X86ISelLowering.cpp revision 62c1d00dfd38996f381edae55e1028b8e52a1107
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt();
173  X86ScalarSSEf32 = Subtarget->hasXMM();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!UseSoftFloat) {
318    // Since AVX is a superset of SSE3, only check for SSE here.
319    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320      // Expand FP_TO_UINT into a select.
321      // FIXME: We would like to use a Custom expander here eventually to do
322      // the optimal thing for SSE vs. the default expansion in the legalizer.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324    else
325      // With SSE3 we can use fisttpll to convert to a signed i64; without
326      // SSE, we're stuck with a fistpll.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328  }
329
330  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331  if (!X86ScalarSSEf64) {
332    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334    if (Subtarget->is64Bit()) {
335      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336      // Without SSE, i64->f64 goes through memory.
337      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338    }
339  }
340
341  // Scalar integer divide and remainder are lowered to use operations that
342  // produce two results, to match the available instructions. This exposes
343  // the two-result form to trivial CSE, which is able to combine x/y and x%y
344  // into a single instruction.
345  //
346  // Scalar integer multiply-high is also lowered to use two-result
347  // operations, to match the available instructions. However, plain multiply
348  // (low) operations are left as Legal, as there are single-result
349  // instructions for this in x86. Using the two-result multiply instructions
350  // when both high and low results are needed must be arranged by dagcombine.
351  for (unsigned i = 0, e = 4; i != e; ++i) {
352    MVT VT = IntVTs[i];
353    setOperationAction(ISD::MULHS, VT, Expand);
354    setOperationAction(ISD::MULHU, VT, Expand);
355    setOperationAction(ISD::SDIV, VT, Expand);
356    setOperationAction(ISD::UDIV, VT, Expand);
357    setOperationAction(ISD::SREM, VT, Expand);
358    setOperationAction(ISD::UREM, VT, Expand);
359
360    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361    setOperationAction(ISD::ADDC, VT, Custom);
362    setOperationAction(ISD::ADDE, VT, Custom);
363    setOperationAction(ISD::SUBC, VT, Custom);
364    setOperationAction(ISD::SUBE, VT, Custom);
365  }
366
367  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381
382  if (Subtarget->hasBMI()) {
383    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
384  } else {
385    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
386    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
387    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
390  }
391
392  if (Subtarget->hasLZCNT()) {
393    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
394  } else {
395    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
396    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
397    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
400  }
401
402  if (Subtarget->hasPOPCNT()) {
403    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
404  } else {
405    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
406    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
407    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
410  }
411
412  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
413  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
414
415  // These should be promoted to a larger select which is supported.
416  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
417  // X86 wants to expand cmov itself.
418  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
419  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
420  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
421  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
422  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
423  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
424  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
425  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
426  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
427  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
428  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
429  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
430  if (Subtarget->is64Bit()) {
431    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
432    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
433  }
434  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
435
436  // Darwin ABI issue.
437  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
438  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
439  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
440  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
441  if (Subtarget->is64Bit())
442    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
443  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
444  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
447    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
448    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
449    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
450    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
451  }
452  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
453  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
454  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
455  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
456  if (Subtarget->is64Bit()) {
457    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
458    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
459    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
460  }
461
462  if (Subtarget->hasXMM())
463    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
464
465  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
466  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
467
468  // On X86 and X86-64, atomic operations are lowered to locked instructions.
469  // Locked instructions, in turn, have implicit fence semantics (all memory
470  // operations are flushed before issuing the locked instruction, and they
471  // are not buffered), so we can fold away the common pattern of
472  // fence-atomic-fence.
473  setShouldFoldAtomicFences(true);
474
475  // Expand certain atomics
476  for (unsigned i = 0, e = 4; i != e; ++i) {
477    MVT VT = IntVTs[i];
478    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
479    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
480    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
481  }
482
483  if (!Subtarget->is64Bit()) {
484    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
485    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
486    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
487    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
488    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
489    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
490    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
491    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
492  }
493
494  if (Subtarget->hasCmpxchg16b()) {
495    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
496  }
497
498  // FIXME - use subtarget debug flags
499  if (!Subtarget->isTargetDarwin() &&
500      !Subtarget->isTargetELF() &&
501      !Subtarget->isTargetCygMing()) {
502    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
503  }
504
505  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
506  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
507  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
508  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
509  if (Subtarget->is64Bit()) {
510    setExceptionPointerRegister(X86::RAX);
511    setExceptionSelectorRegister(X86::RDX);
512  } else {
513    setExceptionPointerRegister(X86::EAX);
514    setExceptionSelectorRegister(X86::EDX);
515  }
516  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
517  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
518
519  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
520  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
521
522  setOperationAction(ISD::TRAP, MVT::Other, Legal);
523
524  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
525  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
526  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
527  if (Subtarget->is64Bit()) {
528    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
529    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
530  } else {
531    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
532    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
533  }
534
535  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
536  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
537
538  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
539    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
540                       MVT::i64 : MVT::i32, Custom);
541  else if (EnableSegmentedStacks)
542    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
543                       MVT::i64 : MVT::i32, Custom);
544  else
545    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
546                       MVT::i64 : MVT::i32, Expand);
547
548  if (!UseSoftFloat && X86ScalarSSEf64) {
549    // f32 and f64 use SSE.
550    // Set up the FP register classes.
551    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
552    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
553
554    // Use ANDPD to simulate FABS.
555    setOperationAction(ISD::FABS , MVT::f64, Custom);
556    setOperationAction(ISD::FABS , MVT::f32, Custom);
557
558    // Use XORP to simulate FNEG.
559    setOperationAction(ISD::FNEG , MVT::f64, Custom);
560    setOperationAction(ISD::FNEG , MVT::f32, Custom);
561
562    // Use ANDPD and ORPD to simulate FCOPYSIGN.
563    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
564    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
565
566    // Lower this to FGETSIGNx86 plus an AND.
567    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
568    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
569
570    // We don't support sin/cos/fmod
571    setOperationAction(ISD::FSIN , MVT::f64, Expand);
572    setOperationAction(ISD::FCOS , MVT::f64, Expand);
573    setOperationAction(ISD::FSIN , MVT::f32, Expand);
574    setOperationAction(ISD::FCOS , MVT::f32, Expand);
575
576    // Expand FP immediates into loads from the stack, except for the special
577    // cases we handle.
578    addLegalFPImmediate(APFloat(+0.0)); // xorpd
579    addLegalFPImmediate(APFloat(+0.0f)); // xorps
580  } else if (!UseSoftFloat && X86ScalarSSEf32) {
581    // Use SSE for f32, x87 for f64.
582    // Set up the FP register classes.
583    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
584    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
585
586    // Use ANDPS to simulate FABS.
587    setOperationAction(ISD::FABS , MVT::f32, Custom);
588
589    // Use XORP to simulate FNEG.
590    setOperationAction(ISD::FNEG , MVT::f32, Custom);
591
592    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
593
594    // Use ANDPS and ORPS to simulate FCOPYSIGN.
595    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
597
598    // We don't support sin/cos/fmod
599    setOperationAction(ISD::FSIN , MVT::f32, Expand);
600    setOperationAction(ISD::FCOS , MVT::f32, Expand);
601
602    // Special cases we handle for FP constants.
603    addLegalFPImmediate(APFloat(+0.0f)); // xorps
604    addLegalFPImmediate(APFloat(+0.0)); // FLD0
605    addLegalFPImmediate(APFloat(+1.0)); // FLD1
606    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
607    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
608
609    if (!UnsafeFPMath) {
610      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
611      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
612    }
613  } else if (!UseSoftFloat) {
614    // f32 and f64 in x87.
615    // Set up the FP register classes.
616    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
617    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
618
619    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
620    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
622    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
623
624    if (!UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628    addLegalFPImmediate(APFloat(+0.0)); // FLD0
629    addLegalFPImmediate(APFloat(+1.0)); // FLD1
630    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
631    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
632    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
633    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
634    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
635    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
636  }
637
638  // We don't support FMA.
639  setOperationAction(ISD::FMA, MVT::f64, Expand);
640  setOperationAction(ISD::FMA, MVT::f32, Expand);
641
642  // Long double always uses X87.
643  if (!UseSoftFloat) {
644    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
645    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
646    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
647    {
648      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
649      addLegalFPImmediate(TmpFlt);  // FLD0
650      TmpFlt.changeSign();
651      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
652
653      bool ignored;
654      APFloat TmpFlt2(+1.0);
655      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
656                      &ignored);
657      addLegalFPImmediate(TmpFlt2);  // FLD1
658      TmpFlt2.changeSign();
659      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
660    }
661
662    if (!UnsafeFPMath) {
663      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
665    }
666
667    setOperationAction(ISD::FMA, MVT::f80, Expand);
668  }
669
670  // Always use a library call for pow.
671  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
672  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
673  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
674
675  setOperationAction(ISD::FLOG, MVT::f80, Expand);
676  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
677  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
678  setOperationAction(ISD::FEXP, MVT::f80, Expand);
679  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
680
681  // First set operation action for all vector types to either promote
682  // (for widening) or expand (for scalarization). Then we will selectively
683  // turn on ones that can be effectively codegen'd.
684  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
685       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
686    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
701    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
736    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
741    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743      setTruncStoreAction((MVT::SimpleValueType)VT,
744                          (MVT::SimpleValueType)InnerVT, Expand);
745    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748  }
749
750  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751  // with -msoft-float, disable use of MMX as well.
752  if (!UseSoftFloat && Subtarget->hasMMX()) {
753    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754    // No operations on x86mmx supported, everything uses intrinsics.
755  }
756
757  // MMX-sized vectors (other than x86mmx) are expected to be expanded
758  // into smaller operations.
759  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
760  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
762  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
763  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
764  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
765  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
766  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
767  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
768  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
769  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
770  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
771  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
772  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
773  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
774  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
778  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
779  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
780  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
781  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
783  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
787  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
788
789  if (!UseSoftFloat && Subtarget->hasXMM()) {
790    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791
792    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
796    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
797    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
798    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
799    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
800    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
803    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
804  }
805
806  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808
809    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810    // registers cannot be used even for integer operations.
811    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815
816    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
817    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
818    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
819    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
820    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
821    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
822    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
823    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
824    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
825    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
826    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
832
833    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
834    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
836    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
837
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
839    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
849
850    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852      EVT VT = (MVT::SimpleValueType)i;
853      // Do not attempt to custom lower non-power-of-2 vectors
854      if (!isPowerOf2_32(VT.getVectorNumElements()))
855        continue;
856      // Do not attempt to custom lower non-128-bit vectors
857      if (!VT.is128BitVector())
858        continue;
859      setOperationAction(ISD::BUILD_VECTOR,
860                         VT.getSimpleVT().SimpleTy, Custom);
861      setOperationAction(ISD::VECTOR_SHUFFLE,
862                         VT.getSimpleVT().SimpleTy, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864                         VT.getSimpleVT().SimpleTy, Custom);
865    }
866
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
868    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
870    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
872    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873
874    if (Subtarget->is64Bit()) {
875      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
876      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877    }
878
879    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882      EVT VT = SVT;
883
884      // Do not attempt to promote non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887
888      setOperationAction(ISD::AND,    SVT, Promote);
889      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
890      setOperationAction(ISD::OR,     SVT, Promote);
891      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
892      setOperationAction(ISD::XOR,    SVT, Promote);
893      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
894      setOperationAction(ISD::LOAD,   SVT, Promote);
895      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
896      setOperationAction(ISD::SELECT, SVT, Promote);
897      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898    }
899
900    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901
902    // Custom lower v2i64 and v2f64 selects.
903    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
905    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
906    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
907
908    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
909    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
910  }
911
912  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
913    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
914    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
915    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
916    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
917    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
918    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
919    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
920    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
921    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
922    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
923
924    // FIXME: Do we need to handle scalar-to-vector here?
925    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
926
927    // Can turn SHL into an integer multiply.
928    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
929    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
930
931    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
932    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
933    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
934    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
935    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
936
937    // i8 and i16 vectors are custom , because the source register and source
938    // source memory operand types are not the same width.  f32 vectors are
939    // custom since the immediate controlling the insert encodes additional
940    // information.
941    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
942    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
943    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
944    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
945
946    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
947    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
948    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
949    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
950
951    if (Subtarget->is64Bit()) {
952      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
953      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
954    }
955  }
956
957  if (Subtarget->hasXMMInt()) {
958    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
959    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
960    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
961    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
962
963    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
964    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
965    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
966
967    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
968    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
969  }
970
971  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
972    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
973
974  if (!UseSoftFloat && Subtarget->hasAVX()) {
975    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
976    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
977    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
978    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
979    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
980    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
981
982    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
983    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
984    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
985
986    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
987    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
988    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
989    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
990    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
991    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
992
993    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
994    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
995    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
996    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
997    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
998    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
999
1000    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1001    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1002    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1003
1004    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1005    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1006    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1007    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1008    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1009    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1010
1011    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1012    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1013    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1014    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1015
1016    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1017    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1018    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1019    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1020
1021    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1022    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1023
1024    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1025    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1026    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1027    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1028
1029    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1030    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1031    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1032
1033    setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
1034    setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
1035    setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
1036    setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
1037
1038    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1039    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1040    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1041    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1042
1043    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1044    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1045    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1046    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1047
1048    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1049    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1050    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1051    // Don't lower v32i8 because there is no 128-bit byte mul
1052
1053    // Custom lower several nodes for 256-bit types.
1054    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1055                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1056      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1057      EVT VT = SVT;
1058
1059      // Extract subvector is special because the value type
1060      // (result) is 128-bit but the source is 256-bit wide.
1061      if (VT.is128BitVector())
1062        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1063
1064      // Do not attempt to custom lower other non-256-bit vectors
1065      if (!VT.is256BitVector())
1066        continue;
1067
1068      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1069      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1070      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1071      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1072      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1073      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1074    }
1075
1076    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1077    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1078      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1079      EVT VT = SVT;
1080
1081      // Do not attempt to promote non-256-bit vectors
1082      if (!VT.is256BitVector())
1083        continue;
1084
1085      setOperationAction(ISD::AND,    SVT, Promote);
1086      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1087      setOperationAction(ISD::OR,     SVT, Promote);
1088      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1089      setOperationAction(ISD::XOR,    SVT, Promote);
1090      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1091      setOperationAction(ISD::LOAD,   SVT, Promote);
1092      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1093      setOperationAction(ISD::SELECT, SVT, Promote);
1094      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1095    }
1096  }
1097
1098  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1099  // of this type with custom code.
1100  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1101         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1102    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1103  }
1104
1105  // We want to custom lower some of our intrinsics.
1106  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1107
1108
1109  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1110  // handle type legalization for these operations here.
1111  //
1112  // FIXME: We really should do custom legalization for addition and
1113  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1114  // than generic legalization for 64-bit multiplication-with-overflow, though.
1115  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1116    // Add/Sub/Mul with overflow operations are custom lowered.
1117    MVT VT = IntVTs[i];
1118    setOperationAction(ISD::SADDO, VT, Custom);
1119    setOperationAction(ISD::UADDO, VT, Custom);
1120    setOperationAction(ISD::SSUBO, VT, Custom);
1121    setOperationAction(ISD::USUBO, VT, Custom);
1122    setOperationAction(ISD::SMULO, VT, Custom);
1123    setOperationAction(ISD::UMULO, VT, Custom);
1124  }
1125
1126  // There are no 8-bit 3-address imul/mul instructions
1127  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1128  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1129
1130  if (!Subtarget->is64Bit()) {
1131    // These libcalls are not available in 32-bit.
1132    setLibcallName(RTLIB::SHL_I128, 0);
1133    setLibcallName(RTLIB::SRL_I128, 0);
1134    setLibcallName(RTLIB::SRA_I128, 0);
1135  }
1136
1137  // We have target-specific dag combine patterns for the following nodes:
1138  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1139  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1140  setTargetDAGCombine(ISD::BUILD_VECTOR);
1141  setTargetDAGCombine(ISD::VSELECT);
1142  setTargetDAGCombine(ISD::SELECT);
1143  setTargetDAGCombine(ISD::SHL);
1144  setTargetDAGCombine(ISD::SRA);
1145  setTargetDAGCombine(ISD::SRL);
1146  setTargetDAGCombine(ISD::OR);
1147  setTargetDAGCombine(ISD::AND);
1148  setTargetDAGCombine(ISD::ADD);
1149  setTargetDAGCombine(ISD::FADD);
1150  setTargetDAGCombine(ISD::FSUB);
1151  setTargetDAGCombine(ISD::SUB);
1152  setTargetDAGCombine(ISD::LOAD);
1153  setTargetDAGCombine(ISD::STORE);
1154  setTargetDAGCombine(ISD::ZERO_EXTEND);
1155  setTargetDAGCombine(ISD::SINT_TO_FP);
1156  if (Subtarget->is64Bit())
1157    setTargetDAGCombine(ISD::MUL);
1158  if (Subtarget->hasBMI())
1159    setTargetDAGCombine(ISD::XOR);
1160
1161  computeRegisterProperties();
1162
1163  // On Darwin, -Os means optimize for size without hurting performance,
1164  // do not reduce the limit.
1165  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1166  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1167  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1168  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1169  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1170  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1171  setPrefLoopAlignment(16);
1172  benefitFromCodePlacementOpt = true;
1173
1174  setPrefFunctionAlignment(4);
1175}
1176
1177
1178EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1179  if (!VT.isVector()) return MVT::i8;
1180  return VT.changeVectorElementTypeToInteger();
1181}
1182
1183
1184/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1185/// the desired ByVal argument alignment.
1186static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1187  if (MaxAlign == 16)
1188    return;
1189  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1190    if (VTy->getBitWidth() == 128)
1191      MaxAlign = 16;
1192  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1193    unsigned EltAlign = 0;
1194    getMaxByValAlign(ATy->getElementType(), EltAlign);
1195    if (EltAlign > MaxAlign)
1196      MaxAlign = EltAlign;
1197  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1198    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1199      unsigned EltAlign = 0;
1200      getMaxByValAlign(STy->getElementType(i), EltAlign);
1201      if (EltAlign > MaxAlign)
1202        MaxAlign = EltAlign;
1203      if (MaxAlign == 16)
1204        break;
1205    }
1206  }
1207  return;
1208}
1209
1210/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1211/// function arguments in the caller parameter area. For X86, aggregates
1212/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1213/// are at 4-byte boundaries.
1214unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1215  if (Subtarget->is64Bit()) {
1216    // Max of 8 and alignment of type.
1217    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1218    if (TyAlign > 8)
1219      return TyAlign;
1220    return 8;
1221  }
1222
1223  unsigned Align = 4;
1224  if (Subtarget->hasXMM())
1225    getMaxByValAlign(Ty, Align);
1226  return Align;
1227}
1228
1229/// getOptimalMemOpType - Returns the target specific optimal type for load
1230/// and store operations as a result of memset, memcpy, and memmove
1231/// lowering. If DstAlign is zero that means it's safe to destination
1232/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1233/// means there isn't a need to check it against alignment requirement,
1234/// probably because the source does not need to be loaded. If
1235/// 'IsZeroVal' is true, that means it's safe to return a
1236/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1237/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1238/// constant so it does not need to be loaded.
1239/// It returns EVT::Other if the type should be determined using generic
1240/// target-independent logic.
1241EVT
1242X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1243                                       unsigned DstAlign, unsigned SrcAlign,
1244                                       bool IsZeroVal,
1245                                       bool MemcpyStrSrc,
1246                                       MachineFunction &MF) const {
1247  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1248  // linux.  This is because the stack realignment code can't handle certain
1249  // cases like PR2962.  This should be removed when PR2962 is fixed.
1250  const Function *F = MF.getFunction();
1251  if (IsZeroVal &&
1252      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1253    if (Size >= 16 &&
1254        (Subtarget->isUnalignedMemAccessFast() ||
1255         ((DstAlign == 0 || DstAlign >= 16) &&
1256          (SrcAlign == 0 || SrcAlign >= 16))) &&
1257        Subtarget->getStackAlignment() >= 16) {
1258      if (Subtarget->hasAVX() &&
1259          Subtarget->getStackAlignment() >= 32)
1260        return MVT::v8f32;
1261      if (Subtarget->hasXMMInt())
1262        return MVT::v4i32;
1263      if (Subtarget->hasXMM())
1264        return MVT::v4f32;
1265    } else if (!MemcpyStrSrc && Size >= 8 &&
1266               !Subtarget->is64Bit() &&
1267               Subtarget->getStackAlignment() >= 8 &&
1268               Subtarget->hasXMMInt()) {
1269      // Do not use f64 to lower memcpy if source is string constant. It's
1270      // better to use i32 to avoid the loads.
1271      return MVT::f64;
1272    }
1273  }
1274  if (Subtarget->is64Bit() && Size >= 8)
1275    return MVT::i64;
1276  return MVT::i32;
1277}
1278
1279/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1280/// current function.  The returned value is a member of the
1281/// MachineJumpTableInfo::JTEntryKind enum.
1282unsigned X86TargetLowering::getJumpTableEncoding() const {
1283  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1284  // symbol.
1285  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1286      Subtarget->isPICStyleGOT())
1287    return MachineJumpTableInfo::EK_Custom32;
1288
1289  // Otherwise, use the normal jump table encoding heuristics.
1290  return TargetLowering::getJumpTableEncoding();
1291}
1292
1293const MCExpr *
1294X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1295                                             const MachineBasicBlock *MBB,
1296                                             unsigned uid,MCContext &Ctx) const{
1297  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1298         Subtarget->isPICStyleGOT());
1299  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1300  // entries.
1301  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1302                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1303}
1304
1305/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1306/// jumptable.
1307SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1308                                                    SelectionDAG &DAG) const {
1309  if (!Subtarget->is64Bit())
1310    // This doesn't have DebugLoc associated with it, but is not really the
1311    // same as a Register.
1312    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1313  return Table;
1314}
1315
1316/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1317/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1318/// MCExpr.
1319const MCExpr *X86TargetLowering::
1320getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1321                             MCContext &Ctx) const {
1322  // X86-64 uses RIP relative addressing based on the jump table label.
1323  if (Subtarget->isPICStyleRIPRel())
1324    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1325
1326  // Otherwise, the reference is relative to the PIC base.
1327  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1328}
1329
1330// FIXME: Why this routine is here? Move to RegInfo!
