibcall)
2335    // This is a sibcall. The memory operands are available in caller's
2336    // own caller's stack.
2337    NumBytes = 0;
2338  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2339           IsTailCallConvention(CallConv))
2340    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2341
2342  int FPDiff = 0;
2343  if (isTailCall && !IsSibcall) {
2344    // Lower arguments at fp - stackoffset + fpdiff.
2345    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2346    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2347
2348    FPDiff = NumBytesCallerPushed - NumBytes;
2349
2350    // Set the delta of movement of the returnaddr stackslot.
2351    // But only set if delta is greater than previous delta.
2352    if (FPDiff < X86Info->getTCReturnAddrDelta())
2353      X86Info->setTCReturnAddrDelta(FPDiff);
2354  }
2355
2356  if (!IsSibcall)
2357    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2358
2359  SDValue RetAddrFrIdx;
2360  // Load return address for tail calls.
2361  if (isTailCall && FPDiff)
2362    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2363                                    Is64Bit, FPDiff, dl);
2364
2365  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2366  SmallVector<SDValue, 8> MemOpChains;
2367  SDValue StackPtr;
2368
2369  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2370  // of tail call optimization arguments are handle later.
2371  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2372    CCValAssign &VA = ArgLocs[i];
2373    EVT RegVT = VA.getLocVT();
2374    SDValue Arg = OutVals[i];
2375    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2376    bool isByVal = Flags.isByVal();
2377
2378    // Promote the value if needed.
2379    switch (VA.getLocInfo()) {
2380    default: llvm_unreachable("Unknown loc info!");
2381    case CCValAssign::Full: break;
2382    case CCValAssign::SExt:
2383      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2384      break;
2385    case CCValAssign::ZExt:
2386      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2387      break;
2388    case CCValAssign::AExt:
2389      if (RegVT.is128BitVector()) {
2390        // Special case: passing MMX values in XMM registers.
2391        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2392        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2393        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2394      } else
2395        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2396      break;
2397    case CCValAssign::BCvt:
2398      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2399      break;
2400    case CCValAssign::Indirect: {
2401      // Store the argument.
2402      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2403      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2404      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2405                           MachinePointerInfo::getFixedStack(FI),
2406                           false, false, 0);
2407      Arg = SpillSlot;
2408      break;
2409    }
2410    }
2411
2412    if (VA.isRegLoc()) {
2413      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2414      if (isVarArg && IsWin64) {
2415        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2416        // shadow reg if callee is a varargs function.
2417        unsigned ShadowReg = 0;
2418        switch (VA.getLocReg()) {
2419        case X86::XMM0: ShadowReg = X86::RCX; break;
2420        case X86::XMM1: ShadowReg = X86::RDX; break;
2421        case X86::XMM2: ShadowReg = X86::R8; break;
2422        case X86::XMM3: ShadowReg = X86::R9; break;
2423        }
2424        if (ShadowReg)
2425          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2426      }
2427    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2428      assert(VA.isMemLoc());
2429      if (StackPtr.getNode() == 0)
2430        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2431                                      getPointerTy());
2432      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2433                                             dl, DAG, VA, Flags));
2434    }
2435  }
2436
2437  if (!MemOpChains.empty())
2438    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2439                        &MemOpChains[0], MemOpChains.size());
2440
2441  if (Subtarget->isPICStyleGOT()) {
2442    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2443    // GOT pointer.
2444    if (!isTailCall) {
2445      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2446               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2447    } else {
2448      // If we are tail calling and generating PIC/GOT style code load the
2449      // address of the callee into ECX. The value in ecx is used as target of
2450      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2451      // for tail calls on PIC/GOT architectures. Normally we would just put the
2452      // address of GOT into ebx and then call target@PLT. But for tail calls
2453      // ebx would be restored (since ebx is callee saved) before jumping to the
2454      // target@PLT.
2455
2456      // Note: The actual moving to ECX is done further down.
2457      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2458      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2459          !G->getGlobal()->hasProtectedVisibility())
2460        Callee = LowerGlobalAddress(Callee, DAG);
2461      else if (isa<ExternalSymbolSDNode>(Callee))
2462        Callee = LowerExternalSymbol(Callee, DAG);
2463    }
2464  }
2465
2466  if (Is64Bit && isVarArg && !IsWin64) {
2467    // From AMD64 ABI document:
2468    // For calls that may call functions that use varargs or stdargs
2469    // (prototype-less calls or calls to functions containing ellipsis (...) in
2470    // the declaration) %al is used as hidden argument to specify the number
2471    // of SSE registers used. The contents of %al do not need to match exactly
2472    // the number of registers, but must be an ubound on the number of SSE
2473    // registers used and is in the range 0 - 8 inclusive.
2474
2475    // Count the number of XMM registers allocated.
2476    static const uint16_t XMMArgRegs[] = {
2477      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2478      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2479    };
2480    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2481    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2482           && "SSE registers cannot be used when SSE is disabled");
2483
2484    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2485                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2486  }
2487
2488  // For tail calls lower the arguments to the 'real' stack slot.
2489  if (isTailCall) {
2490    // Force all the incoming stack arguments to be loaded from the stack
2491    // before any new outgoing arguments are stored to the stack, because the
2492    // outgoing stack slots may alias the incoming argument stack slots, and
2493    // the alias isn't otherwise explicit. This is slightly more conservative
2494    // than necessary, because it means that each store effectively depends
2495    // on every argument instead of just those arguments it would clobber.
2496    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2497
2498    SmallVector<SDValue, 8> MemOpChains2;
2499    SDValue FIN;
2500    int FI = 0;
2501    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2502      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2503        CCValAssign &VA = ArgLocs[i];
2504        if (VA.isRegLoc())
2505          continue;
2506        assert(VA.isMemLoc());
2507        SDValue Arg = OutVals[i];
2508        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2509        // Create frame index.
2510        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2511        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2512        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2513        FIN = DAG.getFrameIndex(FI, getPointerTy());
2514
2515        if (Flags.isByVal()) {
2516          // Copy relative to framepointer.
2517          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2518          if (StackPtr.getNode() == 0)
2519            StackPtr = DAG.getCopyFromReg(Chain, dl,
2520                                          RegInfo->getStackRegister(),
2521                                          getPointerTy());
2522          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2523
2524          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2525                                                           ArgChain,
2526                                                           Flags, DAG, dl));
2527        } else {
2528          // Store relative to framepointer.
2529          MemOpChains2.push_back(
2530            DAG.getStore(ArgChain, dl, Arg, FIN,
2531                         MachinePointerInfo::getFixedStack(FI),
2532                         false, false, 0));
2533        }
2534      }
2535    }
2536
2537    if (!MemOpChains2.empty())
2538      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2539                          &MemOpChains2[0], MemOpChains2.size());
2540
2541    // Store the return address to the appropriate stack slot.
2542    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2543                                     getPointerTy(), RegInfo->getSlotSize(),
2544                                     FPDiff, dl);
2545  }
2546
2547  // Build a sequence of copy-to-reg nodes chained together with token chain
2548  // and flag operands which copy the outgoing args into registers.
2549  SDValue InFlag;
2550  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2551    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2552                             RegsToPass[i].second, InFlag);
2553    InFlag = Chain.getValue(1);
2554  }
2555
2556  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2557    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2558    // In the 64-bit large code model, we have to make all calls
2559    // through a register, since the call instruction's 32-bit
2560    // pc-relative offset may not be large enough to hold the whole
2561    // address.
2562  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2563    // If the callee is a GlobalAddress node (quite common, every direct call
2564    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2565    // it.
2566
2567    // We should use extra load for direct calls to dllimported functions in
2568    // non-JIT mode.
2569    const GlobalValue *GV = G->getGlobal();
2570    if (!GV->hasDLLImportLinkage()) {
2571      unsigned char OpFlags = 0;
2572      bool ExtraLoad = false;
2573      unsigned WrapperKind = ISD::DELETED_NODE;
2574
2575      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2576      // external symbols most go through the PLT in PIC mode.  If the symbol
2577      // has hidden or protected visibility, or if it is static or local, then
2578      // we don't need to use the PLT - we can directly call it.
2579      if (Subtarget->isTargetELF() &&
2580          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2581          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2582        OpFlags = X86II::MO_PLT;
2583      } else if (Subtarget->isPICStyleStubAny() &&
2584                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2585                 (!Subtarget->getTargetTriple().isMacOSX() ||
2586                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2587        // PC-relative references to external symbols should go through $stub,
2588        // unless we're building with the leopard linker or later, which
2589        // automatically synthesizes these stubs.
2590        OpFlags = X86II::MO_DARWIN_STUB;
2591      } else if (Subtarget->isPICStyleRIPRel() &&
2592                 isa<Function>(GV) &&
2593                 cast<Function>(GV)->getAttributes().
2594                   hasAttribute(AttributeSet::FunctionIndex,
2595                                Attribute::NonLazyBind)) {
2596        // If the function is marked as non-lazy, generate an indirect call
2597        // which loads from the GOT directly. This avoids runtime overhead
2598        // at the cost of eager binding (and one extra byte of encoding).
2599        OpFlags = X86II::MO_GOTPCREL;
2600        WrapperKind = X86ISD::WrapperRIP;
2601        ExtraLoad = true;
2602      }
2603
2604      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2605                                          G->getOffset(), OpFlags);
2606
2607      // Add a wrapper if needed.
2608      if (WrapperKind != ISD::DELETED_NODE)
2609        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2610      // Add extra indirection if needed.
2611      if (ExtraLoad)
2612        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2613                             MachinePointerInfo::getGOT(),
2614                             false, false, false, 0);
2615    }
2616  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2617    unsigned char OpFlags = 0;
2618
2619    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2620    // external symbols should go through the PLT.
2621    if (Subtarget->isTargetELF() &&
2622        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2623      OpFlags = X86II::MO_PLT;
2624    } else if (Subtarget->isPICStyleStubAny() &&
2625               (!Subtarget->getTargetTriple().isMacOSX() ||
2626                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2627      // PC-relative references to external symbols should go through $stub,
2628      // unless we're building with the leopard linker or later, which
2629      // automatically synthesizes these stubs.
2630      OpFlags = X86II::MO_DARWIN_STUB;
2631    }
2632
2633    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2634                                         OpFlags);
2635  }
2636
2637  // Returns a chain & a flag for retval copy to use.
2638  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2639  SmallVector<SDValue, 8> Ops;
2640
2641  if (!IsSibcall && isTailCall) {
2642    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2643                           DAG.getIntPtrConstant(0, true), InFlag);
2644    InFlag = Chain.getValue(1);
2645  }
2646
2647  Ops.push_back(Chain);
2648  Ops.push_back(Callee);
2649
2650  if (isTailCall)
2651    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2652
2653  // Add argument registers to the end of the list so that they are known live
2654  // into the call.
2655  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2656    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2657                                  RegsToPass[i].second.getValueType()));
2658
2659  // Add a register mask operand representing the call-preserved registers.
2660  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2661  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2662  assert(Mask && "Missing call preserved mask for calling convention");
2663  Ops.push_back(DAG.getRegisterMask(Mask));
2664
2665  if (InFlag.getNode())
2666    Ops.push_back(InFlag);
2667
2668  if (isTailCall) {
2669    // We used to do:
2670    //// If this is the first return lowered for this function, add the regs
2671    //// to the liveout set for the function.
2672    // This isn't right, although it's probably harmless on x86; liveouts
2673    // should be computed from returns not tail calls.  Consider a void
2674    // function making a tail call to a function returning int.
2675    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2676  }
2677
2678  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2679  InFlag = Chain.getValue(1);
2680
2681  // Create the CALLSEQ_END node.
2682  unsigned NumBytesForCalleeToPush;
2683  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2684                       getTargetMachine().Options.GuaranteedTailCallOpt))
2685    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2686  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2687           SR == StackStructReturn)
2688    // If this is a call to a struct-return function, the callee
2689    // pops the hidden struct pointer, so we have to push it back.
2690    // This is common for Darwin/X86, Linux & Mingw32 targets.
2691    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2692    NumBytesForCalleeToPush = 4;
2693  else
2694    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2695
2696  // Returns a flag for retval copy to use.
2697  if (!IsSibcall) {
2698    Chain = DAG.getCALLSEQ_END(Chain,
2699                               DAG.getIntPtrConstant(NumBytes, true),
2700                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2701                                                     true),
2702                               InFlag);
2703    InFlag = Chain.getValue(1);
2704  }
2705
2706  // Handle result values, copying them out of physregs into vregs that we
2707  // return.
2708  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2709                         Ins, dl, DAG, InVals);
2710}
2711
2712//===----------------------------------------------------------------------===//
2713//                Fast Calling Convention (tail call) implementation
2714//===----------------------------------------------------------------------===//
2715
2716//  Like std call, callee cleans arguments, convention except that ECX is
2717//  reserved for storing the tail called function address. Only 2 registers are
2718//  free for argument passing (inreg). Tail call optimization is performed
2719//  provided:
2720//                * tailcallopt is enabled
2721//                * caller/callee are fastcc
2722//  On X86_64 architecture with GOT-style position independent code only local
2723//  (within module) calls are supported at the moment.
2724//  To keep the stack aligned according to platform abi the function
2725//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2726//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2727//  If a tail called function callee has more arguments than the caller the
2728//  caller needs to make sure that there is room to move the RETADDR to. This is
2729//  achieved by reserving an area the size of the argument delta right after the
2730//  original REtADDR, but before the saved framepointer or the spilled registers
2731//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2732//  stack layout:
2733//    arg1
2734//    arg2
2735//    RETADDR
2736//    [ new RETADDR
2737//      move area ]
2738//    (possible EBP)
2739//    ESI
2740//    EDI
2741//    local1 ..
2742
2743/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2744/// for a 16 byte align requirement.
2745unsigned
2746X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2747                                               SelectionDAG& DAG) const {
2748  MachineFunction &MF = DAG.getMachineFunction();
2749  const TargetMachine &TM = MF.getTarget();
2750  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2751  unsigned StackAlignment = TFI.getStackAlignment();
2752  uint64_t AlignMask = StackAlignment - 1;
2753  int64_t Offset = StackSize;
2754  unsigned SlotSize = RegInfo->getSlotSize();
2755  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2756    // Number smaller than 12 so just add the difference.
2757    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2758  } else {
2759    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2760    Offset = ((~AlignMask) & Offset) + StackAlignment +
2761      (StackAlignment-SlotSize);
2762  }
2763  return Offset;
2764}
2765
2766/// MatchingStackOffset - Return true if the given stack call argument is
2767/// already available in the same position (relatively) of the caller's
2768/// incoming argument stack.
2769static
2770bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2771                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2772                         const X86InstrInfo *TII) {
2773  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2774  int FI = INT_MAX;
2775  if (Arg.getOpcode() == ISD::CopyFromReg) {
2776    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2777    if (!TargetRegisterInfo::isVirtualRegister(VR))
2778      return false;
2779    MachineInstr *Def = MRI->getVRegDef(VR);
2780    if (!Def)
2781      return false;
2782    if (!Flags.isByVal()) {
2783      if (!TII->isLoadFromStackSlot(Def, FI))
2784        return false;
2785    } else {
2786      unsigned Opcode = Def->getOpcode();
2787      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2788          Def->getOperand(1).isFI()) {
2789        FI = Def->getOperand(1).getIndex();
2790        Bytes = Flags.getByValSize();
2791      } else
2792        return false;
2793    }
2794  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2795    if (Flags.isByVal())
2796      // ByVal argument is passed in as a pointer but it's now being
2797      // dereferenced. e.g.
2798      // define @foo(%struct.X* %A) {
2799      //   tail call @bar(%struct.X* byval %A)
2800      // }
2801      return false;
2802    SDValue Ptr = Ld->getBasePtr();
2803    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2804    if (!FINode)
2805      return false;
2806    FI = FINode->getIndex();
2807  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2808    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2809    FI = FINode->getIndex();
2810    Bytes = Flags.getByValSize();
2811  } else
2812    return false;
2813
2814  assert(FI != INT_MAX);
2815  if (!MFI->isFixedObjectIndex(FI))
2816    return false;
2817  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2818}
2819
2820/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2821/// for tail call optimization. Targets which want to do tail call
2822/// optimization should implement this function.
2823bool
2824X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2825                                                     CallingConv::ID CalleeCC,
2826                                                     bool isVarArg,
2827                                                     bool isCalleeStructRet,
2828                                                     bool isCallerStructRet,
2829                                                     Type *RetTy,
2830                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2831                                    const SmallVectorImpl<SDValue> &OutVals,
2832                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2833                                                     SelectionDAG &DAG) const {
2834  if (!IsTailCallConvention(CalleeCC) &&
2835      CalleeCC != CallingConv::C)
2836    return false;
2837
2838  // If -tailcallopt is specified, make fastcc functions tail-callable.
2839  const MachineFunction &MF = DAG.getMachineFunction();
2840  const Function *CallerF = DAG.getMachineFunction().getFunction();
2841
2842  // If the function return type is x86_fp80 and the callee return type is not,
2843  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2844  // perform a tailcall optimization here.
2845  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2846    return false;
2847
2848  CallingConv::ID CallerCC = CallerF->getCallingConv();
2849  bool CCMatch = CallerCC == CalleeCC;
2850
2851  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2852    if (IsTailCallConvention(CalleeCC) && CCMatch)
2853      return true;
2854    return false;
2855  }
2856
2857  // Look for obvious safe cases to perform tail call optimization that do not
2858  // require ABI changes. This is what gcc calls sibcall.
2859
2860  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2861  // emit a special epilogue.
2862  if (RegInfo->needsStackRealignment(MF))
2863    return false;
2864
2865  // Also avoid sibcall optimization if either caller or callee uses struct
2866  // return semantics.
2867  if (isCalleeStructRet || isCallerStructRet)
2868    return false;
2869
2870  // An stdcall caller is expected to clean up its arguments; the callee
2871  // isn't going to do that.
2872  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
2873    return false;
2874
2875  // Do not sibcall optimize vararg calls unless all arguments are passed via
2876  // registers.
2877  if (isVarArg && !Outs.empty()) {
2878
2879    // Optimizing for varargs on Win64 is unlikely to be safe without
2880    // additional testing.
2881    if (Subtarget->isTargetWin64())
2882      return false;
2883
2884    SmallVector<CCValAssign, 16> ArgLocs;
2885    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2886                   getTargetMachine(), ArgLocs, *DAG.getContext());
2887
2888    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2889    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2890      if (!ArgLocs[i].isRegLoc())
2891        return false;
2892  }
2893
2894  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2895  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2896  // this into a sibcall.
2897  bool Unused = false;
2898  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2899    if (!Ins[i].Used) {
2900      Unused = true;
2901      break;
2902    }
2903  }
2904  if (Unused) {
2905    SmallVector<CCValAssign, 16> RVLocs;
2906    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2907                   getTargetMachine(), RVLocs, *DAG.getContext());
2908    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2909    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2910      CCValAssign &VA = RVLocs[i];
2911      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2912        return false;
2913    }
2914  }
2915
2916  // If the calling conventions do not match, then we'd better make sure the
2917  // results are returned in the same way as what the caller expects.
2918  if (!CCMatch) {
2919    SmallVector<CCValAssign, 16> RVLocs1;
2920    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2921                    getTargetMachine(), RVLocs1, *DAG.getContext());
2922    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2923
2924    SmallVector<CCValAssign, 16> RVLocs2;
2925    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2926                    getTargetMachine(), RVLocs2, *DAG.getContext());
2927    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2928
2929    if (RVLocs1.size() != RVLocs2.size())
2930      return false;
2931    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2932      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2933        return false;
2934      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2935        return false;
2936      if (RVLocs1[i].isRegLoc()) {
2937        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2938          return false;
2939      } else {
2940        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2941          return false;
2942      }
2943    }
2944  }
2945
2946  // If the callee takes no arguments then go on to check the results of the
2947  // call.
2948  if (!Outs.empty()) {
2949    // Check if stack adjustment is needed. For now, do not do this if any
2950    // argument is passed on the stack.
2951    SmallVector<CCValAssign, 16> ArgLocs;
2952    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2953                   getTargetMachine(), ArgLocs, *DAG.getContext());
2954
2955    // Allocate shadow area for Win64
2956    if (Subtarget->isTargetWin64()) {
2957      CCInfo.AllocateStack(32, 8);
2958    }
2959
2960    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2961    if (CCInfo.getNextStackOffset()) {
2962      MachineFunction &MF = DAG.getMachineFunction();
2963      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2964        return false;
2965
2966      // Check if the arguments are already laid out in the right way as
2967      // the caller's fixed stack objects.
2968      MachineFrameInfo *MFI = MF.getFrameInfo();
2969      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2970      const X86InstrInfo *TII =
2971        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2972      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2973        CCValAssign &VA = ArgLocs[i];
2974        SDValue Arg = OutVals[i];
2975        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2976        if (VA.getLocInfo() == CCValAssign::Indirect)
2977          return false;
2978        if (!VA.isRegLoc()) {
2979          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2980                                   MFI, MRI, TII))
2981            return false;
2982        }
2983      }
2984    }
2985
2986    // If the tailcall address may be in a register, then make sure it's
2987    // possible to register allocate for it. In 32-bit, the call address can
2988    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2989    // callee-saved registers are restored. These happen to be the same
2990    // registers used to pass 'inreg' arguments so watch out for those.
2991    if (!Subtarget->is64Bit() &&
2992        ((!isa<GlobalAddressSDNode>(Callee) &&
2993          !isa<ExternalSymbolSDNode>(Callee)) ||
2994         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
2995      unsigned NumInRegs = 0;
2996      // In PIC we need an extra register to formulate the address computation
2997      // for the callee.
2998      unsigned MaxInRegs =
2999          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3000
3001      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3002        CCValAssign &VA = ArgLocs[i];
3003        if (!VA.isRegLoc())
3004          continue;
3005        unsigned Reg = VA.getLocReg();
3006        switch (Reg) {
3007        default: break;
3008        case X86::EAX: case X86::EDX: case X86::ECX:
3009          if (++NumInRegs == MaxInRegs)
3010            return false;
3011          break;
3012        }
3013      }
3014    }
3015  }
3016
3017  return true;
3018}
3019
3020FastISel *
3021X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3022                                  const TargetLibraryInfo *libInfo) const {
3023  return X86::createFastISel(funcInfo, libInfo);
3024}
3025
3026//===----------------------------------------------------------------------===//
3027//                           Other Lowering Hooks
3028//===----------------------------------------------------------------------===//
3029
3030static bool MayFoldLoad(SDValue Op) {
3031  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3032}
3033
3034static bool MayFoldIntoStore(SDValue Op) {
3035  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3036}
3037
3038static bool isTargetShuffle(unsigned Opcode) {
3039  switch(Opcode) {
3040  default: return false;
3041  case X86ISD::PSHUFD:
3042  case X86ISD::PSHUFHW:
3043  case X86ISD::PSHUFLW:
3044  case X86ISD::SHUFP:
3045  case X86ISD::PALIGNR:
3046  case X86ISD::MOVLHPS:
3047  case X86ISD::MOVLHPD:
3048  case X86ISD::MOVHLPS:
3049  case X86ISD::MOVLPS:
3050  case X86ISD::MOVLPD:
3051  case X86ISD::MOVSHDUP:
3052  case X86ISD::MOVSLDUP:
3053  case X86ISD::MOVDDUP:
3054  case X86ISD::MOVSS:
3055  case X86ISD::MOVSD:
3056  case X86ISD::UNPCKL:
3057  case X86ISD::UNPCKH:
3058  case X86ISD::VPERMILP:
3059  case X86ISD::VPERM2X128:
3060  case X86ISD::VPERMI:
3061    return true;
3062  }
3063}
3064
3065static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3066                                    SDValue V1, SelectionDAG &DAG) {
3067  switch(Opc) {
3068  default: llvm_unreachable("Unknown x86 shuffle node");
3069  case X86ISD::MOVSHDUP:
3070  case X86ISD::MOVSLDUP:
3071  case X86ISD::MOVDDUP:
3072    return DAG.getNode(Opc, dl, VT, V1);
3073  }
3074}
3075
3076static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3077                                    SDValue V1, unsigned TargetMask,
3078                                    SelectionDAG &DAG) {
3079  switch(Opc) {
3080  default: llvm_unreachable("Unknown x86 shuffle node");
3081  case X86ISD::PSHUFD:
3082  case X86ISD::PSHUFHW:
3083  case X86ISD::PSHUFLW:
3084  case X86ISD::VPERMILP:
3085  case X86ISD::VPERMI:
3086    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3087  }
3088}
3089
3090static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3091                                    SDValue V1, SDValue V2, unsigned TargetMask,
3092                                    SelectionDAG &DAG) {
3093  switch(Opc) {
3094  default: llvm_unreachable("Unknown x86 shuffle node");
3095  case X86ISD::PALIGNR:
3096  case X86ISD::SHUFP:
3097  case X86ISD::VPERM2X128:
3098    return DAG.getNode(Opc, dl, VT, V1, V2,
3099                       DAG.getConstant(TargetMask, MVT::i8));
3100  }
3101}
3102
3103static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3104                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3105  switch(Opc) {
3106  default: llvm_unreachable("Unknown x86 shuffle node");
3107  case X86ISD::MOVLHPS:
3108  case X86ISD::MOVLHPD:
3109  case X86ISD::MOVHLPS:
3110  case X86ISD::MOVLPS:
3111  case X86ISD::MOVLPD:
3112  case X86ISD::MOVSS:
3113  case X86ISD::MOVSD:
3114  case X86ISD::UNPCKL:
3115  case X86ISD::UNPCKH:
3116    return DAG.getNode(Opc, dl, VT, V1, V2);
3117  }
3118}
3119
3120SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3121  MachineFunction &MF = DAG.getMachineFunction();
3122  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3123  int ReturnAddrIndex = FuncInfo->getRAIndex();
3124
3125  if (ReturnAddrIndex == 0) {
3126    // Set up a frame object for the return address.
3127    unsigned SlotSize = RegInfo->getSlotSize();
3128    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3129                                                           false);
3130    FuncInfo->setRAIndex(ReturnAddrIndex);
3131  }
3132
3133  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3134}
3135
3136bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3137                                       bool hasSymbolicDisplacement) {
3138  // Offset should fit into 32 bit immediate field.
3139  if (!isInt<32>(Offset))
3140    return false;
3141
3142  // If we don't have a symbolic displacement - we don't have any extra
3143  // restrictions.
3144  if (!hasSymbolicDisplacement)
3145    return true;
3146
3147  // FIXME: Some tweaks might be needed for medium code model.
3148  if (M != CodeModel::Small && M != CodeModel::Kernel)
3149    return false;
3150
3151  // For small code model we assume that latest object is 16MB before end of 31
3152  // bits boundary. We may also accept pretty large negative constants knowing
3153  // that all objects are in the positive half of address space.
3154  if (M == CodeModel::Small && Offset < 16*1024*1024)
3155    return true;
3156
3157  // For kernel code model we know that all object resist in the negative half
3158  // of 32bits address space. We may not accept negative offsets, since they may
3159  // be just off and we may accept pretty large positive ones.
3160  if (M == CodeModel::Kernel && Offset > 0)
3161    return true;
3162
3163  return false;
3164}
3165
3166/// isCalleePop - Determines whether the callee is required to pop its
3167/// own arguments. Callee pop is necessary to support tail calls.
3168bool X86::isCalleePop(CallingConv::ID CallingConv,
3169                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3170  if (IsVarArg)
3171    return false;
3172
3173  switch (CallingConv) {
3174  default:
3175    return false;
3176  case CallingConv::X86_StdCall:
3177    return !is64Bit;
3178  case CallingConv::X86_FastCall:
3179    return !is64Bit;
3180  case CallingConv::X86_ThisCall:
3181    return !is64Bit;
3182  case CallingConv::Fast:
3183    return TailCallOpt;
3184  case CallingConv::GHC:
3185    return TailCallOpt;
3186  case CallingConv::HiPE:
3187    return TailCallOpt;
3188  }
3189}
3190
3191/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3192/// specific condition code, returning the condition code and the LHS/RHS of the
3193/// comparison to make.
3194static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3195                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3196  if (!isFP) {
3197    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3198      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3199        // X > -1   -> X == 0, jump !sign.
3200        RHS = DAG.getConstant(0, RHS.getValueType());
3201        return X86::COND_NS;
3202      }
3203      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3204        // X < 0   -> X == 0, jump on sign.
3205        return X86::COND_S;
3206      }
3207      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3208        // X < 1   -> X <= 0
3209        RHS = DAG.getConstant(0, RHS.getValueType());
3210        return X86::COND_LE;
3211      }
3212    }
3213
3214    switch (SetCCOpcode) {
3215    default: llvm_unreachable("Invalid integer condition!");
3216    case ISD::SETEQ:  return X86::COND_E;
3217    case ISD::SETGT:  return X86::COND_G;
3218    case ISD::SETGE:  return X86::COND_GE;
3219    case ISD::SETLT:  return X86::COND_L;
3220    case ISD::SETLE:  return X86::COND_LE;
3221    case ISD::SETNE:  return X86::COND_NE;
3222    case ISD::SETULT: return X86::COND_B;
3223    case ISD::SETUGT: return X86::COND_A;
3224    case ISD::SETULE: return X86::COND_BE;
3225    case ISD::SETUGE: return X86::COND_AE;
3226    }
3227  }
3228
3229  // First determine if it is required or is profitable to flip the operands.
3230
3231  // If LHS is a foldable load, but RHS is not, flip the condition.
3232  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3233      !ISD::isNON_EXTLoad(RHS.getNode())) {
3234    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3235    std::swap(LHS, RHS);
3236  }
3237
3238  switch (SetCCOpcode) {
3239  default: break;
3240  case ISD::SETOLT:
3241  case ISD::SETOLE:
3242  case ISD::SETUGT:
3243  case ISD::SETUGE:
3244    std::swap(LHS, RHS);
3245    break;
3246  }
3247
3248  // On a floating point condition, the flags are set as follows:
3249  // ZF  PF  CF   op
3250  //  0 | 0 | 0 | X > Y
3251  //  0 | 0 | 1 | X < Y
3252  //  1 | 0 | 0 | X == Y
3253  //  1 | 1 | 1 | unordered
3254  switch (SetCCOpcode) {
3255  default: llvm_unreachable("Condcode should be pre-legalized away");
3256  case ISD::SETUEQ:
3257  case ISD::SETEQ:   return X86::COND_E;
3258  case ISD::SETOLT:              // flipped
3259  case ISD::SETOGT:
3260  case ISD::SETGT:   return X86::COND_A;
3261  case ISD::SETOLE:              // flipped
3262  case ISD::SETOGE:
3263  case ISD::SETGE:   return X86::COND_AE;
3264  case ISD::SETUGT:              // flipped
3265  case ISD::SETULT:
3266  case ISD::SETLT:   return X86::COND_B;
3267  case ISD::SETUGE:              // flipped
3268  case ISD::SETULE:
3269  case ISD::SETLE:   return X86::COND_BE;
3270  case ISD::SETONE:
3271  case ISD::SETNE:   return X86::COND_NE;
3272  case ISD::SETUO:   return X86::COND_P;
3273  case ISD::SETO:    return X86::COND_NP;
3274  case ISD::SETOEQ:
3275  case ISD::SETUNE:  return X86::COND_INVALID;
3276  }
3277}
3278
3279/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3280/// code. Current x86 isa includes the following FP cmov instructions:
3281/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3282static bool hasFPCMov(unsigned X86CC) {
3283  switch (X86CC) {
3284  default:
3285    return false;
3286  case X86::COND_B:
3287  case X86::COND_BE:
3288  case X86::COND_E:
3289  case X86::COND_P:
3290  case X86::COND_A:
3291  case X86::COND_AE:
3292  case X86::COND_NE:
3293  case X86::COND_NP:
3294    return true;
3295  }
3296}
3297
3298/// isFPImmLegal - Returns true if the target can instruction select the
3299/// specified FP immediate natively. If false, the legalizer will
3300/// materialize the FP immediate as a load from a constant pool.
3301bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3302  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3303    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3304      return true;
3305  }
3306  return false;
3307}
3308
3309/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3310/// the specified range (L, H].
3311static bool isUndefOrInRange(int Val, int Low, int Hi) {
3312  return (Val < 0) || (Val >= Low && Val < Hi);
3313}
3314
3315/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3316/// specified value.
3317static bool isUndefOrEqual(int Val, int CmpVal) {
3318  return (Val < 0 || Val == CmpVal);
3319}
3320
3321/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3322/// from position Pos and ending in Pos+Size, falls within the specified
3323/// sequential range (L, L+Pos]. or is undef.
3324static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3325                                       unsigned Pos, unsigned Size, int Low) {
3326  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3327    if (!isUndefOrEqual(Mask[i], Low))
3328      return false;
3329  return true;
3330}
3331
3332/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3333/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3334/// the second operand.
3335static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3336  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3337    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3338  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3339    return (Mask[0] < 2 && Mask[1] < 2);
3340  return false;
3341}
3342
3343/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3344/// is suitable for input to PSHUFHW.
3345static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3346  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3347    return false;
3348
3349  // Lower quadword copied in order or undef.
3350  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3351    return false;
3352
3353  // Upper quadword shuffled.
3354  for (unsigned i = 4; i != 8; ++i)
3355    if (!isUndefOrInRange(Mask[i], 4, 8))
3356      return false;
3357
3358  if (VT == MVT::v16i16) {
3359    // Lower quadword copied in order or undef.
3360    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3361      return false;
3362
3363    // Upper quadword shuffled.
3364    for (unsigned i = 12; i != 16; ++i)
3365      if (!isUndefOrInRange(Mask[i], 12, 16))
3366        return false;
3367  }
3368
3369  return true;
3370}
3371
3372/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3373/// is suitable for input to PSHUFLW.
3374static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3375  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3376    return false;
3377
3378  // Upper quadword copied in order.
3379  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3380    return false;
3381
3382  // Lower quadword shuffled.
3383  for (unsigned i = 0; i != 4; ++i)
3384    if (!isUndefOrInRange(Mask[i], 0, 4))
3385      return false;
3386
3387  if (VT == MVT::v16i16) {
3388    // Upper quadword copied in order.
3389    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3390      return false;
3391
3392    // Lower quadword shuffled.
3393    for (unsigned i = 8; i != 12; ++i)
3394      if (!isUndefOrInRange(Mask[i], 8, 12))
3395        return false;
3396  }
3397
3398  return true;
3399}
3400
3401/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3402/// is suitable for input to PALIGNR.
3403static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3404                          const X86Subtarget *Subtarget) {
3405  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3406      (VT.is256BitVector() && !Subtarget->hasInt256()))
3407    return false;
3408
3409  unsigned NumElts = VT.getVectorNumElements();
3410  unsigned NumLanes = VT.getSizeInBits()/128;
3411  unsigned NumLaneElts = NumElts/NumLanes;
3412
3413  // Do not handle 64-bit element shuffles with palignr.
3414  if (NumLaneElts == 2)
3415    return false;
3416
3417  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3418    unsigned i;
3419    for (i = 0; i != NumLaneElts; ++i) {
3420      if (Mask[i+l] >= 0)
3421        break;
3422    }
3423
3424    // Lane is all undef, go to next lane
3425    if (i == NumLaneElts)
3426      continue;
3427
3428    int Start = Mask[i+l];
3429
3430    // Make sure its in this lane in one of the sources
3431    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3432        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3433      return false;
3434
3435    // If not lane 0, then we must match lane 0
3436    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3437      return false;
3438
3439    // Correct second source to be contiguous with first source
3440    if (Start >= (int)NumElts)
3441      Start -= NumElts - NumLaneElts;
3442
3443    // Make sure we're shifting in the right direction.
3444    if (Start <= (int)(i+l))
3445      return false;
3446
3447    Start -= i;
3448
3449    // Check the rest of the elements to see if they are consecutive.
3450    for (++i; i != NumLaneElts; ++i) {
3451      int Idx = Mask[i+l];
3452
3453      // Make sure its in this lane
3454      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3455          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3456        return false;
3457
3458      // If not lane 0, then we must match lane 0
3459      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3460        return false;
3461
3462      if (Idx >= (int)NumElts)
3463        Idx -= NumElts - NumLaneElts;
3464
3465      if (!isUndefOrEqual(Idx, Start+i))
3466        return false;
3467
3468    }
3469  }
3470
3471  return true;
3472}
3473
3474/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3475/// the two vector operands have swapped position.
3476static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3477                                     unsigned NumElems) {
3478  for (unsigned i = 0; i != NumElems; ++i) {
3479    int idx = Mask[i];
3480    if (idx < 0)
3481      continue;
3482    else if (idx < (int)NumElems)
3483      Mask[i] = idx + NumElems;
3484    else
3485      Mask[i] = idx - NumElems;
3486  }
3487}
3488
3489/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3490/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3491/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3492/// reverse of what x86 shuffles want.
3493static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3494                        bool Commuted = false) {
3495  if (!HasFp256 && VT.is256BitVector())
3496    return false;
3497
3498  unsigned NumElems = VT.getVectorNumElements();
3499  unsigned NumLanes = VT.getSizeInBits()/128;
3500  unsigned NumLaneElems = NumElems/NumLanes;
3501
3502  if (NumLaneElems != 2 && NumLaneElems != 4)
3503    return false;
3504
3505  // VSHUFPSY divides the resulting vector into 4 chunks.
3506  // The sources are also splitted into 4 chunks, and each destination
3507  // chunk must come from a different source chunk.
3508  //
3509  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3510  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3511  //
3512  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3513  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3514  //
3515  // VSHUFPDY divides the resulting vector into 4 chunks.
3516  // The sources are also splitted into 4 chunks, and each destination
3517  // chunk must come from a different source chunk.
3518  //
3519  //  SRC1 =>      X3       X2       X1       X0
3520  //  SRC2 =>      Y3       Y2       Y1       Y0
3521  //
3522  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3523  //
3524  unsigned HalfLaneElems = NumLaneElems/2;
3525  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3526    for (unsigned i = 0; i != NumLaneElems; ++i) {
3527      int Idx = Mask[i+l];
3528      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3529      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3530        return false;
3531      // For VSHUFPSY, the mask of the second half must be the same as the
3532      // first but with the appropriate offsets. This works in the same way as
3533      // VPERMILPS works with masks.
3534      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3535        continue;
3536      if (!isUndefOrEqual(Idx, Mask[i]+l))
3537        return false;
3538    }
3539  }
3540
3541  return true;
3542}
3543
3544/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3545/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3546static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3547  if (!VT.is128BitVector())
3548    return false;
3549
3550  unsigned NumElems = VT.getVectorNumElements();
3551
3552  if (NumElems != 4)
3553    return false;
3554
3555  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3556  return isUndefOrEqual(Mask[0], 6) &&
3557         isUndefOrEqual(Mask[1], 7) &&
3558         isUndefOrEqual(Mask[2], 2) &&
3559         isUndefOrEqual(Mask[3], 3);
3560}
3561
3562/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3563/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3564/// <2, 3, 2, 3>
3565static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3566  if (!VT.is128BitVector())
3567    return false;
3568
3569  unsigned NumElems = VT.getVectorNumElements();
3570
3571  if (NumElems != 4)
3572    return false;
3573
3574  return isUndefOrEqual(Mask[0], 2) &&
3575         isUndefOrEqual(Mask[1], 3) &&
3576         isUndefOrEqual(Mask[2], 2) &&
3577         isUndefOrEqual(Mask[3], 3);
3578}
3579
3580/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3581/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3582static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3583  if (!VT.is128BitVector())
3584    return false;
3585
3586  unsigned NumElems = VT.getVectorNumElements();
3587
3588  if (NumElems != 2 && NumElems != 4)
3589    return false;
3590
3591  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3592    if (!isUndefOrEqual(Mask[i], i + NumElems))
3593      return false;
3594
3595  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3596    if (!isUndefOrEqual(Mask[i], i))
3597      return false;
3598
3599  return true;
3600}
3601
3602/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3603/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3604static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3605  if (!VT.is128BitVector())
3606    return false;
3607
3608  unsigned NumElems = VT.getVectorNumElements();
3609
3610  if (NumElems != 2 && NumElems != 4)
3611    return false;
3612
3613  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3614    if (!isUndefOrEqual(Mask[i], i))
3615      return false;
3616
3617  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3618    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3619      return false;
3620
3621  return true;
3622}
3623
3624//
3625// Some special combinations that can be optimized.
3626//
3627static
3628SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3629                               SelectionDAG &DAG) {
3630  MVT VT = SVOp->getValueType(0).getSimpleVT();
3631  DebugLoc dl = SVOp->getDebugLoc();
3632
3633  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3634    return SDValue();
3635
3636  ArrayRef<int> Mask = SVOp->getMask();
3637
3638  // These are the special masks that may be optimized.
3639  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3640  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3641  bool MatchEvenMask = true;
3642  bool MatchOddMask  = true;
3643  for (int i=0; i<8; ++i) {
3644    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3645      MatchEvenMask = false;
3646    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3647      MatchOddMask = false;
3648  }
3649
3650  if (!MatchEvenMask && !MatchOddMask)
3651    return SDValue();
3652
3653  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3654
3655  SDValue Op0 = SVOp->getOperand(0);
3656  SDValue Op1 = SVOp->getOperand(1);
3657
3658  if (MatchEvenMask) {
3659    // Shift the second operand right to 32 bits.
3660    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3661    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3662  } else {
3663    // Shift the first operand left to 32 bits.
3664    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3665    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3666  }
3667  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3668  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3669}
3670
3671/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3672/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3673static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3674                         bool HasInt256, bool V2IsSplat = false) {
3675  unsigned NumElts = VT.getVectorNumElements();
3676
3677  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3678         "Unsupported vector type for unpckh");
3679
3680  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3681      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3682    return false;
3683
3684  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3685  // independently on 128-bit lanes.
3686  unsigned NumLanes = VT.getSizeInBits()/128;
3687  unsigned NumLaneElts = NumElts/NumLanes;
3688
3689  for (unsigned l = 0; l != NumLanes; ++l) {
3690    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3691         i != (l+1)*NumLaneElts;
3692         i += 2, ++j) {
3693      int BitI  = Mask[i];
3694      int BitI1 = Mask[i+1];
3695      if (!isUndefOrEqual(BitI, j))
3696        return false;
3697      if (V2IsSplat) {
3698        if (!isUndefOrEqual(BitI1, NumElts))
3699          return false;
3700      } else {
3701        if (!isUndefOrEqual(BitI1, j + NumElts))
3702          return false;
3703      }
3704    }
3705  }
3706
3707  return true;
3708}
3709
3710/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3711/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3712static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3713                         bool HasInt256, bool V2IsSplat = false) {
3714  unsigned NumElts = VT.getVectorNumElements();
3715
3716  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3717         "Unsupported vector type for unpckh");
3718
3719  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3720      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3721    return false;
3722
3723  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3724  // independently on 128-bit lanes.
3725  unsigned NumLanes = VT.getSizeInBits()/128;
3726  unsigned NumLaneElts = NumElts/NumLanes;
3727
3728  for (unsigned l = 0; l != NumLanes; ++l) {
3729    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3730         i != (l+1)*NumLaneElts; i += 2, ++j) {
3731      int BitI  = Mask[i];
3732      int BitI1 = Mask[i+1];
3733      if (!isUndefOrEqual(BitI, j))
3734        return false;
3735      if (V2IsSplat) {
3736        if (isUndefOrEqual(BitI1, NumElts))
3737          return false;
3738      } else {
3739        if (!isUndefOrEqual(BitI1, j+NumElts))
3740          return false;
3741      }
3742    }
3743  }
3744  return true;
3745}
3746
3747/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3748/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3749/// <0, 0, 1, 1>
3750static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3751  unsigned NumElts = VT.getVectorNumElements();
3752  bool Is256BitVec = VT.is256BitVector();
3753
3754  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3755         "Unsupported vector type for unpckh");
3756
3757  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3758      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3759    return false;
3760
3761  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3762  // FIXME: Need a better way to get rid of this, there's no latency difference
3763  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3764  // the former later. We should also remove the "_undef" special mask.
3765  if (NumElts == 4 && Is256BitVec)
3766    return false;
3767
3768  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3769  // independently on 128-bit lanes.
3770  unsigned NumLanes = VT.getSizeInBits()/128;
3771  unsigned NumLaneElts = NumElts/NumLanes;
3772
3773  for (unsigned l = 0; l != NumLanes; ++l) {
3774    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3775         i != (l+1)*NumLaneElts;
3776         i += 2, ++j) {
3777      int BitI  = Mask[i];
3778      int BitI1 = Mask[i+1];
3779
3780      if (!isUndefOrEqual(BitI, j))
3781        return false;
3782      if (!isUndefOrEqual(BitI1, j))
3783        return false;
3784    }
3785  }
3786
3787  return true;
3788}
3789
3790/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3791/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3792/// <2, 2, 3, 3>
3793static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3794  unsigned NumElts = VT.getVectorNumElements();
3795
3796  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3797         "Unsupported vector type for unpckh");
3798
3799  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3800      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3801    return false;
3802
3803  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3804  // independently on 128-bit lanes.
3805  unsigned NumLanes = VT.getSizeInBits()/128;
3806  unsigned NumLaneElts = NumElts/NumLanes;
3807
3808  for (unsigned l = 0; l != NumLanes; ++l) {
3809    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3810         i != (l+1)*NumLaneElts; i += 2, ++j) {
3811      int BitI  = Mask[i];
3812      int BitI1 = Mask[i+1];
3813      if (!isUndefOrEqual(BitI, j))
3814        return false;
3815      if (!isUndefOrEqual(BitI1, j))
3816        return false;
3817    }
3818  }
3819  return true;
3820}
3821
3822/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3823/// specifies a shuffle of elements that is suitable for input to MOVSS,
3824/// MOVSD, and MOVD, i.e. setting the lowest element.
3825static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3826  if (VT.getVectorElementType().getSizeInBits() < 32)
3827    return false;
3828  if (!VT.is128BitVector())
3829    return false;
3830
3831  unsigned NumElts = VT.getVectorNumElements();
3832
3833  if (!isUndefOrEqual(Mask[0], NumElts))
3834    return false;
3835
3836  for (unsigned i = 1; i != NumElts; ++i)
3837    if (!isUndefOrEqual(Mask[i], i))
3838      return false;
3839
3840  return true;
3841}
3842
3843/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3844/// as permutations between 128-bit chunks or halves. As an example: this
3845/// shuffle bellow:
3846///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3847/// The first half comes from the second half of V1 and the second half from the
3848/// the second half of V2.
3849static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3850  if (!HasFp256 || !VT.is256BitVector())
3851    return false;
3852
3853  // The shuffle result is divided into half A and half B. In total the two
3854  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3855  // B must come from C, D, E or F.
3856  unsigned HalfSize = VT.getVectorNumElements()/2;
3857  bool MatchA = false, MatchB = false;
3858
3859  // Check if A comes from one of C, D, E, F.
3860  for (unsigned Half = 0; Half != 4; ++Half) {
3861    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3862      MatchA = true;
3863      break;
3864    }
3865  }
3866
3867  // Check if B comes from one of C, D, E, F.
3868  for (unsigned Half = 0; Half != 4; ++Half) {
3869    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3870      MatchB = true;
3871      break;
3872    }
3873  }
3874
3875  return MatchA && MatchB;
3876}
3877
3878/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3879/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3880static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3881  MVT VT = SVOp->getValueType(0).getSimpleVT();
3882
3883  unsigned HalfSize = VT.getVectorNumElements()/2;
3884
3885  unsigned FstHalf = 0, SndHalf = 0;
3886  for (unsigned i = 0; i < HalfSize; ++i) {
3887    if (SVOp->getMaskElt(i) > 0) {
3888      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3889      break;
3890    }
3891  }
3892  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3893    if (SVOp->getMaskElt(i) > 0) {
3894      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3895      break;
3896    }
3897  }
3898
3899  return (FstHalf | (SndHalf << 4));
3900}
3901
3902/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3903/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3904/// Note that VPERMIL mask matching is different depending whether theunderlying
3905/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3906/// to the same elements of the low, but to the higher half of the source.
3907/// In VPERMILPD the two lanes could be shuffled independently of each other
3908/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3909static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3910  if (!HasFp256)
3911    return false;
3912
3913  unsigned NumElts = VT.getVectorNumElements();
3914  // Only match 256-bit with 32/64-bit types
3915  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3916    return false;
3917
3918  unsigned NumLanes = VT.getSizeInBits()/128;
3919  unsigned LaneSize = NumElts/NumLanes;
3920  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3921    for (unsigned i = 0; i != LaneSize; ++i) {
3922      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3923        return false;
3924      if (NumElts != 8 || l == 0)
3925        continue;
3926      // VPERMILPS handling
3927      if (Mask[i] < 0)
3928        continue;
3929      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3930        return false;
3931    }
3932  }
3933
3934  return true;
3935}
3936
3937/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3938/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3939/// element of vector 2 and the other elements to come from vector 1 in order.
3940static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3941                               bool V2IsSplat = false, bool V2IsUndef = false) {
3942  if (!VT.is128BitVector())
3943    return false;
3944
3945  unsigned NumOps = VT.getVectorNumElements();
3946  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3947    return false;
3948
3949  if (!isUndefOrEqual(Mask[0], 0))
3950    return false;
3951
3952  for (unsigned i = 1; i != NumOps; ++i)
3953    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3954          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3955          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3956      return false;
3957
3958  return true;
3959}
3960
3961/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3962/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3963/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3964static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3965                           const X86Subtarget *Subtarget) {
3966  if (!Subtarget->hasSSE3())
3967    return false;
3968
3969  unsigned NumElems = VT.getVectorNumElements();
3970
3971  if ((VT.is128BitVector() && NumElems != 4) ||
3972      (VT.is256BitVector() && NumElems != 8))
3973    return false;
3974
3975  // "i+1" is the value the indexed mask element must have
3976  for (unsigned i = 0; i != NumElems; i += 2)
3977    if (!isUndefOrEqual(Mask[i], i+1) ||
3978        !isUndefOrEqual(Mask[i+1], i+1))
3979      return false;
3980
3981  return true;
3982}
3983
3984/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3985/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3986/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3987static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3988                           const X86Subtarget *Subtarget) {
3989  if (!Subtarget->hasSSE3())
3990    return false;
3991
3992  unsigned NumElems = VT.getVectorNumElements();
3993
3994  if ((VT.is128BitVector() && NumElems != 4) ||
3995      (VT.is256BitVector() && NumElems != 8))
3996    return false;
3997
3998  // "i" is the value the indexed mask element must have
3999  for (unsigned i = 0; i != NumElems; i += 2)
4000    if (!isUndefOrEqual(Mask[i], i) ||
4001        !isUndefOrEqual(Mask[i+1], i))
4002      return false;
4003
4004  return true;
4005}
4006
4007/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4008/// specifies a shuffle of elements that is suitable for input to 256-bit
4009/// version of MOVDDUP.
4010static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
4011  if (!HasFp256 || !VT.is256BitVector())
4012    return false;
4013
4014  unsigned NumElts = VT.getVectorNumElements();
4015  if (NumElts != 4)
4016    return false;
4017
4018  for (unsigned i = 0; i != NumElts/2; ++i)
4019    if (!isUndefOrEqual(Mask[i], 0))
4020      return false;
4021  for (unsigned i = NumElts/2; i != NumElts; ++i)
4022    if (!isUndefOrEqual(Mask[i], NumElts/2))
4023      return false;
4024  return true;
4025}
4026
4027/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4028/// specifies a shuffle of elements that is suitable for input to 128-bit
4029/// version of MOVDDUP.
4030static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
4031  if (!VT.is128BitVector())
4032    return false;
4033
4034  unsigned e = VT.getVectorNumElements() / 2;
4035  for (unsigned i = 0; i != e; ++i)
4036    if (!isUndefOrEqual(Mask[i], i))
4037      return false;
4038  for (unsigned i = 0; i != e; ++i)
4039    if (!isUndefOrEqual(Mask[e+i], i))
4040      return false;
4041  return true;
4042}
4043
4044/// isVEXTRACTF128Index - Return true if the specified
4045/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4046/// suitable for input to VEXTRACTF128.
4047bool X86::isVEXTRACTF128Index(SDNode *N) {
4048  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4049    return false;
4050
4051  // The index should be aligned on a 128-bit boundary.
4052  uint64_t Index =
4053    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4054
4055  MVT VT = N->getValueType(0).getSimpleVT();
4056  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4057  bool Result = (Index * ElSize) % 128 == 0;
4058
4059  return Result;
4060}
4061
4062/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4063/// operand specifies a subvector insert that is suitable for input to
4064/// VINSERTF128.
4065bool X86::isVINSERTF128Index(SDNode *N) {
4066  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4067    return false;
4068
4069  // The index should be aligned on a 128-bit boundary.
4070  uint64_t Index =
4071    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4072
4073  MVT VT = N->getValueType(0).getSimpleVT();
4074  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4075  bool Result = (Index * ElSize) % 128 == 0;
4076
4077  return Result;
4078}
4079
4080/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4081/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4082/// Handles 128-bit and 256-bit.
4083static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4084  MVT VT = N->getValueType(0).getSimpleVT();
4085
4086  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4087         "Unsupported vector type for PSHUF/SHUFP");
4088
4089  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4090  // independently on 128-bit lanes.
4091  unsigned NumElts = VT.getVectorNumElements();
4092  unsigned NumLanes = VT.getSizeInBits()/128;
4093  unsigned NumLaneElts = NumElts/NumLanes;
4094
4095  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4096         "Only supports 2 or 4 elements per lane");
4097
4098  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4099  unsigned Mask = 0;
4100  for (unsigned i = 0; i != NumElts; ++i) {
4101    int Elt = N->getMaskElt(i);
4102    if (Elt < 0) continue;
4103    Elt &= NumLaneElts - 1;
4104    unsigned ShAmt = (i << Shift) % 8;
4105    Mask |= Elt << ShAmt;
4106  }
4107
4108  return Mask;
4109}
4110
4111/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4112/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4113static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4114  MVT VT = N->getValueType(0).getSimpleVT();
4115
4116  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4117         "Unsupported vector type for PSHUFHW");
4118
4119  unsigned NumElts = VT.getVectorNumElements();
4120
4121  unsigned Mask = 0;
4122  for (unsigned l = 0; l != NumElts; l += 8) {
4123    // 8 nodes per lane, but we only care about the last 4.
4124    for (unsigned i = 0; i < 4; ++i) {
4125      int Elt = N->getMaskElt(l+i+4);
4126      if (Elt < 0) continue;
4127      Elt &= 0x3; // only 2-bits.
4128      Mask |= Elt << (i * 2);
4129    }
4130  }
4131
4132  return Mask;
4133}
4134
4135/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4136/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4137static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4138  MVT VT = N->getValueType(0).getSimpleVT();
4139
4140  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4141         "Unsupported vector type for PSHUFHW");
4142
4143  unsigned NumElts = VT.getVectorNumElements();
4144
4145  unsigned Mask = 0;
4146  for (unsigned l = 0; l != NumElts; l += 8) {
4147    // 8 nodes per lane, but we only care about the first 4.
4148    for (unsigned i = 0; i < 4; ++i) {
4149      int Elt = N->getMaskElt(l+i);
4150      if (Elt < 0) continue;
4151      Elt &= 0x3; // only 2-bits
4152      Mask |= Elt << (i * 2);
4153    }
4154  }
4155
4156  return Mask;
4157}
4158
4159/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4160/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4161static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4162  MVT VT = SVOp->getValueType(0).getSimpleVT();
4163  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4164
4165  unsigned NumElts = VT.getVectorNumElements();
4166  unsigned NumLanes = VT.getSizeInBits()/128;
4167  unsigned NumLaneElts = NumElts/NumLanes;
4168
4169  int Val = 0;
4170  unsigned i;
4171  for (i = 0; i != NumElts; ++i) {
4172    Val = SVOp->getMaskElt(i);
4173    if (Val >= 0)
4174      break;
4175  }
4176  if (Val >= (int)NumElts)
4177    Val -= NumElts - NumLaneElts;
4178
4179  assert(Val - i > 0 && "PALIGNR imm should be positive");
4180  return (Val - i) * EltSize;
4181}
4182
4183/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4184/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4185/// instructions.
4186unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4187  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4188    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4189
4190  uint64_t Index =
4191    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4192
4193  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4194  MVT ElVT = VecVT.getVectorElementType();
4195
4196  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4197  return Index / NumElemsPerChunk;
4198}
4199
4200/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4201/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4202/// instructions.
4203unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4204  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4205    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4206
4207  uint64_t Index =
4208    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4209
4210  MVT VecVT = N->getValueType(0).getSimpleVT();
4211  MVT ElVT = VecVT.getVectorElementType();
4212
4213  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4214  return Index / NumElemsPerChunk;
4215}
4216
4217/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4218/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4219/// Handles 256-bit.
4220static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4221  MVT VT = N->getValueType(0).getSimpleVT();
4222
4223  unsigned NumElts = VT.getVectorNumElements();
4224
4225  assert((VT.is256BitVector() && NumElts == 4) &&
4226         "Unsupported vector type for VPERMQ/VPERMPD");
4227
4228  unsigned Mask = 0;
4229  for (unsigned i = 0; i != NumElts; ++i) {
4230    int Elt = N->getMaskElt(i);
4231    if (Elt < 0)
4232      continue;
4233    Mask |= Elt << (i*2);
4234  }
4235
4236  return Mask;
4237}
4238/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4239/// constant +0.0.
4240bool X86::isZeroNode(SDValue Elt) {
4241  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4242    return CN->isNullValue();
4243  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4244    return CFP->getValueAPF().isPosZero();
4245  return false;
4246}
4247
4248/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4249/// their permute mask.
4250static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4251                                    SelectionDAG &DAG) {
4252  MVT VT = SVOp->getValueType(0).getSimpleVT();
4253  unsigned NumElems = VT.getVectorNumElements();
4254  SmallVector<int, 8> MaskVec;
4255
4256  for (unsigned i = 0; i != NumElems; ++i) {
4257    int Idx = SVOp->getMaskElt(i);
4258    if (Idx >= 0) {
4259      if (Idx < (int)NumElems)
4260        Idx += NumElems;
4261      else
4262        Idx -= NumElems;
4263    }
4264    MaskVec.push_back(Idx);
4265  }
4266  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4267                              SVOp->getOperand(0), &MaskVec[0]);
4268}
4269
4270/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4271/// match movhlps. The lower half elements should come from upper half of
4272/// V1 (and in order), and the upper half elements should come from the upper
4273/// half of V2 (and in order).
4274static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4275  if (!VT.is128BitVector())
4276    return false;
4277  if (VT.getVectorNumElements() != 4)
4278    return false;
4279  for (unsigned i = 0, e = 2; i != e; ++i)
4280    if (!isUndefOrEqual(Mask[i], i+2))
4281      return false;
4282  for (unsigned i = 2; i != 4; ++i)
4283    if (!isUndefOrEqual(Mask[i], i+4))
4284      return false;
4285  return true;
4286}
4287
4288/// isScalarLoadToVector - Returns true if the node is a scalar load that
4289/// is promoted to a vector. It also returns the LoadSDNode by reference if
4290/// required.
4291static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4292  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4293    return false;
4294  N = N->getOperand(0).getNode();
4295  if (!ISD::isNON_EXTLoad(N))
4296    return false;
4297  if (LD)
4298    *LD = cast<LoadSDNode>(N);
4299  return true;
4300}
4301
4302// Test whether the given value is a vector value which will be legalized
4303// into a load.
4304static bool WillBeConstantPoolLoad(SDNode *N) {
4305  if (N->getOpcode() != ISD::BUILD_VECTOR)
4306    return false;
4307
4308  // Check for any non-constant elements.
4309  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4310    switch (N->getOperand(i).getNode()->getOpcode()) {
4311    case ISD::UNDEF:
4312    case ISD::ConstantFP:
4313    case ISD::Constant:
4314      break;
4315    default:
4316      return false;
4317    }
4318
4319  // Vectors of all-zeros and all-ones are materialized with special
4320  // instructions rather than being loaded.
4321  return !ISD::isBuildVectorAllZeros(N) &&
4322         !ISD::isBuildVectorAllOnes(N);
4323}
4324
4325/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4326/// match movlp{s|d}. The lower half elements should come from lower half of
4327/// V1 (and in order), and the upper half elements should come from the upper
4328/// half of V2 (and in order). And since V1 will become the source of the
4329/// MOVLP, it must be either a vector load or a scalar load to vector.
4330static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4331                               ArrayRef<int> Mask, EVT VT) {
4332  if (!VT.is128BitVector())
4333    return false;
4334
4335  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4336    return false;
4337  // Is V2 is a vector load, don't do this transformation. We will try to use
4338  // load folding shufps op.
4339  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4340    return false;
4341
4342  unsigned NumElems = VT.getVectorNumElements();
4343
4344  if (NumElems != 2 && NumElems != 4)
4345    return false;
4346  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4347    if (!isUndefOrEqual(Mask[i], i))
4348      return false;
4349  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4350    if (!isUndefOrEqual(Mask[i], i+NumElems))
4351      return false;
4352  return true;
4353}
4354
4355/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4356/// all the same.
4357static bool isSplatVector(SDNode *N) {
4358  if (N->getOpcode() != ISD::BUILD_VECTOR)
4359    return false;
4360
4361  SDValue SplatValue = N->getOperand(0);
4362  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4363    if (N->getOperand(i) != SplatValue)
4364      return false;
4365  return true;
4366}
4367
4368/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4369/// to an zero vector.
4370/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4371static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4372  SDValue V1 = N->getOperand(0);
4373  SDValue V2 = N->getOperand(1);
4374  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4375  for (unsigned i = 0; i != NumElems; ++i) {
4376    int Idx = N->getMaskElt(i);
4377    if (Idx >= (int)NumElems) {
4378      unsigned Opc = V2.getOpcode();
4379      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4380        continue;
4381      if (Opc != ISD::BUILD_VECTOR ||
4382          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4383        return false;
4384    } else if (Idx >= 0) {
4385      unsigned Opc = V1.getOpcode();
4386      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4387        continue;
4388      if (Opc != ISD::BUILD_VECTOR ||
4389          !X86::isZeroNode(V1.getOperand(Idx)))
4390        return false;
4391    }
4392  }
4393  return true;
4394}
4395
4396/// getZeroVector - Returns a vector of specified type with all zero elements.
4397///
4398static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4399                             SelectionDAG &DAG, DebugLoc dl) {
4400  assert(VT.isVector() && "Expected a vector type");
4401
4402  // Always build SSE zero vectors as <4 x i32> bitcasted
4403  // to their dest type. This ensures they get CSE'd.