1331std::pair<const TargetRegisterClass*, uint8_t>
1332X86TargetLowering::findRepresentativeClass(EVT VT) const{
1333  const TargetRegisterClass *RRC = 0;
1334  uint8_t Cost = 1;
1335  switch (VT.getSimpleVT().SimpleTy) {
1336  default:
1337    return TargetLowering::findRepresentativeClass(VT);
1338  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1339    RRC = (Subtarget->is64Bit()
1340           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1341    break;
1342  case MVT::x86mmx:
1343    RRC = X86::VR64RegisterClass;
1344    break;
1345  case MVT::f32: case MVT::f64:
1346  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1347  case MVT::v4f32: case MVT::v2f64:
1348  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1349  case MVT::v4f64:
1350    RRC = X86::VR128RegisterClass;
1351    break;
1352  }
1353  return std::make_pair(RRC, Cost);
1354}
1355
1356bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1357                                               unsigned &Offset) const {
1358  if (!Subtarget->isTargetLinux())
1359    return false;
1360
1361  if (Subtarget->is64Bit()) {
1362    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1363    Offset = 0x28;
1364    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1365      AddressSpace = 256;
1366    else
1367      AddressSpace = 257;
1368  } else {
1369    // %gs:0x14 on i386
1370    Offset = 0x14;
1371    AddressSpace = 256;
1372  }
1373  return true;
1374}
1375
1376
1377//===----------------------------------------------------------------------===//
1378//               Return Value Calling Convention Implementation
1379//===----------------------------------------------------------------------===//
1380
1381#include "X86GenCallingConv.inc"
1382
1383bool
1384X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1385				  MachineFunction &MF, bool isVarArg,
1386                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1387                        LLVMContext &Context) const {
1388  SmallVector<CCValAssign, 16> RVLocs;
1389  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1390                 RVLocs, Context);
1391  return CCInfo.CheckReturn(Outs, RetCC_X86);
1392}
1393
1394SDValue
1395X86TargetLowering::LowerReturn(SDValue Chain,
1396                               CallingConv::ID CallConv, bool isVarArg,
1397                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1398                               const SmallVectorImpl<SDValue> &OutVals,
1399                               DebugLoc dl, SelectionDAG &DAG) const {
1400  MachineFunction &MF = DAG.getMachineFunction();
1401  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1402
1403  SmallVector<CCValAssign, 16> RVLocs;
1404  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1405                 RVLocs, *DAG.getContext());
1406  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1407
1408  // Add the regs to the liveout set for the function.
1409  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1410  for (unsigned i = 0; i != RVLocs.size(); ++i)
1411    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1412      MRI.addLiveOut(RVLocs[i].getLocReg());
1413
1414  SDValue Flag;
1415
1416  SmallVector<SDValue, 6> RetOps;
1417  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1418  // Operand #1 = Bytes To Pop
1419  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1420                   MVT::i16));
1421
1422  // Copy the result values into the output registers.
1423  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1424    CCValAssign &VA = RVLocs[i];
1425    assert(VA.isRegLoc() && "Can only return in registers!");
1426    SDValue ValToCopy = OutVals[i];
1427    EVT ValVT = ValToCopy.getValueType();
1428
1429    // If this is x86-64, and we disabled SSE, we can't return FP values,
1430    // or SSE or MMX vectors.
1431    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1432         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1433          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1434      report_fatal_error("SSE register return with SSE disabled");
1435    }
1436    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1437    // llvm-gcc has never done it right and no one has noticed, so this
1438    // should be OK for now.
1439    if (ValVT == MVT::f64 &&
1440        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1441      report_fatal_error("SSE2 register return with SSE2 disabled");
1442
1443    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1444    // the RET instruction and handled by the FP Stackifier.
1445    if (VA.getLocReg() == X86::ST0 ||
1446        VA.getLocReg() == X86::ST1) {
1447      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1448      // change the value to the FP stack register class.
1449      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1450        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1451      RetOps.push_back(ValToCopy);
1452      // Don't emit a copytoreg.
1453      continue;
1454    }
1455
1456    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1457    // which is returned in RAX / RDX.
1458    if (Subtarget->is64Bit()) {
1459      if (ValVT == MVT::x86mmx) {
1460        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1461          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1462          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1463                                  ValToCopy);
1464          // If we don't have SSE2 available, convert to v4f32 so the generated
1465          // register is legal.
1466          if (!Subtarget->hasXMMInt())
1467            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1468        }
1469      }
1470    }
1471
1472    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1473    Flag = Chain.getValue(1);
1474  }
1475
1476  // The x86-64 ABI for returning structs by value requires that we copy
1477  // the sret argument into %rax for the return. We saved the argument into
1478  // a virtual register in the entry block, so now we copy the value out
1479  // and into %rax.
1480  if (Subtarget->is64Bit() &&
1481      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1482    MachineFunction &MF = DAG.getMachineFunction();
1483    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1484    unsigned Reg = FuncInfo->getSRetReturnReg();
1485    assert(Reg &&
1486           "SRetReturnReg should have been set in LowerFormalArguments().");
1487    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1488
1489    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1490    Flag = Chain.getValue(1);
1491
1492    // RAX now acts like a return value.
1493    MRI.addLiveOut(X86::RAX);
1494  }
1495
1496  RetOps[0] = Chain;  // Update chain.
1497
1498  // Add the flag if we have it.
1499  if (Flag.getNode())
1500    RetOps.push_back(Flag);
1501
1502  return DAG.getNode(X86ISD::RET_FLAG, dl,
1503                     MVT::Other, &RetOps[0], RetOps.size());
1504}
1505
1506bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1507  if (N->getNumValues() != 1)
1508    return false;
1509  if (!N->hasNUsesOfValue(1, 0))
1510    return false;
1511
1512  SDNode *Copy = *N->use_begin();
1513  if (Copy->getOpcode() != ISD::CopyToReg &&
1514      Copy->getOpcode() != ISD::FP_EXTEND)
1515    return false;
1516
1517  bool HasRet = false;
1518  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1519       UI != UE; ++UI) {
1520    if (UI->getOpcode() != X86ISD::RET_FLAG)
1521      return false;
1522    HasRet = true;
1523  }
1524
1525  return HasRet;
1526}
1527
1528EVT
1529X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1530                                            ISD::NodeType ExtendKind) const {
1531  MVT ReturnMVT;
1532  // TODO: Is this also valid on 32-bit?
1533  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1534    ReturnMVT = MVT::i8;
1535  else
1536    ReturnMVT = MVT::i32;
1537
1538  EVT MinVT = getRegisterType(Context, ReturnMVT);
1539  return VT.bitsLT(MinVT) ? MinVT : VT;
1540}
1541
1542/// LowerCallResult - Lower the result values of a call into the
1543/// appropriate copies out of appropriate physical registers.
1544///
1545SDValue
1546X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1547                                   CallingConv::ID CallConv, bool isVarArg,
1548                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1549                                   DebugLoc dl, SelectionDAG &DAG,
1550                                   SmallVectorImpl<SDValue> &InVals) const {
1551
1552  // Assign locations to each value returned by this call.
1553  SmallVector<CCValAssign, 16> RVLocs;
1554  bool Is64Bit = Subtarget->is64Bit();
1555  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1556		 getTargetMachine(), RVLocs, *DAG.getContext());
1557  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1558
1559  // Copy all of the result registers out of their specified physreg.
1560  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1561    CCValAssign &VA = RVLocs[i];
1562    EVT CopyVT = VA.getValVT();
1563
1564    // If this is x86-64, and we disabled SSE, we can't return FP values
1565    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1566        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1567      report_fatal_error("SSE register return with SSE disabled");
1568    }
1569
1570    SDValue Val;
1571
1572    // If this is a call to a function that returns an fp value on the floating
1573    // point stack, we must guarantee the the value is popped from the stack, so
1574    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1575    // if the return value is not used. We use the FpPOP_RETVAL instruction
1576    // instead.
1577    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1578      // If we prefer to use the value in xmm registers, copy it out as f80 and
1579      // use a truncate to move it from fp stack reg to xmm reg.
1580      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1581      SDValue Ops[] = { Chain, InFlag };
1582      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1583                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1584      Val = Chain.getValue(0);
1585
1586      // Round the f80 to the right size, which also moves it to the appropriate
1587      // xmm register.
1588      if (CopyVT != VA.getValVT())
1589        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1590                          // This truncation won't change the value.
1591                          DAG.getIntPtrConstant(1));
1592    } else {
1593      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1594                                 CopyVT, InFlag).getValue(1);
1595      Val = Chain.getValue(0);
1596    }
1597    InFlag = Chain.getValue(2);
1598    InVals.push_back(Val);
1599  }
1600
1601  return Chain;
1602}
1603
1604
1605//===----------------------------------------------------------------------===//
1606//                C & StdCall & Fast Calling Convention implementation
1607//===----------------------------------------------------------------------===//
1608//  StdCall calling convention seems to be standard for many Windows' API
1609//  routines and around. It differs from C calling convention just a little:
1610//  callee should clean up the stack, not caller. Symbols should be also
1611//  decorated in some fancy way :) It doesn't support any vector arguments.
1612//  For info on fast calling convention see Fast Calling Convention (tail call)
1613//  implementation LowerX86_32FastCCCallTo.
1614
1615/// CallIsStructReturn - Determines whether a call uses struct return
1616/// semantics.
1617static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1618  if (Outs.empty())
1619    return false;
1620
1621  return Outs[0].Flags.isSRet();
1622}
1623
1624/// ArgsAreStructReturn - Determines whether a function uses struct
1625/// return semantics.
1626static bool
1627ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1628  if (Ins.empty())
1629    return false;
1630
1631  return Ins[0].Flags.isSRet();
1632}
1633
1634/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1635/// by "Src" to address "Dst" with size and alignment information specified by
1636/// the specific parameter attribute. The copy will be passed as a byval
1637/// function parameter.
1638static SDValue
1639CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1640                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1641                          DebugLoc dl) {
1642  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1643
1644  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1645                       /*isVolatile*/false, /*AlwaysInline=*/true,
1646                       MachinePointerInfo(), MachinePointerInfo());
1647}
1648
1649/// IsTailCallConvention - Return true if the calling convention is one that
1650/// supports tail call optimization.
1651static bool IsTailCallConvention(CallingConv::ID CC) {
1652  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1653}
1654
1655bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1656  if (!CI->isTailCall())
1657    return false;
1658
1659  CallSite CS(CI);
1660  CallingConv::ID CalleeCC = CS.getCallingConv();
1661  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1662    return false;
1663
1664  return true;
1665}
1666
1667/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1668/// a tailcall target by changing its ABI.
1669static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1670  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1671}
1672
1673SDValue
1674X86TargetLowering::LowerMemArgument(SDValue Chain,
1675                                    CallingConv::ID CallConv,
1676                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1677                                    DebugLoc dl, SelectionDAG &DAG,
1678                                    const CCValAssign &VA,
1679                                    MachineFrameInfo *MFI,
1680                                    unsigned i) const {
1681  // Create the nodes corresponding to a load from this parameter slot.
1682  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1683  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1684  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1685  EVT ValVT;
1686
1687  // If value is passed by pointer we have address passed instead of the value
1688  // itself.
1689  if (VA.getLocInfo() == CCValAssign::Indirect)
1690    ValVT = VA.getLocVT();
1691  else
1692    ValVT = VA.getValVT();
1693
1694  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1695  // changed with more analysis.
1696  // In case of tail call optimization mark all arguments mutable. Since they
1697  // could be overwritten by lowering of arguments in case of a tail call.
1698  if (Flags.isByVal()) {
1699    unsigned Bytes = Flags.getByValSize();
1700    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1701    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1702    return DAG.getFrameIndex(FI, getPointerTy());
1703  } else {
1704    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1705                                    VA.getLocMemOffset(), isImmutable);
1706    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1707    return DAG.getLoad(ValVT, dl, Chain, FIN,
1708                       MachinePointerInfo::getFixedStack(FI),
1709                       false, false, 0);
1710  }
1711}
1712
1713SDValue
1714X86TargetLowering::LowerFormalArguments(SDValue Chain,
1715                                        CallingConv::ID CallConv,
1716                                        bool isVarArg,
1717                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1718                                        DebugLoc dl,
1719                                        SelectionDAG &DAG,
1720                                        SmallVectorImpl<SDValue> &InVals)
1721                                          const {
1722  MachineFunction &MF = DAG.getMachineFunction();
1723  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1724
1725  const Function* Fn = MF.getFunction();
1726  if (Fn->hasExternalLinkage() &&
1727      Subtarget->isTargetCygMing() &&
1728      Fn->getName() == "main")
1729    FuncInfo->setForceFramePointer(true);
1730
1731  MachineFrameInfo *MFI = MF.getFrameInfo();
1732  bool Is64Bit = Subtarget->is64Bit();
1733  bool IsWin64 = Subtarget->isTargetWin64();
1734
1735  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1736         "Var args not supported with calling convention fastcc or ghc");
1737
1738  // Assign locations to all of the incoming arguments.
1739  SmallVector<CCValAssign, 16> ArgLocs;
1740  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1741                 ArgLocs, *DAG.getContext());
1742
1743  // Allocate shadow area for Win64
1744  if (IsWin64) {
1745    CCInfo.AllocateStack(32, 8);
1746  }
1747
1748  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1749
1750  unsigned LastVal = ~0U;
1751  SDValue ArgValue;
1752  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1753    CCValAssign &VA = ArgLocs[i];
1754    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1755    // places.
1756    assert(VA.getValNo() != LastVal &&
1757           "Don't support value assigned to multiple locs yet");
1758    (void)LastVal;
1759    LastVal = VA.getValNo();
1760
1761    if (VA.isRegLoc()) {
1762      EVT RegVT = VA.getLocVT();
1763      TargetRegisterClass *RC = NULL;
1764      if (RegVT == MVT::i32)
1765        RC = X86::GR32RegisterClass;
1766      else if (Is64Bit && RegVT == MVT::i64)
1767        RC = X86::GR64RegisterClass;
1768      else if (RegVT == MVT::f32)
1769        RC = X86::FR32RegisterClass;
1770      else if (RegVT == MVT::f64)
1771        RC = X86::FR64RegisterClass;
1772      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1773        RC = X86::VR256RegisterClass;
1774      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1775        RC = X86::VR128RegisterClass;
1776      else if (RegVT == MVT::x86mmx)
1777        RC = X86::VR64RegisterClass;
1778      else
1779        llvm_unreachable("Unknown argument type!");
1780
1781      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1782      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1783
1784      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1785      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1786      // right size.
1787      if (VA.getLocInfo() == CCValAssign::SExt)
1788        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1789                               DAG.getValueType(VA.getValVT()));
1790      else if (VA.getLocInfo() == CCValAssign::ZExt)
1791        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1792                               DAG.getValueType(VA.getValVT()));
1793      else if (VA.getLocInfo() == CCValAssign::BCvt)
1794        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1795
1796      if (VA.isExtInLoc()) {
1797        // Handle MMX values passed in XMM regs.
1798        if (RegVT.isVector()) {
1799          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1800                                 ArgValue);
1801        } else
1802          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1803      }
1804    } else {
1805      assert(VA.isMemLoc());
1806      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1807    }
1808
1809    // If value is passed via pointer - do a load.
1810    if (VA.getLocInfo() == CCValAssign::Indirect)
1811      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1812                             MachinePointerInfo(), false, false, 0);
1813
1814    InVals.push_back(ArgValue);
1815  }
1816
1817  // The x86-64 ABI for returning structs by value requires that we copy
1818  // the sret argument into %rax for the return. Save the argument into
1819  // a virtual register so that we can access it from the return points.
1820  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1821    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1822    unsigned Reg = FuncInfo->getSRetReturnReg();
1823    if (!Reg) {
1824      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1825      FuncInfo->setSRetReturnReg(Reg);
1826    }
1827    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1828    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1829  }
1830
1831  unsigned StackSize = CCInfo.getNextStackOffset();
1832  // Align stack specially for tail calls.
1833  if (FuncIsMadeTailCallSafe(CallConv))
1834    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1835
1836  // If the function takes variable number of arguments, make a frame index for
1837  // the start of the first vararg value... for expansion of llvm.va_start.
1838  if (isVarArg) {
1839    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1840                    CallConv != CallingConv::X86_ThisCall)) {
1841      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1842    }
1843    if (Is64Bit) {
1844      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1845
1846      // FIXME: We should really autogenerate these arrays
1847      static const unsigned GPR64ArgRegsWin64[] = {
1848        X86::RCX, X86::RDX, X86::R8,  X86::R9
1849      };
1850      static const unsigned GPR64ArgRegs64Bit[] = {
1851        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1852      };
1853      static const unsigned XMMArgRegs64Bit[] = {
1854        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1855        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1856      };
1857      const unsigned *GPR64ArgRegs;
1858      unsigned NumXMMRegs = 0;
1859
1860      if (IsWin64) {
1861        // The XMM registers which might contain var arg parameters are shadowed
1862        // in their paired GPR.  So we only need to save the GPR to their home
1863        // slots.
1864        TotalNumIntRegs = 4;
1865        GPR64ArgRegs = GPR64ArgRegsWin64;
1866      } else {
1867        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1868        GPR64ArgRegs = GPR64ArgRegs64Bit;
1869
1870        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1871      }
1872      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1873                                                       TotalNumIntRegs);
1874
1875      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1876      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1877             "SSE register cannot be used when SSE is disabled!");
1878      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1879             "SSE register cannot be used when SSE is disabled!");
1880      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1881        // Kernel mode asks for SSE to be disabled, so don't push them
1882        // on the stack.
1883        TotalNumXMMRegs = 0;
1884
1885      if (IsWin64) {
1886        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1887        // Get to the caller-allocated home save location.  Add 8 to account
1888        // for the return address.
1889        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1890        FuncInfo->setRegSaveFrameIndex(
1891          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1892        // Fixup to set vararg frame on shadow area (4 x i64).
1893        if (NumIntRegs < 4)
1894          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1895      } else {
1896        // For X86-64, if there are vararg parameters that are passed via
1897        // registers, then we must store them to their spots on the stack so they
1898        // may be loaded by deferencing the result of va_next.
1899        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1900        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1901        FuncInfo->setRegSaveFrameIndex(
1902          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1903                               false));
1904      }
1905
1906      // Store the integer parameter registers.
1907      SmallVector<SDValue, 8> MemOps;
1908      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1909                                        getPointerTy());
1910      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1911      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1912        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1913                                  DAG.getIntPtrConstant(Offset));
1914        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1915                                     X86::GR64RegisterClass);
1916        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1917        SDValue Store =
1918          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1919                       MachinePointerInfo::getFixedStack(
1920                         FuncInfo->getRegSaveFrameIndex(), Offset),
1921                       false, false, 0);
1922        MemOps.push_back(Store);
1923        Offset += 8;
1924      }
1925
1926      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1927        // Now store the XMM (fp + vector) parameter registers.
1928        SmallVector<SDValue, 11> SaveXMMOps;
1929        SaveXMMOps.push_back(Chain);
1930
1931        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1932        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1933        SaveXMMOps.push_back(ALVal);
1934
1935        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1936                               FuncInfo->getRegSaveFrameIndex()));
1937        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1938                               FuncInfo->getVarArgsFPOffset()));
1939
1940        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1941          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1942                                       X86::VR128RegisterClass);
1943          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1944          SaveXMMOps.push_back(Val);
1945        }
1946        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1947                                     MVT::Other,
1948                                     &SaveXMMOps[0], SaveXMMOps.size()));
1949      }
1950
1951      if (!MemOps.empty())
1952        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1953                            &MemOps[0], MemOps.size());
1954    }
1955  }
1956
1957  // Some CCs need callee pop.
1958  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1959    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1960  } else {
1961    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1962    // If this is an sret function, the return should pop the hidden pointer.
1963    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1964      FuncInfo->setBytesToPopOnReturn(4);
1965  }
1966
1967  if (!Is64Bit) {
1968    // RegSaveFrameIndex is X86-64 only.
1969    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1970    if (CallConv == CallingConv::X86_FastCall ||
1971        CallConv == CallingConv::X86_ThisCall)
1972      // fastcc functions can't have varargs.
1973      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1974  }
1975
1976  FuncInfo->setArgumentStackSize(StackSize);
1977
1978  return Chain;
1979}
1980
1981SDValue
1982X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1983                                    SDValue StackPtr, SDValue Arg,
1984                                    DebugLoc dl, SelectionDAG &DAG,
1985                                    const CCValAssign &VA,
1986                                    ISD::ArgFlagsTy Flags) const {
1987  unsigned LocMemOffset = VA.getLocMemOffset();
1988  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1989  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1990  if (Flags.isByVal())
1991    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1992
1993  return DAG.getStore(Chain, dl, Arg, PtrOff,
1994                      MachinePointerInfo::getStack(LocMemOffset),
1995                      false, false, 0);
1996}
1997
1998/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1999/// optimization is performed and it is required.
2000SDValue
2001X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2002                                           SDValue &OutRetAddr, SDValue Chain,
2003                                           bool IsTailCall, bool Is64Bit,
2004                                           int FPDiff, DebugLoc dl) const {
2005  // Adjust the Return address stack slot.
2006  EVT VT = getPointerTy();
2007  OutRetAddr = getReturnAddressFrameIndex(DAG);
2008
2009  // Load the "old" Return address.
2010  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2011                           false, false, 0);
2012  return SDValue(OutRetAddr.getNode(), 1);
2013}
2014
2015/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2016/// optimization is performed and it is required (FPDiff!=0).
2017static SDValue
2018EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2019                         SDValue Chain, SDValue RetAddrFrIdx,
2020                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2021  // Store the return address to the appropriate stack slot.
2022  if (!FPDiff) return Chain;
2023  // Calculate the new stack slot for the return address.
2024  int SlotSize = Is64Bit ? 8 : 4;
2025  int NewReturnAddrFI =
2026    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2027  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2028  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2029  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2030                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2031                       false, false, 0);
2032  return Chain;
2033}
2034
2035SDValue
2036X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2037                             CallingConv::ID CallConv, bool isVarArg,
2038                             bool &isTailCall,
2039                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2040                             const SmallVectorImpl<SDValue> &OutVals,
2041                             const SmallVectorImpl<ISD::InputArg> &Ins,
2042                             DebugLoc dl, SelectionDAG &DAG,
2043                             SmallVectorImpl<SDValue> &InVals) const {
2044  MachineFunction &MF = DAG.getMachineFunction();
2045  bool Is64Bit        = Subtarget->is64Bit();
2046  bool IsWin64        = Subtarget->isTargetWin64();
2047  bool IsStructRet    = CallIsStructReturn(Outs);
2048  bool IsSibcall      = false;
2049
2050  if (isTailCall) {
2051    // Check if it's really possible to do a tail call.
2052    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2053                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2054                                                   Outs, OutVals, Ins, DAG);
2055
2056    // Sibcalls are automatically detected tailcalls which do not require
2057    // ABI changes.
2058    if (!GuaranteedTailCallOpt && isTailCall)
2059      IsSibcall = true;
2060
2061    if (isTailCall)
2062      ++NumTailCalls;
2063  }
2064
2065  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2066         "Var args not supported with calling convention fastcc or ghc");
2067
2068  // Analyze operands of the call, assigning locations to each operand.
2069  SmallVector<CCValAssign, 16> ArgLocs;
2070  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2071                 ArgLocs, *DAG.getContext());
2072
2073  // Allocate shadow area for Win64
2074  if (IsWin64) {
2075    CCInfo.AllocateStack(32, 8);
2076  }
2077
2078  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2079
2080  // Get a count of how many bytes are to be pushed on the stack.
2081  unsigned NumBytes = CCInfo.getNextStackOffset();
2082  if (IsSibcall)
2083    // This is a sibcall. The memory operands are available in caller's
2084    // own caller's stack.
2085    NumBytes = 0;
2086  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2087    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2088
2089  int FPDiff = 0;
2090  if (isTailCall && !IsSibcall) {
2091    // Lower arguments at fp - stackoffset + fpdiff.
2092    unsigned NumBytesCallerPushed =
2093      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2094    FPDiff = NumBytesCallerPushed - NumBytes;
2095
2096    // Set the delta of movement of the returnaddr stackslot.
2097    // But only set if delta is greater than previous delta.
2098    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2099      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2100  }
2101
2102  if (!IsSibcall)
2103    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2104
2105  SDValue RetAddrFrIdx;
2106  // Load return address for tail calls.