4404  SDValue Vec;
4405  if (VT.is128BitVector()) {  // SSE
4406    if (Subtarget->hasSSE2()) {  // SSE2
4407      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4408      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4409    } else { // SSE1
4410      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4411      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4412    }
4413  } else if (VT.is256BitVector()) { // AVX
4414    if (Subtarget->hasInt256()) { // AVX2
4415      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4416      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4417      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4418                        array_lengthof(Ops));
4419    } else {
4420      // 256-bit logic and arithmetic instructions in AVX are all
4421      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4422      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4423      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4424      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4425                        array_lengthof(Ops));
4426    }
4427  } else
4428    llvm_unreachable("Unexpected vector type");
4429
4430  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4431}
4432
4433/// getOnesVector - Returns a vector of specified type with all bits set.
4434/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4435/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4436/// Then bitcast to their original type, ensuring they get CSE'd.
4437static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4438                             DebugLoc dl) {
4439  assert(VT.isVector() && "Expected a vector type");
4440
4441  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4442  SDValue Vec;
4443  if (VT.is256BitVector()) {
4444    if (HasInt256) { // AVX2
4445      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4446      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4447                        array_lengthof(Ops));
4448    } else { // AVX
4449      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4450      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4451    }
4452  } else if (VT.is128BitVector()) {
4453    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4454  } else
4455    llvm_unreachable("Unexpected vector type");
4456
4457  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4458}
4459
4460/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4461/// that point to V2 points to its first element.
4462static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4463  for (unsigned i = 0; i != NumElems; ++i) {
4464    if (Mask[i] > (int)NumElems) {
4465      Mask[i] = NumElems;
4466    }
4467  }
4468}
4469
4470/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4471/// operation of specified width.
4472static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4473                       SDValue V2) {
4474  unsigned NumElems = VT.getVectorNumElements();
4475  SmallVector<int, 8> Mask;
4476  Mask.push_back(NumElems);
4477  for (unsigned i = 1; i != NumElems; ++i)
4478    Mask.push_back(i);
4479  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4480}
4481
4482/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4483static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4484                          SDValue V2) {
4485  unsigned NumElems = VT.getVectorNumElements();
4486  SmallVector<int, 8> Mask;
4487  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4488    Mask.push_back(i);
4489    Mask.push_back(i + NumElems);
4490  }
4491  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4492}
4493
4494/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4495static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4496                          SDValue V2) {
4497  unsigned NumElems = VT.getVectorNumElements();
4498  SmallVector<int, 8> Mask;
4499  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4500    Mask.push_back(i + Half);
4501    Mask.push_back(i + NumElems + Half);
4502  }
4503  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4504}
4505
4506// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4507// a generic shuffle instruction because the target has no such instructions.
4508// Generate shuffles which repeat i16 and i8 several times until they can be
4509// represented by v4f32 and then be manipulated by target suported shuffles.
4510static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4511  EVT VT = V.getValueType();
4512  int NumElems = VT.getVectorNumElements();
4513  DebugLoc dl = V.getDebugLoc();
4514
4515  while (NumElems > 4) {
4516    if (EltNo < NumElems/2) {
4517      V = getUnpackl(DAG, dl, VT, V, V);
4518    } else {
4519      V = getUnpackh(DAG, dl, VT, V, V);
4520      EltNo -= NumElems/2;
4521    }
4522    NumElems >>= 1;
4523  }
4524  return V;
4525}
4526
4527/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4528static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4529  EVT VT = V.getValueType();
4530  DebugLoc dl = V.getDebugLoc();
4531
4532  if (VT.is128BitVector()) {
4533    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4534    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4535    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4536                             &SplatMask[0]);
4537  } else if (VT.is256BitVector()) {
4538    // To use VPERMILPS to splat scalars, the second half of indicies must
4539    // refer to the higher part, which is a duplication of the lower one,
4540    // because VPERMILPS can only handle in-lane permutations.
4541    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4542                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4543
4544    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4545    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4546                             &SplatMask[0]);
4547  } else
4548    llvm_unreachable("Vector size not supported");
4549
4550  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4551}
4552
4553/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4554static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4555  EVT SrcVT = SV->getValueType(0);
4556  SDValue V1 = SV->getOperand(0);
4557  DebugLoc dl = SV->getDebugLoc();
4558
4559  int EltNo = SV->getSplatIndex();
4560  int NumElems = SrcVT.getVectorNumElements();
4561  bool Is256BitVec = SrcVT.is256BitVector();
4562
4563  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4564         "Unknown how to promote splat for type");
4565
4566  // Extract the 128-bit part containing the splat element and update
4567  // the splat element index when it refers to the higher register.
4568  if (Is256BitVec) {
4569    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4570    if (EltNo >= NumElems/2)
4571      EltNo -= NumElems/2;
4572  }
4573
4574  // All i16 and i8 vector types can't be used directly by a generic shuffle
4575  // instruction because the target has no such instruction. Generate shuffles
4576  // which repeat i16 and i8 several times until they fit in i32, and then can
4577  // be manipulated by target suported shuffles.
4578  EVT EltVT = SrcVT.getVectorElementType();
4579  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4580    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4581
4582  // Recreate the 256-bit vector and place the same 128-bit vector
4583  // into the low and high part. This is necessary because we want
4584  // to use VPERM* to shuffle the vectors
4585  if (Is256BitVec) {
4586    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4587  }
4588
4589  return getLegalSplat(DAG, V1, EltNo);
4590}
4591
4592/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4593/// vector of zero or undef vector.  This produces a shuffle where the low
4594/// element of V2 is swizzled into the zero/undef vector, landing at element
4595/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4596static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4597                                           bool IsZero,
4598                                           const X86Subtarget *Subtarget,
4599                                           SelectionDAG &DAG) {
4600  EVT VT = V2.getValueType();
4601  SDValue V1 = IsZero
4602    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4603  unsigned NumElems = VT.getVectorNumElements();
4604  SmallVector<int, 16> MaskVec;
4605  for (unsigned i = 0; i != NumElems; ++i)
4606    // If this is the insertion idx, put the low elt of V2 here.
4607    MaskVec.push_back(i == Idx ? NumElems : i);
4608  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4609}
4610
4611/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4612/// target specific opcode. Returns true if the Mask could be calculated.
4613/// Sets IsUnary to true if only uses one source.
4614static bool getTargetShuffleMask(SDNode *N, MVT VT,
4615                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4616  unsigned NumElems = VT.getVectorNumElements();
4617  SDValue ImmN;
4618
4619  IsUnary = false;
4620  switch(N->getOpcode()) {
4621  case X86ISD::SHUFP:
4622    ImmN = N->getOperand(N->getNumOperands()-1);
4623    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4624    break;
4625  case X86ISD::UNPCKH:
4626    DecodeUNPCKHMask(VT, Mask);
4627    break;
4628  case X86ISD::UNPCKL:
4629    DecodeUNPCKLMask(VT, Mask);
4630    break;
4631  case X86ISD::MOVHLPS:
4632    DecodeMOVHLPSMask(NumElems, Mask);
4633    break;
4634  case X86ISD::MOVLHPS:
4635    DecodeMOVLHPSMask(NumElems, Mask);
4636    break;
4637  case X86ISD::PALIGNR:
4638    ImmN = N->getOperand(N->getNumOperands()-1);
4639    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4640    break;
4641  case X86ISD::PSHUFD:
4642  case X86ISD::VPERMILP:
4643    ImmN = N->getOperand(N->getNumOperands()-1);
4644    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4645    IsUnary = true;
4646    break;
4647  case X86ISD::PSHUFHW:
4648    ImmN = N->getOperand(N->getNumOperands()-1);
4649    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4650    IsUnary = true;
4651    break;
4652  case X86ISD::PSHUFLW:
4653    ImmN = N->getOperand(N->getNumOperands()-1);
4654    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4655    IsUnary = true;
4656    break;
4657  case X86ISD::VPERMI:
4658    ImmN = N->getOperand(N->getNumOperands()-1);
4659    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4660    IsUnary = true;
4661    break;
4662  case X86ISD::MOVSS:
4663  case X86ISD::MOVSD: {
4664    // The index 0 always comes from the first element of the second source,
4665    // this is why MOVSS and MOVSD are used in the first place. The other
4666    // elements come from the other positions of the first source vector
4667    Mask.push_back(NumElems);
4668    for (unsigned i = 1; i != NumElems; ++i) {
4669      Mask.push_back(i);
4670    }
4671    break;
4672  }
4673  case X86ISD::VPERM2X128:
4674    ImmN = N->getOperand(N->getNumOperands()-1);
4675    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4676    if (Mask.empty()) return false;
4677    break;
4678  case X86ISD::MOVDDUP:
4679  case X86ISD::MOVLHPD:
4680  case X86ISD::MOVLPD:
4681  case X86ISD::MOVLPS:
4682  case X86ISD::MOVSHDUP:
4683  case X86ISD::MOVSLDUP:
4684    // Not yet implemented
4685    return false;
4686  default: llvm_unreachable("unknown target shuffle node");
4687  }
4688
4689  return true;
4690}
4691
4692/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4693/// element of the result of the vector shuffle.
4694static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4695                                   unsigned Depth) {
4696  if (Depth == 6)
4697    return SDValue();  // Limit search depth.
4698
4699  SDValue V = SDValue(N, 0);
4700  EVT VT = V.getValueType();
4701  unsigned Opcode = V.getOpcode();
4702
4703  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4704  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4705    int Elt = SV->getMaskElt(Index);
4706
4707    if (Elt < 0)
4708      return DAG.getUNDEF(VT.getVectorElementType());
4709
4710    unsigned NumElems = VT.getVectorNumElements();
4711    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4712                                         : SV->getOperand(1);
4713    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4714  }
4715
4716  // Recurse into target specific vector shuffles to find scalars.
4717  if (isTargetShuffle(Opcode)) {
4718    MVT ShufVT = V.getValueType().getSimpleVT();
4719    unsigned NumElems = ShufVT.getVectorNumElements();
4720    SmallVector<int, 16> ShuffleMask;
4721    bool IsUnary;
4722
4723    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4724      return SDValue();
4725
4726    int Elt = ShuffleMask[Index];
4727    if (Elt < 0)
4728      return DAG.getUNDEF(ShufVT.getVectorElementType());
4729
4730    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4731                                         : N->getOperand(1);
4732    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4733                               Depth+1);
4734  }
4735
4736  // Actual nodes that may contain scalar elements
4737  if (Opcode == ISD::BITCAST) {
4738    V = V.getOperand(0);
4739    EVT SrcVT = V.getValueType();
4740    unsigned NumElems = VT.getVectorNumElements();
4741
4742    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4743      return SDValue();
4744  }
4745
4746  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4747    return (Index == 0) ? V.getOperand(0)
4748                        : DAG.getUNDEF(VT.getVectorElementType());
4749
4750  if (V.getOpcode() == ISD::BUILD_VECTOR)
4751    return V.getOperand(Index);
4752
4753  return SDValue();
4754}
4755
4756/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4757/// shuffle operation which come from a consecutively from a zero. The
4758/// search can start in two different directions, from left or right.
4759/// We count undefs as zeros until PreferredNum is reached.
4760static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
4761                                         unsigned NumElems, bool ZerosFromLeft,
4762                                         SelectionDAG &DAG,
4763                                         unsigned PreferredNum = -1U) {
4764  unsigned NumZeros = 0;
4765  for (unsigned i = 0; i != NumElems; ++i) {
4766    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
4767    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4768    if (!Elt.getNode())
4769      break;
4770
4771    if (X86::isZeroNode(Elt))
4772      ++NumZeros;
4773    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
4774      NumZeros = std::min(NumZeros + 1, PreferredNum);
4775    else
4776      break;
4777  }
4778
4779  return NumZeros;
4780}
4781
4782/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4783/// correspond consecutively to elements from one of the vector operands,
4784/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4785static
4786bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4787                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4788                              unsigned NumElems, unsigned &OpNum) {
4789  bool SeenV1 = false;
4790  bool SeenV2 = false;
4791
4792  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4793    int Idx = SVOp->getMaskElt(i);
4794    // Ignore undef indicies
4795    if (Idx < 0)
4796      continue;
4797
4798    if (Idx < (int)NumElems)
4799      SeenV1 = true;
4800    else
4801      SeenV2 = true;
4802
4803    // Only accept consecutive elements from the same vector
4804    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4805      return false;
4806  }
4807
4808  OpNum = SeenV1 ? 0 : 1;
4809  return true;
4810}
4811
4812/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4813/// logical left shift of a vector.
4814static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4815                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4816  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4817  unsigned NumZeros = getNumOfConsecutiveZeros(
4818      SVOp, NumElems, false /* check zeros from right */, DAG,
4819      SVOp->getMaskElt(0));
4820  unsigned OpSrc;
4821
4822  if (!NumZeros)
4823    return false;
4824
4825  // Considering the elements in the mask that are not consecutive zeros,
4826  // check if they consecutively come from only one of the source vectors.
4827  //
4828  //               V1 = {X, A, B, C}     0
4829  //                         \  \  \    /
4830  //   vector_shuffle V1, V2 <1, 2, 3, X>
4831  //
4832  if (!isShuffleMaskConsecutive(SVOp,
4833            0,                   // Mask Start Index
4834            NumElems-NumZeros,   // Mask End Index(exclusive)
4835            NumZeros,            // Where to start looking in the src vector
4836            NumElems,            // Number of elements in vector
4837            OpSrc))              // Which source operand ?
4838    return false;
4839
4840  isLeft = false;
4841  ShAmt = NumZeros;
4842  ShVal = SVOp->getOperand(OpSrc);
4843  return true;
4844}
4845
4846/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4847/// logical left shift of a vector.
4848static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4849                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4850  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4851  unsigned NumZeros = getNumOfConsecutiveZeros(
4852      SVOp, NumElems, true /* check zeros from left */, DAG,
4853      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
4854  unsigned OpSrc;
4855
4856  if (!NumZeros)
4857    return false;
4858
4859  // Considering the elements in the mask that are not consecutive zeros,
4860  // check if they consecutively come from only one of the source vectors.
4861  //
4862  //                           0    { A, B, X, X } = V2
4863  //                          / \    /  /
4864  //   vector_shuffle V1, V2 <X, X, 4, 5>
4865  //
4866  if (!isShuffleMaskConsecutive(SVOp,
4867            NumZeros,     // Mask Start Index
4868            NumElems,     // Mask End Index(exclusive)
4869            0,            // Where to start looking in the src vector
4870            NumElems,     // Number of elements in vector
4871            OpSrc))       // Which source operand ?
4872    return false;
4873
4874  isLeft = true;
4875  ShAmt = NumZeros;
4876  ShVal = SVOp->getOperand(OpSrc);
4877  return true;
4878}
4879
4880/// isVectorShift - Returns true if the shuffle can be implemented as a
4881/// logical left or right shift of a vector.
4882static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4883                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4884  // Although the logic below support any bitwidth size, there are no
4885  // shift instructions which handle more than 128-bit vectors.
4886  if (!SVOp->getValueType(0).is128BitVector())
4887    return false;
4888
4889  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4890      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4891    return true;
4892
4893  return false;
4894}
4895
4896/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4897///
4898static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4899                                       unsigned NumNonZero, unsigned NumZero,
4900                                       SelectionDAG &DAG,
4901                                       const X86Subtarget* Subtarget,
4902                                       const TargetLowering &TLI) {
4903  if (NumNonZero > 8)
4904    return SDValue();
4905
4906  DebugLoc dl = Op.getDebugLoc();
4907  SDValue V(0, 0);
4908  bool First = true;
4909  for (unsigned i = 0; i < 16; ++i) {
4910    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4911    if (ThisIsNonZero && First) {
4912      if (NumZero)
4913        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4914      else
4915        V = DAG.getUNDEF(MVT::v8i16);
4916      First = false;
4917    }
4918
4919    if ((i & 1) != 0) {
4920      SDValue ThisElt(0, 0), LastElt(0, 0);
4921      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4922      if (LastIsNonZero) {
4923        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4924                              MVT::i16, Op.getOperand(i-1));
4925      }
4926      if (ThisIsNonZero) {
4927        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4928        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4929                              ThisElt, DAG.getConstant(8, MVT::i8));
4930        if (LastIsNonZero)
4931          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4932      } else
4933        ThisElt = LastElt;
4934
4935      if (ThisElt.getNode())
4936        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4937                        DAG.getIntPtrConstant(i/2));
4938    }
4939  }
4940
4941  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4942}
4943
4944/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4945///
4946static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4947                                     unsigned NumNonZero, unsigned NumZero,
4948                                     SelectionDAG &DAG,
4949                                     const X86Subtarget* Subtarget,
4950                                     const TargetLowering &TLI) {
4951  if (NumNonZero > 4)
4952    return SDValue();
4953
4954  DebugLoc dl = Op.getDebugLoc();
4955  SDValue V(0, 0);
4956  bool First = true;
4957  for (unsigned i = 0; i < 8; ++i) {
4958    bool isNonZero = (NonZeros & (1 << i)) != 0;
4959    if (isNonZero) {
4960      if (First) {
4961        if (NumZero)
4962          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4963        else
4964          V = DAG.getUNDEF(MVT::v8i16);
4965        First = false;
4966      }
4967      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4968                      MVT::v8i16, V, Op.getOperand(i),
4969                      DAG.getIntPtrConstant(i));
4970    }
4971  }
4972
4973  return V;
4974}
4975
4976/// getVShift - Return a vector logical shift node.
4977///
4978static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4979                         unsigned NumBits, SelectionDAG &DAG,
4980                         const TargetLowering &TLI, DebugLoc dl) {
4981  assert(VT.is128BitVector() && "Unknown type for VShift");
4982  EVT ShVT = MVT::v2i64;
4983  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4984  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4985  return DAG.getNode(ISD::BITCAST, dl, VT,
4986                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4987                             DAG.getConstant(NumBits,
4988                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
4989}
4990
4991SDValue
4992X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4993                                          SelectionDAG &DAG) const {
4994
4995  // Check if the scalar load can be widened into a vector load. And if
4996  // the address is "base + cst" see if the cst can be "absorbed" into
4997  // the shuffle mask.
4998  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4999    SDValue Ptr = LD->getBasePtr();
5000    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5001      return SDValue();
5002    EVT PVT = LD->getValueType(0);
5003    if (PVT != MVT::i32 && PVT != MVT::f32)
5004      return SDValue();
5005
5006    int FI = -1;
5007    int64_t Offset = 0;
5008    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5009      FI = FINode->getIndex();
5010      Offset = 0;
5011    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5012               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5013      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5014      Offset = Ptr.getConstantOperandVal(1);
5015      Ptr = Ptr.getOperand(0);
5016    } else {
5017      return SDValue();
5018    }
5019
5020    // FIXME: 256-bit vector instructions don't require a strict alignment,
5021    // improve this code to support it better.
5022    unsigned RequiredAlign = VT.getSizeInBits()/8;
5023    SDValue Chain = LD->getChain();
5024    // Make sure the stack object alignment is at least 16 or 32.
5025    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5026    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5027      if (MFI->isFixedObjectIndex(FI)) {
5028        // Can't change the alignment. FIXME: It's possible to compute
5029        // the exact stack offset and reference FI + adjust offset instead.
5030        // If someone *really* cares about this. That's the way to implement it.
5031        return SDValue();
5032      } else {
5033        MFI->setObjectAlignment(FI, RequiredAlign);
5034      }
5035    }
5036
5037    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5038    // Ptr + (Offset & ~15).
5039    if (Offset < 0)
5040      return SDValue();
5041    if ((Offset % RequiredAlign) & 3)
5042      return SDValue();
5043    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5044    if (StartOffset)
5045      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5046                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5047
5048    int EltNo = (Offset - StartOffset) >> 2;
5049    unsigned NumElems = VT.getVectorNumElements();
5050
5051    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5052    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5053                             LD->getPointerInfo().getWithOffset(StartOffset),
5054                             false, false, false, 0);
5055
5056    SmallVector<int, 8> Mask;
5057    for (unsigned i = 0; i != NumElems; ++i)
5058      Mask.push_back(EltNo);
5059
5060    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5061  }
5062
5063  return SDValue();
5064}
5065
5066/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5067/// vector of type 'VT', see if the elements can be replaced by a single large
5068/// load which has the same value as a build_vector whose operands are 'elts'.
5069///
5070/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5071///
5072/// FIXME: we'd also like to handle the case where the last elements are zero
5073/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5074/// There's even a handy isZeroNode for that purpose.
5075static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5076                                        DebugLoc &DL, SelectionDAG &DAG) {
5077  EVT EltVT = VT.getVectorElementType();
5078  unsigned NumElems = Elts.size();
5079
5080  LoadSDNode *LDBase = NULL;
5081  unsigned LastLoadedElt = -1U;
5082
5083  // For each element in the initializer, see if we've found a load or an undef.
5084  // If we don't find an initial load element, or later load elements are
5085  // non-consecutive, bail out.
5086  for (unsigned i = 0; i < NumElems; ++i) {
5087    SDValue Elt = Elts[i];
5088
5089    if (!Elt.getNode() ||
5090        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5091      return SDValue();
5092    if (!LDBase) {
5093      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5094        return SDValue();
5095      LDBase = cast<LoadSDNode>(Elt.getNode());
5096      LastLoadedElt = i;
5097      continue;
5098    }
5099    if (Elt.getOpcode() == ISD::UNDEF)
5100      continue;
5101
5102    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5103    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5104      return SDValue();
5105    LastLoadedElt = i;
5106  }
5107
5108  // If we have found an entire vector of loads and undefs, then return a large
5109  // load of the entire vector width starting at the base pointer.  If we found
5110  // consecutive loads for the low half, generate a vzext_load node.
5111  if (LastLoadedElt == NumElems - 1) {
5112    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5113      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5114                         LDBase->getPointerInfo(),
5115                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5116                         LDBase->isInvariant(), 0);
5117    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5118                       LDBase->getPointerInfo(),
5119                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5120                       LDBase->isInvariant(), LDBase->getAlignment());
5121  }
5122  if (NumElems == 4 && LastLoadedElt == 1 &&
5123      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5124    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5125    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5126    SDValue ResNode =
5127        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5128                                array_lengthof(Ops), MVT::i64,
5129                                LDBase->getPointerInfo(),
5130                                LDBase->getAlignment(),
5131                                false/*isVolatile*/, true/*ReadMem*/,
5132                                false/*WriteMem*/);
5133
5134    // Make sure the newly-created LOAD is in the same position as LDBase in
5135    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5136    // update uses of LDBase's output chain to use the TokenFactor.
5137    if (LDBase->hasAnyUseOfValue(1)) {
5138      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5139                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5140      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5141      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5142                             SDValue(ResNode.getNode(), 1));
5143    }
5144
5145    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5146  }
5147  return SDValue();
5148}
5149
5150/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5151/// to generate a splat value for the following cases:
5152/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5153/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5154/// a scalar load, or a constant.
5155/// The VBROADCAST node is returned when a pattern is found,
5156/// or SDValue() otherwise.
5157SDValue
5158X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5159  if (!Subtarget->hasFp256())
5160    return SDValue();
5161
5162  MVT VT = Op.getValueType().getSimpleVT();
5163  DebugLoc dl = Op.getDebugLoc();
5164
5165  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5166         "Unsupported vector type for broadcast.");
5167
5168  SDValue Ld;
5169  bool ConstSplatVal;
5170
5171  switch (Op.getOpcode()) {
5172    default:
5173      // Unknown pattern found.
5174      return SDValue();
5175
5176    case ISD::BUILD_VECTOR: {
5177      // The BUILD_VECTOR node must be a splat.
5178      if (!isSplatVector(Op.getNode()))
5179        return SDValue();
5180
5181      Ld = Op.getOperand(0);
5182      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5183                     Ld.getOpcode() == ISD::ConstantFP);
5184
5185      // The suspected load node has several users. Make sure that all
5186      // of its users are from the BUILD_VECTOR node.
5187      // Constants may have multiple users.
5188      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5189        return SDValue();
5190      break;
5191    }
5192
5193    case ISD::VECTOR_SHUFFLE: {
5194      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5195
5196      // Shuffles must have a splat mask where the first element is
5197      // broadcasted.
5198      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5199        return SDValue();
5200
5201      SDValue Sc = Op.getOperand(0);
5202      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5203          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5204
5205        if (!Subtarget->hasInt256())
5206          return SDValue();
5207
5208        // Use the register form of the broadcast instruction available on AVX2.
5209        if (VT.is256BitVector())
5210          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5211        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5212      }
5213
5214      Ld = Sc.getOperand(0);
5215      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5216                       Ld.getOpcode() == ISD::ConstantFP);
5217
5218      // The scalar_to_vector node and the suspected
5219      // load node must have exactly one user.
5220      // Constants may have multiple users.
5221      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5222        return SDValue();
5223      break;
5224    }
5225  }
5226
5227  bool Is256 = VT.is256BitVector();
5228
5229  // Handle the broadcasting a single constant scalar from the constant pool
5230  // into a vector. On Sandybridge it is still better to load a constant vector
5231  // from the constant pool and not to broadcast it from a scalar.
5232  if (ConstSplatVal && Subtarget->hasInt256()) {
5233    EVT CVT = Ld.getValueType();
5234    assert(!CVT.isVector() && "Must not broadcast a vector type");
5235    unsigned ScalarSize = CVT.getSizeInBits();
5236
5237    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5238      const Constant *C = 0;
5239      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5240        C = CI->getConstantIntValue();
5241      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5242        C = CF->getConstantFPValue();
5243
5244      assert(C && "Invalid constant type");
5245
5246      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5247      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5248      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5249                       MachinePointerInfo::getConstantPool(),
5250                       false, false, false, Alignment);
5251
5252      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5253    }
5254  }
5255
5256  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5257  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5258
5259  // Handle AVX2 in-register broadcasts.
5260  if (!IsLoad && Subtarget->hasInt256() &&
5261      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5262    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5263
5264  // The scalar source must be a normal load.
5265  if (!IsLoad)
5266    return SDValue();
5267
5268  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5269    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5270
5271  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5272  // double since there is no vbroadcastsd xmm
5273  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5274    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5275      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5276  }
5277
5278  // Unsupported broadcast.
5279  return SDValue();
5280}
5281
5282SDValue
5283X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5284  EVT VT = Op.getValueType();
5285
5286  // Skip if insert_vec_elt is not supported.
5287  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5288    return SDValue();
5289
5290  DebugLoc DL = Op.getDebugLoc();
5291  unsigned NumElems = Op.getNumOperands();
5292
5293  SDValue VecIn1;
5294  SDValue VecIn2;
5295  SmallVector<unsigned, 4> InsertIndices;
5296  SmallVector<int, 8> Mask(NumElems, -1);
5297
5298  for (unsigned i = 0; i != NumElems; ++i) {
5299    unsigned Opc = Op.getOperand(i).getOpcode();
5300
5301    if (Opc == ISD::UNDEF)
5302      continue;
5303
5304    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5305      // Quit if more than 1 elements need inserting.
5306      if (InsertIndices.size() > 1)
5307        return SDValue();
5308
5309      InsertIndices.push_back(i);
5310      continue;
5311    }
5312
5313    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5314    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5315
5316    // Quit if extracted from vector of different type.
5317    if (ExtractedFromVec.getValueType() != VT)
5318      return SDValue();
5319
5320    // Quit if non-constant index.
5321    if (!isa<ConstantSDNode>(ExtIdx))
5322      return SDValue();
5323
5324    if (VecIn1.getNode() == 0)
5325      VecIn1 = ExtractedFromVec;
5326    else if (VecIn1 != ExtractedFromVec) {
5327      if (VecIn2.getNode() == 0)
5328        VecIn2 = ExtractedFromVec;
5329      else if (VecIn2 != ExtractedFromVec)
5330        // Quit if more than 2 vectors to shuffle
5331        return SDValue();
5332    }
5333
5334    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5335
5336    if (ExtractedFromVec == VecIn1)
5337      Mask[i] = Idx;
5338    else if (ExtractedFromVec == VecIn2)
5339      Mask[i] = Idx + NumElems;
5340  }
5341
5342  if (VecIn1.getNode() == 0)
5343    return SDValue();
5344
5345  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5346  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5347  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5348    unsigned Idx = InsertIndices[i];
5349    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5350                     DAG.getIntPtrConstant(Idx));
5351  }
5352
5353  return NV;
5354}
5355
5356SDValue
5357X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5358  DebugLoc dl = Op.getDebugLoc();
5359
5360  MVT VT = Op.getValueType().getSimpleVT();
5361  MVT ExtVT = VT.getVectorElementType();
5362  unsigned NumElems = Op.getNumOperands();
5363
5364  // Vectors containing all zeros can be matched by pxor and xorps later
5365  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5366    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5367    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5368    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5369      return Op;
5370
5371    return getZeroVector(VT, Subtarget, DAG, dl);
5372  }
5373
5374  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5375  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5376  // vpcmpeqd on 256-bit vectors.
5377  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5378    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5379      return Op;
5380
5381    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5382  }
5383
5384  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5385  if (Broadcast.getNode())
5386    return Broadcast;
5387
5388  unsigned EVTBits = ExtVT.getSizeInBits();
5389
5390  unsigned NumZero  = 0;
5391  unsigned NumNonZero = 0;
5392  unsigned NonZeros = 0;
5393  bool IsAllConstants = true;
5394  SmallSet<SDValue, 8> Values;
5395  for (unsigned i = 0; i < NumElems; ++i) {
5396    SDValue Elt = Op.getOperand(i);
5397    if (Elt.getOpcode() == ISD::UNDEF)
5398      continue;
5399    Values.insert(Elt);
5400    if (Elt.getOpcode() != ISD::Constant &&
5401        Elt.getOpcode() != ISD::ConstantFP)
5402      IsAllConstants = false;
5403    if (X86::isZeroNode(Elt))
5404      NumZero++;
5405    else {
5406      NonZeros |= (1 << i);
5407      NumNonZero++;
5408    }
5409  }
5410
5411  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5412  if (NumNonZero == 0)
5413    return DAG.getUNDEF(VT);
5414
5415  // Special case for single non-zero, non-undef, element.
5416  if (NumNonZero == 1) {
5417    unsigned Idx = CountTrailingZeros_32(NonZeros);
5418    SDValue Item = Op.getOperand(Idx);
5419
5420    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5421    // the value are obviously zero, truncate the value to i32 and do the
5422    // insertion that way.  Only do this if the value is non-constant or if the
5423    // value is a constant being inserted into element 0.  It is cheaper to do
5424    // a constant pool load than it is to do a movd + shuffle.
5425    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5426        (!IsAllConstants || Idx == 0)) {
5427      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5428        // Handle SSE only.
5429        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5430        EVT VecVT = MVT::v4i32;
5431        unsigned VecElts = 4;
5432
5433        // Truncate the value (which may itself be a constant) to i32, and
5434        // convert it to a vector with movd (S2V+shuffle to zero extend).
5435        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5436        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5437        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5438
5439        // Now we have our 32-bit value zero extended in the low element of
5440        // a vector.  If Idx != 0, swizzle it into place.
5441        if (Idx != 0) {
5442          SmallVector<int, 4> Mask;
5443          Mask.push_back(Idx);
5444          for (unsigned i = 1; i != VecElts; ++i)
5445            Mask.push_back(i);
5446          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5447                                      &Mask[0]);
5448        }
5449        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5450      }
5451    }
5452
5453    // If we have a constant or non-constant insertion into the low element of
5454    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5455    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5456    // depending on what the source datatype is.
5457    if (Idx == 0) {
5458      if (NumZero == 0)
5459        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5460
5461      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5462          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5463        if (VT.is256BitVector()) {
5464          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5465          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5466                             Item, DAG.getIntPtrConstant(0));
5467        }
5468        assert(VT.is128BitVector() && "Expected an SSE value type!");
5469        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5470        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5471        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5472      }
5473
5474      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5475        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5476        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5477        if (VT.is256BitVector()) {
5478          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5479          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5480        } else {
5481          assert(VT.is128BitVector() && "Expected an SSE value type!");
5482          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5483        }
5484        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5485      }
5486    }
5487
5488    // Is it a vector logical left shift?
5489    if (NumElems == 2 && Idx == 1 &&
5490        X86::isZeroNode(Op.getOperand(0)) &&
5491        !X86::isZeroNode(Op.getOperand(1))) {
5492      unsigned NumBits = VT.getSizeInBits();
5493      return getVShift(true, VT,
5494                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5495                                   VT, Op.getOperand(1)),
5496                       NumBits/2, DAG, *this, dl);
5497    }
5498
5499    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5500      return SDValue();
5501
5502    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5503    // is a non-constant being inserted into an element other than the low one,
5504    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5505    // movd/movss) to move this into the low element, then shuffle it into
5506    // place.
5507    if (EVTBits == 32) {
5508      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5509
5510      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5511      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5512      SmallVector<int, 8> MaskVec;
5513      for (unsigned i = 0; i != NumElems; ++i)
5514        MaskVec.push_back(i == Idx ? 0 : 1);
5515      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5516    }
5517  }
5518
5519  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5520  if (Values.size() == 1) {
5521    if (EVTBits == 32) {
5522      // Instead of a shuffle like this:
5523      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5524      // Check if it's possible to issue this instead.
5525      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5526      unsigned Idx = CountTrailingZeros_32(NonZeros);
5527      SDValue Item = Op.getOperand(Idx);
5528      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5529        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5530    }
5531    return SDValue();
5532  }
5533
5534  // A vector full of immediates; various special cases are already
5535  // handled, so this is best done with a single constant-pool load.
5536  if (IsAllConstants)
5537    return SDValue();
5538
5539  // For AVX-length vectors, build the individual 128-bit pieces and use
5540  // shuffles to put them in place.
5541  if (VT.is256BitVector()) {
5542    SmallVector<SDValue, 32> V;
5543    for (unsigned i = 0; i != NumElems; ++i)
5544      V.push_back(Op.getOperand(i));
5545
5546    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5547
5548    // Build both the lower and upper subvector.
5549    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5550    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5551                                NumElems/2);
5552
5553    // Recreate the wider vector with the lower and upper part.
5554    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5555  }
5556
5557  // Let legalizer expand 2-wide build_vectors.
5558  if (EVTBits == 64) {
5559    if (NumNonZero == 1) {
5560      // One half is zero or undef.
5561      unsigned Idx = CountTrailingZeros_32(NonZeros);
5562      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5563                                 Op.getOperand(Idx));
5564      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5565    }
5566    return SDValue();
5567  }
5568
5569  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5570  if (EVTBits == 8 && NumElems == 16) {
5571    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5572                                        Subtarget, *this);
5573    if (V.getNode()) return V;
5574  }
5575
5576  if (EVTBits == 16 && NumElems == 8) {
5577    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5578                                      Subtarget, *this);
5579    if (V.getNode()) return V;
5580  }
5581
5582  // If element VT is == 32 bits, turn it into a number of shuffles.
5583  SmallVector<SDValue, 8> V(NumElems);
5584  if (NumElems == 4 && NumZero > 0) {
5585    for (unsigned i = 0; i < 4; ++i) {
5586      bool isZero = !(NonZeros & (1 << i));
5587      if (isZero)
5588        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5589      else
5590        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5591    }
5592
5593    for (unsigned i = 0; i < 2; ++i) {
5594      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5595        default: break;
5596        case 0:
5597          V[i] = V[i*2];  // Must be a zero vector.
5598          break;
5599        case 1:
5600          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5601          break;
5602        case 2:
5603          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5604          break;
5605        case 3:
5606          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5607          break;
5608      }
5609    }
5610
5611    bool Reverse1 = (NonZeros & 0x3) == 2;
5612    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5613    int MaskVec[] = {
5614      Reverse1 ? 1 : 0,
5615      Reverse1 ? 0 : 1,
5616      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5617      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5618    };
5619    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5620  }
5621
5622  if (Values.size() > 1 && VT.is128BitVector()) {
5623    // Check for a build vector of consecutive loads.
5624    for (unsigned i = 0; i < NumElems; ++i)
5625      V[i] = Op.getOperand(i);
5626
5627    // Check for elements which are consecutive loads.
5628    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5629    if (LD.getNode())
5630      return LD;
5631
5632    // Check for a build vector from mostly shuffle plus few inserting.
5633    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5634    if (Sh.getNode())
5635      return Sh;
5636
5637    // For SSE 4.1, use insertps to put the high elements into the low element.
5638    if (getSubtarget()->hasSSE41()) {
5639      SDValue Result;
5640      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5641        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5642      else
5643        Result = DAG.getUNDEF(VT);
5644
5645      for (unsigned i = 1; i < NumElems; ++i) {
5646        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5647        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5648                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5649      }
5650      return Result;
5651    }
5652
5653    // Otherwise, expand into a number of unpckl*, start by extending each of
5654    // our (non-undef) elements to the full vector width with the element in the
5655    // bottom slot of the vector (which generates no code for SSE).
5656    for (unsigned i = 0; i < NumElems; ++i) {
5657      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5658        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5659      else
5660        V[i] = DAG.getUNDEF(VT);
5661    }
5662
5663    // Next, we iteratively mix elements, e.g. for v4f32:
5664    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5665    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5666    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5667    unsigned EltStride = NumElems >> 1;
5668    while (EltStride != 0) {
5669      for (unsigned i = 0; i < EltStride; ++i) {
5670        // If V[i+EltStride] is undef and this is the first round of mixing,
5671        // then it is safe to just drop this shuffle: V[i] is already in the
5672        // right place, the one element (since it's the first round) being
5673        // inserted as undef can be dropped.  This isn't safe for successive
5674        // rounds because they will permute elements within both vectors.
5675        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5676            EltStride == NumElems/2)
5677          continue;
5678
5679        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5680      }
5681      EltStride >>= 1;
5682    }
5683    return V[0];
5684  }
5685  return SDValue();
5686}
5687
5688// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5689// to create 256-bit vectors from two other 128-bit ones.
5690static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5691  DebugLoc dl = Op.getDebugLoc();
5692  MVT ResVT = Op.getValueType().getSimpleVT();
5693
5694  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5695
5696  SDValue V1 = Op.getOperand(0);
5697  SDValue V2 = Op.getOperand(1);
5698  unsigned NumElems = ResVT.getVectorNumElements();
5699
5700  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5701}
5702
5703static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5704  assert(Op.getNumOperands() == 2);
5705
5706  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5707  // from two other 128-bit ones.
5708  return LowerAVXCONCAT_VECTORS(Op, DAG);
5709}
5710
5711// Try to lower a shuffle node into a simple blend instruction.
5712static SDValue
5713LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5714                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5715  SDValue V1 = SVOp->getOperand(0);
5716  SDValue V2 = SVOp->getOperand(1);
5717  DebugLoc dl = SVOp->getDebugLoc();
5718  MVT VT = SVOp->getValueType(0).getSimpleVT();
5719  MVT EltVT = VT.getVectorElementType();
5720  unsigned NumElems = VT.getVectorNumElements();
5721
5722  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5723    return SDValue();
5724  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5725    return SDValue();
5726
5727  // Check the mask for BLEND and build the value.
5728  unsigned MaskValue = 0;
5729  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5730  unsigned NumLanes = (NumElems-1)/8 + 1;
5731  unsigned NumElemsInLane = NumElems / NumLanes;
5732
5733  // Blend for v16i16 should be symetric for the both lanes.
5734  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5735
5736    int SndLaneEltIdx = (NumLanes == 2) ?
5737      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5738    int EltIdx = SVOp->getMaskElt(i);
5739
5740    if ((EltIdx < 0 || EltIdx == (int)i) &&
5741        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5742      continue;
5743
5744    if (((unsigned)EltIdx == (i + NumElems)) &&
5745        (SndLaneEltIdx < 0 ||
5746         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5747      MaskValue |= (1<<i);
5748    else
5749      return SDValue();
5750  }
5751
5752  // Convert i32 vectors to floating point if it is not AVX2.
5753  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5754  MVT BlendVT = VT;
5755  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5756    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
5757                               NumElems);
5758    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5759    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5760  }
5761
5762  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5763                            DAG.getConstant(MaskValue, MVT::i32));
5764  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5765}
5766
5767// v8i16 shuffles - Prefer shuffles in the following order:
5768// 1. [all]   pshuflw, pshufhw, optional move
5769// 2. [ssse3] 1 x pshufb
5770// 3. [ssse3] 2 x pshufb + 1 x por
5771// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5772static SDValue
5773LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5774                         SelectionDAG &DAG) {
5775  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5776  SDValue V1 = SVOp->getOperand(0);
5777  SDValue V2 = SVOp->getOperand(1);
5778  DebugLoc dl = SVOp->getDebugLoc();
5779  SmallVector<int, 8> MaskVals;
5780
5781  // Determine if more than 1 of the words in each of the low and high quadwords
5782  // of the result come from the same quadword of one of the two inputs.  Undef
5783  // mask values count as coming from any quadword, for better codegen.
5784  unsigned LoQuad[] = { 0, 0, 0, 0 };
5785  unsigned HiQuad[] = { 0, 0, 0, 0 };
5786  std::bitset<4> InputQuads;
5787  for (unsigned i = 0; i < 8; ++i) {
5788    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5789    int EltIdx = SVOp->getMaskElt(i);
5790    MaskVals.push_back(EltIdx);
5791    if (EltIdx < 0) {
5792      ++Quad[0];
5793      ++Quad[1];
5794      ++Quad[2];
5795      ++Quad[3];
5796      continue;
5797    }
5798    ++Quad[EltIdx / 4];
5799    InputQuads.set(EltIdx / 4);
5800  }
5801
5802  int BestLoQuad = -1;
5803  unsigned MaxQuad = 1;
5804  for (unsigned i = 0; i < 4; ++i) {
5805    if (LoQuad[i] > MaxQuad) {
5806      BestLoQuad = i;
5807      MaxQuad = LoQuad[i];
5808    }
5809  }
5810
5811  int BestHiQuad = -1;
5812  MaxQuad = 1;
5813  for (unsigned i = 0; i < 4; ++i) {
5814    if (HiQuad[i] > MaxQuad) {
5815      BestHiQuad = i;
5816      MaxQuad = HiQuad[i];
5817    }
5818  }
5819
5820  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5821  // of the two input vectors, shuffle them into one input vector so only a
5822  // single pshufb instruction is necessary. If There are more than 2 input
5823  // quads, disable the next transformation since it does not help SSSE3.
5824  bool V1Used = InputQuads[0] || InputQuads[1];
5825  bool V2Used = InputQuads[2] || InputQuads[3];
5826  if (Subtarget->hasSSSE3()) {
5827    if (InputQuads.count() == 2 && V1Used && V2Used) {
5828      BestLoQuad = InputQuads[0] ? 0 : 1;
5829      BestHiQuad = InputQuads[2] ? 2 : 3;
5830    }
5831    if (InputQuads.count() > 2) {
5832      BestLoQuad = -1;
5833      BestHiQuad = -1;
5834    }
5835  }
5836
5837  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5838  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5839  // words from all 4 input quadwords.
5840  SDValue NewV;
5841  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5842    int MaskV[] = {
5843      BestLoQuad < 0 ? 0 : BestLoQuad,
5844      BestHiQuad < 0 ? 1 : BestHiQuad
5845    };
5846    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5847                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5848                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5849    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5850
5851    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5852    // source words for the shuffle, to aid later transformations.
5853    bool AllWordsInNewV = true;
5854    bool InOrder[2] = { true, true };
5855    for (unsigned i = 0; i != 8; ++i) {
5856      int idx = MaskVals[i];
5857      if (idx != (int)i)
5858        InOrder[i/4] = false;
5859      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5860        continue;
5861      AllWordsInNewV = false;
5862      break;
5863    }
5864
5865    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5866    if (AllWordsInNewV) {
5867      for (int i = 0; i != 8; ++i) {
5868        int idx = MaskVals[i];
5869        if (idx < 0)
5870          continue;
5871        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5872        if ((idx != i) && idx < 4)
5873          pshufhw = false;
5874        if ((idx != i) && idx > 3)
5875          pshuflw = false;
5876      }
5877      V1 = NewV;
5878      V2Used = false;
5879      BestLoQuad = 0;
5880      BestHiQuad = 1;
5881    }
5882
5883    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5884    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5885    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5886      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5887      unsigned TargetMask = 0;
5888      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5889                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5890      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5891      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5892                             getShufflePSHUFLWImmediate(SVOp);
5893      V1 = NewV.getOperand(0);
5894      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5895    }
5896  }
5897
5898  // Promote splats to a larger type which usually leads to more efficient code.
5899  // FIXME: Is this true if pshufb is available?
5900  if (SVOp->isSplat())
5901    return PromoteSplat(SVOp, DAG);
5902
5903  // If we have SSSE3, and all words of the result are from 1 input vector,
5904  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5905  // is present, fall back to case 4.
5906  if (Subtarget->hasSSSE3()) {
5907    SmallVector<SDValue,16> pshufbMask;
5908
5909    // If we have elements from both input vectors, set the high bit of the
5910    // shuffle mask element to zero out elements that come from V2 in the V1
5911    // mask, and elements that come from V1 in the V2 mask, so that the two
5912    // results can be OR'd together.
5913    bool TwoInputs = V1Used && V2Used;
5914    for (unsigned i = 0; i != 8; ++i) {
5915      int EltIdx = MaskVals[i] * 2;
5916      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5917      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5918      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5919      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5920    }
5921    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5922    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5923                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5924                                 MVT::v16i8, &pshufbMask[0], 16));
5925    if (!TwoInputs)
5926      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5927
5928    // Calculate the shuffle mask for the second input, shuffle it, and
5929    // OR it with the first shuffled input.
5930    pshufbMask.clear();
5931    for (unsigned i = 0; i != 8; ++i) {
5932      int EltIdx = MaskVals[i] * 2;
5933      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5934      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5935      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5936      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5937    }
5938    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5939    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5940                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5941                                 MVT::v16i8, &pshufbMask[0], 16));
5942    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5943    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5944  }
5945
5946  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5947  // and update MaskVals with new element order.
5948  std::bitset<8> InOrder;
5949  if (BestLoQuad >= 0) {
5950    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5951    for (int i = 0; i != 4; ++i) {
5952      int idx = MaskVals[i];
5953      if (idx < 0) {
5954        InOrder.set(i);
5955      } else if ((idx / 4) == BestLoQuad) {
5956        MaskV[i] = idx & 3;
5957        InOrder.set(i);
5958      }
5959    }
5960    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5961                                &MaskV[0]);
5962
5963    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5964      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5965      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5966                                  NewV.getOperand(0),
5967                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5968    }
5969  }
5970
5971  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5972  // and update MaskVals with the new element order.
5973  if (BestHiQuad >= 0) {
5974    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5975    for (unsigned i = 4; i != 8; ++i) {
5976      int idx = MaskVals[i];
5977      if (idx < 0) {
5978        InOrder.set(i);
5979      } else if ((idx / 4) == BestHiQuad) {
5980        MaskV[i] = (idx & 3) + 4;
5981        InOrder.set(i);
5982      }
5983    }
5984    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5985                                &MaskV[0]);
5986
5987    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5988      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5989      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5990                                  NewV.getOperand(0),
5991                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5992    }
5993  }
5994
5995  // In case BestHi & BestLo were both -1, which means each quadword has a word
5996  // from each of the four input quadwords, calculate the InOrder bitvector now
5997  // before falling through to the insert/extract cleanup.
5998  if (BestLoQuad == -1 && BestHiQuad == -1) {
5999    NewV = V1;
6000    for (int i = 0; i != 8; ++i)
6001      if (MaskVals[i] < 0 || MaskVals[i] == i)
6002        InOrder.set(i);
6003  }
6004
6005  // The other elements are put in the right place using pextrw and pinsrw.
6006  for (unsigned i = 0; i != 8; ++i) {
6007    if (InOrder[i])
6008      continue;
6009    int EltIdx = MaskVals[i];
6010    if (EltIdx < 0)
6011      continue;
6012    SDValue ExtOp = (EltIdx < 8) ?
6013      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6014                  DAG.getIntPtrConstant(EltIdx)) :
6015      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6016                  DAG.getIntPtrConstant(EltIdx - 8));
6017    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6018                       DAG.getIntPtrConstant(i));
6019  }
6020  return NewV;
6021}
6022
6023// v16i8 shuffles - Prefer shuffles in the following order:
6024// 1. [ssse3] 1 x pshufb
6025// 2. [ssse3] 2 x pshufb + 1 x por
6026// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6027static
6028SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6029                                 SelectionDAG &DAG,
6030                                 const X86TargetLowering &TLI) {
6031  SDValue V1 = SVOp->getOperand(0);
6032  SDValue V2 = SVOp->getOperand(1);
6033  DebugLoc dl = SVOp->getDebugLoc();
6034  ArrayRef<int> MaskVals = SVOp->getMask();
6035
6036  // Promote splats to a larger type which usually leads to more efficient code.
6037  // FIXME: Is this true if pshufb is available?
6038  if (SVOp->isSplat())
6039    return PromoteSplat(SVOp, DAG);
6040
6041  // If we have SSSE3, case 1 is generated when all result bytes come from
6042  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6043  // present, fall back to case 3.
6044
6045  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6046  if (TLI.getSubtarget()->hasSSSE3()) {
6047    SmallVector<SDValue,16> pshufbMask;
6048
6049    // If all result elements are from one input vector, then only translate
6050    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6051    //
6052    // Otherwise, we have elements from both input vectors, and must zero out
6053    // elements that come from V2 in the first mask, and V1 in the second mask
6054    // so that we can OR them together.
6055    for (unsigned i = 0; i != 16; ++i) {
6056      int EltIdx = MaskVals[i];
6057      if (EltIdx < 0 || EltIdx >= 16)
6058        EltIdx = 0x80;
6059      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6060    }
6061    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6062                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6063                                 MVT::v16i8, &pshufbMask[0], 16));
6064
6065    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6066    // the 2nd operand if it's undefined or zero.
6067    if (V2.getOpcode() == ISD::UNDEF ||
6068        ISD::isBuildVectorAllZeros(V2.getNode()))
6069      return V1;
6070
6071    // Calculate the shuffle mask for the second input, shuffle it, and
6072    // OR it with the first shuffled input.
6073    pshufbMask.clear();
6074    for (unsigned i = 0; i != 16; ++i) {
6075      int EltIdx = MaskVals[i];
6076      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6077      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6078    }
6079    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6080                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6081                                 MVT::v16i8, &pshufbMask[0], 16));
6082    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6083  }
6084
6085  // No SSSE3 - Calculate in place words and then fix all out of place words
6086  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6087  // the 16 different words that comprise the two doublequadword input vectors.
6088  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6089  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6090  SDValue NewV = V1;
6091  for (int i = 0; i != 8; ++i) {
6092    int Elt0 = MaskVals[i*2];
6093    int Elt1 = MaskVals[i*2+1];
6094
6095    // This word of the result is all undef, skip it.
6096    if (Elt0 < 0 && Elt1 < 0)
6097      continue;
6098
6099    // This word of the result is already in the correct place, skip it.
6100    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6101      continue;
6102
6103    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6104    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6105    SDValue InsElt;
6106
6107    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6108    // using a single extract together, load it and store it.
6109    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6110      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6111                           DAG.getIntPtrConstant(Elt1 / 2));
6112      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6113                        DAG.getIntPtrConstant(i));
6114      continue;
6115    }
6116
6117    // If Elt1 is defined, extract it from the appropriate source.  If the
6118    // source byte is not also odd, shift the extracted word left 8 bits
6119    // otherwise clear the bottom 8 bits if we need to do an or.
6120    if (Elt1 >= 0) {
6121      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6122                           DAG.getIntPtrConstant(Elt1 / 2));
6123      if ((Elt1 & 1) == 0)
6124        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6125                             DAG.getConstant(8,
6126                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6127      else if (Elt0 >= 0)
6128        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6129                             DAG.getConstant(0xFF00, MVT::i16));
6130    }
6131    // If Elt0 is defined, extract it from the appropriate source.  If the
6132    // source byte is not also even, shift the extracted word right 8 bits. If
6133    // Elt1 was also defined, OR the extracted values together before
6134    // inserting them in the result.
6135    if (Elt0 >= 0) {
6136      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6137                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6138      if ((Elt0 & 1) != 0)
6139        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6140                              DAG.getConstant(8,
6141                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6142      else if (Elt1 >= 0)
6143        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6144                             DAG.getConstant(0x00FF, MVT::i16));
6145      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6146                         : InsElt0;
6147    }
6148    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6149                       DAG.getIntPtrConstant(i));
6150  }
6151  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6152}
6153
6154// v32i8 shuffles - Translate to VPSHUFB if possible.
6155static
6156SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6157                                 const X86Subtarget *Subtarget,
6158                                 SelectionDAG &DAG) {
6159  MVT VT = SVOp->getValueType(0).getSimpleVT();
6160  SDValue V1 = SVOp->getOperand(0);
6161  SDValue V2 = SVOp->getOperand(1);
6162  DebugLoc dl = SVOp->getDebugLoc();
6163  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6164
6165  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6166  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6167  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6168
6169  // VPSHUFB may be generated if
6170  // (1) one of input vector is undefined or zeroinitializer.
6171  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6172  // And (2) the mask indexes don't cross the 128-bit lane.
6173  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6174      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6175    return SDValue();
6176
6177  if (V1IsAllZero && !V2IsAllZero) {
6178    CommuteVectorShuffleMask(MaskVals, 32);
6179    V1 = V2;
6180  }
6181  SmallVector<SDValue, 32> pshufbMask;
6182  for (unsigned i = 0; i != 32; i++) {
6183    int EltIdx = MaskVals[i];
6184    if (EltIdx < 0 || EltIdx >= 32)
6185      EltIdx = 0x80;
6186    else {
6187      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6188        // Cross lane is not allowed.
6189        return SDValue();
6190      EltIdx &= 0xf;
6191    }
6192    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6193  }
6194  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6195                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6196                                  MVT::v32i8, &pshufbMask[0], 32));
6197}
6198
6199/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6200/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6201/// done when every pair / quad of shuffle mask elements point to elements in
6202/// the right sequence. e.g.
6203/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6204static
6205SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6206                                 SelectionDAG &DAG) {
6207  MVT VT = SVOp->getValueType(0).getSimpleVT();
6208  DebugLoc dl = SVOp->getDebugLoc();
6209  unsigned NumElems = VT.getVectorNumElements();
6210  MVT NewVT;
6211  unsigned Scale;
6212  switch (VT.SimpleTy) {
6213  default: llvm_unreachable("Unexpected!");
6214  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6215  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6216  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6217  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6218  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6219  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6220  }
6221
6222  SmallVector<int, 8> MaskVec;
6223  for (unsigned i = 0; i != NumElems; i += Scale) {
6224    int StartIdx = -1;
6225    for (unsigned j = 0; j != Scale; ++j) {
6226      int EltIdx = SVOp->getMaskElt(i+j);
6227      if (EltIdx < 0)
6228        continue;
6229      if (StartIdx < 0)
6230        StartIdx = (EltIdx / Scale);
6231      if (EltIdx != (int)(StartIdx*Scale + j))
6232        return SDValue();
6233    }
6234    MaskVec.push_back(StartIdx);
6235  }
6236
6237  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6238  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6239  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6240}
6241
6242/// getVZextMovL - Return a zero-extending vector move low node.
6243///
6244static SDValue getVZextMovL(MVT VT, EVT OpVT,
6245                            SDValue SrcOp, SelectionDAG &DAG,
6246                            const X86Subtarget *Subtarget, DebugLoc dl) {
6247  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6248    LoadSDNode *LD = NULL;
6249    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6250      LD = dyn_cast<LoadSDNode>(SrcOp);
6251    if (!LD) {
6252      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6253      // instead.
6254      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6255      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6256          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6257          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6258          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6259        // PR2108
6260        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6261        return DAG.getNode(ISD::BITCAST, dl, VT,
6262                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6263                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6264                                                   OpVT,
6265                                                   SrcOp.getOperand(0)
6266                                                          .getOperand(0))));
6267      }
6268    }
6269  }
6270
6271  return DAG.getNode(ISD::BITCAST, dl, VT,
6272                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6273                                 DAG.getNode(ISD::BITCAST, dl,
6274                                             OpVT, SrcOp)));
6275}
6276
6277/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6278/// which could not be matched by any known target speficic shuffle
6279static SDValue
6280LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6281
6282  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6283  if (NewOp.getNode())
6284    return NewOp;
6285
6286  MVT VT = SVOp->getValueType(0).getSimpleVT();
6287
6288  unsigned NumElems = VT.getVectorNumElements();
6289  unsigned NumLaneElems = NumElems / 2;
6290
6291  DebugLoc dl = SVOp->getDebugLoc();
6292  MVT EltVT = VT.getVectorElementType();
6293  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6294  SDValue Output[2];
6295
6296  SmallVector<int, 16> Mask;
6297  for (unsigned l = 0; l < 2; ++l) {
6298    // Build a shuffle mask for the output, discovering on the fly which
6299    // input vectors to use as shuffle operands (recorded in InputUsed).
6300    // If building a suitable shuffle vector proves too hard, then bail
6301    // out with UseBuildVector set.
6302    bool UseBuildVector = false;
6303    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6304    unsigned LaneStart = l * NumLaneElems;
6305    for (unsigned i = 0; i != NumLaneElems; ++i) {
6306      // The mask element.  This indexes into the input.
6307      int Idx = SVOp->getMaskElt(i+LaneStart);
6308      if (Idx < 0) {
6309        // the mask element does not index into any input vector.
6310        Mask.push_back(-1);
6311        continue;
6312      }
6313
6314      // The input vector this mask element indexes into.
6315      int Input = Idx / NumLaneElems;
6316
6317      // Turn the index into an offset from the start of the input vector.
6318      Idx -= Input * NumLaneElems;
6319
6320      // Find or create a shuffle vector operand to hold this input.
6321      unsigned OpNo;
6322      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6323        if (InputUsed[OpNo] == Input)
6324          // This input vector is already an operand.
6325          break;
6326        if (InputUsed[OpNo] < 0) {
6327          // Create a new operand for this input vector.
6328          InputUsed[OpNo] = Input;
6329          break;
6330        }
6331      }
6332
6333      if (OpNo >= array_lengthof(InputUsed)) {
6334        // More than two input vectors used!  Give up on trying to create a
6335        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6336        UseBuildVector = true;
6337        break;
6338      }
6339
6340      // Add the mask index for the new shuffle vector.
6341      Mask.push_back(Idx + OpNo * NumLaneElems);
6342    }
6343
6344    if (UseBuildVector) {
6345      SmallVector<SDValue, 16> SVOps;
6346      for (unsigned i = 0; i != NumLaneElems; ++i) {
6347        // The mask element.  This indexes into the input.
6348        int Idx = SVOp->getMaskElt(i+LaneStart);
6349        if (Idx < 0) {
6350          SVOps.push_back(DAG.getUNDEF(EltVT));
6351          continue;
6352        }
6353
6354        // The input vector this mask element indexes into.
6355        int Input = Idx / NumElems;
6356
6357        // Turn the index into an offset from the start of the input vector.
6358        Idx -= Input * NumElems;
6359
6360        // Extract the vector element by hand.
6361        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6362                                    SVOp->getOperand(Input),
6363                                    DAG.getIntPtrConstant(Idx)));
6364      }
6365
6366      // Construct the output using a BUILD_VECTOR.
6367      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6368                              SVOps.size());
6369    } else if (InputUsed[0] < 0) {
6370      // No input vectors were used! The result is undefined.
6371      Output[l] = DAG.getUNDEF(NVT);
6372    } else {
6373      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6374                                        (InputUsed[0] % 2) * NumLaneElems,
6375                                        DAG, dl);
6376      // If only one input was used, use an undefined vector for the other.
6377      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6378        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6379                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6380      // At least one input vector was used. Create a new shuffle vector.
6381      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6382    }
6383
6384    Mask.clear();
6385  }
6386
6387  // Concatenate the result back
6388  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6389}
6390
6391/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6392/// 4 elements, and match them with several different shuffle types.
6393static SDValue
6394LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6395  SDValue V1 = SVOp->getOperand(0);
6396  SDValue V2 = SVOp->getOperand(1);
6397  DebugLoc dl = SVOp->getDebugLoc();
6398  MVT VT = SVOp->getValueType(0).getSimpleVT();
6399
6400  assert(VT.is128BitVector() && "Unsupported vector size");
6401
6402  std::pair<int, int> Locs[4];
6403  int Mask1[] = { -1, -1, -1, -1 };
6404  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6405
6406  unsigned NumHi = 0;
6407  unsigned NumLo = 0;
6408  for (unsigned i = 0; i != 4; ++i) {
6409    int Idx = PermMask[i];
6410    if (Idx < 0) {
6411      Locs[i] = std::make_pair(-1, -1);
6412    } else {
6413      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6414      if (Idx < 4) {
6415        Locs[i] = std::make_pair(0, NumLo);
6416        Mask1[NumLo] = Idx;
6417        NumLo++;
6418      } else {
6419        Locs[i] = std::make_pair(1, NumHi);
6420        if (2+NumHi < 4)
6421          Mask1[2+NumHi] = Idx;
6422        NumHi++;
6423      }
6424    }
6425  }
6426
6427  if (NumLo <= 2 && NumHi <= 2) {
6428    // If no more than two elements come from either vector. This can be
6429    // implemented with two shuffles. First shuffle gather the elements.
6430    // The second shuffle, which takes the first shuffle as both of its
6431    // vector operands, put the elements into the right order.
6432    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6433
6434    int Mask2[] = { -1, -1, -1, -1 };
6435
6436    for (unsigned i = 0; i != 4; ++i)
6437      if (Locs[i].first != -1) {
6438        unsigned Idx = (i < 2) ? 0 : 4;
6439        Idx += Locs[i].first * 2 + Locs[i].second;
6440        Mask2[i] = Idx;
6441      }
6442
6443    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6444  }
6445
6446  if (NumLo == 3 || NumHi == 3) {
6447    // Otherwise, we must have three elements from one vector, call it X, and
6448    // one element from the other, call it Y.  First, use a shufps to build an
6449    // intermediate vector with the one element from Y and the element from X
6450    // that will be in the same half in the final destination (the indexes don't
6451    // matter). Then, use a shufps to build the final vector, taking the half
6452    // containing the element from Y from the intermediate, and the other half
6453    // from X.
6454    if (NumHi == 3) {
6455      // Normalize it so the 3 elements come from V1.
6456      CommuteVectorShuffleMask(PermMask, 4);
6457      std::swap(V1, V2);
6458    }
6459
6460    // Find the element from V2.