2107  if (isTailCall && FPDiff)
2108    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2109                                    Is64Bit, FPDiff, dl);
2110
2111  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2112  SmallVector<SDValue, 8> MemOpChains;
2113  SDValue StackPtr;
2114
2115  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2116  // of tail call optimization arguments are handle later.
2117  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2118    CCValAssign &VA = ArgLocs[i];
2119    EVT RegVT = VA.getLocVT();
2120    SDValue Arg = OutVals[i];
2121    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2122    bool isByVal = Flags.isByVal();
2123
2124    // Promote the value if needed.
2125    switch (VA.getLocInfo()) {
2126    default: llvm_unreachable("Unknown loc info!");
2127    case CCValAssign::Full: break;
2128    case CCValAssign::SExt:
2129      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2130      break;
2131    case CCValAssign::ZExt:
2132      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2133      break;
2134    case CCValAssign::AExt:
2135      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2136        // Special case: passing MMX values in XMM registers.
2137        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2138        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2139        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2140      } else
2141        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2142      break;
2143    case CCValAssign::BCvt:
2144      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2145      break;
2146    case CCValAssign::Indirect: {
2147      // Store the argument.
2148      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2149      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2150      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2151                           MachinePointerInfo::getFixedStack(FI),
2152                           false, false, 0);
2153      Arg = SpillSlot;
2154      break;
2155    }
2156    }
2157
2158    if (VA.isRegLoc()) {
2159      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2160      if (isVarArg && IsWin64) {
2161        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2162        // shadow reg if callee is a varargs function.
2163        unsigned ShadowReg = 0;
2164        switch (VA.getLocReg()) {
2165        case X86::XMM0: ShadowReg = X86::RCX; break;
2166        case X86::XMM1: ShadowReg = X86::RDX; break;
2167        case X86::XMM2: ShadowReg = X86::R8; break;
2168        case X86::XMM3: ShadowReg = X86::R9; break;
2169        }
2170        if (ShadowReg)
2171          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2172      }
2173    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2174      assert(VA.isMemLoc());
2175      if (StackPtr.getNode() == 0)
2176        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2177      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2178                                             dl, DAG, VA, Flags));
2179    }
2180  }
2181
2182  if (!MemOpChains.empty())
2183    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2184                        &MemOpChains[0], MemOpChains.size());
2185
2186  // Build a sequence of copy-to-reg nodes chained together with token chain
2187  // and flag operands which copy the outgoing args into registers.
2188  SDValue InFlag;
2189  // Tail call byval lowering might overwrite argument registers so in case of
2190  // tail call optimization the copies to registers are lowered later.
2191  if (!isTailCall)
2192    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2193      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2194                               RegsToPass[i].second, InFlag);
2195      InFlag = Chain.getValue(1);
2196    }
2197
2198  if (Subtarget->isPICStyleGOT()) {
2199    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2200    // GOT pointer.
2201    if (!isTailCall) {
2202      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2203                               DAG.getNode(X86ISD::GlobalBaseReg,
2204                                           DebugLoc(), getPointerTy()),
2205                               InFlag);
2206      InFlag = Chain.getValue(1);
2207    } else {
2208      // If we are tail calling and generating PIC/GOT style code load the
2209      // address of the callee into ECX. The value in ecx is used as target of
2210      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2211      // for tail calls on PIC/GOT architectures. Normally we would just put the
2212      // address of GOT into ebx and then call target@PLT. But for tail calls
2213      // ebx would be restored (since ebx is callee saved) before jumping to the
2214      // target@PLT.
2215
2216      // Note: The actual moving to ECX is done further down.
2217      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2218      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2219          !G->getGlobal()->hasProtectedVisibility())
2220        Callee = LowerGlobalAddress(Callee, DAG);
2221      else if (isa<ExternalSymbolSDNode>(Callee))
2222        Callee = LowerExternalSymbol(Callee, DAG);
2223    }
2224  }
2225
2226  if (Is64Bit && isVarArg && !IsWin64) {
2227    // From AMD64 ABI document:
2228    // For calls that may call functions that use varargs or stdargs
2229    // (prototype-less calls or calls to functions containing ellipsis (...) in
2230    // the declaration) %al is used as hidden argument to specify the number
2231    // of SSE registers used. The contents of %al do not need to match exactly
2232    // the number of registers, but must be an ubound on the number of SSE
2233    // registers used and is in the range 0 - 8 inclusive.
2234
2235    // Count the number of XMM registers allocated.
2236    static const unsigned XMMArgRegs[] = {
2237      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2238      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2239    };
2240    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2241    assert((Subtarget->hasXMM() || !NumXMMRegs)
2242           && "SSE registers cannot be used when SSE is disabled");
2243
2244    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2245                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2246    InFlag = Chain.getValue(1);
2247  }
2248
2249
2250  // For tail calls lower the arguments to the 'real' stack slot.
2251  if (isTailCall) {
2252    // Force all the incoming stack arguments to be loaded from the stack
2253    // before any new outgoing arguments are stored to the stack, because the
2254    // outgoing stack slots may alias the incoming argument stack slots, and
2255    // the alias isn't otherwise explicit. This is slightly more conservative
2256    // than necessary, because it means that each store effectively depends
2257    // on every argument instead of just those arguments it would clobber.
2258    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2259
2260    SmallVector<SDValue, 8> MemOpChains2;
2261    SDValue FIN;
2262    int FI = 0;
2263    // Do not flag preceding copytoreg stuff together with the following stuff.
2264    InFlag = SDValue();
2265    if (GuaranteedTailCallOpt) {
2266      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2267        CCValAssign &VA = ArgLocs[i];
2268        if (VA.isRegLoc())
2269          continue;
2270        assert(VA.isMemLoc());
2271        SDValue Arg = OutVals[i];
2272        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2273        // Create frame index.
2274        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2275        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2276        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2277        FIN = DAG.getFrameIndex(FI, getPointerTy());
2278
2279        if (Flags.isByVal()) {
2280          // Copy relative to framepointer.
2281          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2282          if (StackPtr.getNode() == 0)
2283            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2284                                          getPointerTy());
2285          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2286
2287          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2288                                                           ArgChain,
2289                                                           Flags, DAG, dl));
2290        } else {
2291          // Store relative to framepointer.
2292          MemOpChains2.push_back(
2293            DAG.getStore(ArgChain, dl, Arg, FIN,
2294                         MachinePointerInfo::getFixedStack(FI),
2295                         false, false, 0));
2296        }
2297      }
2298    }
2299
2300    if (!MemOpChains2.empty())
2301      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2302                          &MemOpChains2[0], MemOpChains2.size());
2303
2304    // Copy arguments to their registers.
2305    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2306      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2307                               RegsToPass[i].second, InFlag);
2308      InFlag = Chain.getValue(1);
2309    }
2310    InFlag =SDValue();
2311
2312    // Store the return address to the appropriate stack slot.
2313    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2314                                     FPDiff, dl);
2315  }
2316
2317  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2318    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2319    // In the 64-bit large code model, we have to make all calls
2320    // through a register, since the call instruction's 32-bit
2321    // pc-relative offset may not be large enough to hold the whole
2322    // address.
2323  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2324    // If the callee is a GlobalAddress node (quite common, every direct call
2325    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2326    // it.
2327
2328    // We should use extra load for direct calls to dllimported functions in
2329    // non-JIT mode.
2330    const GlobalValue *GV = G->getGlobal();
2331    if (!GV->hasDLLImportLinkage()) {
2332      unsigned char OpFlags = 0;
2333      bool ExtraLoad = false;
2334      unsigned WrapperKind = ISD::DELETED_NODE;
2335
2336      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2337      // external symbols most go through the PLT in PIC mode.  If the symbol
2338      // has hidden or protected visibility, or if it is static or local, then
2339      // we don't need to use the PLT - we can directly call it.
2340      if (Subtarget->isTargetELF() &&
2341          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2342          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2343        OpFlags = X86II::MO_PLT;
2344      } else if (Subtarget->isPICStyleStubAny() &&
2345                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2346                 (!Subtarget->getTargetTriple().isMacOSX() ||
2347                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2348        // PC-relative references to external symbols should go through $stub,
2349        // unless we're building with the leopard linker or later, which
2350        // automatically synthesizes these stubs.
2351        OpFlags = X86II::MO_DARWIN_STUB;
2352      } else if (Subtarget->isPICStyleRIPRel() &&
2353                 isa<Function>(GV) &&
2354                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2355        // If the function is marked as non-lazy, generate an indirect call
2356        // which loads from the GOT directly. This avoids runtime overhead
2357        // at the cost of eager binding (and one extra byte of encoding).
2358        OpFlags = X86II::MO_GOTPCREL;
2359        WrapperKind = X86ISD::WrapperRIP;
2360        ExtraLoad = true;
2361      }
2362
2363      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2364                                          G->getOffset(), OpFlags);
2365
2366      // Add a wrapper if needed.
2367      if (WrapperKind != ISD::DELETED_NODE)
2368        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2369      // Add extra indirection if needed.
2370      if (ExtraLoad)
2371        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2372                             MachinePointerInfo::getGOT(),
2373                             false, false, 0);
2374    }
2375  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2376    unsigned char OpFlags = 0;
2377
2378    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2379    // external symbols should go through the PLT.
2380    if (Subtarget->isTargetELF() &&
2381        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2382      OpFlags = X86II::MO_PLT;
2383    } else if (Subtarget->isPICStyleStubAny() &&
2384               (!Subtarget->getTargetTriple().isMacOSX() ||
2385                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2386      // PC-relative references to external symbols should go through $stub,
2387      // unless we're building with the leopard linker or later, which
2388      // automatically synthesizes these stubs.
2389      OpFlags = X86II::MO_DARWIN_STUB;
2390    }
2391
2392    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2393                                         OpFlags);
2394  }
2395
2396  // Returns a chain & a flag for retval copy to use.
2397  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2398  SmallVector<SDValue, 8> Ops;
2399
2400  if (!IsSibcall && isTailCall) {
2401    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2402                           DAG.getIntPtrConstant(0, true), InFlag);
2403    InFlag = Chain.getValue(1);
2404  }
2405
2406  Ops.push_back(Chain);
2407  Ops.push_back(Callee);
2408
2409  if (isTailCall)
2410    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2411
2412  // Add argument registers to the end of the list so that they are known live
2413  // into the call.
2414  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2415    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2416                                  RegsToPass[i].second.getValueType()));
2417
2418  // Add an implicit use GOT pointer in EBX.
2419  if (!isTailCall && Subtarget->isPICStyleGOT())
2420    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2421
2422  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2423  if (Is64Bit && isVarArg && !IsWin64)
2424    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2425
2426  if (InFlag.getNode())
2427    Ops.push_back(InFlag);
2428
2429  if (isTailCall) {
2430    // We used to do:
2431    //// If this is the first return lowered for this function, add the regs
2432    //// to the liveout set for the function.
2433    // This isn't right, although it's probably harmless on x86; liveouts
2434    // should be computed from returns not tail calls.  Consider a void
2435    // function making a tail call to a function returning int.
2436    return DAG.getNode(X86ISD::TC_RETURN, dl,
2437                       NodeTys, &Ops[0], Ops.size());
2438  }
2439
2440  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2441  InFlag = Chain.getValue(1);
2442
2443  // Create the CALLSEQ_END node.
2444  unsigned NumBytesForCalleeToPush;
2445  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2446    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2447  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2448    // If this is a call to a struct-return function, the callee
2449    // pops the hidden struct pointer, so we have to push it back.
2450    // This is common for Darwin/X86, Linux & Mingw32 targets.
2451    NumBytesForCalleeToPush = 4;
2452  else
2453    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2454
2455  // Returns a flag for retval copy to use.
2456  if (!IsSibcall) {
2457    Chain = DAG.getCALLSEQ_END(Chain,
2458                               DAG.getIntPtrConstant(NumBytes, true),
2459                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2460                                                     true),
2461                               InFlag);
2462    InFlag = Chain.getValue(1);
2463  }
2464
2465  // Handle result values, copying them out of physregs into vregs that we
2466  // return.
2467  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2468                         Ins, dl, DAG, InVals);
2469}
2470
2471
2472//===----------------------------------------------------------------------===//
2473//                Fast Calling Convention (tail call) implementation
2474//===----------------------------------------------------------------------===//
2475
2476//  Like std call, callee cleans arguments, convention except that ECX is
2477//  reserved for storing the tail called function address. Only 2 registers are
2478//  free for argument passing (inreg). Tail call optimization is performed
2479//  provided:
2480//                * tailcallopt is enabled
2481//                * caller/callee are fastcc
2482//  On X86_64 architecture with GOT-style position independent code only local
2483//  (within module) calls are supported at the moment.
2484//  To keep the stack aligned according to platform abi the function
2485//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2486//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2487//  If a tail called function callee has more arguments than the caller the
2488//  caller needs to make sure that there is room to move the RETADDR to. This is
2489//  achieved by reserving an area the size of the argument delta right after the
2490//  original REtADDR, but before the saved framepointer or the spilled registers
2491//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2492//  stack layout:
2493//    arg1
2494//    arg2
2495//    RETADDR
2496//    [ new RETADDR
2497//      move area ]
2498//    (possible EBP)
2499//    ESI
2500//    EDI
2501//    local1 ..
2502
2503/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2504/// for a 16 byte align requirement.
2505unsigned
2506X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2507                                               SelectionDAG& DAG) const {
2508  MachineFunction &MF = DAG.getMachineFunction();
2509  const TargetMachine &TM = MF.getTarget();
2510  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2511  unsigned StackAlignment = TFI.getStackAlignment();
2512  uint64_t AlignMask = StackAlignment - 1;
2513  int64_t Offset = StackSize;
2514  uint64_t SlotSize = TD->getPointerSize();
2515  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2516    // Number smaller than 12 so just add the difference.
2517    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2518  } else {
2519    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2520    Offset = ((~AlignMask) & Offset) + StackAlignment +
2521      (StackAlignment-SlotSize);
2522  }
2523  return Offset;
2524}
2525
2526/// MatchingStackOffset - Return true if the given stack call argument is
2527/// already available in the same position (relatively) of the caller's
2528/// incoming argument stack.
2529static
2530bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2531                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2532                         const X86InstrInfo *TII) {
2533  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2534  int FI = INT_MAX;
2535  if (Arg.getOpcode() == ISD::CopyFromReg) {
2536    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2537    if (!TargetRegisterInfo::isVirtualRegister(VR))
2538      return false;
2539    MachineInstr *Def = MRI->getVRegDef(VR);
2540    if (!Def)
2541      return false;
2542    if (!Flags.isByVal()) {
2543      if (!TII->isLoadFromStackSlot(Def, FI))
2544        return false;
2545    } else {
2546      unsigned Opcode = Def->getOpcode();
2547      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2548          Def->getOperand(1).isFI()) {
2549        FI = Def->getOperand(1).getIndex();
2550        Bytes = Flags.getByValSize();
2551      } else
2552        return false;
2553    }
2554  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2555    if (Flags.isByVal())
2556      // ByVal argument is passed in as a pointer but it's now being
2557      // dereferenced. e.g.
2558      // define @foo(%struct.X* %A) {
2559      //   tail call @bar(%struct.X* byval %A)
2560      // }
2561      return false;
2562    SDValue Ptr = Ld->getBasePtr();
2563    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2564    if (!FINode)
2565      return false;
2566    FI = FINode->getIndex();
2567  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2568    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2569    FI = FINode->getIndex();
2570    Bytes = Flags.getByValSize();
2571  } else
2572    return false;
2573
2574  assert(FI != INT_MAX);
2575  if (!MFI->isFixedObjectIndex(FI))
2576    return false;
2577  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2578}
2579
2580/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2581/// for tail call optimization. Targets which want to do tail call
2582/// optimization should implement this function.
2583bool
2584X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2585                                                     CallingConv::ID CalleeCC,
2586                                                     bool isVarArg,
2587                                                     bool isCalleeStructRet,
2588                                                     bool isCallerStructRet,
2589                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2590                                    const SmallVectorImpl<SDValue> &OutVals,
2591                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2592                                                     SelectionDAG& DAG) const {
2593  if (!IsTailCallConvention(CalleeCC) &&
2594      CalleeCC != CallingConv::C)
2595    return false;
2596
2597  // If -tailcallopt is specified, make fastcc functions tail-callable.
2598  const MachineFunction &MF = DAG.getMachineFunction();
2599  const Function *CallerF = DAG.getMachineFunction().getFunction();
2600  CallingConv::ID CallerCC = CallerF->getCallingConv();
2601  bool CCMatch = CallerCC == CalleeCC;
2602
2603  if (GuaranteedTailCallOpt) {
2604    if (IsTailCallConvention(CalleeCC) && CCMatch)
2605      return true;
2606    return false;
2607  }
2608
2609  // Look for obvious safe cases to perform tail call optimization that do not
2610  // require ABI changes. This is what gcc calls sibcall.
2611
2612  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2613  // emit a special epilogue.
2614  if (RegInfo->needsStackRealignment(MF))
2615    return false;
2616
2617  // Also avoid sibcall optimization if either caller or callee uses struct
2618  // return semantics.
2619  if (isCalleeStructRet || isCallerStructRet)
2620    return false;
2621
2622  // An stdcall caller is expected to clean up its arguments; the callee
2623  // isn't going to do that.
2624  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2625    return false;
2626
2627  // Do not sibcall optimize vararg calls unless all arguments are passed via
2628  // registers.
2629  if (isVarArg && !Outs.empty()) {
2630
2631    // Optimizing for varargs on Win64 is unlikely to be safe without
2632    // additional testing.
2633    if (Subtarget->isTargetWin64())
2634      return false;
2635
2636    SmallVector<CCValAssign, 16> ArgLocs;
2637    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2638		   getTargetMachine(), ArgLocs, *DAG.getContext());
2639
2640    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2641    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2642      if (!ArgLocs[i].isRegLoc())
2643        return false;
2644  }
2645
2646  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2647  // Therefore if it's not used by the call it is not safe to optimize this into
2648  // a sibcall.
2649  bool Unused = false;
2650  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2651    if (!Ins[i].Used) {
2652      Unused = true;
2653      break;
2654    }
2655  }
2656  if (Unused) {
2657    SmallVector<CCValAssign, 16> RVLocs;
2658    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2659		   getTargetMachine(), RVLocs, *DAG.getContext());
2660    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2661    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2662      CCValAssign &VA = RVLocs[i];
2663      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2664        return false;
2665    }
2666  }
2667
2668  // If the calling conventions do not match, then we'd better make sure the
2669  // results are returned in the same way as what the caller expects.
2670  if (!CCMatch) {
2671    SmallVector<CCValAssign, 16> RVLocs1;
2672    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2673		    getTargetMachine(), RVLocs1, *DAG.getContext());
2674    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2675
2676    SmallVector<CCValAssign, 16> RVLocs2;
2677    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2678		    getTargetMachine(), RVLocs2, *DAG.getContext());
2679    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2680
2681    if (RVLocs1.size() != RVLocs2.size())
2682      return false;
2683    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2684      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2685        return false;
2686      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2687        return false;
2688      if (RVLocs1[i].isRegLoc()) {
2689        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2690          return false;
2691      } else {
2692        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2693          return false;
2694      }
2695    }
2696  }
2697
2698  // If the callee takes no arguments then go on to check the results of the
2699  // call.
2700  if (!Outs.empty()) {
2701    // Check if stack adjustment is needed. For now, do not do this if any
2702    // argument is passed on the stack.
2703    SmallVector<CCValAssign, 16> ArgLocs;
2704    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2705		   getTargetMachine(), ArgLocs, *DAG.getContext());
2706
2707    // Allocate shadow area for Win64
2708    if (Subtarget->isTargetWin64()) {
2709      CCInfo.AllocateStack(32, 8);
2710    }
2711
2712    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2713    if (CCInfo.getNextStackOffset()) {
2714      MachineFunction &MF = DAG.getMachineFunction();
2715      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2716        return false;
2717
2718      // Check if the arguments are already laid out in the right way as
2719      // the caller's fixed stack objects.
2720      MachineFrameInfo *MFI = MF.getFrameInfo();
2721      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2722      const X86InstrInfo *TII =
2723        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2724      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2725        CCValAssign &VA = ArgLocs[i];
2726        SDValue Arg = OutVals[i];
2727        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2728        if (VA.getLocInfo() == CCValAssign::Indirect)
2729          return false;
2730        if (!VA.isRegLoc()) {
2731          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2732                                   MFI, MRI, TII))
2733            return false;
2734        }
2735      }
2736    }
2737
2738    // If the tailcall address may be in a register, then make sure it's
2739    // possible to register allocate for it. In 32-bit, the call address can
2740    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2741    // callee-saved registers are restored. These happen to be the same
2742    // registers used to pass 'inreg' arguments so watch out for those.
2743    if (!Subtarget->is64Bit() &&
2744        !isa<GlobalAddressSDNode>(Callee) &&
2745        !isa<ExternalSymbolSDNode>(Callee)) {
2746      unsigned NumInRegs = 0;
2747      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2748        CCValAssign &VA = ArgLocs[i];
2749        if (!VA.isRegLoc())
2750          continue;
2751        unsigned Reg = VA.getLocReg();
2752        switch (Reg) {
2753        default: break;
2754        case X86::EAX: case X86::EDX: case X86::ECX:
2755          if (++NumInRegs == 3)
2756            return false;
2757          break;
2758        }
2759      }
2760    }
2761  }
2762
2763  return true;
2764}
2765
2766FastISel *
2767X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2768  return X86::createFastISel(funcInfo);
2769}
2770
2771
2772//===----------------------------------------------------------------------===//
2773//                           Other Lowering Hooks
2774//===----------------------------------------------------------------------===//
2775
2776static bool MayFoldLoad(SDValue Op) {
2777  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2778}
2779
2780static bool MayFoldIntoStore(SDValue Op) {
2781  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2782}
2783
2784static bool isTargetShuffle(unsigned Opcode) {
2785  switch(Opcode) {
2786  default: return false;
2787  case X86ISD::PSHUFD:
2788  case X86ISD::PSHUFHW:
2789  case X86ISD::PSHUFLW:
2790  case X86ISD::SHUFPD:
2791  case X86ISD::PALIGN:
2792  case X86ISD::SHUFPS:
2793  case X86ISD::MOVLHPS:
2794  case X86ISD::MOVLHPD:
2795  case X86ISD::MOVHLPS:
2796  case X86ISD::MOVLPS:
2797  case X86ISD::MOVLPD:
2798  case X86ISD::MOVSHDUP:
2799  case X86ISD::MOVSLDUP:
2800  case X86ISD::MOVDDUP:
2801  case X86ISD::MOVSS:
2802  case X86ISD::MOVSD:
2803  case X86ISD::UNPCKLPS:
2804  case X86ISD::UNPCKLPD:
2805  case X86ISD::VUNPCKLPSY:
2806  case X86ISD::VUNPCKLPDY:
2807  case X86ISD::PUNPCKLWD:
2808  case X86ISD::PUNPCKLBW:
2809  case X86ISD::PUNPCKLDQ:
2810  case X86ISD::PUNPCKLQDQ:
2811  case X86ISD::UNPCKHPS:
2812  case X86ISD::UNPCKHPD:
2813  case X86ISD::VUNPCKHPSY:
2814  case X86ISD::VUNPCKHPDY:
2815  case X86ISD::PUNPCKHWD:
2816  case X86ISD::PUNPCKHBW:
2817  case X86ISD::PUNPCKHDQ:
2818  case X86ISD::PUNPCKHQDQ:
2819  case X86ISD::VPERMILPS:
2820  case X86ISD::VPERMILPSY:
2821  case X86ISD::VPERMILPD:
2822  case X86ISD::VPERMILPDY:
2823  case X86ISD::VPERM2F128:
2824    return true;
2825  }
2826  return false;
2827}
2828
2829static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2830                                               SDValue V1, SelectionDAG &DAG) {
2831  switch(Opc) {
2832  default: llvm_unreachable("Unknown x86 shuffle node");
2833  case X86ISD::MOVSHDUP:
2834  case X86ISD::MOVSLDUP:
2835  case X86ISD::MOVDDUP:
2836    return DAG.getNode(Opc, dl, VT, V1);
2837  }
2838
2839  return SDValue();
2840}
2841
2842static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2843                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2844  switch(Opc) {
2845  default: llvm_unreachable("Unknown x86 shuffle node");
2846  case X86ISD::PSHUFD:
2847  case X86ISD::PSHUFHW:
2848  case X86ISD::PSHUFLW:
2849  case X86ISD::VPERMILPS:
2850  case X86ISD::VPERMILPSY:
2851  case X86ISD::VPERMILPD:
2852  case X86ISD::VPERMILPDY:
2853    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2854  }
2855
2856  return SDValue();
2857}
2858
2859static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2860               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2861  switch(Opc) {
2862  default: llvm_unreachable("Unknown x86 shuffle node");
2863  case X86ISD::PALIGN:
2864  case X86ISD::SHUFPD:
2865  case X86ISD::SHUFPS:
2866  case X86ISD::VPERM2F128:
2867    return DAG.getNode(Opc, dl, VT, V1, V2,
2868                       DAG.getConstant(TargetMask, MVT::i8));
2869  }
2870  return SDValue();
2871}
2872
2873static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2874                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2875  switch(Opc) {
2876  default: llvm_unreachable("Unknown x86 shuffle node");
2877  case X86ISD::MOVLHPS:
2878  case X86ISD::MOVLHPD:
2879  case X86ISD::MOVHLPS:
2880  case X86ISD::MOVLPS:
2881  case X86ISD::MOVLPD:
2882  case X86ISD::MOVSS:
2883  case X86ISD::MOVSD:
2884  case X86ISD::UNPCKLPS:
2885  case X86ISD::UNPCKLPD:
2886  case X86ISD::VUNPCKLPSY:
2887  case X86ISD::VUNPCKLPDY:
2888  case X86ISD::PUNPCKLWD:
2889  case X86ISD::PUNPCKLBW:
2890  case X86ISD::PUNPCKLDQ:
2891  case X86ISD::PUNPCKLQDQ:
2892  case X86ISD::UNPCKHPS:
2893  case X86ISD::UNPCKHPD:
2894  case X86ISD::VUNPCKHPSY:
2895  case X86ISD::VUNPCKHPDY:
2896  case X86ISD::PUNPCKHWD:
2897  case X86ISD::PUNPCKHBW:
2898  case X86ISD::PUNPCKHDQ:
2899  case X86ISD::PUNPCKHQDQ:
2900    return DAG.getNode(Opc, dl, VT, V1, V2);
2901  }
2902  return SDValue();
2903}
2904
2905SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2906  MachineFunction &MF = DAG.getMachineFunction();
2907  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2908  int ReturnAddrIndex = FuncInfo->getRAIndex();
2909
2910  if (ReturnAddrIndex == 0) {
2911    // Set up a frame object for the return address.
2912    uint64_t SlotSize = TD->getPointerSize();
2913    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2914                                                           false);
2915    FuncInfo->setRAIndex(ReturnAddrIndex);
2916  }
2917
2918  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2919}
2920
2921
2922bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2923                                       bool hasSymbolicDisplacement) {
2924  // Offset should fit into 32 bit immediate field.
2925  if (!isInt<32>(Offset))
2926    return false;
2927
2928  // If we don't have a symbolic displacement - we don't have any extra
2929  // restrictions.
2930  if (!hasSymbolicDisplacement)
2931    return true;
2932
2933  // FIXME: Some tweaks might be needed for medium code model.
2934  if (M != CodeModel::Small && M != CodeModel::Kernel)
2935    return false;
2936
2937  // For small code model we assume that latest object is 16MB before end of 31
2938  // bits boundary. We may also accept pretty large negative constants knowing
2939  // that all objects are in the positive half of address space.
2940  if (M == CodeModel::Small && Offset < 16*1024*1024)
2941    return true;
2942
2943  // For kernel code model we know that all object resist in the negative half
2944  // of 32bits address space. We may not accept negative offsets, since they may
2945  // be just off and we may accept pretty large positive ones.
2946  if (M == CodeModel::Kernel && Offset > 0)
2947    return true;
2948
2949  return false;
2950}
2951
2952/// isCalleePop - Determines whether the callee is required to pop its
2953/// own arguments. Callee pop is necessary to support tail calls.
2954bool X86::isCalleePop(CallingConv::ID CallingConv,
2955                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2956  if (IsVarArg)
2957    return false;
2958
2959  switch (CallingConv) {
2960  default:
2961    return false;
2962  case CallingConv::X86_StdCall:
2963    return !is64Bit;
2964  case CallingConv::X86_FastCall:
2965    return !is64Bit;
2966  case CallingConv::X86_ThisCall:
2967    return !is64Bit;
2968  case CallingConv::Fast:
2969    return TailCallOpt;
2970  case CallingConv::GHC:
2971    return TailCallOpt;
2972  }
2973}
2974
2975/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2976/// specific condition code, returning the condition code and the LHS/RHS of the
2977/// comparison to make.
2978static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2979                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2980  if (!isFP) {
2981    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2982      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2983        // X > -1   -> X == 0, jump !sign.
2984        RHS = DAG.getConstant(0, RHS.getValueType());
2985        return X86::COND_NS;
2986      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2987        // X < 0   -> X == 0, jump on sign.
2988        return X86::COND_S;
2989      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2990        // X < 1   -> X <= 0
2991        RHS = DAG.getConstant(0, RHS.getValueType());
2992        return X86::COND_LE;
2993      }
2994    }
2995
2996    switch (SetCCOpcode) {
2997    default: llvm_unreachable("Invalid integer condition!");
2998    case ISD::SETEQ:  return X86::COND_E;
2999    case ISD::SETGT:  return X86::COND_G;
3000    case ISD::SETGE:  return X86::COND_GE;
3001    case ISD::SETLT:  return X86::COND_L;
3002    case ISD::SETLE:  return X86::COND_LE;
3003    case ISD::SETNE:  return X86::COND_NE;
3004    case ISD::SETULT: return X86::COND_B;
3005    case ISD::SETUGT: return X86::COND_A;
3006    case ISD::SETULE: return X86::COND_BE;
3007    case ISD::SETUGE: return X86::COND_AE;
3008    }
3009  }
3010
3011  // First determine if it is required or is profitable to flip the operands.
3012
3013  // If LHS is a foldable load, but RHS is not, flip the condition.
3014  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3015      !ISD::isNON_EXTLoad(RHS.getNode())) {
3016    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3017    std::swap(LHS, RHS);
3018  }
3019
3020  switch (SetCCOpcode) {
3021  default: break;
3022  case ISD::SETOLT:
3023  case ISD::SETOLE:
3024  case ISD::SETUGT:
3025  case ISD::SETUGE:
3026    std::swap(LHS, RHS);
3027    break;
3028  }
3029
3030  // On a floating point condition, the flags are set as follows:
3031  // ZF  PF  CF   op
3032  //  0 | 0 | 0 | X > Y
3033  //  0 | 0 | 1 | X < Y
3034  //  1 | 0 | 0 | X == Y
3035  //  1 | 1 | 1 | unordered
3036  switch (SetCCOpcode) {
3037  default: llvm_unreachable("Condcode should be pre-legalized away");
3038  case ISD::SETUEQ:
3039  case ISD::SETEQ:   return X86::COND_E;
3040  case ISD::SETOLT:              // flipped
3041  case ISD::SETOGT:
3042  case ISD::SETGT:   return X86::COND_A;
3043  case ISD::SETOLE:              // flipped
3044  case ISD::SETOGE:
3045  case ISD::SETGE:   return X86::COND_AE;
3046  case ISD::SETUGT:              // flipped
3047  case ISD::SETULT:
3048  case ISD::SETLT:   return X86::COND_B;
3049  case ISD::SETUGE:              // flipped
3050  case ISD::SETULE:
3051  case ISD::SETLE:   return X86::COND_BE;
3052  case ISD::SETONE:
3053  case ISD::SETNE:   return X86::COND_NE;
3054  case ISD::SETUO:   return X86::COND_P;
3055  case ISD::SETO:    return X86::COND_NP;
3056  case ISD::SETOEQ:
3057  case ISD::SETUNE:  return X86::COND_INVALID;
3058  }
3059}
3060
3061/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3062/// code. Current x86 isa includes the following FP cmov instructions:
3063/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3064static bool hasFPCMov(unsigned X86CC) {
3065  switch (X86CC) {
3066  default:
3067    return false;
3068  case X86::COND_B:
3069  case X86::COND_BE:
3070  case X86::COND_E:
3071  case X86::COND_P:
3072  case X86::COND_A:
3073  case X86::COND_AE:
3074  case X86::COND_NE:
3075  case X86::COND_NP:
3076    return true;
3077  }
3078}
3079
3080/// isFPImmLegal - Returns true if the target can instruction select the
3081/// specified FP immediate natively. If false, the legalizer will
3082/// materialize the FP immediate as a load from a constant pool.
3083bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3084  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3085    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3086      return true;
3087  }
3088  return false;
3089}
3090
3091/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3092/// the specified range (L, H].
3093static bool isUndefOrInRange(int Val, int Low, int Hi) {
3094  return (Val < 0) || (Val >= Low && Val < Hi);
3095}
3096
3097/// isUndefOrInRange - Return true if every element in Mask, begining
3098/// from position Pos and ending in Pos+Size, falls within the specified
3099/// range (L, L+Pos]. or is undef.
3100static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3101                             int Pos, int Size, int Low, int Hi) {
3102  for (int i = Pos, e = Pos+Size; i != e; ++i)
3103    if (!isUndefOrInRange(Mask[i], Low, Hi))
3104      return false;
3105  return true;
3106}
3107
3108/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3109/// specified value.
3110static bool isUndefOrEqual(int Val, int CmpVal) {
3111  if (Val < 0 || Val == CmpVal)
3112    return true;
3113  return false;
3114}
3115
3116/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3117/// from position Pos and ending in Pos+Size, falls within the specified
3118/// sequential range (L, L+Pos]. or is undef.
3119static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3120                                       int Pos, int Size, int Low) {
3121  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3122    if (!isUndefOrEqual(Mask[i], Low))
3123      return false;
3124  return true;
3125}
3126
3127/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3128/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3129/// the second operand.
3130static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3131  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3132    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3133  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3134    return (Mask[0] < 2 && Mask[1] < 2);
3135  return false;
3136}
3137
3138bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3139  SmallVector<int, 8> M;
3140  N->getMask(M);
3141  return ::isPSHUFDMask(M, N->getValueType(0));
3142}
3143
3144/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3145/// is suitable for input to PSHUFHW.
3146static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3147  if (VT != MVT::v8i16)
3148    return false;
3149
3150  // Lower quadword copied in order or undef.
3151  for (int i = 0; i != 4; ++i)
3152    if (Mask[i] >= 0 && Mask[i] != i)
3153      return false;
3154
3155  // Upper quadword shuffled.
3156  for (int i = 4; i != 8; ++i)
3157    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3158      return false;
3159
3160  return true;
3161}
3162
3163bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3164  SmallVector<int, 8> M;
3165  N->getMask(M);
3166  return ::isPSHUFHWMask(M, N->getValueType(0));
3167}
3168
3169/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3170/// is suitable for input to PSHUFLW.
3171static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3172  if (VT != MVT::v8i16)
3173    return false;
3174
3175  // Upper quadword copied in order.
3176  for (int i = 4; i != 8; ++i)
3177    if (Mask[i] >= 0 && Mask[i] != i)
3178      return false;
3179
3180  // Lower quadword shuffled.
3181  for (int i = 0; i != 4; ++i)
3182    if (Mask[i] >= 4)
3183      return false;
3184
3185  return true;
3186}
3187
3188bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3189  SmallVector<int, 8> M;
3190  N->getMask(M);
3191  return ::isPSHUFLWMask(M, N->getValueType(0));
3192}
3193
3194/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3195/// is suitable for input to PALIGNR.
3196static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3197                          bool hasSSSE3OrAVX) {
3198  int i, e = VT.getVectorNumElements();
3199  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3200    return false;
3201
3202  // Do not handle v2i64 / v2f64 shuffles with palignr.
3203  if (e < 4 || !hasSSSE3OrAVX)
3204    return false;
3205
3206  for (i = 0; i != e; ++i)
3207    if (Mask[i] >= 0)
3208      break;
3209
3210  // All undef, not a palignr.
3211  if (i == e)
3212    return false;
3213
3214  // Make sure we're shifting in the right direction.
3215  if (Mask[i] <= i)
3216    return false;
3217
3218  int s = Mask[i] - i;
3219
3220  // Check the rest of the elements to see if they are consecutive.
3221  for (++i; i != e; ++i) {
3222    int m = Mask[i];
3223    if (m >= 0 && m != s+i)
3224      return false;
3225  }
3226  return true;
3227}
3228
3229/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3230/// specifies a shuffle of elements that is suitable for input to 256-bit
3231/// VSHUFPSY.
3232static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3233                          const X86Subtarget *Subtarget) {
3234  int NumElems = VT.getVectorNumElements();
3235
3236  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3237    return false;
3238
3239  if (NumElems != 8)
3240    return false;
3241
3242  // VSHUFPSY divides the resulting vector into 4 chunks.
3243  // The sources are also splitted into 4 chunks, and each destination
3244  // chunk must come from a different source chunk.
3245  //
3246  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3247  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3248  //
3249  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3250  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3251  //
3252  int QuarterSize = NumElems/4;
3253  int HalfSize = QuarterSize*2;
3254  for (int i = 0; i < QuarterSize; ++i)
3255    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3256      return false;
3257  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3258    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3259      return false;
3260
3261  // The mask of the second half must be the same as the first but with
3262  // the appropriate offsets. This works in the same way as VPERMILPS
3263  // works with masks.
3264  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3265    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3266      return false;
3267    int FstHalfIdx = i-HalfSize;
3268    if (Mask[FstHalfIdx] < 0)
3269      continue;
3270    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3271      return false;
3272  }
3273  for (int i = QuarterSize*3; i < NumElems; ++i) {
3274    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3275      return false;
3276    int FstHalfIdx = i-HalfSize;
3277    if (Mask[FstHalfIdx] < 0)
3278      continue;
3279    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3280      return false;
3281
3282  }
3283
3284  return true;
3285}
3286
3287/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3288/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3289static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3290  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3291  EVT VT = SVOp->getValueType(0);
3292  int NumElems = VT.getVectorNumElements();
3293
3294  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3295         "Only supports v8i32 and v8f32 types");
3296
3297  int HalfSize = NumElems/2;
3298  unsigned Mask = 0;
3299  for (int i = 0; i != NumElems ; ++i) {
3300    if (SVOp->getMaskElt(i) < 0)
3301      continue;
3302    // The mask of the first half must be equal to the second one.
3303    unsigned Shamt = (i%HalfSize)*2;
3304    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3305    Mask |= Elt << Shamt;
3306  }
3307
3308  return Mask;
3309}
3310
3311/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3312/// specifies a shuffle of elements that is suitable for input to 256-bit
3313/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3314/// version and the mask of the second half isn't binded with the first
3315/// one.
3316static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3317                           const X86Subtarget *Subtarget) {
3318  int NumElems = VT.getVectorNumElements();
3319
3320  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3321    return false;
3322
3323  if (NumElems != 4)
3324    return false;
3325
3326  // VSHUFPSY divides the resulting vector into 4 chunks.
3327  // The sources are also splitted into 4 chunks, and each destination
3328  // chunk must come from a different source chunk.
3329  //
3330  //  SRC1 =>      X3       X2       X1       X0
3331  //  SRC2 =>      Y3       Y2       Y1       Y0
3332  //
3333  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3334  //
3335  int QuarterSize = NumElems/4;
3336  int HalfSize = QuarterSize*2;
3337  for (int i = 0; i < QuarterSize; ++i)
3338    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3339      return false;
3340  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3341    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3342      return false;
3343  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3344    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3345      return false;
3346  for (int i = QuarterSize*3; i < NumElems; ++i)
3347    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3348      return false;
3349
3350  return true;
3351}
3352
3353/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3354/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3355static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3356  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3357  EVT VT = SVOp->getValueType(0);
3358  int NumElems = VT.getVectorNumElements();
3359
3360  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3361         "Only supports v4i64 and v4f64 types");
3362
3363  int HalfSize = NumElems/2;
3364  unsigned Mask = 0;
3365  for (int i = 0; i != NumElems ; ++i) {
3366    if (SVOp->getMaskElt(i) < 0)
3367      continue;
3368    int Elt = SVOp->getMaskElt(i) % HalfSize;
3369    Mask |= Elt << i;
3370  }
3371
3372  return Mask;
3373}
3374
3375/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3376/// specifies a shuffle of elements that is suitable for input to 128-bit
3377/// SHUFPS and SHUFPD.
3378static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3379  int NumElems = VT.getVectorNumElements();
3380
3381  if (VT.getSizeInBits() != 128)
3382    return false;
3383
3384  if (NumElems != 2 && NumElems != 4)
3385    return false;
3386
3387  int Half = NumElems / 2;
3388  for (int i = 0; i < Half; ++i)
3389    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3390      return false;
3391  for (int i = Half; i < NumElems; ++i)
3392    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3393      return false;
3394
3395  return true;
3396}
3397
3398bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3399  SmallVector<int, 8> M;
3400  N->getMask(M);
3401  return ::isSHUFPMask(M, N->getValueType(0));
3402}
3403
3404/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3405/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3406/// half elements to come from vector 1 (which would equal the dest.) and
3407/// the upper half to come from vector 2.
3408static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3409  int NumElems = VT.getVectorNumElements();
3410
3411  if (NumElems != 2 && NumElems != 4)
3412    return false;
3413
3414  int Half = NumElems / 2;
3415  for (int i = 0; i < Half; ++i)
3416    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3417      return false;
3418  for (int i = Half; i < NumElems; ++i)
3419    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3420      return false;
3421  return true;
3422}
3423
3424static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3425  SmallVector<int, 8> M;
3426  N->getMask(M);
3427  return isCommutedSHUFPMask(M, N->getValueType(0));
3428}
3429
3430/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3431/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3432bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3433  EVT VT = N->getValueType(0);
3434  unsigned NumElems = VT.getVectorNumElements();
3435
3436  if (VT.getSizeInBits() != 128)
3437    return false;
3438
3439  if (NumElems != 4)
3440    return false;
3441
3442  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3443  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3444         isUndefOrEqual(N->getMaskElt(1), 7) &&
3445         isUndefOrEqual(N->getMaskElt(2), 2) &&
3446         isUndefOrEqual(N->getMaskElt(3), 3);
3447}
3448
3449/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3450/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3451/// <2, 3, 2, 3>
3452bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3453  EVT VT = N->getValueType(0);
3454  unsigned NumElems = VT.getVectorNumElements();
3455
3456  if (VT.getSizeInBits() != 128)
3457    return false;
3458
3459  if (NumElems != 4)
3460    return false;
3461
3462  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3463         isUndefOrEqual(N->getMaskElt(1), 3) &&
3464         isUndefOrEqual(N->getMaskElt(2), 2) &&
3465         isUndefOrEqual(N->getMaskElt(3), 3);
3466}
3467
3468/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3469/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3470bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3471  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3472
3473  if (NumElems != 2 && NumElems != 4)
3474    return false;
3475
3476  for (unsigned i = 0; i < NumElems/2; ++i)
3477    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3478      return false;
3479
3480  for (unsigned i = NumElems/2; i < NumElems; ++i)
3481    if (!isUndefOrEqual(N->getMaskElt(i), i))
3482      return false;
3483
3484  return true;
3485}
3486
3487/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3488/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3489bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3490  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3491
3492  if ((NumElems != 2 && NumElems != 4)
3493      || N->getValueType(0).getSizeInBits() > 128)
3494    return false;
3495
3496  for (unsigned i = 0; i < NumElems/2; ++i)
3497    if (!isUndefOrEqual(N->getMaskElt(i), i))
3498      return false;
3499
3500  for (unsigned i = 0; i < NumElems/2; ++i)
3501    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3502      return false;
3503
3504  return true;
3505}
3506
3507/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3508/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3509static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3510                         bool V2IsSplat = false) {
3511  int NumElts = VT.getVectorNumElements();
3512
3513  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3514         "Unsupported vector type for unpckh");
3515
3516  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3517    return false;
3518
3519  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3520  // independently on 128-bit lanes.
3521  unsigned NumLanes = VT.getSizeInBits()/128;
3522  unsigned NumLaneElts = NumElts/NumLanes;
3523
3524  unsigned Start = 0;
3525  unsigned End = NumLaneElts;
3526  for (unsigned s = 0; s < NumLanes; ++s) {
3527    for (unsigned i = Start, j = s * NumLaneElts;
3528         i != End;
3529         i += 2, ++j) {
3530      int BitI  = Mask[i];
3531      int BitI1 = Mask[i+1];
3532      if (!isUndefOrEqual(BitI, j))
3533        return false;
3534      if (V2IsSplat) {
3535        if (!isUndefOrEqual(BitI1, NumElts))
3536          return false;
3537      } else {
3538        if (!isUndefOrEqual(BitI1, j + NumElts))
3539          return false;
3540      }
3541    }
3542    // Process the next 128 bits.
3543    Start += NumLaneElts;
3544    End += NumLaneElts;
3545  }
3546
3547  return true;
3548}
3549
3550bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3551  SmallVector<int, 8> M;
3552  N->getMask(M);
3553  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3554}
3555
3556/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3557/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3558static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3559                         bool V2IsSplat = false) {
3560  int NumElts = VT.getVectorNumElements();
3561
3562  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3563         "Unsupported vector type for unpckh");
3564
3565  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3566    return false;
3567
3568  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3569  // independently on 128-bit lanes.
3570  unsigned NumLanes = VT.getSizeInBits()/128;
3571  unsigned NumLaneElts = NumElts/NumLanes;
3572
3573  unsigned Start = 0;
3574  unsigned End = NumLaneElts;
3575  for (unsigned l = 0; l != NumLanes; ++l) {
3576    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3577                             i != End; i += 2, ++j) {
3578      int BitI  = Mask[i];
3579      int BitI1 = Mask[i+1];
3580      if (!isUndefOrEqual(BitI, j))
3581        return false;
3582      if (V2IsSplat) {
3583        if (isUndefOrEqual(BitI1, NumElts))
3584          return false;
3585      } else {
3586        if (!isUndefOrEqual(BitI1, j+NumElts))
3587          return false;
3588      }
3589    }
3590    // Process the next 128 bits.
3591    Start += NumLaneElts;
3592    End += NumLaneElts;
3593  }
3594  return true;
3595}
3596
3597bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3598  SmallVector<int, 8> M;
3599  N->getMask(M);
3600  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3601}
3602
3603/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3604/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3605/// <0, 0, 1, 1>
3606static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3607  int NumElems = VT.getVectorNumElements();
3608  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3609    return false;
3610
3611  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3612  // FIXME: Need a better way to get rid of this, there's no latency difference
3613  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3614  // the former later. We should also remove the "_undef" special mask.