6461    unsigned HiIndex;
6462    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6463      int Val = PermMask[HiIndex];
6464      if (Val < 0)
6465        continue;
6466      if (Val >= 4)
6467        break;
6468    }
6469
6470    Mask1[0] = PermMask[HiIndex];
6471    Mask1[1] = -1;
6472    Mask1[2] = PermMask[HiIndex^1];
6473    Mask1[3] = -1;
6474    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6475
6476    if (HiIndex >= 2) {
6477      Mask1[0] = PermMask[0];
6478      Mask1[1] = PermMask[1];
6479      Mask1[2] = HiIndex & 1 ? 6 : 4;
6480      Mask1[3] = HiIndex & 1 ? 4 : 6;
6481      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6482    }
6483
6484    Mask1[0] = HiIndex & 1 ? 2 : 0;
6485    Mask1[1] = HiIndex & 1 ? 0 : 2;
6486    Mask1[2] = PermMask[2];
6487    Mask1[3] = PermMask[3];
6488    if (Mask1[2] >= 0)
6489      Mask1[2] += 4;
6490    if (Mask1[3] >= 0)
6491      Mask1[3] += 4;
6492    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6493  }
6494
6495  // Break it into (shuffle shuffle_hi, shuffle_lo).
6496  int LoMask[] = { -1, -1, -1, -1 };
6497  int HiMask[] = { -1, -1, -1, -1 };
6498
6499  int *MaskPtr = LoMask;
6500  unsigned MaskIdx = 0;
6501  unsigned LoIdx = 0;
6502  unsigned HiIdx = 2;
6503  for (unsigned i = 0; i != 4; ++i) {
6504    if (i == 2) {
6505      MaskPtr = HiMask;
6506      MaskIdx = 1;
6507      LoIdx = 0;
6508      HiIdx = 2;
6509    }
6510    int Idx = PermMask[i];
6511    if (Idx < 0) {
6512      Locs[i] = std::make_pair(-1, -1);
6513    } else if (Idx < 4) {
6514      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6515      MaskPtr[LoIdx] = Idx;
6516      LoIdx++;
6517    } else {
6518      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6519      MaskPtr[HiIdx] = Idx;
6520      HiIdx++;
6521    }
6522  }
6523
6524  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6525  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6526  int MaskOps[] = { -1, -1, -1, -1 };
6527  for (unsigned i = 0; i != 4; ++i)
6528    if (Locs[i].first != -1)
6529      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6530  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6531}
6532
6533static bool MayFoldVectorLoad(SDValue V) {
6534  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6535    V = V.getOperand(0);
6536
6537  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6538    V = V.getOperand(0);
6539  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6540      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6541    // BUILD_VECTOR (load), undef
6542    V = V.getOperand(0);
6543
6544  return MayFoldLoad(V);
6545}
6546
6547static
6548SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6549  EVT VT = Op.getValueType();
6550
6551  // Canonizalize to v2f64.
6552  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6553  return DAG.getNode(ISD::BITCAST, dl, VT,
6554                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6555                                          V1, DAG));
6556}
6557
6558static
6559SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6560                        bool HasSSE2) {
6561  SDValue V1 = Op.getOperand(0);
6562  SDValue V2 = Op.getOperand(1);
6563  EVT VT = Op.getValueType();
6564
6565  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6566
6567  if (HasSSE2 && VT == MVT::v2f64)
6568    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6569
6570  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6571  return DAG.getNode(ISD::BITCAST, dl, VT,
6572                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6573                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6574                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6575}
6576
6577static
6578SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6579  SDValue V1 = Op.getOperand(0);
6580  SDValue V2 = Op.getOperand(1);
6581  EVT VT = Op.getValueType();
6582
6583  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6584         "unsupported shuffle type");
6585
6586  if (V2.getOpcode() == ISD::UNDEF)
6587    V2 = V1;
6588
6589  // v4i32 or v4f32
6590  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6591}
6592
6593static
6594SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6595  SDValue V1 = Op.getOperand(0);
6596  SDValue V2 = Op.getOperand(1);
6597  EVT VT = Op.getValueType();
6598  unsigned NumElems = VT.getVectorNumElements();
6599
6600  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6601  // operand of these instructions is only memory, so check if there's a
6602  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6603  // same masks.
6604  bool CanFoldLoad = false;
6605
6606  // Trivial case, when V2 comes from a load.
6607  if (MayFoldVectorLoad(V2))
6608    CanFoldLoad = true;
6609
6610  // When V1 is a load, it can be folded later into a store in isel, example:
6611  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6612  //    turns into:
6613  //  (MOVLPSmr addr:$src1, VR128:$src2)
6614  // So, recognize this potential and also use MOVLPS or MOVLPD
6615  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6616    CanFoldLoad = true;
6617
6618  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6619  if (CanFoldLoad) {
6620    if (HasSSE2 && NumElems == 2)
6621      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6622
6623    if (NumElems == 4)
6624      // If we don't care about the second element, proceed to use movss.
6625      if (SVOp->getMaskElt(1) != -1)
6626        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6627  }
6628
6629  // movl and movlp will both match v2i64, but v2i64 is never matched by
6630  // movl earlier because we make it strict to avoid messing with the movlp load
6631  // folding logic (see the code above getMOVLP call). Match it here then,
6632  // this is horrible, but will stay like this until we move all shuffle
6633  // matching to x86 specific nodes. Note that for the 1st condition all
6634  // types are matched with movsd.
6635  if (HasSSE2) {
6636    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6637    // as to remove this logic from here, as much as possible
6638    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6639      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6640    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6641  }
6642
6643  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6644
6645  // Invert the operand order and use SHUFPS to match it.
6646  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6647                              getShuffleSHUFImmediate(SVOp), DAG);
6648}
6649
6650// Reduce a vector shuffle to zext.
6651SDValue
6652X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6653  // PMOVZX is only available from SSE41.
6654  if (!Subtarget->hasSSE41())
6655    return SDValue();
6656
6657  EVT VT = Op.getValueType();
6658
6659  // Only AVX2 support 256-bit vector integer extending.
6660  if (!Subtarget->hasInt256() && VT.is256BitVector())
6661    return SDValue();
6662
6663  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6664  DebugLoc DL = Op.getDebugLoc();
6665  SDValue V1 = Op.getOperand(0);
6666  SDValue V2 = Op.getOperand(1);
6667  unsigned NumElems = VT.getVectorNumElements();
6668
6669  // Extending is an unary operation and the element type of the source vector
6670  // won't be equal to or larger than i64.
6671  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6672      VT.getVectorElementType() == MVT::i64)
6673    return SDValue();
6674
6675  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6676  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6677  while ((1U << Shift) < NumElems) {
6678    if (SVOp->getMaskElt(1U << Shift) == 1)
6679      break;
6680    Shift += 1;
6681    // The maximal ratio is 8, i.e. from i8 to i64.
6682    if (Shift > 3)
6683      return SDValue();
6684  }
6685
6686  // Check the shuffle mask.
6687  unsigned Mask = (1U << Shift) - 1;
6688  for (unsigned i = 0; i != NumElems; ++i) {
6689    int EltIdx = SVOp->getMaskElt(i);
6690    if ((i & Mask) != 0 && EltIdx != -1)
6691      return SDValue();
6692    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6693      return SDValue();
6694  }
6695
6696  LLVMContext *Context = DAG.getContext();
6697  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6698  EVT NeVT = EVT::getIntegerVT(*Context, NBits);
6699  EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
6700
6701  if (!isTypeLegal(NVT))
6702    return SDValue();
6703
6704  // Simplify the operand as it's prepared to be fed into shuffle.
6705  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6706  if (V1.getOpcode() == ISD::BITCAST &&
6707      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6708      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6709      V1.getOperand(0)
6710        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6711    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6712    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6713    ConstantSDNode *CIdx =
6714      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6715    // If it's foldable, i.e. normal load with single use, we will let code
6716    // selection to fold it. Otherwise, we will short the conversion sequence.
6717    if (CIdx && CIdx->getZExtValue() == 0 &&
6718        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
6719      if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
6720        // The "ext_vec_elt" node is wider than the result node.
6721        // In this case we should extract subvector from V.
6722        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
6723        unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
6724        EVT FullVT = V.getValueType();
6725        EVT SubVecVT = EVT::getVectorVT(*Context,
6726                                        FullVT.getVectorElementType(),
6727                                        FullVT.getVectorNumElements()/Ratio);
6728        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
6729                        DAG.getIntPtrConstant(0));
6730      }
6731      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6732    }
6733  }
6734
6735  return DAG.getNode(ISD::BITCAST, DL, VT,
6736                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6737}
6738
6739SDValue
6740X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6741  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6742  MVT VT = Op.getValueType().getSimpleVT();
6743  DebugLoc dl = Op.getDebugLoc();
6744  SDValue V1 = Op.getOperand(0);
6745  SDValue V2 = Op.getOperand(1);
6746
6747  if (isZeroShuffle(SVOp))
6748    return getZeroVector(VT, Subtarget, DAG, dl);
6749
6750  // Handle splat operations
6751  if (SVOp->isSplat()) {
6752    // Use vbroadcast whenever the splat comes from a foldable load
6753    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6754    if (Broadcast.getNode())
6755      return Broadcast;
6756  }
6757
6758  // Check integer expanding shuffles.
6759  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6760  if (NewOp.getNode())
6761    return NewOp;
6762
6763  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6764  // do it!
6765  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6766      VT == MVT::v16i16 || VT == MVT::v32i8) {
6767    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6768    if (NewOp.getNode())
6769      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6770  } else if ((VT == MVT::v4i32 ||
6771             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6772    // FIXME: Figure out a cleaner way to do this.
6773    // Try to make use of movq to zero out the top part.
6774    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6775      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6776      if (NewOp.getNode()) {
6777        MVT NewVT = NewOp.getValueType().getSimpleVT();
6778        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6779                               NewVT, true, false))
6780          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6781                              DAG, Subtarget, dl);
6782      }
6783    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6784      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6785      if (NewOp.getNode()) {
6786        MVT NewVT = NewOp.getValueType().getSimpleVT();
6787        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6788          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6789                              DAG, Subtarget, dl);
6790      }
6791    }
6792  }
6793  return SDValue();
6794}
6795
6796SDValue
6797X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6798  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6799  SDValue V1 = Op.getOperand(0);
6800  SDValue V2 = Op.getOperand(1);
6801  MVT VT = Op.getValueType().getSimpleVT();
6802  DebugLoc dl = Op.getDebugLoc();
6803  unsigned NumElems = VT.getVectorNumElements();
6804  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6805  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6806  bool V1IsSplat = false;
6807  bool V2IsSplat = false;
6808  bool HasSSE2 = Subtarget->hasSSE2();
6809  bool HasFp256    = Subtarget->hasFp256();
6810  bool HasInt256   = Subtarget->hasInt256();
6811  MachineFunction &MF = DAG.getMachineFunction();
6812  bool OptForSize = MF.getFunction()->getAttributes().
6813    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6814
6815  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6816
6817  if (V1IsUndef && V2IsUndef)
6818    return DAG.getUNDEF(VT);
6819
6820  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6821
6822  // Vector shuffle lowering takes 3 steps:
6823  //
6824  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6825  //    narrowing and commutation of operands should be handled.
6826  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6827  //    shuffle nodes.
6828  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6829  //    so the shuffle can be broken into other shuffles and the legalizer can
6830  //    try the lowering again.
6831  //
6832  // The general idea is that no vector_shuffle operation should be left to
6833  // be matched during isel, all of them must be converted to a target specific
6834  // node here.
6835
6836  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6837  // narrowing and commutation of operands should be handled. The actual code
6838  // doesn't include all of those, work in progress...
6839  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6840  if (NewOp.getNode())
6841    return NewOp;
6842
6843  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6844
6845  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6846  // unpckh_undef). Only use pshufd if speed is more important than size.
6847  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6848    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6849  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6850    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6851
6852  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6853      V2IsUndef && MayFoldVectorLoad(V1))
6854    return getMOVDDup(Op, dl, V1, DAG);
6855
6856  if (isMOVHLPS_v_undef_Mask(M, VT))
6857    return getMOVHighToLow(Op, dl, DAG);
6858
6859  // Use to match splats
6860  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6861      (VT == MVT::v2f64 || VT == MVT::v2i64))
6862    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6863
6864  if (isPSHUFDMask(M, VT)) {
6865    // The actual implementation will match the mask in the if above and then
6866    // during isel it can match several different instructions, not only pshufd
6867    // as its name says, sad but true, emulate the behavior for now...
6868    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6869      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6870
6871    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6872
6873    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6874      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6875
6876    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6877      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6878                                  DAG);
6879
6880    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6881                                TargetMask, DAG);
6882  }
6883
6884  if (isPALIGNRMask(M, VT, Subtarget))
6885    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
6886                                getShufflePALIGNRImmediate(SVOp),
6887                                DAG);
6888
6889  // Check if this can be converted into a logical shift.
6890  bool isLeft = false;
6891  unsigned ShAmt = 0;
6892  SDValue ShVal;
6893  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6894  if (isShift && ShVal.hasOneUse()) {
6895    // If the shifted value has multiple uses, it may be cheaper to use
6896    // v_set0 + movlhps or movhlps, etc.
6897    MVT EltVT = VT.getVectorElementType();
6898    ShAmt *= EltVT.getSizeInBits();
6899    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6900  }
6901
6902  if (isMOVLMask(M, VT)) {
6903    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6904      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6905    if (!isMOVLPMask(M, VT)) {
6906      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6907        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6908
6909      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6910        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6911    }
6912  }
6913
6914  // FIXME: fold these into legal mask.
6915  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6916    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6917
6918  if (isMOVHLPSMask(M, VT))
6919    return getMOVHighToLow(Op, dl, DAG);
6920
6921  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6922    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6923
6924  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6925    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6926
6927  if (isMOVLPMask(M, VT))
6928    return getMOVLP(Op, dl, DAG, HasSSE2);
6929
6930  if (ShouldXformToMOVHLPS(M, VT) ||
6931      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6932    return CommuteVectorShuffle(SVOp, DAG);
6933
6934  if (isShift) {
6935    // No better options. Use a vshldq / vsrldq.
6936    MVT EltVT = VT.getVectorElementType();
6937    ShAmt *= EltVT.getSizeInBits();
6938    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6939  }
6940
6941  bool Commuted = false;
6942  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6943  // 1,1,1,1 -> v8i16 though.
6944  V1IsSplat = isSplatVector(V1.getNode());
6945  V2IsSplat = isSplatVector(V2.getNode());
6946
6947  // Canonicalize the splat or undef, if present, to be on the RHS.
6948  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6949    CommuteVectorShuffleMask(M, NumElems);
6950    std::swap(V1, V2);
6951    std::swap(V1IsSplat, V2IsSplat);
6952    Commuted = true;
6953  }
6954
6955  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6956    // Shuffling low element of v1 into undef, just return v1.
6957    if (V2IsUndef)
6958      return V1;
6959    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6960    // the instruction selector will not match, so get a canonical MOVL with
6961    // swapped operands to undo the commute.
6962    return getMOVL(DAG, dl, VT, V2, V1);
6963  }
6964
6965  if (isUNPCKLMask(M, VT, HasInt256))
6966    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6967
6968  if (isUNPCKHMask(M, VT, HasInt256))
6969    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6970
6971  if (V2IsSplat) {
6972    // Normalize mask so all entries that point to V2 points to its first
6973    // element then try to match unpck{h|l} again. If match, return a
6974    // new vector_shuffle with the corrected mask.p
6975    SmallVector<int, 8> NewMask(M.begin(), M.end());
6976    NormalizeMask(NewMask, NumElems);
6977    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6978      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6979    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6980      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6981  }
6982
6983  if (Commuted) {
6984    // Commute is back and try unpck* again.
6985    // FIXME: this seems wrong.
6986    CommuteVectorShuffleMask(M, NumElems);
6987    std::swap(V1, V2);
6988    std::swap(V1IsSplat, V2IsSplat);
6989    Commuted = false;
6990
6991    if (isUNPCKLMask(M, VT, HasInt256))
6992      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6993
6994    if (isUNPCKHMask(M, VT, HasInt256))
6995      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6996  }
6997
6998  // Normalize the node to match x86 shuffle ops if needed
6999  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
7000    return CommuteVectorShuffle(SVOp, DAG);
7001
7002  // The checks below are all present in isShuffleMaskLegal, but they are
7003  // inlined here right now to enable us to directly emit target specific
7004  // nodes, and remove one by one until they don't return Op anymore.
7005
7006  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7007      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7008    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7009      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7010  }
7011
7012  if (isPSHUFHWMask(M, VT, HasInt256))
7013    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7014                                getShufflePSHUFHWImmediate(SVOp),
7015                                DAG);
7016
7017  if (isPSHUFLWMask(M, VT, HasInt256))
7018    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7019                                getShufflePSHUFLWImmediate(SVOp),
7020                                DAG);
7021
7022  if (isSHUFPMask(M, VT, HasFp256))
7023    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7024                                getShuffleSHUFImmediate(SVOp), DAG);
7025
7026  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7027    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7028  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7029    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7030
7031  //===--------------------------------------------------------------------===//
7032  // Generate target specific nodes for 128 or 256-bit shuffles only
7033  // supported in the AVX instruction set.
7034  //
7035
7036  // Handle VMOVDDUPY permutations
7037  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7038    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7039
7040  // Handle VPERMILPS/D* permutations
7041  if (isVPERMILPMask(M, VT, HasFp256)) {
7042    if (HasInt256 && VT == MVT::v8i32)
7043      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7044                                  getShuffleSHUFImmediate(SVOp), DAG);
7045    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7046                                getShuffleSHUFImmediate(SVOp), DAG);
7047  }
7048
7049  // Handle VPERM2F128/VPERM2I128 permutations
7050  if (isVPERM2X128Mask(M, VT, HasFp256))
7051    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7052                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7053
7054  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7055  if (BlendOp.getNode())
7056    return BlendOp;
7057
7058  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
7059    SmallVector<SDValue, 8> permclMask;
7060    for (unsigned i = 0; i != 8; ++i) {
7061      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
7062    }
7063    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
7064                               &permclMask[0], 8);
7065    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7066    return DAG.getNode(X86ISD::VPERMV, dl, VT,
7067                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7068  }
7069
7070  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7071    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7072                                getShuffleCLImmediate(SVOp), DAG);
7073
7074  //===--------------------------------------------------------------------===//
7075  // Since no target specific shuffle was selected for this generic one,
7076  // lower it into other known shuffles. FIXME: this isn't true yet, but
7077  // this is the plan.
7078  //
7079
7080  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7081  if (VT == MVT::v8i16) {
7082    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7083    if (NewOp.getNode())
7084      return NewOp;
7085  }
7086
7087  if (VT == MVT::v16i8) {
7088    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7089    if (NewOp.getNode())
7090      return NewOp;
7091  }
7092
7093  if (VT == MVT::v32i8) {
7094    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7095    if (NewOp.getNode())
7096      return NewOp;
7097  }
7098
7099  // Handle all 128-bit wide vectors with 4 elements, and match them with
7100  // several different shuffle types.
7101  if (NumElems == 4 && VT.is128BitVector())
7102    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7103
7104  // Handle general 256-bit shuffles
7105  if (VT.is256BitVector())
7106    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7107
7108  return SDValue();
7109}
7110
7111static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7112  MVT VT = Op.getValueType().getSimpleVT();
7113  DebugLoc dl = Op.getDebugLoc();
7114
7115  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7116    return SDValue();
7117
7118  if (VT.getSizeInBits() == 8) {
7119    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7120                                  Op.getOperand(0), Op.getOperand(1));
7121    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7122                                  DAG.getValueType(VT));
7123    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7124  }
7125
7126  if (VT.getSizeInBits() == 16) {
7127    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7128    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7129    if (Idx == 0)
7130      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7131                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7132                                     DAG.getNode(ISD::BITCAST, dl,
7133                                                 MVT::v4i32,
7134                                                 Op.getOperand(0)),
7135                                     Op.getOperand(1)));
7136    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7137                                  Op.getOperand(0), Op.getOperand(1));
7138    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7139                                  DAG.getValueType(VT));
7140    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7141  }
7142
7143  if (VT == MVT::f32) {
7144    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7145    // the result back to FR32 register. It's only worth matching if the
7146    // result has a single use which is a store or a bitcast to i32.  And in
7147    // the case of a store, it's not worth it if the index is a constant 0,
7148    // because a MOVSSmr can be used instead, which is smaller and faster.
7149    if (!Op.hasOneUse())
7150      return SDValue();
7151    SDNode *User = *Op.getNode()->use_begin();
7152    if ((User->getOpcode() != ISD::STORE ||
7153         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7154          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7155        (User->getOpcode() != ISD::BITCAST ||
7156         User->getValueType(0) != MVT::i32))
7157      return SDValue();
7158    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7159                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7160                                              Op.getOperand(0)),
7161                                              Op.getOperand(1));
7162    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7163  }
7164
7165  if (VT == MVT::i32 || VT == MVT::i64) {
7166    // ExtractPS/pextrq works with constant index.
7167    if (isa<ConstantSDNode>(Op.getOperand(1)))
7168      return Op;
7169  }
7170  return SDValue();
7171}
7172
7173SDValue
7174X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7175                                           SelectionDAG &DAG) const {
7176  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7177    return SDValue();
7178
7179  SDValue Vec = Op.getOperand(0);
7180  MVT VecVT = Vec.getValueType().getSimpleVT();
7181
7182  // If this is a 256-bit vector result, first extract the 128-bit vector and
7183  // then extract the element from the 128-bit vector.
7184  if (VecVT.is256BitVector()) {
7185    DebugLoc dl = Op.getNode()->getDebugLoc();
7186    unsigned NumElems = VecVT.getVectorNumElements();
7187    SDValue Idx = Op.getOperand(1);
7188    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7189
7190    // Get the 128-bit vector.
7191    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7192
7193    if (IdxVal >= NumElems/2)
7194      IdxVal -= NumElems/2;
7195    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7196                       DAG.getConstant(IdxVal, MVT::i32));
7197  }
7198
7199  assert(VecVT.is128BitVector() && "Unexpected vector length");
7200
7201  if (Subtarget->hasSSE41()) {
7202    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7203    if (Res.getNode())
7204      return Res;
7205  }
7206
7207  MVT VT = Op.getValueType().getSimpleVT();
7208  DebugLoc dl = Op.getDebugLoc();
7209  // TODO: handle v16i8.
7210  if (VT.getSizeInBits() == 16) {
7211    SDValue Vec = Op.getOperand(0);
7212    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7213    if (Idx == 0)
7214      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7215                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7216                                     DAG.getNode(ISD::BITCAST, dl,
7217                                                 MVT::v4i32, Vec),
7218                                     Op.getOperand(1)));
7219    // Transform it so it match pextrw which produces a 32-bit result.
7220    MVT EltVT = MVT::i32;
7221    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7222                                  Op.getOperand(0), Op.getOperand(1));
7223    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7224                                  DAG.getValueType(VT));
7225    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7226  }
7227
7228  if (VT.getSizeInBits() == 32) {
7229    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7230    if (Idx == 0)
7231      return Op;
7232
7233    // SHUFPS the element to the lowest double word, then movss.
7234    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7235    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7236    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7237                                       DAG.getUNDEF(VVT), Mask);
7238    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7239                       DAG.getIntPtrConstant(0));
7240  }
7241
7242  if (VT.getSizeInBits() == 64) {
7243    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7244    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7245    //        to match extract_elt for f64.
7246    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7247    if (Idx == 0)
7248      return Op;
7249
7250    // UNPCKHPD the element to the lowest double word, then movsd.
7251    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7252    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7253    int Mask[2] = { 1, -1 };
7254    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7255    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7256                                       DAG.getUNDEF(VVT), Mask);
7257    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7258                       DAG.getIntPtrConstant(0));
7259  }
7260
7261  return SDValue();
7262}
7263
7264static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7265  MVT VT = Op.getValueType().getSimpleVT();
7266  MVT EltVT = VT.getVectorElementType();
7267  DebugLoc dl = Op.getDebugLoc();
7268
7269  SDValue N0 = Op.getOperand(0);
7270  SDValue N1 = Op.getOperand(1);
7271  SDValue N2 = Op.getOperand(2);
7272
7273  if (!VT.is128BitVector())
7274    return SDValue();
7275
7276  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7277      isa<ConstantSDNode>(N2)) {
7278    unsigned Opc;
7279    if (VT == MVT::v8i16)
7280      Opc = X86ISD::PINSRW;
7281    else if (VT == MVT::v16i8)
7282      Opc = X86ISD::PINSRB;
7283    else
7284      Opc = X86ISD::PINSRB;
7285
7286    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7287    // argument.
7288    if (N1.getValueType() != MVT::i32)
7289      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7290    if (N2.getValueType() != MVT::i32)
7291      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7292    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7293  }
7294
7295  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7296    // Bits [7:6] of the constant are the source select.  This will always be
7297    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7298    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7299    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7300    // Bits [5:4] of the constant are the destination select.  This is the
7301    //  value of the incoming immediate.
7302    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7303    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7304    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7305    // Create this as a scalar to vector..
7306    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7307    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7308  }
7309
7310  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7311    // PINSR* works with constant index.
7312    return Op;
7313  }
7314  return SDValue();
7315}
7316
7317SDValue
7318X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7319  MVT VT = Op.getValueType().getSimpleVT();
7320  MVT EltVT = VT.getVectorElementType();
7321
7322  DebugLoc dl = Op.getDebugLoc();
7323  SDValue N0 = Op.getOperand(0);
7324  SDValue N1 = Op.getOperand(1);
7325  SDValue N2 = Op.getOperand(2);
7326
7327  // If this is a 256-bit vector result, first extract the 128-bit vector,
7328  // insert the element into the extracted half and then place it back.
7329  if (VT.is256BitVector()) {
7330    if (!isa<ConstantSDNode>(N2))
7331      return SDValue();
7332
7333    // Get the desired 128-bit vector half.
7334    unsigned NumElems = VT.getVectorNumElements();
7335    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7336    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7337
7338    // Insert the element into the desired half.
7339    bool Upper = IdxVal >= NumElems/2;
7340    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7341                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7342
7343    // Insert the changed part back to the 256-bit vector
7344    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7345  }
7346
7347  if (Subtarget->hasSSE41())
7348    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7349
7350  if (EltVT == MVT::i8)
7351    return SDValue();
7352
7353  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7354    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7355    // as its second argument.
7356    if (N1.getValueType() != MVT::i32)
7357      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7358    if (N2.getValueType() != MVT::i32)
7359      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7360    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7361  }
7362  return SDValue();
7363}
7364
7365static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7366  LLVMContext *Context = DAG.getContext();
7367  DebugLoc dl = Op.getDebugLoc();
7368  MVT OpVT = Op.getValueType().getSimpleVT();
7369
7370  // If this is a 256-bit vector result, first insert into a 128-bit
7371  // vector and then insert into the 256-bit vector.
7372  if (!OpVT.is128BitVector()) {
7373    // Insert into a 128-bit vector.
7374    EVT VT128 = EVT::getVectorVT(*Context,
7375                                 OpVT.getVectorElementType(),
7376                                 OpVT.getVectorNumElements() / 2);
7377
7378    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7379
7380    // Insert the 128-bit vector.
7381    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7382  }
7383
7384  if (OpVT == MVT::v1i64 &&
7385      Op.getOperand(0).getValueType() == MVT::i64)
7386    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7387
7388  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7389  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7390  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7391                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7392}
7393
7394// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7395// a simple subregister reference or explicit instructions to grab
7396// upper bits of a vector.
7397static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7398                                      SelectionDAG &DAG) {
7399  if (Subtarget->hasFp256()) {
7400    DebugLoc dl = Op.getNode()->getDebugLoc();
7401    SDValue Vec = Op.getNode()->getOperand(0);
7402    SDValue Idx = Op.getNode()->getOperand(1);
7403
7404    if (Op.getNode()->getValueType(0).is128BitVector() &&
7405        Vec.getNode()->getValueType(0).is256BitVector() &&
7406        isa<ConstantSDNode>(Idx)) {
7407      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7408      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7409    }
7410  }
7411  return SDValue();
7412}
7413
7414// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7415// simple superregister reference or explicit instructions to insert
7416// the upper bits of a vector.
7417static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7418                                     SelectionDAG &DAG) {
7419  if (Subtarget->hasFp256()) {
7420    DebugLoc dl = Op.getNode()->getDebugLoc();
7421    SDValue Vec = Op.getNode()->getOperand(0);
7422    SDValue SubVec = Op.getNode()->getOperand(1);
7423    SDValue Idx = Op.getNode()->getOperand(2);
7424
7425    if (Op.getNode()->getValueType(0).is256BitVector() &&
7426        SubVec.getNode()->getValueType(0).is128BitVector() &&
7427        isa<ConstantSDNode>(Idx)) {
7428      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7429      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7430    }
7431  }
7432  return SDValue();
7433}
7434
7435// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7436// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7437// one of the above mentioned nodes. It has to be wrapped because otherwise
7438// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7439// be used to form addressing mode. These wrapped nodes will be selected
7440// into MOV32ri.
7441SDValue
7442X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7443  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7444
7445  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7446  // global base reg.
7447  unsigned char OpFlag = 0;
7448  unsigned WrapperKind = X86ISD::Wrapper;
7449  CodeModel::Model M = getTargetMachine().getCodeModel();
7450
7451  if (Subtarget->isPICStyleRIPRel() &&
7452      (M == CodeModel::Small || M == CodeModel::Kernel))
7453    WrapperKind = X86ISD::WrapperRIP;
7454  else if (Subtarget->isPICStyleGOT())
7455    OpFlag = X86II::MO_GOTOFF;
7456  else if (Subtarget->isPICStyleStubPIC())
7457    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7458
7459  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7460                                             CP->getAlignment(),
7461                                             CP->getOffset(), OpFlag);
7462  DebugLoc DL = CP->getDebugLoc();
7463  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7464  // With PIC, the address is actually $g + Offset.
7465  if (OpFlag) {
7466    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7467                         DAG.getNode(X86ISD::GlobalBaseReg,
7468                                     DebugLoc(), getPointerTy()),
7469                         Result);
7470  }
7471
7472  return Result;
7473}
7474
7475SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7476  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7477
7478  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7479  // global base reg.
7480  unsigned char OpFlag = 0;
7481  unsigned WrapperKind = X86ISD::Wrapper;
7482  CodeModel::Model M = getTargetMachine().getCodeModel();
7483
7484  if (Subtarget->isPICStyleRIPRel() &&
7485      (M == CodeModel::Small || M == CodeModel::Kernel))
7486    WrapperKind = X86ISD::WrapperRIP;
7487  else if (Subtarget->isPICStyleGOT())
7488    OpFlag = X86II::MO_GOTOFF;
7489  else if (Subtarget->isPICStyleStubPIC())
7490    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7491
7492  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7493                                          OpFlag);
7494  DebugLoc DL = JT->getDebugLoc();
7495  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7496
7497  // With PIC, the address is actually $g + Offset.
7498  if (OpFlag)
7499    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7500                         DAG.getNode(X86ISD::GlobalBaseReg,
7501                                     DebugLoc(), getPointerTy()),
7502                         Result);
7503
7504  return Result;
7505}
7506
7507SDValue
7508X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7509  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7510
7511  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7512  // global base reg.
7513  unsigned char OpFlag = 0;
7514  unsigned WrapperKind = X86ISD::Wrapper;
7515  CodeModel::Model M = getTargetMachine().getCodeModel();
7516
7517  if (Subtarget->isPICStyleRIPRel() &&
7518      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7519    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7520      OpFlag = X86II::MO_GOTPCREL;
7521    WrapperKind = X86ISD::WrapperRIP;
7522  } else if (Subtarget->isPICStyleGOT()) {
7523    OpFlag = X86II::MO_GOT;
7524  } else if (Subtarget->isPICStyleStubPIC()) {
7525    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7526  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7527    OpFlag = X86II::MO_DARWIN_NONLAZY;
7528  }
7529
7530  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7531
7532  DebugLoc DL = Op.getDebugLoc();
7533  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7534
7535  // With PIC, the address is actually $g + Offset.
7536  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7537      !Subtarget->is64Bit()) {
7538    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7539                         DAG.getNode(X86ISD::GlobalBaseReg,
7540                                     DebugLoc(), getPointerTy()),
7541                         Result);
7542  }
7543
7544  // For symbols that require a load from a stub to get the address, emit the
7545  // load.
7546  if (isGlobalStubReference(OpFlag))
7547    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7548                         MachinePointerInfo::getGOT(), false, false, false, 0);
7549
7550  return Result;
7551}
7552
7553SDValue
7554X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7555  // Create the TargetBlockAddressAddress node.
7556  unsigned char OpFlags =
7557    Subtarget->ClassifyBlockAddressReference();
7558  CodeModel::Model M = getTargetMachine().getCodeModel();
7559  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7560  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7561  DebugLoc dl = Op.getDebugLoc();
7562  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7563                                             OpFlags);
7564
7565  if (Subtarget->isPICStyleRIPRel() &&
7566      (M == CodeModel::Small || M == CodeModel::Kernel))
7567    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7568  else
7569    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7570
7571  // With PIC, the address is actually $g + Offset.
7572  if (isGlobalRelativeToPICBase(OpFlags)) {
7573    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7574                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7575                         Result);
7576  }
7577
7578  return Result;
7579}
7580
7581SDValue
7582X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7583                                      int64_t Offset, SelectionDAG &DAG) const {
7584  // Create the TargetGlobalAddress node, folding in the constant
7585  // offset if it is legal.
7586  unsigned char OpFlags =
7587    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7588  CodeModel::Model M = getTargetMachine().getCodeModel();
7589  SDValue Result;
7590  if (OpFlags == X86II::MO_NO_FLAG &&
7591      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7592    // A direct static reference to a global.
7593    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7594    Offset = 0;
7595  } else {
7596    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7597  }
7598
7599  if (Subtarget->isPICStyleRIPRel() &&
7600      (M == CodeModel::Small || M == CodeModel::Kernel))
7601    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7602  else
7603    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7604
7605  // With PIC, the address is actually $g + Offset.
7606  if (isGlobalRelativeToPICBase(OpFlags)) {
7607    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7608                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7609                         Result);
7610  }
7611
7612  // For globals that require a load from a stub to get the address, emit the
7613  // load.
7614  if (isGlobalStubReference(OpFlags))
7615    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7616                         MachinePointerInfo::getGOT(), false, false, false, 0);
7617
7618  // If there was a non-zero offset that we didn't fold, create an explicit
7619  // addition for it.
7620  if (Offset != 0)
7621    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7622                         DAG.getConstant(Offset, getPointerTy()));
7623
7624  return Result;
7625}
7626
7627SDValue
7628X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7629  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7630  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7631  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7632}
7633
7634static SDValue
7635GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7636           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7637           unsigned char OperandFlags, bool LocalDynamic = false) {
7638  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7639  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7640  DebugLoc dl = GA->getDebugLoc();
7641  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7642                                           GA->getValueType(0),
7643                                           GA->getOffset(),
7644                                           OperandFlags);
7645
7646  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7647                                           : X86ISD::TLSADDR;
7648
7649  if (InFlag) {
7650    SDValue Ops[] = { Chain,  TGA, *InFlag };
7651    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
7652  } else {
7653    SDValue Ops[]  = { Chain, TGA };
7654    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
7655  }
7656
7657  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7658  MFI->setAdjustsStack(true);
7659
7660  SDValue Flag = Chain.getValue(1);
7661  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7662}
7663
7664// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7665static SDValue
7666LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7667                                const EVT PtrVT) {
7668  SDValue InFlag;
7669  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7670  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7671                                   DAG.getNode(X86ISD::GlobalBaseReg,
7672                                               DebugLoc(), PtrVT), InFlag);
7673  InFlag = Chain.getValue(1);
7674
7675  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7676}
7677
7678// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7679static SDValue
7680LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7681                                const EVT PtrVT) {
7682  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7683                    X86::RAX, X86II::MO_TLSGD);
7684}
7685
7686static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7687                                           SelectionDAG &DAG,
7688                                           const EVT PtrVT,
7689                                           bool is64Bit) {
7690  DebugLoc dl = GA->getDebugLoc();
7691
7692  // Get the start address of the TLS block for this module.
7693  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7694      .getInfo<X86MachineFunctionInfo>();
7695  MFI->incNumLocalDynamicTLSAccesses();
7696
7697  SDValue Base;
7698  if (is64Bit) {
7699    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7700                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7701  } else {
7702    SDValue InFlag;
7703    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7704        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7705    InFlag = Chain.getValue(1);
7706    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7707                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7708  }
7709
7710  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7711  // of Base.
7712
7713  // Build x@dtpoff.
7714  unsigned char OperandFlags = X86II::MO_DTPOFF;
7715  unsigned WrapperKind = X86ISD::Wrapper;
7716  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7717                                           GA->getValueType(0),
7718                                           GA->getOffset(), OperandFlags);
7719  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7720
7721  // Add x@dtpoff with the base.
7722  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7723}
7724
7725// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7726static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7727                                   const EVT PtrVT, TLSModel::Model model,
7728                                   bool is64Bit, bool isPIC) {
7729  DebugLoc dl = GA->getDebugLoc();
7730
7731  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7732  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7733                                                         is64Bit ? 257 : 256));
7734
7735  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7736                                      DAG.getIntPtrConstant(0),
7737                                      MachinePointerInfo(Ptr),
7738                                      false, false, false, 0);
7739
7740  unsigned char OperandFlags = 0;
7741  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7742  // initialexec.
7743  unsigned WrapperKind = X86ISD::Wrapper;
7744  if (model == TLSModel::LocalExec) {
7745    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7746  } else if (model == TLSModel::InitialExec) {
7747    if (is64Bit) {
7748      OperandFlags = X86II::MO_GOTTPOFF;
7749      WrapperKind = X86ISD::WrapperRIP;
7750    } else {
7751      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7752    }
7753  } else {
7754    llvm_unreachable("Unexpected model");
7755  }
7756
7757  // emit "addl x@ntpoff,%eax" (local exec)
7758  // or "addl x@indntpoff,%eax" (initial exec)
7759  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7760  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7761                                           GA->getValueType(0),
7762                                           GA->getOffset(), OperandFlags);
7763  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7764
7765  if (model == TLSModel::InitialExec) {
7766    if (isPIC && !is64Bit) {
7767      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7768                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7769                           Offset);
7770    }
7771
7772    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7773                         MachinePointerInfo::getGOT(), false, false, false,
7774                         0);
7775  }
7776
7777  // The address of the thread local variable is the add of the thread
7778  // pointer with the offset of the variable.
7779  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7780}
7781
7782SDValue
7783X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7784
7785  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7786  const GlobalValue *GV = GA->getGlobal();
7787
7788  if (Subtarget->isTargetELF()) {
7789    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7790
7791    switch (model) {
7792      case TLSModel::GeneralDynamic:
7793        if (Subtarget->is64Bit())
7794          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7795        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7796      case TLSModel::LocalDynamic:
7797        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7798                                           Subtarget->is64Bit());
7799      case TLSModel::InitialExec:
7800      case TLSModel::LocalExec:
7801        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7802                                   Subtarget->is64Bit(),
7803                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
7804    }
7805    llvm_unreachable("Unknown TLS model.");
7806  }
7807
7808  if (Subtarget->isTargetDarwin()) {
7809    // Darwin only has one model of TLS.  Lower to that.
7810    unsigned char OpFlag = 0;
7811    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7812                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7813
7814    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7815    // global base reg.
7816    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7817                  !Subtarget->is64Bit();
7818    if (PIC32)
7819      OpFlag = X86II::MO_TLVP_PIC_BASE;
7820    else
7821      OpFlag = X86II::MO_TLVP;
7822    DebugLoc DL = Op.getDebugLoc();
7823    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7824                                                GA->getValueType(0),
7825                                                GA->getOffset(), OpFlag);
7826    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7827
7828    // With PIC32, the address is actually $g + Offset.
7829    if (PIC32)
7830      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7831                           DAG.getNode(X86ISD::GlobalBaseReg,
7832                                       DebugLoc(), getPointerTy()),
7833                           Offset);
7834
7835    // Lowering the machine isd will make sure everything is in the right
7836    // location.
7837    SDValue Chain = DAG.getEntryNode();
7838    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7839    SDValue Args[] = { Chain, Offset };
7840    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7841
7842    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7843    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7844    MFI->setAdjustsStack(true);
7845
7846    // And our return value (tls address) is in the standard call return value
7847    // location.
7848    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7849    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7850                              Chain.getValue(1));
7851  }
7852
7853  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
7854    // Just use the implicit TLS architecture
7855    // Need to generate someting similar to:
7856    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7857    //                                  ; from TEB
7858    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7859    //   mov     rcx, qword [rdx+rcx*8]
7860    //   mov     eax, .tls$:tlsvar
7861    //   [rax+rcx] contains the address
7862    // Windows 64bit: gs:0x58
7863    // Windows 32bit: fs:__tls_array
7864
7865    // If GV is an alias then use the aliasee for determining
7866    // thread-localness.
7867    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7868      GV = GA->resolveAliasedGlobal(false);
7869    DebugLoc dl = GA->getDebugLoc();
7870    SDValue Chain = DAG.getEntryNode();
7871
7872    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7873    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
7874    // use its literal value of 0x2C.
7875    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7876                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7877                                                             256)
7878                                        : Type::getInt32PtrTy(*DAG.getContext(),
7879                                                              257));
7880
7881    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
7882      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
7883        DAG.getExternalSymbol("_tls_array", getPointerTy()));
7884
7885    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
7886                                        MachinePointerInfo(Ptr),
7887                                        false, false, false, 0);
7888
7889    // Load the _tls_index variable
7890    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7891    if (Subtarget->is64Bit())
7892      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7893                           IDX, MachinePointerInfo(), MVT::i32,
7894                           false, false, 0);
7895    else
7896      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7897                        false, false, false, 0);
7898
7899    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7900                                    getPointerTy());
7901    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7902
7903    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7904    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7905                      false, false, false, 0);
7906
7907    // Get the offset of start of .tls section
7908    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7909                                             GA->getValueType(0),
7910                                             GA->getOffset(), X86II::MO_SECREL);
7911    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7912
7913    // The address of the thread local variable is the add of the thread
7914    // pointer with the offset of the variable.
7915    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7916  }
7917
7918  llvm_unreachable("TLS not implemented for this target.");
7919}
7920
7921/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7922/// and take a 2 x i32 value to shift plus a shift amount.
7923SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7924  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7925  EVT VT = Op.getValueType();
7926  unsigned VTBits = VT.getSizeInBits();
7927  DebugLoc dl = Op.getDebugLoc();
7928  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7929  SDValue ShOpLo = Op.getOperand(0);
7930  SDValue ShOpHi = Op.getOperand(1);
7931  SDValue ShAmt  = Op.getOperand(2);
7932  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7933                                     DAG.getConstant(VTBits - 1, MVT::i8))
7934                       : DAG.getConstant(0, VT);
7935
7936  SDValue Tmp2, Tmp3;
7937  if (Op.getOpcode() == ISD::SHL_PARTS) {
7938    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7939    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7940  } else {
7941    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7942    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7943  }
7944
7945  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7946                                DAG.getConstant(VTBits, MVT::i8));
7947  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7948                             AndNode, DAG.getConstant(0, MVT::i8));
7949
7950  SDValue Hi, Lo;
7951  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7952  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7953  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7954
7955  if (Op.getOpcode() == ISD::SHL_PARTS) {
7956    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7957    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7958  } else {
7959    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7960    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7961  }
7962
7963  SDValue Ops[2] = { Lo, Hi };
7964  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
7965}
7966
7967SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7968                                           SelectionDAG &DAG) const {
7969  EVT SrcVT = Op.getOperand(0).getValueType();
7970
7971  if (SrcVT.isVector())
7972    return SDValue();
7973
7974  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7975         "Unknown SINT_TO_FP to lower!");
7976
7977  // These are really Legal; return the operand so the caller accepts it as
7978  // Legal.
7979  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7980    return Op;
7981  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7982      Subtarget->is64Bit()) {
7983    return Op;
7984  }
7985
7986  DebugLoc dl = Op.getDebugLoc();
7987  unsigned Size = SrcVT.getSizeInBits()/8;
7988  MachineFunction &MF = DAG.getMachineFunction();
7989  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7990  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7991  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7992                               StackSlot,
7993                               MachinePointerInfo::getFixedStack(SSFI),
7994                               false, false, 0);
7995  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7996}
7997
7998SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7999                                     SDValue StackSlot,
8000                                     SelectionDAG &DAG) const {
8001  // Build the FILD
8002  DebugLoc DL = Op.getDebugLoc();
8003  SDVTList Tys;
8004  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8005  if (useSSE)
8006    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8007  else
8008    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8009
8010  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8011
8012  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8013  MachineMemOperand *MMO;
8014  if (FI) {
8015    int SSFI = FI->getIndex();
8016    MMO =
8017      DAG.getMachineFunction()
8018      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8019                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8020  } else {
8021    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8022    StackSlot = StackSlot.getOperand(1);
8023  }
8024  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8025  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8026                                           X86ISD::FILD, DL,
8027                                           Tys, Ops, array_lengthof(Ops),
8028                                           SrcVT, MMO);
8029
8030  if (useSSE) {
8031    Chain = Result.getValue(1);
8032    SDValue InFlag = Result.getValue(2);
8033
8034    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8035    // shouldn't be necessary except that RFP cannot be live across
8036    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8037    MachineFunction &MF = DAG.getMachineFunction();
8038    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8039    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8040    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8041    Tys = DAG.getVTList(MVT::Other);
8042    SDValue Ops[] = {
8043      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8044    };
8045    MachineMemOperand *MMO =
8046      DAG.getMachineFunction()
8047      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8048                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8049
8050    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8051                                    Ops, array_lengthof(Ops),
8052                                    Op.getValueType(), MMO);
8053    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8054                         MachinePointerInfo::getFixedStack(SSFI),
8055                         false, false, false, 0);
8056  }
8057
8058  return Result;
8059}
8060
8061// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8062SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8063                                               SelectionDAG &DAG) const {
8064  // This algorithm is not obvious. Here it is what we're trying to output:
8065  /*
8066     movq       %rax,  %xmm0
8067     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8068     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8069     #ifdef __SSE3__
8070       haddpd   %xmm0, %xmm0
8071     #else
8072       pshufd   $0x4e, %xmm0, %xmm1
8073       addpd    %xmm1, %xmm0
8074     #endif
8075  */
8076
8077  DebugLoc dl = Op.getDebugLoc();
8078  LLVMContext *Context = DAG.getContext();
8079
8080  // Build some magic constants.
8081  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8082  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8083  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8084
8085  SmallVector<Constant*,2> CV1;
8086  CV1.push_back(
8087    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8088                                      APInt(64, 0x4330000000000000ULL))));
8089  CV1.push_back(
8090    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8091                                      APInt(64, 0x4530000000000000ULL))));
8092  Constant *C1 = ConstantVector::get(CV1);
8093  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8094
8095  // Load the 64-bit value into an XMM register.
8096  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8097                            Op.getOperand(0));
8098  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8099                              MachinePointerInfo::getConstantPool(),
8100                              false, false, false, 16);
8101  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8102                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8103                              CLod0);
8104
8105  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8106                              MachinePointerInfo::getConstantPool(),
8107                              false, false, false, 16);
8108  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8109  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8110  SDValue Result;
8111
8112  if (Subtarget->hasSSE3()) {
8113    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8114    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8115  } else {
8116    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8117    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8118                                           S2F, 0x4E, DAG);
8119    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8120                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8121                         Sub);
8122  }
8123
8124  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8125                     DAG.getIntPtrConstant(0));
8126}
8127
8128// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8129SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8130                                               SelectionDAG &DAG) const {
8131  DebugLoc dl = Op.getDebugLoc();
8132  // FP constant to bias correct the final result.
8133  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8134                                   MVT::f64);
8135
8136  // Load the 32-bit value into an XMM register.
8137  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8138                             Op.getOperand(0));
8139
8140  // Zero out the upper parts of the register.
8141  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8142
8143  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8144                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8145                     DAG.getIntPtrConstant(0));
8146
8147  // Or the load with the bias.
8148  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8149                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8150                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8151                                                   MVT::v2f64, Load)),
8152                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8153                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8154                                                   MVT::v2f64, Bias)));
8155  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8156                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8157                   DAG.getIntPtrConstant(0));
8158
8159  // Subtract the bias.
8160  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8161
8162  // Handle final rounding.
8163  EVT DestVT = Op.getValueType();
8164
8165  if (DestVT.bitsLT(MVT::f64))
8166    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8167                       DAG.getIntPtrConstant(0));
8168  if (DestVT.bitsGT(MVT::f64))
8169    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8170
8171  // Handle final rounding.
8172  return Sub;
8173}
8174
8175SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8176                                               SelectionDAG &DAG) const {
8177  SDValue N0 = Op.getOperand(0);
8178  EVT SVT = N0.getValueType();
8179  DebugLoc dl = Op.getDebugLoc();
8180
8181  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8182          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8183         "Custom UINT_TO_FP is not supported!");
8184
8185  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8186                             SVT.getVectorNumElements());
8187  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8188                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8189}
8190
8191SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8192                                           SelectionDAG &DAG) const {
8193  SDValue N0 = Op.getOperand(0);
8194  DebugLoc dl = Op.getDebugLoc();
8195
8196  if (Op.getValueType().isVector())
8197    return lowerUINT_TO_FP_vec(Op, DAG);
8198
8199  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8200  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8201  // the optimization here.
8202  if (DAG.SignBitIsZero(N0))
8203    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8204
8205  EVT SrcVT = N0.getValueType();
8206  EVT DstVT = Op.getValueType();
8207  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8208    return LowerUINT_TO_FP_i64(Op, DAG);
8209  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8210    return LowerUINT_TO_FP_i32(Op, DAG);
8211  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8212    return SDValue();
8213
8214  // Make a 64-bit buffer, and use it to build an FILD.
8215  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8216  if (SrcVT == MVT::i32) {
8217    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8218    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8219                                     getPointerTy(), StackSlot, WordOff);
8220    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8221                                  StackSlot, MachinePointerInfo(),
8222                                  false, false, 0);
8223    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8224                                  OffsetSlot, MachinePointerInfo(),
8225                                  false, false, 0);
8226    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8227    return Fild;
8228  }
8229
8230  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8231  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8232                               StackSlot, MachinePointerInfo(),
8233                               false, false, 0);
8234  // For i64 source, we need to add the appropriate power of 2 if the input
8235  // was negative.  This is the same as the optimization in
8236  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8237  // we must be careful to do the computation in x87 extended precision, not
8238  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8239  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8240  MachineMemOperand *MMO =
8241    DAG.getMachineFunction()
8242    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8243                          MachineMemOperand::MOLoad, 8, 8);
8244
8245  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8246  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8247  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8248                                         array_lengthof(Ops), MVT::i64, MMO);
8249
8250  APInt FF(32, 0x5F800000ULL);
8251
8252  // Check whether the sign bit is set.
8253  SDValue SignSet = DAG.getSetCC(dl,
8254                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8255                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8256                                 ISD::SETLT);
8257
8258  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8259  SDValue FudgePtr = DAG.getConstantPool(
8260                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8261                                         getPointerTy());
8262
8263  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8264  SDValue Zero = DAG.getIntPtrConstant(0);
8265  SDValue Four = DAG.getIntPtrConstant(4);
8266  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8267                               Zero, Four);
8268  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8269
8270  // Load the value out, extending it from f32 to f80.
8271  // FIXME: Avoid the extend by constructing the right constant pool?
8272  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8273                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8274                                 MVT::f32, false, false, 4);
8275  // Extend everything to 80 bits to force it to be done on x87.
8276  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8277  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8278}
8279
8280std::pair<SDValue,SDValue>
8281X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8282                                    bool IsSigned, bool IsReplace) const {
8283  DebugLoc DL = Op.getDebugLoc();
8284
8285  EVT DstTy = Op.getValueType();
8286
8287  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8288    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8289    DstTy = MVT::i64;
8290  }
8291
8292  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8293         DstTy.getSimpleVT() >= MVT::i16 &&
8294         "Unknown FP_TO_INT to lower!");
8295
8296  // These are really Legal.
8297  if (DstTy == MVT::i32 &&
8298      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8299    return std::make_pair(SDValue(), SDValue());
8300  if (Subtarget->is64Bit() &&
8301      DstTy == MVT::i64 &&
8302      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8303    return std::make_pair(SDValue(), SDValue());
8304
8305  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8306  // stack slot, or into the FTOL runtime function.
8307  MachineFunction &MF = DAG.getMachineFunction();
8308  unsigned MemSize = DstTy.getSizeInBits()/8;
8309  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8310  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8311
8312  unsigned Opc;
8313  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8314    Opc = X86ISD::WIN_FTOL;
8315  else
8316    switch (DstTy.getSimpleVT().SimpleTy) {
8317    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8318    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8319    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8320    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8321    }
8322
8323  SDValue Chain = DAG.getEntryNode();
8324  SDValue Value = Op.getOperand(0);
8325  EVT TheVT = Op.getOperand(0).getValueType();
8326  // FIXME This causes a redundant load/store if the SSE-class value is already
8327  // in memory, such as if it is on the callstack.
8328  if (isScalarFPTypeInSSEReg(TheVT)) {
8329    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8330    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8331                         MachinePointerInfo::getFixedStack(SSFI),
8332                         false, false, 0);
8333    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8334    SDValue Ops[] = {
8335      Chain, StackSlot, DAG.getValueType(TheVT)
8336    };
8337
8338    MachineMemOperand *MMO =
8339      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8340                              MachineMemOperand::MOLoad, MemSize, MemSize);
8341    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8342                                    array_lengthof(Ops), DstTy, MMO);
8343    Chain = Value.getValue(1);
8344    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8345    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8346  }
8347
8348  MachineMemOperand *MMO =
8349    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8350                            MachineMemOperand::MOStore, MemSize, MemSize);
8351
8352  if (Opc != X86ISD::WIN_FTOL) {
8353    // Build the FP_TO_INT*_IN_MEM
8354    SDValue Ops[] = { Chain, Value, StackSlot };
8355    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8356                                           Ops, array_lengthof(Ops), DstTy,
8357                                           MMO);
8358    return std::make_pair(FIST, StackSlot);
8359  } else {
8360    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8361      DAG.getVTList(MVT::Other, MVT::Glue),
8362      Chain, Value);
8363    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8364      MVT::i32, ftol.getValue(1));
8365    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8366      MVT::i32, eax.getValue(2));
8367    SDValue Ops[] = { eax, edx };
8368    SDValue pair = IsReplace
8369      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8370      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8371    return std::make_pair(pair, SDValue());
8372  }
8373}
8374
8375static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8376                              const X86Subtarget *Subtarget) {
8377  MVT VT = Op->getValueType(0).getSimpleVT();
8378  SDValue In = Op->getOperand(0);
8379  MVT InVT = In.getValueType().getSimpleVT();
8380  DebugLoc dl = Op->getDebugLoc();
8381
8382  // Optimize vectors in AVX mode:
8383  //
8384  //   v8i16 -> v8i32
8385  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8386  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8387  //   Concat upper and lower parts.
8388  //
8389  //   v4i32 -> v4i64
8390  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8391  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8392  //   Concat upper and lower parts.
8393  //
8394
8395  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8396      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8397    return SDValue();
8398
8399  if (Subtarget->hasInt256())
8400    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8401
8402  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8403  SDValue Undef = DAG.getUNDEF(InVT);
8404  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8405  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8406  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8407
8408  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8409                             VT.getVectorNumElements()/2);
8410
8411  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8412  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8413
8414  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8415}
8416
8417SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8418                                           SelectionDAG &DAG) const {
8419  if (Subtarget->hasFp256()) {
8420    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8421    if (Res.getNode())
8422      return Res;
8423  }
8424
8425  return SDValue();
8426}
8427SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8428                                            SelectionDAG &DAG) const {
8429  DebugLoc DL = Op.getDebugLoc();
8430  MVT VT = Op.getValueType().getSimpleVT();
8431  SDValue In = Op.getOperand(0);
8432  MVT SVT = In.getValueType().getSimpleVT();
8433
8434  if (Subtarget->hasFp256()) {
8435    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8436    if (Res.getNode())
8437      return Res;
8438  }
8439
8440  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8441      VT.getVectorNumElements() != SVT.getVectorNumElements())
8442    return SDValue();
8443
8444  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8445
8446  // AVX2 has better support of integer extending.
8447  if (Subtarget->hasInt256())
8448    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8449
8450  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8451  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8452  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8453                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8454                                                DAG.getUNDEF(MVT::v8i16),
8455                                                &Mask[0]));
8456
8457  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8458}
8459
8460SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8461  DebugLoc DL = Op.getDebugLoc();
8462  MVT VT = Op.getValueType().getSimpleVT();
8463  SDValue In = Op.getOperand(0);
8464  MVT SVT = In.getValueType().getSimpleVT();
8465
8466  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8467    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8468    if (Subtarget->hasInt256()) {
8469      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8470      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8471      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8472                                ShufMask);
8473      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8474                         DAG.getIntPtrConstant(0));
8475    }
8476
8477    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8478    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8479                               DAG.getIntPtrConstant(0));
8480    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8481                               DAG.getIntPtrConstant(2));
8482
8483    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8484    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8485
8486    // The PSHUFD mask:
8487    static const int ShufMask1[] = {0, 2, 0, 0};
8488    SDValue Undef = DAG.getUNDEF(VT);
8489    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8490    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8491
8492    // The MOVLHPS mask:
8493    static const int ShufMask2[] = {0, 1, 4, 5};
8494    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8495  }
8496
8497  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8498    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8499    if (Subtarget->hasInt256()) {
8500      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8501
8502      SmallVector<SDValue,32> pshufbMask;
8503      for (unsigned i = 0; i < 2; ++i) {
8504        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8505        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8506        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8507        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8508        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8509        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8510        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8511        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8512        for (unsigned j = 0; j < 8; ++j)
8513          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8514      }
8515      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8516                               &pshufbMask[0], 32);
8517      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8518      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8519
8520      static const int ShufMask[] = {0,  2,  -1,  -1};
8521      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8522                                &ShufMask[0]);
8523      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8524                       DAG.getIntPtrConstant(0));
8525      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8526    }
8527
8528    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8529                               DAG.getIntPtrConstant(0));
8530
8531    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8532                               DAG.getIntPtrConstant(4));
8533
8534    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8535    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8536
8537    // The PSHUFB mask:
8538    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8539                                   -1, -1, -1, -1, -1, -1, -1, -1};
8540
8541    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8542    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8543    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8544
8545    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8546    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8547
8548    // The MOVLHPS Mask:
8549    static const int ShufMask2[] = {0, 1, 4, 5};
8550    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8551    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8552  }
8553
8554  // Handle truncation of V256 to V128 using shuffles.
8555  if (!VT.is128BitVector() || !SVT.is256BitVector())
8556    return SDValue();
8557
8558  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8559         "Invalid op");
8560  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8561
8562  unsigned NumElems = VT.getVectorNumElements();
8563  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8564                             NumElems * 2);
8565
8566  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8567  // Prepare truncation shuffle mask
8568  for (unsigned i = 0; i != NumElems; ++i)
8569    MaskVec[i] = i * 2;
8570  SDValue V = DAG.getVectorShuffle(NVT, DL,
8571                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8572                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8573  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8574                     DAG.getIntPtrConstant(0));
8575}
8576
8577SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8578                                           SelectionDAG &DAG) const {
8579  MVT VT = Op.getValueType().getSimpleVT();
8580  if (VT.isVector()) {
8581    if (VT == MVT::v8i16)
8582      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT,
8583                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8584                                     MVT::v8i32, Op.getOperand(0)));
8585    return SDValue();
8586  }
8587
8588  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8589    /*IsSigned=*/ true, /*IsReplace=*/ false);
8590  SDValue FIST = Vals.first, StackSlot = Vals.second;
8591  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8592  if (FIST.getNode() == 0) return Op;
8593
8594  if (StackSlot.getNode())
8595    // Load the result.
8596    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8597                       FIST, StackSlot, MachinePointerInfo(),
8598                       false, false, false, 0);
8599
8600  // The node is the result.
8601  return FIST;
8602}
8603
8604SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8605                                           SelectionDAG &DAG) const {
8606  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8607    /*IsSigned=*/ false, /*IsReplace=*/ false);
8608  SDValue FIST = Vals.first, StackSlot = Vals.second;
8609  assert(FIST.getNode() && "Unexpected failure");
8610
8611  if (StackSlot.getNode())
8612    // Load the result.
8613    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8614                       FIST, StackSlot, MachinePointerInfo(),
8615                       false, false, false, 0);
8616
8617  // The node is the result.
8618  return FIST;
8619}
8620
8621static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
8622  DebugLoc DL = Op.getDebugLoc();
8623  MVT VT = Op.getValueType().getSimpleVT();
8624  SDValue In = Op.getOperand(0);
8625  MVT SVT = In.getValueType().getSimpleVT();
8626
8627  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8628
8629  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8630                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8631                                 In, DAG.getUNDEF(SVT)));
8632}
8633
8634SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8635  LLVMContext *Context = DAG.getContext();
8636  DebugLoc dl = Op.getDebugLoc();
8637  MVT VT = Op.getValueType().getSimpleVT();
8638  MVT EltVT = VT;
8639  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8640  if (VT.isVector()) {
8641    EltVT = VT.getVectorElementType();
8642    NumElts = VT.getVectorNumElements();
8643  }
8644  Constant *C;
8645  if (EltVT == MVT::f64)
8646    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8647                                          APInt(64, ~(1ULL << 63))));
8648  else
8649    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8650                                          APInt(32, ~(1U << 31))));
8651  C = ConstantVector::getSplat(NumElts, C);
8652  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8653  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8654  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8655                             MachinePointerInfo::getConstantPool(),
8656                             false, false, false, Alignment);
8657  if (VT.isVector()) {
8658    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8659    return DAG.getNode(ISD::BITCAST, dl, VT,
8660                       DAG.getNode(ISD::AND, dl, ANDVT,
8661                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8662                                               Op.getOperand(0)),
8663                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8664  }
8665  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8666}
8667
8668SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8669  LLVMContext *Context = DAG.getContext();
8670  DebugLoc dl = Op.getDebugLoc();
8671  MVT VT = Op.getValueType().getSimpleVT();
8672  MVT EltVT = VT;
8673  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8674  if (VT.isVector()) {
8675    EltVT = VT.getVectorElementType();
8676    NumElts = VT.getVectorNumElements();
8677  }
8678  Constant *C;
8679  if (EltVT == MVT::f64)
8680    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8681                                          APInt(64, 1ULL << 63)));
8682  else
8683    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8684                                          APInt(32, 1U << 31)));
8685  C = ConstantVector::getSplat(NumElts, C);
8686  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8687  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8688  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8689                             MachinePointerInfo::getConstantPool(),
8690                             false, false, false, Alignment);
8691  if (VT.isVector()) {
8692    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8693    return DAG.getNode(ISD::BITCAST, dl, VT,
8694                       DAG.getNode(ISD::XOR, dl, XORVT,
8695                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8696                                               Op.getOperand(0)),
8697                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8698  }
8699
8700  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8701}
8702
8703SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8704  LLVMContext *Context = DAG.getContext();
8705  SDValue Op0 = Op.getOperand(0);
8706  SDValue Op1 = Op.getOperand(1);
8707  DebugLoc dl = Op.getDebugLoc();
8708  MVT VT = Op.getValueType().getSimpleVT();
8709  MVT SrcVT = Op1.getValueType().getSimpleVT();
8710
8711  // If second operand is smaller, extend it first.
8712  if (SrcVT.bitsLT(VT)) {
8713    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8714    SrcVT = VT;
8715  }
8716  // And if it is bigger, shrink it first.
8717  if (SrcVT.bitsGT(VT)) {
8718    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8719    SrcVT = VT;
8720  }
8721
8722  // At this point the operands and the result should have the same
8723  // type, and that won't be f80 since that is not custom lowered.
8724
8725  // First get the sign bit of second operand.
8726  SmallVector<Constant*,4> CV;
8727  if (SrcVT == MVT::f64) {
8728    const fltSemantics &Sem = APFloat::IEEEdouble;
8729    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
8730    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8731  } else {
8732    const fltSemantics &Sem = APFloat::IEEEsingle;
8733    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
8734    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8735    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8736    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8737  }
8738  Constant *C = ConstantVector::get(CV);
8739  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8740  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8741                              MachinePointerInfo::getConstantPool(),
8742                              false, false, false, 16);
8743  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8744
8745  // Shift sign bit right or left if the two operands have different types.
8746  if (SrcVT.bitsGT(VT)) {
8747    // Op0 is MVT::f32, Op1 is MVT::f64.
8748    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8749    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8750                          DAG.getConstant(32, MVT::i32));
8751    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8752    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8753                          DAG.getIntPtrConstant(0));
8754  }
8755
8756  // Clear first operand sign bit.
8757  CV.clear();
8758  if (VT == MVT::f64) {
8759    const fltSemantics &Sem = APFloat::IEEEdouble;
8760    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8761                                                   APInt(64, ~(1ULL << 63)))));
8762    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8763  } else {
8764    const fltSemantics &Sem = APFloat::IEEEsingle;
8765    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8766                                                   APInt(32, ~(1U << 31)))));
8767    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8768    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8769    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8770  }
8771  C = ConstantVector::get(CV);
8772  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8773  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8774                              MachinePointerInfo::getConstantPool(),
8775                              false, false, false, 16);
8776  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8777
8778  // Or the value with the sign bit.
8779  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8780}
8781
8782static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8783  SDValue N0 = Op.getOperand(0);
8784  DebugLoc dl = Op.getDebugLoc();
8785  MVT VT = Op.getValueType().getSimpleVT();
8786
8787  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8788  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8789                                  DAG.getConstant(1, VT));
8790  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8791}
8792
8793// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8794//
8795SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
8796                                                  SelectionDAG &DAG) const {
8797  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8798
8799  if (!Subtarget->hasSSE41())
8800    return SDValue();
8801
8802  if (!Op->hasOneUse())
8803    return SDValue();
8804
8805  SDNode *N = Op.getNode();
8806  DebugLoc DL = N->getDebugLoc();
8807
8808  SmallVector<SDValue, 8> Opnds;
8809  DenseMap<SDValue, unsigned> VecInMap;
8810  EVT VT = MVT::Other;
8811
8812  // Recognize a special case where a vector is casted into wide integer to
8813  // test all 0s.
8814  Opnds.push_back(N->getOperand(0));
8815  Opnds.push_back(N->getOperand(1));
8816
8817  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8818    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8819    // BFS traverse all OR'd operands.
8820    if (I->getOpcode() == ISD::OR) {
8821      Opnds.push_back(I->getOperand(0));
8822      Opnds.push_back(I->getOperand(1));
8823      // Re-evaluate the number of nodes to be traversed.
8824      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8825      continue;
8826    }
8827
8828    // Quit if a non-EXTRACT_VECTOR_ELT
8829    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8830      return SDValue();
8831
8832    // Quit if without a constant index.
8833    SDValue Idx = I->getOperand(1);
8834    if (!isa<ConstantSDNode>(Idx))
8835      return SDValue();
8836
8837    SDValue ExtractedFromVec = I->getOperand(0);
8838    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8839    if (M == VecInMap.end()) {
8840      VT = ExtractedFromVec.getValueType();
8841      // Quit if not 128/256-bit vector.
8842      if (!VT.is128BitVector() && !VT.is256BitVector())
8843        return SDValue();
8844      // Quit if not the same type.
8845      if (VecInMap.begin() != VecInMap.end() &&
8846          VT != VecInMap.begin()->first.getValueType())
8847        return SDValue();
8848      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8849    }
8850    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8851  }
8852
8853  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8854         "Not extracted from 128-/256-bit vector.");
8855
8856  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8857  SmallVector<SDValue, 8> VecIns;
8858
8859  for (DenseMap<SDValue, unsigned>::const_iterator
8860        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8861    // Quit if not all elements are used.
8862    if (I->second != FullMask)
8863      return SDValue();
8864    VecIns.push_back(I->first);
8865  }
8866
8867  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8868
8869  // Cast all vectors into TestVT for PTEST.
8870  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8871    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8872
8873  // If more than one full vectors are evaluated, OR them first before PTEST.
8874  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8875    // Each iteration will OR 2 nodes and append the result until there is only
8876    // 1 node left, i.e. the final OR'd value of all vectors.
8877    SDValue LHS = VecIns[Slot];
8878    SDValue RHS = VecIns[Slot + 1];
8879    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8880  }
8881
8882  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8883                     VecIns.back(), VecIns.back());
8884}
8885
8886/// Emit nodes that will be selected as "test Op0,Op0", or something
8887/// equivalent.
8888SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8889                                    SelectionDAG &DAG) const {
8890  DebugLoc dl = Op.getDebugLoc();
8891
8892  // CF and OF aren't always set the way we want. Determine which
8893  // of these we need.
8894  bool NeedCF = false;
8895  bool NeedOF = false;
8896  switch (X86CC) {
8897  default: break;
8898  case X86::COND_A: case X86::COND_AE:
8899  case X86::COND_B: case X86::COND_BE:
8900    NeedCF = true;
8901    break;
8902  case X86::COND_G: case X86::COND_GE:
8903  case X86::COND_L: case X86::COND_LE:
8904  case X86::COND_O: case X86::COND_NO:
8905    NeedOF = true;
8906    break;
8907  }
8908
8909  // See if we can use the EFLAGS value from the operand instead of
8910  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8911  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8912  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8913    // Emit a CMP with 0, which is the TEST pattern.
8914    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8915                       DAG.getConstant(0, Op.getValueType()));
8916
8917  unsigned Opcode = 0;
8918  unsigned NumOperands = 0;
8919
8920  // Truncate operations may prevent the merge of the SETCC instruction
8921  // and the arithmetic intruction before it. Attempt to truncate the operands
8922  // of the arithmetic instruction and use a reduced bit-width instruction.
8923  bool NeedTruncation = false;
8924  SDValue ArithOp = Op;
8925  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8926    SDValue Arith = Op->getOperand(0);
8927    // Both the trunc and the arithmetic op need to have one user each.
8928    if (Arith->hasOneUse())
8929      switch (Arith.getOpcode()) {
8930        default: break;
8931        case ISD::ADD:
8932        case ISD::SUB:
8933        case ISD::AND:
8934        case ISD::OR:
8935        case ISD::XOR: {
8936          NeedTruncation = true;
8937          ArithOp = Arith;
8938        }
8939      }
8940  }
8941
8942  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8943  // which may be the result of a CAST.  We use the variable 'Op', which is the
8944  // non-casted variable when we check for possible users.
8945  switch (ArithOp.getOpcode()) {
8946  case ISD::ADD:
8947    // Due to an isel shortcoming, be conservative if this add is likely to be
8948    // selected as part of a load-modify-store instruction. When the root node
8949    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8950    // uses of other nodes in the match, such as the ADD in this case. This
8951    // leads to the ADD being left around and reselected, with the result being
8952    // two adds in the output.  Alas, even if none our users are stores, that
8953    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8954    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8955    // climbing the DAG back to the root, and it doesn't seem to be worth the
8956    // effort.
8957    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8958         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8959      if (UI->getOpcode() != ISD::CopyToReg &&
8960          UI->getOpcode() != ISD::SETCC &&
8961          UI->getOpcode() != ISD::STORE)
8962        goto default_case;
8963
8964    if (ConstantSDNode *C =
8965        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8966      // An add of one will be selected as an INC.
8967      if (C->getAPIntValue() == 1) {
8968        Opcode = X86ISD::INC;
8969        NumOperands = 1;
8970        break;
8971      }
8972
8973      // An add of negative one (subtract of one) will be selected as a DEC.
8974      if (C->getAPIntValue().isAllOnesValue()) {
8975        Opcode = X86ISD::DEC;
8976        NumOperands = 1;
8977        break;
8978      }
8979    }
8980
8981    // Otherwise use a regular EFLAGS-setting add.
8982    Opcode = X86ISD::ADD;
8983    NumOperands = 2;
8984    break;
8985  case ISD::AND: {
8986    // If the primary and result isn't used, don't bother using X86ISD::AND,
8987    // because a TEST instruction will be better.
8988    bool NonFlagUse = false;
8989    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8990           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8991      SDNode *User = *UI;
8992      unsigned UOpNo = UI.getOperandNo();
8993      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8994        // Look pass truncate.
8995        UOpNo = User->use_begin().getOperandNo();
8996        User = *User->use_begin();
8997      }
8998
8999      if (User->getOpcode() != ISD::BRCOND &&
9000          User->getOpcode() != ISD::SETCC &&
9001          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9002        NonFlagUse = true;
9003        break;
9004      }
9005    }
9006
9007    if (!NonFlagUse)
9008      break;
9009  }
9010    // FALL THROUGH
9011  case ISD::SUB:
9012  case ISD::OR:
9013  case ISD::XOR:
9014    // Due to the ISEL shortcoming noted above, be conservative if this op is
9015    // likely to be selected as part of a load-modify-store instruction.
9016    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9017           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9018      if (UI->getOpcode() == ISD::STORE)
9019        goto default_case;
9020
9021    // Otherwise use a regular EFLAGS-setting instruction.
9022    switch (ArithOp.getOpcode()) {
9023    default: llvm_unreachable("unexpected operator!");
9024    case ISD::SUB: Opcode = X86ISD::SUB; break;
9025    case ISD::XOR: Opcode = X86ISD::XOR; break;
9026    case ISD::AND: Opcode = X86ISD::AND; break;
9027    case ISD::OR: {
9028      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9029        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
9030        if (EFLAGS.getNode())
9031          return EFLAGS;
9032      }
9033      Opcode = X86ISD::OR;
9034      break;
9035    }
9036    }
9037
9038    NumOperands = 2;
9039    break;
9040  case X86ISD::ADD:
9041  case X86ISD::SUB:
9042  case X86ISD::INC:
9043  case X86ISD::DEC:
9044  case X86ISD::OR:
9045  case X86ISD::XOR:
9046  case X86ISD::AND:
9047    return SDValue(Op.getNode(), 1);
9048  default:
9049  default_case:
9050    break;
9051  }
9052
9053  // If we found that truncation is beneficial, perform the truncation and
9054  // update 'Op'.
9055  if (NeedTruncation) {
9056    EVT VT = Op.getValueType();
9057    SDValue WideVal = Op->getOperand(0);
9058    EVT WideVT = WideVal.getValueType();
9059    unsigned ConvertedOp = 0;
9060    // Use a target machine opcode to prevent further DAGCombine
9061    // optimizations that may separate the arithmetic operations
9062    // from the setcc node.
9063    switch (WideVal.getOpcode()) {
9064      default: break;
9065      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9066      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9067      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9068      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9069      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9070    }
9071
9072    if (ConvertedOp) {
9073      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9074      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9075        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9076        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9077        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9078      }
9079    }
9080  }
9081
9082  if (Opcode == 0)
9083    // Emit a CMP with 0, which is the TEST pattern.
9084    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9085                       DAG.getConstant(0, Op.getValueType()));
9086
9087  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9088  SmallVector<SDValue, 4> Ops;
9089  for (unsigned i = 0; i != NumOperands; ++i)
9090    Ops.push_back(Op.getOperand(i));
9091
9092  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9093  DAG.ReplaceAllUsesWith(Op, New);
9094  return SDValue(New.getNode(), 1);
9095}
9096
9097/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9098/// equivalent.
9099SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9100                                   SelectionDAG &DAG) const {
9101  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9102    if (C->getAPIntValue() == 0)
9103      return EmitTest(Op0, X86CC, DAG);
9104
9105  DebugLoc dl = Op0.getDebugLoc();
9106  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9107       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9108    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9109    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9110    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9111                              Op0, Op1);
9112    return SDValue(Sub.getNode(), 1);
9113  }
9114  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9115}
9116
9117/// Convert a comparison if required by the subtarget.
9118SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9119                                                 SelectionDAG &DAG) const {
9120  // If the subtarget does not support the FUCOMI instruction, floating-point
9121  // comparisons have to be converted.
9122  if (Subtarget->hasCMov() ||
9123      Cmp.getOpcode() != X86ISD::CMP ||
9124      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9125      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9126    return Cmp;
9127
9128  // The instruction selector will select an FUCOM instruction instead of
9129  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9130  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9131  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9132  DebugLoc dl = Cmp.getDebugLoc();
9133  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9134  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9135  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9136                            DAG.getConstant(8, MVT::i8));
9137  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9138  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9139}
9140
9141static bool isAllOnes(SDValue V) {
9142  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9143  return C && C->isAllOnesValue();
9144}
9145
9146/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9147/// if it's possible.
9148SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9149                                     DebugLoc dl, SelectionDAG &DAG) const {
9150  SDValue Op0 = And.getOperand(0);
9151  SDValue Op1 = And.getOperand(1);
9152  if (Op0.getOpcode() == ISD::TRUNCATE)
9153    Op0 = Op0.getOperand(0);
9154  if (Op1.getOpcode() == ISD::TRUNCATE)
9155    Op1 = Op1.getOperand(0);
9156
9157  SDValue LHS, RHS;
9158  if (Op1.getOpcode() == ISD::SHL)
9159    std::swap(Op0, Op1);
9160  if (Op0.getOpcode() == ISD::SHL) {
9161    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9162      if (And00C->getZExtValue() == 1) {
9163        // If we looked past a truncate, check that it's only truncating away
9164        // known zeros.
9165        unsigned BitWidth = Op0.getValueSizeInBits();
9166        unsigned AndBitWidth = And.getValueSizeInBits();
9167        if (BitWidth > AndBitWidth) {
9168          APInt Zeros, Ones;
9169          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9170          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9171            return SDValue();
9172        }
9173        LHS = Op1;
9174        RHS = Op0.getOperand(1);
9175      }
9176  } else if (Op1.getOpcode() == ISD::Constant) {
9177    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9178    uint64_t AndRHSVal = AndRHS->getZExtValue();
9179    SDValue AndLHS = Op0;
9180
9181    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9182      LHS = AndLHS.getOperand(0);
9183      RHS = AndLHS.getOperand(1);
9184    }
9185
9186    // Use BT if the immediate can't be encoded in a TEST instruction.
9187    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9188      LHS = AndLHS;
9189      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9190    }
9191  }
9192
9193  if (LHS.getNode()) {
9194    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9195    // instruction.  Since the shift amount is in-range-or-undefined, we know
9196    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9197    // the encoding for the i16 version is larger than the i32 version.
9198    // Also promote i16 to i32 for performance / code size reason.
9199    if (LHS.getValueType() == MVT::i8 ||
9200        LHS.getValueType() == MVT::i16)
9201      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9202
9203    // If the operand types disagree, extend the shift amount to match.  Since
9204    // BT ignores high bits (like shifts) we can use anyextend.
9205    if (LHS.getValueType() != RHS.getValueType())
9206      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9207
9208    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9209    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9210    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9211                       DAG.getConstant(Cond, MVT::i8), BT);
9212  }
9213
9214  return SDValue();
9215}
9216
9217// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9218// ones, and then concatenate the result back.
9219static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9220  MVT VT = Op.getValueType().getSimpleVT();
9221
9222  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9223         "Unsupported value type for operation");
9224
9225  unsigned NumElems = VT.getVectorNumElements();
9226  DebugLoc dl = Op.getDebugLoc();
9227  SDValue CC = Op.getOperand(2);
9228
9229  // Extract the LHS vectors
9230  SDValue LHS = Op.getOperand(0);
9231  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9232  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9233
9234  // Extract the RHS vectors
9235  SDValue RHS = Op.getOperand(1);
9236  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9237  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9238
9239  // Issue the operation on the smaller types and concatenate the result back
9240  MVT EltVT = VT.getVectorElementType();
9241  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9242  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9243                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9244                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9245}
9246
9247static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9248                           SelectionDAG &DAG) {
9249  SDValue Cond;
9250  SDValue Op0 = Op.getOperand(0);
9251  SDValue Op1 = Op.getOperand(1);
9252  SDValue CC = Op.getOperand(2);
9253  MVT VT = Op.getValueType().getSimpleVT();
9254  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9255  bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
9256  DebugLoc dl = Op.getDebugLoc();
9257
9258  if (isFP) {
9259#ifndef NDEBUG
9260    MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
9261    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9262#endif
9263
9264    unsigned SSECC;
9265    bool Swap = false;
9266
9267    // SSE Condition code mapping:
9268    //  0 - EQ
9269    //  1 - LT
9270    //  2 - LE
9271    //  3 - UNORD
9272    //  4 - NEQ
9273    //  5 - NLT
9274    //  6 - NLE
9275    //  7 - ORD
9276    switch (SetCCOpcode) {
9277    default: llvm_unreachable("Unexpected SETCC condition");
9278    case ISD::SETOEQ:
9279    case ISD::SETEQ:  SSECC = 0; break;
9280    case ISD::SETOGT:
9281    case ISD::SETGT: Swap = true; // Fallthrough
9282    case ISD::SETLT:
9283    case ISD::SETOLT: SSECC = 1; break;
9284    case ISD::SETOGE:
9285    case ISD::SETGE: Swap = true; // Fallthrough
9286    case ISD::SETLE:
9287    case ISD::SETOLE: SSECC = 2; break;
9288    case ISD::SETUO:  SSECC = 3; break;
9289    case ISD::SETUNE:
9290    case ISD::SETNE:  SSECC = 4; break;
9291    case ISD::SETULE: Swap = true; // Fallthrough
9292    case ISD::SETUGE: SSECC = 5; break;
9293    case ISD::SETULT: Swap = true; // Fallthrough
9294    case ISD::SETUGT: SSECC = 6; break;
9295    case ISD::SETO:   SSECC = 7; break;
9296    case ISD::SETUEQ:
9297    case ISD::SETONE: SSECC = 8; break;
9298    }
9299    if (Swap)
9300      std::swap(Op0, Op1);
9301
9302    // In the two special cases we can't handle, emit two comparisons.
9303    if (SSECC == 8) {
9304      unsigned CC0, CC1;
9305      unsigned CombineOpc;
9306      if (SetCCOpcode == ISD::SETUEQ) {
9307        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9308      } else {
9309        assert(SetCCOpcode == ISD::SETONE);
9310        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9311      }
9312
9313      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9314                                 DAG.getConstant(CC0, MVT::i8));
9315      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9316                                 DAG.getConstant(CC1, MVT::i8));
9317      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9318    }
9319    // Handle all other FP comparisons here.
9320    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9321                       DAG.getConstant(SSECC, MVT::i8));
9322  }
9323
9324  // Break 256-bit integer vector compare into smaller ones.
9325  if (VT.is256BitVector() && !Subtarget->hasInt256())
9326    return Lower256IntVSETCC(Op, DAG);
9327
9328  // We are handling one of the integer comparisons here.  Since SSE only has
9329  // GT and EQ comparisons for integer, swapping operands and multiple
9330  // operations may be required for some comparisons.
9331  unsigned Opc;
9332  bool Swap = false, Invert = false, FlipSigns = false;
9333
9334  switch (SetCCOpcode) {
9335  default: llvm_unreachable("Unexpected SETCC condition");
9336  case ISD::SETNE:  Invert = true;
9337  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9338  case ISD::SETLT:  Swap = true;
9339  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9340  case ISD::SETGE:  Swap = true;
9341  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9342  case ISD::SETULT: Swap = true;
9343  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9344  case ISD::SETUGE: Swap = true;
9345  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9346  }
9347  if (Swap)
9348    std::swap(Op0, Op1);
9349
9350  // Check that the operation in question is available (most are plain SSE2,
9351  // but PCMPGTQ and PCMPEQQ have different requirements).
9352  if (VT == MVT::v2i64) {
9353    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9354      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9355
9356      // First cast everything to the right type.
9357      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9358      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9359
9360      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9361      // bits of the inputs before performing those operations. The lower
9362      // compare is always unsigned.
9363      SDValue SB;
9364      if (FlipSigns) {
9365        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9366      } else {
9367        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
9368        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
9369        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
9370                         Sign, Zero, Sign, Zero);
9371      }
9372      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
9373      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
9374
9375      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
9376      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
9377      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
9378
9379      // Create masks for only the low parts/high parts of the 64 bit integers.
9380      const int MaskHi[] = { 1, 1, 3, 3 };
9381      const int MaskLo[] = { 0, 0, 2, 2 };
9382      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
9383      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
9384      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
9385
9386      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
9387      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
9388
9389      if (Invert)
9390        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9391
9392      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9393    }
9394
9395    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9396      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9397      // pcmpeqd + pshufd + pand.
9398      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9399
9400      // First cast everything to the right type.
9401      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9402      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9403
9404      // Do the compare.
9405      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9406
9407      // Make sure the lower and upper halves are both all-ones.
9408      const int Mask[] = { 1, 0, 3, 2 };
9409      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9410      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9411
9412      if (Invert)
9413        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9414
9415      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9416    }
9417  }
9418
9419  // Since SSE has no unsigned integer comparisons, we need to flip the sign
9420  // bits of the inputs before performing those operations.
9421  if (FlipSigns) {
9422    EVT EltVT = VT.getVectorElementType();
9423    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
9424    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
9425    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
9426  }
9427
9428  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9429
9430  // If the logical-not of the result is required, perform that now.
9431  if (Invert)
9432    Result = DAG.getNOT(dl, Result, VT);
9433
9434  return Result;
9435}
9436
9437SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9438
9439  MVT VT = Op.getValueType().getSimpleVT();
9440
9441  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
9442
9443  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
9444  SDValue Op0 = Op.getOperand(0);
9445  SDValue Op1 = Op.getOperand(1);
9446  DebugLoc dl = Op.getDebugLoc();
9447  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9448
9449  // Optimize to BT if possible.
9450  // Lower (X & (1 << N)) == 0 to BT(X, N).
9451  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9452  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9453  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9454      Op1.getOpcode() == ISD::Constant &&
9455      cast<ConstantSDNode>(Op1)->isNullValue() &&
9456      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9457    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9458    if (NewSetCC.getNode())
9459      return NewSetCC;
9460  }
9461
9462  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9463  // these.
9464  if (Op1.getOpcode() == ISD::Constant &&
9465      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9466       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9467      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9468
9469    // If the input is a setcc, then reuse the input setcc or use a new one with
9470    // the inverted condition.
9471    if (Op0.getOpcode() == X86ISD::SETCC) {
9472      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9473      bool Invert = (CC == ISD::SETNE) ^
9474        cast<ConstantSDNode>(Op1)->isNullValue();
9475      if (!Invert) return Op0;
9476
9477      CCode = X86::GetOppositeBranchCondition(CCode);
9478      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9479                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9480    }
9481  }
9482
9483  bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
9484  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9485  if (X86CC == X86::COND_INVALID)
9486    return SDValue();
9487
9488  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9489  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9490  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9491                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9492}
9493
9494// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9495static bool isX86LogicalCmp(SDValue Op) {
9496  unsigned Opc = Op.getNode()->getOpcode();
9497  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9498      Opc == X86ISD::SAHF)
9499    return true;
9500  if (Op.getResNo() == 1 &&
9501      (Opc == X86ISD::ADD ||
9502       Opc == X86ISD::SUB ||
9503       Opc == X86ISD::ADC ||
9504       Opc == X86ISD::SBB ||
9505       Opc == X86ISD::SMUL ||
9506       Opc == X86ISD::UMUL ||
9507       Opc == X86ISD::INC ||
9508       Opc == X86ISD::DEC ||
9509       Opc == X86ISD::OR ||
9510       Opc == X86ISD::XOR ||
9511       Opc == X86ISD::AND))
9512    return true;
9513
9514  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9515    return true;
9516
9517  return false;
9518}
9519
9520static bool isZero(SDValue V) {
9521  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9522  return C && C->isNullValue();
9523}
9524
9525static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9526  if (V.getOpcode() != ISD::TRUNCATE)
9527    return false;
9528
9529  SDValue VOp0 = V.getOperand(0);
9530  unsigned InBits = VOp0.getValueSizeInBits();
9531  unsigned Bits = V.getValueSizeInBits();
9532  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9533}
9534
9535SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9536  bool addTest = true;
9537  SDValue Cond  = Op.getOperand(0);
9538  SDValue Op1 = Op.getOperand(1);
9539  SDValue Op2 = Op.getOperand(2);
9540  DebugLoc DL = Op.getDebugLoc();
9541  SDValue CC;
9542
9543  if (Cond.getOpcode() == ISD::SETCC) {
9544    SDValue NewCond = LowerSETCC(Cond, DAG);
9545    if (NewCond.getNode())
9546      Cond = NewCond;
9547  }
9548
9549  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9550  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9551  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9552  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9553  if (Cond.getOpcode() == X86ISD::SETCC &&
9554      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9555      isZero(Cond.getOperand(1).getOperand(1))) {
9556    SDValue Cmp = Cond.getOperand(1);
9557
9558    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9559
9560    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9561        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9562      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9563
9564      SDValue CmpOp0 = Cmp.getOperand(0);
9565      // Apply further optimizations for special cases
9566      // (select (x != 0), -1, 0) -> neg & sbb
9567      // (select (x == 0), 0, -1) -> neg & sbb
9568      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9569        if (YC->isNullValue() &&
9570            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9571          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9572          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9573                                    DAG.getConstant(0, CmpOp0.getValueType()),
9574                                    CmpOp0);
9575          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9576                                    DAG.getConstant(X86::COND_B, MVT::i8),
9577                                    SDValue(Neg.getNode(), 1));
9578          return Res;
9579        }
9580
9581      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9582                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9583      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9584
9585      SDValue Res =   // Res = 0 or -1.
9586        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9587                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9588
9589      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9590        Res = DAG.getNOT(DL, Res, Res.getValueType());
9591
9592      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9593      if (N2C == 0 || !N2C->isNullValue())
9594        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9595      return Res;
9596    }
9597  }
9598
9599  // Look past (and (setcc_carry (cmp ...)), 1).
9600  if (Cond.getOpcode() == ISD::AND &&
9601      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9602    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9603    if (C && C->getAPIntValue() == 1)
9604      Cond = Cond.getOperand(0);
9605  }
9606
9607  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9608  // setting operand in place of the X86ISD::SETCC.
9609  unsigned CondOpcode = Cond.getOpcode();
9610  if (CondOpcode == X86ISD::SETCC ||
9611      CondOpcode == X86ISD::SETCC_CARRY) {
9612    CC = Cond.getOperand(0);
9613
9614    SDValue Cmp = Cond.getOperand(1);
9615    unsigned Opc = Cmp.getOpcode();
9616    MVT VT = Op.getValueType().getSimpleVT();
9617
9618    bool IllegalFPCMov = false;
9619    if (VT.isFloatingPoint() && !VT.isVector() &&
9620        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9621      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9622
9623    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9624        Opc == X86ISD::BT) { // FIXME
9625      Cond = Cmp;
9626      addTest = false;
9627    }
9628  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9629             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9630             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9631              Cond.getOperand(0).getValueType() != MVT::i8)) {
9632    SDValue LHS = Cond.getOperand(0);
9633    SDValue RHS = Cond.getOperand(1);
9634    unsigned X86Opcode;
9635    unsigned X86Cond;
9636    SDVTList VTs;
9637    switch (CondOpcode) {
9638    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9639    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9640    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9641    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9642    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9643    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9644    default: llvm_unreachable("unexpected overflowing operator");
9645    }
9646    if (CondOpcode == ISD::UMULO)
9647      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9648                          MVT::i32);
9649    else
9650      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9651
9652    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9653
9654    if (CondOpcode == ISD::UMULO)
9655      Cond = X86Op.getValue(2);
9656    else
9657      Cond = X86Op.getValue(1);
9658
9659    CC = DAG.getConstant(X86Cond, MVT::i8);
9660    addTest = false;
9661  }
9662
9663  if (addTest) {
9664    // Look pass the truncate if the high bits are known zero.
9665    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9666        Cond = Cond.getOperand(0);
9667
9668    // We know the result of AND is compared against zero. Try to match
9669    // it to BT.
9670    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9671      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9672      if (NewSetCC.getNode()) {
9673        CC = NewSetCC.getOperand(0);
9674        Cond = NewSetCC.getOperand(1);
9675        addTest = false;
9676      }
9677    }
9678  }
9679
9680  if (addTest) {
9681    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9682    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9683  }
9684
9685  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9686  // a <  b ?  0 : -1 -> RES = setcc_carry
9687  // a >= b ? -1 :  0 -> RES = setcc_carry
9688  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9689  if (Cond.getOpcode() == X86ISD::SUB) {
9690    Cond = ConvertCmpIfNecessary(Cond, DAG);
9691    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9692
9693    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9694        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9695      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9696                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9697      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9698        return DAG.getNOT(DL, Res, Res.getValueType());
9699      return Res;
9700    }
9701  }
9702
9703  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9704  // widen the cmov and push the truncate through. This avoids introducing a new
9705  // branch during isel and doesn't add any extensions.
9706  if (Op.getValueType() == MVT::i8 &&
9707      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9708    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9709    if (T1.getValueType() == T2.getValueType() &&
9710        // Blacklist CopyFromReg to avoid partial register stalls.
9711        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9712      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9713      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9714      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9715    }
9716  }
9717
9718  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9719  // condition is true.
9720  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9721  SDValue Ops[] = { Op2, Op1, CC, Cond };
9722  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9723}
9724
9725SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9726                                            SelectionDAG &DAG) const {
9727  MVT VT = Op->getValueType(0).getSimpleVT();
9728  SDValue In = Op->getOperand(0);
9729  MVT InVT = In.getValueType().getSimpleVT();
9730  DebugLoc dl = Op->getDebugLoc();
9731
9732  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9733      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9734    return SDValue();
9735
9736  if (Subtarget->hasInt256())
9737    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9738
9739  // Optimize vectors in AVX mode
9740  // Sign extend  v8i16 to v8i32 and
9741  //              v4i32 to v4i64
9742  //
9743  // Divide input vector into two parts
9744  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9745  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9746  // concat the vectors to original VT
9747
9748  unsigned NumElems = InVT.getVectorNumElements();
9749  SDValue Undef = DAG.getUNDEF(InVT);
9750
9751  SmallVector<int,8> ShufMask1(NumElems, -1);
9752  for (unsigned i = 0; i != NumElems/2; ++i)
9753    ShufMask1[i] = i;
9754
9755  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9756
9757  SmallVector<int,8> ShufMask2(NumElems, -1);
9758  for (unsigned i = 0; i != NumElems/2; ++i)
9759    ShufMask2[i] = i + NumElems/2;
9760
9761  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9762
9763  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
9764                                VT.getVectorNumElements()/2);
9765
9766  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9767  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9768
9769  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9770}
9771
9772// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9773// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9774// from the AND / OR.
9775static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9776  Opc = Op.getOpcode();
9777  if (Opc != ISD::OR && Opc != ISD::AND)
9778    return false;
9779  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9780          Op.getOperand(0).hasOneUse() &&
9781          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9782          Op.getOperand(1).hasOneUse());
9783}
9784
9785// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9786// 1 and that the SETCC node has a single use.
9787static bool isXor1OfSetCC(SDValue Op) {
9788  if (Op.getOpcode() != ISD::XOR)
9789    return false;
9790  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9791  if (N1C && N1C->getAPIntValue() == 1) {
9792    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9793      Op.getOperand(0).hasOneUse();
9794  }
9795  return false;
9796}
9797
9798SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9799  bool addTest = true;
9800  SDValue Chain = Op.getOperand(0);
9801  SDValue Cond  = Op.getOperand(1);
9802  SDValue Dest  = Op.getOperand(2);
9803  DebugLoc dl = Op.getDebugLoc();
9804  SDValue CC;
9805  bool Inverted = false;
9806
9807  if (Cond.getOpcode() == ISD::SETCC) {
9808    // Check for setcc([su]{add,sub,mul}o == 0).
9809    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9810        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9811        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9812        Cond.getOperand(0).getResNo() == 1 &&
9813        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9814         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9815         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9816         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9817         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9818         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9819      Inverted = true;
9820      Cond = Cond.getOperand(0);
9821    } else {
9822      SDValue NewCond = LowerSETCC(Cond, DAG);
9823      if (NewCond.getNode())
9824        Cond = NewCond;
9825    }
9826  }
9827#if 0
9828  // FIXME: LowerXALUO doesn't handle these!!
9829  else if (Cond.getOpcode() == X86ISD::ADD  ||
9830           Cond.getOpcode() == X86ISD::SUB  ||
9831           Cond.getOpcode() == X86ISD::SMUL ||
9832           Cond.getOpcode() == X86ISD::UMUL)
9833    Cond = LowerXALUO(Cond, DAG);
9834#endif
9835
9836  // Look pass (and (setcc_carry (cmp ...)), 1).
9837  if (Cond.getOpcode() == ISD::AND &&
9838      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9839    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9840    if (C && C->getAPIntValue() == 1)
9841      Cond = Cond.getOperand(0);
9842  }
9843
9844  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9845  // setting operand in place of the X86ISD::SETCC.
9846  unsigned CondOpcode = Cond.getOpcode();
9847  if (CondOpcode == X86ISD::SETCC ||
9848      CondOpcode == X86ISD::SETCC_CARRY) {
9849    CC = Cond.getOperand(0);
9850
9851    SDValue Cmp = Cond.getOperand(1);
9852    unsigned Opc = Cmp.getOpcode();
9853    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9854    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9855      Cond = Cmp;
9856      addTest = false;
9857    } else {
9858      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9859      default: break;
9860      case X86::COND_O:
9861      case X86::COND_B:
9862        // These can only come from an arithmetic instruction with overflow,
9863        // e.g. SADDO, UADDO.
9864        Cond = Cond.getNode()->getOperand(1);
9865        addTest = false;
9866        break;
9867      }
9868    }
9869  }
9870  CondOpcode = Cond.getOpcode();
9871  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9872      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9873      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9874       Cond.getOperand(0).getValueType() != MVT::i8)) {
9875    SDValue LHS = Cond.getOperand(0);
9876    SDValue RHS = Cond.getOperand(1);
9877    unsigned X86Opcode;
9878    unsigned X86Cond;
9879    SDVTList VTs;
9880    switch (CondOpcode) {
9881    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9882    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9883    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9884    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9885    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9886    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9887    default: llvm_unreachable("unexpected overflowing operator");
9888    }
9889    if (Inverted)
9890      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9891    if (CondOpcode == ISD::UMULO)
9892      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9893                          MVT::i32);
9894    else
9895      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9896
9897    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9898
9899    if (CondOpcode == ISD::UMULO)
9900      Cond = X86Op.getValue(2);
9901    else
9902      Cond = X86Op.getValue(1);
9903
9904    CC = DAG.getConstant(X86Cond, MVT::i8);
9905    addTest = false;
9906  } else {
9907    unsigned CondOpc;
9908    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9909      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9910      if (CondOpc == ISD::OR) {
9911        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9912        // two branches instead of an explicit OR instruction with a
9913        // separate test.
9914        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9915            isX86LogicalCmp(Cmp)) {
9916          CC = Cond.getOperand(0).getOperand(0);
9917          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9918                              Chain, Dest, CC, Cmp);
9919          CC = Cond.getOperand(1).getOperand(0);
9920          Cond = Cmp;
9921          addTest = false;
9922        }
9923      } else { // ISD::AND
9924        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9925        // two branches instead of an explicit AND instruction with a
9926        // separate test. However, we only do this if this block doesn't
9927        // have a fall-through edge, because this requires an explicit
9928        // jmp when the condition is false.
9929        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9930            isX86LogicalCmp(Cmp) &&
9931            Op.getNode()->hasOneUse()) {
9932          X86::CondCode CCode =
9933            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9934          CCode = X86::GetOppositeBranchCondition(CCode);
9935          CC = DAG.getConstant(CCode, MVT::i8);
9936          SDNode *User = *Op.getNode()->use_begin();
9937          // Look for an unconditional branch following this conditional branch.
9938          // We need this because we need to reverse the successors in order
9939          // to implement FCMP_OEQ.
9940          if (User->getOpcode() == ISD::BR) {
9941            SDValue FalseBB = User->getOperand(1);
9942            SDNode *NewBR =
9943              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9944            assert(NewBR == User);
9945            (void)NewBR;
9946            Dest = FalseBB;
9947
9948            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9949                                Chain, Dest, CC, Cmp);
9950            X86::CondCode CCode =
9951              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9952            CCode = X86::GetOppositeBranchCondition(CCode);
9953            CC = DAG.getConstant(CCode, MVT::i8);
9954            Cond = Cmp;
9955            addTest = false;
9956          }
9957        }
9958      }
9959    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9960      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9961      // It should be transformed during dag combiner except when the condition
9962      // is set by a arithmetics with overflow node.
9963      X86::CondCode CCode =
9964        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9965      CCode = X86::GetOppositeBranchCondition(CCode);
9966      CC = DAG.getConstant(CCode, MVT::i8);
9967      Cond = Cond.getOperand(0).getOperand(1);
9968      addTest = false;
9969    } else if (Cond.getOpcode() == ISD::SETCC &&
9970               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9971      // For FCMP_OEQ, we can emit
9972      // two branches instead of an explicit AND instruction with a
9973      // separate test. However, we only do this if this block doesn't
9974      // have a fall-through edge, because this requires an explicit
9975      // jmp when the condition is false.
9976      if (Op.getNode()->hasOneUse()) {
9977        SDNode *User = *Op.getNode()->use_begin();
9978        // Look for an unconditional branch following this conditional branch.
9979        // We need this because we need to reverse the successors in order
9980        // to implement FCMP_OEQ.
9981        if (User->getOpcode() == ISD::BR) {
9982          SDValue FalseBB = User->getOperand(1);
9983          SDNode *NewBR =
9984            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9985          assert(NewBR == User);
9986          (void)NewBR;
9987          Dest = FalseBB;
9988
9989          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9990                                    Cond.getOperand(0), Cond.getOperand(1));
9991          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9992          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9993          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9994                              Chain, Dest, CC, Cmp);
9995          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9996          Cond = Cmp;
9997          addTest = false;
9998        }
9999      }
10000    } else if (Cond.getOpcode() == ISD::SETCC &&
10001               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10002      // For FCMP_UNE, we can emit
10003      // two branches instead of an explicit AND instruction with a
10004      // separate test. However, we only do this if this block doesn't
10005      // have a fall-through edge, because this requires an explicit
10006      // jmp when the condition is false.
10007      if (Op.getNode()->hasOneUse()) {
10008        SDNode *User = *Op.getNode()->use_begin();
10009        // Look for an unconditional branch following this conditional branch.
10010        // We need this because we need to reverse the successors in order
10011        // to implement FCMP_UNE.
10012        if (User->getOpcode() == ISD::BR) {
10013          SDValue FalseBB = User->getOperand(1);
10014          SDNode *NewBR =
10015            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10016          assert(NewBR == User);
10017          (void)NewBR;
10018
10019          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10020                                    Cond.getOperand(0), Cond.getOperand(1));
10021          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10022          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10023          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10024                              Chain, Dest, CC, Cmp);
10025          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10026          Cond = Cmp;
10027          addTest = false;
10028          Dest = FalseBB;
10029        }
10030      }
10031    }
10032  }
10033
10034  if (addTest) {
10035    // Look pass the truncate if the high bits are known zero.
10036    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10037        Cond = Cond.getOperand(0);
10038
10039    // We know the result of AND is compared against zero. Try to match
10040    // it to BT.
10041    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10042      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10043      if (NewSetCC.getNode()) {
10044        CC = NewSetCC.getOperand(0);
10045        Cond = NewSetCC.getOperand(1);
10046        addTest = false;
10047      }
10048    }
10049  }
10050
10051  if (addTest) {
10052    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10053    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10054  }
10055  Cond = ConvertCmpIfNecessary(Cond, DAG);
10056  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10057                     Chain, Dest, CC, Cond);
10058}
10059
10060// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10061// Calls to _alloca is needed to probe the stack when allocating more than 4k
10062// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10063// that the guard pages used by the OS virtual memory manager are allocated in
10064// correct sequence.
10065SDValue
10066X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10067                                           SelectionDAG &DAG) const {
10068  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10069          getTargetMachine().Options.EnableSegmentedStacks) &&
10070         "This should be used only on Windows targets or when segmented stacks "
10071         "are being used");
10072  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10073  DebugLoc dl = Op.getDebugLoc();
10074
10075  // Get the inputs.
10076  SDValue Chain = Op.getOperand(0);
10077  SDValue Size  = Op.getOperand(1);
10078  // FIXME: Ensure alignment here
10079
10080  bool Is64Bit = Subtarget->is64Bit();
10081  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10082
10083  if (getTargetMachine().Options.EnableSegmentedStacks) {
10084    MachineFunction &MF = DAG.getMachineFunction();
10085    MachineRegisterInfo &MRI = MF.getRegInfo();
10086
10087    if (Is64Bit) {
10088      // The 64 bit implementation of segmented stacks needs to clobber both r10
10089      // r11. This makes it impossible to use it along with nested parameters.
10090      const Function *F = MF.getFunction();
10091
10092      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10093           I != E; ++I)
10094        if (I->hasNestAttr())
10095          report_fatal_error("Cannot use segmented stacks with functions that "
10096                             "have nested arguments.");
10097    }
10098
10099    const TargetRegisterClass *AddrRegClass =
10100      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10101    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10102    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10103    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10104                                DAG.getRegister(Vreg, SPTy));
10105    SDValue Ops1[2] = { Value, Chain };
10106    return DAG.getMergeValues(Ops1, 2, dl);
10107  } else {
10108    SDValue Flag;
10109    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10110
10111    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10112    Flag = Chain.getValue(1);
10113    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10114
10115    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10116    Flag = Chain.getValue(1);
10117
10118    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10119                               SPTy).getValue(1);
10120
10121    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10122    return DAG.getMergeValues(Ops1, 2, dl);
10123  }
10124}
10125
10126SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10127  MachineFunction &MF = DAG.getMachineFunction();
10128  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10129
10130  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10131  DebugLoc DL = Op.getDebugLoc();
10132
10133  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10134    // vastart just stores the address of the VarArgsFrameIndex slot into the
10135    // memory location argument.
10136    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10137                                   getPointerTy());
10138    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10139                        MachinePointerInfo(SV), false, false, 0);
10140  }
10141
10142  // __va_list_tag:
10143  //   gp_offset         (0 - 6 * 8)
10144  //   fp_offset         (48 - 48 + 8 * 16)
10145  //   overflow_arg_area (point to parameters coming in memory).
10146  //   reg_save_area
10147  SmallVector<SDValue, 8> MemOps;
10148  SDValue FIN = Op.getOperand(1);
10149  // Store gp_offset
10150  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10151                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10152                                               MVT::i32),
10153                               FIN, MachinePointerInfo(SV), false, false, 0);
10154  MemOps.push_back(Store);
10155
10156  // Store fp_offset
10157  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10158                    FIN, DAG.getIntPtrConstant(4));
10159  Store = DAG.getStore(Op.getOperand(0), DL,
10160                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10161                                       MVT::i32),
10162                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10163  MemOps.push_back(Store);
10164
10165  // Store ptr to overflow_arg_area
10166  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10167                    FIN, DAG.getIntPtrConstant(4));
10168  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10169                                    getPointerTy());
10170  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10171                       MachinePointerInfo(SV, 8),
10172                       false, false, 0);
10173  MemOps.push_back(Store);
10174
10175  // Store ptr to reg_save_area.
10176  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10177                    FIN, DAG.getIntPtrConstant(8));
10178  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10179                                    getPointerTy());
10180  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10181                       MachinePointerInfo(SV, 16), false, false, 0);
10182  MemOps.push_back(Store);
10183  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10184                     &MemOps[0], MemOps.size());
10185}
10186
10187SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10188  assert(Subtarget->is64Bit() &&
10189         "LowerVAARG only handles 64-bit va_arg!");
10190  assert((Subtarget->isTargetLinux() ||
10191          Subtarget->isTargetDarwin()) &&
10192          "Unhandled target in LowerVAARG");
10193  assert(Op.getNode()->getNumOperands() == 4);
10194  SDValue Chain = Op.getOperand(0);
10195  SDValue SrcPtr = Op.getOperand(1);
10196  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10197  unsigned Align = Op.getConstantOperandVal(3);
10198  DebugLoc dl = Op.getDebugLoc();
10199
10200  EVT ArgVT = Op.getNode()->getValueType(0);
10201  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10202  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10203  uint8_t ArgMode;
10204
10205  // Decide which area this value should be read from.
10206  // TODO: Implement the AMD64 ABI in its entirety. This simple
10207  // selection mechanism works only for the basic types.
10208  if (ArgVT == MVT::f80) {
10209    llvm_unreachable("va_arg for f80 not yet implemented");
10210  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10211    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10212  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10213    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10214  } else {
10215    llvm_unreachable("Unhandled argument type in LowerVAARG");
10216  }
10217
10218  if (ArgMode == 2) {
10219    // Sanity Check: Make sure using fp_offset makes sense.
10220    assert(!getTargetMachine().Options.UseSoftFloat &&
10221           !(DAG.getMachineFunction()
10222                .getFunction()->getAttributes()
10223                .hasAttribute(AttributeSet::FunctionIndex,
10224                              Attribute::NoImplicitFloat)) &&
10225           Subtarget->hasSSE1());
10226  }
10227
10228  // Insert VAARG_64 node into the DAG
10229  // VAARG_64 returns two values: Variable Argument Address, Chain
10230  SmallVector<SDValue, 11> InstOps;
10231  InstOps.push_back(Chain);
10232  InstOps.push_back(SrcPtr);
10233  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10234  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10235  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10236  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10237  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10238                                          VTs, &InstOps[0], InstOps.size(),
10239                                          MVT::i64,
10240                                          MachinePointerInfo(SV),
10241                                          /*Align=*/0,
10242                                          /*Volatile=*/false,
10243                                          /*ReadMem=*/true,
10244                                          /*WriteMem=*/true);
10245  Chain = VAARG.getValue(1);
10246
10247  // Load the next argument and return it
10248  return DAG.getLoad(ArgVT, dl,
10249                     Chain,
10250                     VAARG,
10251                     MachinePointerInfo(),
10252                     false, false, false, 0);
10253}
10254
10255static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10256                           SelectionDAG &DAG) {
10257  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10258  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10259  SDValue Chain = Op.getOperand(0);
10260  SDValue DstPtr = Op.getOperand(1);
10261  SDValue SrcPtr = Op.getOperand(2);
10262  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10263  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10264  DebugLoc DL = Op.getDebugLoc();
10265
10266  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10267                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10268                       false,
10269                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10270}
10271
10272// getTargetVShiftNode - Handle vector element shifts where the shift amount
10273// may or may not be a constant. Takes immediate version of shift as input.
10274static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10275                                   SDValue SrcOp, SDValue ShAmt,
10276                                   SelectionDAG &DAG) {
10277  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10278
10279  if (isa<ConstantSDNode>(ShAmt)) {
10280    // Constant may be a TargetConstant. Use a regular constant.
10281    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10282    switch (Opc) {
10283      default: llvm_unreachable("Unknown target vector shift node");
10284      case X86ISD::VSHLI:
10285      case X86ISD::VSRLI:
10286      case X86ISD::VSRAI:
10287        return DAG.getNode(Opc, dl, VT, SrcOp,
10288                           DAG.getConstant(ShiftAmt, MVT::i32));
10289    }
10290  }
10291
10292  // Change opcode to non-immediate version
10293  switch (Opc) {
10294    default: llvm_unreachable("Unknown target vector shift node");
10295    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10296    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10297    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10298  }
10299
10300  // Need to build a vector containing shift amount
10301  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10302  SDValue ShOps[4];
10303  ShOps[0] = ShAmt;
10304  ShOps[1] = DAG.getConstant(0, MVT::i32);
10305  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10306  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10307
10308  // The return type has to be a 128-bit type with the same element
10309  // type as the input type.
10310  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10311  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10312
10313  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10314  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10315}
10316
10317static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10318  DebugLoc dl = Op.getDebugLoc();
10319  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10320  switch (IntNo) {
10321  default: return SDValue();    // Don't custom lower most intrinsics.
10322  // Comparison intrinsics.
10323  case Intrinsic::x86_sse_comieq_ss:
10324  case Intrinsic::x86_sse_comilt_ss:
10325  case Intrinsic::x86_sse_comile_ss:
10326  case Intrinsic::x86_sse_comigt_ss:
10327  case Intrinsic::x86_sse_comige_ss:
10328  case Intrinsic::x86_sse_comineq_ss:
10329  case Intrinsic::x86_sse_ucomieq_ss:
10330  case Intrinsic::x86_sse_ucomilt_ss:
10331  case Intrinsic::x86_sse_ucomile_ss:
10332  case Intrinsic::x86_sse_ucomigt_ss:
10333  case Intrinsic::x86_sse_ucomige_ss:
10334  case Intrinsic::x86_sse_ucomineq_ss:
10335  case Intrinsic::x86_sse2_comieq_sd:
10336  case Intrinsic::x86_sse2_comilt_sd:
10337  case Intrinsic::x86_sse2_comile_sd:
10338  case Intrinsic::x86_sse2_comigt_sd:
10339  case Intrinsic::x86_sse2_comige_sd:
10340  case Intrinsic::x86_sse2_comineq_sd:
10341  case Intrinsic::x86_sse2_ucomieq_sd:
10342  case Intrinsic::x86_sse2_ucomilt_sd:
10343  case Intrinsic::x86_sse2_ucomile_sd:
10344  case Intrinsic::x86_sse2_ucomigt_sd:
10345  case Intrinsic::x86_sse2_ucomige_sd:
10346  case Intrinsic::x86_sse2_ucomineq_sd: {
10347    unsigned Opc;
10348    ISD::CondCode CC;
10349    switch (IntNo) {
10350    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10351    case Intrinsic::x86_sse_comieq_ss:
10352    case Intrinsic::x86_sse2_comieq_sd:
10353      Opc = X86ISD::COMI;
10354      CC = ISD::SETEQ;
10355      break;
10356    case Intrinsic::x86_sse_comilt_ss:
10357    case Intrinsic::x86_sse2_comilt_sd:
10358      Opc = X86ISD::COMI;
10359      CC = ISD::SETLT;
10360      break;
10361    case Intrinsic::x86_sse_comile_ss:
10362    case Intrinsic::x86_sse2_comile_sd:
10363      Opc = X86ISD::COMI;
10364      CC = ISD::SETLE;
10365      break;
10366    case Intrinsic::x86_sse_comigt_ss:
10367    case Intrinsic::x86_sse2_comigt_sd:
10368      Opc = X86ISD::COMI;
10369      CC = ISD::SETGT;
10370      break;
10371    case Intrinsic::x86_sse_comige_ss:
10372    case Intrinsic::x86_sse2_comige_sd:
10373      Opc = X86ISD::COMI;
10374      CC = ISD::SETGE;
10375      break;
10376    case Intrinsic::x86_sse_comineq_ss:
10377    case Intrinsic::x86_sse2_comineq_sd:
10378      Opc = X86ISD::COMI;
10379      CC = ISD::SETNE;
10380      break;
10381    case Intrinsic::x86_sse_ucomieq_ss:
10382    case Intrinsic::x86_sse2_ucomieq_sd:
10383      Opc = X86ISD::UCOMI;
10384      CC = ISD::SETEQ;
10385      break;
10386    case Intrinsic::x86_sse_ucomilt_ss:
10387    case Intrinsic::x86_sse2_ucomilt_sd:
10388      Opc = X86ISD::UCOMI;
10389      CC = ISD::SETLT;
10390      break;
10391    case Intrinsic::x86_sse_ucomile_ss:
10392    case Intrinsic::x86_sse2_ucomile_sd:
10393      Opc = X86ISD::UCOMI;
10394      CC = ISD::SETLE;
10395      break;
10396    case Intrinsic::x86_sse_ucomigt_ss:
10397    case Intrinsic::x86_sse2_ucomigt_sd:
10398      Opc = X86ISD::UCOMI;
10399      CC = ISD::SETGT;
10400      break;
10401    case Intrinsic::x86_sse_ucomige_ss:
10402    case Intrinsic::x86_sse2_ucomige_sd:
10403      Opc = X86ISD::UCOMI;
10404      CC = ISD::SETGE;
10405      break;
10406    case Intrinsic::x86_sse_ucomineq_ss:
10407    case Intrinsic::x86_sse2_ucomineq_sd:
10408      Opc = X86ISD::UCOMI;
10409      CC = ISD::SETNE;
10410      break;
10411    }
10412
10413    SDValue LHS = Op.getOperand(1);
10414    SDValue RHS = Op.getOperand(2);
10415    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10416    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10417    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10418    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10419                                DAG.getConstant(X86CC, MVT::i8), Cond);
10420    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10421  }
10422
10423  // Arithmetic intrinsics.
10424  case Intrinsic::x86_sse2_pmulu_dq:
10425  case Intrinsic::x86_avx2_pmulu_dq:
10426    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10427                       Op.getOperand(1), Op.getOperand(2));
10428
10429  // SSE2/AVX2 sub with unsigned saturation intrinsics
10430  case Intrinsic::x86_sse2_psubus_b:
10431  case Intrinsic::x86_sse2_psubus_w:
10432  case Intrinsic::x86_avx2_psubus_b:
10433  case Intrinsic::x86_avx2_psubus_w:
10434    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10435                       Op.getOperand(1), Op.getOperand(2));
10436
10437  // SSE3/AVX horizontal add/sub intrinsics
10438  case Intrinsic::x86_sse3_hadd_ps:
10439  case Intrinsic::x86_sse3_hadd_pd:
10440  case Intrinsic::x86_avx_hadd_ps_256:
10441  case Intrinsic::x86_avx_hadd_pd_256:
10442  case Intrinsic::x86_sse3_hsub_ps:
10443  case Intrinsic::x86_sse3_hsub_pd:
10444  case Intrinsic::x86_avx_hsub_ps_256:
10445  case Intrinsic::x86_avx_hsub_pd_256:
10446  case Intrinsic::x86_ssse3_phadd_w_128:
10447  case Intrinsic::x86_ssse3_phadd_d_128:
10448  case Intrinsic::x86_avx2_phadd_w:
10449  case Intrinsic::x86_avx2_phadd_d:
10450  case Intrinsic::x86_ssse3_phsub_w_128:
10451  case Intrinsic::x86_ssse3_phsub_d_128:
10452  case Intrinsic::x86_avx2_phsub_w:
10453  case Intrinsic::x86_avx2_phsub_d: {
10454    unsigned Opcode;
10455    switch (IntNo) {
10456    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10457    case Intrinsic::x86_sse3_hadd_ps:
10458    case Intrinsic::x86_sse3_hadd_pd:
10459    case Intrinsic::x86_avx_hadd_ps_256:
10460    case Intrinsic::x86_avx_hadd_pd_256:
10461      Opcode = X86ISD::FHADD;
10462      break;
10463    case Intrinsic::x86_sse3_hsub_ps:
10464    case Intrinsic::x86_sse3_hsub_pd:
10465    case Intrinsic::x86_avx_hsub_ps_256:
10466    case Intrinsic::x86_avx_hsub_pd_256:
10467      Opcode = X86ISD::FHSUB;
10468      break;
10469    case Intrinsic::x86_ssse3_phadd_w_128:
10470    case Intrinsic::x86_ssse3_phadd_d_128:
10471    case Intrinsic::x86_avx2_phadd_w:
10472    case Intrinsic::x86_avx2_phadd_d:
10473      Opcode = X86ISD::HADD;
10474      break;
10475    case Intrinsic::x86_ssse3_phsub_w_128:
10476    case Intrinsic::x86_ssse3_phsub_d_128:
10477    case Intrinsic::x86_avx2_phsub_w:
10478    case Intrinsic::x86_avx2_phsub_d:
10479      Opcode = X86ISD::HSUB;
10480      break;
10481    }
10482    return DAG.getNode(Opcode, dl, Op.getValueType(),
10483                       Op.getOperand(1), Op.getOperand(2));
10484  }
10485
10486  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10487  case Intrinsic::x86_sse2_pmaxu_b:
10488  case Intrinsic::x86_sse41_pmaxuw:
10489  case Intrinsic::x86_sse41_pmaxud:
10490  case Intrinsic::x86_avx2_pmaxu_b:
10491  case Intrinsic::x86_avx2_pmaxu_w:
10492  case Intrinsic::x86_avx2_pmaxu_d:
10493  case Intrinsic::x86_sse2_pminu_b:
10494  case Intrinsic::x86_sse41_pminuw:
10495  case Intrinsic::x86_sse41_pminud:
10496  case Intrinsic::x86_avx2_pminu_b:
10497  case Intrinsic::x86_avx2_pminu_w:
10498  case Intrinsic::x86_avx2_pminu_d:
10499  case Intrinsic::x86_sse41_pmaxsb:
10500  case Intrinsic::x86_sse2_pmaxs_w:
10501  case Intrinsic::x86_sse41_pmaxsd:
10502  case Intrinsic::x86_avx2_pmaxs_b:
10503  case Intrinsic::x86_avx2_pmaxs_w:
10504  case Intrinsic::x86_avx2_pmaxs_d:
10505  case Intrinsic::x86_sse41_pminsb:
10506  case Intrinsic::x86_sse2_pmins_w:
10507  case Intrinsic::x86_sse41_pminsd:
10508  case Intrinsic::x86_avx2_pmins_b:
10509  case Intrinsic::x86_avx2_pmins_w:
10510  case Intrinsic::x86_avx2_pmins_d: {
10511    unsigned Opcode;
10512    switch (IntNo) {
10513    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10514    case Intrinsic::x86_sse2_pmaxu_b:
10515    case Intrinsic::x86_sse41_pmaxuw:
10516    case Intrinsic::x86_sse41_pmaxud:
10517    case Intrinsic::x86_avx2_pmaxu_b:
10518    case Intrinsic::x86_avx2_pmaxu_w:
10519    case Intrinsic::x86_avx2_pmaxu_d:
10520      Opcode = X86ISD::UMAX;
10521      break;
10522    case Intrinsic::x86_sse2_pminu_b:
10523    case Intrinsic::x86_sse41_pminuw:
10524    case Intrinsic::x86_sse41_pminud:
10525    case Intrinsic::x86_avx2_pminu_b:
10526    case Intrinsic::x86_avx2_pminu_w:
10527    case Intrinsic::x86_avx2_pminu_d:
10528      Opcode = X86ISD::UMIN;
10529      break;
10530    case Intrinsic::x86_sse41_pmaxsb:
10531    case Intrinsic::x86_sse2_pmaxs_w:
10532    case Intrinsic::x86_sse41_pmaxsd:
10533    case Intrinsic::x86_avx2_pmaxs_b:
10534    case Intrinsic::x86_avx2_pmaxs_w:
10535    case Intrinsic::x86_avx2_pmaxs_d:
10536      Opcode = X86ISD::SMAX;
10537      break;
10538    case Intrinsic::x86_sse41_pminsb:
10539    case Intrinsic::x86_sse2_pmins_w:
10540    case Intrinsic::x86_sse41_pminsd:
10541    case Intrinsic::x86_avx2_pmins_b:
10542    case Intrinsic::x86_avx2_pmins_w:
10543    case Intrinsic::x86_avx2_pmins_d:
10544      Opcode = X86ISD::SMIN;
10545      break;
10546    }
10547    return DAG.getNode(Opcode, dl, Op.getValueType(),
10548                       Op.getOperand(1), Op.getOperand(2));
10549  }
10550
10551  // SSE/SSE2/AVX floating point max/min intrinsics.
10552  case Intrinsic::x86_sse_max_ps:
10553  case Intrinsic::x86_sse2_max_pd:
10554  case Intrinsic::x86_avx_max_ps_256:
10555  case Intrinsic::x86_avx_max_pd_256:
10556  case Intrinsic::x86_sse_min_ps:
10557  case Intrinsic::x86_sse2_min_pd:
10558  case Intrinsic::x86_avx_min_ps_256:
10559  case Intrinsic::x86_avx_min_pd_256: {
10560    unsigned Opcode;
10561    switch (IntNo) {
10562    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10563    case Intrinsic::x86_sse_max_ps:
10564    case Intrinsic::x86_sse2_max_pd:
10565    case Intrinsic::x86_avx_max_ps_256:
10566    case Intrinsic::x86_avx_max_pd_256:
10567      Opcode = X86ISD::FMAX;
10568      break;
10569    case Intrinsic::x86_sse_min_ps:
10570    case Intrinsic::x86_sse2_min_pd:
10571    case Intrinsic::x86_avx_min_ps_256:
10572    case Intrinsic::x86_avx_min_pd_256:
10573      Opcode = X86ISD::FMIN;
10574      break;
10575    }
10576    return DAG.getNode(Opcode, dl, Op.getValueType(),
10577                       Op.getOperand(1), Op.getOperand(2));
10578  }
10579
10580  // AVX2 variable shift intrinsics
10581  case Intrinsic::x86_avx2_psllv_d:
10582  case Intrinsic::x86_avx2_psllv_q:
10583  case Intrinsic::x86_avx2_psllv_d_256:
10584  case Intrinsic::x86_avx2_psllv_q_256:
10585  case Intrinsic::x86_avx2_psrlv_d:
10586  case Intrinsic::x86_avx2_psrlv_q:
10587  case Intrinsic::x86_avx2_psrlv_d_256:
10588  case Intrinsic::x86_avx2_psrlv_q_256:
10589  case Intrinsic::x86_avx2_psrav_d:
10590  case Intrinsic::x86_avx2_psrav_d_256: {
10591    unsigned Opcode;
10592    switch (IntNo) {
10593    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10594    case Intrinsic::x86_avx2_psllv_d:
10595    case Intrinsic::x86_avx2_psllv_q:
10596    case Intrinsic::x86_avx2_psllv_d_256:
10597    case Intrinsic::x86_avx2_psllv_q_256:
10598      Opcode = ISD::SHL;
10599      break;
10600    case Intrinsic::x86_avx2_psrlv_d:
10601    case Intrinsic::x86_avx2_psrlv_q:
10602    case Intrinsic::x86_avx2_psrlv_d_256:
10603    case Intrinsic::x86_avx2_psrlv_q_256:
10604      Opcode = ISD::SRL;
10605      break;
10606    case Intrinsic::x86_avx2_psrav_d:
10607    case Intrinsic::x86_avx2_psrav_d_256:
10608      Opcode = ISD::SRA;
10609      break;
10610    }
10611    return DAG.getNode(Opcode, dl, Op.getValueType(),
10612                       Op.getOperand(1), Op.getOperand(2));
10613  }
10614
10615  case Intrinsic::x86_ssse3_pshuf_b_128:
10616  case Intrinsic::x86_avx2_pshuf_b:
10617    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10618                       Op.getOperand(1), Op.getOperand(2));
10619
10620  case Intrinsic::x86_ssse3_psign_b_128:
10621  case Intrinsic::x86_ssse3_psign_w_128:
10622  case Intrinsic::x86_ssse3_psign_d_128:
10623  case Intrinsic::x86_avx2_psign_b:
10624  case Intrinsic::x86_avx2_psign_w:
10625  case Intrinsic::x86_avx2_psign_d:
10626    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10627                       Op.getOperand(1), Op.getOperand(2));
10628
10629  case Intrinsic::x86_sse41_insertps:
10630    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10631                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10632
10633  case Intrinsic::x86_avx_vperm2f128_ps_256:
10634  case Intrinsic::x86_avx_vperm2f128_pd_256:
10635  case Intrinsic::x86_avx_vperm2f128_si_256:
10636  case Intrinsic::x86_avx2_vperm2i128:
10637    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10638                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10639
10640  case Intrinsic::x86_avx2_permd:
10641  case Intrinsic::x86_avx2_permps:
10642    // Operands intentionally swapped. Mask is last operand to intrinsic,
10643    // but second operand for node/intruction.