3615  if (NumElems == 4 && VT.getSizeInBits() == 256)
3616    return false;
3617
3618  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3619  // independently on 128-bit lanes.
3620  unsigned NumLanes = VT.getSizeInBits() / 128;
3621  unsigned NumLaneElts = NumElems / NumLanes;
3622
3623  for (unsigned s = 0; s < NumLanes; ++s) {
3624    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3625         i != NumLaneElts * (s + 1);
3626         i += 2, ++j) {
3627      int BitI  = Mask[i];
3628      int BitI1 = Mask[i+1];
3629
3630      if (!isUndefOrEqual(BitI, j))
3631        return false;
3632      if (!isUndefOrEqual(BitI1, j))
3633        return false;
3634    }
3635  }
3636
3637  return true;
3638}
3639
3640bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3641  SmallVector<int, 8> M;
3642  N->getMask(M);
3643  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3644}
3645
3646/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3647/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3648/// <2, 2, 3, 3>
3649static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3650  int NumElems = VT.getVectorNumElements();
3651  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3652    return false;
3653
3654  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3655    int BitI  = Mask[i];
3656    int BitI1 = Mask[i+1];
3657    if (!isUndefOrEqual(BitI, j))
3658      return false;
3659    if (!isUndefOrEqual(BitI1, j))
3660      return false;
3661  }
3662  return true;
3663}
3664
3665bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3666  SmallVector<int, 8> M;
3667  N->getMask(M);
3668  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3669}
3670
3671/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3672/// specifies a shuffle of elements that is suitable for input to MOVSS,
3673/// MOVSD, and MOVD, i.e. setting the lowest element.
3674static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3675  if (VT.getVectorElementType().getSizeInBits() < 32)
3676    return false;
3677
3678  int NumElts = VT.getVectorNumElements();
3679
3680  if (!isUndefOrEqual(Mask[0], NumElts))
3681    return false;
3682
3683  for (int i = 1; i < NumElts; ++i)
3684    if (!isUndefOrEqual(Mask[i], i))
3685      return false;
3686
3687  return true;
3688}
3689
3690bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3691  SmallVector<int, 8> M;
3692  N->getMask(M);
3693  return ::isMOVLMask(M, N->getValueType(0));
3694}
3695
3696/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3697/// as permutations between 128-bit chunks or halves. As an example: this
3698/// shuffle bellow:
3699///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3700/// The first half comes from the second half of V1 and the second half from the
3701/// the second half of V2.
3702static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3703                             const X86Subtarget *Subtarget) {
3704  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3705    return false;
3706
3707  // The shuffle result is divided into half A and half B. In total the two
3708  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3709  // B must come from C, D, E or F.
3710  int HalfSize = VT.getVectorNumElements()/2;
3711  bool MatchA = false, MatchB = false;
3712
3713  // Check if A comes from one of C, D, E, F.
3714  for (int Half = 0; Half < 4; ++Half) {
3715    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3716      MatchA = true;
3717      break;
3718    }
3719  }
3720
3721  // Check if B comes from one of C, D, E, F.
3722  for (int Half = 0; Half < 4; ++Half) {
3723    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3724      MatchB = true;
3725      break;
3726    }
3727  }
3728
3729  return MatchA && MatchB;
3730}
3731
3732/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3733/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3734static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3735  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3736  EVT VT = SVOp->getValueType(0);
3737
3738  int HalfSize = VT.getVectorNumElements()/2;
3739
3740  int FstHalf = 0, SndHalf = 0;
3741  for (int i = 0; i < HalfSize; ++i) {
3742    if (SVOp->getMaskElt(i) > 0) {
3743      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3744      break;
3745    }
3746  }
3747  for (int i = HalfSize; i < HalfSize*2; ++i) {
3748    if (SVOp->getMaskElt(i) > 0) {
3749      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3750      break;
3751    }
3752  }
3753
3754  return (FstHalf | (SndHalf << 4));
3755}
3756
3757/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3758/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3759/// Note that VPERMIL mask matching is different depending whether theunderlying
3760/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3761/// to the same elements of the low, but to the higher half of the source.
3762/// In VPERMILPD the two lanes could be shuffled independently of each other
3763/// with the same restriction that lanes can't be crossed.
3764static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3765                            const X86Subtarget *Subtarget) {
3766  int NumElts = VT.getVectorNumElements();
3767  int NumLanes = VT.getSizeInBits()/128;
3768
3769  if (!Subtarget->hasAVX())
3770    return false;
3771
3772  // Only match 256-bit with 64-bit types
3773  if (VT.getSizeInBits() != 256 || NumElts != 4)
3774    return false;
3775
3776  // The mask on the high lane is independent of the low. Both can match
3777  // any element in inside its own lane, but can't cross.
3778  int LaneSize = NumElts/NumLanes;
3779  for (int l = 0; l < NumLanes; ++l)
3780    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3781      int LaneStart = l*LaneSize;
3782      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3783        return false;
3784    }
3785
3786  return true;
3787}
3788
3789/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3790/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3791/// Note that VPERMIL mask matching is different depending whether theunderlying
3792/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3793/// to the same elements of the low, but to the higher half of the source.
3794/// In VPERMILPD the two lanes could be shuffled independently of each other
3795/// with the same restriction that lanes can't be crossed.
3796static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3797                            const X86Subtarget *Subtarget) {
3798  unsigned NumElts = VT.getVectorNumElements();
3799  unsigned NumLanes = VT.getSizeInBits()/128;
3800
3801  if (!Subtarget->hasAVX())
3802    return false;
3803
3804  // Only match 256-bit with 32-bit types
3805  if (VT.getSizeInBits() != 256 || NumElts != 8)
3806    return false;
3807
3808  // The mask on the high lane should be the same as the low. Actually,
3809  // they can differ if any of the corresponding index in a lane is undef
3810  // and the other stays in range.
3811  int LaneSize = NumElts/NumLanes;
3812  for (int i = 0; i < LaneSize; ++i) {
3813    int HighElt = i+LaneSize;
3814    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3815    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3816
3817    if (!HighValid || !LowValid)
3818      return false;
3819    if (Mask[i] < 0 || Mask[HighElt] < 0)
3820      continue;
3821    if (Mask[HighElt]-Mask[i] != LaneSize)
3822      return false;
3823  }
3824
3825  return true;
3826}
3827
3828/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3829/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3830static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3831  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3832  EVT VT = SVOp->getValueType(0);
3833
3834  int NumElts = VT.getVectorNumElements();
3835  int NumLanes = VT.getSizeInBits()/128;
3836  int LaneSize = NumElts/NumLanes;
3837
3838  // Although the mask is equal for both lanes do it twice to get the cases
3839  // where a mask will match because the same mask element is undef on the
3840  // first half but valid on the second. This would get pathological cases
3841  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3842  unsigned Mask = 0;
3843  for (int l = 0; l < NumLanes; ++l) {
3844    for (int i = 0; i < LaneSize; ++i) {
3845      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3846      if (MaskElt < 0)
3847        continue;
3848      if (MaskElt >= LaneSize)
3849        MaskElt -= LaneSize;
3850      Mask |= MaskElt << (i*2);
3851    }
3852  }
3853
3854  return Mask;
3855}
3856
3857/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3858/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3859static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3860  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3861  EVT VT = SVOp->getValueType(0);
3862
3863  int NumElts = VT.getVectorNumElements();
3864  int NumLanes = VT.getSizeInBits()/128;
3865
3866  unsigned Mask = 0;
3867  int LaneSize = NumElts/NumLanes;
3868  for (int l = 0; l < NumLanes; ++l)
3869    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3870      int MaskElt = SVOp->getMaskElt(i);
3871      if (MaskElt < 0)
3872        continue;
3873      Mask |= (MaskElt-l*LaneSize) << i;
3874    }
3875
3876  return Mask;
3877}
3878
3879/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3880/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3881/// element of vector 2 and the other elements to come from vector 1 in order.
3882static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3883                               bool V2IsSplat = false, bool V2IsUndef = false) {
3884  int NumOps = VT.getVectorNumElements();
3885  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3886    return false;
3887
3888  if (!isUndefOrEqual(Mask[0], 0))
3889    return false;
3890
3891  for (int i = 1; i < NumOps; ++i)
3892    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3893          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3894          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3895      return false;
3896
3897  return true;
3898}
3899
3900static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3901                           bool V2IsUndef = false) {
3902  SmallVector<int, 8> M;
3903  N->getMask(M);
3904  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3905}
3906
3907/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3908/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3909/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3910bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3911                         const X86Subtarget *Subtarget) {
3912  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3913    return false;
3914
3915  // The second vector must be undef
3916  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3917    return false;
3918
3919  EVT VT = N->getValueType(0);
3920  unsigned NumElems = VT.getVectorNumElements();
3921
3922  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3923      (VT.getSizeInBits() == 256 && NumElems != 8))
3924    return false;
3925
3926  // "i+1" is the value the indexed mask element must have
3927  for (unsigned i = 0; i < NumElems; i += 2)
3928    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3929        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3930      return false;
3931
3932  return true;
3933}
3934
3935/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3936/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3937/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3938bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3939                         const X86Subtarget *Subtarget) {
3940  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3941    return false;
3942
3943  // The second vector must be undef
3944  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3945    return false;
3946
3947  EVT VT = N->getValueType(0);
3948  unsigned NumElems = VT.getVectorNumElements();
3949
3950  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3951      (VT.getSizeInBits() == 256 && NumElems != 8))
3952    return false;
3953
3954  // "i" is the value the indexed mask element must have
3955  for (unsigned i = 0; i < NumElems; i += 2)
3956    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3957        !isUndefOrEqual(N->getMaskElt(i+1), i))
3958      return false;
3959
3960  return true;
3961}
3962
3963/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3964/// specifies a shuffle of elements that is suitable for input to 256-bit
3965/// version of MOVDDUP.
3966static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3967                           const X86Subtarget *Subtarget) {
3968  EVT VT = N->getValueType(0);
3969  int NumElts = VT.getVectorNumElements();
3970  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3971
3972  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3973      !V2IsUndef || NumElts != 4)
3974    return false;
3975
3976  for (int i = 0; i != NumElts/2; ++i)
3977    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3978      return false;
3979  for (int i = NumElts/2; i != NumElts; ++i)
3980    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3981      return false;
3982  return true;
3983}
3984
3985/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3986/// specifies a shuffle of elements that is suitable for input to 128-bit
3987/// version of MOVDDUP.
3988bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3989  EVT VT = N->getValueType(0);
3990
3991  if (VT.getSizeInBits() != 128)
3992    return false;
3993
3994  int e = VT.getVectorNumElements() / 2;
3995  for (int i = 0; i < e; ++i)
3996    if (!isUndefOrEqual(N->getMaskElt(i), i))
3997      return false;
3998  for (int i = 0; i < e; ++i)
3999    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
4000      return false;
4001  return true;
4002}
4003
4004/// isVEXTRACTF128Index - Return true if the specified
4005/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4006/// suitable for input to VEXTRACTF128.
4007bool X86::isVEXTRACTF128Index(SDNode *N) {
4008  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4009    return false;
4010
4011  // The index should be aligned on a 128-bit boundary.
4012  uint64_t Index =
4013    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4014
4015  unsigned VL = N->getValueType(0).getVectorNumElements();
4016  unsigned VBits = N->getValueType(0).getSizeInBits();
4017  unsigned ElSize = VBits / VL;
4018  bool Result = (Index * ElSize) % 128 == 0;
4019
4020  return Result;
4021}
4022
4023/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4024/// operand specifies a subvector insert that is suitable for input to
4025/// VINSERTF128.
4026bool X86::isVINSERTF128Index(SDNode *N) {
4027  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4028    return false;
4029
4030  // The index should be aligned on a 128-bit boundary.
4031  uint64_t Index =
4032    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4033
4034  unsigned VL = N->getValueType(0).getVectorNumElements();
4035  unsigned VBits = N->getValueType(0).getSizeInBits();
4036  unsigned ElSize = VBits / VL;
4037  bool Result = (Index * ElSize) % 128 == 0;
4038
4039  return Result;
4040}
4041
4042/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4043/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4044unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4045  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4046  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4047
4048  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4049  unsigned Mask = 0;
4050  for (int i = 0; i < NumOperands; ++i) {
4051    int Val = SVOp->getMaskElt(NumOperands-i-1);
4052    if (Val < 0) Val = 0;
4053    if (Val >= NumOperands) Val -= NumOperands;
4054    Mask |= Val;
4055    if (i != NumOperands - 1)
4056      Mask <<= Shift;
4057  }
4058  return Mask;
4059}
4060
4061/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4062/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4063unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4064  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4065  unsigned Mask = 0;
4066  // 8 nodes, but we only care about the last 4.
4067  for (unsigned i = 7; i >= 4; --i) {
4068    int Val = SVOp->getMaskElt(i);
4069    if (Val >= 0)
4070      Mask |= (Val - 4);
4071    if (i != 4)
4072      Mask <<= 2;
4073  }
4074  return Mask;
4075}
4076
4077/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4078/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4079unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4080  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4081  unsigned Mask = 0;
4082  // 8 nodes, but we only care about the first 4.
4083  for (int i = 3; i >= 0; --i) {
4084    int Val = SVOp->getMaskElt(i);
4085    if (Val >= 0)
4086      Mask |= Val;
4087    if (i != 0)
4088      Mask <<= 2;
4089  }
4090  return Mask;
4091}
4092
4093/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4094/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4095unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4096  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4097  EVT VVT = N->getValueType(0);
4098  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4099  int Val = 0;
4100
4101  unsigned i, e;
4102  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4103    Val = SVOp->getMaskElt(i);
4104    if (Val >= 0)
4105      break;
4106  }
4107  assert(Val - i > 0 && "PALIGNR imm should be positive");
4108  return (Val - i) * EltSize;
4109}
4110
4111/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4112/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4113/// instructions.
4114unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4115  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4116    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4117
4118  uint64_t Index =
4119    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4120
4121  EVT VecVT = N->getOperand(0).getValueType();
4122  EVT ElVT = VecVT.getVectorElementType();
4123
4124  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4125  return Index / NumElemsPerChunk;
4126}
4127
4128/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4129/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4130/// instructions.
4131unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4132  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4133    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4134
4135  uint64_t Index =
4136    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4137
4138  EVT VecVT = N->getValueType(0);
4139  EVT ElVT = VecVT.getVectorElementType();
4140
4141  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4142  return Index / NumElemsPerChunk;
4143}
4144
4145/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4146/// constant +0.0.
4147bool X86::isZeroNode(SDValue Elt) {
4148  return ((isa<ConstantSDNode>(Elt) &&
4149           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4150          (isa<ConstantFPSDNode>(Elt) &&
4151           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4152}
4153
4154/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4155/// their permute mask.
4156static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4157                                    SelectionDAG &DAG) {
4158  EVT VT = SVOp->getValueType(0);
4159  unsigned NumElems = VT.getVectorNumElements();
4160  SmallVector<int, 8> MaskVec;
4161
4162  for (unsigned i = 0; i != NumElems; ++i) {
4163    int idx = SVOp->getMaskElt(i);
4164    if (idx < 0)
4165      MaskVec.push_back(idx);
4166    else if (idx < (int)NumElems)
4167      MaskVec.push_back(idx + NumElems);
4168    else
4169      MaskVec.push_back(idx - NumElems);
4170  }
4171  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4172                              SVOp->getOperand(0), &MaskVec[0]);
4173}
4174
4175/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4176/// the two vector operands have swapped position.
4177static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4178  unsigned NumElems = VT.getVectorNumElements();
4179  for (unsigned i = 0; i != NumElems; ++i) {
4180    int idx = Mask[i];
4181    if (idx < 0)
4182      continue;
4183    else if (idx < (int)NumElems)
4184      Mask[i] = idx + NumElems;
4185    else
4186      Mask[i] = idx - NumElems;
4187  }
4188}
4189
4190/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4191/// match movhlps. The lower half elements should come from upper half of
4192/// V1 (and in order), and the upper half elements should come from the upper
4193/// half of V2 (and in order).
4194static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4195  EVT VT = Op->getValueType(0);
4196  if (VT.getSizeInBits() != 128)
4197    return false;
4198  if (VT.getVectorNumElements() != 4)
4199    return false;
4200  for (unsigned i = 0, e = 2; i != e; ++i)
4201    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4202      return false;
4203  for (unsigned i = 2; i != 4; ++i)
4204    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4205      return false;
4206  return true;
4207}
4208
4209/// isScalarLoadToVector - Returns true if the node is a scalar load that
4210/// is promoted to a vector. It also returns the LoadSDNode by reference if
4211/// required.
4212static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4213  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4214    return false;
4215  N = N->getOperand(0).getNode();
4216  if (!ISD::isNON_EXTLoad(N))
4217    return false;
4218  if (LD)
4219    *LD = cast<LoadSDNode>(N);
4220  return true;
4221}
4222
4223/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4224/// match movlp{s|d}. The lower half elements should come from lower half of
4225/// V1 (and in order), and the upper half elements should come from the upper
4226/// half of V2 (and in order). And since V1 will become the source of the
4227/// MOVLP, it must be either a vector load or a scalar load to vector.
4228static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4229                               ShuffleVectorSDNode *Op) {
4230  EVT VT = Op->getValueType(0);
4231  if (VT.getSizeInBits() != 128)
4232    return false;
4233
4234  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4235    return false;
4236  // Is V2 is a vector load, don't do this transformation. We will try to use
4237  // load folding shufps op.
4238  if (ISD::isNON_EXTLoad(V2))
4239    return false;
4240
4241  unsigned NumElems = VT.getVectorNumElements();
4242
4243  if (NumElems != 2 && NumElems != 4)
4244    return false;
4245  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4246    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4247      return false;
4248  for (unsigned i = NumElems/2; i != NumElems; ++i)
4249    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4250      return false;
4251  return true;
4252}
4253
4254/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4255/// all the same.
4256static bool isSplatVector(SDNode *N) {
4257  if (N->getOpcode() != ISD::BUILD_VECTOR)
4258    return false;
4259
4260  SDValue SplatValue = N->getOperand(0);
4261  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4262    if (N->getOperand(i) != SplatValue)
4263      return false;
4264  return true;
4265}
4266
4267/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4268/// to an zero vector.
4269/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4270static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4271  SDValue V1 = N->getOperand(0);
4272  SDValue V2 = N->getOperand(1);
4273  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4274  for (unsigned i = 0; i != NumElems; ++i) {
4275    int Idx = N->getMaskElt(i);
4276    if (Idx >= (int)NumElems) {
4277      unsigned Opc = V2.getOpcode();
4278      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4279        continue;
4280      if (Opc != ISD::BUILD_VECTOR ||
4281          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4282        return false;
4283    } else if (Idx >= 0) {
4284      unsigned Opc = V1.getOpcode();
4285      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4286        continue;
4287      if (Opc != ISD::BUILD_VECTOR ||
4288          !X86::isZeroNode(V1.getOperand(Idx)))
4289        return false;
4290    }
4291  }
4292  return true;
4293}
4294
4295/// getZeroVector - Returns a vector of specified type with all zero elements.
4296///
4297static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4298                             DebugLoc dl) {
4299  assert(VT.isVector() && "Expected a vector type");
4300
4301  // Always build SSE zero vectors as <4 x i32> bitcasted
4302  // to their dest type. This ensures they get CSE'd.
4303  SDValue Vec;
4304  if (VT.getSizeInBits() == 128) {  // SSE
4305    if (HasXMMInt) {  // SSE2
4306      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4307      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4308    } else { // SSE1
4309      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4310      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4311    }
4312  } else if (VT.getSizeInBits() == 256) { // AVX
4313    // 256-bit logic and arithmetic instructions in AVX are
4314    // all floating-point, no support for integer ops. Default
4315    // to emitting fp zeroed vectors then.
4316    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4317    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4318    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4319  }
4320  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4321}
4322
4323/// getOnesVector - Returns a vector of specified type with all bits set.
4324/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4325/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4326/// original type, ensuring they get CSE'd.
4327static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4328  assert(VT.isVector() && "Expected a vector type");
4329  assert((VT.is128BitVector() || VT.is256BitVector())
4330         && "Expected a 128-bit or 256-bit vector type");
4331
4332  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4333  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4334                            Cst, Cst, Cst, Cst);
4335
4336  if (VT.is256BitVector()) {
4337    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4338                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4339    Vec = Insert128BitVector(InsV, Vec,
4340                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4341  }
4342
4343  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4344}
4345
4346/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4347/// that point to V2 points to its first element.
4348static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4349  EVT VT = SVOp->getValueType(0);
4350  unsigned NumElems = VT.getVectorNumElements();
4351
4352  bool Changed = false;
4353  SmallVector<int, 8> MaskVec;
4354  SVOp->getMask(MaskVec);
4355
4356  for (unsigned i = 0; i != NumElems; ++i) {
4357    if (MaskVec[i] > (int)NumElems) {
4358      MaskVec[i] = NumElems;
4359      Changed = true;
4360    }
4361  }
4362  if (Changed)
4363    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4364                                SVOp->getOperand(1), &MaskVec[0]);
4365  return SDValue(SVOp, 0);
4366}
4367
4368/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4369/// operation of specified width.
4370static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4371                       SDValue V2) {
4372  unsigned NumElems = VT.getVectorNumElements();
4373  SmallVector<int, 8> Mask;
4374  Mask.push_back(NumElems);
4375  for (unsigned i = 1; i != NumElems; ++i)
4376    Mask.push_back(i);
4377  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4378}
4379
4380/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4381static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4382                          SDValue V2) {
4383  unsigned NumElems = VT.getVectorNumElements();
4384  SmallVector<int, 8> Mask;
4385  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4386    Mask.push_back(i);
4387    Mask.push_back(i + NumElems);
4388  }
4389  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4390}
4391
4392/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4393static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4394                          SDValue V2) {
4395  unsigned NumElems = VT.getVectorNumElements();
4396  unsigned Half = NumElems/2;
4397  SmallVector<int, 8> Mask;
4398  for (unsigned i = 0; i != Half; ++i) {
4399    Mask.push_back(i + Half);
4400    Mask.push_back(i + NumElems + Half);
4401  }
4402  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4403}
4404
4405// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4406// a generic shuffle instruction because the target has no such instructions.
4407// Generate shuffles which repeat i16 and i8 several times until they can be
4408// represented by v4f32 and then be manipulated by target suported shuffles.
4409static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4410  EVT VT = V.getValueType();
4411  int NumElems = VT.getVectorNumElements();
4412  DebugLoc dl = V.getDebugLoc();
4413
4414  while (NumElems > 4) {
4415    if (EltNo < NumElems/2) {
4416      V = getUnpackl(DAG, dl, VT, V, V);
4417    } else {
4418      V = getUnpackh(DAG, dl, VT, V, V);
4419      EltNo -= NumElems/2;
4420    }
4421    NumElems >>= 1;
4422  }
4423  return V;
4424}
4425
4426/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4427static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4428  EVT VT = V.getValueType();
4429  DebugLoc dl = V.getDebugLoc();
4430  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4431         && "Vector size not supported");
4432
4433  if (VT.getSizeInBits() == 128) {
4434    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4435    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4436    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4437                             &SplatMask[0]);
4438  } else {
4439    // To use VPERMILPS to splat scalars, the second half of indicies must
4440    // refer to the higher part, which is a duplication of the lower one,
4441    // because VPERMILPS can only handle in-lane permutations.
4442    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4443                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4444
4445    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4446    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4447                             &SplatMask[0]);
4448  }
4449
4450  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4451}
4452
4453/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4454static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4455  EVT SrcVT = SV->getValueType(0);
4456  SDValue V1 = SV->getOperand(0);
4457  DebugLoc dl = SV->getDebugLoc();
4458
4459  int EltNo = SV->getSplatIndex();
4460  int NumElems = SrcVT.getVectorNumElements();
4461  unsigned Size = SrcVT.getSizeInBits();
4462
4463  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4464          "Unknown how to promote splat for type");
4465
4466  // Extract the 128-bit part containing the splat element and update
4467  // the splat element index when it refers to the higher register.
4468  if (Size == 256) {
4469    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4470    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4471    if (Idx > 0)
4472      EltNo -= NumElems/2;
4473  }
4474
4475  // All i16 and i8 vector types can't be used directly by a generic shuffle
4476  // instruction because the target has no such instruction. Generate shuffles
4477  // which repeat i16 and i8 several times until they fit in i32, and then can
4478  // be manipulated by target suported shuffles.
4479  EVT EltVT = SrcVT.getVectorElementType();
4480  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4481    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4482
4483  // Recreate the 256-bit vector and place the same 128-bit vector
4484  // into the low and high part. This is necessary because we want
4485  // to use VPERM* to shuffle the vectors
4486  if (Size == 256) {
4487    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4488                         DAG.getConstant(0, MVT::i32), DAG, dl);
4489    V1 = Insert128BitVector(InsV, V1,
4490               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4491  }
4492
4493  return getLegalSplat(DAG, V1, EltNo);
4494}
4495
4496/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4497/// vector of zero or undef vector.  This produces a shuffle where the low
4498/// element of V2 is swizzled into the zero/undef vector, landing at element
4499/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4500static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4501                                           bool isZero, bool HasXMMInt,
4502                                           SelectionDAG &DAG) {
4503  EVT VT = V2.getValueType();
4504  SDValue V1 = isZero
4505    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4506  unsigned NumElems = VT.getVectorNumElements();
4507  SmallVector<int, 16> MaskVec;
4508  for (unsigned i = 0; i != NumElems; ++i)
4509    // If this is the insertion idx, put the low elt of V2 here.
4510    MaskVec.push_back(i == Idx ? NumElems : i);
4511  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4512}
4513
4514/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4515/// element of the result of the vector shuffle.
4516static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4517                                   unsigned Depth) {
4518  if (Depth == 6)
4519    return SDValue();  // Limit search depth.
4520
4521  SDValue V = SDValue(N, 0);
4522  EVT VT = V.getValueType();
4523  unsigned Opcode = V.getOpcode();
4524
4525  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4526  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4527    Index = SV->getMaskElt(Index);
4528
4529    if (Index < 0)
4530      return DAG.getUNDEF(VT.getVectorElementType());
4531
4532    int NumElems = VT.getVectorNumElements();
4533    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4534    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4535  }
4536
4537  // Recurse into target specific vector shuffles to find scalars.
4538  if (isTargetShuffle(Opcode)) {
4539    int NumElems = VT.getVectorNumElements();
4540    SmallVector<unsigned, 16> ShuffleMask;
4541    SDValue ImmN;
4542
4543    switch(Opcode) {
4544    case X86ISD::SHUFPS:
4545    case X86ISD::SHUFPD:
4546      ImmN = N->getOperand(N->getNumOperands()-1);
4547      DecodeSHUFPSMask(NumElems,
4548                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4549                       ShuffleMask);
4550      break;
4551    case X86ISD::PUNPCKHBW:
4552    case X86ISD::PUNPCKHWD:
4553    case X86ISD::PUNPCKHDQ:
4554    case X86ISD::PUNPCKHQDQ:
4555      DecodePUNPCKHMask(NumElems, ShuffleMask);
4556      break;
4557    case X86ISD::UNPCKHPS:
4558    case X86ISD::UNPCKHPD:
4559    case X86ISD::VUNPCKHPSY:
4560    case X86ISD::VUNPCKHPDY:
4561      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4562      break;
4563    case X86ISD::PUNPCKLBW:
4564    case X86ISD::PUNPCKLWD:
4565    case X86ISD::PUNPCKLDQ:
4566    case X86ISD::PUNPCKLQDQ:
4567      DecodePUNPCKLMask(VT, ShuffleMask);
4568      break;
4569    case X86ISD::UNPCKLPS:
4570    case X86ISD::UNPCKLPD:
4571    case X86ISD::VUNPCKLPSY:
4572    case X86ISD::VUNPCKLPDY:
4573      DecodeUNPCKLPMask(VT, ShuffleMask);
4574      break;
4575    case X86ISD::MOVHLPS:
4576      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4577      break;
4578    case X86ISD::MOVLHPS:
4579      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4580      break;
4581    case X86ISD::PSHUFD:
4582      ImmN = N->getOperand(N->getNumOperands()-1);
4583      DecodePSHUFMask(NumElems,
4584                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4585                      ShuffleMask);
4586      break;
4587    case X86ISD::PSHUFHW:
4588      ImmN = N->getOperand(N->getNumOperands()-1);
4589      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4590                        ShuffleMask);
4591      break;
4592    case X86ISD::PSHUFLW:
4593      ImmN = N->getOperand(N->getNumOperands()-1);
4594      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4595                        ShuffleMask);
4596      break;
4597    case X86ISD::MOVSS:
4598    case X86ISD::MOVSD: {
4599      // The index 0 always comes from the first element of the second source,
4600      // this is why MOVSS and MOVSD are used in the first place. The other
4601      // elements come from the other positions of the first source vector.
4602      unsigned OpNum = (Index == 0) ? 1 : 0;
4603      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4604                                 Depth+1);
4605    }
4606    case X86ISD::VPERMILPS:
4607      ImmN = N->getOperand(N->getNumOperands()-1);
4608      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4609                        ShuffleMask);
4610      break;
4611    case X86ISD::VPERMILPSY:
4612      ImmN = N->getOperand(N->getNumOperands()-1);
4613      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4614                        ShuffleMask);
4615      break;
4616    case X86ISD::VPERMILPD:
4617      ImmN = N->getOperand(N->getNumOperands()-1);
4618      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4619                        ShuffleMask);
4620      break;
4621    case X86ISD::VPERMILPDY:
4622      ImmN = N->getOperand(N->getNumOperands()-1);
4623      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4624                        ShuffleMask);
4625      break;
4626    case X86ISD::VPERM2F128:
4627      ImmN = N->getOperand(N->getNumOperands()-1);
4628      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4629                           ShuffleMask);
4630      break;
4631    case X86ISD::MOVDDUP:
4632    case X86ISD::MOVLHPD:
4633    case X86ISD::MOVLPD:
4634    case X86ISD::MOVLPS:
4635    case X86ISD::MOVSHDUP:
4636    case X86ISD::MOVSLDUP:
4637    case X86ISD::PALIGN:
4638      return SDValue(); // Not yet implemented.
4639    default:
4640      assert(0 && "unknown target shuffle node");
4641      return SDValue();
4642    }
4643
4644    Index = ShuffleMask[Index];
4645    if (Index < 0)
4646      return DAG.getUNDEF(VT.getVectorElementType());
4647
4648    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4649    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4650                               Depth+1);
4651  }
4652
4653  // Actual nodes that may contain scalar elements
4654  if (Opcode == ISD::BITCAST) {
4655    V = V.getOperand(0);
4656    EVT SrcVT = V.getValueType();
4657    unsigned NumElems = VT.getVectorNumElements();
4658
4659    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4660      return SDValue();
4661  }
4662
4663  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4664    return (Index == 0) ? V.getOperand(0)
4665                          : DAG.getUNDEF(VT.getVectorElementType());
4666
4667  if (V.getOpcode() == ISD::BUILD_VECTOR)
4668    return V.getOperand(Index);
4669
4670  return SDValue();
4671}
4672
4673/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4674/// shuffle operation which come from a consecutively from a zero. The
4675/// search can start in two different directions, from left or right.
4676static
4677unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4678                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4679  int i = 0;
4680
4681  while (i < NumElems) {
4682    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4683    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4684    if (!(Elt.getNode() &&
4685         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4686      break;
4687    ++i;
4688  }
4689
4690  return i;
4691}
4692
4693/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4694/// MaskE correspond consecutively to elements from one of the vector operands,
4695/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4696static
4697bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4698                              int OpIdx, int NumElems, unsigned &OpNum) {
4699  bool SeenV1 = false;
4700  bool SeenV2 = false;
4701
4702  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4703    int Idx = SVOp->getMaskElt(i);
4704    // Ignore undef indicies
4705    if (Idx < 0)
4706      continue;
4707
4708    if (Idx < NumElems)
4709      SeenV1 = true;
4710    else
4711      SeenV2 = true;
4712
4713    // Only accept consecutive elements from the same vector
4714    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4715      return false;
4716  }
4717
4718  OpNum = SeenV1 ? 0 : 1;
4719  return true;
4720}
4721
4722/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4723/// logical left shift of a vector.
4724static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4725                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4726  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4727  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4728              false /* check zeros from right */, DAG);
4729  unsigned OpSrc;
4730
4731  if (!NumZeros)
4732    return false;
4733
4734  // Considering the elements in the mask that are not consecutive zeros,
4735  // check if they consecutively come from only one of the source vectors.
4736  //
4737  //               V1 = {X, A, B, C}     0
4738  //                         \  \  \    /
4739  //   vector_shuffle V1, V2 <1, 2, 3, X>
4740  //
4741  if (!isShuffleMaskConsecutive(SVOp,
4742            0,                   // Mask Start Index
4743            NumElems-NumZeros-1, // Mask End Index
4744            NumZeros,            // Where to start looking in the src vector
4745            NumElems,            // Number of elements in vector
4746            OpSrc))              // Which source operand ?
4747    return false;
4748
4749  isLeft = false;
4750  ShAmt = NumZeros;
4751  ShVal = SVOp->getOperand(OpSrc);
4752  return true;
4753}
4754
4755/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4756/// logical left shift of a vector.
4757static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4758                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4759  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4760  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4761              true /* check zeros from left */, DAG);
4762  unsigned OpSrc;
4763
4764  if (!NumZeros)
4765    return false;
4766
4767  // Considering the elements in the mask that are not consecutive zeros,
4768  // check if they consecutively come from only one of the source vectors.
4769  //
4770  //                           0    { A, B, X, X } = V2
4771  //                          / \    /  /
4772  //   vector_shuffle V1, V2 <X, X, 4, 5>
4773  //
4774  if (!isShuffleMaskConsecutive(SVOp,
4775            NumZeros,     // Mask Start Index
4776            NumElems-1,   // Mask End Index
4777            0,            // Where to start looking in the src vector
4778            NumElems,     // Number of elements in vector
4779            OpSrc))       // Which source operand ?
4780    return false;
4781
4782  isLeft = true;
4783  ShAmt = NumZeros;
4784  ShVal = SVOp->getOperand(OpSrc);
4785  return true;
4786}
4787
4788/// isVectorShift - Returns true if the shuffle can be implemented as a
4789/// logical left or right shift of a vector.
4790static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4791                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4792  // Although the logic below support any bitwidth size, there are no
4793  // shift instructions which handle more than 128-bit vectors.
4794  if (SVOp->getValueType(0).getSizeInBits() > 128)
4795    return false;
4796
4797  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4798      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4799    return true;
4800
4801  return false;
4802}
4803
4804/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4805///
4806static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4807                                       unsigned NumNonZero, unsigned NumZero,
4808                                       SelectionDAG &DAG,
4809                                       const TargetLowering &TLI) {
4810  if (NumNonZero > 8)
4811    return SDValue();
4812
4813  DebugLoc dl = Op.getDebugLoc();
4814  SDValue V(0, 0);
4815  bool First = true;
4816  for (unsigned i = 0; i < 16; ++i) {
4817    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4818    if (ThisIsNonZero && First) {
4819      if (NumZero)
4820        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4821      else
4822        V = DAG.getUNDEF(MVT::v8i16);
4823      First = false;
4824    }
4825
4826    if ((i & 1) != 0) {
4827      SDValue ThisElt(0, 0), LastElt(0, 0);
4828      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4829      if (LastIsNonZero) {
4830        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4831                              MVT::i16, Op.getOperand(i-1));
4832      }
4833      if (ThisIsNonZero) {
4834        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4835        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4836                              ThisElt, DAG.getConstant(8, MVT::i8));
4837        if (LastIsNonZero)
4838          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4839      } else
4840        ThisElt = LastElt;
4841
4842      if (ThisElt.getNode())
4843        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4844                        DAG.getIntPtrConstant(i/2));
4845    }
4846  }
4847
4848  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4849}
4850
4851/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4852///
4853static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4854                                     unsigned NumNonZero, unsigned NumZero,
4855                                     SelectionDAG &DAG,
4856                                     const TargetLowering &TLI) {
4857  if (NumNonZero > 4)
4858    return SDValue();
4859
4860  DebugLoc dl = Op.getDebugLoc();
4861  SDValue V(0, 0);
4862  bool First = true;
4863  for (unsigned i = 0; i < 8; ++i) {
4864    bool isNonZero = (NonZeros & (1 << i)) != 0;
4865    if (isNonZero) {
4866      if (First) {
4867        if (NumZero)
4868          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4869        else
4870          V = DAG.getUNDEF(MVT::v8i16);
4871        First = false;
4872      }
4873      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4874                      MVT::v8i16, V, Op.getOperand(i),
4875                      DAG.getIntPtrConstant(i));
4876    }
4877  }
4878
4879  return V;
4880}
4881
4882/// getVShift - Return a vector logical shift node.
4883///
4884static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4885                         unsigned NumBits, SelectionDAG &DAG,
4886                         const TargetLowering &TLI, DebugLoc dl) {
4887  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4888  EVT ShVT = MVT::v2i64;
4889  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4890  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4891  return DAG.getNode(ISD::BITCAST, dl, VT,
4892                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4893                             DAG.getConstant(NumBits,
4894                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4895}
4896
4897SDValue
4898X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4899                                          SelectionDAG &DAG) const {
4900
4901  // Check if the scalar load can be widened into a vector load. And if
4902  // the address is "base + cst" see if the cst can be "absorbed" into
4903  // the shuffle mask.
4904  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4905    SDValue Ptr = LD->getBasePtr();
4906    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4907      return SDValue();
4908    EVT PVT = LD->getValueType(0);
4909    if (PVT != MVT::i32 && PVT != MVT::f32)
4910      return SDValue();
4911
4912    int FI = -1;
4913    int64_t Offset = 0;
4914    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4915      FI = FINode->getIndex();
4916      Offset = 0;
4917    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4918               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4919      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4920      Offset = Ptr.getConstantOperandVal(1);
4921      Ptr = Ptr.getOperand(0);
4922    } else {
4923      return SDValue();
4924    }
4925
4926    // FIXME: 256-bit vector instructions don't require a strict alignment,
4927    // improve this code to support it better.
4928    unsigned RequiredAlign = VT.getSizeInBits()/8;
4929    SDValue Chain = LD->getChain();
4930    // Make sure the stack object alignment is at least 16 or 32.
4931    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4932    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4933      if (MFI->isFixedObjectIndex(FI)) {
4934        // Can't change the alignment. FIXME: It's possible to compute
4935        // the exact stack offset and reference FI + adjust offset instead.
4936        // If someone *really* cares about this. That's the way to implement it.
4937        return SDValue();
4938      } else {
4939        MFI->setObjectAlignment(FI, RequiredAlign);
4940      }
4941    }
4942
4943    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4944    // Ptr + (Offset & ~15).
4945    if (Offset < 0)
4946      return SDValue();
4947    if ((Offset % RequiredAlign) & 3)
4948      return SDValue();
4949    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4950    if (StartOffset)
4951      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4952                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4953
4954    int EltNo = (Offset - StartOffset) >> 2;
4955    int NumElems = VT.getVectorNumElements();
4956
4957    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4958    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4959    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4960                             LD->getPointerInfo().getWithOffset(StartOffset),
4961                             false, false, 0);
4962
4963    // Canonicalize it to a v4i32 or v8i32 shuffle.
4964    SmallVector<int, 8> Mask;
4965    for (int i = 0; i < NumElems; ++i)
4966      Mask.push_back(EltNo);
4967
4968    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4969    return DAG.getNode(ISD::BITCAST, dl, NVT,
4970                       DAG.getVectorShuffle(CanonVT, dl, V1,
4971                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4972  }
4973
4974  return SDValue();
4975}
4976
4977/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4978/// vector of type 'VT', see if the elements can be replaced by a single large
4979/// load which has the same value as a build_vector whose operands are 'elts'.
4980///
4981/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4982///
4983/// FIXME: we'd also like to handle the case where the last elements are zero
4984/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4985/// There's even a handy isZeroNode for that purpose.
4986static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4987                                        DebugLoc &DL, SelectionDAG &DAG) {
4988  EVT EltVT = VT.getVectorElementType();
4989  unsigned NumElems = Elts.size();
4990
4991  LoadSDNode *LDBase = NULL;
4992  unsigned LastLoadedElt = -1U;
4993
4994  // For each element in the initializer, see if we've found a load or an undef.
4995  // If we don't find an initial load element, or later load elements are
4996  // non-consecutive, bail out.
4997  for (unsigned i = 0; i < NumElems; ++i) {
4998    SDValue Elt = Elts[i];
4999
5000    if (!Elt.getNode() ||
5001        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5002      return SDValue();
5003    if (!LDBase) {
5004      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5005        return SDValue();
5006      LDBase = cast<LoadSDNode>(Elt.getNode());
5007      LastLoadedElt = i;
5008      continue;
5009    }
5010    if (Elt.getOpcode() == ISD::UNDEF)
5011      continue;
5012
5013    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5014    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5015      return SDValue();
5016    LastLoadedElt = i;
5017  }
5018
5019  // If we have found an entire vector of loads and undefs, then return a large
5020  // load of the entire vector width starting at the base pointer.  If we found
5021  // consecutive loads for the low half, generate a vzext_load node.
5022  if (LastLoadedElt == NumElems - 1) {
5023    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5024      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5025                         LDBase->getPointerInfo(),
5026                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
5027    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5028                       LDBase->getPointerInfo(),
5029                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5030                       LDBase->getAlignment());
5031  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5032             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5033    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5034    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5035    SDValue ResNode =
5036        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5037                                LDBase->getPointerInfo(),
5038                                LDBase->getAlignment(),
5039                                false/*isVolatile*/, true/*ReadMem*/,
5040                                false/*WriteMem*/);
5041    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5042  }
5043  return SDValue();
5044}
5045
5046SDValue
5047X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5048  DebugLoc dl = Op.getDebugLoc();
5049
5050  EVT VT = Op.getValueType();
5051  EVT ExtVT = VT.getVectorElementType();
5052  unsigned NumElems = Op.getNumOperands();
5053
5054  // Vectors containing all zeros can be matched by pxor and xorps later
5055  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5056    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5057    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5058    if (Op.getValueType() == MVT::v4i32 ||
5059        Op.getValueType() == MVT::v8i32)
5060      return Op;
5061
5062    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5063  }
5064
5065  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5066  // vectors or broken into v4i32 operations on 256-bit vectors.
5067  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5068    if (Op.getValueType() == MVT::v4i32)
5069      return Op;
5070
5071    return getOnesVector(Op.getValueType(), DAG, dl);
5072  }
5073
5074  unsigned EVTBits = ExtVT.getSizeInBits();
5075
5076  unsigned NumZero  = 0;
5077  unsigned NumNonZero = 0;
5078  unsigned NonZeros = 0;
5079  bool IsAllConstants = true;
5080  SmallSet<SDValue, 8> Values;
5081  for (unsigned i = 0; i < NumElems; ++i) {
5082    SDValue Elt = Op.getOperand(i);
5083    if (Elt.getOpcode() == ISD::UNDEF)
5084      continue;
5085    Values.insert(Elt);
5086    if (Elt.getOpcode() != ISD::Constant &&
5087        Elt.getOpcode() != ISD::ConstantFP)
5088      IsAllConstants = false;
5089    if (X86::isZeroNode(Elt))
5090      NumZero++;
5091    else {
5092      NonZeros |= (1 << i);
5093      NumNonZero++;
5094    }
5095  }
5096
5097  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5098  if (NumNonZero == 0)
5099    return DAG.getUNDEF(VT);
5100
5101  // Special case for single non-zero, non-undef, element.
5102  if (NumNonZero == 1) {
5103    unsigned Idx = CountTrailingZeros_32(NonZeros);
5104    SDValue Item = Op.getOperand(Idx);
5105
5106    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5107    // the value are obviously zero, truncate the value to i32 and do the
5108    // insertion that way.  Only do this if the value is non-constant or if the
5109    // value is a constant being inserted into element 0.  It is cheaper to do
5110    // a constant pool load than it is to do a movd + shuffle.
5111    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5112        (!IsAllConstants || Idx == 0)) {
5113      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5114        // Handle SSE only.
5115        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5116        EVT VecVT = MVT::v4i32;
5117        unsigned VecElts = 4;
5118
5119        // Truncate the value (which may itself be a constant) to i32, and
5120        // convert it to a vector with movd (S2V+shuffle to zero extend).
5121        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5122        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5123        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5124                                           Subtarget->hasXMMInt(), DAG);
5125
5126        // Now we have our 32-bit value zero extended in the low element of
5127        // a vector.  If Idx != 0, swizzle it into place.
5128        if (Idx != 0) {
5129          SmallVector<int, 4> Mask;
5130          Mask.push_back(Idx);
5131          for (unsigned i = 1; i != VecElts; ++i)
5132            Mask.push_back(i);
5133          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5134                                      DAG.getUNDEF(Item.getValueType()),
5135                                      &Mask[0]);
5136        }
5137        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5138      }
5139    }
5140
5141    // If we have a constant or non-constant insertion into the low element of
5142    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5143    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5144    // depending on what the source datatype is.
5145    if (Idx == 0) {
5146      if (NumZero == 0) {
5147        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5148      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5149          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5150        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5151        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5152        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5153                                           DAG);
5154      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5155        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5156        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5157        EVT MiddleVT = MVT::v4i32;
5158        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5159        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5160                                           Subtarget->hasXMMInt(), DAG);
5161        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5162      }
5163    }
5164
5165    // Is it a vector logical left shift?
5166    if (NumElems == 2 && Idx == 1 &&
5167        X86::isZeroNode(Op.getOperand(0)) &&
5168        !X86::isZeroNode(Op.getOperand(1))) {
5169      unsigned NumBits = VT.getSizeInBits();
5170      return getVShift(true, VT,
5171                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5172                                   VT, Op.getOperand(1)),
5173                       NumBits/2, DAG, *this, dl);
5174    }
5175
5176    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5177      return SDValue();
5178
5179    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5180    // is a non-constant being inserted into an element other than the low one,
5181    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5182    // movd/movss) to move this into the low element, then shuffle it into
5183    // place.
5184    if (EVTBits == 32) {
5185      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5186
5187      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5188      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5189                                         Subtarget->hasXMMInt(), DAG);
5190      SmallVector<int, 8> MaskVec;
5191      for (unsigned i = 0; i < NumElems; i++)
5192        MaskVec.push_back(i == Idx ? 0 : 1);
5193      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5194    }
5195  }
5196
5197  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5198  if (Values.size() == 1) {
5199    if (EVTBits == 32) {
5200      // Instead of a shuffle like this:
5201      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5202      // Check if it's possible to issue this instead.