10644    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10645                       Op.getOperand(2), Op.getOperand(1));
10646
10647  case Intrinsic::x86_sse_sqrt_ps:
10648  case Intrinsic::x86_sse2_sqrt_pd:
10649  case Intrinsic::x86_avx_sqrt_ps_256:
10650  case Intrinsic::x86_avx_sqrt_pd_256:
10651    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10652
10653  // ptest and testp intrinsics. The intrinsic these come from are designed to
10654  // return an integer value, not just an instruction so lower it to the ptest
10655  // or testp pattern and a setcc for the result.
10656  case Intrinsic::x86_sse41_ptestz:
10657  case Intrinsic::x86_sse41_ptestc:
10658  case Intrinsic::x86_sse41_ptestnzc:
10659  case Intrinsic::x86_avx_ptestz_256:
10660  case Intrinsic::x86_avx_ptestc_256:
10661  case Intrinsic::x86_avx_ptestnzc_256:
10662  case Intrinsic::x86_avx_vtestz_ps:
10663  case Intrinsic::x86_avx_vtestc_ps:
10664  case Intrinsic::x86_avx_vtestnzc_ps:
10665  case Intrinsic::x86_avx_vtestz_pd:
10666  case Intrinsic::x86_avx_vtestc_pd:
10667  case Intrinsic::x86_avx_vtestnzc_pd:
10668  case Intrinsic::x86_avx_vtestz_ps_256:
10669  case Intrinsic::x86_avx_vtestc_ps_256:
10670  case Intrinsic::x86_avx_vtestnzc_ps_256:
10671  case Intrinsic::x86_avx_vtestz_pd_256:
10672  case Intrinsic::x86_avx_vtestc_pd_256:
10673  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10674    bool IsTestPacked = false;
10675    unsigned X86CC;
10676    switch (IntNo) {
10677    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10678    case Intrinsic::x86_avx_vtestz_ps:
10679    case Intrinsic::x86_avx_vtestz_pd:
10680    case Intrinsic::x86_avx_vtestz_ps_256:
10681    case Intrinsic::x86_avx_vtestz_pd_256:
10682      IsTestPacked = true; // Fallthrough
10683    case Intrinsic::x86_sse41_ptestz:
10684    case Intrinsic::x86_avx_ptestz_256:
10685      // ZF = 1
10686      X86CC = X86::COND_E;
10687      break;
10688    case Intrinsic::x86_avx_vtestc_ps:
10689    case Intrinsic::x86_avx_vtestc_pd:
10690    case Intrinsic::x86_avx_vtestc_ps_256:
10691    case Intrinsic::x86_avx_vtestc_pd_256:
10692      IsTestPacked = true; // Fallthrough
10693    case Intrinsic::x86_sse41_ptestc:
10694    case Intrinsic::x86_avx_ptestc_256:
10695      // CF = 1
10696      X86CC = X86::COND_B;
10697      break;
10698    case Intrinsic::x86_avx_vtestnzc_ps:
10699    case Intrinsic::x86_avx_vtestnzc_pd:
10700    case Intrinsic::x86_avx_vtestnzc_ps_256:
10701    case Intrinsic::x86_avx_vtestnzc_pd_256:
10702      IsTestPacked = true; // Fallthrough
10703    case Intrinsic::x86_sse41_ptestnzc:
10704    case Intrinsic::x86_avx_ptestnzc_256:
10705      // ZF and CF = 0
10706      X86CC = X86::COND_A;
10707      break;
10708    }
10709
10710    SDValue LHS = Op.getOperand(1);
10711    SDValue RHS = Op.getOperand(2);
10712    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10713    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10714    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10715    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10716    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10717  }
10718
10719  // SSE/AVX shift intrinsics
10720  case Intrinsic::x86_sse2_psll_w:
10721  case Intrinsic::x86_sse2_psll_d:
10722  case Intrinsic::x86_sse2_psll_q:
10723  case Intrinsic::x86_avx2_psll_w:
10724  case Intrinsic::x86_avx2_psll_d:
10725  case Intrinsic::x86_avx2_psll_q:
10726  case Intrinsic::x86_sse2_psrl_w:
10727  case Intrinsic::x86_sse2_psrl_d:
10728  case Intrinsic::x86_sse2_psrl_q:
10729  case Intrinsic::x86_avx2_psrl_w:
10730  case Intrinsic::x86_avx2_psrl_d:
10731  case Intrinsic::x86_avx2_psrl_q:
10732  case Intrinsic::x86_sse2_psra_w:
10733  case Intrinsic::x86_sse2_psra_d:
10734  case Intrinsic::x86_avx2_psra_w:
10735  case Intrinsic::x86_avx2_psra_d: {
10736    unsigned Opcode;
10737    switch (IntNo) {
10738    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10739    case Intrinsic::x86_sse2_psll_w:
10740    case Intrinsic::x86_sse2_psll_d:
10741    case Intrinsic::x86_sse2_psll_q:
10742    case Intrinsic::x86_avx2_psll_w:
10743    case Intrinsic::x86_avx2_psll_d:
10744    case Intrinsic::x86_avx2_psll_q:
10745      Opcode = X86ISD::VSHL;
10746      break;
10747    case Intrinsic::x86_sse2_psrl_w:
10748    case Intrinsic::x86_sse2_psrl_d:
10749    case Intrinsic::x86_sse2_psrl_q:
10750    case Intrinsic::x86_avx2_psrl_w:
10751    case Intrinsic::x86_avx2_psrl_d:
10752    case Intrinsic::x86_avx2_psrl_q:
10753      Opcode = X86ISD::VSRL;
10754      break;
10755    case Intrinsic::x86_sse2_psra_w:
10756    case Intrinsic::x86_sse2_psra_d:
10757    case Intrinsic::x86_avx2_psra_w:
10758    case Intrinsic::x86_avx2_psra_d:
10759      Opcode = X86ISD::VSRA;
10760      break;
10761    }
10762    return DAG.getNode(Opcode, dl, Op.getValueType(),
10763                       Op.getOperand(1), Op.getOperand(2));
10764  }
10765
10766  // SSE/AVX immediate shift intrinsics
10767  case Intrinsic::x86_sse2_pslli_w:
10768  case Intrinsic::x86_sse2_pslli_d:
10769  case Intrinsic::x86_sse2_pslli_q:
10770  case Intrinsic::x86_avx2_pslli_w:
10771  case Intrinsic::x86_avx2_pslli_d:
10772  case Intrinsic::x86_avx2_pslli_q:
10773  case Intrinsic::x86_sse2_psrli_w:
10774  case Intrinsic::x86_sse2_psrli_d:
10775  case Intrinsic::x86_sse2_psrli_q:
10776  case Intrinsic::x86_avx2_psrli_w:
10777  case Intrinsic::x86_avx2_psrli_d:
10778  case Intrinsic::x86_avx2_psrli_q:
10779  case Intrinsic::x86_sse2_psrai_w:
10780  case Intrinsic::x86_sse2_psrai_d:
10781  case Intrinsic::x86_avx2_psrai_w:
10782  case Intrinsic::x86_avx2_psrai_d: {
10783    unsigned Opcode;
10784    switch (IntNo) {
10785    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10786    case Intrinsic::x86_sse2_pslli_w:
10787    case Intrinsic::x86_sse2_pslli_d:
10788    case Intrinsic::x86_sse2_pslli_q:
10789    case Intrinsic::x86_avx2_pslli_w:
10790    case Intrinsic::x86_avx2_pslli_d:
10791    case Intrinsic::x86_avx2_pslli_q:
10792      Opcode = X86ISD::VSHLI;
10793      break;
10794    case Intrinsic::x86_sse2_psrli_w:
10795    case Intrinsic::x86_sse2_psrli_d:
10796    case Intrinsic::x86_sse2_psrli_q:
10797    case Intrinsic::x86_avx2_psrli_w:
10798    case Intrinsic::x86_avx2_psrli_d:
10799    case Intrinsic::x86_avx2_psrli_q:
10800      Opcode = X86ISD::VSRLI;
10801      break;
10802    case Intrinsic::x86_sse2_psrai_w:
10803    case Intrinsic::x86_sse2_psrai_d:
10804    case Intrinsic::x86_avx2_psrai_w:
10805    case Intrinsic::x86_avx2_psrai_d:
10806      Opcode = X86ISD::VSRAI;
10807      break;
10808    }
10809    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10810                               Op.getOperand(1), Op.getOperand(2), DAG);
10811  }
10812
10813  case Intrinsic::x86_sse42_pcmpistria128:
10814  case Intrinsic::x86_sse42_pcmpestria128:
10815  case Intrinsic::x86_sse42_pcmpistric128:
10816  case Intrinsic::x86_sse42_pcmpestric128:
10817  case Intrinsic::x86_sse42_pcmpistrio128:
10818  case Intrinsic::x86_sse42_pcmpestrio128:
10819  case Intrinsic::x86_sse42_pcmpistris128:
10820  case Intrinsic::x86_sse42_pcmpestris128:
10821  case Intrinsic::x86_sse42_pcmpistriz128:
10822  case Intrinsic::x86_sse42_pcmpestriz128: {
10823    unsigned Opcode;
10824    unsigned X86CC;
10825    switch (IntNo) {
10826    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10827    case Intrinsic::x86_sse42_pcmpistria128:
10828      Opcode = X86ISD::PCMPISTRI;
10829      X86CC = X86::COND_A;
10830      break;
10831    case Intrinsic::x86_sse42_pcmpestria128:
10832      Opcode = X86ISD::PCMPESTRI;
10833      X86CC = X86::COND_A;
10834      break;
10835    case Intrinsic::x86_sse42_pcmpistric128:
10836      Opcode = X86ISD::PCMPISTRI;
10837      X86CC = X86::COND_B;
10838      break;
10839    case Intrinsic::x86_sse42_pcmpestric128:
10840      Opcode = X86ISD::PCMPESTRI;
10841      X86CC = X86::COND_B;
10842      break;
10843    case Intrinsic::x86_sse42_pcmpistrio128:
10844      Opcode = X86ISD::PCMPISTRI;
10845      X86CC = X86::COND_O;
10846      break;
10847    case Intrinsic::x86_sse42_pcmpestrio128:
10848      Opcode = X86ISD::PCMPESTRI;
10849      X86CC = X86::COND_O;
10850      break;
10851    case Intrinsic::x86_sse42_pcmpistris128:
10852      Opcode = X86ISD::PCMPISTRI;
10853      X86CC = X86::COND_S;
10854      break;
10855    case Intrinsic::x86_sse42_pcmpestris128:
10856      Opcode = X86ISD::PCMPESTRI;
10857      X86CC = X86::COND_S;
10858      break;
10859    case Intrinsic::x86_sse42_pcmpistriz128:
10860      Opcode = X86ISD::PCMPISTRI;
10861      X86CC = X86::COND_E;
10862      break;
10863    case Intrinsic::x86_sse42_pcmpestriz128:
10864      Opcode = X86ISD::PCMPESTRI;
10865      X86CC = X86::COND_E;
10866      break;
10867    }
10868    SmallVector<SDValue, 5> NewOps;
10869    NewOps.append(Op->op_begin()+1, Op->op_end());
10870    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10871    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10872    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10873                                DAG.getConstant(X86CC, MVT::i8),
10874                                SDValue(PCMP.getNode(), 1));
10875    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10876  }
10877
10878  case Intrinsic::x86_sse42_pcmpistri128:
10879  case Intrinsic::x86_sse42_pcmpestri128: {
10880    unsigned Opcode;
10881    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10882      Opcode = X86ISD::PCMPISTRI;
10883    else
10884      Opcode = X86ISD::PCMPESTRI;
10885
10886    SmallVector<SDValue, 5> NewOps;
10887    NewOps.append(Op->op_begin()+1, Op->op_end());
10888    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10889    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10890  }
10891  case Intrinsic::x86_fma_vfmadd_ps:
10892  case Intrinsic::x86_fma_vfmadd_pd:
10893  case Intrinsic::x86_fma_vfmsub_ps:
10894  case Intrinsic::x86_fma_vfmsub_pd:
10895  case Intrinsic::x86_fma_vfnmadd_ps:
10896  case Intrinsic::x86_fma_vfnmadd_pd:
10897  case Intrinsic::x86_fma_vfnmsub_ps:
10898  case Intrinsic::x86_fma_vfnmsub_pd:
10899  case Intrinsic::x86_fma_vfmaddsub_ps:
10900  case Intrinsic::x86_fma_vfmaddsub_pd:
10901  case Intrinsic::x86_fma_vfmsubadd_ps:
10902  case Intrinsic::x86_fma_vfmsubadd_pd:
10903  case Intrinsic::x86_fma_vfmadd_ps_256:
10904  case Intrinsic::x86_fma_vfmadd_pd_256:
10905  case Intrinsic::x86_fma_vfmsub_ps_256:
10906  case Intrinsic::x86_fma_vfmsub_pd_256:
10907  case Intrinsic::x86_fma_vfnmadd_ps_256:
10908  case Intrinsic::x86_fma_vfnmadd_pd_256:
10909  case Intrinsic::x86_fma_vfnmsub_ps_256:
10910  case Intrinsic::x86_fma_vfnmsub_pd_256:
10911  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10912  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10913  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10914  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10915    unsigned Opc;
10916    switch (IntNo) {
10917    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10918    case Intrinsic::x86_fma_vfmadd_ps:
10919    case Intrinsic::x86_fma_vfmadd_pd:
10920    case Intrinsic::x86_fma_vfmadd_ps_256:
10921    case Intrinsic::x86_fma_vfmadd_pd_256:
10922      Opc = X86ISD::FMADD;
10923      break;
10924    case Intrinsic::x86_fma_vfmsub_ps:
10925    case Intrinsic::x86_fma_vfmsub_pd:
10926    case Intrinsic::x86_fma_vfmsub_ps_256:
10927    case Intrinsic::x86_fma_vfmsub_pd_256:
10928      Opc = X86ISD::FMSUB;
10929      break;
10930    case Intrinsic::x86_fma_vfnmadd_ps:
10931    case Intrinsic::x86_fma_vfnmadd_pd:
10932    case Intrinsic::x86_fma_vfnmadd_ps_256:
10933    case Intrinsic::x86_fma_vfnmadd_pd_256:
10934      Opc = X86ISD::FNMADD;
10935      break;
10936    case Intrinsic::x86_fma_vfnmsub_ps:
10937    case Intrinsic::x86_fma_vfnmsub_pd:
10938    case Intrinsic::x86_fma_vfnmsub_ps_256:
10939    case Intrinsic::x86_fma_vfnmsub_pd_256:
10940      Opc = X86ISD::FNMSUB;
10941      break;
10942    case Intrinsic::x86_fma_vfmaddsub_ps:
10943    case Intrinsic::x86_fma_vfmaddsub_pd:
10944    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10945    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10946      Opc = X86ISD::FMADDSUB;
10947      break;
10948    case Intrinsic::x86_fma_vfmsubadd_ps:
10949    case Intrinsic::x86_fma_vfmsubadd_pd:
10950    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10951    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10952      Opc = X86ISD::FMSUBADD;
10953      break;
10954    }
10955
10956    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10957                       Op.getOperand(2), Op.getOperand(3));
10958  }
10959  }
10960}
10961
10962static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10963  DebugLoc dl = Op.getDebugLoc();
10964  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10965  switch (IntNo) {
10966  default: return SDValue();    // Don't custom lower most intrinsics.
10967
10968  // RDRAND/RDSEED intrinsics.
10969  case Intrinsic::x86_rdrand_16:
10970  case Intrinsic::x86_rdrand_32:
10971  case Intrinsic::x86_rdrand_64:
10972  case Intrinsic::x86_rdseed_16:
10973  case Intrinsic::x86_rdseed_32:
10974  case Intrinsic::x86_rdseed_64: {
10975    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
10976                       IntNo == Intrinsic::x86_rdseed_32 ||
10977                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
10978                                                            X86ISD::RDRAND;
10979    // Emit the node with the right value type.
10980    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10981    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
10982
10983    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
10984    // Otherwise return the value from Rand, which is always 0, casted to i32.
10985    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10986                      DAG.getConstant(1, Op->getValueType(1)),
10987                      DAG.getConstant(X86::COND_B, MVT::i32),
10988                      SDValue(Result.getNode(), 1) };
10989    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10990                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10991                                  Ops, array_lengthof(Ops));
10992
10993    // Return { result, isValid, chain }.
10994    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10995                       SDValue(Result.getNode(), 2));
10996  }
10997
10998  // XTEST intrinsics.
10999  case Intrinsic::x86_xtest: {
11000    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11001    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11002    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11003                                DAG.getConstant(X86::COND_NE, MVT::i8),
11004                                InTrans);
11005    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11006    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11007                       Ret, SDValue(InTrans.getNode(), 1));
11008  }
11009  }
11010}
11011
11012SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11013                                           SelectionDAG &DAG) const {
11014  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11015  MFI->setReturnAddressIsTaken(true);
11016
11017  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11018  DebugLoc dl = Op.getDebugLoc();
11019  EVT PtrVT = getPointerTy();
11020
11021  if (Depth > 0) {
11022    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11023    SDValue Offset =
11024      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
11025    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11026                       DAG.getNode(ISD::ADD, dl, PtrVT,
11027                                   FrameAddr, Offset),
11028                       MachinePointerInfo(), false, false, false, 0);
11029  }
11030
11031  // Just load the return address.
11032  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
11033  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11034                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
11035}
11036
11037SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
11038  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11039  MFI->setFrameAddressIsTaken(true);
11040
11041  EVT VT = Op.getValueType();
11042  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
11043  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11044  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11045  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
11046          (FrameReg == X86::EBP && VT == MVT::i32)) &&
11047         "Invalid Frame Register!");
11048  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
11049  while (Depth--)
11050    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
11051                            MachinePointerInfo(),
11052                            false, false, false, 0);
11053  return FrameAddr;
11054}
11055
11056SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
11057                                                     SelectionDAG &DAG) const {
11058  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
11059}
11060
11061SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
11062  SDValue Chain     = Op.getOperand(0);
11063  SDValue Offset    = Op.getOperand(1);
11064  SDValue Handler   = Op.getOperand(2);
11065  DebugLoc dl       = Op.getDebugLoc();
11066
11067  EVT PtrVT = getPointerTy();
11068  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11069  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
11070          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
11071         "Invalid Frame Register!");
11072  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
11073  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
11074
11075  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
11076                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11077  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
11078  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11079                       false, false, 0);
11080  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11081
11082  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
11083                     DAG.getRegister(StoreAddrReg, PtrVT));
11084}
11085
11086SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11087                                               SelectionDAG &DAG) const {
11088  DebugLoc DL = Op.getDebugLoc();
11089  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11090                     DAG.getVTList(MVT::i32, MVT::Other),
11091                     Op.getOperand(0), Op.getOperand(1));
11092}
11093
11094SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11095                                                SelectionDAG &DAG) const {
11096  DebugLoc DL = Op.getDebugLoc();
11097  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11098                     Op.getOperand(0), Op.getOperand(1));
11099}
11100
11101static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11102  return Op.getOperand(0);
11103}
11104
11105SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11106                                                SelectionDAG &DAG) const {
11107  SDValue Root = Op.getOperand(0);
11108  SDValue Trmp = Op.getOperand(1); // trampoline
11109  SDValue FPtr = Op.getOperand(2); // nested function
11110  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11111  DebugLoc dl  = Op.getDebugLoc();
11112
11113  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11114  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11115
11116  if (Subtarget->is64Bit()) {
11117    SDValue OutChains[6];
11118
11119    // Large code-model.
11120    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11121    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11122
11123    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11124    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11125
11126    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11127
11128    // Load the pointer to the nested function into R11.
11129    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11130    SDValue Addr = Trmp;
11131    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11132                                Addr, MachinePointerInfo(TrmpAddr),
11133                                false, false, 0);
11134
11135    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11136                       DAG.getConstant(2, MVT::i64));
11137    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11138                                MachinePointerInfo(TrmpAddr, 2),
11139                                false, false, 2);
11140
11141    // Load the 'nest' parameter value into R10.
11142    // R10 is specified in X86CallingConv.td
11143    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11144    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11145                       DAG.getConstant(10, MVT::i64));
11146    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11147                                Addr, MachinePointerInfo(TrmpAddr, 10),
11148                                false, false, 0);
11149
11150    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11151                       DAG.getConstant(12, MVT::i64));
11152    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11153                                MachinePointerInfo(TrmpAddr, 12),
11154                                false, false, 2);
11155
11156    // Jump to the nested function.
11157    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11159                       DAG.getConstant(20, MVT::i64));
11160    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11161                                Addr, MachinePointerInfo(TrmpAddr, 20),
11162                                false, false, 0);
11163
11164    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11165    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11166                       DAG.getConstant(22, MVT::i64));
11167    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11168                                MachinePointerInfo(TrmpAddr, 22),
11169                                false, false, 0);
11170
11171    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11172  } else {
11173    const Function *Func =
11174      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11175    CallingConv::ID CC = Func->getCallingConv();
11176    unsigned NestReg;
11177
11178    switch (CC) {
11179    default:
11180      llvm_unreachable("Unsupported calling convention");
11181    case CallingConv::C:
11182    case CallingConv::X86_StdCall: {
11183      // Pass 'nest' parameter in ECX.
11184      // Must be kept in sync with X86CallingConv.td
11185      NestReg = X86::ECX;
11186
11187      // Check that ECX wasn't needed by an 'inreg' parameter.
11188      FunctionType *FTy = Func->getFunctionType();
11189      const AttributeSet &Attrs = Func->getAttributes();
11190
11191      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11192        unsigned InRegCount = 0;
11193        unsigned Idx = 1;
11194
11195        for (FunctionType::param_iterator I = FTy->param_begin(),
11196             E = FTy->param_end(); I != E; ++I, ++Idx)
11197          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11198            // FIXME: should only count parameters that are lowered to integers.
11199            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11200
11201        if (InRegCount > 2) {
11202          report_fatal_error("Nest register in use - reduce number of inreg"
11203                             " parameters!");
11204        }
11205      }
11206      break;
11207    }
11208    case CallingConv::X86_FastCall:
11209    case CallingConv::X86_ThisCall:
11210    case CallingConv::Fast:
11211      // Pass 'nest' parameter in EAX.
11212      // Must be kept in sync with X86CallingConv.td
11213      NestReg = X86::EAX;
11214      break;
11215    }
11216
11217    SDValue OutChains[4];
11218    SDValue Addr, Disp;
11219
11220    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11221                       DAG.getConstant(10, MVT::i32));
11222    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11223
11224    // This is storing the opcode for MOV32ri.
11225    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11226    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11227    OutChains[0] = DAG.getStore(Root, dl,
11228                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11229                                Trmp, MachinePointerInfo(TrmpAddr),
11230                                false, false, 0);
11231
11232    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11233                       DAG.getConstant(1, MVT::i32));
11234    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11235                                MachinePointerInfo(TrmpAddr, 1),
11236                                false, false, 1);
11237
11238    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11239    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11240                       DAG.getConstant(5, MVT::i32));
11241    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11242                                MachinePointerInfo(TrmpAddr, 5),
11243                                false, false, 1);
11244
11245    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11246                       DAG.getConstant(6, MVT::i32));
11247    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11248                                MachinePointerInfo(TrmpAddr, 6),
11249                                false, false, 1);
11250
11251    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11252  }
11253}
11254
11255SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11256                                            SelectionDAG &DAG) const {
11257  /*
11258   The rounding mode is in bits 11:10 of FPSR, and has the following
11259   settings:
11260     00 Round to nearest
11261     01 Round to -inf
11262     10 Round to +inf
11263     11 Round to 0
11264
11265  FLT_ROUNDS, on the other hand, expects the following:
11266    -1 Undefined
11267     0 Round to 0
11268     1 Round to nearest
11269     2 Round to +inf
11270     3 Round to -inf
11271
11272  To perform the conversion, we do:
11273    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11274  */
11275
11276  MachineFunction &MF = DAG.getMachineFunction();
11277  const TargetMachine &TM = MF.getTarget();
11278  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11279  unsigned StackAlignment = TFI.getStackAlignment();
11280  EVT VT = Op.getValueType();
11281  DebugLoc DL = Op.getDebugLoc();
11282
11283  // Save FP Control Word to stack slot
11284  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11285  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11286
11287  MachineMemOperand *MMO =
11288   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11289                           MachineMemOperand::MOStore, 2, 2);
11290
11291  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11292  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11293                                          DAG.getVTList(MVT::Other),
11294                                          Ops, array_lengthof(Ops), MVT::i16,
11295                                          MMO);
11296
11297  // Load FP Control Word from stack slot
11298  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11299                            MachinePointerInfo(), false, false, false, 0);
11300
11301  // Transform as necessary
11302  SDValue CWD1 =
11303    DAG.getNode(ISD::SRL, DL, MVT::i16,
11304                DAG.getNode(ISD::AND, DL, MVT::i16,
11305                            CWD, DAG.getConstant(0x800, MVT::i16)),
11306                DAG.getConstant(11, MVT::i8));
11307  SDValue CWD2 =
11308    DAG.getNode(ISD::SRL, DL, MVT::i16,
11309                DAG.getNode(ISD::AND, DL, MVT::i16,
11310                            CWD, DAG.getConstant(0x400, MVT::i16)),
11311                DAG.getConstant(9, MVT::i8));
11312
11313  SDValue RetVal =
11314    DAG.getNode(ISD::AND, DL, MVT::i16,
11315                DAG.getNode(ISD::ADD, DL, MVT::i16,
11316                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11317                            DAG.getConstant(1, MVT::i16)),
11318                DAG.getConstant(3, MVT::i16));
11319
11320  return DAG.getNode((VT.getSizeInBits() < 16 ?
11321                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11322}
11323
11324static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11325  EVT VT = Op.getValueType();
11326  EVT OpVT = VT;
11327  unsigned NumBits = VT.getSizeInBits();
11328  DebugLoc dl = Op.getDebugLoc();
11329
11330  Op = Op.getOperand(0);
11331  if (VT == MVT::i8) {
11332    // Zero extend to i32 since there is not an i8 bsr.
11333    OpVT = MVT::i32;
11334    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11335  }
11336
11337  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11338  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11339  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11340
11341  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11342  SDValue Ops[] = {
11343    Op,
11344    DAG.getConstant(NumBits+NumBits-1, OpVT),
11345    DAG.getConstant(X86::COND_E, MVT::i8),
11346    Op.getValue(1)
11347  };
11348  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11349
11350  // Finally xor with NumBits-1.
11351  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11352
11353  if (VT == MVT::i8)
11354    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11355  return Op;
11356}
11357
11358static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11359  EVT VT = Op.getValueType();
11360  EVT OpVT = VT;
11361  unsigned NumBits = VT.getSizeInBits();
11362  DebugLoc dl = Op.getDebugLoc();
11363
11364  Op = Op.getOperand(0);
11365  if (VT == MVT::i8) {
11366    // Zero extend to i32 since there is not an i8 bsr.
11367    OpVT = MVT::i32;
11368    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11369  }
11370
11371  // Issue a bsr (scan bits in reverse).
11372  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11373  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11374
11375  // And xor with NumBits-1.
11376  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11377
11378  if (VT == MVT::i8)
11379    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11380  return Op;
11381}
11382
11383static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11384  EVT VT = Op.getValueType();
11385  unsigned NumBits = VT.getSizeInBits();
11386  DebugLoc dl = Op.getDebugLoc();
11387  Op = Op.getOperand(0);
11388
11389  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11390  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11391  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11392
11393  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11394  SDValue Ops[] = {
11395    Op,
11396    DAG.getConstant(NumBits, VT),
11397    DAG.getConstant(X86::COND_E, MVT::i8),
11398    Op.getValue(1)
11399  };
11400  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11401}
11402
11403// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11404// ones, and then concatenate the result back.
11405static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11406  EVT VT = Op.getValueType();
11407
11408  assert(VT.is256BitVector() && VT.isInteger() &&
11409         "Unsupported value type for operation");
11410
11411  unsigned NumElems = VT.getVectorNumElements();
11412  DebugLoc dl = Op.getDebugLoc();
11413
11414  // Extract the LHS vectors
11415  SDValue LHS = Op.getOperand(0);
11416  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11417  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11418
11419  // Extract the RHS vectors
11420  SDValue RHS = Op.getOperand(1);
11421  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11422  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11423
11424  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11425  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11426
11427  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11428                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11429                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11430}
11431
11432static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11433  assert(Op.getValueType().is256BitVector() &&
11434         Op.getValueType().isInteger() &&
11435         "Only handle AVX 256-bit vector integer operation");
11436  return Lower256IntArith(Op, DAG);
11437}
11438
11439static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11440  assert(Op.getValueType().is256BitVector() &&
11441         Op.getValueType().isInteger() &&
11442         "Only handle AVX 256-bit vector integer operation");
11443  return Lower256IntArith(Op, DAG);
11444}
11445
11446static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11447                        SelectionDAG &DAG) {
11448  DebugLoc dl = Op.getDebugLoc();
11449  EVT VT = Op.getValueType();
11450
11451  // Decompose 256-bit ops into smaller 128-bit ops.
11452  if (VT.is256BitVector() && !Subtarget->hasInt256())
11453    return Lower256IntArith(Op, DAG);
11454
11455  SDValue A = Op.getOperand(0);
11456  SDValue B = Op.getOperand(1);
11457
11458  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11459  if (VT == MVT::v4i32) {
11460    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11461           "Should not custom lower when pmuldq is available!");
11462
11463    // Extract the odd parts.
11464    const int UnpackMask[] = { 1, -1, 3, -1 };
11465    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11466    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11467
11468    // Multiply the even parts.
11469    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11470    // Now multiply odd parts.
11471    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11472
11473    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11474    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11475
11476    // Merge the two vectors back together with a shuffle. This expands into 2
11477    // shuffles.
11478    const int ShufMask[] = { 0, 4, 2, 6 };
11479    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11480  }
11481
11482  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11483         "Only know how to lower V2I64/V4I64 multiply");
11484
11485  //  Ahi = psrlqi(a, 32);
11486  //  Bhi = psrlqi(b, 32);
11487  //
11488  //  AloBlo = pmuludq(a, b);
11489  //  AloBhi = pmuludq(a, Bhi);
11490  //  AhiBlo = pmuludq(Ahi, b);
11491
11492  //  AloBhi = psllqi(AloBhi, 32);
11493  //  AhiBlo = psllqi(AhiBlo, 32);
11494  //  return AloBlo + AloBhi + AhiBlo;
11495
11496  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11497
11498  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11499  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11500
11501  // Bit cast to 32-bit vectors for MULUDQ
11502  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11503  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11504  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11505  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11506  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11507
11508  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11509  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11510  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11511
11512  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11513  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11514
11515  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11516  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11517}
11518
11519SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11520  EVT VT = Op.getValueType();
11521  EVT EltTy = VT.getVectorElementType();
11522  unsigned NumElts = VT.getVectorNumElements();
11523  SDValue N0 = Op.getOperand(0);
11524  DebugLoc dl = Op.getDebugLoc();
11525
11526  // Lower sdiv X, pow2-const.
11527  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11528  if (!C)
11529    return SDValue();
11530
11531  APInt SplatValue, SplatUndef;
11532  unsigned MinSplatBits;
11533  bool HasAnyUndefs;
11534  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11535    return SDValue();
11536
11537  if ((SplatValue != 0) &&
11538      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11539    unsigned lg2 = SplatValue.countTrailingZeros();
11540    // Splat the sign bit.
11541    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11542    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11543    // Add (N0 < 0) ? abs2 - 1 : 0;
11544    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11545    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11546    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11547    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11548    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11549
11550    // If we're dividing by a positive value, we're done.  Otherwise, we must
11551    // negate the result.
11552    if (SplatValue.isNonNegative())
11553      return SRA;
11554
11555    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11556    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11557    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11558  }
11559  return SDValue();
11560}
11561
11562static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
11563                                         const X86Subtarget *Subtarget) {
11564  EVT VT = Op.getValueType();
11565  DebugLoc dl = Op.getDebugLoc();
11566  SDValue R = Op.getOperand(0);
11567  SDValue Amt = Op.getOperand(1);
11568
11569  // Optimize shl/srl/sra with constant shift amount.
11570  if (isSplatVector(Amt.getNode())) {
11571    SDValue SclrAmt = Amt->getOperand(0);
11572    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11573      uint64_t ShiftAmt = C->getZExtValue();
11574
11575      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11576          (Subtarget->hasInt256() &&
11577           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11578        if (Op.getOpcode() == ISD::SHL)
11579          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11580                             DAG.getConstant(ShiftAmt, MVT::i32));
11581        if (Op.getOpcode() == ISD::SRL)
11582          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11583                             DAG.getConstant(ShiftAmt, MVT::i32));
11584        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11585          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11586                             DAG.getConstant(ShiftAmt, MVT::i32));
11587      }
11588
11589      if (VT == MVT::v16i8) {
11590        if (Op.getOpcode() == ISD::SHL) {
11591          // Make a large shift.
11592          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11593                                    DAG.getConstant(ShiftAmt, MVT::i32));
11594          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11595          // Zero out the rightmost bits.
11596          SmallVector<SDValue, 16> V(16,
11597                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11598                                                     MVT::i8));
11599          return DAG.getNode(ISD::AND, dl, VT, SHL,
11600                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11601        }
11602        if (Op.getOpcode() == ISD::SRL) {
11603          // Make a large shift.
11604          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11605                                    DAG.getConstant(ShiftAmt, MVT::i32));
11606          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11607          // Zero out the leftmost bits.
11608          SmallVector<SDValue, 16> V(16,
11609                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11610                                                     MVT::i8));
11611          return DAG.getNode(ISD::AND, dl, VT, SRL,
11612                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11613        }
11614        if (Op.getOpcode() == ISD::SRA) {
11615          if (ShiftAmt == 7) {
11616            // R s>> 7  ===  R s< 0
11617            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11618            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11619          }
11620
11621          // R s>> a === ((R u>> a) ^ m) - m
11622          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11623          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11624                                                         MVT::i8));
11625          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11626          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11627          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11628          return Res;
11629        }
11630        llvm_unreachable("Unknown shift opcode.");
11631      }
11632
11633      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11634        if (Op.getOpcode() == ISD::SHL) {
11635          // Make a large shift.
11636          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11637                                    DAG.getConstant(ShiftAmt, MVT::i32));
11638          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11639          // Zero out the rightmost bits.
11640          SmallVector<SDValue, 32> V(32,
11641                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11642                                                     MVT::i8));
11643          return DAG.getNode(ISD::AND, dl, VT, SHL,
11644                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11645        }
11646        if (Op.getOpcode() == ISD::SRL) {
11647          // Make a large shift.
11648          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11649                                    DAG.getConstant(ShiftAmt, MVT::i32));
11650          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11651          // Zero out the leftmost bits.
11652          SmallVector<SDValue, 32> V(32,
11653                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11654                                                     MVT::i8));
11655          return DAG.getNode(ISD::AND, dl, VT, SRL,
11656                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11657        }
11658        if (Op.getOpcode() == ISD::SRA) {
11659          if (ShiftAmt == 7) {
11660            // R s>> 7  ===  R s< 0
11661            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11662            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11663          }
11664
11665          // R s>> a === ((R u>> a) ^ m) - m
11666          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11667          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11668                                                         MVT::i8));
11669          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11670          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11671          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11672          return Res;
11673        }
11674        llvm_unreachable("Unknown shift opcode.");
11675      }
11676    }
11677  }
11678
11679  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11680  if (!Subtarget->is64Bit() &&
11681      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11682      Amt.getOpcode() == ISD::BITCAST &&
11683      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11684    Amt = Amt.getOperand(0);
11685    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11686                     VT.getVectorNumElements();
11687    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
11688    uint64_t ShiftAmt = 0;
11689    for (unsigned i = 0; i != Ratio; ++i) {
11690      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
11691      if (C == 0)
11692        return SDValue();
11693      // 6 == Log2(64)
11694      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
11695    }
11696    // Check remaining shift amounts.
11697    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11698      uint64_t ShAmt = 0;
11699      for (unsigned j = 0; j != Ratio; ++j) {
11700        ConstantSDNode *C =
11701          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
11702        if (C == 0)
11703          return SDValue();
11704        // 6 == Log2(64)
11705        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
11706      }
11707      if (ShAmt != ShiftAmt)
11708        return SDValue();
11709    }
11710    switch (Op.getOpcode()) {
11711    default:
11712      llvm_unreachable("Unknown shift opcode!");
11713    case ISD::SHL:
11714      return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11715                         DAG.getConstant(ShiftAmt, MVT::i32));
11716    case ISD::SRL:
11717      return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11718                         DAG.getConstant(ShiftAmt, MVT::i32));
11719    case ISD::SRA:
11720      return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11721                         DAG.getConstant(ShiftAmt, MVT::i32));
11722    }
11723  }
11724
11725  return SDValue();
11726}
11727
11728static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
11729                                        const X86Subtarget* Subtarget) {
11730  EVT VT = Op.getValueType();
11731  DebugLoc dl = Op.getDebugLoc();
11732  SDValue R = Op.getOperand(0);
11733  SDValue Amt = Op.getOperand(1);
11734
11735  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
11736      VT == MVT::v4i32 || VT == MVT::v8i16 ||
11737      (Subtarget->hasInt256() &&
11738       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
11739        VT == MVT::v8i32 || VT == MVT::v16i16))) {
11740    SDValue BaseShAmt;
11741    EVT EltVT = VT.getVectorElementType();
11742
11743    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11744      unsigned NumElts = VT.getVectorNumElements();
11745      unsigned i, j;
11746      for (i = 0; i != NumElts; ++i) {
11747        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
11748          continue;
11749        break;
11750      }
11751      for (j = i; j != NumElts; ++j) {
11752        SDValue Arg = Amt.getOperand(j);
11753        if (Arg.getOpcode() == ISD::UNDEF) continue;
11754        if (Arg != Amt.getOperand(i))
11755          break;
11756      }
11757      if (i != NumElts && j == NumElts)
11758        BaseShAmt = Amt.getOperand(i);
11759    } else {
11760      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11761        Amt = Amt.getOperand(0);
11762      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
11763               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
11764        SDValue InVec = Amt.getOperand(0);
11765        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11766          unsigned NumElts = InVec.getValueType().getVectorNumElements();
11767          unsigned i = 0;
11768          for (; i != NumElts; ++i) {
11769            SDValue Arg = InVec.getOperand(i);
11770            if (Arg.getOpcode() == ISD::UNDEF) continue;
11771            BaseShAmt = Arg;
11772            break;
11773          }
11774        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11775           if (ConstantSDNode *C =
11776               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11777             unsigned SplatIdx =
11778               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
11779             if (C->getZExtValue() == SplatIdx)
11780               BaseShAmt = InVec.getOperand(1);
11781           }
11782        }
11783        if (BaseShAmt.getNode() == 0)
11784          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
11785                                  DAG.getIntPtrConstant(0));
11786      }
11787    }
11788
11789    if (BaseShAmt.getNode()) {
11790      if (EltVT.bitsGT(MVT::i32))
11791        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
11792      else if (EltVT.bitsLT(MVT::i32))
11793        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
11794
11795      switch (Op.getOpcode()) {
11796      default:
11797        llvm_unreachable("Unknown shift opcode!");
11798      case ISD::SHL:
11799        switch (VT.getSimpleVT().SimpleTy) {
11800        default: return SDValue();
11801        case MVT::v2i64:
11802        case MVT::v4i32:
11803        case MVT::v8i16:
11804        case MVT::v4i64:
11805        case MVT::v8i32:
11806        case MVT::v16i16:
11807          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
11808        }
11809      case ISD::SRA:
11810        switch (VT.getSimpleVT().SimpleTy) {
11811        default: return SDValue();
11812        case MVT::v4i32:
11813        case MVT::v8i16:
11814        case MVT::v8i32:
11815        case MVT::v16i16:
11816          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
11817        }
11818      case ISD::SRL:
11819        switch (VT.getSimpleVT().SimpleTy) {
11820        default: return SDValue();
11821        case MVT::v2i64:
11822        case MVT::v4i32:
11823        case MVT::v8i16:
11824        case MVT::v4i64:
11825        case MVT::v8i32:
11826        case MVT::v16i16:
11827          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
11828        }
11829      }
11830    }
11831  }
11832
11833  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11834  if (!Subtarget->is64Bit() &&
11835      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11836      Amt.getOpcode() == ISD::BITCAST &&
11837      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11838    Amt = Amt.getOperand(0);
11839    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11840                     VT.getVectorNumElements();
11841    std::vector<SDValue> Vals(Ratio);
11842    for (unsigned i = 0; i != Ratio; ++i)
11843      Vals[i] = Amt.getOperand(i);
11844    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11845      for (unsigned j = 0; j != Ratio; ++j)
11846        if (Vals[j] != Amt.getOperand(i + j))
11847          return SDValue();
11848    }
11849    switch (Op.getOpcode()) {
11850    default:
11851      llvm_unreachable("Unknown shift opcode!");
11852    case ISD::SHL:
11853      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
11854    case ISD::SRL:
11855      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
11856    case ISD::SRA:
11857      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
11858    }
11859  }
11860
11861  return SDValue();
11862}
11863
11864SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11865
11866  EVT VT = Op.getValueType();
11867  DebugLoc dl = Op.getDebugLoc();
11868  SDValue R = Op.getOperand(0);
11869  SDValue Amt = Op.getOperand(1);
11870  SDValue V;
11871
11872  if (!Subtarget->hasSSE2())
11873    return SDValue();
11874
11875  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
11876  if (V.getNode())
11877    return V;
11878
11879  V = LowerScalarVariableShift(Op, DAG, Subtarget);
11880  if (V.getNode())
11881      return V;
11882
11883  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
11884  if (Subtarget->hasInt256()) {
11885    if (Op.getOpcode() == ISD::SRL &&
11886        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11887         VT == MVT::v4i64 || VT == MVT::v8i32))
11888      return Op;
11889    if (Op.getOpcode() == ISD::SHL &&
11890        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11891         VT == MVT::v4i64 || VT == MVT::v8i32))
11892      return Op;
11893    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
11894      return Op;
11895  }
11896
11897  // Lower SHL with variable shift amount.
11898  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11899    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
11900
11901    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
11902    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11903    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11904    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11905  }
11906  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11907    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11908
11909    // a = a << 5;
11910    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
11911    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11912
11913    // Turn 'a' into a mask suitable for VSELECT
11914    SDValue VSelM = DAG.getConstant(0x80, VT);
11915    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11916    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11917
11918    SDValue CM1 = DAG.getConstant(0x0f, VT);
11919    SDValue CM2 = DAG.getConstant(0x3f, VT);
11920
11921    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11922    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11923    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11924                            DAG.getConstant(4, MVT::i32), DAG);
11925    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11926    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11927
11928    // a += a
11929    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11930    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11931    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11932
11933    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11934    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11935    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11936                            DAG.getConstant(2, MVT::i32), DAG);
11937    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11938    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11939
11940    // a += a
11941    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11942    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11943    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11944
11945    // return VSELECT(r, r+r, a);
11946    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11947                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11948    return R;
11949  }
11950
11951  // Decompose 256-bit shifts into smaller 128-bit shifts.
11952  if (VT.is256BitVector()) {
11953    unsigned NumElems = VT.getVectorNumElements();
11954    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11955    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11956
11957    // Extract the two vectors
11958    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11959    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11960
11961    // Recreate the shift amount vectors
11962    SDValue Amt1, Amt2;
11963    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11964      // Constant shift amount
11965      SmallVector<SDValue, 4> Amt1Csts;
11966      SmallVector<SDValue, 4> Amt2Csts;
11967      for (unsigned i = 0; i != NumElems/2; ++i)
11968        Amt1Csts.push_back(Amt->getOperand(i));
11969      for (unsigned i = NumElems/2; i != NumElems; ++i)
11970        Amt2Csts.push_back(Amt->getOperand(i));
11971
11972      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11973                                 &Amt1Csts[0], NumElems/2);
11974      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11975                                 &Amt2Csts[0], NumElems/2);
11976    } else {
11977      // Variable shift amount
11978      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11979      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11980    }
11981
11982    // Issue new vector shifts for the smaller types
11983    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11984    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11985
11986    // Concatenate the result back
11987    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11988  }
11989
11990  return SDValue();
11991}
11992
11993static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11994  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11995  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11996  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11997  // has only one use.
11998  SDNode *N = Op.getNode();
11999  SDValue LHS = N->getOperand(0);
12000  SDValue RHS = N->getOperand(1);
12001  unsigned BaseOp = 0;
12002  unsigned Cond = 0;
12003  DebugLoc DL = Op.getDebugLoc();
12004  switch (Op.getOpcode()) {
12005  default: llvm_unreachable("Unknown ovf instruction!");
12006  case ISD::SADDO:
12007    // A subtract of one will be selected as a INC. Note that INC doesn't
12008    // set CF, so we can't do this for UADDO.
12009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12010      if (C->isOne()) {
12011        BaseOp = X86ISD::INC;
12012        Cond = X86::COND_O;
12013        break;
12014      }
12015    BaseOp = X86ISD::ADD;
12016    Cond = X86::COND_O;
12017    break;
12018  case ISD::UADDO:
12019    BaseOp = X86ISD::ADD;
12020    Cond = X86::COND_B;
12021    break;
12022  case ISD::SSUBO:
12023    // A subtract of one will be selected as a DEC. Note that DEC doesn't
12024    // set CF, so we can't do this for USUBO.
12025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12026      if (C->isOne()) {
12027        BaseOp = X86ISD::DEC;
12028        Cond = X86::COND_O;
12029        break;
12030      }
12031    BaseOp = X86ISD::SUB;
12032    Cond = X86::COND_O;
12033    break;
12034  case ISD::USUBO:
12035    BaseOp = X86ISD::SUB;
12036    Cond = X86::COND_B;
12037    break;
12038  case ISD::SMULO:
12039    BaseOp = X86ISD::SMUL;
12040    Cond = X86::COND_O;
12041    break;
12042  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
12043    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
12044                                 MVT::i32);
12045    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
12046
12047    SDValue SetCC =
12048      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12049                  DAG.getConstant(X86::COND_O, MVT::i32),
12050                  SDValue(Sum.getNode(), 2));
12051
12052    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12053  }
12054  }
12055
12056  // Also sets EFLAGS.
12057  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
12058  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
12059
12060  SDValue SetCC =
12061    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
12062                DAG.getConstant(Cond, MVT::i32),
12063                SDValue(Sum.getNode(), 1));
12064
12065  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12066}
12067
12068SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
12069                                                  SelectionDAG &DAG) const {
12070  DebugLoc dl = Op.getDebugLoc();
12071  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
12072  EVT VT = Op.getValueType();
12073
12074  if (!Subtarget->hasSSE2() || !VT.isVector())
12075    return SDValue();
12076
12077  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
12078                      ExtraVT.getScalarType().getSizeInBits();
12079  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
12080
12081  switch (VT.getSimpleVT().SimpleTy) {
12082    default: return SDValue();
12083    case MVT::v8i32:
12084    case MVT::v16i16:
12085      if (!Subtarget->hasFp256())
12086        return SDValue();
12087      if (!Subtarget->hasInt256()) {
12088        // needs to be split
12089        unsigned NumElems = VT.getVectorNumElements();
12090
12091        // Extract the LHS vectors
12092        SDValue LHS = Op.getOperand(0);
12093        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12094        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12095
12096        MVT EltVT = VT.getVectorElementType().getSimpleVT();
12097        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12098
12099        EVT ExtraEltVT = ExtraVT.getVectorElementType();
12100        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
12101        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
12102                                   ExtraNumElems/2);
12103        SDValue Extra = DAG.getValueType(ExtraVT);
12104
12105        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
12106        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
12107
12108        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
12109      }
12110      // fall through
12111    case MVT::v4i32:
12112    case MVT::v8i16: {
12113      // (sext (vzext x)) -> (vsext x)
12114      SDValue Op0 = Op.getOperand(0);
12115      SDValue Op00 = Op0.getOperand(0);
12116      SDValue Tmp1;
12117      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
12118      if (Op0.getOpcode() == ISD::BITCAST &&
12119          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
12120        Tmp1 = LowerVectorIntExtend(Op00, DAG);
12121      if (Tmp1.getNode()) {
12122        SDValue Tmp1Op0 = Tmp1.getOperand(0);
12123        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
12124               "This optimization is invalid without a VZEXT.");
12125        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
12126      }
12127
12128      // If the above didn't work, then just use Shift-Left + Shift-Right.
12129      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
12130      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
12131    }
12132  }
12133}
12134
12135static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
12136                                 SelectionDAG &DAG) {
12137  DebugLoc dl = Op.getDebugLoc();
12138  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
12139    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
12140  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
12141    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
12142
12143  // The only fence that needs an instruction is a sequentially-consistent
12144  // cross-thread fence.
12145  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
12146    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
12147    // no-sse2). There isn't any reason to disable it if the target processor
12148    // supports it.
12149    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
12150      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
12151
12152    SDValue Chain = Op.getOperand(0);
12153    SDValue Zero = DAG.getConstant(0, MVT::i32);
12154    SDValue Ops[] = {
12155      DAG.getRegister(X86::ESP, MVT::i32), // Base
12156      DAG.getTargetConstant(1, MVT::i8),   // Scale
12157      DAG.getRegister(0, MVT::i32),        // Index
12158      DAG.getTargetConstant(0, MVT::i32),  // Disp
12159      DAG.getRegister(0, MVT::i32),        // Segment.
12160      Zero,
12161      Chain
12162    };
12163    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
12164    return SDValue(Res, 0);
12165  }
12166
12167  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
12168  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
12169}
12170
12171static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
12172                             SelectionDAG &DAG) {
12173  EVT T = Op.getValueType();
12174  DebugLoc DL = Op.getDebugLoc();
12175  unsigned Reg = 0;
12176  unsigned size = 0;
12177  switch(T.getSimpleVT().SimpleTy) {
12178  default: llvm_unreachable("Invalid value type!");
12179  case MVT::i8:  Reg = X86::AL;  size = 1; break;
12180  case MVT::i16: Reg = X86::AX;  size = 2; break;
12181  case MVT::i32: Reg = X86::EAX; size = 4; break;
12182  case MVT::i64:
12183    assert(Subtarget->is64Bit() && "Node not type legal!");
12184    Reg = X86::RAX; size = 8;
12185    break;
12186  }
12187  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
12188                                    Op.getOperand(2), SDValue());
12189  SDValue Ops[] = { cpIn.getValue(0),
12190                    Op.getOperand(1),
12191                    Op.getOperand(3),
12192                    DAG.getTargetConstant(size, MVT::i8),
12193                    cpIn.getValue(1) };
12194  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12195  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
12196  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
12197                                           Ops, array_lengthof(Ops), T, MMO);
12198  SDValue cpOut =
12199    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
12200  return cpOut;
12201}
12202
12203static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
12204                                     SelectionDAG &DAG) {
12205  assert(Subtarget->is64Bit() && "Result not type legalized?");
12206  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12207  SDValue TheChain = Op.getOperand(0);
12208  DebugLoc dl = Op.getDebugLoc();
12209  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12210  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
12211  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
12212                                   rax.getValue(2));
12213  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
12214                            DAG.getConstant(32, MVT::i8));
12215  SDValue Ops[] = {
12216    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
12217    rdx.getValue(1)
12218  };
12219  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
12220}
12221
12222SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
12223  EVT SrcVT = Op.getOperand(0).getValueType();
12224  EVT DstVT = Op.getValueType();
12225  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
12226         Subtarget->hasMMX() && "Unexpected custom BITCAST");
12227  assert((DstVT == MVT::i64 ||
12228          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
12229         "Unexpected custom BITCAST");
12230  // i64 <=> MMX conversions are Legal.
12231  if (SrcVT==MVT::i64 && DstVT.isVector())
12232    return Op;
12233  if (DstVT==MVT::i64 && SrcVT.isVector())
12234    return Op;
12235  // MMX <=> MMX conversions are Legal.
12236  if (SrcVT.isVector() && DstVT.isVector())
12237    return Op;
12238  // All other conversions need to be expanded.
12239  return SDValue();
12240}
12241
12242static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
12243  SDNode *Node = Op.getNode();
12244  DebugLoc dl = Node->getDebugLoc();
12245  EVT T = Node->getValueType(0);
12246  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
12247                              DAG.getConstant(0, T), Node->getOperand(2));
12248  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
12249                       cast<AtomicSDNode>(Node)->getMemoryVT(),
12250                       Node->getOperand(0),
12251                       Node->getOperand(1), negOp,
12252                       cast<AtomicSDNode>(Node)->getSrcValue(),
12253                       cast<AtomicSDNode>(Node)->getAlignment(),
12254                       cast<AtomicSDNode>(Node)->getOrdering(),
12255                       cast<AtomicSDNode>(Node)->getSynchScope());
12256}
12257
12258static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12259  SDNode *Node = Op.getNode();
12260  DebugLoc dl = Node->getDebugLoc();
12261  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12262
12263  // Convert seq_cst store -> xchg
12264  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12265  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12266  //        (The only way to get a 16-byte store is cmpxchg16b)
12267  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12268  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12269      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12270    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12271                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12272                                 Node->getOperand(0),
12273                                 Node->getOperand(1), Node->getOperand(2),
12274                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12275                                 cast<AtomicSDNode>(Node)->getOrdering(),
12276                                 cast<AtomicSDNode>(Node)->getSynchScope());
12277    return Swap.getValue(1);
12278  }
12279  // Other atomic stores have a simple pattern.
12280  return Op;
12281}
12282
12283static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12284  EVT VT = Op.getNode()->getValueType(0);
12285
12286  // Let legalize expand this if it isn't a legal type yet.
12287  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12288    return SDValue();
12289
12290  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12291
12292  unsigned Opc;
12293  bool ExtraOp = false;
12294  switch (Op.getOpcode()) {
12295  default: llvm_unreachable("Invalid code");
12296  case ISD::ADDC: Opc = X86ISD::ADD; break;
12297  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12298  case ISD::SUBC: Opc = X86ISD::SUB; break;
12299  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12300  }
12301
12302  if (!ExtraOp)
12303    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12304                       Op.getOperand(1));
12305  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12306                     Op.getOperand(1), Op.getOperand(2));
12307}
12308
12309SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
12310  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12311
12312  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
12313  // which returns the values as { float, float } (in XMM0) or
12314  // { double, double } (which is returned in XMM0, XMM1).
12315  DebugLoc dl = Op.getDebugLoc();
12316  SDValue Arg = Op.getOperand(0);
12317  EVT ArgVT = Arg.getValueType();
12318  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
12319
12320  ArgListTy Args;
12321  ArgListEntry Entry;
12322
12323  Entry.Node = Arg;
12324  Entry.Ty = ArgTy;
12325  Entry.isSExt = false;
12326  Entry.isZExt = false;
12327  Args.push_back(Entry);
12328
12329  bool isF64 = ArgVT == MVT::f64;
12330  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
12331  // the small struct {f32, f32} is returned in (eax, edx). For f64,
12332  // the results are returned via SRet in memory.
12333  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
12334  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
12335
12336  Type *RetTy = isF64
12337    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
12338    : (Type*)VectorType::get(ArgTy, 4);
12339  TargetLowering::
12340    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
12341                         false, false, false, false, 0,
12342                         CallingConv::C, /*isTaillCall=*/false,
12343                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
12344                         Callee, Args, DAG, dl);
12345  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12346
12347  if (isF64)
12348    // Returned in xmm0 and xmm1.
12349    return CallResult.first;
12350
12351  // Returned in bits 0:31 and 32:64 xmm0.
12352  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
12353                               CallResult.first, DAG.getIntPtrConstant(0));
12354  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
12355                               CallResult.first, DAG.getIntPtrConstant(1));
12356  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
12357  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
12358}
12359
12360/// LowerOperation - Provide custom lowering hooks for some operations.
12361///
12362SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12363  switch (Op.getOpcode()) {
12364  default: llvm_unreachable("Should not custom lower this!");
12365  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12366  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12367  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12368  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12369  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12370  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12371  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12372  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12373  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12374  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12375  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12376  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12377  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12378  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12379  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12380  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12381  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12382  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12383  case ISD::SHL_PARTS:
12384  case ISD::SRA_PARTS:
12385  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12386  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12387  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12388  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
12389  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12390  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12391  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12392  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12393  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12394  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
12395  case ISD::FABS:               return LowerFABS(Op, DAG);
12396  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12397  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12398  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12399  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12400  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12401  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12402  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12403  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12404  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12405  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12406  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12407  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12408  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12409  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12410  case ISD::FRAME_TO_ARGS_OFFSET:
12411                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12412  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12413  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12414  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12415  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12416  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12417  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12418  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12419  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12420  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12421  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12422  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12423  case ISD::SRA:
12424  case ISD::SRL:
12425  case ISD::SHL:                return LowerShift(Op, DAG);
12426  case ISD::SADDO:
12427  case ISD::UADDO:
12428  case ISD::SSUBO:
12429  case ISD::USUBO:
12430  case ISD::SMULO:
12431  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12432  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12433  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12434  case ISD::ADDC:
12435  case ISD::ADDE:
12436  case ISD::SUBC:
12437  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12438  case ISD::ADD:                return LowerADD(Op, DAG);
12439  case ISD::SUB:                return LowerSUB(Op, DAG);
12440  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12441  case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
12442  }
12443}
12444
12445static void ReplaceATOMIC_LOAD(SDNode *Node,
12446                                  SmallVectorImpl<SDValue> &Results,
12447                                  SelectionDAG &DAG) {
12448  DebugLoc dl = Node->getDebugLoc();
12449  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12450
12451  // Convert wide load -> cmpxchg8b/cmpxchg16b
12452  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12453  //        (The only way to get a 16-byte load is cmpxchg16b)
12454  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12455  SDValue Zero = DAG.getConstant(0, VT);
12456  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12457                               Node->getOperand(0),
12458                               Node->getOperand(1), Zero, Zero,
12459                               cast<AtomicSDNode>(Node)->getMemOperand(),
12460                               cast<AtomicSDNode>(Node)->getOrdering(),
12461                               cast<AtomicSDNode>(Node)->getSynchScope());
12462  Results.push_back(Swap.getValue(0));
12463  Results.push_back(Swap.getValue(1));
12464}
12465
12466static void
12467ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12468                        SelectionDAG &DAG, unsigned NewOp) {
12469  DebugLoc dl = Node->getDebugLoc();
12470  assert (Node->getValueType(0) == MVT::i64 &&
12471          "Only know how to expand i64 atomics");
12472
12473  SDValue Chain = Node->getOperand(0);
12474  SDValue In1 = Node->getOperand(1);
12475  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12476                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12477  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12478                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12479  SDValue Ops[] = { Chain, In1, In2L, In2H };
12480  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12481  SDValue Result =
12482    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
12483                            cast<MemSDNode>(Node)->getMemOperand());
12484  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12485  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12486  Results.push_back(Result.getValue(2));
12487}
12488
12489/// ReplaceNodeResults - Replace a node with an illegal result type
12490/// with a new node built out of custom code.
12491void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12492                                           SmallVectorImpl<SDValue>&Results,
12493                                           SelectionDAG &DAG) const {
12494  DebugLoc dl = N->getDebugLoc();
12495  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12496  switch (N->getOpcode()) {
12497  default:
12498    llvm_unreachable("Do not know how to custom type legalize this operation!");
12499  case ISD::SIGN_EXTEND_INREG:
12500  case ISD::ADDC:
12501  case ISD::ADDE:
12502  case ISD::SUBC:
12503  case ISD::SUBE:
12504    // We don't want to expand or promote these.
12505    return;
12506  case ISD::FP_TO_SINT:
12507  case ISD::FP_TO_UINT: {
12508    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12509
12510    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12511      return;
12512
12513    std::pair<SDValue,SDValue> Vals =
12514        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12515    SDValue FIST = Vals.first, StackSlot = Vals.second;
12516    if (FIST.getNode() != 0) {
12517      EVT VT = N->getValueType(0);
12518      // Return a load from the stack slot.