5203      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5204      unsigned Idx = CountTrailingZeros_32(NonZeros);
5205      SDValue Item = Op.getOperand(Idx);
5206      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5207        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5208    }
5209    return SDValue();
5210  }
5211
5212  // A vector full of immediates; various special cases are already
5213  // handled, so this is best done with a single constant-pool load.
5214  if (IsAllConstants)
5215    return SDValue();
5216
5217  // For AVX-length vectors, build the individual 128-bit pieces and use
5218  // shuffles to put them in place.
5219  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5220    SmallVector<SDValue, 32> V;
5221    for (unsigned i = 0; i < NumElems; ++i)
5222      V.push_back(Op.getOperand(i));
5223
5224    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5225
5226    // Build both the lower and upper subvector.
5227    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5228    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5229                                NumElems/2);
5230
5231    // Recreate the wider vector with the lower and upper part.
5232    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5233                                DAG.getConstant(0, MVT::i32), DAG, dl);
5234    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5235                              DAG, dl);
5236  }
5237
5238  // Let legalizer expand 2-wide build_vectors.
5239  if (EVTBits == 64) {
5240    if (NumNonZero == 1) {
5241      // One half is zero or undef.
5242      unsigned Idx = CountTrailingZeros_32(NonZeros);
5243      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5244                                 Op.getOperand(Idx));
5245      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5246                                         Subtarget->hasXMMInt(), DAG);
5247    }
5248    return SDValue();
5249  }
5250
5251  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5252  if (EVTBits == 8 && NumElems == 16) {
5253    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5254                                        *this);
5255    if (V.getNode()) return V;
5256  }
5257
5258  if (EVTBits == 16 && NumElems == 8) {
5259    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5260                                      *this);
5261    if (V.getNode()) return V;
5262  }
5263
5264  // If element VT is == 32 bits, turn it into a number of shuffles.
5265  SmallVector<SDValue, 8> V;
5266  V.resize(NumElems);
5267  if (NumElems == 4 && NumZero > 0) {
5268    for (unsigned i = 0; i < 4; ++i) {
5269      bool isZero = !(NonZeros & (1 << i));
5270      if (isZero)
5271        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5272      else
5273        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5274    }
5275
5276    for (unsigned i = 0; i < 2; ++i) {
5277      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5278        default: break;
5279        case 0:
5280          V[i] = V[i*2];  // Must be a zero vector.
5281          break;
5282        case 1:
5283          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5284          break;
5285        case 2:
5286          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5287          break;
5288        case 3:
5289          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5290          break;
5291      }
5292    }
5293
5294    SmallVector<int, 8> MaskVec;
5295    bool Reverse = (NonZeros & 0x3) == 2;
5296    for (unsigned i = 0; i < 2; ++i)
5297      MaskVec.push_back(Reverse ? 1-i : i);
5298    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5299    for (unsigned i = 0; i < 2; ++i)
5300      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5301    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5302  }
5303
5304  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5305    // Check for a build vector of consecutive loads.
5306    for (unsigned i = 0; i < NumElems; ++i)
5307      V[i] = Op.getOperand(i);
5308
5309    // Check for elements which are consecutive loads.
5310    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5311    if (LD.getNode())
5312      return LD;
5313
5314    // For SSE 4.1, use insertps to put the high elements into the low element.
5315    if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5316      SDValue Result;
5317      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5318        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5319      else
5320        Result = DAG.getUNDEF(VT);
5321
5322      for (unsigned i = 1; i < NumElems; ++i) {
5323        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5324        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5325                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5326      }
5327      return Result;
5328    }
5329
5330    // Otherwise, expand into a number of unpckl*, start by extending each of
5331    // our (non-undef) elements to the full vector width with the element in the
5332    // bottom slot of the vector (which generates no code for SSE).
5333    for (unsigned i = 0; i < NumElems; ++i) {
5334      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5335        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5336      else
5337        V[i] = DAG.getUNDEF(VT);
5338    }
5339
5340    // Next, we iteratively mix elements, e.g. for v4f32:
5341    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5342    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5343    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5344    unsigned EltStride = NumElems >> 1;
5345    while (EltStride != 0) {
5346      for (unsigned i = 0; i < EltStride; ++i) {
5347        // If V[i+EltStride] is undef and this is the first round of mixing,
5348        // then it is safe to just drop this shuffle: V[i] is already in the
5349        // right place, the one element (since it's the first round) being
5350        // inserted as undef can be dropped.  This isn't safe for successive
5351        // rounds because they will permute elements within both vectors.
5352        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5353            EltStride == NumElems/2)
5354          continue;
5355
5356        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5357      }
5358      EltStride >>= 1;
5359    }
5360    return V[0];
5361  }
5362  return SDValue();
5363}
5364
5365// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5366// them in a MMX register.  This is better than doing a stack convert.
5367static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5368  DebugLoc dl = Op.getDebugLoc();
5369  EVT ResVT = Op.getValueType();
5370
5371  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5372         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5373  int Mask[2];
5374  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5375  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5376  InVec = Op.getOperand(1);
5377  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5378    unsigned NumElts = ResVT.getVectorNumElements();
5379    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5380    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5381                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5382  } else {
5383    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5384    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5385    Mask[0] = 0; Mask[1] = 2;
5386    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5387  }
5388  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5389}
5390
5391// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5392// to create 256-bit vectors from two other 128-bit ones.
5393static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5394  DebugLoc dl = Op.getDebugLoc();
5395  EVT ResVT = Op.getValueType();
5396
5397  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5398
5399  SDValue V1 = Op.getOperand(0);
5400  SDValue V2 = Op.getOperand(1);
5401  unsigned NumElems = ResVT.getVectorNumElements();
5402
5403  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5404                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5405  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5406                            DAG, dl);
5407}
5408
5409SDValue
5410X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5411  EVT ResVT = Op.getValueType();
5412
5413  assert(Op.getNumOperands() == 2);
5414  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5415         "Unsupported CONCAT_VECTORS for value type");
5416
5417  // We support concatenate two MMX registers and place them in a MMX register.
5418  // This is better than doing a stack convert.
5419  if (ResVT.is128BitVector())
5420    return LowerMMXCONCAT_VECTORS(Op, DAG);
5421
5422  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5423  // from two other 128-bit ones.
5424  return LowerAVXCONCAT_VECTORS(Op, DAG);
5425}
5426
5427// v8i16 shuffles - Prefer shuffles in the following order:
5428// 1. [all]   pshuflw, pshufhw, optional move
5429// 2. [ssse3] 1 x pshufb
5430// 3. [ssse3] 2 x pshufb + 1 x por
5431// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5432SDValue
5433X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5434                                            SelectionDAG &DAG) const {
5435  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5436  SDValue V1 = SVOp->getOperand(0);
5437  SDValue V2 = SVOp->getOperand(1);
5438  DebugLoc dl = SVOp->getDebugLoc();
5439  SmallVector<int, 8> MaskVals;
5440
5441  // Determine if more than 1 of the words in each of the low and high quadwords
5442  // of the result come from the same quadword of one of the two inputs.  Undef
5443  // mask values count as coming from any quadword, for better codegen.
5444  unsigned LoQuad[] = { 0, 0, 0, 0 };
5445  unsigned HiQuad[] = { 0, 0, 0, 0 };
5446  BitVector InputQuads(4);
5447  for (unsigned i = 0; i < 8; ++i) {
5448    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5449    int EltIdx = SVOp->getMaskElt(i);
5450    MaskVals.push_back(EltIdx);
5451    if (EltIdx < 0) {
5452      ++Quad[0];
5453      ++Quad[1];
5454      ++Quad[2];
5455      ++Quad[3];
5456      continue;
5457    }
5458    ++Quad[EltIdx / 4];
5459    InputQuads.set(EltIdx / 4);
5460  }
5461
5462  int BestLoQuad = -1;
5463  unsigned MaxQuad = 1;
5464  for (unsigned i = 0; i < 4; ++i) {
5465    if (LoQuad[i] > MaxQuad) {
5466      BestLoQuad = i;
5467      MaxQuad = LoQuad[i];
5468    }
5469  }
5470
5471  int BestHiQuad = -1;
5472  MaxQuad = 1;
5473  for (unsigned i = 0; i < 4; ++i) {
5474    if (HiQuad[i] > MaxQuad) {
5475      BestHiQuad = i;
5476      MaxQuad = HiQuad[i];
5477    }
5478  }
5479
5480  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5481  // of the two input vectors, shuffle them into one input vector so only a
5482  // single pshufb instruction is necessary. If There are more than 2 input
5483  // quads, disable the next transformation since it does not help SSSE3.
5484  bool V1Used = InputQuads[0] || InputQuads[1];
5485  bool V2Used = InputQuads[2] || InputQuads[3];
5486  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5487    if (InputQuads.count() == 2 && V1Used && V2Used) {
5488      BestLoQuad = InputQuads.find_first();
5489      BestHiQuad = InputQuads.find_next(BestLoQuad);
5490    }
5491    if (InputQuads.count() > 2) {
5492      BestLoQuad = -1;
5493      BestHiQuad = -1;
5494    }
5495  }
5496
5497  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5498  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5499  // words from all 4 input quadwords.
5500  SDValue NewV;
5501  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5502    SmallVector<int, 8> MaskV;
5503    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5504    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5505    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5506                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5507                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5508    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5509
5510    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5511    // source words for the shuffle, to aid later transformations.
5512    bool AllWordsInNewV = true;
5513    bool InOrder[2] = { true, true };
5514    for (unsigned i = 0; i != 8; ++i) {
5515      int idx = MaskVals[i];
5516      if (idx != (int)i)
5517        InOrder[i/4] = false;
5518      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5519        continue;
5520      AllWordsInNewV = false;
5521      break;
5522    }
5523
5524    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5525    if (AllWordsInNewV) {
5526      for (int i = 0; i != 8; ++i) {
5527        int idx = MaskVals[i];
5528        if (idx < 0)
5529          continue;
5530        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5531        if ((idx != i) && idx < 4)
5532          pshufhw = false;
5533        if ((idx != i) && idx > 3)
5534          pshuflw = false;
5535      }
5536      V1 = NewV;
5537      V2Used = false;
5538      BestLoQuad = 0;
5539      BestHiQuad = 1;
5540    }
5541
5542    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5543    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5544    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5545      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5546      unsigned TargetMask = 0;
5547      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5548                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5549      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5550                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5551      V1 = NewV.getOperand(0);
5552      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5553    }
5554  }
5555
5556  // If we have SSSE3, and all words of the result are from 1 input vector,
5557  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5558  // is present, fall back to case 4.
5559  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5560    SmallVector<SDValue,16> pshufbMask;
5561
5562    // If we have elements from both input vectors, set the high bit of the
5563    // shuffle mask element to zero out elements that come from V2 in the V1
5564    // mask, and elements that come from V1 in the V2 mask, so that the two
5565    // results can be OR'd together.
5566    bool TwoInputs = V1Used && V2Used;
5567    for (unsigned i = 0; i != 8; ++i) {
5568      int EltIdx = MaskVals[i] * 2;
5569      if (TwoInputs && (EltIdx >= 16)) {
5570        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5571        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5572        continue;
5573      }
5574      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5575      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5576    }
5577    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5578    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5579                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5580                                 MVT::v16i8, &pshufbMask[0], 16));
5581    if (!TwoInputs)
5582      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5583
5584    // Calculate the shuffle mask for the second input, shuffle it, and
5585    // OR it with the first shuffled input.
5586    pshufbMask.clear();
5587    for (unsigned i = 0; i != 8; ++i) {
5588      int EltIdx = MaskVals[i] * 2;
5589      if (EltIdx < 16) {
5590        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5592        continue;
5593      }
5594      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5595      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5596    }
5597    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5598    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5599                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5600                                 MVT::v16i8, &pshufbMask[0], 16));
5601    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5602    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5603  }
5604
5605  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5606  // and update MaskVals with new element order.
5607  BitVector InOrder(8);
5608  if (BestLoQuad >= 0) {
5609    SmallVector<int, 8> MaskV;
5610    for (int i = 0; i != 4; ++i) {
5611      int idx = MaskVals[i];
5612      if (idx < 0) {
5613        MaskV.push_back(-1);
5614        InOrder.set(i);
5615      } else if ((idx / 4) == BestLoQuad) {
5616        MaskV.push_back(idx & 3);
5617        InOrder.set(i);
5618      } else {
5619        MaskV.push_back(-1);
5620      }
5621    }
5622    for (unsigned i = 4; i != 8; ++i)
5623      MaskV.push_back(i);
5624    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5625                                &MaskV[0]);
5626
5627    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5628        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5629      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5630                               NewV.getOperand(0),
5631                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5632                               DAG);
5633  }
5634
5635  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5636  // and update MaskVals with the new element order.
5637  if (BestHiQuad >= 0) {
5638    SmallVector<int, 8> MaskV;
5639    for (unsigned i = 0; i != 4; ++i)
5640      MaskV.push_back(i);
5641    for (unsigned i = 4; i != 8; ++i) {
5642      int idx = MaskVals[i];
5643      if (idx < 0) {
5644        MaskV.push_back(-1);
5645        InOrder.set(i);
5646      } else if ((idx / 4) == BestHiQuad) {
5647        MaskV.push_back((idx & 3) + 4);
5648        InOrder.set(i);
5649      } else {
5650        MaskV.push_back(-1);
5651      }
5652    }
5653    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5654                                &MaskV[0]);
5655
5656    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5657        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5658      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5659                              NewV.getOperand(0),
5660                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5661                              DAG);
5662  }
5663
5664  // In case BestHi & BestLo were both -1, which means each quadword has a word
5665  // from each of the four input quadwords, calculate the InOrder bitvector now
5666  // before falling through to the insert/extract cleanup.
5667  if (BestLoQuad == -1 && BestHiQuad == -1) {
5668    NewV = V1;
5669    for (int i = 0; i != 8; ++i)
5670      if (MaskVals[i] < 0 || MaskVals[i] == i)
5671        InOrder.set(i);
5672  }
5673
5674  // The other elements are put in the right place using pextrw and pinsrw.
5675  for (unsigned i = 0; i != 8; ++i) {
5676    if (InOrder[i])
5677      continue;
5678    int EltIdx = MaskVals[i];
5679    if (EltIdx < 0)
5680      continue;
5681    SDValue ExtOp = (EltIdx < 8)
5682    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5683                  DAG.getIntPtrConstant(EltIdx))
5684    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5685                  DAG.getIntPtrConstant(EltIdx - 8));
5686    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5687                       DAG.getIntPtrConstant(i));
5688  }
5689  return NewV;
5690}
5691
5692// v16i8 shuffles - Prefer shuffles in the following order:
5693// 1. [ssse3] 1 x pshufb
5694// 2. [ssse3] 2 x pshufb + 1 x por
5695// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5696static
5697SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5698                                 SelectionDAG &DAG,
5699                                 const X86TargetLowering &TLI) {
5700  SDValue V1 = SVOp->getOperand(0);
5701  SDValue V2 = SVOp->getOperand(1);
5702  DebugLoc dl = SVOp->getDebugLoc();
5703  SmallVector<int, 16> MaskVals;
5704  SVOp->getMask(MaskVals);
5705
5706  // If we have SSSE3, case 1 is generated when all result bytes come from
5707  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5708  // present, fall back to case 3.
5709  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5710  bool V1Only = true;
5711  bool V2Only = true;
5712  for (unsigned i = 0; i < 16; ++i) {
5713    int EltIdx = MaskVals[i];
5714    if (EltIdx < 0)
5715      continue;
5716    if (EltIdx < 16)
5717      V2Only = false;
5718    else
5719      V1Only = false;
5720  }
5721
5722  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5723  if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5724    SmallVector<SDValue,16> pshufbMask;
5725
5726    // If all result elements are from one input vector, then only translate
5727    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5728    //
5729    // Otherwise, we have elements from both input vectors, and must zero out
5730    // elements that come from V2 in the first mask, and V1 in the second mask
5731    // so that we can OR them together.
5732    bool TwoInputs = !(V1Only || V2Only);
5733    for (unsigned i = 0; i != 16; ++i) {
5734      int EltIdx = MaskVals[i];
5735      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5736        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5737        continue;
5738      }
5739      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5740    }
5741    // If all the elements are from V2, assign it to V1 and return after
5742    // building the first pshufb.
5743    if (V2Only)
5744      V1 = V2;
5745    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5746                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5747                                 MVT::v16i8, &pshufbMask[0], 16));
5748    if (!TwoInputs)
5749      return V1;
5750
5751    // Calculate the shuffle mask for the second input, shuffle it, and
5752    // OR it with the first shuffled input.
5753    pshufbMask.clear();
5754    for (unsigned i = 0; i != 16; ++i) {
5755      int EltIdx = MaskVals[i];
5756      if (EltIdx < 16) {
5757        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5758        continue;
5759      }
5760      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5761    }
5762    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5763                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5764                                 MVT::v16i8, &pshufbMask[0], 16));
5765    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5766  }
5767
5768  // No SSSE3 - Calculate in place words and then fix all out of place words
5769  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5770  // the 16 different words that comprise the two doublequadword input vectors.
5771  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5772  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5773  SDValue NewV = V2Only ? V2 : V1;
5774  for (int i = 0; i != 8; ++i) {
5775    int Elt0 = MaskVals[i*2];
5776    int Elt1 = MaskVals[i*2+1];
5777
5778    // This word of the result is all undef, skip it.
5779    if (Elt0 < 0 && Elt1 < 0)
5780      continue;
5781
5782    // This word of the result is already in the correct place, skip it.
5783    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5784      continue;
5785    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5786      continue;
5787
5788    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5789    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5790    SDValue InsElt;
5791
5792    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5793    // using a single extract together, load it and store it.
5794    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5795      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5796                           DAG.getIntPtrConstant(Elt1 / 2));
5797      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5798                        DAG.getIntPtrConstant(i));
5799      continue;
5800    }
5801
5802    // If Elt1 is defined, extract it from the appropriate source.  If the
5803    // source byte is not also odd, shift the extracted word left 8 bits
5804    // otherwise clear the bottom 8 bits if we need to do an or.
5805    if (Elt1 >= 0) {
5806      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5807                           DAG.getIntPtrConstant(Elt1 / 2));
5808      if ((Elt1 & 1) == 0)
5809        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5810                             DAG.getConstant(8,
5811                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5812      else if (Elt0 >= 0)
5813        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5814                             DAG.getConstant(0xFF00, MVT::i16));
5815    }
5816    // If Elt0 is defined, extract it from the appropriate source.  If the
5817    // source byte is not also even, shift the extracted word right 8 bits. If
5818    // Elt1 was also defined, OR the extracted values together before
5819    // inserting them in the result.
5820    if (Elt0 >= 0) {
5821      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5822                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5823      if ((Elt0 & 1) != 0)
5824        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5825                              DAG.getConstant(8,
5826                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5827      else if (Elt1 >= 0)
5828        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5829                             DAG.getConstant(0x00FF, MVT::i16));
5830      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5831                         : InsElt0;
5832    }
5833    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5834                       DAG.getIntPtrConstant(i));
5835  }
5836  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5837}
5838
5839/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5840/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5841/// done when every pair / quad of shuffle mask elements point to elements in
5842/// the right sequence. e.g.
5843/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5844static
5845SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5846                                 SelectionDAG &DAG, DebugLoc dl) {
5847  EVT VT = SVOp->getValueType(0);
5848  SDValue V1 = SVOp->getOperand(0);
5849  SDValue V2 = SVOp->getOperand(1);
5850  unsigned NumElems = VT.getVectorNumElements();
5851  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5852  EVT NewVT;
5853  switch (VT.getSimpleVT().SimpleTy) {
5854  default: assert(false && "Unexpected!");
5855  case MVT::v4f32: NewVT = MVT::v2f64; break;
5856  case MVT::v4i32: NewVT = MVT::v2i64; break;
5857  case MVT::v8i16: NewVT = MVT::v4i32; break;
5858  case MVT::v16i8: NewVT = MVT::v4i32; break;
5859  }
5860
5861  int Scale = NumElems / NewWidth;
5862  SmallVector<int, 8> MaskVec;
5863  for (unsigned i = 0; i < NumElems; i += Scale) {
5864    int StartIdx = -1;
5865    for (int j = 0; j < Scale; ++j) {
5866      int EltIdx = SVOp->getMaskElt(i+j);
5867      if (EltIdx < 0)
5868        continue;
5869      if (StartIdx == -1)
5870        StartIdx = EltIdx - (EltIdx % Scale);
5871      if (EltIdx != StartIdx + j)
5872        return SDValue();
5873    }
5874    if (StartIdx == -1)
5875      MaskVec.push_back(-1);
5876    else
5877      MaskVec.push_back(StartIdx / Scale);
5878  }
5879
5880  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5881  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5882  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5883}
5884
5885/// getVZextMovL - Return a zero-extending vector move low node.
5886///
5887static SDValue getVZextMovL(EVT VT, EVT OpVT,
5888                            SDValue SrcOp, SelectionDAG &DAG,
5889                            const X86Subtarget *Subtarget, DebugLoc dl) {
5890  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5891    LoadSDNode *LD = NULL;
5892    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5893      LD = dyn_cast<LoadSDNode>(SrcOp);
5894    if (!LD) {
5895      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5896      // instead.
5897      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5898      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5899          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5900          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5901          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5902        // PR2108
5903        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5904        return DAG.getNode(ISD::BITCAST, dl, VT,
5905                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5906                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5907                                                   OpVT,
5908                                                   SrcOp.getOperand(0)
5909                                                          .getOperand(0))));
5910      }
5911    }
5912  }
5913
5914  return DAG.getNode(ISD::BITCAST, dl, VT,
5915                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5916                                 DAG.getNode(ISD::BITCAST, dl,
5917                                             OpVT, SrcOp)));
5918}
5919
5920/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5921/// shuffle node referes to only one lane in the sources.
5922static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5923  EVT VT = SVOp->getValueType(0);
5924  int NumElems = VT.getVectorNumElements();
5925  int HalfSize = NumElems/2;
5926  SmallVector<int, 16> M;
5927  SVOp->getMask(M);
5928  bool MatchA = false, MatchB = false;
5929
5930  for (int l = 0; l < NumElems*2; l += HalfSize) {
5931    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5932      MatchA = true;
5933      break;
5934    }
5935  }
5936
5937  for (int l = 0; l < NumElems*2; l += HalfSize) {
5938    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5939      MatchB = true;
5940      break;
5941    }
5942  }
5943
5944  return MatchA && MatchB;
5945}
5946
5947/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5948/// which could not be matched by any known target speficic shuffle
5949static SDValue
5950LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5951  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5952    // If each half of a vector shuffle node referes to only one lane in the
5953    // source vectors, extract each used 128-bit lane and shuffle them using
5954    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5955    // the work to the legalizer.