12519      if (StackSlot.getNode() != 0)
12520        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12521                                      MachinePointerInfo(),
12522                                      false, false, false, 0));
12523      else
12524        Results.push_back(FIST);
12525    }
12526    return;
12527  }
12528  case ISD::UINT_TO_FP: {
12529    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
12530    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
12531        N->getValueType(0) != MVT::v2f32)
12532      return;
12533    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12534                                 N->getOperand(0));
12535    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12536                                     MVT::f64);
12537    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12538    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12539                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12540    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12541    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12542    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12543    return;
12544  }
12545  case ISD::FP_ROUND: {
12546    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12547        return;
12548    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12549    Results.push_back(V);
12550    return;
12551  }
12552  case ISD::READCYCLECOUNTER: {
12553    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12554    SDValue TheChain = N->getOperand(0);
12555    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12556    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12557                                     rd.getValue(1));
12558    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12559                                     eax.getValue(2));
12560    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12561    SDValue Ops[] = { eax, edx };
12562    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
12563                                  array_lengthof(Ops)));
12564    Results.push_back(edx.getValue(1));
12565    return;
12566  }
12567  case ISD::ATOMIC_CMP_SWAP: {
12568    EVT T = N->getValueType(0);
12569    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12570    bool Regs64bit = T == MVT::i128;
12571    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12572    SDValue cpInL, cpInH;
12573    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12574                        DAG.getConstant(0, HalfT));
12575    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12576                        DAG.getConstant(1, HalfT));
12577    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12578                             Regs64bit ? X86::RAX : X86::EAX,
12579                             cpInL, SDValue());
12580    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12581                             Regs64bit ? X86::RDX : X86::EDX,
12582                             cpInH, cpInL.getValue(1));
12583    SDValue swapInL, swapInH;
12584    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12585                          DAG.getConstant(0, HalfT));
12586    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12587                          DAG.getConstant(1, HalfT));
12588    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12589                               Regs64bit ? X86::RBX : X86::EBX,
12590                               swapInL, cpInH.getValue(1));
12591    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12592                               Regs64bit ? X86::RCX : X86::ECX,
12593                               swapInH, swapInL.getValue(1));
12594    SDValue Ops[] = { swapInH.getValue(0),
12595                      N->getOperand(1),
12596                      swapInH.getValue(1) };
12597    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12598    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12599    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12600                                  X86ISD::LCMPXCHG8_DAG;
12601    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12602                                             Ops, array_lengthof(Ops), T, MMO);
12603    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12604                                        Regs64bit ? X86::RAX : X86::EAX,
12605                                        HalfT, Result.getValue(1));
12606    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12607                                        Regs64bit ? X86::RDX : X86::EDX,
12608                                        HalfT, cpOutL.getValue(2));
12609    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12610    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12611    Results.push_back(cpOutH.getValue(1));
12612    return;
12613  }
12614  case ISD::ATOMIC_LOAD_ADD:
12615  case ISD::ATOMIC_LOAD_AND:
12616  case ISD::ATOMIC_LOAD_NAND:
12617  case ISD::ATOMIC_LOAD_OR:
12618  case ISD::ATOMIC_LOAD_SUB:
12619  case ISD::ATOMIC_LOAD_XOR:
12620  case ISD::ATOMIC_LOAD_MAX:
12621  case ISD::ATOMIC_LOAD_MIN:
12622  case ISD::ATOMIC_LOAD_UMAX:
12623  case ISD::ATOMIC_LOAD_UMIN:
12624  case ISD::ATOMIC_SWAP: {
12625    unsigned Opc;
12626    switch (N->getOpcode()) {
12627    default: llvm_unreachable("Unexpected opcode");
12628    case ISD::ATOMIC_LOAD_ADD:
12629      Opc = X86ISD::ATOMADD64_DAG;
12630      break;
12631    case ISD::ATOMIC_LOAD_AND:
12632      Opc = X86ISD::ATOMAND64_DAG;
12633      break;
12634    case ISD::ATOMIC_LOAD_NAND:
12635      Opc = X86ISD::ATOMNAND64_DAG;
12636      break;
12637    case ISD::ATOMIC_LOAD_OR:
12638      Opc = X86ISD::ATOMOR64_DAG;
12639      break;
12640    case ISD::ATOMIC_LOAD_SUB:
12641      Opc = X86ISD::ATOMSUB64_DAG;
12642      break;
12643    case ISD::ATOMIC_LOAD_XOR:
12644      Opc = X86ISD::ATOMXOR64_DAG;
12645      break;
12646    case ISD::ATOMIC_LOAD_MAX:
12647      Opc = X86ISD::ATOMMAX64_DAG;
12648      break;
12649    case ISD::ATOMIC_LOAD_MIN:
12650      Opc = X86ISD::ATOMMIN64_DAG;
12651      break;
12652    case ISD::ATOMIC_LOAD_UMAX:
12653      Opc = X86ISD::ATOMUMAX64_DAG;
12654      break;
12655    case ISD::ATOMIC_LOAD_UMIN:
12656      Opc = X86ISD::ATOMUMIN64_DAG;
12657      break;
12658    case ISD::ATOMIC_SWAP:
12659      Opc = X86ISD::ATOMSWAP64_DAG;
12660      break;
12661    }
12662    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12663    return;
12664  }
12665  case ISD::ATOMIC_LOAD:
12666    ReplaceATOMIC_LOAD(N, Results, DAG);
12667  }
12668}
12669
12670const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12671  switch (Opcode) {
12672  default: return NULL;
12673  case X86ISD::BSF:                return "X86ISD::BSF";
12674  case X86ISD::BSR:                return "X86ISD::BSR";
12675  case X86ISD::SHLD:               return "X86ISD::SHLD";
12676  case X86ISD::SHRD:               return "X86ISD::SHRD";
12677  case X86ISD::FAND:               return "X86ISD::FAND";
12678  case X86ISD::FOR:                return "X86ISD::FOR";
12679  case X86ISD::FXOR:               return "X86ISD::FXOR";
12680  case X86ISD::FSRL:               return "X86ISD::FSRL";
12681  case X86ISD::FILD:               return "X86ISD::FILD";
12682  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12683  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12684  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12685  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12686  case X86ISD::FLD:                return "X86ISD::FLD";
12687  case X86ISD::FST:                return "X86ISD::FST";
12688  case X86ISD::CALL:               return "X86ISD::CALL";
12689  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12690  case X86ISD::BT:                 return "X86ISD::BT";
12691  case X86ISD::CMP:                return "X86ISD::CMP";
12692  case X86ISD::COMI:               return "X86ISD::COMI";
12693  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12694  case X86ISD::SETCC:              return "X86ISD::SETCC";
12695  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12696  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12697  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12698  case X86ISD::CMOV:               return "X86ISD::CMOV";
12699  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12700  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12701  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12702  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12703  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12704  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12705  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12706  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12707  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12708  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12709  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12710  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12711  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12712  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12713  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12714  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12715  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12716  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12717  case X86ISD::HADD:               return "X86ISD::HADD";
12718  case X86ISD::HSUB:               return "X86ISD::HSUB";
12719  case X86ISD::FHADD:              return "X86ISD::FHADD";
12720  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12721  case X86ISD::UMAX:               return "X86ISD::UMAX";
12722  case X86ISD::UMIN:               return "X86ISD::UMIN";
12723  case X86ISD::SMAX:               return "X86ISD::SMAX";
12724  case X86ISD::SMIN:               return "X86ISD::SMIN";
12725  case X86ISD::FMAX:               return "X86ISD::FMAX";
12726  case X86ISD::FMIN:               return "X86ISD::FMIN";
12727  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12728  case X86ISD::FMINC:              return "X86ISD::FMINC";
12729  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12730  case X86ISD::FRCP:               return "X86ISD::FRCP";
12731  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12732  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12733  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12734  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12735  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12736  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12737  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12738  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12739  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12740  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12741  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12742  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12743  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12744  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12745  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12746  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12747  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12748  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12749  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12750  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12751  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12752  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12753  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12754  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12755  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12756  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12757  case X86ISD::VSHL:               return "X86ISD::VSHL";
12758  case X86ISD::VSRL:               return "X86ISD::VSRL";
12759  case X86ISD::VSRA:               return "X86ISD::VSRA";
12760  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12761  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12762  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12763  case X86ISD::CMPP:               return "X86ISD::CMPP";
12764  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12765  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12766  case X86ISD::ADD:                return "X86ISD::ADD";
12767  case X86ISD::SUB:                return "X86ISD::SUB";
12768  case X86ISD::ADC:                return "X86ISD::ADC";
12769  case X86ISD::SBB:                return "X86ISD::SBB";
12770  case X86ISD::SMUL:               return "X86ISD::SMUL";
12771  case X86ISD::UMUL:               return "X86ISD::UMUL";
12772  case X86ISD::INC:                return "X86ISD::INC";
12773  case X86ISD::DEC:                return "X86ISD::DEC";
12774  case X86ISD::OR:                 return "X86ISD::OR";
12775  case X86ISD::XOR:                return "X86ISD::XOR";
12776  case X86ISD::AND:                return "X86ISD::AND";
12777  case X86ISD::BLSI:               return "X86ISD::BLSI";
12778  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12779  case X86ISD::BLSR:               return "X86ISD::BLSR";
12780  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12781  case X86ISD::PTEST:              return "X86ISD::PTEST";
12782  case X86ISD::TESTP:              return "X86ISD::TESTP";
12783  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
12784  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12785  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12786  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12787  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12788  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12789  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12790  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12791  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12792  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12793  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12794  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12795  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12796  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12797  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12798  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12799  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12800  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12801  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12802  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12803  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12804  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12805  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12806  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12807  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12808  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12809  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12810  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12811  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12812  case X86ISD::SAHF:               return "X86ISD::SAHF";
12813  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12814  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
12815  case X86ISD::FMADD:              return "X86ISD::FMADD";
12816  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12817  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12818  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12819  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12820  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12821  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12822  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12823  case X86ISD::XTEST:              return "X86ISD::XTEST";
12824  }
12825}
12826
12827// isLegalAddressingMode - Return true if the addressing mode represented
12828// by AM is legal for this target, for a load/store of the specified type.
12829bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12830                                              Type *Ty) const {
12831  // X86 supports extremely general addressing modes.
12832  CodeModel::Model M = getTargetMachine().getCodeModel();
12833  Reloc::Model R = getTargetMachine().getRelocationModel();
12834
12835  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12836  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12837    return false;
12838
12839  if (AM.BaseGV) {
12840    unsigned GVFlags =
12841      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12842
12843    // If a reference to this global requires an extra load, we can't fold it.
12844    if (isGlobalStubReference(GVFlags))
12845      return false;
12846
12847    // If BaseGV requires a register for the PIC base, we cannot also have a
12848    // BaseReg specified.
12849    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12850      return false;
12851
12852    // If lower 4G is not available, then we must use rip-relative addressing.
12853    if ((M != CodeModel::Small || R != Reloc::Static) &&
12854        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12855      return false;
12856  }
12857
12858  switch (AM.Scale) {
12859  case 0:
12860  case 1:
12861  case 2:
12862  case 4:
12863  case 8:
12864    // These scales always work.
12865    break;
12866  case 3:
12867  case 5:
12868  case 9:
12869    // These scales are formed with basereg+scalereg.  Only accept if there is
12870    // no basereg yet.
12871    if (AM.HasBaseReg)
12872      return false;
12873    break;
12874  default:  // Other stuff never works.
12875    return false;
12876  }
12877
12878  return true;
12879}
12880
12881bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12882  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12883    return false;
12884  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12885  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12886  return NumBits1 > NumBits2;
12887}
12888
12889bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12890  return isInt<32>(Imm);
12891}
12892
12893bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12894  // Can also use sub to handle negated immediates.
12895  return isInt<32>(Imm);
12896}
12897
12898bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12899  if (!VT1.isInteger() || !VT2.isInteger())
12900    return false;
12901  unsigned NumBits1 = VT1.getSizeInBits();
12902  unsigned NumBits2 = VT2.getSizeInBits();
12903  return NumBits1 > NumBits2;
12904}
12905
12906bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12907  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12908  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12909}
12910
12911bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12912  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12913  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12914}
12915
12916bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12917  EVT VT1 = Val.getValueType();
12918  if (isZExtFree(VT1, VT2))
12919    return true;
12920
12921  if (Val.getOpcode() != ISD::LOAD)
12922    return false;
12923
12924  if (!VT1.isSimple() || !VT1.isInteger() ||
12925      !VT2.isSimple() || !VT2.isInteger())
12926    return false;
12927
12928  switch (VT1.getSimpleVT().SimpleTy) {
12929  default: break;
12930  case MVT::i8:
12931  case MVT::i16:
12932  case MVT::i32:
12933    // X86 has 8, 16, and 32-bit zero-extending loads.
12934    return true;
12935  }
12936
12937  return false;
12938}
12939
12940bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12941  // i16 instructions are longer (0x66 prefix) and potentially slower.
12942  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12943}
12944
12945/// isShuffleMaskLegal - Targets can use this to indicate that they only
12946/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12947/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12948/// are assumed to be legal.
12949bool
12950X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12951                                      EVT VT) const {
12952  // Very little shuffling can be done for 64-bit vectors right now.
12953  if (VT.getSizeInBits() == 64)
12954    return false;
12955
12956  // FIXME: pshufb, blends, shifts.
12957  return (VT.getVectorNumElements() == 2 ||
12958          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12959          isMOVLMask(M, VT) ||
12960          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12961          isPSHUFDMask(M, VT) ||
12962          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12963          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12964          isPALIGNRMask(M, VT, Subtarget) ||
12965          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12966          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12967          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12968          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12969}
12970
12971bool
12972X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12973                                          EVT VT) const {
12974  unsigned NumElts = VT.getVectorNumElements();
12975  // FIXME: This collection of masks seems suspect.
12976  if (NumElts == 2)
12977    return true;
12978  if (NumElts == 4 && VT.is128BitVector()) {
12979    return (isMOVLMask(Mask, VT)  ||
12980            isCommutedMOVLMask(Mask, VT, true) ||
12981            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12982            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12983  }
12984  return false;
12985}
12986
12987//===----------------------------------------------------------------------===//
12988//                           X86 Scheduler Hooks
12989//===----------------------------------------------------------------------===//
12990
12991/// Utility function to emit xbegin specifying the start of an RTM region.
12992static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12993                                     const TargetInstrInfo *TII) {
12994  DebugLoc DL = MI->getDebugLoc();
12995
12996  const BasicBlock *BB = MBB->getBasicBlock();
12997  MachineFunction::iterator I = MBB;
12998  ++I;
12999
13000  // For the v = xbegin(), we generate
13001  //
13002  // thisMBB:
13003  //  xbegin sinkMBB
13004  //
13005  // mainMBB:
13006  //  eax = -1
13007  //
13008  // sinkMBB:
13009  //  v = eax
13010
13011  MachineBasicBlock *thisMBB = MBB;
13012  MachineFunction *MF = MBB->getParent();
13013  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13014  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13015  MF->insert(I, mainMBB);
13016  MF->insert(I, sinkMBB);
13017
13018  // Transfer the remainder of BB and its successor edges to sinkMBB.
13019  sinkMBB->splice(sinkMBB->begin(), MBB,
13020                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13021  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13022
13023  // thisMBB:
13024  //  xbegin sinkMBB
13025  //  # fallthrough to mainMBB
13026  //  # abortion to sinkMBB
13027  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
13028  thisMBB->addSuccessor(mainMBB);
13029  thisMBB->addSuccessor(sinkMBB);
13030
13031  // mainMBB:
13032  //  EAX = -1
13033  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
13034  mainMBB->addSuccessor(sinkMBB);
13035
13036  // sinkMBB:
13037  // EAX is live into the sinkMBB
13038  sinkMBB->addLiveIn(X86::EAX);
13039  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13040          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13041    .addReg(X86::EAX);
13042
13043  MI->eraseFromParent();
13044  return sinkMBB;
13045}
13046
13047// Get CMPXCHG opcode for the specified data type.
13048static unsigned getCmpXChgOpcode(EVT VT) {
13049  switch (VT.getSimpleVT().SimpleTy) {
13050  case MVT::i8:  return X86::LCMPXCHG8;
13051  case MVT::i16: return X86::LCMPXCHG16;
13052  case MVT::i32: return X86::LCMPXCHG32;
13053  case MVT::i64: return X86::LCMPXCHG64;
13054  default:
13055    break;
13056  }
13057  llvm_unreachable("Invalid operand size!");
13058}
13059
13060// Get LOAD opcode for the specified data type.
13061static unsigned getLoadOpcode(EVT VT) {
13062  switch (VT.getSimpleVT().SimpleTy) {
13063  case MVT::i8:  return X86::MOV8rm;
13064  case MVT::i16: return X86::MOV16rm;
13065  case MVT::i32: return X86::MOV32rm;
13066  case MVT::i64: return X86::MOV64rm;
13067  default:
13068    break;
13069  }
13070  llvm_unreachable("Invalid operand size!");
13071}
13072
13073// Get opcode of the non-atomic one from the specified atomic instruction.
13074static unsigned getNonAtomicOpcode(unsigned Opc) {
13075  switch (Opc) {
13076  case X86::ATOMAND8:  return X86::AND8rr;
13077  case X86::ATOMAND16: return X86::AND16rr;
13078  case X86::ATOMAND32: return X86::AND32rr;
13079  case X86::ATOMAND64: return X86::AND64rr;
13080  case X86::ATOMOR8:   return X86::OR8rr;
13081  case X86::ATOMOR16:  return X86::OR16rr;
13082  case X86::ATOMOR32:  return X86::OR32rr;
13083  case X86::ATOMOR64:  return X86::OR64rr;
13084  case X86::ATOMXOR8:  return X86::XOR8rr;
13085  case X86::ATOMXOR16: return X86::XOR16rr;
13086  case X86::ATOMXOR32: return X86::XOR32rr;
13087  case X86::ATOMXOR64: return X86::XOR64rr;
13088  }
13089  llvm_unreachable("Unhandled atomic-load-op opcode!");
13090}
13091
13092// Get opcode of the non-atomic one from the specified atomic instruction with
13093// extra opcode.
13094static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
13095                                               unsigned &ExtraOpc) {
13096  switch (Opc) {
13097  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
13098  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
13099  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
13100  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
13101  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
13102  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
13103  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
13104  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
13105  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
13106  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
13107  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
13108  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
13109  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
13110  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
13111  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
13112  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
13113  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
13114  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
13115  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
13116  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
13117  }
13118  llvm_unreachable("Unhandled atomic-load-op opcode!");
13119}
13120
13121// Get opcode of the non-atomic one from the specified atomic instruction for
13122// 64-bit data type on 32-bit target.
13123static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
13124  switch (Opc) {
13125  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
13126  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
13127  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
13128  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
13129  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
13130  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
13131  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
13132  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
13133  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
13134  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
13135  }
13136  llvm_unreachable("Unhandled atomic-load-op opcode!");
13137}
13138
13139// Get opcode of the non-atomic one from the specified atomic instruction for
13140// 64-bit data type on 32-bit target with extra opcode.
13141static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
13142                                                   unsigned &HiOpc,
13143                                                   unsigned &ExtraOpc) {
13144  switch (Opc) {
13145  case X86::ATOMNAND6432:
13146    ExtraOpc = X86::NOT32r;
13147    HiOpc = X86::AND32rr;
13148    return X86::AND32rr;
13149  }
13150  llvm_unreachable("Unhandled atomic-load-op opcode!");
13151}
13152
13153// Get pseudo CMOV opcode from the specified data type.
13154static unsigned getPseudoCMOVOpc(EVT VT) {
13155  switch (VT.getSimpleVT().SimpleTy) {
13156  case MVT::i8:  return X86::CMOV_GR8;
13157  case MVT::i16: return X86::CMOV_GR16;
13158  case MVT::i32: return X86::CMOV_GR32;
13159  default:
13160    break;
13161  }
13162  llvm_unreachable("Unknown CMOV opcode!");
13163}
13164
13165// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
13166// They will be translated into a spin-loop or compare-exchange loop from
13167//
13168//    ...
13169//    dst = atomic-fetch-op MI.addr, MI.val
13170//    ...
13171//
13172// to
13173//
13174//    ...
13175//    t1 = LOAD MI.addr
13176// loop:
13177//    t4 = phi(t1, t3 / loop)
13178//    t2 = OP MI.val, t4
13179//    EAX = t4
13180//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
13181//    t3 = EAX
13182//    JNE loop
13183// sink:
13184//    dst = t3
13185//    ...
13186MachineBasicBlock *
13187X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
13188                                       MachineBasicBlock *MBB) const {
13189  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13190  DebugLoc DL = MI->getDebugLoc();
13191
13192  MachineFunction *MF = MBB->getParent();
13193  MachineRegisterInfo &MRI = MF->getRegInfo();
13194
13195  const BasicBlock *BB = MBB->getBasicBlock();
13196  MachineFunction::iterator I = MBB;
13197  ++I;
13198
13199  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13200         "Unexpected number of operands");
13201
13202  assert(MI->hasOneMemOperand() &&
13203         "Expected atomic-load-op to have one memoperand");
13204
13205  // Memory Reference
13206  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13207  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13208
13209  unsigned DstReg, SrcReg;
13210  unsigned MemOpndSlot;
13211
13212  unsigned CurOp = 0;
13213
13214  DstReg = MI->getOperand(CurOp++).getReg();
13215  MemOpndSlot = CurOp;
13216  CurOp += X86::AddrNumOperands;
13217  SrcReg = MI->getOperand(CurOp++).getReg();
13218
13219  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13220  MVT::SimpleValueType VT = *RC->vt_begin();
13221  unsigned t1 = MRI.createVirtualRegister(RC);
13222  unsigned t2 = MRI.createVirtualRegister(RC);
13223  unsigned t3 = MRI.createVirtualRegister(RC);
13224  unsigned t4 = MRI.createVirtualRegister(RC);
13225  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
13226
13227  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
13228  unsigned LOADOpc = getLoadOpcode(VT);
13229
13230  // For the atomic load-arith operator, we generate
13231  //
13232  //  thisMBB:
13233  //    t1 = LOAD [MI.addr]
13234  //  mainMBB:
13235  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
13236  //    t1 = OP MI.val, EAX
13237  //    EAX = t4
13238  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
13239  //    t3 = EAX
13240  //    JNE mainMBB
13241  //  sinkMBB:
13242  //    dst = t3
13243
13244  MachineBasicBlock *thisMBB = MBB;
13245  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13246  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13247  MF->insert(I, mainMBB);
13248  MF->insert(I, sinkMBB);
13249
13250  MachineInstrBuilder MIB;
13251
13252  // Transfer the remainder of BB and its successor edges to sinkMBB.
13253  sinkMBB->splice(sinkMBB->begin(), MBB,
13254                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13255  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13256
13257  // thisMBB:
13258  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
13259  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13260    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13261    if (NewMO.isReg())
13262      NewMO.setIsKill(false);
13263    MIB.addOperand(NewMO);
13264  }
13265  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13266    unsigned flags = (*MMOI)->getFlags();
13267    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13268    MachineMemOperand *MMO =
13269      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13270                               (*MMOI)->getSize(),
13271                               (*MMOI)->getBaseAlignment(),
13272                               (*MMOI)->getTBAAInfo(),
13273                               (*MMOI)->getRanges());
13274    MIB.addMemOperand(MMO);
13275  }
13276
13277  thisMBB->addSuccessor(mainMBB);
13278
13279  // mainMBB:
13280  MachineBasicBlock *origMainMBB = mainMBB;
13281
13282  // Add a PHI.
13283  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
13284                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13285
13286  unsigned Opc = MI->getOpcode();
13287  switch (Opc) {
13288  default:
13289    llvm_unreachable("Unhandled atomic-load-op opcode!");
13290  case X86::ATOMAND8:
13291  case X86::ATOMAND16:
13292  case X86::ATOMAND32:
13293  case X86::ATOMAND64:
13294  case X86::ATOMOR8:
13295  case X86::ATOMOR16:
13296  case X86::ATOMOR32:
13297  case X86::ATOMOR64:
13298  case X86::ATOMXOR8:
13299  case X86::ATOMXOR16:
13300  case X86::ATOMXOR32:
13301  case X86::ATOMXOR64: {
13302    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
13303    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
13304      .addReg(t4);
13305    break;
13306  }
13307  case X86::ATOMNAND8:
13308  case X86::ATOMNAND16:
13309  case X86::ATOMNAND32:
13310  case X86::ATOMNAND64: {
13311    unsigned Tmp = MRI.createVirtualRegister(RC);
13312    unsigned NOTOpc;
13313    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
13314    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
13315      .addReg(t4);
13316    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
13317    break;
13318  }
13319  case X86::ATOMMAX8:
13320  case X86::ATOMMAX16:
13321  case X86::ATOMMAX32:
13322  case X86::ATOMMAX64:
13323  case X86::ATOMMIN8:
13324  case X86::ATOMMIN16:
13325  case X86::ATOMMIN32:
13326  case X86::ATOMMIN64:
13327  case X86::ATOMUMAX8:
13328  case X86::ATOMUMAX16:
13329  case X86::ATOMUMAX32:
13330  case X86::ATOMUMAX64:
13331  case X86::ATOMUMIN8:
13332  case X86::ATOMUMIN16:
13333  case X86::ATOMUMIN32:
13334  case X86::ATOMUMIN64: {
13335    unsigned CMPOpc;
13336    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
13337
13338    BuildMI(mainMBB, DL, TII->get(CMPOpc))
13339      .addReg(SrcReg)
13340      .addReg(t4);
13341
13342    if (Subtarget->hasCMov()) {
13343      if (VT != MVT::i8) {
13344        // Native support
13345        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
13346          .addReg(SrcReg)
13347          .addReg(t4);
13348      } else {
13349        // Promote i8 to i32 to use CMOV32
13350        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13351        const TargetRegisterClass *RC32 =
13352          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
13353        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
13354        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
13355        unsigned Tmp = MRI.createVirtualRegister(RC32);
13356
13357        unsigned Undef = MRI.createVirtualRegister(RC32);
13358        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
13359
13360        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
13361          .addReg(Undef)
13362          .addReg(SrcReg)
13363          .addImm(X86::sub_8bit);
13364        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
13365          .addReg(Undef)
13366          .addReg(t4)
13367          .addImm(X86::sub_8bit);
13368
13369        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
13370          .addReg(SrcReg32)
13371          .addReg(AccReg32);
13372
13373        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
13374          .addReg(Tmp, 0, X86::sub_8bit);
13375      }
13376    } else {
13377      // Use pseudo select and lower them.
13378      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
13379             "Invalid atomic-load-op transformation!");
13380      unsigned SelOpc = getPseudoCMOVOpc(VT);
13381      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
13382      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
13383      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
13384              .addReg(SrcReg).addReg(t4)
13385              .addImm(CC);
13386      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13387      // Replace the original PHI node as mainMBB is changed after CMOV
13388      // lowering.
13389      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
13390        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13391      Phi->eraseFromParent();
13392    }
13393    break;
13394  }
13395  }
13396
13397  // Copy PhyReg back from virtual register.
13398  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
13399    .addReg(t4);
13400
13401  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13402  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13403    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13404    if (NewMO.isReg())
13405      NewMO.setIsKill(false);
13406    MIB.addOperand(NewMO);
13407  }
13408  MIB.addReg(t2);
13409  MIB.setMemRefs(MMOBegin, MMOEnd);
13410
13411  // Copy PhyReg back to virtual register.
13412  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
13413    .addReg(PhyReg);
13414
13415  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13416
13417  mainMBB->addSuccessor(origMainMBB);
13418  mainMBB->addSuccessor(sinkMBB);
13419
13420  // sinkMBB:
13421  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13422          TII->get(TargetOpcode::COPY), DstReg)
13423    .addReg(t3);
13424
13425  MI->eraseFromParent();
13426  return sinkMBB;
13427}
13428
13429// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13430// instructions. They will be translated into a spin-loop or compare-exchange
13431// loop from
13432//
13433//    ...
13434//    dst = atomic-fetch-op MI.addr, MI.val
13435//    ...
13436//
13437// to
13438//
13439//    ...
13440//    t1L = LOAD [MI.addr + 0]
13441//    t1H = LOAD [MI.addr + 4]
13442// loop:
13443//    t4L = phi(t1L, t3L / loop)
13444//    t4H = phi(t1H, t3H / loop)
13445//    t2L = OP MI.val.lo, t4L
13446//    t2H = OP MI.val.hi, t4H
13447//    EAX = t4L
13448//    EDX = t4H
13449//    EBX = t2L
13450//    ECX = t2H
13451//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13452//    t3L = EAX
13453//    t3H = EDX
13454//    JNE loop
13455// sink:
13456//    dstL = t3L
13457//    dstH = t3H
13458//    ...
13459MachineBasicBlock *
13460X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13461                                           MachineBasicBlock *MBB) const {
13462  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13463  DebugLoc DL = MI->getDebugLoc();
13464
13465  MachineFunction *MF = MBB->getParent();
13466  MachineRegisterInfo &MRI = MF->getRegInfo();
13467
13468  const BasicBlock *BB = MBB->getBasicBlock();
13469  MachineFunction::iterator I = MBB;
13470  ++I;
13471
13472  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
13473         "Unexpected number of operands");
13474
13475  assert(MI->hasOneMemOperand() &&
13476         "Expected atomic-load-op32 to have one memoperand");
13477
13478  // Memory Reference
13479  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13480  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13481
13482  unsigned DstLoReg, DstHiReg;
13483  unsigned SrcLoReg, SrcHiReg;
13484  unsigned MemOpndSlot;
13485
13486  unsigned CurOp = 0;
13487
13488  DstLoReg = MI->getOperand(CurOp++).getReg();
13489  DstHiReg = MI->getOperand(CurOp++).getReg();
13490  MemOpndSlot = CurOp;
13491  CurOp += X86::AddrNumOperands;
13492  SrcLoReg = MI->getOperand(CurOp++).getReg();
13493  SrcHiReg = MI->getOperand(CurOp++).getReg();
13494
13495  const TargetRegisterClass *RC = &X86::GR32RegClass;
13496  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13497
13498  unsigned t1L = MRI.createVirtualRegister(RC);
13499  unsigned t1H = MRI.createVirtualRegister(RC);
13500  unsigned t2L = MRI.createVirtualRegister(RC);
13501  unsigned t2H = MRI.createVirtualRegister(RC);
13502  unsigned t3L = MRI.createVirtualRegister(RC);
13503  unsigned t3H = MRI.createVirtualRegister(RC);
13504  unsigned t4L = MRI.createVirtualRegister(RC);
13505  unsigned t4H = MRI.createVirtualRegister(RC);
13506
13507  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13508  unsigned LOADOpc = X86::MOV32rm;
13509
13510  // For the atomic load-arith operator, we generate
13511  //
13512  //  thisMBB:
13513  //    t1L = LOAD [MI.addr + 0]
13514  //    t1H = LOAD [MI.addr + 4]
13515  //  mainMBB:
13516  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
13517  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
13518  //    t2L = OP MI.val.lo, t4L
13519  //    t2H = OP MI.val.hi, t4H
13520  //    EBX = t2L
13521  //    ECX = t2H
13522  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13523  //    t3L = EAX
13524  //    t3H = EDX
13525  //    JNE loop
13526  //  sinkMBB:
13527  //    dstL = t3L
13528  //    dstH = t3H
13529
13530  MachineBasicBlock *thisMBB = MBB;
13531  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13532  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13533  MF->insert(I, mainMBB);
13534  MF->insert(I, sinkMBB);
13535
13536  MachineInstrBuilder MIB;
13537
13538  // Transfer the remainder of BB and its successor edges to sinkMBB.
13539  sinkMBB->splice(sinkMBB->begin(), MBB,
13540                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13541  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13542
13543  // thisMBB:
13544  // Lo
13545  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
13546  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13547    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13548    if (NewMO.isReg())
13549      NewMO.setIsKill(false);
13550    MIB.addOperand(NewMO);
13551  }
13552  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13553    unsigned flags = (*MMOI)->getFlags();
13554    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13555    MachineMemOperand *MMO =
13556      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13557                               (*MMOI)->getSize(),
13558                               (*MMOI)->getBaseAlignment(),
13559                               (*MMOI)->getTBAAInfo(),
13560                               (*MMOI)->getRanges());
13561    MIB.addMemOperand(MMO);
13562  };
13563  MachineInstr *LowMI = MIB;
13564
13565  // Hi
13566  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
13567  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13568    if (i == X86::AddrDisp) {
13569      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13570    } else {
13571      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13572      if (NewMO.isReg())
13573        NewMO.setIsKill(false);
13574      MIB.addOperand(NewMO);
13575    }
13576  }
13577  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
13578
13579  thisMBB->addSuccessor(mainMBB);
13580
13581  // mainMBB:
13582  MachineBasicBlock *origMainMBB = mainMBB;
13583
13584  // Add PHIs.
13585  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
13586                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13587  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
13588                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13589
13590  unsigned Opc = MI->getOpcode();
13591  switch (Opc) {
13592  default:
13593    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13594  case X86::ATOMAND6432:
13595  case X86::ATOMOR6432:
13596  case X86::ATOMXOR6432:
13597  case X86::ATOMADD6432:
13598  case X86::ATOMSUB6432: {
13599    unsigned HiOpc;
13600    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13601    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
13602      .addReg(SrcLoReg);
13603    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
13604      .addReg(SrcHiReg);
13605    break;
13606  }
13607  case X86::ATOMNAND6432: {
13608    unsigned HiOpc, NOTOpc;
13609    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13610    unsigned TmpL = MRI.createVirtualRegister(RC);
13611    unsigned TmpH = MRI.createVirtualRegister(RC);
13612    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
13613      .addReg(t4L);
13614    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
13615      .addReg(t4H);
13616    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
13617    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
13618    break;
13619  }
13620  case X86::ATOMMAX6432:
13621  case X86::ATOMMIN6432:
13622  case X86::ATOMUMAX6432:
13623  case X86::ATOMUMIN6432: {
13624    unsigned HiOpc;
13625    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13626    unsigned cL = MRI.createVirtualRegister(RC8);
13627    unsigned cH = MRI.createVirtualRegister(RC8);
13628    unsigned cL32 = MRI.createVirtualRegister(RC);
13629    unsigned cH32 = MRI.createVirtualRegister(RC);
13630    unsigned cc = MRI.createVirtualRegister(RC);
13631    // cl := cmp src_lo, lo
13632    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13633      .addReg(SrcLoReg).addReg(t4L);
13634    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13635    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13636    // ch := cmp src_hi, hi
13637    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13638      .addReg(SrcHiReg).addReg(t4H);
13639    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13640    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13641    // cc := if (src_hi == hi) ? cl : ch;
13642    if (Subtarget->hasCMov()) {
13643      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13644        .addReg(cH32).addReg(cL32);
13645    } else {
13646      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13647              .addReg(cH32).addReg(cL32)
13648              .addImm(X86::COND_E);
13649      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13650    }
13651    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13652    if (Subtarget->hasCMov()) {
13653      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
13654        .addReg(SrcLoReg).addReg(t4L);
13655      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
13656        .addReg(SrcHiReg).addReg(t4H);
13657    } else {
13658      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
13659              .addReg(SrcLoReg).addReg(t4L)
13660              .addImm(X86::COND_NE);
13661      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13662      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
13663      // 2nd CMOV lowering.
13664      mainMBB->addLiveIn(X86::EFLAGS);
13665      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
13666              .addReg(SrcHiReg).addReg(t4H)
13667              .addImm(X86::COND_NE);
13668      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13669      // Replace the original PHI node as mainMBB is changed after CMOV
13670      // lowering.
13671      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
13672        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13673      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
13674        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13675      PhiL->eraseFromParent();
13676      PhiH->eraseFromParent();
13677    }
13678    break;
13679  }
13680  case X86::ATOMSWAP6432: {
13681    unsigned HiOpc;
13682    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13683    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
13684    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
13685    break;
13686  }
13687  }
13688
13689  // Copy EDX:EAX back from HiReg:LoReg
13690  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
13691  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
13692  // Copy ECX:EBX from t1H:t1L
13693  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
13694  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
13695
13696  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13697  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13698    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13699    if (NewMO.isReg())
13700      NewMO.setIsKill(false);
13701    MIB.addOperand(NewMO);
13702  }
13703  MIB.setMemRefs(MMOBegin, MMOEnd);
13704
13705  // Copy EDX:EAX back to t3H:t3L
13706  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
13707  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
13708
13709  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13710
13711  mainMBB->addSuccessor(origMainMBB);
13712  mainMBB->addSuccessor(sinkMBB);
13713
13714  // sinkMBB:
13715  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13716          TII->get(TargetOpcode::COPY), DstLoReg)
13717    .addReg(t3L);
13718  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13719          TII->get(TargetOpcode::COPY), DstHiReg)
13720    .addReg(t3H);
13721
13722  MI->eraseFromParent();
13723  return sinkMBB;
13724}
13725
13726// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13727// or XMM0_V32I8 in AVX all of this code can be replaced with that
13728// in the .td file.
13729static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13730                                       const TargetInstrInfo *TII) {
13731  unsigned Opc;
13732  switch (MI->getOpcode()) {
13733  default: llvm_unreachable("illegal opcode!");
13734  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13735  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13736  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13737  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13738  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13739  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13740  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13741  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13742  }
13743
13744  DebugLoc dl = MI->getDebugLoc();
13745  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13746
13747  unsigned NumArgs = MI->getNumOperands();
13748  for (unsigned i = 1; i < NumArgs; ++i) {
13749    MachineOperand &Op = MI->getOperand(i);
13750    if (!(Op.isReg() && Op.isImplicit()))
13751      MIB.addOperand(Op);
13752  }
13753  if (MI->hasOneMemOperand())
13754    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13755
13756  BuildMI(*BB, MI, dl,
13757    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13758    .addReg(X86::XMM0);
13759
13760  MI->eraseFromParent();
13761  return BB;
13762}
13763
13764// FIXME: Custom handling because TableGen doesn't support multiple implicit
13765// defs in an instruction pattern
13766static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13767                                       const TargetInstrInfo *TII) {
13768  unsigned Opc;
13769  switch (MI->getOpcode()) {
13770  default: llvm_unreachable("illegal opcode!");
13771  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13772  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13773  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13774  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13775  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13776  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13777  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13778  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13779  }
13780
13781  DebugLoc dl = MI->getDebugLoc();
13782  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13783
13784  unsigned NumArgs = MI->getNumOperands(); // remove the results
13785  for (unsigned i = 1; i < NumArgs; ++i) {
13786    MachineOperand &Op = MI->getOperand(i);
13787    if (!(Op.isReg() && Op.isImplicit()))
13788      MIB.addOperand(Op);
13789  }
13790  if (MI->hasOneMemOperand())
13791    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13792
13793  BuildMI(*BB, MI, dl,
13794    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13795    .addReg(X86::ECX);
13796
13797  MI->eraseFromParent();
13798  return BB;
13799}
13800
13801static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13802                                       const TargetInstrInfo *TII,
13803                                       const X86Subtarget* Subtarget) {
13804  DebugLoc dl = MI->getDebugLoc();
13805
13806  // Address into RAX/EAX, other two args into ECX, EDX.
13807  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13808  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13809  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13810  for (int i = 0; i < X86::AddrNumOperands; ++i)
13811    MIB.addOperand(MI->getOperand(i));
13812
13813  unsigned ValOps = X86::AddrNumOperands;
13814  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13815    .addReg(MI->getOperand(ValOps).getReg());
13816  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13817    .addReg(MI->getOperand(ValOps+1).getReg());
13818
13819  // The instruction doesn't actually take any operands though.
13820  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13821
13822  MI->eraseFromParent(); // The pseudo is gone now.
13823  return BB;
13824}
13825
13826MachineBasicBlock *
13827X86TargetLowering::EmitVAARG64WithCustomInserter(
13828                   MachineInstr *MI,
13829                   MachineBasicBlock *MBB) const {
13830  // Emit va_arg instruction on X86-64.
13831
13832  // Operands to this pseudo-instruction:
13833  // 0  ) Output        : destination address (reg)
13834  // 1-5) Input         : va_list address (addr, i64mem)
13835  // 6  ) ArgSize       : Size (in bytes) of vararg type
13836  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13837  // 8  ) Align         : Alignment of type
13838  // 9  ) EFLAGS (implicit-def)
13839
13840  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13841  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13842
13843  unsigned DestReg = MI->getOperand(0).getReg();
13844  MachineOperand &Base = MI->getOperand(1);
13845  MachineOperand &Scale = MI->getOperand(2);
13846  MachineOperand &Index = MI->getOperand(3);
13847  MachineOperand &Disp = MI->getOperand(4);
13848  MachineOperand &Segment = MI->getOperand(5);
13849  unsigned ArgSize = MI->getOperand(6).getImm();
13850  unsigned ArgMode = MI->getOperand(7).getImm();
13851  unsigned Align = MI->getOperand(8).getImm();
13852
13853  // Memory Reference
13854  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13855  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13856  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13857
13858  // Machine Information
13859  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13860  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13861  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13862  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13863  DebugLoc DL = MI->getDebugLoc();
13864
13865  // struct va_list {
13866  //   i32   gp_offset
13867  //   i32   fp_offset
13868  //   i64   overflow_area (address)
13869  //   i64   reg_save_area (address)
13870  // }
13871  // sizeof(va_list) = 24
13872  // alignment(va_list) = 8
13873
13874  unsigned TotalNumIntRegs = 6;
13875  unsigned TotalNumXMMRegs = 8;
13876  bool UseGPOffset = (ArgMode == 1);
13877  bool UseFPOffset = (ArgMode == 2);
13878  unsigned MaxOffset = TotalNumIntRegs * 8 +
13879                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13880
13881  /* Align ArgSize to a multiple of 8 */
13882  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13883  bool NeedsAlign = (Align > 8);
13884
13885  MachineBasicBlock *thisMBB = MBB;
13886  MachineBasicBlock *overflowMBB;
13887  MachineBasicBlock *offsetMBB;
13888  MachineBasicBlock *endMBB;
13889
13890  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13891  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13892  unsigned OffsetReg = 0;
13893
13894  if (!UseGPOffset && !UseFPOffset) {
13895    // If we only pull from the overflow region, we don't create a branch.
13896    // We don't need to alter control flow.
13897    OffsetDestReg = 0; // unused
13898    OverflowDestReg = DestReg;
13899
13900    offsetMBB = NULL;
13901    overflowMBB = thisMBB;
13902    endMBB = thisMBB;
13903  } else {
13904    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13905    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13906    // If not, pull from overflow_area. (branch to overflowMBB)
13907    //
13908    //       thisMBB
13909    //         |     .
13910    //         |        .
13911    //     offsetMBB   overflowMBB
13912    //         |        .
13913    //         |     .
13914    //        endMBB
13915
13916    // Registers for the PHI in endMBB
13917    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13918    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13919
13920    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13921    MachineFunction *MF = MBB->getParent();
13922    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13923    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13924    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13925
13926    MachineFunction::iterator MBBIter = MBB;
13927    ++MBBIter;
13928
13929    // Insert the new basic blocks
13930    MF->insert(MBBIter, offsetMBB);
13931    MF->insert(MBBIter, overflowMBB);
13932    MF->insert(MBBIter, endMBB);
13933
13934    // Transfer the remainder of MBB and its successor edges to endMBB.
13935    endMBB->splice(endMBB->begin(), thisMBB,
13936                    llvm::next(MachineBasicBlock::iterator(MI)),
13937                    thisMBB->end());
13938    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13939
13940    // Make offsetMBB and overflowMBB successors of thisMBB
13941    thisMBB->addSuccessor(offsetMBB);
13942    thisMBB->addSuccessor(overflowMBB);
13943
13944    // endMBB is a successor of both offsetMBB and overflowMBB
13945    offsetMBB->addSuccessor(endMBB);
13946    overflowMBB->addSuccessor(endMBB);
13947
13948    // Load the offset value into a register
13949    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13950    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13951      .addOperand(Base)
13952      .addOperand(Scale)
13953      .addOperand(Index)
13954      .addDisp(Disp, UseFPOffset ? 4 : 0)
13955      .addOperand(Segment)
13956      .setMemRefs(MMOBegin, MMOEnd);
13957
13958    // Check if there is enough room left to pull this argument.
13959    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13960      .addReg(OffsetReg)
13961      .addImm(MaxOffset + 8 - ArgSizeA8);
13962
13963    // Branch to "overflowMBB" if offset >= max
13964    // Fall through to "offsetMBB" otherwise
13965    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13966      .addMBB(overflowMBB);
13967  }
13968
13969  // In offsetMBB, emit code to use the reg_save_area.
13970  if (offsetMBB) {
13971    assert(OffsetReg != 0);
13972
13973    // Read the reg_save_area address.
13974    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13975    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13976      .addOperand(Base)
13977      .addOperand(Scale)
13978      .addOperand(Index)
13979      .addDisp(Disp, 16)
13980      .addOperand(Segment)
13981      .setMemRefs(MMOBegin, MMOEnd);
13982
13983    // Zero-extend the offset
13984    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13985      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13986        .addImm(0)
13987        .addReg(OffsetReg)
13988        .addImm(X86::sub_32bit);
13989
13990    // Add the offset to the reg_save_area to get the final address.
13991    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13992      .addReg(OffsetReg64)
13993      .addReg(RegSaveReg);
13994
13995    // Compute the offset for the next argument
13996    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13997    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13998      .addReg(OffsetReg)
13999      .addImm(UseFPOffset ? 16 : 8);
14000
14001    // Store it back into the va_list.
14002    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
14003      .addOperand(Base)
14004      .addOperand(Scale)
14005      .addOperand(Index)
14006      .addDisp(Disp, UseFPOffset ? 4 : 0)
14007      .addOperand(Segment)
14008      .addReg(NextOffsetReg)
14009      .setMemRefs(MMOBegin, MMOEnd);
14010
14011    // Jump to endMBB
14012    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
14013      .addMBB(endMBB);
14014  }
14015
14016  //
14017  // Emit code to use overflow area
14018  //
14019
14020  // Load the overflow_area address into a register.
14021  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
14022  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
14023    .addOperand(Base)
14024    .addOperand(Scale)
14025    .addOperand(Index)
14026    .addDisp(Disp, 8)
14027    .addOperand(Segment)
14028    .setMemRefs(MMOBegin, MMOEnd);
14029
14030  // If we need to align it, do so. Otherwise, just copy the address
14031  // to OverflowDestReg.
14032  if (NeedsAlign) {
14033    // Align the overflow address
14034    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
14035    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
14036
14037    // aligned_addr = (addr + (align-1)) & ~(align-1)
14038    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
14039      .addReg(OverflowAddrReg)
14040      .addImm(Align-1);
14041
14042    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
14043      .addReg(TmpReg)
14044      .addImm(~(uint64_t)(Align-1));
14045  } else {
14046    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
14047      .addReg(OverflowAddrReg);
14048  }
14049
14050  // Compute the next overflow address after this argument.
14051  // (the overflow address should be kept 8-byte aligned)
14052  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
14053  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
14054    .addReg(OverflowDestReg)
14055    .addImm(ArgSizeA8);
14056
14057  // Store the new overflow address.
14058  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
14059    .addOperand(Base)
14060    .addOperand(Scale)
14061    .addOperand(Index)
14062    .addDisp(Disp, 8)
14063    .addOperand(Segment)
14064    .addReg(NextAddrReg)
14065    .setMemRefs(MMOBegin, MMOEnd);
14066
14067  // If we branched, emit the PHI to the front of endMBB.
14068  if (offsetMBB) {
14069    BuildMI(*endMBB, endMBB->begin(), DL,
14070            TII->get(X86::PHI), DestReg)
14071      .addReg(OffsetDestReg).addMBB(offsetMBB)
14072      .addReg(OverflowDestReg).addMBB(overflowMBB);
14073  }
14074
14075  // Erase the pseudo instruction
14076  MI->eraseFromParent();
14077
14078  return endMBB;
14079}
14080
14081MachineBasicBlock *
14082X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
14083                                                 MachineInstr *MI,
14084                                                 MachineBasicBlock *MBB) const {
14085  // Emit code to save XMM registers to the stack. The ABI says that the
14086  // number of registers to save is given in %al, so it's theoretically
14087  // possible to do an indirect jump trick to avoid saving all of them,
14088  // however this code takes a simpler approach and just executes all
14089  // of the stores if %al is non-zero. It's less code, and it's probably
14090  // easier on the hardware branch predictor, and stores aren't all that
14091  // expensive anyway.
14092
14093  // Create the new basic blocks. One block contains all the XMM stores,
14094  // and one block is the final destination regardless of whether any
14095  // stores were performed.
14096  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14097  MachineFunction *F = MBB->getParent();
14098  MachineFunction::iterator MBBIter = MBB;
14099  ++MBBIter;
14100  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
14101  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
14102  F->insert(MBBIter, XMMSaveMBB);
14103  F->insert(MBBIter, EndMBB);
14104
14105  // Transfer the remainder of MBB and its successor edges to EndMBB.
14106  EndMBB->splice(EndMBB->begin(), MBB,
14107                 llvm::next(MachineBasicBlock::iterator(MI)),
14108                 MBB->end());
14109  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
14110
14111  // The original block will now fall through to the XMM save block.
14112  MBB->addSuccessor(XMMSaveMBB);
14113  // The XMMSaveMBB will fall through to the end block.
14114  XMMSaveMBB->addSuccessor(EndMBB);
14115
14116  // Now add the instructions.
14117  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14118  DebugLoc DL = MI->getDebugLoc();
14119
14120  unsigned CountReg = MI->getOperand(0).getReg();
14121  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
14122  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
14123
14124  if (!Subtarget->isTargetWin64()) {
14125    // If %al is 0, branch around the XMM save block.
14126    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
14127    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
14128    MBB->addSuccessor(EndMBB);
14129  }
14130
14131  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
14132  // In the XMM save block, save all the XMM argument registers.
14133  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
14134    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
14135    MachineMemOperand *MMO =
14136      F->getMachineMemOperand(
14137          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
14138        MachineMemOperand::MOStore,
14139        /*Size=*/16, /*Align=*/16);
14140    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
14141      .addFrameIndex(RegSaveFrameIndex)
14142      .addImm(/*Scale=*/1)
14143      .addReg(/*IndexReg=*/0)
14144      .addImm(/*Disp=*/Offset)
14145      .addReg(/*Segment=*/0)
14146      .addReg(MI->getOperand(i).getReg())
14147      .addMemOperand(MMO);
14148  }
14149
14150  MI->eraseFromParent();   // The pseudo instruction is gone now.
14151
14152  return EndMBB;
14153}
14154
14155// The EFLAGS operand of SelectItr might be missing a kill marker
14156// because there were multiple uses of EFLAGS, and ISel didn't know
14157// which to mark. Figure out whether SelectItr should have had a
14158// kill marker, and set it if it should. Returns the correct kill
14159// marker value.
14160static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
14161                                     MachineBasicBlock* BB,
14162                                     const TargetRegisterInfo* TRI) {
14163  // Scan forward through BB for a use/def of EFLAGS.
14164  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
14165  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
14166    const MachineInstr& mi = *miI;
14167    if (mi.readsRegister(X86::EFLAGS))
14168      return false;
14169    if (mi.definesRegister(X86::EFLAGS))
14170      break; // Should have kill-flag - update below.
14171  }
14172
14173  // If we hit the end of the block, check whether EFLAGS is live into a
14174  // successor.
14175  if (miI == BB->end()) {
14176    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
14177                                          sEnd = BB->succ_end();
14178         sItr != sEnd; ++sItr) {
14179      MachineBasicBlock* succ = *sItr;
14180      if (succ->isLiveIn(X86::EFLAGS))
14181        return false;
14182    }
14183  }
14184
14185  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
14186  // out. SelectMI should have a kill flag on EFLAGS.
14187  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
14188  return true;
14189}
14190
14191MachineBasicBlock *
14192X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
14193                                     MachineBasicBlock *BB) const {
14194  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14195  DebugLoc DL = MI->getDebugLoc();
14196
14197  // To "insert" a SELECT_CC instruction, we actually have to insert the
14198  // diamond control-flow pattern.  The incoming instruction knows the
14199  // destination vreg to set, the condition code register to branch on, the
14200  // true/false values to select between, and a branch opcode to use.
14201  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14202  MachineFunction::iterator It = BB;
14203  ++It;
14204
14205  //  thisMBB:
14206  //  ...
14207  //   TrueVal = ...
14208  //   cmpTY ccX, r1, r2
14209  //   bCC copy1MBB
14210  //   fallthrough --> copy0MBB
14211  MachineBasicBlock *thisMBB = BB;
14212  MachineFunction *F = BB->getParent();
14213  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
14214  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
14215  F->insert(It, copy0MBB);
14216  F->insert(It, sinkMBB);
14217
14218  // If the EFLAGS register isn't dead in the terminator, then claim that it's
14219  // live into the sink and copy blocks.
14220  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14221  if (!MI->killsRegister(X86::EFLAGS) &&
14222      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
14223    copy0MBB->addLiveIn(X86::EFLAGS);
14224    sinkMBB->addLiveIn(X86::EFLAGS);
14225  }
14226
14227  // Transfer the remainder of BB and its successor edges to sinkMBB.
14228  sinkMBB->splice(sinkMBB->begin(), BB,
14229                  llvm::next(MachineBasicBlock::iterator(MI)),
14230                  BB->end());
14231  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
14232
14233  // Add the true and fallthrough blocks as its successors.
14234  BB->addSuccessor(copy0MBB);
14235  BB->addSuccessor(sinkMBB);
14236
14237  // Create the conditional branch instruction.
14238  unsigned Opc =
14239    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
14240  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
14241
14242  //  copy0MBB:
14243  //   %FalseValue = ...
14244  //   # fallthrough to sinkMBB
14245  copy0MBB->addSuccessor(sinkMBB);
14246
14247  //  sinkMBB:
14248  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
14249  //  ...
14250  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14251          TII->get(X86::PHI), MI->getOperand(0).getReg())
14252    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
14253    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
14254
14255  MI->eraseFromParent();   // The pseudo instruction is gone now.
14256  return sinkMBB;
14257}
14258
14259MachineBasicBlock *
14260X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
14261                                        bool Is64Bit) const {
14262  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14263  DebugLoc DL = MI->getDebugLoc();
14264  MachineFunction *MF = BB->getParent();
14265  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14266
14267  assert(getTargetMachine().Options.EnableSegmentedStacks);
14268
14269  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
14270  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
14271
14272  // BB:
14273  //  ... [Till the alloca]
14274  // If stacklet is not large enough, jump to mallocMBB
14275  //
14276  // bumpMBB:
14277  //  Allocate by subtracting from RSP
14278  //  Jump to continueMBB
14279  //
14280  // mallocMBB:
14281  //  Allocate by call to runtime
14282  //
14283  // continueMBB:
14284  //  ...
14285  //  [rest of original BB]
14286  //
14287
14288  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14289  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14290  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14291
14292  MachineRegisterInfo &MRI = MF->getRegInfo();
14293  const TargetRegisterClass *AddrRegClass =
14294    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
14295
14296  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14297    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14298    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
14299    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
14300    sizeVReg = MI->getOperand(1).getReg(),
14301    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
14302
14303  MachineFunction::iterator MBBIter = BB;
14304  ++MBBIter;
14305
14306  MF->insert(MBBIter, bumpMBB);
14307  MF->insert(MBBIter, mallocMBB);
14308  MF->insert(MBBIter, continueMBB);
14309
14310  continueMBB->splice(continueMBB->begin(), BB, llvm::next
14311                      (MachineBasicBlock::iterator(MI)), BB->end());
14312  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
14313
14314  // Add code to the main basic block to check if the stack limit has been hit,
14315  // and if so, jump to mallocMBB otherwise to bumpMBB.
14316  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
14317  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
14318    .addReg(tmpSPVReg).addReg(sizeVReg);
14319  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
14320    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
14321    .addReg(SPLimitVReg);
14322  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
14323
14324  // bumpMBB simply decreases the stack pointer, since we know the current
14325  // stacklet has enough space.
14326  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
14327    .addReg(SPLimitVReg);
14328  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
14329    .addReg(SPLimitVReg);
14330  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14331
14332  // Calls into a routine in libgcc to allocate more space from the heap.
14333  const uint32_t *RegMask =
14334    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14335  if (Is64Bit) {
14336    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
14337      .addReg(sizeVReg);
14338    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
14339      .addExternalSymbol("__morestack_allocate_stack_space")
14340      .addRegMask(RegMask)
14341      .addReg(X86::RDI, RegState::Implicit)
14342      .addReg(X86::RAX, RegState::ImplicitDefine);
14343  } else {
14344    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
14345      .addImm(12);
14346    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
14347    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
14348      .addExternalSymbol("__morestack_allocate_stack_space")
14349      .addRegMask(RegMask)
14350      .addReg(X86::EAX, RegState::ImplicitDefine);
14351  }
14352
14353  if (!Is64Bit)
14354    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
14355      .addImm(16);
14356
14357  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
14358    .addReg(Is64Bit ? X86::RAX : X86::EAX);
14359  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14360
14361  // Set up the CFG correctly.
14362  BB->addSuccessor(bumpMBB);
14363  BB->addSuccessor(mallocMBB);
14364  mallocMBB->addSuccessor(continueMBB);
14365  bumpMBB->addSuccessor(continueMBB);
14366
14367  // Take care of the PHI nodes.
14368  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
14369          MI->getOperand(0).getReg())
14370    .addReg(mallocPtrVReg).addMBB(mallocMBB)
14371    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
14372
14373  // Delete the original pseudo instruction.
14374  MI->eraseFromParent();
14375
14376  // And we're done.
14377  return continueMBB;
14378}
14379
14380MachineBasicBlock *
14381X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
14382                                          MachineBasicBlock *BB) const {
14383  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14384  DebugLoc DL = MI->getDebugLoc();
14385
14386  assert(!Subtarget->isTargetEnvMacho());
14387
14388  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
14389  // non-trivial part is impdef of ESP.
14390
14391  if (Subtarget->isTargetWin64()) {
14392    if (Subtarget->isTargetCygMing()) {
14393      // ___chkstk(Mingw64):
14394      // Clobbers R10, R11, RAX and EFLAGS.
14395      // Updates RSP.
14396      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14397        .addExternalSymbol("___chkstk")
14398        .addReg(X86::RAX, RegState::Implicit)
14399        .addReg(X86::RSP, RegState::Implicit)
14400        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
14401        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
14402        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14403    } else {
14404      // __chkstk(MSVCRT): does not update stack pointer.
14405      // Clobbers R10, R11 and EFLAGS.
14406      // FIXME: RAX(allocated size) might be reused and not killed.
14407      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14408        .addExternalSymbol("__chkstk")
14409        .addReg(X86::RAX, RegState::Implicit)
14410        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14411      // RAX has the offset to subtracted from RSP.
14412      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
14413        .addReg(X86::RSP)
14414        .addReg(X86::RAX);
14415    }
14416  } else {
14417    const char *StackProbeSymbol =
14418      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
14419
14420    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
14421      .addExternalSymbol(StackProbeSymbol)
14422      .addReg(X86::EAX, RegState::Implicit)
14423      .addReg(X86::ESP, RegState::Implicit)
14424      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
14425      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
14426      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14427  }
14428
14429  MI->eraseFromParent();   // The pseudo instruction is gone now.
14430  return BB;
14431}
14432
14433MachineBasicBlock *
14434X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
14435                                      MachineBasicBlock *BB) const {
14436  // This is pretty easy.  We're taking the value that we received from
14437  // our load from the relocation, sticking it in either RDI (x86-64)
14438  // or EAX and doing an indirect call.  The return value will then
14439  // be in the normal return register.
14440  const X86InstrInfo *TII
14441    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
14442  DebugLoc DL = MI->getDebugLoc();
14443  MachineFunction *F = BB->getParent();
14444
14445  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
14446  assert(MI->getOperand(3).isGlobal() && "This should be a global");
14447
14448  // Get a register mask for the lowered call.
14449  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
14450  // proper register mask.
14451  const uint32_t *RegMask =
14452    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14453  if (Subtarget->is64Bit()) {
14454    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14455                                      TII->get(X86::MOV64rm), X86::RDI)
14456    .addReg(X86::RIP)
14457    .addImm(0).addReg(0)
14458    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14459                      MI->getOperand(3).getTargetFlags())
14460    .addReg(0);
14461    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14462    addDirectMem(MIB, X86::RDI);
14463    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14464  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14465    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14466                                      TII->get(X86::MOV32rm), X86::EAX)
14467    .addReg(0)
14468    .addImm(0).addReg(0)
14469    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14470                      MI->getOperand(3).getTargetFlags())
14471    .addReg(0);
14472    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14473    addDirectMem(MIB, X86::EAX);
14474    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14475  } else {
14476    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14477                                      TII->get(X86::MOV32rm), X86::EAX)
14478    .addReg(TII->getGlobalBaseReg(F))
14479    .addImm(0).addReg(0)
14480    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14481                      MI->getOperand(3).getTargetFlags())
14482    .addReg(0);
14483    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14484    addDirectMem(MIB, X86::EAX);
14485    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14486  }
14487
14488  MI->eraseFromParent(); // The pseudo instruction is gone now.
14489  return BB;
14490}
14491
14492MachineBasicBlock *
14493X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14494                                    MachineBasicBlock *MBB) const {
14495  DebugLoc DL = MI->getDebugLoc();
14496  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14497
14498  MachineFunction *MF = MBB->getParent();
14499  MachineRegisterInfo &MRI = MF->getRegInfo();
14500
14501  const BasicBlock *BB = MBB->getBasicBlock();
14502  MachineFunction::iterator I = MBB;
14503  ++I;
14504
14505  // Memory Reference
14506  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14507  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14508
14509  unsigned DstReg;
14510  unsigned MemOpndSlot = 0;
14511
14512  unsigned CurOp = 0;
14513
14514  DstReg = MI->getOperand(CurOp++).getReg();
14515  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14516  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14517  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14518  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14519
14520  MemOpndSlot = CurOp;
14521
14522  MVT PVT = getPointerTy();
14523  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14524         "Invalid Pointer Size!");
14525
14526  // For v = setjmp(buf), we generate
14527  //
14528  // thisMBB:
14529  //  buf[LabelOffset] = restoreMBB
14530  //  SjLjSetup restoreMBB
14531  //
14532  // mainMBB:
14533  //  v_main = 0
14534  //
14535  // sinkMBB:
14536  //  v = phi(main, restore)
14537  //
14538  // restoreMBB:
14539  //  v_restore = 1
14540
14541  MachineBasicBlock *thisMBB = MBB;
14542  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14543  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14544  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14545  MF->insert(I, mainMBB);
14546  MF->insert(I, sinkMBB);
14547  MF->push_back(restoreMBB);
14548
14549  MachineInstrBuilder MIB;
14550
14551  // Transfer the remainder of BB and its successor edges to sinkMBB.
14552  sinkMBB->splice(sinkMBB->begin(), MBB,
14553                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14554  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14555
14556  // thisMBB:
14557  unsigned PtrStoreOpc = 0;
14558  unsigned LabelReg = 0;
14559  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14560  Reloc::Model RM = getTargetMachine().getRelocationModel();
14561  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14562                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14563
14564  // Prepare IP either in reg or imm.
14565  if (!UseImmLabel) {
14566    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14567    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14568    LabelReg = MRI.createVirtualRegister(PtrRC);
14569    if (Subtarget->is64Bit()) {
14570      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14571              .addReg(X86::RIP)
14572              .addImm(0)
14573              .addReg(0)
14574              .addMBB(restoreMBB)
14575              .addReg(0);
14576    } else {
14577      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14578      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14579              .addReg(XII->getGlobalBaseReg(MF))
14580              .addImm(0)
14581              .addReg(0)
14582              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14583              .addReg(0);
14584    }
14585  } else
14586    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14587  // Store IP
14588  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14589  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14590    if (i == X86::AddrDisp)
14591      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14592    else
14593      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14594  }
14595  if (!UseImmLabel)
14596    MIB.addReg(LabelReg);
14597  else
14598    MIB.addMBB(restoreMBB);
14599  MIB.setMemRefs(MMOBegin, MMOEnd);
14600  // Setup
14601  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14602          .addMBB(restoreMBB);
14603  MIB.addRegMask(RegInfo->getNoPreservedMask());
14604  thisMBB->addSuccessor(mainMBB);
14605  thisMBB->addSuccessor(restoreMBB);
14606
14607  // mainMBB:
14608  //  EAX = 0
14609  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14610  mainMBB->addSuccessor(sinkMBB);
14611
14612  // sinkMBB:
14613  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14614          TII->get(X86::PHI), DstReg)
14615    .addReg(mainDstReg).addMBB(mainMBB)
14616    .addReg(restoreDstReg).addMBB(restoreMBB);
14617
14618  // restoreMBB:
14619  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14620  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14621  restoreMBB->addSuccessor(sinkMBB);
14622
14623  MI->eraseFromParent();
14624  return sinkMBB;
14625}
14626
14627MachineBasicBlock *
14628X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14629                                     MachineBasicBlock *MBB) const {
14630  DebugLoc DL = MI->getDebugLoc();
14631  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14632
14633  MachineFunction *MF = MBB->getParent();
14634  MachineRegisterInfo &MRI = MF->getRegInfo();
14635
14636  // Memory Reference
14637  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14638  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14639
14640  MVT PVT = getPointerTy();
14641  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14642         "Invalid Pointer Size!");
14643
14644  const TargetRegisterClass *RC =
14645    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14646  unsigned Tmp = MRI.createVirtualRegister(RC);
14647  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14648  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14649  unsigned SP = RegInfo->getStackRegister();
14650
14651  MachineInstrBuilder MIB;
14652
14653  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14654  const int64_t SPOffset = 2 * PVT.getStoreSize();
14655
14656  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14657  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14658
14659  // Reload FP
14660  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14661  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14662    MIB.addOperand(MI->getOperand(i));
14663  MIB.setMemRefs(MMOBegin, MMOEnd);
14664  // Reload IP
14665  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14666  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14667    if (i == X86::AddrDisp)
14668      MIB.addDisp(MI->getOperand(i), LabelOffset);
14669    else
14670      MIB.addOperand(MI->getOperand(i));
14671  }
14672  MIB.setMemRefs(MMOBegin, MMOEnd);
14673  // Reload SP
14674  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14675  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14676    if (i == X86::AddrDisp)
14677      MIB.addDisp(MI->getOperand(i), SPOffset);
14678    else
14679      MIB.addOperand(MI->getOperand(i));
14680  }
14681  MIB.setMemRefs(MMOBegin, MMOEnd);
14682  // Jump
14683  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14684
14685  MI->eraseFromParent();
14686  return MBB;
14687}
14688
14689MachineBasicBlock *
14690X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14691                                               MachineBasicBlock *BB) const {
14692  switch (MI->getOpcode()) {
14693  default: llvm_unreachable("Unexpected instr type to insert");
14694  case X86::TAILJMPd64:
14695  case X86::TAILJMPr64:
14696  case X86::TAILJMPm64:
14697    llvm_unreachable("TAILJMP64 would not be touched here.");
14698  case X86::TCRETURNdi64:
14699  case X86::TCRETURNri64:
14700  case X86::TCRETURNmi64:
14701    return BB;
14702  case X86::WIN_ALLOCA:
14703    return EmitLoweredWinAlloca(MI, BB);
14704  case X86::SEG_ALLOCA_32:
14705    return EmitLoweredSegAlloca(MI, BB, false);
14706  case X86::SEG_ALLOCA_64:
14707    return EmitLoweredSegAlloca(MI, BB, true);
14708  case X86::TLSCall_32:
14709  case X86::TLSCall_64:
14710    return EmitLoweredTLSCall(MI, BB);
14711  case X86::CMOV_GR8:
14712  case X86::CMOV_FR32:
14713  case X86::CMOV_FR64:
14714  case X86::CMOV_V4F32:
14715  case X86::CMOV_V2F64:
14716  case X86::CMOV_V2I64:
14717  case X86::CMOV_V8F32:
14718  case X86::CMOV_V4F64:
14719  case X86::CMOV_V4I64:
14720  case X86::CMOV_GR16:
14721  case X86::CMOV_GR32:
14722  case X86::CMOV_RFP32:
14723  case X86::CMOV_RFP64:
14724  case X86::CMOV_RFP80:
14725    return EmitLoweredSelect(MI, BB);
14726
14727  case X86::FP32_TO_INT16_IN_MEM:
14728  case X86::FP32_TO_INT32_IN_MEM:
14729  case X86::FP32_TO_INT64_IN_MEM:
14730  case X86::FP64_TO_INT16_IN_MEM:
14731  case X86::FP64_TO_INT32_IN_MEM:
14732  case X86::FP64_TO_INT64_IN_MEM:
14733  case X86::FP80_TO_INT16_IN_MEM:
14734  case X86::FP80_TO_INT32_IN_MEM:
14735  case X86::FP80_TO_INT64_IN_MEM: {
14736    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14737    DebugLoc DL = MI->getDebugLoc();
14738
14739    // Change the floating point control register to use "round towards zero"
14740    // mode when truncating to an integer value.
14741    MachineFunction *F = BB->getParent();
14742    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14743    addFrameReference(BuildMI(*BB, MI, DL,
14744                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14745
14746    // Load the old value of the high byte of the control word...
14747    unsigned OldCW =
14748      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14749    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14750                      CWFrameIdx);
14751
14752    // Set the high part to be round to zero...
14753    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14754      .addImm(0xC7F);
14755
14756    // Reload the modified control word now...
14757    addFrameReference(BuildMI(*BB, MI, DL,
14758                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14759
14760    // Restore the memory image of control word to original value
14761    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14762      .addReg(OldCW);
14763
14764    // Get the X86 opcode to use.
14765    unsigned Opc;
14766    switch (MI->getOpcode()) {
14767    default: llvm_unreachable("illegal opcode!");
14768    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14769    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14770    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14771    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14772    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14773    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14774    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14775    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14776    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14777    }
14778
14779    X86AddressMode AM;
14780    MachineOperand &Op = MI->getOperand(0);
14781    if (Op.isReg()) {
14782      AM.BaseType = X86AddressMode::RegBase;
14783      AM.Base.Reg = Op.getReg();
14784    } else {
14785      AM.BaseType = X86AddressMode::FrameIndexBase;
14786      AM.Base.FrameIndex = Op.getIndex();
14787    }
14788    Op = MI->getOperand(1);
14789    if (Op.isImm())
14790      AM.Scale = Op.getImm();
14791    Op = MI->getOperand(2);
14792    if (Op.isImm())
14793      AM.IndexReg = Op.getImm();
14794    Op = MI->getOperand(3);
14795    if (Op.isGlobal()) {
14796      AM.GV = Op.getGlobal();
14797    } else {
14798      AM.Disp = Op.getImm();
14799    }
14800    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14801                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14802
14803    // Reload the original control word now.
14804    addFrameReference(BuildMI(*BB, MI, DL,
14805                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14806
14807    MI->eraseFromParent();   // The pseudo instruction is gone now.
14808    return BB;
14809  }
14810    // String/text processing lowering.
14811  case X86::PCMPISTRM128REG:
14812  case X86::VPCMPISTRM128REG:
14813  case X86::PCMPISTRM128MEM:
14814  case X86::VPCMPISTRM128MEM:
14815  case X86::PCMPESTRM128REG:
14816  case X86::VPCMPESTRM128REG:
14817  case X86::PCMPESTRM128MEM:
14818  case X86::VPCMPESTRM128MEM:
14819    assert(Subtarget->hasSSE42() &&
14820           "Target must have SSE4.2 or AVX features enabled");
14821    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14822
14823  // String/text processing lowering.
14824  case X86::PCMPISTRIREG:
14825  case X86::VPCMPISTRIREG:
14826  case X86::PCMPISTRIMEM:
14827  case X86::VPCMPISTRIMEM:
14828  case X86::PCMPESTRIREG:
14829  case X86::VPCMPESTRIREG:
14830  case X86::PCMPESTRIMEM:
14831  case X86::VPCMPESTRIMEM:
14832    assert(Subtarget->hasSSE42() &&
14833           "Target must have SSE4.2 or AVX features enabled");
14834    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14835
14836  // Thread synchronization.
14837  case X86::MONITOR:
14838    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14839
14840  // xbegin
14841  case X86::XBEGIN:
14842    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14843
14844  // Atomic Lowering.
14845  case X86::ATOMAND8:
14846  case X86::ATOMAND16:
14847  case X86::ATOMAND32:
14848  case X86::ATOMAND64:
14849    // Fall through
14850  case X86::ATOMOR8:
14851  case X86::ATOMOR16:
14852  case X86::ATOMOR32:
14853  case X86::ATOMOR64:
14854    // Fall through
14855  case X86::ATOMXOR16:
14856  case X86::ATOMXOR8:
14857  case X86::ATOMXOR32:
14858  case X86::ATOMXOR64:
14859    // Fall through
14860  case X86::ATOMNAND8:
14861  case X86::ATOMNAND16:
14862  case X86::ATOMNAND32:
14863  case X86::ATOMNAND64:
14864    // Fall through
14865  case X86::ATOMMAX8:
14866  case X86::ATOMMAX16:
14867  case X86::ATOMMAX32:
14868  case X86::ATOMMAX64:
14869    // Fall through
14870  case X86::ATOMMIN8:
14871  case X86::ATOMMIN16:
14872  case X86::ATOMMIN32:
14873  case X86::ATOMMIN64:
14874    // Fall through
14875  case X86::ATOMUMAX8:
14876  case X86::ATOMUMAX16:
14877  case X86::ATOMUMAX32:
14878  case X86::ATOMUMAX64:
14879    // Fall through
14880  case X86::ATOMUMIN8:
14881  case X86::ATOMUMIN16:
14882  case X86::ATOMUMIN32:
14883  case X86::ATOMUMIN64:
14884    return EmitAtomicLoadArith(MI, BB);
14885
14886  // This group does 64-bit operations on a 32-bit host.
14887  case X86::ATOMAND6432:
14888  case X86::ATOMOR6432:
14889  case X86::ATOMXOR6432:
14890  case X86::ATOMNAND6432:
14891  case X86::ATOMADD6432:
14892  case X86::ATOMSUB6432:
14893  case X86::ATOMMAX6432:
14894  case X86::ATOMMIN6432:
14895  case X86::ATOMUMAX6432:
14896  case X86::ATOMUMIN6432:
14897  case X86::ATOMSWAP6432:
14898    return EmitAtomicLoadArith6432(MI, BB);
14899
14900  case X86::VASTART_SAVE_XMM_REGS:
14901    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14902
14903  case X86::VAARG_64:
14904    return EmitVAARG64WithCustomInserter(MI, BB);
14905
14906  case X86::EH_SjLj_SetJmp32:
14907  case X86::EH_SjLj_SetJmp64:
14908    return emitEHSjLjSetJmp(MI, BB);
14909
14910  case X86::EH_SjLj_LongJmp32:
14911  case X86::EH_SjLj_LongJmp64:
14912    return emitEHSjLjLongJmp(MI, BB);
14913  }
14914}
14915
14916//===----------------------------------------------------------------------===//
14917//                           X86 Optimization Hooks
14918//===----------------------------------------------------------------------===//
14919
14920void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14921                                                       APInt &KnownZero,
14922                                                       APInt &KnownOne,
14923                                                       const SelectionDAG &DAG,
14924                                                       unsigned Depth) const {
14925  unsigned BitWidth = KnownZero.getBitWidth();
14926  unsigned Opc = Op.getOpcode();
14927  assert((Opc >= ISD::BUILTIN_OP_END ||
14928          Opc == ISD::INTRINSIC_WO_CHAIN ||
14929          Opc == ISD::INTRINSIC_W_CHAIN ||
14930          Opc == ISD::INTRINSIC_VOID) &&
14931         "Should use MaskedValueIsZero if you don't know whether Op"
14932         " is a target node!");
14933
14934  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14935  switch (Opc) {
14936  default: break;
14937  case X86ISD::ADD:
14938  case X86ISD::SUB:
14939  case X86ISD::ADC:
14940  case X86ISD::SBB:
14941  case X86ISD::SMUL:
14942  case X86ISD::UMUL:
14943  case X86ISD::INC:
14944  case X86ISD::DEC:
14945  case X86ISD::OR:
14946  case X86ISD::XOR:
14947  case X86ISD::AND:
14948    // These nodes' second result is a boolean.
14949    if (Op.getResNo() == 0)
14950      break;
14951    // Fallthrough
14952  case X86ISD::SETCC:
14953    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14954    break;
14955  case ISD::INTRINSIC_WO_CHAIN: {
14956    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14957    unsigned NumLoBits = 0;
14958    switch (IntId) {
14959    default: break;
14960    case Intrinsic::x86_sse_movmsk_ps:
14961    case Intrinsic::x86_avx_movmsk_ps_256:
14962    case Intrinsic::x86_sse2_movmsk_pd:
14963    case Intrinsic::x86_avx_movmsk_pd_256:
14964    case Intrinsic::x86_mmx_pmovmskb:
14965    case Intrinsic::x86_sse2_pmovmskb_128:
14966    case Intrinsic::x86_avx2_pmovmskb: {
14967      // High bits of movmskp{s|d}, pmovmskb are known zero.
14968      switch (IntId) {
14969        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14970        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14971        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14972        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14973        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14974        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14975        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14976        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14977      }
14978      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14979      break;
14980    }
14981    }
14982    break;
14983  }
14984  }
14985}
14986
14987unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14988                                                         unsigned Depth) const {
14989  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14990  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14991    return Op.getValueType().getScalarType().getSizeInBits();
14992
14993  // Fallback case.
14994  return 1;
14995}
14996
14997/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14998/// node is a GlobalAddress + offset.
14999bool X86TargetLowering::isGAPlusOffset(SDNode *N,
15000                                       const GlobalValue* &GA,
15001                                       int64_t &Offset) const {
15002  if (N->getOpcode() == X86ISD::Wrapper) {
15003    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
15004      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
15005      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
15006      return true;
15007    }
15008  }
15009  return TargetLowering::isGAPlusOffset(N, GA, Offset);
15010}
15011
15012/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
15013/// same as extracting the high 128-bit part of 256-bit vector and then
15014/// inserting the result into the low part of a new 256-bit vector
15015static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
15016  EVT VT = SVOp->getValueType(0);
15017  unsigned NumElems = VT.getVectorNumElements();
15018
15019  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15020  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
15021    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15022        SVOp->getMaskElt(j) >= 0)
15023      return false;
15024
15025  return true;
15026}
15027
15028/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
15029/// same as extracting the low 128-bit part of 256-bit vector and then
15030/// inserting the result into the high part of a new 256-bit vector
15031static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
15032  EVT VT = SVOp->getValueType(0);
15033  unsigned NumElems = VT.getVectorNumElements();
15034
15035  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15036  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
15037    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15038        SVOp->getMaskElt(j) >= 0)
15039      return false;
15040
15041  return true;
15042}
15043
15044/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
15045static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
15046                                        TargetLowering::DAGCombinerInfo &DCI,
15047                                        const X86Subtarget* Subtarget) {
15048  DebugLoc dl = N->getDebugLoc();
15049  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
15050  SDValue V1 = SVOp->getOperand(0);
15051  SDValue V2 = SVOp->getOperand(1);
15052  EVT VT = SVOp->getValueType(0);
15053  unsigned NumElems = VT.getVectorNumElements();
15054
15055  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
15056      V2.getOpcode() == ISD::CONCAT_VECTORS) {
15057    //
15058    //                   0,0,0,...
15059    //                      |
15060    //    V      UNDEF    BUILD_VECTOR    UNDEF
15061    //     \      /           \           /
15062    //  CONCAT_VECTOR         CONCAT_VECTOR
15063    //         \                  /
15064    //          \                /
15065    //          RESULT: V + zero extended
15066    //
15067    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
15068        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
15069        V1.getOperand(1).getOpcode() != ISD::UNDEF)
15070      return SDValue();
15071
15072    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
15073      return SDValue();
15074
15075    // To match the shuffle mask, the first half of the mask should
15076    // be exactly the first vector, and all the rest a splat with the
15077    // first element of the second one.
15078    for (unsigned i = 0; i != NumElems/2; ++i)
15079      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
15080          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
15081        return SDValue();
15082
15083    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
15084    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
15085      if (Ld->hasNUsesOfValue(1, 0)) {
15086        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
15087        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
15088        SDValue ResNode =
15089          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
15090                                  array_lengthof(Ops),
15091                                  Ld->getMemoryVT(),
15092                                  Ld->getPointerInfo(),
15093                                  Ld->getAlignment(),
15094                                  false/*isVolatile*/, true/*ReadMem*/,
15095                                  false/*WriteMem*/);
15096
15097        // Make sure the newly-created LOAD is in the same position as Ld in
15098        // terms of dependency. We create a TokenFactor for Ld and ResNode,
15099        // and update uses of Ld's output chain to use the TokenFactor.
15100        if (Ld->hasAnyUseOfValue(1)) {
15101          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15102                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
15103          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
15104          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
15105                                 SDValue(ResNode.getNode(), 1));
15106        }
15107
15108        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
15109      }
15110    }
15111
15112    // Emit a zeroed vector and insert the desired subvector on its
15113    // first half.
15114    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15115    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
15116    return DCI.CombineTo(N, InsV);
15117  }
15118
15119  //===--------------------------------------------------------------------===//
15120  // Combine some shuffles into subvector extracts and inserts:
15121  //
15122
15123  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15124  if (isShuffleHigh128VectorInsertLow(SVOp)) {
15125    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
15126    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
15127    return DCI.CombineTo(N, InsV);
15128  }
15129
15130  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15131  if (isShuffleLow128VectorInsertHigh(SVOp)) {
15132    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
15133    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
15134    return DCI.CombineTo(N, InsV);
15135  }
15136
15137  return SDValue();
15138}
15139
15140/// PerformShuffleCombine - Performs several different shuffle combines.
15141static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
15142                                     TargetLowering::DAGCombinerInfo &DCI,
15143                                     const X86Subtarget *Subtarget) {
15144  DebugLoc dl = N->getDebugLoc();
15145  EVT VT = N->getValueType(0);
15146
15147  // Don't create instructions with illegal types after legalize types has run.
15148  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15149  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
15150    return SDValue();
15151
15152  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
15153  if (Subtarget->hasFp256() && VT.is256BitVector() &&
15154      N->getOpcode() == ISD::VECTOR_SHUFFLE)
15155    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
15156
15157  // Only handle 128 wide vector from here on.
15158  if (!VT.is128BitVector())
15159    return SDValue();
15160
15161  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
15162  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
15163  // consecutive, non-overlapping, and in the right order.
15164  SmallVector<SDValue, 16> Elts;
15165  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
15166    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
15167
15168  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
15169}
15170
15171/// PerformTruncateCombine - Converts truncate operation to
15172/// a sequence of vector shuffle operations.
15173/// It is possible when we truncate 256-bit vector to 128-bit vector
15174static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
15175                                      TargetLowering::DAGCombinerInfo &DCI,
15176                                      const X86Subtarget *Subtarget)  {
15177  return SDValue();
15178}
15179
15180/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
15181/// specific shuffle of a load can be folded into a single element load.
15182/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
15183/// shuffles have been customed lowered so we need to handle those here.
15184static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
15185                                         TargetLowering::DAGCombinerInfo &DCI) {
15186  if (DCI.isBeforeLegalizeOps())
15187    return SDValue();
15188
15189  SDValue InVec = N->getOperand(0);
15190  SDValue EltNo = N->getOperand(1);
15191
15192  if (!isa<ConstantSDNode>(EltNo))
15193    return SDValue();
15194
15195  EVT VT = InVec.getValueType();
15196
15197  bool HasShuffleIntoBitcast = false;
15198  if (InVec.getOpcode() == ISD::BITCAST) {
15199    // Don't duplicate a load with other uses.
15200    if (!InVec.hasOneUse())
15201      return SDValue();
15202    EVT BCVT = InVec.getOperand(0).getValueType();
15203    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
15204      return SDValue();
15205    InVec = InVec.getOperand(0);
15206    HasShuffleIntoBitcast = true;
15207  }
15208
15209  if (!isTargetShuffle(InVec.getOpcode()))
15210    return SDValue();
15211
15212  // Don't duplicate a load with other uses.
15213  if (!InVec.hasOneUse())
15214    return SDValue();
15215
15216  SmallVector<int, 16> ShuffleMask;
15217  bool UnaryShuffle;
15218  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
15219                            UnaryShuffle))
15220    return SDValue();
15221
15222  // Select the input vector, guarding against out of range extract vector.
15223  unsigned NumElems = VT.getVectorNumElements();
15224  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
15225  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
15226  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
15227                                         : InVec.getOperand(1);
15228
15229  // If inputs to shuffle are the same for both ops, then allow 2 uses
15230  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
15231
15232  if (LdNode.getOpcode() == ISD::BITCAST) {
15233    // Don't duplicate a load with other uses.
15234    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
15235      return SDValue();
15236
15237    AllowedUses = 1; // only allow 1 load use if we have a bitcast
15238    LdNode = LdNode.getOperand(0);
15239  }
15240
15241  if (!ISD::isNormalLoad(LdNode.getNode()))
15242    return SDValue();
15243
15244  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
15245
15246  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
15247    return SDValue();
15248
15249  if (HasShuffleIntoBitcast) {
15250    // If there's a bitcast before the shuffle, check if the load type and
15251    // alignment is valid.
15252    unsigned Align = LN0->getAlignment();
15253    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15254    unsigned NewAlign = TLI.getDataLayout()->
15255      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
15256
15257    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
15258      return SDValue();
15259  }
15260
15261  // All checks match so transform back to vector_shuffle so that DAG combiner
15262  // can finish the job
15263  DebugLoc dl = N->getDebugLoc();
15264
15265  // Create shuffle node taking into account the case that its a unary shuffle
15266  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
15267  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
15268                                 InVec.getOperand(0), Shuffle,
15269                                 &ShuffleMask[0]);
15270  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
15271  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
15272                     EltNo);
15273}
15274
15275/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
15276/// generation and convert it from being a bunch of shuffles and extracts
15277/// to a simple store and scalar loads to extract the elements.
15278static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
15279                                         TargetLowering::DAGCombinerInfo &DCI) {
15280  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
15281  if (NewOp.getNode())
15282    return NewOp;
15283
15284  SDValue InputVector = N->getOperand(0);
15285  // Detect whether we are trying to convert from mmx to i32 and the bitcast
15286  // from mmx to v2i32 has a single usage.
15287  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
15288      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
15289      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
15290    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
15291                       N->getValueType(0),
15292                       InputVector.getNode()->getOperand(0));
15293
15294  // Only operate on vectors of 4 elements, where the alternative shuffling
15295  // gets to be more expensive.
15296  if (InputVector.getValueType() != MVT::v4i32)
15297    return SDValue();
15298
15299  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
15300  // single use which is a sign-extend or zero-extend, and all elements are
15301  // used.
15302  SmallVector<SDNode *, 4> Uses;
15303  unsigned ExtractedElements = 0;
15304  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
15305       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
15306    if (UI.getUse().getResNo() != InputVector.getResNo())
15307      return SDValue();
15308
15309    SDNode *Extract = *UI;
15310    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15311      return SDValue();
15312
15313    if (Extract->getValueType(0) != MVT::i32)
15314      return SDValue();
15315    if (!Extract->hasOneUse())
15316      return SDValue();
15317    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
15318        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
15319      return SDValue();
15320    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
15321      return SDValue();
15322
15323    // Record which element was extracted.
15324    ExtractedElements |=
15325      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
15326
15327    Uses.push_back(Extract);
15328  }
15329
15330  // If not all the elements were used, this may not be worthwhile.
15331  if (ExtractedElements != 15)
15332    return SDValue();
15333
15334  // Ok, we've now decided to do the transformation.
15335  DebugLoc dl = InputVector.getDebugLoc();
15336
15337  // Store the value to a temporary stack slot.
15338  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
15339  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
15340                            MachinePointerInfo(), false, false, 0);
15341
15342  // Replace each use (extract) with a load of the appropriate element.
15343  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
15344       UE = Uses.end(); UI != UE; ++UI) {
15345    SDNode *Extract = *UI;
15346
15347    // cOMpute the element's address.
15348    SDValue Idx = Extract->getOperand(1);
15349    unsigned EltSize =
15350        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
15351    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
15352    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15353    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
15354
15355    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
15356                                     StackPtr, OffsetVal);
15357
15358    // Load the scalar.
15359    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
15360                                     ScalarAddr, MachinePointerInfo(),
15361                                     false, false, false, 0);
15362
15363    // Replace the exact with the load.
15364    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
15365  }
15366
15367  // The replacement was made in place; don't return anything.
15368  return SDValue();
15369}
15370
15371/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
15372static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
15373                                   SDValue RHS, SelectionDAG &DAG,
15374                                   const X86Subtarget *Subtarget) {
15375  if (!VT.isVector())
15376    return 0;
15377
15378  switch (VT.getSimpleVT().SimpleTy) {
15379  default: return 0;
15380  case MVT::v32i8:
15381  case MVT::v16i16:
15382  case MVT::v8i32:
15383    if (!Subtarget->hasAVX2())
15384      return 0;
15385  case MVT::v16i8:
15386  case MVT::v8i16:
15387  case MVT::v4i32:
15388    if (!Subtarget->hasSSE2())
15389      return 0;
15390  }
15391
15392  // SSE2 has only a small subset of the operations.
15393  bool hasUnsigned = Subtarget->hasSSE41() ||
15394                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
15395  bool hasSigned = Subtarget->hasSSE41() ||
15396                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
15397
15398  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15399
15400  // Check for x CC y ? x : y.
15401  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15402      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15403    switch (CC) {
15404    default: break;
15405    case ISD::SETULT:
15406    case ISD::SETULE:
15407      return hasUnsigned ? X86ISD::UMIN : 0;
15408    case ISD::SETUGT:
15409    case ISD::SETUGE:
15410      return hasUnsigned ? X86ISD::UMAX : 0;
15411    case ISD::SETLT:
15412    case ISD::SETLE:
15413      return hasSigned ? X86ISD::SMIN : 0;
15414    case ISD::SETGT:
15415    case ISD::SETGE:
15416      return hasSigned ? X86ISD::SMAX : 0;
15417    }
15418  // Check for x CC y ? y : x -- a min/max with reversed arms.
15419  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15420             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15421    switch (CC) {
15422    default: break;
15423    case ISD::SETULT:
15424    case ISD::SETULE:
15425      return hasUnsigned ? X86ISD::UMAX : 0;
15426    case ISD::SETUGT:
15427    case ISD::SETUGE:
15428      return hasUnsigned ? X86ISD::UMIN : 0;
15429    case ISD::SETLT:
15430    case ISD::SETLE:
15431      return hasSigned ? X86ISD::SMAX : 0;
15432    case ISD::SETGT:
15433    case ISD::SETGE:
15434      return hasSigned ? X86ISD::SMIN : 0;
15435    }
15436  }
15437
15438  return 0;
15439}
15440
15441/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
15442/// nodes.
15443static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
15444                                    TargetLowering::DAGCombinerInfo &DCI,
15445                                    const X86Subtarget *Subtarget) {
15446  DebugLoc DL = N->getDebugLoc();
15447  SDValue Cond = N->getOperand(0);
15448  // Get the LHS/RHS of the select.
15449  SDValue LHS = N->getOperand(1);
15450  SDValue RHS = N->getOperand(2);
15451  EVT VT = LHS.getValueType();
15452
15453  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
15454  // instructions match the semantics of the common C idiom x<y?x:y but not
15455  // x<=y?x:y, because of how they handle negative zero (which can be
15456  // ignored in unsafe-math mode).
15457  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
15458      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
15459      (Subtarget->hasSSE2() ||
15460       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15461    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15462
15463    unsigned Opcode = 0;
15464    // Check for x CC y ? x : y.
15465    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15466        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15467      switch (CC) {
15468      default: break;
15469      case ISD::SETULT:
15470        // Converting this to a min would handle NaNs incorrectly, and swapping
15471        // the operands would cause it to handle comparisons between positive
15472        // and negative zero incorrectly.
15473        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15474          if (!DAG.getTarget().Options.UnsafeFPMath &&
15475              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15476            break;
15477          std::swap(LHS, RHS);
15478        }
15479        Opcode = X86ISD::FMIN;
15480        break;
15481      case ISD::SETOLE:
15482        // Converting this to a min would handle comparisons between positive
15483        // and negative zero incorrectly.
15484        if (!DAG.getTarget().Options.UnsafeFPMath &&
15485            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15486          break;
15487        Opcode = X86ISD::FMIN;
15488        break;
15489      case ISD::SETULE:
15490        // Converting this to a min would handle both negative zeros and NaNs
15491        // incorrectly, but we can swap the operands to fix both.
15492        std::swap(LHS, RHS);
15493      case ISD::SETOLT:
15494      case ISD::SETLT:
15495      case ISD::SETLE:
15496        Opcode = X86ISD::FMIN;
15497        break;
15498
15499      case ISD::SETOGE:
15500        // Converting this to a max would handle comparisons between positive
15501        // and negative zero incorrectly.
15502        if (!DAG.getTarget().Options.UnsafeFPMath &&
15503            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15504          break;
15505        Opcode = X86ISD::FMAX;
15506        break;
15507      case ISD::SETUGT:
15508        // Converting this to a max would handle NaNs incorrectly, and swapping
15509        // the operands would cause it to handle comparisons between positive
15510        // and negative zero incorrectly.
15511        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15512          if (!DAG.getTarget().Options.UnsafeFPMath &&
15513              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15514            break;
15515          std::swap(LHS, RHS);
15516        }
15517        Opcode = X86ISD::FMAX;
15518        break;
15519      case ISD::SETUGE:
15520        // Converting this to a max would handle both negative zeros and NaNs
15521        // incorrectly, but we can swap the operands to fix both.
15522        std::swap(LHS, RHS);
15523      case ISD::SETOGT:
15524      case ISD::SETGT:
15525      case ISD::SETGE:
15526        Opcode = X86ISD::FMAX;
15527        break;
15528      }
15529    // Check for x CC y ? y : x -- a min/max with reversed arms.
15530    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15531               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15532      switch (CC) {
15533      default: break;
15534      case ISD::SETOGE:
15535        // Converting this to a min would handle comparisons between positive
15536        // and negative zero incorrectly, and swapping the operands would
15537        // cause it to handle NaNs incorrectly.
15538        if (!DAG.getTarget().Options.UnsafeFPMath &&
15539            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15540          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15541            break;
15542          std::swap(LHS, RHS);
15543        }
15544        Opcode = X86ISD::FMIN;
15545        break;
15546      case ISD::SETUGT:
15547        // Converting this to a min would handle NaNs incorrectly.
15548        if (!DAG.getTarget().Options.UnsafeFPMath &&
15549            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15550          break;
15551        Opcode = X86ISD::FMIN;
15552        break;
15553      case ISD::SETUGE:
15554        // Converting this to a min would handle both negative zeros and NaNs
15555        // incorrectly, but we can swap the operands to fix both.
15556        std::swap(LHS, RHS);
15557      case ISD::SETOGT:
15558      case ISD::SETGT:
15559      case ISD::SETGE:
15560        Opcode = X86ISD::FMIN;
15561        break;
15562
15563      case ISD::SETULT:
15564        // Converting this to a max would handle NaNs incorrectly.
15565        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15566          break;
15567        Opcode = X86ISD::FMAX;
15568        break;
15569      case ISD::SETOLE:
15570        // Converting this to a max would handle comparisons between positive
15571        // and negative zero incorrectly, and swapping the operands would
15572        // cause it to handle NaNs incorrectly.
15573        if (!DAG.getTarget().Options.UnsafeFPMath &&
15574            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15575          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15576            break;
15577          std::swap(LHS, RHS);
15578        }
15579        Opcode = X86ISD::FMAX;
15580        break;
15581      case ISD::SETULE:
15582        // Converting this to a max would handle both negative zeros and NaNs
15583        // incorrectly, but we can swap the operands to fix both.
15584        std::swap(LHS, RHS);
15585      case ISD::SETOLT:
15586      case ISD::SETLT:
15587      case ISD::SETLE:
15588        Opcode = X86ISD::FMAX;
15589        break;
15590      }
15591    }
15592
15593    if (Opcode)
15594      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15595  }
15596
15597  // If this is a select between two integer constants, try to do some
15598  // optimizations.
15599  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15600    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15601      // Don't do this for crazy integer types.
15602      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15603        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15604        // so that TrueC (the true value) is larger than FalseC.
15605        bool NeedsCondInvert = false;
15606
15607        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15608            // Efficiently invertible.
15609            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15610             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15611              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15612          NeedsCondInvert = true;
15613          std::swap(TrueC, FalseC);
15614        }
15615
15616        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15617        if (FalseC->getAPIntValue() == 0 &&
15618            TrueC->getAPIntValue().isPowerOf2()) {
15619          if (NeedsCondInvert) // Invert the condition if needed.
15620            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15621                               DAG.getConstant(1, Cond.getValueType()));
15622
15623          // Zero extend the condition if needed.
15624          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15625
15626          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15627          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15628                             DAG.getConstant(ShAmt, MVT::i8));
15629        }
15630
15631        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15632        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15633          if (NeedsCondInvert) // Invert the condition if needed.
15634            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15635                               DAG.getConstant(1, Cond.getValueType()));
15636
15637          // Zero extend the condition if needed.
15638          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15639                             FalseC->getValueType(0), Cond);
15640          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15641                             SDValue(FalseC, 0));
15642        }
15643
15644        // Optimize cases that will turn into an LEA instruction.  This requires
15645        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15646        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15647          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15648          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15649
15650          bool isFastMultiplier = false;
15651          if (Diff < 10) {
15652            switch ((unsigned char)Diff) {
15653              default: break;
15654              case 1:  // result = add base, cond
15655              case 2:  // result = lea base(    , cond*2)
15656              case 3:  // result = lea base(cond, cond*2)
15657              case 4:  // result = lea base(    , cond*4)
15658              case 5:  // result = lea base(cond, cond*4)
15659              case 8:  // result = lea base(    , cond*8)
15660              case 9:  // result = lea base(cond, cond*8)
15661                isFastMultiplier = true;
15662                break;
15663            }
15664          }
15665
15666          if (isFastMultiplier) {
15667            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15668            if (NeedsCondInvert) // Invert the condition if needed.
15669              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15670                                 DAG.getConstant(1, Cond.getValueType()));
15671
15672            // Zero extend the condition if needed.
15673            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15674                               Cond);
15675            // Scale the condition by the difference.
15676            if (Diff != 1)
15677              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15678                                 DAG.getConstant(Diff, Cond.getValueType()));
15679
15680            // Add the base if non-zero.
15681            if (FalseC->getAPIntValue() != 0)
15682              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15683                                 SDValue(FalseC, 0));
15684            return Cond;
15685          }
15686        }
15687      }
15688  }
15689
15690  // Canonicalize max and min:
15691  // (x > y) ? x : y -> (x >= y) ? x : y
15692  // (x < y) ? x : y -> (x <= y) ? x : y
15693  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15694  // the need for an extra compare
15695  // against zero. e.g.
15696  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15697  // subl   %esi, %edi
15698  // testl  %edi, %edi
15699  // movl   $0, %eax
15700  // cmovgl %edi, %eax
15701  // =>
15702  // xorl   %eax, %eax
15703  // subl   %esi, $edi
15704  // cmovsl %eax, %edi
15705  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15706      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15707      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15708    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15709    switch (CC) {
15710    default: break;
15711    case ISD::SETLT:
15712    case ISD::SETGT: {
15713      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15714      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15715                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15716      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15717    }
15718    }
15719  }
15720
15721  // Match VSELECTs into subs with unsigned saturation.
15722  if (!DCI.isBeforeLegalize() &&
15723      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15724      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15725      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15726       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15727    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15728
15729    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15730    // left side invert the predicate to simplify logic below.
15731    SDValue Other;
15732    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15733      Other = RHS;
15734      CC = ISD::getSetCCInverse(CC, true);
15735    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15736      Other = LHS;
15737    }
15738
15739    if (Other.getNode() && Other->getNumOperands() == 2 &&
15740        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15741      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15742      SDValue CondRHS = Cond->getOperand(1);
15743
15744      // Look for a general sub with unsigned saturation first.
15745      // x >= y ? x-y : 0 --> subus x, y
15746      // x >  y ? x-y : 0 --> subus x, y
15747      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15748          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15749        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15750
15751      // If the RHS is a constant we have to reverse the const canonicalization.
15752      // x > C-1 ? x+-C : 0 --> subus x, C
15753      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15754          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15755        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15756        if (CondRHS.getConstantOperandVal(0) == -A-1)
15757          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15758                             DAG.getConstant(-A, VT));
15759      }
15760
15761      // Another special case: If C was a sign bit, the sub has been
15762      // canonicalized into a xor.
15763      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15764      //        it's safe to decanonicalize the xor?
15765      // x s< 0 ? x^C : 0 --> subus x, C
15766      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15767          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15768          isSplatVector(OpRHS.getNode())) {
15769        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15770        if (A.isSignBit())
15771          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15772      }
15773    }
15774  }
15775
15776  // Try to match a min/max vector operation.
15777  if (!DCI.isBeforeLegalize() &&
15778      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15779    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15780      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15781
15782  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
15783  if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT &&
15784      Cond.getOpcode() == ISD::SETCC) {
15785
15786    assert(Cond.getValueType().isVector() &&
15787           "vector select expects a vector selector!");
15788
15789    EVT IntVT = Cond.getValueType();
15790    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
15791    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
15792
15793    if (!TValIsAllOnes && !FValIsAllZeros) {
15794      // Try invert the condition if true value is not all 1s and false value
15795      // is not all 0s.
15796      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
15797      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
15798
15799      if (TValIsAllZeros || FValIsAllOnes) {
15800        SDValue CC = Cond.getOperand(2);
15801        ISD::CondCode NewCC =
15802          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
15803                               Cond.getOperand(0).getValueType().isInteger());
15804        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
15805        std::swap(LHS, RHS);
15806        TValIsAllOnes = FValIsAllOnes;
15807        FValIsAllZeros = TValIsAllZeros;
15808      }
15809    }
15810
15811    if (TValIsAllOnes || FValIsAllZeros) {
15812      SDValue Ret;
15813
15814      if (TValIsAllOnes && FValIsAllZeros)
15815        Ret = Cond;
15816      else if (TValIsAllOnes)
15817        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
15818                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
15819      else if (FValIsAllZeros)
15820        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
15821                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
15822
15823      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
15824    }
15825  }
15826
15827  // If we know that this node is legal then we know that it is going to be
15828  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15829  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15830  // to simplify previous instructions.
15831  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15832  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15833      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15834    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15835
15836    // Don't optimize vector selects that map to mask-registers.
15837    if (BitWidth == 1)
15838      return SDValue();
15839
15840    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15841    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15842
15843    APInt KnownZero, KnownOne;
15844    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15845                                          DCI.isBeforeLegalizeOps());
15846    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15847        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15848      DCI.CommitTargetLoweringOpt(TLO);
15849  }
15850
15851  return SDValue();
15852}
15853
15854// Check whether a boolean test is testing a boolean value generated by
15855// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15856// code.
15857//
15858// Simplify the following patterns:
15859// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15860// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15861// to (Op EFLAGS Cond)
15862//
15863// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15864// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15865// to (Op EFLAGS !Cond)
15866//
15867// where Op could be BRCOND or CMOV.
15868//
15869static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15870  // Quit if not CMP and SUB with its value result used.
15871  if (Cmp.getOpcode() != X86ISD::CMP &&
15872      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15873      return SDValue();
15874
15875  // Quit if not used as a boolean value.
15876  if (CC != X86::COND_E && CC != X86::COND_NE)
15877    return SDValue();
15878
15879  // Check CMP operands. One of them should be 0 or 1 and the other should be
15880  // an SetCC or extended from it.
15881  SDValue Op1 = Cmp.getOperand(0);
15882  SDValue Op2 = Cmp.getOperand(1);
15883
15884  SDValue SetCC;
15885  const ConstantSDNode* C = 0;
15886  bool needOppositeCond = (CC == X86::COND_E);
15887  bool checkAgainstTrue = false; // Is it a comparison against 1?
15888
15889  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15890    SetCC = Op2;
15891  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15892    SetCC = Op1;
15893  else // Quit if all operands are not constants.
15894    return SDValue();
15895
15896  if (C->getZExtValue() == 1) {
15897    needOppositeCond = !needOppositeCond;
15898    checkAgainstTrue = true;
15899  } else if (C->getZExtValue() != 0)
15900    // Quit if the constant is neither 0 or 1.
15901    return SDValue();
15902
15903  bool truncatedToBoolWithAnd = false;
15904  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
15905  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
15906         SetCC.getOpcode() == ISD::TRUNCATE ||
15907         SetCC.getOpcode() == ISD::AND) {
15908    if (SetCC.getOpcode() == ISD::AND) {
15909      int OpIdx = -1;
15910      ConstantSDNode *CS;
15911      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
15912          CS->getZExtValue() == 1)
15913        OpIdx = 1;
15914      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
15915          CS->getZExtValue() == 1)
15916        OpIdx = 0;
15917      if (OpIdx == -1)
15918        break;
15919      SetCC = SetCC.getOperand(OpIdx);
15920      truncatedToBoolWithAnd = true;
15921    } else
15922      SetCC = SetCC.getOperand(0);
15923  }
15924
15925  switch (SetCC.getOpcode()) {
15926  case X86ISD::SETCC_CARRY:
15927    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
15928    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
15929    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
15930    // truncated to i1 using 'and'.
15931    if (checkAgainstTrue && !truncatedToBoolWithAnd)
15932      break;
15933    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
15934           "Invalid use of SETCC_CARRY!");
15935    // FALL THROUGH
15936  case X86ISD::SETCC:
15937    // Set the condition code or opposite one if necessary.
15938    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15939    if (needOppositeCond)
15940      CC = X86::GetOppositeBranchCondition(CC);
15941    return SetCC.getOperand(1);
15942  case X86ISD::CMOV: {
15943    // Check whether false/true value has canonical one, i.e. 0 or 1.
15944    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15945    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15946    // Quit if true value is not a constant.
15947    if (!TVal)
15948      return SDValue();
15949    // Quit if false value is not a constant.
15950    if (!FVal) {
15951      SDValue Op = SetCC.getOperand(0);
15952      // Skip 'zext' or 'trunc' node.
15953      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
15954          Op.getOpcode() == ISD::TRUNCATE)
15955        Op = Op.getOperand(0);
15956      // A special case for rdrand/rdseed, where 0 is set if false cond is
15957      // found.
15958      if ((Op.getOpcode() != X86ISD::RDRAND &&
15959           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
15960        return SDValue();
15961    }
15962    // Quit if false value is not the constant 0 or 1.
15963    bool FValIsFalse = true;
15964    if (FVal && FVal->getZExtValue() != 0) {
15965      if (FVal->getZExtValue() != 1)
15966        return SDValue();
15967      // If FVal is 1, opposite cond is needed.
15968      needOppositeCond = !needOppositeCond;
15969      FValIsFalse = false;
15970    }
15971    // Quit if TVal is not the constant opposite of FVal.
15972    if (FValIsFalse && TVal->getZExtValue() != 1)
15973      return SDValue();
15974    if (!FValIsFalse && TVal->getZExtValue() != 0)
15975      return SDValue();
15976    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15977    if (needOppositeCond)
15978      CC = X86::GetOppositeBranchCondition(CC);
15979    return SetCC.getOperand(3);
15980  }
15981  }
15982
15983  return SDValue();
15984}
15985
15986/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15987static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15988                                  TargetLowering::DAGCombinerInfo &DCI,
15989                                  const X86Subtarget *Subtarget) {
15990  DebugLoc DL = N->getDebugLoc();
15991
15992  // If the flag operand isn't dead, don't touch this CMOV.
15993  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15994    return SDValue();
15995
15996  SDValue FalseOp = N->getOperand(0);
15997  SDValue TrueOp = N->getOperand(1);
15998  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15999  SDValue Cond = N->getOperand(3);
16000
16001  if (CC == X86::COND_E || CC == X86::COND_NE) {
16002    switch (Cond.getOpcode()) {
16003    default: break;
16004    case X86ISD::BSR:
16005    case X86ISD::BSF:
16006      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
16007      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
16008        return (CC == X86::COND_E) ? FalseOp : TrueOp;
16009    }
16010  }
16011
16012  SDValue Flags;
16013
16014  Flags = checkBoolTestSetCCCombine(Cond, CC);
16015  if (Flags.getNode() &&
16016      // Extra check as FCMOV only supports a subset of X86 cond.
16017      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
16018    SDValue Ops[] = { FalseOp, TrueOp,
16019                      DAG.getConstant(CC, MVT::i8), Flags };
16020    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
16021                       Ops, array_lengthof(Ops));
16022  }
16023
16024  // If this is a select between two integer constants, try to do some
16025  // optimizations.  Note that the operands are ordered the opposite of SELECT
16026  // operands.
16027  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
16028    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
16029      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
16030      // larger than FalseC (the false value).
16031      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
16032        CC = X86::GetOppositeBranchCondition(CC);
16033        std::swap(TrueC, FalseC);
16034        std::swap(TrueOp, FalseOp);
16035      }
16036
16037      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
16038      // This is efficient for any integer data type (including i8/i16) and
16039      // shift amount.
16040      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
16041        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16042                           DAG.getConstant(CC, MVT::i8), Cond);
16043
16044        // Zero extend the condition if needed.
16045        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
16046
16047        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16048        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
16049                           DAG.getConstant(ShAmt, MVT::i8));
16050        if (N->getNumValues() == 2)  // Dead flag value?
16051          return DCI.CombineTo(N, Cond, SDValue());
16052        return Cond;
16053      }
16054
16055      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
16056      // for any integer data type, including i8/i16.
16057      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16058        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16059                           DAG.getConstant(CC, MVT::i8), Cond);
16060
16061        // Zero extend the condition if needed.
16062        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16063                           FalseC->getValueType(0), Cond);
16064        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16065                           SDValue(FalseC, 0));
16066
16067        if (N->getNumValues() == 2)  // Dead flag value?
16068          return DCI.CombineTo(N, Cond, SDValue());
16069        return Cond;
16070      }
16071
16072      // Optimize cases that will turn into an LEA instruction.  This requires
16073      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16074      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16075        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16076        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16077
16078        bool isFastMultiplier = false;
16079        if (Diff < 10) {
16080          switch ((unsigned char)Diff) {
16081          default: break;
16082          case 1:  // result = add base, cond
16083          case 2:  // result = lea base(    , cond*2)
16084          case 3:  // result = lea base(cond, cond*2)
16085          case 4:  // result = lea base(    , cond*4)
16086          case 5:  // result = lea base(cond, cond*4)
16087          case 8:  // result = lea base(    , cond*8)
16088          case 9:  // result = lea base(cond, cond*8)
16089            isFastMultiplier = true;
16090            break;
16091          }
16092        }
16093
16094        if (isFastMultiplier) {
16095          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16096          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16097                             DAG.getConstant(CC, MVT::i8), Cond);
16098          // Zero extend the condition if needed.
16099          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16100                             Cond);
16101          // Scale the condition by the difference.
16102          if (Diff != 1)
16103            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16104                               DAG.getConstant(Diff, Cond.getValueType()));
16105
16106          // Add the base if non-zero.
16107          if (FalseC->getAPIntValue() != 0)
16108            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16109                               SDValue(FalseC, 0));
16110          if (N->getNumValues() == 2)  // Dead flag value?
16111            return DCI.CombineTo(N, Cond, SDValue());
16112          return Cond;
16113        }
16114      }
16115    }
16116  }
16117
16118  // Handle these cases:
16119  //   (select (x != c), e, c) -> select (x != c), e, x),
16120  //   (select (x == c), c, e) -> select (x == c), x, e)
16121  // where the c is an integer constant, and the "select" is the combination
16122  // of CMOV and CMP.
16123  //
16124  // The rationale for this change is that the conditional-move from a constant
16125  // needs two instructions, however, conditional-move from a register needs
16126  // only one instruction.
16127  //
16128  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
16129  //  some instruction-combining opportunities. This opt needs to be
16130  //  postponed as late as possible.
16131  //
16132  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
16133    // the DCI.xxxx conditions are provided to postpone the optimization as
16134    // late as possible.
16135
16136    ConstantSDNode *CmpAgainst = 0;
16137    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
16138        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
16139        !isa<ConstantSDNode>(Cond.getOperand(0))) {
16140
16141      if (CC == X86::COND_NE &&
16142          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
16143        CC = X86::GetOppositeBranchCondition(CC);
16144        std::swap(TrueOp, FalseOp);
16145      }
16146
16147      if (CC == X86::COND_E &&
16148          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
16149        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
16150                          DAG.getConstant(CC, MVT::i8), Cond };
16151        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
16152                           array_lengthof(Ops));
16153      }
16154    }
16155  }
16156
16157  return SDValue();
16158}
16159
16160/// PerformMulCombine - Optimize a single multiply with constant into two
16161/// in order to implement it with two cheaper instructions, e.g.
16162/// LEA + SHL, LEA + LEA.
16163static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
16164                                 TargetLowering::DAGCombinerInfo &DCI) {
16165  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16166    return SDValue();
16167
16168  EVT VT = N->getValueType(0);
16169  if (VT != MVT::i64)
16170    return SDValue();
16171
16172  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
16173  if (!C)
16174    return SDValue();
16175  uint64_t MulAmt = C->getZExtValue();
16176  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
16177    return SDValue();
16178
16179  uint64_t MulAmt1 = 0;
16180  uint64_t MulAmt2 = 0;
16181  if ((MulAmt % 9) == 0) {
16182    MulAmt1 = 9;
16183    MulAmt2 = MulAmt / 9;
16184  } else if ((MulAmt % 5) == 0) {
16185    MulAmt1 = 5;
16186    MulAmt2 = MulAmt / 5;
16187  } else if ((MulAmt % 3) == 0) {
16188    MulAmt1 = 3;
16189    MulAmt2 = MulAmt / 3;
16190  }
16191  if (MulAmt2 &&
16192      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
16193    DebugLoc DL = N->getDebugLoc();
16194
16195    if (isPowerOf2_64(MulAmt2) &&
16196        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
16197      // If second multiplifer is pow2, issue it first. We want the multiply by
16198      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
16199      // is an add.
16200      std::swap(MulAmt1, MulAmt2);
16201
16202    SDValue NewMul;
16203    if (isPowerOf2_64(MulAmt1))
16204      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16205                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
16206    else
16207      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
16208                           DAG.getConstant(MulAmt1, VT));
16209
16210    if (isPowerOf2_64(MulAmt2))
16211      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
16212                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
16213    else
16214      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
16215                           DAG.getConstant(MulAmt2, VT));
16216
16217    // Do not add new nodes to DAG combiner worklist.
16218    DCI.CombineTo(N, NewMul, false);
16219  }
16220  return SDValue();
16221}
16222
16223static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
16224  SDValue N0 = N->getOperand(0);
16225  SDValue N1 = N->getOperand(1);
16226  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
16227  EVT VT = N0.getValueType();
16228
16229  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
16230  // since the result of setcc_c is all zero's or all ones.
16231  if (VT.isInteger() && !VT.isVector() &&
16232      N1C && N0.getOpcode() == ISD::AND &&
16233      N0.getOperand(1).getOpcode() == ISD::Constant) {
16234    SDValue N00 = N0.getOperand(0);
16235    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
16236        ((N00.getOpcode() == ISD::ANY_EXTEND ||
16237          N00.getOpcode() == ISD::ZERO_EXTEND) &&
16238         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
16239      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
16240      APInt ShAmt = N1C->getAPIntValue();
16241      Mask = Mask.shl(ShAmt);
16242      if (Mask != 0)
16243        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
16244                           N00, DAG.getConstant(Mask, VT));
16245    }
16246  }
16247
16248  // Hardware support for vector shifts is sparse which makes us scalarize the
16249  // vector operations in many cases. Also, on sandybridge ADD is faster than
16250  // shl.
16251  // (shl V, 1) -> add V,V
16252  if (isSplatVector(N1.getNode())) {
16253    assert(N0.getValueType().isVector() && "Invalid vector shift type");
16254    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
16255    // We shift all of the values by one. In many cases we do not have
16256    // hardware support for this operation. This is better expressed as an ADD
16257    // of two values.
16258    if (N1C && (1 == N1C->getZExtValue())) {
16259      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
16260    }
16261  }
16262
16263  return SDValue();
16264}
16265
16266/// PerformShiftCombine - Combine shifts.
16267static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
16268                                   TargetLowering::DAGCombinerInfo &DCI,
16269                                   const X86Subtarget *Subtarget) {
16270  if (N->getOpcode() == ISD::SHL) {
16271    SDValue V = PerformSHLCombine(N, DAG);
16272    if (V.getNode()) return V;
16273  }
16274
16275  return SDValue();
16276}
16277
16278// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
16279// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
16280// and friends.  Likewise for OR -> CMPNEQSS.
16281static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
16282                            TargetLowering::DAGCombinerInfo &DCI,
16283                            const X86Subtarget *Subtarget) {
16284  unsigned opcode;
16285
16286  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
16287  // we're requiring SSE2 for both.
16288  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
16289    SDValue N0 = N->getOperand(0);
16290    SDValue N1 = N->getOperand(1);
16291    SDValue CMP0 = N0->getOperand(1);
16292    SDValue CMP1 = N1->getOperand(1);
16293    DebugLoc DL = N->getDebugLoc();
16294
16295    // The SETCCs should both refer to the same CMP.
16296    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
16297      return SDValue();
16298
16299    SDValue CMP00 = CMP0->getOperand(0);
16300    SDValue CMP01 = CMP0->getOperand(1);
16301    EVT     VT    = CMP00.getValueType();
16302
16303    if (VT == MVT::f32 || VT == MVT::f64) {
16304      bool ExpectingFlags = false;
16305      // Check for any users that want flags:
16306      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
16307           !ExpectingFlags && UI != UE; ++UI)
16308        switch (UI->getOpcode()) {
16309        default:
16310        case ISD::BR_CC:
16311        case ISD::BRCOND:
16312        case ISD::SELECT:
16313          ExpectingFlags = true;
16314          break;
16315        case ISD::CopyToReg:
16316        case ISD::SIGN_EXTEND:
16317        case ISD::ZERO_EXTEND:
16318        case ISD::ANY_EXTEND:
16319          break;
16320        }
16321
16322      if (!ExpectingFlags) {
16323        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
16324        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
16325
16326        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
16327          X86::CondCode tmp = cc0;
16328          cc0 = cc1;
16329          cc1 = tmp;
16330        }
16331
16332        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
16333            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
16334          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
16335          X86ISD::NodeType NTOperator = is64BitFP ?
16336            X86ISD::FSETCCsd : X86ISD::FSETCCss;
16337          // FIXME: need symbolic constants for these magic numbers.
16338          // See X86ATTInstPrinter.cpp:printSSECC().
16339          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
16340          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
16341                                              DAG.getConstant(x86cc, MVT::i8));
16342          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
16343                                              OnesOrZeroesF);
16344          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
16345                                      DAG.getConstant(1, MVT::i32));
16346          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
16347          return OneBitOfTruth;
16348        }
16349      }
16350    }
16351  }
16352  return SDValue();
16353}
16354
16355/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
16356/// so it can be folded inside ANDNP.
16357static bool CanFoldXORWithAllOnes(const SDNode *N) {
16358  EVT VT = N->getValueType(0);
16359
16360  // Match direct AllOnes for 128 and 256-bit vectors
16361  if (ISD::isBuildVectorAllOnes(N))
16362    return true;
16363
16364  // Look through a bit convert.
16365  if (N->getOpcode() == ISD::BITCAST)
16366    N = N->getOperand(0).getNode();
16367
16368  // Sometimes the operand may come from a insert_subvector building a 256-bit
16369  // allones vector
16370  if (VT.is256BitVector() &&
16371      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
16372    SDValue V1 = N->getOperand(0);
16373    SDValue V2 = N->getOperand(1);
16374
16375    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
16376        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
16377        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
16378        ISD::isBuildVectorAllOnes(V2.getNode()))
16379      return true;
16380  }
16381
16382  return false;
16383}
16384
16385// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
16386// register. In most cases we actually compare or select YMM-sized registers
16387// and mixing the two types creates horrible code. This method optimizes
16388// some of the transition sequences.
16389static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
16390                                 TargetLowering::DAGCombinerInfo &DCI,
16391                                 const X86Subtarget *Subtarget) {
16392  EVT VT = N->getValueType(0);
16393  if (!VT.is256BitVector())
16394    return SDValue();
16395
16396  assert((N->getOpcode() == ISD::ANY_EXTEND ||
16397          N->getOpcode() == ISD::ZERO_EXTEND ||
16398          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
16399
16400  SDValue Narrow = N->getOperand(0);
16401  EVT NarrowVT = Narrow->getValueType(0);
16402  if (!NarrowVT.is128BitVector())
16403    return SDValue();
16404
16405  if (Narrow->getOpcode() != ISD::XOR &&
16406      Narrow->getOpcode() != ISD::AND &&
16407      Narrow->getOpcode() != ISD::OR)
16408    return SDValue();
16409
16410  SDValue N0  = Narrow->getOperand(0);
16411  SDValue N1  = Narrow->getOperand(1);
16412  DebugLoc DL = Narrow->getDebugLoc();
16413
16414  // The Left side has to be a trunc.
16415  if (N0.getOpcode() != ISD::TRUNCATE)
16416    return SDValue();
16417
16418  // The type of the truncated inputs.
16419  EVT WideVT = N0->getOperand(0)->getValueType(0);
16420  if (WideVT != VT)
16421    return SDValue();
16422
16423  // The right side has to be a 'trunc' or a constant vector.
16424  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16425  bool RHSConst = (isSplatVector(N1.getNode()) &&
16426                   isa<ConstantSDNode>(N1->getOperand(0)));
16427  if (!RHSTrunc && !RHSConst)
16428    return SDValue();
16429
16430  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16431
16432  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16433    return SDValue();
16434
16435  // Set N0 and N1 to hold the inputs to the new wide operation.
16436  N0 = N0->getOperand(0);
16437  if (RHSConst) {
16438    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16439                     N1->getOperand(0));
16440    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16441    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16442  } else if (RHSTrunc) {
16443    N1 = N1->getOperand(0);
16444  }
16445
16446  // Generate the wide operation.
16447  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16448  unsigned Opcode = N->getOpcode();
16449  switch (Opcode) {
16450  case ISD::ANY_EXTEND:
16451    return Op;
16452  case ISD::ZERO_EXTEND: {
16453    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16454    APInt Mask = APInt::getAllOnesValue(InBits);
16455    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16456    return DAG.getNode(ISD::AND, DL, VT,
16457                       Op, DAG.getConstant(Mask, VT));
16458  }
16459  case ISD::SIGN_EXTEND:
16460    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16461                       Op, DAG.getValueType(NarrowVT));
16462  default:
16463    llvm_unreachable("Unexpected opcode");
16464  }
16465}
16466
16467static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16468                                 TargetLowering::DAGCombinerInfo &DCI,
16469                                 const X86Subtarget *Subtarget) {
16470  EVT VT = N->getValueType(0);
16471  if (DCI.isBeforeLegalizeOps())
16472    return SDValue();
16473
16474  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16475  if (R.getNode())
16476    return R;
16477
16478  // Create BLSI, and BLSR instructions
16479  // BLSI is X & (-X)
16480  // BLSR is X & (X-1)
16481  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16482    SDValue N0 = N->getOperand(0);
16483    SDValue N1 = N->getOperand(1);
16484    DebugLoc DL = N->getDebugLoc();
16485
16486    // Check LHS for neg
16487    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16488        isZero(N0.getOperand(0)))
16489      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16490
16491    // Check RHS for neg
16492    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16493        isZero(N1.getOperand(0)))
16494      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16495
16496    // Check LHS for X-1
16497    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16498        isAllOnes(N0.getOperand(1)))
16499      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16500
16501    // Check RHS for X-1
16502    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16503        isAllOnes(N1.getOperand(1)))
16504      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16505
16506    return SDValue();
16507  }
16508
16509  // Want to form ANDNP nodes:
16510  // 1) In the hopes of then easily combining them with OR and AND nodes
16511  //    to form PBLEND/PSIGN.
16512  // 2) To match ANDN packed intrinsics
16513  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16514    return SDValue();
16515
16516  SDValue N0 = N->getOperand(0);
16517  SDValue N1 = N->getOperand(1);
16518  DebugLoc DL = N->getDebugLoc();
16519
16520  // Check LHS for vnot
16521  if (N0.getOpcode() == ISD::XOR &&
16522      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16523      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16524    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16525
16526  // Check RHS for vnot
16527  if (N1.getOpcode() == ISD::XOR &&
16528      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16529      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16530    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16531
16532  return SDValue();
16533}
16534
16535static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16536                                TargetLowering::DAGCombinerInfo &DCI,
16537                                const X86Subtarget *Subtarget) {
16538  EVT VT = N->getValueType(0);
16539  if (DCI.isBeforeLegalizeOps())
16540    return SDValue();
16541
16542  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16543  if (R.getNode())
16544    return R;
16545
16546  SDValue N0 = N->getOperand(0);
16547  SDValue N1 = N->getOperand(1);
16548
16549  // look for psign/blend
16550  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16551    if (!Subtarget->hasSSSE3() ||
16552        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16553      return SDValue();
16554
16555    // Canonicalize pandn to RHS
16556    if (N0.getOpcode() == X86ISD::ANDNP)
16557      std::swap(N0, N1);
16558    // or (and (m, y), (pandn m, x))
16559    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16560      SDValue Mask = N1.getOperand(0);
16561      SDValue X    = N1.getOperand(1);
16562      SDValue Y;
16563      if (N0.getOperand(0) == Mask)
16564        Y = N0.getOperand(1);
16565      if (N0.getOperand(1) == Mask)
16566        Y = N0.getOperand(0);
16567
16568      // Check to see if the mask appeared in both the AND and ANDNP and
16569      if (!Y.getNode())
16570        return SDValue();
16571
16572      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16573      // Look through mask bitcast.
16574      if (Mask.getOpcode() == ISD::BITCAST)
16575        Mask = Mask.getOperand(0);
16576      if (X.getOpcode() == ISD::BITCAST)
16577        X = X.getOperand(0);
16578      if (Y.getOpcode() == ISD::BITCAST)
16579        Y = Y.getOperand(0);
16580
16581      EVT MaskVT = Mask.getValueType();
16582
16583      // Validate that the Mask operand is a vector sra node.
16584      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16585      // there is no psrai.b
16586      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16587      unsigned SraAmt = ~0;
16588      if (Mask.getOpcode() == ISD::SRA) {
16589        SDValue Amt = Mask.getOperand(1);
16590        if (isSplatVector(Amt.getNode())) {
16591          SDValue SclrAmt = Amt->getOperand(0);
16592          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
16593            SraAmt = C->getZExtValue();
16594        }
16595      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
16596        SDValue SraC = Mask.getOperand(1);
16597        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16598      }
16599      if ((SraAmt + 1) != EltBits)
16600        return SDValue();
16601
16602      DebugLoc DL = N->getDebugLoc();
16603
16604      // Now we know we at least have a plendvb with the mask val.  See if
16605      // we can form a psignb/w/d.
16606      // psign = x.type == y.type == mask.type && y = sub(0, x);
16607      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16608          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16609          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16610        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16611               "Unsupported VT for PSIGN");
16612        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
16613        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16614      }
16615      // PBLENDVB only available on SSE 4.1
16616      if (!Subtarget->hasSSE41())
16617        return SDValue();
16618
16619      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16620
16621      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16622      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16623      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16624      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16625      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16626    }
16627  }
16628
16629  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16630    return SDValue();
16631
16632  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16633  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16634    std::swap(N0, N1);
16635  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16636    return SDValue();
16637  if (!N0.hasOneUse() || !N1.hasOneUse())
16638    return SDValue();
16639
16640  SDValue ShAmt0 = N0.getOperand(1);
16641  if (ShAmt0.getValueType() != MVT::i8)
16642    return SDValue();
16643  SDValue ShAmt1 = N1.getOperand(1);
16644  if (ShAmt1.getValueType() != MVT::i8)
16645    return SDValue();
16646  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16647    ShAmt0 = ShAmt0.getOperand(0);
16648  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16649    ShAmt1 = ShAmt1.getOperand(0);
16650
16651  DebugLoc DL = N->getDebugLoc();
16652  unsigned Opc = X86ISD::SHLD;
16653  SDValue Op0 = N0.getOperand(0);
16654  SDValue Op1 = N1.getOperand(0);
16655  if (ShAmt0.getOpcode() == ISD::SUB) {
16656    Opc = X86ISD::SHRD;
16657    std::swap(Op0, Op1);
16658    std::swap(ShAmt0, ShAmt1);
16659  }
16660
16661  unsigned Bits = VT.getSizeInBits();
16662  if (ShAmt1.getOpcode() == ISD::SUB) {
16663    SDValue Sum = ShAmt1.getOperand(0);
16664    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16665      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16666      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16667        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16668      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16669        return DAG.getNode(Opc, DL, VT,
16670                           Op0, Op1,
16671                           DAG.getNode(ISD::TRUNCATE, DL,
16672                                       MVT::i8, ShAmt0));
16673    }
16674  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16675    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16676    if (ShAmt0C &&
16677        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16678      return DAG.getNode(Opc, DL, VT,
16679                         N0.getOperand(0), N1.getOperand(0),
16680                         DAG.getNode(ISD::TRUNCATE, DL,
16681                                       MVT::i8, ShAmt0));
16682  }
16683
16684  return SDValue();
16685}
16686
16687// Generate NEG and CMOV for integer abs.
16688static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16689  EVT VT = N->getValueType(0);
16690
16691  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16692  // 8-bit integer abs to NEG and CMOV.
16693  if (VT.isInteger() && VT.getSizeInBits() == 8)
16694    return SDValue();
16695
16696  SDValue N0 = N->getOperand(0);
16697  SDValue N1 = N->getOperand(1);
16698  DebugLoc DL = N->getDebugLoc();
16699
16700  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16701  // and change it to SUB and CMOV.
16702  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16703      N0.getOpcode() == ISD::ADD &&
16704      N0.getOperand(1) == N1 &&
16705      N1.getOpcode() == ISD::SRA &&
16706      N1.getOperand(0) == N0.getOperand(0))
16707    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16708      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16709        // Generate SUB & CMOV.
16710        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16711                                  DAG.getConstant(0, VT), N0.getOperand(0));
16712
16713        SDValue Ops[] = { N0.getOperand(0), Neg,
16714                          DAG.getConstant(X86::COND_GE, MVT::i8),
16715                          SDValue(Neg.getNode(), 1) };
16716        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16717                           Ops, array_lengthof(Ops));
16718      }
16719  return SDValue();
16720}
16721
16722// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16723static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16724                                 TargetLowering::DAGCombinerInfo &DCI,
16725                                 const X86Subtarget *Subtarget) {
16726  EVT VT = N->getValueType(0);
16727  if (DCI.isBeforeLegalizeOps())
16728    return SDValue();
16729
16730  if (Subtarget->hasCMov()) {
16731    SDValue RV = performIntegerAbsCombine(N, DAG);
16732    if (RV.getNode())
16733      return RV;
16734  }
16735
16736  // Try forming BMI if it is available.
16737  if (!Subtarget->hasBMI())
16738    return SDValue();
16739
16740  if (VT != MVT::i32 && VT != MVT::i64)
16741    return SDValue();
16742
16743  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16744
16745  // Create BLSMSK instructions by finding X ^ (X-1)
16746  SDValue N0 = N->getOperand(0);
16747  SDValue N1 = N->getOperand(1);
16748  DebugLoc DL = N->getDebugLoc();
16749
16750  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16751      isAllOnes(N0.getOperand(1)))
16752    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16753
16754  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16755      isAllOnes(N1.getOperand(1)))
16756    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16757
16758  return SDValue();
16759}
16760
16761/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16762static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16763                                  TargetLowering::DAGCombinerInfo &DCI,
16764                                  const X86Subtarget *Subtarget) {
16765  LoadSDNode *Ld = cast<LoadSDNode>(N);
16766  EVT RegVT = Ld->getValueType(0);
16767  EVT MemVT = Ld->getMemoryVT();
16768  DebugLoc dl = Ld->getDebugLoc();
16769  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16770  unsigned RegSz = RegVT.getSizeInBits();
16771
16772  // On Sandybridge unaligned 256bit loads are inefficient.
16773  ISD::LoadExtType Ext = Ld->getExtensionType();
16774  unsigned Alignment = Ld->getAlignment();
16775  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
16776  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16777      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16778    unsigned NumElems = RegVT.getVectorNumElements();
16779    if (NumElems < 2)
16780      return SDValue();
16781
16782    SDValue Ptr = Ld->getBasePtr();
16783    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16784
16785    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16786                                  NumElems/2);
16787    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16788                                Ld->getPointerInfo(), Ld->isVolatile(),
16789                                Ld->isNonTemporal(), Ld->isInvariant(),
16790                                Alignment);
16791    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16792    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16793                                Ld->getPointerInfo(), Ld->isVolatile(),
16794                                Ld->isNonTemporal(), Ld->isInvariant(),
16795                                std::min(16U, Alignment));
16796    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16797                             Load1.getValue(1),
16798                             Load2.getValue(1));
16799
16800    SDValue NewVec = DAG.getUNDEF(RegVT);
16801    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16802    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16803    return DCI.CombineTo(N, NewVec, TF, true);
16804  }
16805
16806  // If this is a vector EXT Load then attempt to optimize it using a
16807  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16808  // expansion is still better than scalar code.
16809  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16810  // emit a shuffle and a arithmetic shift.
16811  // TODO: It is possible to support ZExt by zeroing the undef values
16812  // during the shuffle phase or after the shuffle.
16813  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16814      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16815    assert(MemVT != RegVT && "Cannot extend to the same type");
16816    assert(MemVT.isVector() && "Must load a vector from memory");
16817
16818    unsigned NumElems = RegVT.getVectorNumElements();
16819    unsigned MemSz = MemVT.getSizeInBits();
16820    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16821
16822    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16823      return SDValue();
16824
16825    // All sizes must be a power of two.
16826    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16827      return SDValue();
16828
16829    // Attempt to load the original value using scalar loads.
16830    // Find the largest scalar type that divides the total loaded size.
16831    MVT SclrLoadTy = MVT::i8;
16832    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16833         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16834      MVT Tp = (MVT::SimpleValueType)tp;
16835      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16836        SclrLoadTy = Tp;
16837      }
16838    }
16839
16840    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16841    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16842        (64 <= MemSz))
16843      SclrLoadTy = MVT::f64;
16844
16845    // Calculate the number of scalar loads that we need to perform
16846    // in order to load our vector from memory.
16847    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16848    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16849      return SDValue();
16850
16851    unsigned loadRegZize = RegSz;
16852    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16853      loadRegZize /= 2;
16854
16855    // Represent our vector as a sequence of elements which are the
16856    // largest scalar that we can load.
16857    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16858      loadRegZize/SclrLoadTy.getSizeInBits());
16859
16860    // Represent the data using the same element type that is stored in
16861    // memory. In practice, we ''widen'' MemVT.
16862    EVT WideVecVT =
16863          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16864                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16865
16866    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16867      "Invalid vector type");
16868
16869    // We can't shuffle using an illegal type.
16870    if (!TLI.isTypeLegal(WideVecVT))
16871      return SDValue();
16872
16873    SmallVector<SDValue, 8> Chains;
16874    SDValue Ptr = Ld->getBasePtr();
16875    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16876                                        TLI.getPointerTy());
16877    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16878
16879    for (unsigned i = 0; i < NumLoads; ++i) {
16880      // Perform a single load.
16881      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16882                                       Ptr, Ld->getPointerInfo(),
16883                                       Ld->isVolatile(), Ld->isNonTemporal(),
16884                                       Ld->isInvariant(), Ld->getAlignment());
16885      Chains.push_back(ScalarLoad.getValue(1));
16886      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16887      // another round of DAGCombining.
16888      if (i == 0)
16889        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16890      else
16891        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16892                          ScalarLoad, DAG.getIntPtrConstant(i));
16893
16894      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16895    }
16896
16897    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16898                               Chains.size());
16899
16900    // Bitcast the loaded value to a vector of the original element type, in
16901    // the size of the target vector type.
16902    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16903    unsigned SizeRatio = RegSz/MemSz;
16904
16905    if (Ext == ISD::SEXTLOAD) {
16906      // If we have SSE4.1 we can directly emit a VSEXT node.
16907      if (Subtarget->hasSSE41()) {
16908        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16909        return DCI.CombineTo(N, Sext, TF, true);
16910      }
16911
16912      // Otherwise we'll shuffle the small elements in the high bits of the
16913      // larger type and perform an arithmetic shift. If the shift is not legal
16914      // it's better to scalarize.
16915      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16916        return SDValue();
16917
16918      // Redistribute the loaded elements into the different locations.
16919      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16920      for (unsigned i = 0; i != NumElems; ++i)
16921        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16922
16923      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16924                                           DAG.getUNDEF(WideVecVT),
16925                                           &ShuffleVec[0]);
16926
16927      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16928
16929      // Build the arithmetic shift.
16930      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16931                     MemVT.getVectorElementType().getSizeInBits();
16932      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
16933                          DAG.getConstant(Amt, RegVT));
16934
16935      return DCI.CombineTo(N, Shuff, TF, true);
16936    }
16937
16938    // Redistribute the loaded elements into the different locations.
16939    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16940    for (unsigned i = 0; i != NumElems; ++i)
16941      ShuffleVec[i*SizeRatio] = i;
16942
16943    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16944                                         DAG.getUNDEF(WideVecVT),
16945                                         &ShuffleVec[0]);
16946
16947    // Bitcast to the requested type.
16948    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16949    // Replace the original load with the new sequence
16950    // and return the new chain.
16951    return DCI.CombineTo(N, Shuff, TF, true);
16952  }
16953
16954  return SDValue();
16955}
16956
16957/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16958static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16959                                   const X86Subtarget *Subtarget) {
16960  StoreSDNode *St = cast<StoreSDNode>(N);
16961  EVT VT = St->getValue().getValueType();
16962  EVT StVT = St->getMemoryVT();
16963  DebugLoc dl = St->getDebugLoc();
16964  SDValue StoredVal = St->getOperand(1);
16965  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16966
16967  // If we are saving a concatenation of two XMM registers, perform two stores.
16968  // On Sandy Bridge, 256-bit memory operations are executed by two
16969  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16970  // memory  operation.
16971  unsigned Alignment = St->getAlignment();
16972  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
16973  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16974      StVT == VT && !IsAligned) {
16975    unsigned NumElems = VT.getVectorNumElements();
16976    if (NumElems < 2)
16977      return SDValue();
16978
16979    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16980    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16981
16982    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16983    SDValue Ptr0 = St->getBasePtr();
16984    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16985
16986    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16987                                St->getPointerInfo(), St->isVolatile(),
16988                                St->isNonTemporal(), Alignment);
16989    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16990                                St->getPointerInfo(), St->isVolatile(),
16991                                St->isNonTemporal(),
16992                                std::min(16U, Alignment));
16993    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16994  }
16995
16996  // Optimize trunc store (of multiple scalars) to shuffle and store.
16997  // First, pack all of the elements in one place. Next, store to memory
16998  // in fewer chunks.
16999  if (St->isTruncatingStore() && VT.isVector()) {
17000    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17001    unsigned NumElems = VT.getVectorNumElements();
17002    assert(StVT != VT && "Cannot truncate to the same type");
17003    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
17004    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
17005
17006    // From, To sizes and ElemCount must be pow of two
17007    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
17008    // We are going to use the original vector elt for storing.
17009    // Accumulated smaller vector elements must be a multiple of the store size.
17010    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
17011
17012    unsigned SizeRatio  = FromSz / ToSz;
17013
17014    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
17015
17016    // Create a type on which we perform the shuffle
17017    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
17018            StVT.getScalarType(), NumElems*SizeRatio);
17019
17020    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
17021
17022    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
17023    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17024    for (unsigned i = 0; i != NumElems; ++i)
17025      ShuffleVec[i] = i * SizeRatio;
17026
17027    // Can't shuffle using an illegal type.
17028    if (!TLI.isTypeLegal(WideVecVT))
17029      return SDValue();
17030
17031    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
17032                                         DAG.getUNDEF(WideVecVT),
17033                                         &ShuffleVec[0]);
17034    // At this point all of the data is stored at the bottom of the
17035    // register. We now need to save it to mem.
17036
17037    // Find the largest store unit
17038    MVT StoreType = MVT::i8;
17039    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
17040         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
17041      MVT Tp = (MVT::SimpleValueType)tp;
17042      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
17043        StoreType = Tp;
17044    }
17045
17046    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
17047    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
17048        (64 <= NumElems * ToSz))
17049      StoreType = MVT::f64;
17050
17051    // Bitcast the original vector into a vector of store-size units
17052    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
17053            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
17054    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
17055    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
17056    SmallVector<SDValue, 8> Chains;
17057    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
17058                                        TLI.getPointerTy());
17059    SDValue Ptr = St->getBasePtr();
17060
17061    // Perform one or more big stores into memory.
17062    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
17063      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
17064                                   StoreType, ShuffWide,
17065                                   DAG.getIntPtrConstant(i));
17066      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
17067                                St->getPointerInfo(), St->isVolatile(),
17068                                St->isNonTemporal(), St->getAlignment());
17069      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17070      Chains.push_back(Ch);
17071    }
17072
17073    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
17074                               Chains.size());
17075  }
17076
17077  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
17078  // the FP state in cases where an emms may be missing.
17079  // A preferable solution to the general problem is to figure out the right
17080  // places to insert EMMS.  This qualifies as a quick hack.
17081
17082  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
17083  if (VT.getSizeInBits() != 64)
17084    return SDValue();
17085
17086  const Function *F = DAG.getMachineFunction().getFunction();
17087  bool NoImplicitFloatOps = F->getAttributes().
17088    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
17089  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
17090                     && Subtarget->hasSSE2();
17091  if ((VT.isVector() ||
17092       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
17093      isa<LoadSDNode>(St->getValue()) &&
17094      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
17095      St->getChain().hasOneUse() && !St->isVolatile()) {
17096    SDNode* LdVal = St->getValue().getNode();
17097    LoadSDNode *Ld = 0;
17098    int TokenFactorIndex = -1;
17099    SmallVector<SDValue, 8> Ops;
17100    SDNode* ChainVal = St->getChain().getNode();
17101    // Must be a store of a load.  We currently handle two cases:  the load
17102    // is a direct child, and it's under an intervening TokenFactor.  It is
17103    // possible to dig deeper under nested TokenFactors.
17104    if (ChainVal == LdVal)
17105      Ld = cast<LoadSDNode>(St->getChain());
17106    else if (St->getValue().hasOneUse() &&
17107             ChainVal->getOpcode() == ISD::TokenFactor) {
17108      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
17109        if (ChainVal->getOperand(i).getNode() == LdVal) {
17110          TokenFactorIndex = i;
17111          Ld = cast<LoadSDNode>(St->getValue());
17112        } else
17113          Ops.push_back(ChainVal->getOperand(i));
17114      }
17115    }
17116
17117    if (!Ld || !ISD::isNormalLoad(Ld))
17118      return SDValue();
17119
17120    // If this is not the MMX case, i.e. we are just turning i64 load/store
17121    // into f64 load/store, avoid the transformation if there are multiple
17122    // uses of the loaded value.
17123    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
17124      return SDValue();
17125
17126    DebugLoc LdDL = Ld->getDebugLoc();
17127    DebugLoc StDL = N->getDebugLoc();
17128    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
17129    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
17130    // pair instead.
17131    if (Subtarget->is64Bit() || F64IsLegal) {
17132      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
17133      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
17134                                  Ld->getPointerInfo(), Ld->isVolatile(),
17135                                  Ld->isNonTemporal(), Ld->isInvariant(),
17136                                  Ld->getAlignment());
17137      SDValue NewChain = NewLd.getValue(1);
17138      if (TokenFactorIndex != -1) {
17139        Ops.push_back(NewChain);
17140        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17141                               Ops.size());
17142      }
17143      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
17144                          St->getPointerInfo(),
17145                          St->isVolatile(), St->isNonTemporal(),
17146                          St->getAlignment());
17147    }
17148
17149    // Otherwise, lower to two pairs of 32-bit loads / stores.
17150    SDValue LoAddr = Ld->getBasePtr();
17151    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
17152                                 DAG.getConstant(4, MVT::i32));
17153
17154    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
17155                               Ld->getPointerInfo(),
17156                               Ld->isVolatile(), Ld->isNonTemporal(),
17157                               Ld->isInvariant(), Ld->getAlignment());
17158    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
17159                               Ld->getPointerInfo().getWithOffset(4),
17160                               Ld->isVolatile(), Ld->isNonTemporal(),
17161                               Ld->isInvariant(),
17162                               MinAlign(Ld->getAlignment(), 4));
17163
17164    SDValue NewChain = LoLd.getValue(1);
17165    if (TokenFactorIndex != -1) {
17166      Ops.push_back(LoLd);
17167      Ops.push_back(HiLd);
17168      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17169                             Ops.size());
17170    }
17171
17172    LoAddr = St->getBasePtr();
17173    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
17174                         DAG.getConstant(4, MVT::i32));
17175
17176    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
17177                                St->getPointerInfo(),
17178                                St->isVolatile(), St->isNonTemporal(),
17179                                St->getAlignment());
17180    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
17181                                St->getPointerInfo().getWithOffset(4),
17182                                St->isVolatile(),
17183                                St->isNonTemporal(),
17184                                MinAlign(St->getAlignment(), 4));
17185    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
17186  }
17187  return SDValue();
17188}
17189
17190/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
17191/// and return the operands for the horizontal operation in LHS and RHS.  A
17192/// horizontal operation performs the binary operation on successive elements
17193/// of its first operand, then on successive elements of its second operand,
17194/// returning the resulting values in a vector.  For example, if
17195///   A = < float a0, float a1, float a2, float a3 >
17196/// and
17197///   B = < float b0, float b1, float b2, float b3 >
17198/// then the result of doing a horizontal operation on A and B is
17199///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
17200/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
17201/// A horizontal-op B, for some already available A and B, and if so then LHS is
17202/// set to A, RHS to B, and the routine returns 'true'.
17203/// Note that the binary operation should have the property that if one of the
17204/// operands is UNDEF then the result is UNDEF.
17205static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
17206  // Look for the following pattern: if
17207  //   A = < float a0, float a1, float a2, float a3 >
17208  //   B = < float b0, float b1, float b2, float b3 >
17209  // and
17210  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
17211  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
17212  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
17213  // which is A horizontal-op B.
17214
17215  // At least one of the operands should be a vector shuffle.
17216  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
17217      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
17218    return false;
17219
17220  EVT VT = LHS.getValueType();
17221
17222  assert((VT.is128BitVector() || VT.is256BitVector()) &&
17223         "Unsupported vector type for horizontal add/sub");
17224
17225  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
17226  // operate independently on 128-bit lanes.
17227  unsigned NumElts = VT.getVectorNumElements();
17228  unsigned NumLanes = VT.getSizeInBits()/128;
17229  unsigned NumLaneElts = NumElts / NumLanes;
17230  assert((NumLaneElts % 2 == 0) &&
17231         "Vector type should have an even number of elements in each lane");
17232  unsigned HalfLaneElts = NumLaneElts/2;
17233
17234  // View LHS in the form
17235  //   LHS = VECTOR_SHUFFLE A, B, LMask
17236  // If LHS is not a shuffle then pretend it is the shuffle
17237  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
17238  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
17239  // type VT.
17240  SDValue A, B;
17241  SmallVector<int, 16> LMask(NumElts);
17242  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17243    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
17244      A = LHS.getOperand(0);
17245    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
17246      B = LHS.getOperand(1);
17247    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
17248    std::copy(Mask.begin(), Mask.end(), LMask.begin());
17249  } else {
17250    if (LHS.getOpcode() != ISD::UNDEF)
17251      A = LHS;
17252    for (unsigned i = 0; i != NumElts; ++i)
17253      LMask[i] = i;
17254  }
17255
17256  // Likewise, view RHS in the form
17257  //   RHS = VECTOR_SHUFFLE C, D, RMask
17258  SDValue C, D;
17259  SmallVector<int, 16> RMask(NumElts);
17260  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17261    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
17262      C = RHS.getOperand(0);
17263    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
17264      D = RHS.getOperand(1);
17265    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
17266    std::copy(Mask.begin(), Mask.end(), RMask.begin());
17267  } else {
17268    if (RHS.getOpcode() != ISD::UNDEF)
17269      C = RHS;
17270    for (unsigned i = 0; i != NumElts; ++i)
17271      RMask[i] = i;
17272  }
17273
17274  // Check that the shuffles are both shuffling the same vectors.
17275  if (!(A == C && B == D) && !(A == D && B == C))
17276    return false;
17277
17278  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
17279  if (!A.getNode() && !B.getNode())
17280    return false;
17281
17282  // If A and B occur in reverse order in RHS, then "swap" them (which means
17283  // rewriting the mask).
17284  if (A != C)
17285    CommuteVectorShuffleMask(RMask, NumElts);
17286
17287  // At this point LHS and RHS are equivalent to
17288  //   LHS = VECTOR_SHUFFLE A, B, LMask
17289  //   RHS = VECTOR_SHUFFLE A, B, RMask
17290  // Check that the masks correspond to performing a horizontal operation.
17291  for (unsigned i = 0; i != NumElts; ++i) {
17292    int LIdx = LMask[i], RIdx = RMask[i];
17293
17294    // Ignore any UNDEF components.
17295    if (LIdx < 0 || RIdx < 0 ||
17296        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
17297        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
17298      continue;
17299
17300    // Check that successive elements are being operated on.  If not, this is
17301    // not a horizontal operation.
17302    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
17303    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
17304    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
17305    if (!(LIdx == Index && RIdx == Index + 1) &&
17306        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
17307      return false;
17308  }
17309
17310  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
17311  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
17312  return true;
17313}
17314
17315/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
17316static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17317                                  const X86Subtarget *Subtarget) {
17318  EVT VT = N->getValueType(0);
17319  SDValue LHS = N->getOperand(0);
17320  SDValue RHS = N->getOperand(1);
17321
17322  // Try to synthesize horizontal adds from adds of shuffles.
17323  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17324       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17325      isHorizontalBinOp(LHS, RHS, true))
17326    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
17327  return SDValue();
17328}
17329
17330/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
17331static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
17332                                  const X86Subtarget *Subtarget) {
17333  EVT VT = N->getValueType(0);
17334  SDValue LHS = N->getOperand(0);
17335  SDValue RHS = N->getOperand(1);
17336
17337  // Try to synthesize horizontal subs from subs of shuffles.
17338  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17339       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17340      isHorizontalBinOp(LHS, RHS, false))
17341    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
17342  return SDValue();
17343}
17344
17345/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
17346/// X86ISD::FXOR nodes.
17347static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
17348  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
17349  // F[X]OR(0.0, x) -> x
17350  // F[X]OR(x, 0.0) -> x
17351  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17352    if (C->getValueAPF().isPosZero())
17353      return N->getOperand(1);
17354  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17355    if (C->getValueAPF().isPosZero())
17356      return N->getOperand(0);
17357  return SDValue();
17358}
17359
17360/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
17361/// X86ISD::FMAX nodes.
17362static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
17363  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
17364
17365  // Only perform optimizations if UnsafeMath is used.
17366  if (!DAG.getTarget().Options.UnsafeFPMath)
17367    return SDValue();
17368
17369  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
17370  // into FMINC and FMAXC, which are Commutative operations.
17371  unsigned NewOp = 0;
17372  switch (N->getOpcode()) {
17373    default: llvm_unreachable("unknown opcode");
17374    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
17375    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
17376  }
17377
17378  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
17379                     N->getOperand(0), N->getOperand(1));
17380}
17381
17382/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
17383static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
17384  // FAND(0.0, x) -> 0.0
17385  // FAND(x, 0.0) -> 0.0
17386  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17387    if (C->getValueAPF().isPosZero())
17388      return N->getOperand(0);
17389  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17390    if (C->getValueAPF().isPosZero())
17391      return N->getOperand(1);
17392  return SDValue();
17393}
17394
17395static SDValue PerformBTCombine(SDNode *N,
17396                                SelectionDAG &DAG,
17397                                TargetLowering::DAGCombinerInfo &DCI) {
17398  // BT ignores high bits in the bit index operand.
17399  SDValue Op1 = N->getOperand(1);
17400  if (Op1.hasOneUse()) {
17401    unsigned BitWidth = Op1.getValueSizeInBits();
17402    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
17403    APInt KnownZero, KnownOne;
17404    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
17405                                          !DCI.isBeforeLegalizeOps());
17406    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17407    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
17408        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
17409      DCI.CommitTargetLoweringOpt(TLO);
17410  }
17411  return SDValue();
17412}
17413
17414static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
17415  SDValue Op = N->getOperand(0);
17416  if (Op.getOpcode() == ISD::BITCAST)
17417    Op = Op.getOperand(0);
17418  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
17419  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
17420      VT.getVectorElementType().getSizeInBits() ==
17421      OpVT.getVectorElementType().getSizeInBits()) {
17422    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
17423  }
17424  return SDValue();
17425}
17426
17427static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
17428                                               const X86Subtarget *Subtarget) {
17429  EVT VT = N->getValueType(0);
17430  if (!VT.isVector())
17431    return SDValue();
17432
17433  SDValue N0 = N->getOperand(0);
17434  SDValue N1 = N->getOperand(1);
17435  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
17436  DebugLoc dl = N->getDebugLoc();
17437
17438  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
17439  // both SSE and AVX2 since there is no sign-extended shift right
17440  // operation on a vector with 64-bit elements.
17441  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
17442  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
17443  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
17444      N0.getOpcode() == ISD::SIGN_EXTEND)) {
17445    SDValue N00 = N0.getOperand(0);
17446
17447    // EXTLOAD has a better solution on AVX2,
17448    // it may be replaced with X86ISD::VSEXT node.
17449    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
17450      if (!ISD::isNormalLoad(N00.getNode()))
17451        return SDValue();
17452
17453    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
17454        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
17455                                  N00, N1);
17456      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
17457    }
17458  }
17459  return SDValue();
17460}
17461
17462static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17463                                  TargetLowering::DAGCombinerInfo &DCI,
17464                                  const X86Subtarget *Subtarget) {
17465  if (!DCI.isBeforeLegalizeOps())
17466    return SDValue();
17467
17468  if (!Subtarget->hasFp256())
17469    return SDValue();
17470
17471  EVT VT = N->getValueType(0);
17472  if (VT.isVector() && VT.getSizeInBits() == 256) {
17473    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17474    if (R.getNode())
17475      return R;
17476  }
17477
17478  return SDValue();
17479}
17480
17481static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17482                                 const X86Subtarget* Subtarget) {
17483  DebugLoc dl = N->getDebugLoc();
17484  EVT VT = N->getValueType(0);
17485
17486  // Let legalize expand this if it isn't a legal type yet.
17487  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17488    return SDValue();
17489
17490  EVT ScalarVT = VT.getScalarType();
17491  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17492      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17493    return SDValue();
17494
17495  SDValue A = N->getOperand(0);
17496  SDValue B = N->getOperand(1);
17497  SDValue C = N->getOperand(2);
17498
17499  bool NegA = (A.getOpcode() == ISD::FNEG);
17500  bool NegB = (B.getOpcode() == ISD::FNEG);
17501  bool NegC = (C.getOpcode() == ISD::FNEG);
17502
17503  // Negative multiplication when NegA xor NegB
17504  bool NegMul = (NegA != NegB);
17505  if (NegA)
17506    A = A.getOperand(0);
17507  if (NegB)
17508    B = B.getOperand(0);
17509  if (NegC)
17510    C = C.getOperand(0);
17511
17512  unsigned Opcode;
17513  if (!NegMul)
17514    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17515  else
17516    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17517
17518  return DAG.getNode(Opcode, dl, VT, A, B, C);
17519}
17520
17521static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17522                                  TargetLowering::DAGCombinerInfo &DCI,
17523                                  const X86Subtarget *Subtarget) {
17524  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17525  //           (and (i32 x86isd::setcc_carry), 1)
17526  // This eliminates the zext. This transformation is necessary because
17527  // ISD::SETCC is always legalized to i8.
17528  DebugLoc dl = N->getDebugLoc();
17529  SDValue N0 = N->getOperand(0);
17530  EVT VT = N->getValueType(0);
17531
17532  if (N0.getOpcode() == ISD::AND &&
17533      N0.hasOneUse() &&
17534      N0.getOperand(0).hasOneUse()) {
17535    SDValue N00 = N0.getOperand(0);
17536    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17537      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17538      if (!C || C->getZExtValue() != 1)
17539        return SDValue();
17540      return DAG.getNode(ISD::AND, dl, VT,
17541                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17542                                     N00.getOperand(0), N00.getOperand(1)),
17543                         DAG.getConstant(1, VT));
17544    }
17545  }
17546
17547  if (VT.is256BitVector()) {
17548    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17549    if (R.getNode())
17550      return R;
17551  }
17552
17553  return SDValue();
17554}
17555
17556// Optimize x == -y --> x+y == 0
17557//          x != -y --> x+y != 0
17558static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17559  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17560  SDValue LHS = N->getOperand(0);
17561  SDValue RHS = N->getOperand(1);
17562
17563  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17564    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17565      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17566        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17567                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17568        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17569                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17570      }
17571  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17572    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17573      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17574        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17575                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17576        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17577                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17578      }
17579  return SDValue();
17580}
17581
17582// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17583// as "sbb reg,reg", since it can be extended without zext and produces
17584// an all-ones bit which is more useful than 0/1 in some cases.
17585static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17586  return DAG.getNode(ISD::AND, DL, MVT::i8,
17587                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17588                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17589                     DAG.getConstant(1, MVT::i8));
17590}
17591
17592// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17593static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17594                                   TargetLowering::DAGCombinerInfo &DCI,
17595                                   const X86Subtarget *Subtarget) {
17596  DebugLoc DL = N->getDebugLoc();
17597  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17598  SDValue EFLAGS = N->getOperand(1);
17599
17600  if (CC == X86::COND_A) {
17601    // Try to convert COND_A into COND_B in an attempt to facilitate
17602    // materializing "setb reg".
17603    //
17604    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17605    // cannot take an immediate as its first operand.
17606    //
17607    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17608        EFLAGS.getValueType().isInteger() &&
17609        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17610      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17611                                   EFLAGS.getNode()->getVTList(),
17612                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17613      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17614      return MaterializeSETB(DL, NewEFLAGS, DAG);
17615    }
17616  }
17617
17618  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17619  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17620  // cases.
17621  if (CC == X86::COND_B)
17622    return MaterializeSETB(DL, EFLAGS, DAG);
17623
17624  SDValue Flags;
17625
17626  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17627  if (Flags.getNode()) {
17628    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17629    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17630  }
17631
17632  return SDValue();
17633}
17634
17635// Optimize branch condition evaluation.
17636//
17637static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17638                                    TargetLowering::DAGCombinerInfo &DCI,
17639                                    const X86Subtarget *Subtarget) {
17640  DebugLoc DL = N->getDebugLoc();
17641  SDValue Chain = N->getOperand(0);
17642  SDValue Dest = N->getOperand(1);
17643  SDValue EFLAGS = N->getOperand(3);
17644  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17645
17646  SDValue Flags;
17647
17648  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17649  if (Flags.getNode()) {
17650    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17651    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17652                       Flags);
17653  }
17654
17655  return SDValue();
17656}
17657
17658static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17659                                        const X86TargetLowering *XTLI) {
17660  SDValue Op0 = N->getOperand(0);
17661  EVT InVT = Op0->getValueType(0);
17662
17663  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17664  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17665    DebugLoc dl = N->getDebugLoc();
17666    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17667    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17668    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17669  }
17670
17671  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17672  // a 32-bit target where SSE doesn't support i64->FP operations.
17673  if (Op0.getOpcode() == ISD::LOAD) {
17674    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17675    EVT VT = Ld->getValueType(0);
17676    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17677        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17678        !XTLI->getSubtarget()->is64Bit() &&
17679        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17680      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17681                                          Ld->getChain(), Op0, DAG);
17682      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17683      return FILDChain;
17684    }
17685  }
17686  return SDValue();
17687}
17688
17689// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17690static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17691                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17692  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17693  // the result is either zero or one (depending on the input carry bit).
17694  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17695  if (X86::isZeroNode(N->getOperand(0)) &&
17696      X86::isZeroNode(N->getOperand(1)) &&
17697      // We don't have a good way to replace an EFLAGS use, so only do this when
17698      // dead right now.
17699      SDValue(N, 1).use_empty()) {
17700    DebugLoc DL = N->getDebugLoc();
17701    EVT VT = N->getValueType(0);
17702    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17703    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17704                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17705                                           DAG.getConstant(X86::COND_B,MVT::i8),
17706                                           N->getOperand(2)),
17707                               DAG.getConstant(1, VT));
17708    return DCI.CombineTo(N, Res1, CarryOut);
17709  }
17710
17711  return SDValue();
17712}
17713
17714// fold (add Y, (sete  X, 0)) -> adc  0, Y
17715//      (add Y, (setne X, 0)) -> sbb -1, Y
17716//      (sub (sete  X, 0), Y) -> sbb  0, Y
17717//      (sub (setne X, 0), Y) -> adc -1, Y
17718static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17719  DebugLoc DL = N->getDebugLoc();
17720
17721  // Look through ZExts.
17722  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17723  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17724    return SDValue();
17725
17726  SDValue SetCC = Ext.getOperand(0);
17727  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17728    return SDValue();
17729
17730  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17731  if (CC != X86::COND_E && CC != X86::COND_NE)
17732    return SDValue();
17733
17734  SDValue Cmp = SetCC.getOperand(1);
17735  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17736      !X86::isZeroNode(Cmp.getOperand(1)) ||
17737      !Cmp.getOperand(0).getValueType().isInteger())
17738    return SDValue();
17739
17740  SDValue CmpOp0 = Cmp.getOperand(0);
17741  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17742                               DAG.getConstant(1, CmpOp0.getValueType()));
17743
17744  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17745  if (CC == X86::COND_NE)
17746    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17747                       DL, OtherVal.getValueType(), OtherVal,
17748                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17749  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17750                     DL, OtherVal.getValueType(), OtherVal,
17751                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17752}
17753
17754/// PerformADDCombine - Do target-specific dag combines on integer adds.
17755static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17756                                 const X86Subtarget *Subtarget) {
17757  EVT VT = N->getValueType(0);
17758  SDValue Op0 = N->getOperand(0);
17759  SDValue Op1 = N->getOperand(1);
17760
17761  // Try to synthesize horizontal adds from adds of shuffles.
17762  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17763       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17764      isHorizontalBinOp(Op0, Op1, true))
17765    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17766
17767  return OptimizeConditionalInDecrement(N, DAG);
17768}
17769
17770static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17771                                 const X86Subtarget *Subtarget) {
17772  SDValue Op0 = N->getOperand(0);
17773  SDValue Op1 = N->getOperand(1);
17774
17775  // X86 can't encode an immediate LHS of a sub. See if we can push the
17776  // negation into a preceding instruction.
17777  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17778    // If the RHS of the sub is a XOR with one use and a constant, invert the
17779    // immediate. Then add one to the LHS of the sub so we can turn
17780    // X-Y -> X+~Y+1, saving one register.
17781    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17782        isa<ConstantSDNode>(Op1.getOperand(1))) {
17783      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17784      EVT VT = Op0.getValueType();
17785      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17786                                   Op1.getOperand(0),
17787                                   DAG.getConstant(~XorC, VT));
17788      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17789                         DAG.getConstant(C->getAPIntValue()+1, VT));
17790    }
17791  }
17792
17793  // Try to synthesize horizontal adds from adds of shuffles.
17794  EVT VT = N->getValueType(0);
17795  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17796       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17797      isHorizontalBinOp(Op0, Op1, true))
17798    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17799
17800  return OptimizeConditionalInDecrement(N, DAG);
17801}
17802
17803/// performVZEXTCombine - Performs build vector combines
17804static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17805                                        TargetLowering::DAGCombinerInfo &DCI,
17806                                        const X86Subtarget *Subtarget) {
17807  // (vzext (bitcast (vzext (x)) -> (vzext x)
17808  SDValue In = N->getOperand(0);
17809  while (In.getOpcode() == ISD::BITCAST)
17810    In = In.getOperand(0);
17811
17812  if (In.getOpcode() != X86ISD::VZEXT)
17813    return SDValue();
17814
17815  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0),
17816                     In.getOperand(0));
17817}
17818
17819SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17820                                             DAGCombinerInfo &DCI) const {
17821  SelectionDAG &DAG = DCI.DAG;
17822  switch (N->getOpcode()) {
17823  default: break;
17824  case ISD::EXTRACT_VECTOR_ELT:
17825    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17826  case ISD::VSELECT:
17827  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17828  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17829  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17830  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17831  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17832  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17833  case ISD::SHL:
17834  case ISD::SRA:
17835  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17836  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17837  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17838  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17839  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17840  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17841  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17842  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17843  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17844  case X86ISD::FXOR:
17845  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17846  case X86ISD::FMIN:
17847  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17848  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17849  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17850  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17851  case ISD::ANY_EXTEND:
17852  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17853  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17854  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
17855  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17856  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17857  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17858  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17859  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17860  case X86ISD::SHUFP:       // Handle all target specific shuffles
17861  case X86ISD::PALIGNR:
17862  case X86ISD::UNPCKH:
17863  case X86ISD::UNPCKL:
17864  case X86ISD::MOVHLPS:
17865  case X86ISD::MOVLHPS:
17866  case X86ISD::PSHUFD:
17867  case X86ISD::PSHUFHW:
17868  case X86ISD::PSHUFLW:
17869  case X86ISD::MOVSS:
17870  case X86ISD::MOVSD:
17871  case X86ISD::VPERMILP:
17872  case X86ISD::VPERM2X128:
17873  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17874  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17875  }
17876
17877  return SDValue();
17878}
17879
17880/// isTypeDesirableForOp - Return true if the target has native support for
17881/// the specified value type and it is 'desirable' to use the type for the
17882/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17883/// instruction encodings are longer and some i16 instructions are slow.
17884bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17885  if (!isTypeLegal(VT))
17886    return false;
17887  if (VT != MVT::i16)
17888    return true;
17889
17890  switch (Opc) {
17891  default:
17892    return true;
17893  case ISD::LOAD:
17894  case ISD::SIGN_EXTEND:
17895  case ISD::ZERO_EXTEND:
17896  case ISD::ANY_EXTEND:
17897  case ISD::SHL:
17898  case ISD::SRL:
17899  case ISD::SUB:
17900  case ISD::ADD:
17901  case ISD::MUL:
17902  case ISD::AND:
17903  case ISD::OR:
17904  case ISD::XOR:
17905    return false;
17906  }
17907}
17908
17909/// IsDesirableToPromoteOp - This method query the target whether it is
17910/// beneficial for dag combiner to promote the specified node. If true, it
17911/// should return the desired promotion type by reference.
17912bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17913  EVT VT = Op.getValueType();
17914  if (VT != MVT::i16)
17915    return false;
17916
17917  bool Promote = false;
17918  bool Commute = false;
17919  switch (Op.getOpcode()) {
17920  default: break;
17921  case ISD::LOAD: {
17922    LoadSDNode *LD = cast<LoadSDNode>(Op);
17923    // If the non-extending load has a single use and it's not live out, then it
17924    // might be folded.
17925    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17926                                                     Op.hasOneUse()*/) {
17927      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17928             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17929        // The only case where we'd want to promote LOAD (rather then it being
17930        // promoted as an operand is when it's only use is liveout.
17931        if (UI->getOpcode() != ISD::CopyToReg)
17932          return false;
17933      }
17934    }
17935    Promote = true;
17936    break;
17937  }
17938  case ISD::SIGN_EXTEND:
17939  case ISD::ZERO_EXTEND:
17940  case ISD::ANY_EXTEND:
17941    Promote = true;
17942    break;
17943  case ISD::SHL:
17944  case ISD::SRL: {
17945    SDValue N0 = Op.getOperand(0);
17946    // Look out for (store (shl (load), x)).
17947    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17948      return false;
17949    Promote = true;
17950    break;
17951  }
17952  case ISD::ADD:
17953  case ISD::MUL:
17954  case ISD::AND:
17955  case ISD::OR:
17956  case ISD::XOR:
17957    Commute = true;
17958    // fallthrough
17959  case ISD::SUB: {
17960    SDValue N0 = Op.getOperand(0);
17961    SDValue N1 = Op.getOperand(1);
17962    if (!Commute && MayFoldLoad(N1))
17963      return false;
17964    // Avoid disabling potential load folding opportunities.
17965    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17966      return false;
17967    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17968      return false;
17969    Promote = true;
17970  }
17971  }
17972
17973  PVT = MVT::i32;
17974  return Promote;
17975}
17976
17977//===----------------------------------------------------------------------===//
17978//                           X86 Inline Assembly Support
17979//===----------------------------------------------------------------------===//
17980
17981namespace {
17982  // Helper to match a string separated by whitespace.
17983  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17984    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17985
17986    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17987      StringRef piece(*args[i]);
17988      if (!s.startswith(piece)) // Check if the piece matches.
17989        return false;
17990
17991      s = s.substr(piece.size());
17992      StringRef::size_type pos = s.find_first_not_of(" \t");
17993      if (pos == 0) // We matched a prefix.
17994        return false;
17995
17996      s = s.substr(pos);
17997    }
17998
17999    return s.empty();
18000  }
18001  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
18002}
18003
18004bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
18005  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
18006
18007  std::string AsmStr = IA->getAsmString();
18008
18009  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
18010  if (!Ty || Ty->getBitWidth() % 16 != 0)
18011    return false;
18012
18013  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
18014  SmallVector<StringRef, 4> AsmPieces;
18015  SplitString(AsmStr, AsmPieces, ";\n");
18016
18017  switch (AsmPieces.size()) {
18018  default: return false;
18019  case 1:
18020    // FIXME: this should verify that we are targeting a 486 or better.  If not,
18021    // we will turn this bswap into something that will be lowered to logical
18022    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
18023    // lower so don't worry about this.
18024    // bswap $0
18025    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
18026        matchAsm(AsmPieces[0], "bswapl", "$0") ||
18027        matchAsm(AsmPieces[0], "bswapq", "$0") ||
18028        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
18029        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
18030        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
18031      // No need to check constraints, nothing other than the equivalent of
18032      // "=r,0" would be valid here.
18033      return IntrinsicLowering::LowerToByteSwap(CI);
18034    }
18035
18036    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
18037    if (CI->getType()->isIntegerTy(16) &&
18038        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18039        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
18040         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
18041      AsmPieces.clear();
18042      const std::string &ConstraintsStr = IA->getConstraintString();
18043      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18044      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18045      if (AsmPieces.size() == 4 &&
18046          AsmPieces[0] == "~{cc}" &&
18047          AsmPieces[1] == "~{dirflag}" &&
18048          AsmPieces[2] == "~{flags}" &&
18049          AsmPieces[3] == "~{fpsr}")
18050      return IntrinsicLowering::LowerToByteSwap(CI);
18051    }
18052    break;
18053  case 3:
18054    if (CI->getType()->isIntegerTy(32) &&
18055        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18056        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
18057        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
18058        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
18059      AsmPieces.clear();
18060      const std::string &ConstraintsStr = IA->getConstraintString();
18061      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18062      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18063      if (AsmPieces.size() == 4 &&
18064          AsmPieces[0] == "~{cc}" &&
18065          AsmPieces[1] == "~{dirflag}" &&
18066          AsmPieces[2] == "~{flags}" &&
18067          AsmPieces[3] == "~{fpsr}")
18068        return IntrinsicLowering::LowerToByteSwap(CI);
18069    }
18070
18071    if (CI->getType()->isIntegerTy(64)) {
18072      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
18073      if (Constraints.size() >= 2 &&
18074          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
18075          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
18076        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
18077        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
18078            matchAsm(AsmPieces[1], "bswap", "%edx") &&
18079            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
18080          return IntrinsicLowering::LowerToByteSwap(CI);
18081      }
18082    }
18083    break;
18084  }
18085  return false;
18086}
18087
18088/// getConstraintType - Given a constraint letter, return the type of
18089/// constraint it is for this target.
18090X86TargetLowering::ConstraintType
18091X86TargetLowering::getConstraintType(const std::string &Constraint) const {
18092  if (Constraint.size() == 1) {
18093    switch (Constraint[0]) {
18094    case 'R':
18095    case 'q':
18096    case 'Q':
18097    case 'f':
18098    case 't':
18099    case 'u':
18100    case 'y':
18101    case 'x':
18102    case 'Y':
18103    case 'l':
18104      return C_RegisterClass;
18105    case 'a':
18106    case 'b':
18107    case 'c':
18108    case 'd':
18109    case 'S':
18110    case 'D':
18111    case 'A':
18112      return C_Register;
18113    case 'I':
18114    case 'J':
18115    case 'K':
18116    case 'L':
18117    case 'M':
18118    case 'N':
18119    case 'G':
18120    case 'C':
18121    case 'e':
18122    case 'Z':
18123      return C_Other;
18124    default:
18125      break;
18126    }
18127  }
18128  return TargetLowering::getConstraintType(Constraint);
18129}
18130
18131/// Examine constraint type and operand type and determine a weight value.
18132/// This object must already have been set up with the operand type
18133/// and the current alternative constraint selected.
18134TargetLowering::ConstraintWeight
18135  X86TargetLowering::getSingleConstraintMatchWeight(
18136    AsmOperandInfo &info, const char *constraint) const {
18137  ConstraintWeight weight = CW_Invalid;
18138  Value *CallOperandVal = info.CallOperandVal;
18139    // If we don't have a value, we can't do a match,
18140    // but allow it at the lowest weight.
18141  if (CallOperandVal == NULL)
18142    return CW_Default;
18143  Type *type = CallOperandVal->getType();
18144  // Look at the constraint type.
18145  switch (*constraint) {
18146  default:
18147    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
18148  case 'R':
18149  case 'q':
18150  case 'Q':
18151  case 'a':
18152  case 'b':
18153  case 'c':
18154  case 'd':
18155  case 'S':
18156  case 'D':
18157  case 'A':
18158    if (CallOperandVal->getType()->isIntegerTy())
18159      weight = CW_SpecificReg;
18160    break;
18161  case 'f':
18162  case 't':
18163  case 'u':
18164    if (type->isFloatingPointTy())
18165      weight = CW_SpecificReg;
18166    break;
18167  case 'y':
18168    if (type->isX86_MMXTy() && Subtarget->hasMMX())
18169      weight = CW_SpecificReg;
18170    break;
18171  case 'x':
18172  case 'Y':
18173    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
18174        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
18175      weight = CW_Register;
18176    break;
18177  case 'I':
18178    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
18179      if (C->getZExtValue() <= 31)
18180        weight = CW_Constant;
18181    }
18182    break;
18183  case 'J':
18184    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18185      if (C->getZExtValue() <= 63)
18186        weight = CW_Constant;
18187    }
18188    break;
18189  case 'K':
18190    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18191      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
18192        weight = CW_Constant;
18193    }
18194    break;
18195  case 'L':
18196    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18197      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
18198        weight = CW_Constant;
18199    }
18200    break;
18201  case 'M':
18202    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18203      if (C->getZExtValue() <= 3)
18204        weight = CW_Constant;
18205    }
18206    break;
18207  case 'N':
18208    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18209      if (C->getZExtValue() <= 0xff)
18210        weight = CW_Constant;
18211    }
18212    break;
18213  case 'G':
18214  case 'C':
18215    if (dyn_cast<ConstantFP>(CallOperandVal)) {
18216      weight = CW_Constant;
18217    }
18218    break;
18219  case 'e':
18220    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18221      if ((C->getSExtValue() >= -0x80000000LL) &&
18222          (C->getSExtValue() <= 0x7fffffffLL))
18223        weight = CW_Constant;
18224    }
18225    break;
18226  case 'Z':
18227    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18228      if (C->getZExtValue() <= 0xffffffff)
18229        weight = CW_Constant;
18230    }
18231    break;
18232  }
18233  return weight;
18234}
18235
18236/// LowerXConstraint - try to replace an X constraint, which matches anything,
18237/// with another that has more specific requirements based on the type of the
18238/// corresponding operand.
18239const char *X86TargetLowering::
18240LowerXConstraint(EVT ConstraintVT) const {
18241  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
18242  // 'f' like normal targets.
18243  if (ConstraintVT.isFloatingPoint()) {
18244    if (Subtarget->hasSSE2())
18245      return "Y";
18246    if (Subtarget->hasSSE1())
18247      return "x";
18248  }
18249
18250  return TargetLowering::LowerXConstraint(ConstraintVT);
18251}
18252
18253/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18254/// vector.  If it is invalid, don't add anything to Ops.
18255void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18256                                                     std::string &Constraint,
18257                                                     std::vector<SDValue>&Ops,
18258                                                     SelectionDAG &DAG) const {
18259  SDValue Result(0, 0);
18260
18261  // Only support length 1 constraints for now.
18262  if (Constraint.length() > 1) return;
18263
18264  char ConstraintLetter = Constraint[0];
18265  switch (ConstraintLetter) {
18266  default: break;
18267  case 'I':
18268    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18269      if (C->getZExtValue() <= 31) {
18270        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18271        break;
18272      }
18273    }
18274    return;
18275  case 'J':
18276    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18277      if (C->getZExtValue() <= 63) {
18278        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18279        break;
18280      }
18281    }
18282    return;
18283  case 'K':
18284    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18285      if (isInt<8>(C->getSExtValue())) {
18286        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18287        break;
18288      }
18289    }
18290    return;
18291  case 'N':
18292    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18293      if (C->getZExtValue() <= 255) {
18294        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18295        break;
18296      }
18297    }
18298    return;
18299  case 'e': {
18300    // 32-bit signed value
18301    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18302      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18303                                           C->getSExtValue())) {
18304        // Widen to 64 bits here to get it sign extended.
18305        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
18306        break;
18307      }
18308    // FIXME gcc accepts some relocatable values here too, but only in certain
18309    // memory models; it's complicated.
18310    }
18311    return;
18312  }
18313  case 'Z': {
18314    // 32-bit unsigned value
18315    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18316      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18317                                           C->getZExtValue())) {
18318        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18319        break;
18320      }
18321    }
18322    // FIXME gcc accepts some relocatable values here too, but only in certain
18323    // memory models; it's complicated.
18324    return;
18325  }
18326  case 'i': {
18327    // Literal immediates are always ok.
18328    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
18329      // Widen to 64 bits here to get it sign extended.
18330      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
18331      break;
18332    }
18333
18334    // In any sort of PIC mode addresses need to be computed at runtime by
18335    // adding in a register or some sort of table lookup.  These can't
18336    // be used as immediates.
18337    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
18338      return;
18339
18340    // If we are in non-pic codegen mode, we allow the address of a global (with
18341    // an optional displacement) to be used with 'i'.
18342    GlobalAddressSDNode *GA = 0;
18343    int64_t Offset = 0;
18344
18345    // Match either (GA), (GA+C), (GA+C1+C2), etc.
18346    while (1) {
18347      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
18348        Offset += GA->getOffset();
18349        break;
18350      } else if (Op.getOpcode() == ISD::ADD) {
18351        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18352          Offset += C->getZExtValue();
18353          Op = Op.getOperand(0);
18354          continue;
18355        }
18356      } else if (Op.getOpcode() == ISD::SUB) {
18357        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18358          Offset += -C->getZExtValue();
18359          Op = Op.getOperand(0);
18360          continue;
18361        }
18362      }
18363
18364      // Otherwise, this isn't something we can handle, reject it.
18365      return;
18366    }
18367
18368    const GlobalValue *GV = GA->getGlobal();
18369    // If we require an extra load to get this address, as in PIC mode, we
18370    // can't accept it.
18371    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
18372                                                        getTargetMachine())))
18373      return;
18374
18375    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
18376                                        GA->getValueType(0), Offset);
18377    break;
18378  }
18379  }
18380
18381  if (Result.getNode()) {
18382    Ops.push_back(Result);
18383    return;
18384  }
18385  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18386}
18387
18388std::pair<unsigned, const TargetRegisterClass*>
18389X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
18390                                                EVT VT) const {
18391  // First, see if this is a constraint that directly corresponds to an LLVM
18392  // register class.
18393  if (Constraint.size() == 1) {
18394    // GCC Constraint Letters
18395    switch (Constraint[0]) {
18396    default: break;
18397      // TODO: Slight differences here in allocation order and leaving
18398      // RIP in the class. Do they matter any more here than they do
18399      // in the normal allocation?
18400    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
18401      if (Subtarget->is64Bit()) {
18402        if (VT == MVT::i32 || VT == MVT::f32)
18403          return std::make_pair(0U, &X86::GR32RegClass);
18404        if (VT == MVT::i16)
18405          return std::make_pair(0U, &X86::GR16RegClass);
18406        if (VT == MVT::i8 || VT == MVT::i1)
18407          return std::make_pair(0U, &X86::GR8RegClass);
18408        if (VT == MVT::i64 || VT == MVT::f64)
18409          return std::make_pair(0U, &X86::GR64RegClass);
18410        break;
18411      }
18412      // 32-bit fallthrough
18413    case 'Q':   // Q_REGS
18414      if (VT == MVT::i32 || VT == MVT::f32)
18415        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
18416      if (VT == MVT::i16)
18417        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
18418      if (VT == MVT::i8 || VT == MVT::i1)
18419        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
18420      if (VT == MVT::i64)
18421        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
18422      break;
18423    case 'r':   // GENERAL_REGS
18424    case 'l':   // INDEX_REGS
18425      if (VT == MVT::i8 || VT == MVT::i1)
18426        return std::make_pair(0U, &X86::GR8RegClass);
18427      if (VT == MVT::i16)
18428        return std::make_pair(0U, &X86::GR16RegClass);
18429      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
18430        return std::make_pair(0U, &X86::GR32RegClass);
18431      return std::make_pair(0U, &X86::GR64RegClass);
18432    case 'R':   // LEGACY_REGS
18433      if (VT == MVT::i8 || VT == MVT::i1)
18434        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
18435      if (VT == MVT::i16)
18436        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18437      if (VT == MVT::i32 || !Subtarget->is64Bit())
18438        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18439      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18440    case 'f':  // FP Stack registers.
18441      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18442      // value to the correct fpstack register class.
18443      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18444        return std::make_pair(0U, &X86::RFP32RegClass);
18445      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18446        return std::make_pair(0U, &X86::RFP64RegClass);
18447      return std::make_pair(0U, &X86::RFP80RegClass);
18448    case 'y':   // MMX_REGS if MMX allowed.
18449      if (!Subtarget->hasMMX()) break;
18450      return std::make_pair(0U, &X86::VR64RegClass);
18451    case 'Y':   // SSE_REGS if SSE2 allowed
18452      if (!Subtarget->hasSSE2()) break;
18453      // FALL THROUGH.
18454    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18455      if (!Subtarget->hasSSE1()) break;
18456
18457      switch (VT.getSimpleVT().SimpleTy) {
18458      default: break;
18459      // Scalar SSE types.
18460      case MVT::f32:
18461      case MVT::i32:
18462        return std::make_pair(0U, &X86::FR32RegClass);
18463      case MVT::f64:
18464      case MVT::i64:
18465        return std::make_pair(0U, &X86::FR64RegClass);
18466      // Vector types.
18467      case MVT::v16i8:
18468      case MVT::v8i16:
18469      case MVT::v4i32:
18470      case MVT::v2i64:
18471      case MVT::v4f32:
18472      case MVT::v2f64:
18473        return std::make_pair(0U, &X86::VR128RegClass);
18474      // AVX types.
18475      case MVT::v32i8:
18476      case MVT::v16i16:
18477      case MVT::v8i32:
18478      case MVT::v4i64:
18479      case MVT::v8f32:
18480      case MVT::v4f64:
18481        return std::make_pair(0U, &X86::VR256RegClass);
18482      }
18483      break;
18484    }
18485  }
18486
18487  // Use the default implementation in TargetLowering to convert the register
18488  // constraint into a member of a register class.
18489  std::pair<unsigned, const TargetRegisterClass*> Res;
18490  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18491
18492  // Not found as a standard register?
18493  if (Res.second == 0) {
18494    // Map st(0) -> st(7) -> ST0
18495    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18496        tolower(Constraint[1]) == 's' &&
18497        tolower(Constraint[2]) == 't' &&
18498        Constraint[3] == '(' &&
18499        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18500        Constraint[5] == ')' &&
18501        Constraint[6] == '}') {
18502
18503      Res.first = X86::ST0+Constraint[4]-'0';
18504      Res.second = &X86::RFP80RegClass;
18505      return Res;
18506    }
18507
18508    // GCC allows "st(0)" to be called just plain "st".
18509    if (StringRef("{st}").equals_lower(Constraint)) {
18510      Res.first = X86::ST0;
18511      Res.second = &X86::RFP80RegClass;
18512      return Res;
18513    }
18514
18515    // flags -> EFLAGS
18516    if (StringRef("{flags}").equals_lower(Constraint)) {
18517      Res.first = X86::EFLAGS;
18518      Res.second = &X86::CCRRegClass;
18519      return Res;
18520    }
18521
18522    // 'A' means EAX + EDX.
18523    if (Constraint == "A") {
18524      Res.first = X86::EAX;
18525      Res.second = &X86::GR32_ADRegClass;
18526      return Res;
18527    }
18528    return Res;
18529  }
18530
18531  // Otherwise, check to see if this is a register class of the wrong value
18532  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18533  // turn into {ax},{dx}.
18534  if (Res.second->hasType(VT))
18535    return Res;   // Correct type already, nothing to do.
18536
18537  // All of the single-register GCC register classes map their values onto
18538  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18539  // really want an 8-bit or 32-bit register, map to the appropriate register
18540  // class and return the appropriate register.
18541  if (Res.second == &X86::GR16RegClass) {
18542    if (VT == MVT::i8 || VT == MVT::i1) {
18543      unsigned DestReg = 0;
18544      switch (Res.first) {
18545      default: break;
18546      case X86::AX: DestReg = X86::AL; break;
18547      case X86::DX: DestReg = X86::DL; break;
18548      case X86::CX: DestReg = X86::CL; break;
18549      case X86::BX: DestReg = X86::BL; break;
18550      }
18551      if (DestReg) {
18552        Res.first = DestReg;
18553        Res.second = &X86::GR8RegClass;
18554      }
18555    } else if (VT == MVT::i32 || VT == MVT::f32) {
18556      unsigned DestReg = 0;
18557      switch (Res.first) {
18558      default: break;
18559      case X86::AX: DestReg = X86::EAX; break;
18560      case X86::DX: DestReg = X86::EDX; break;
18561      case X86::CX: DestReg = X86::ECX; break;
18562      case X86::BX: DestReg = X86::EBX; break;
18563      case X86::SI: DestReg = X86::ESI; break;
18564      case X86::DI: DestReg = X86::EDI; break;
18565      case X86::BP: DestReg = X86::EBP; break;
18566      case X86::SP: DestReg = X86::ESP; break;
18567      }
18568      if (DestReg) {
18569        Res.first = DestReg;
18570        Res.second = &X86::GR32RegClass;
18571      }
18572    } else if (VT == MVT::i64 || VT == MVT::f64) {
18573      unsigned DestReg = 0;
18574      switch (Res.first) {
18575      default: break;
18576      case X86::AX: DestReg = X86::RAX; break;
18577      case X86::DX: DestReg = X86::RDX; break;
18578      case X86::CX: DestReg = X86::RCX; break;
18579      case X86::BX: DestReg = X86::RBX; break;
18580      case X86::SI: DestReg = X86::RSI; break;
18581      case X86::DI: DestReg = X86::RDI; break;
18582      case X86::BP: DestReg = X86::RBP; break;
18583      case X86::SP: DestReg = X86::RSP; break;
18584      }
18585      if (DestReg) {
18586        Res.first = DestReg;
18587        Res.second = &X86::GR64RegClass;
18588      }
18589    }
18590  } else if (Res.second == &X86::FR32RegClass ||
18591             Res.second == &X86::FR64RegClass ||
18592             Res.second == &X86::VR128RegClass) {
18593    // Handle references to XMM physical registers that got mapped into the
18594    // wrong class.  This can happen with constraints like {xmm0} where the
18595    // target independent register mapper will just pick the first match it can
18596    // find, ignoring the required type.
18597
18598    if (VT == MVT::f32 || VT == MVT::i32)
18599      Res.second = &X86::FR32RegClass;
18600    else if (VT == MVT::f64 || VT == MVT::i64)
18601      Res.second = &X86::FR64RegClass;
18602    else if (X86::VR128RegClass.hasType(VT))
18603      Res.second = &X86::VR128RegClass;
18604    else if (X86::VR256RegClass.hasType(VT))
18605      Res.second = &X86::VR256RegClass;
18606  }
18607
18608  return Res;
18609}
18610