5956    DebugLoc dl = SVOp->getDebugLoc();
5957    EVT VT = SVOp->getValueType(0);
5958    int NumElems = VT.getVectorNumElements();
5959    int HalfSize = NumElems/2;
5960
5961    // Extract the reference for each half
5962    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5963    int FstVecOpNum = 0, SndVecOpNum = 0;
5964    for (int i = 0; i < HalfSize; ++i) {
5965      int Elt = SVOp->getMaskElt(i);
5966      if (SVOp->getMaskElt(i) < 0)
5967        continue;
5968      FstVecOpNum = Elt/NumElems;
5969      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5970      break;
5971    }
5972    for (int i = HalfSize; i < NumElems; ++i) {
5973      int Elt = SVOp->getMaskElt(i);
5974      if (SVOp->getMaskElt(i) < 0)
5975        continue;
5976      SndVecOpNum = Elt/NumElems;
5977      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5978      break;
5979    }
5980
5981    // Extract the subvectors
5982    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5983                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5984    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5985                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5986
5987    // Generate 128-bit shuffles
5988    SmallVector<int, 16> MaskV1, MaskV2;
5989    for (int i = 0; i < HalfSize; ++i) {
5990      int Elt = SVOp->getMaskElt(i);
5991      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5992    }
5993    for (int i = HalfSize; i < NumElems; ++i) {
5994      int Elt = SVOp->getMaskElt(i);
5995      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5996    }
5997
5998    EVT NVT = V1.getValueType();
5999    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6000    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6001
6002    // Concatenate the result back
6003    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6004                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6005    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6006                              DAG, dl);
6007  }
6008
6009  return SDValue();
6010}
6011
6012/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6013/// 4 elements, and match them with several different shuffle types.
6014static SDValue
6015LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6016  SDValue V1 = SVOp->getOperand(0);
6017  SDValue V2 = SVOp->getOperand(1);
6018  DebugLoc dl = SVOp->getDebugLoc();
6019  EVT VT = SVOp->getValueType(0);
6020
6021  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6022
6023  SmallVector<std::pair<int, int>, 8> Locs;
6024  Locs.resize(4);
6025  SmallVector<int, 8> Mask1(4U, -1);
6026  SmallVector<int, 8> PermMask;
6027  SVOp->getMask(PermMask);
6028
6029  unsigned NumHi = 0;
6030  unsigned NumLo = 0;
6031  for (unsigned i = 0; i != 4; ++i) {
6032    int Idx = PermMask[i];
6033    if (Idx < 0) {
6034      Locs[i] = std::make_pair(-1, -1);
6035    } else {
6036      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6037      if (Idx < 4) {
6038        Locs[i] = std::make_pair(0, NumLo);
6039        Mask1[NumLo] = Idx;
6040        NumLo++;
6041      } else {
6042        Locs[i] = std::make_pair(1, NumHi);
6043        if (2+NumHi < 4)
6044          Mask1[2+NumHi] = Idx;
6045        NumHi++;
6046      }
6047    }
6048  }
6049
6050  if (NumLo <= 2 && NumHi <= 2) {
6051    // If no more than two elements come from either vector. This can be
6052    // implemented with two shuffles. First shuffle gather the elements.
6053    // The second shuffle, which takes the first shuffle as both of its
6054    // vector operands, put the elements into the right order.
6055    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6056
6057    SmallVector<int, 8> Mask2(4U, -1);
6058
6059    for (unsigned i = 0; i != 4; ++i) {
6060      if (Locs[i].first == -1)
6061        continue;
6062      else {
6063        unsigned Idx = (i < 2) ? 0 : 4;
6064        Idx += Locs[i].first * 2 + Locs[i].second;
6065        Mask2[i] = Idx;
6066      }
6067    }
6068
6069    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6070  } else if (NumLo == 3 || NumHi == 3) {
6071    // Otherwise, we must have three elements from one vector, call it X, and
6072    // one element from the other, call it Y.  First, use a shufps to build an
6073    // intermediate vector with the one element from Y and the element from X
6074    // that will be in the same half in the final destination (the indexes don't
6075    // matter). Then, use a shufps to build the final vector, taking the half
6076    // containing the element from Y from the intermediate, and the other half
6077    // from X.
6078    if (NumHi == 3) {
6079      // Normalize it so the 3 elements come from V1.
6080      CommuteVectorShuffleMask(PermMask, VT);
6081      std::swap(V1, V2);
6082    }
6083
6084    // Find the element from V2.
6085    unsigned HiIndex;
6086    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6087      int Val = PermMask[HiIndex];
6088      if (Val < 0)
6089        continue;
6090      if (Val >= 4)
6091        break;
6092    }
6093
6094    Mask1[0] = PermMask[HiIndex];
6095    Mask1[1] = -1;
6096    Mask1[2] = PermMask[HiIndex^1];
6097    Mask1[3] = -1;
6098    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6099
6100    if (HiIndex >= 2) {
6101      Mask1[0] = PermMask[0];
6102      Mask1[1] = PermMask[1];
6103      Mask1[2] = HiIndex & 1 ? 6 : 4;
6104      Mask1[3] = HiIndex & 1 ? 4 : 6;
6105      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6106    } else {
6107      Mask1[0] = HiIndex & 1 ? 2 : 0;
6108      Mask1[1] = HiIndex & 1 ? 0 : 2;
6109      Mask1[2] = PermMask[2];
6110      Mask1[3] = PermMask[3];
6111      if (Mask1[2] >= 0)
6112        Mask1[2] += 4;
6113      if (Mask1[3] >= 0)
6114        Mask1[3] += 4;
6115      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6116    }
6117  }
6118
6119  // Break it into (shuffle shuffle_hi, shuffle_lo).
6120  Locs.clear();
6121  Locs.resize(4);
6122  SmallVector<int,8> LoMask(4U, -1);
6123  SmallVector<int,8> HiMask(4U, -1);
6124
6125  SmallVector<int,8> *MaskPtr = &LoMask;
6126  unsigned MaskIdx = 0;
6127  unsigned LoIdx = 0;
6128  unsigned HiIdx = 2;
6129  for (unsigned i = 0; i != 4; ++i) {
6130    if (i == 2) {
6131      MaskPtr = &HiMask;
6132      MaskIdx = 1;
6133      LoIdx = 0;
6134      HiIdx = 2;
6135    }
6136    int Idx = PermMask[i];
6137    if (Idx < 0) {
6138      Locs[i] = std::make_pair(-1, -1);
6139    } else if (Idx < 4) {
6140      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6141      (*MaskPtr)[LoIdx] = Idx;
6142      LoIdx++;
6143    } else {
6144      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6145      (*MaskPtr)[HiIdx] = Idx;
6146      HiIdx++;
6147    }
6148  }
6149
6150  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6151  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6152  SmallVector<int, 8> MaskOps;
6153  for (unsigned i = 0; i != 4; ++i) {
6154    if (Locs[i].first == -1) {
6155      MaskOps.push_back(-1);
6156    } else {
6157      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6158      MaskOps.push_back(Idx);
6159    }
6160  }
6161  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6162}
6163
6164static bool MayFoldVectorLoad(SDValue V) {
6165  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6166    V = V.getOperand(0);
6167  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6168    V = V.getOperand(0);
6169  if (MayFoldLoad(V))
6170    return true;
6171  return false;
6172}
6173
6174// FIXME: the version above should always be used. Since there's
6175// a bug where several vector shuffles can't be folded because the
6176// DAG is not updated during lowering and a node claims to have two
6177// uses while it only has one, use this version, and let isel match
6178// another instruction if the load really happens to have more than
6179// one use. Remove this version after this bug get fixed.
6180// rdar://8434668, PR8156
6181static bool RelaxedMayFoldVectorLoad(SDValue V) {
6182  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6183    V = V.getOperand(0);
6184  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6185    V = V.getOperand(0);
6186  if (ISD::isNormalLoad(V.getNode()))
6187    return true;
6188  return false;
6189}
6190
6191/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6192/// a vector extract, and if both can be later optimized into a single load.
6193/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6194/// here because otherwise a target specific shuffle node is going to be
6195/// emitted for this shuffle, and the optimization not done.
6196/// FIXME: This is probably not the best approach, but fix the problem
6197/// until the right path is decided.
6198static
6199bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6200                                         const TargetLowering &TLI) {
6201  EVT VT = V.getValueType();
6202  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6203
6204  // Be sure that the vector shuffle is present in a pattern like this:
6205  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6206  if (!V.hasOneUse())
6207    return false;
6208
6209  SDNode *N = *V.getNode()->use_begin();
6210  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6211    return false;
6212
6213  SDValue EltNo = N->getOperand(1);
6214  if (!isa<ConstantSDNode>(EltNo))
6215    return false;
6216
6217  // If the bit convert changed the number of elements, it is unsafe
6218  // to examine the mask.
6219  bool HasShuffleIntoBitcast = false;
6220  if (V.getOpcode() == ISD::BITCAST) {
6221    EVT SrcVT = V.getOperand(0).getValueType();
6222    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6223      return false;
6224    V = V.getOperand(0);
6225    HasShuffleIntoBitcast = true;
6226  }
6227
6228  // Select the input vector, guarding against out of range extract vector.
6229  unsigned NumElems = VT.getVectorNumElements();
6230  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6231  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6232  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6233
6234  // Skip one more bit_convert if necessary
6235  if (V.getOpcode() == ISD::BITCAST)
6236    V = V.getOperand(0);
6237
6238  if (ISD::isNormalLoad(V.getNode())) {
6239    // Is the original load suitable?
6240    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6241
6242    // FIXME: avoid the multi-use bug that is preventing lots of
6243    // of foldings to be detected, this is still wrong of course, but
6244    // give the temporary desired behavior, and if it happens that
6245    // the load has real more uses, during isel it will not fold, and
6246    // will generate poor code.
6247    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6248      return false;
6249
6250    if (!HasShuffleIntoBitcast)
6251      return true;
6252
6253    // If there's a bitcast before the shuffle, check if the load type and
6254    // alignment is valid.
6255    unsigned Align = LN0->getAlignment();
6256    unsigned NewAlign =
6257      TLI.getTargetData()->getABITypeAlignment(
6258                                    VT.getTypeForEVT(*DAG.getContext()));
6259
6260    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6261      return false;
6262  }
6263
6264  return true;
6265}
6266
6267static
6268SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6269  EVT VT = Op.getValueType();
6270
6271  // Canonizalize to v2f64.
6272  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6273  return DAG.getNode(ISD::BITCAST, dl, VT,
6274                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6275                                          V1, DAG));
6276}
6277
6278static
6279SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6280                        bool HasXMMInt) {
6281  SDValue V1 = Op.getOperand(0);
6282  SDValue V2 = Op.getOperand(1);
6283  EVT VT = Op.getValueType();
6284
6285  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6286
6287  if (HasXMMInt && VT == MVT::v2f64)
6288    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6289
6290  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6291  return DAG.getNode(ISD::BITCAST, dl, VT,
6292                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6293                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6294                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6295}
6296
6297static
6298SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6299  SDValue V1 = Op.getOperand(0);
6300  SDValue V2 = Op.getOperand(1);
6301  EVT VT = Op.getValueType();
6302
6303  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6304         "unsupported shuffle type");
6305
6306  if (V2.getOpcode() == ISD::UNDEF)
6307    V2 = V1;
6308
6309  // v4i32 or v4f32
6310  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6311}
6312
6313static inline unsigned getSHUFPOpcode(EVT VT) {
6314  switch(VT.getSimpleVT().SimpleTy) {
6315  case MVT::v8i32: // Use fp unit for int unpack.
6316  case MVT::v8f32:
6317  case MVT::v4i32: // Use fp unit for int unpack.
6318  case MVT::v4f32: return X86ISD::SHUFPS;
6319  case MVT::v4i64: // Use fp unit for int unpack.
6320  case MVT::v4f64:
6321  case MVT::v2i64: // Use fp unit for int unpack.
6322  case MVT::v2f64: return X86ISD::SHUFPD;
6323  default:
6324    llvm_unreachable("Unknown type for shufp*");
6325  }
6326  return 0;
6327}
6328
6329static
6330SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6331  SDValue V1 = Op.getOperand(0);
6332  SDValue V2 = Op.getOperand(1);
6333  EVT VT = Op.getValueType();
6334  unsigned NumElems = VT.getVectorNumElements();
6335
6336  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6337  // operand of these instructions is only memory, so check if there's a
6338  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6339  // same masks.
6340  bool CanFoldLoad = false;
6341
6342  // Trivial case, when V2 comes from a load.
6343  if (MayFoldVectorLoad(V2))
6344    CanFoldLoad = true;
6345
6346  // When V1 is a load, it can be folded later into a store in isel, example:
6347  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6348  //    turns into:
6349  //  (MOVLPSmr addr:$src1, VR128:$src2)
6350  // So, recognize this potential and also use MOVLPS or MOVLPD
6351  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6352    CanFoldLoad = true;
6353
6354  // Both of them can't be memory operations though.
6355  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6356    CanFoldLoad = false;
6357
6358  if (CanFoldLoad) {
6359    if (HasXMMInt && NumElems == 2)
6360      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6361
6362    if (NumElems == 4)
6363      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6364  }
6365
6366  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6367  // movl and movlp will both match v2i64, but v2i64 is never matched by
6368  // movl earlier because we make it strict to avoid messing with the movlp load
6369  // folding logic (see the code above getMOVLP call). Match it here then,
6370  // this is horrible, but will stay like this until we move all shuffle
6371  // matching to x86 specific nodes. Note that for the 1st condition all
6372  // types are matched with movsd.
6373  if (HasXMMInt) {
6374    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6375    // as to remove this logic from here, as much as possible
6376    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6377      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6378    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6379  }
6380
6381  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6382
6383  // Invert the operand order and use SHUFPS to match it.
6384  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6385                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6386}
6387
6388static inline unsigned getUNPCKLOpcode(EVT VT) {
6389  switch(VT.getSimpleVT().SimpleTy) {
6390  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6391  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6392  case MVT::v4f32: return X86ISD::UNPCKLPS;
6393  case MVT::v2f64: return X86ISD::UNPCKLPD;
6394  case MVT::v8i32: // Use fp unit for int unpack.
6395  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6396  case MVT::v4i64: // Use fp unit for int unpack.
6397  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6398  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6399  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6400  default:
6401    llvm_unreachable("Unknown type for unpckl");
6402  }
6403  return 0;
6404}
6405
6406static inline unsigned getUNPCKHOpcode(EVT VT) {
6407  switch(VT.getSimpleVT().SimpleTy) {
6408  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6409  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6410  case MVT::v4f32: return X86ISD::UNPCKHPS;
6411  case MVT::v2f64: return X86ISD::UNPCKHPD;
6412  case MVT::v8i32: // Use fp unit for int unpack.
6413  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6414  case MVT::v4i64: // Use fp unit for int unpack.
6415  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6416  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6417  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6418  default:
6419    llvm_unreachable("Unknown type for unpckh");
6420  }
6421  return 0;
6422}
6423
6424static inline unsigned getVPERMILOpcode(EVT VT) {
6425  switch(VT.getSimpleVT().SimpleTy) {
6426  case MVT::v4i32:
6427  case MVT::v4f32: return X86ISD::VPERMILPS;
6428  case MVT::v2i64:
6429  case MVT::v2f64: return X86ISD::VPERMILPD;
6430  case MVT::v8i32:
6431  case MVT::v8f32: return X86ISD::VPERMILPSY;
6432  case MVT::v4i64:
6433  case MVT::v4f64: return X86ISD::VPERMILPDY;
6434  default:
6435    llvm_unreachable("Unknown type for vpermil");
6436  }
6437  return 0;
6438}
6439
6440/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6441/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6442/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6443static bool isVectorBroadcast(SDValue &Op) {
6444  EVT VT = Op.getValueType();
6445  bool Is256 = VT.getSizeInBits() == 256;
6446
6447  assert((VT.getSizeInBits() == 128 || Is256) &&
6448         "Unsupported type for vbroadcast node");
6449
6450  SDValue V = Op;
6451  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6452    V = V.getOperand(0);
6453
6454  if (Is256 && !(V.hasOneUse() &&
6455                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6456                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6457    return false;
6458
6459  if (Is256)
6460    V = V.getOperand(1);
6461
6462  if (!V.hasOneUse())
6463    return false;
6464
6465  // Check the source scalar_to_vector type. 256-bit broadcasts are
6466  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6467  // for 32-bit scalars.
6468  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6469    return false;
6470
6471  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6472  if (ScalarSize != 32 && ScalarSize != 64)
6473    return false;
6474  if (!Is256 && ScalarSize == 64)
6475    return false;
6476
6477  V = V.getOperand(0);
6478  if (!MayFoldLoad(V))
6479    return false;
6480
6481  // Return the load node
6482  Op = V;
6483  return true;
6484}
6485
6486static
6487SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6488                               const TargetLowering &TLI,
6489                               const X86Subtarget *Subtarget) {
6490  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6491  EVT VT = Op.getValueType();
6492  DebugLoc dl = Op.getDebugLoc();
6493  SDValue V1 = Op.getOperand(0);
6494  SDValue V2 = Op.getOperand(1);
6495
6496  if (isZeroShuffle(SVOp))
6497    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6498
6499  // Handle splat operations
6500  if (SVOp->isSplat()) {
6501    unsigned NumElem = VT.getVectorNumElements();
6502    int Size = VT.getSizeInBits();
6503    // Special case, this is the only place now where it's allowed to return
6504    // a vector_shuffle operation without using a target specific node, because
6505    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6506    // this be moved to DAGCombine instead?
6507    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6508      return Op;
6509
6510    // Use vbroadcast whenever the splat comes from a foldable load
6511    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6512      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6513
6514    // Handle splats by matching through known shuffle masks
6515    if ((Size == 128 && NumElem <= 4) ||
6516        (Size == 256 && NumElem < 8))
6517      return SDValue();
6518
6519    // All remaning splats are promoted to target supported vector shuffles.
6520    return PromoteSplat(SVOp, DAG);
6521  }
6522
6523  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6524  // do it!
6525  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6526    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6527    if (NewOp.getNode())
6528      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6529  } else if ((VT == MVT::v4i32 ||
6530             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6531    // FIXME: Figure out a cleaner way to do this.
6532    // Try to make use of movq to zero out the top part.
6533    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6534      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6535      if (NewOp.getNode()) {
6536        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6537          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6538                              DAG, Subtarget, dl);
6539      }
6540    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6541      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6542      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6543        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6544                            DAG, Subtarget, dl);
6545    }
6546  }
6547  return SDValue();
6548}
6549
6550SDValue
6551X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6552  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6553  SDValue V1 = Op.getOperand(0);
6554  SDValue V2 = Op.getOperand(1);
6555  EVT VT = Op.getValueType();
6556  DebugLoc dl = Op.getDebugLoc();
6557  unsigned NumElems = VT.getVectorNumElements();
6558  bool isMMX = VT.getSizeInBits() == 64;
6559  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6560  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6561  bool V1IsSplat = false;
6562  bool V2IsSplat = false;
6563  bool HasXMMInt = Subtarget->hasXMMInt();
6564  MachineFunction &MF = DAG.getMachineFunction();
6565  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6566
6567  // Shuffle operations on MMX not supported.
6568  if (isMMX)
6569    return Op;
6570
6571  // Vector shuffle lowering takes 3 steps:
6572  //
6573  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6574  //    narrowing and commutation of operands should be handled.
6575  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6576  //    shuffle nodes.
6577  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6578  //    so the shuffle can be broken into other shuffles and the legalizer can
6579  //    try the lowering again.
6580  //
6581  // The general ideia is that no vector_shuffle operation should be left to
6582  // be matched during isel, all of them must be converted to a target specific
6583  // node here.
6584
6585  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6586  // narrowing and commutation of operands should be handled. The actual code
6587  // doesn't include all of those, work in progress...
6588  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6589  if (NewOp.getNode())
6590    return NewOp;
6591
6592  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6593  // unpckh_undef). Only use pshufd if speed is more important than size.
6594  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6595    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6596  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6597    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6598
6599  if (X86::isMOVDDUPMask(SVOp) &&
6600      (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6601      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6602    return getMOVDDup(Op, dl, V1, DAG);
6603
6604  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6605    return getMOVHighToLow(Op, dl, DAG);
6606
6607  // Use to match splats
6608  if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6609      (VT == MVT::v2f64 || VT == MVT::v2i64))
6610    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6611
6612  if (X86::isPSHUFDMask(SVOp)) {
6613    // The actual implementation will match the mask in the if above and then
6614    // during isel it can match several different instructions, not only pshufd
6615    // as its name says, sad but true, emulate the behavior for now...
6616    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6617        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6618
6619    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6620
6621    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6622      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6623
6624    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6625                                TargetMask, DAG);
6626  }
6627
6628  // Check if this can be converted into a logical shift.
6629  bool isLeft = false;
6630  unsigned ShAmt = 0;
6631  SDValue ShVal;
6632  bool isShift = getSubtarget()->hasXMMInt() &&
6633                 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6634  if (isShift && ShVal.hasOneUse()) {
6635    // If the shifted value has multiple uses, it may be cheaper to use
6636    // v_set0 + movlhps or movhlps, etc.
6637    EVT EltVT = VT.getVectorElementType();
6638    ShAmt *= EltVT.getSizeInBits();
6639    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6640  }
6641
6642  if (X86::isMOVLMask(SVOp)) {
6643    if (V1IsUndef)
6644      return V2;
6645    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6646      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6647    if (!X86::isMOVLPMask(SVOp)) {
6648      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6649        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6650
6651      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6652        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6653    }
6654  }
6655
6656  // FIXME: fold these into legal mask.
6657  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6658    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6659
6660  if (X86::isMOVHLPSMask(SVOp))
6661    return getMOVHighToLow(Op, dl, DAG);
6662
6663  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6664    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6665
6666  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6667    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6668
6669  if (X86::isMOVLPMask(SVOp))
6670    return getMOVLP(Op, dl, DAG, HasXMMInt);
6671
6672  if (ShouldXformToMOVHLPS(SVOp) ||
6673      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6674    return CommuteVectorShuffle(SVOp, DAG);
6675
6676  if (isShift) {
6677    // No better options. Use a vshl / vsrl.
6678    EVT EltVT = VT.getVectorElementType();
6679    ShAmt *= EltVT.getSizeInBits();
6680    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6681  }
6682
6683  bool Commuted = false;
6684  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6685  // 1,1,1,1 -> v8i16 though.
6686  V1IsSplat = isSplatVector(V1.getNode());
6687  V2IsSplat = isSplatVector(V2.getNode());
6688
6689  // Canonicalize the splat or undef, if present, to be on the RHS.
6690  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6691    Op = CommuteVectorShuffle(SVOp, DAG);
6692    SVOp = cast<ShuffleVectorSDNode>(Op);
6693    V1 = SVOp->getOperand(0);
6694    V2 = SVOp->getOperand(1);
6695    std::swap(V1IsSplat, V2IsSplat);
6696    std::swap(V1IsUndef, V2IsUndef);
6697    Commuted = true;
6698  }
6699
6700  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6701    // Shuffling low element of v1 into undef, just return v1.
6702    if (V2IsUndef)
6703      return V1;
6704    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6705    // the instruction selector will not match, so get a canonical MOVL with
6706    // swapped operands to undo the commute.
6707    return getMOVL(DAG, dl, VT, V2, V1);
6708  }
6709
6710  if (X86::isUNPCKLMask(SVOp))
6711    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6712
6713  if (X86::isUNPCKHMask(SVOp))
6714    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6715
6716  if (V2IsSplat) {
6717    // Normalize mask so all entries that point to V2 points to its first
6718    // element then try to match unpck{h|l} again. If match, return a
6719    // new vector_shuffle with the corrected mask.
6720    SDValue NewMask = NormalizeMask(SVOp, DAG);
6721    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6722    if (NSVOp != SVOp) {
6723      if (X86::isUNPCKLMask(NSVOp, true)) {
6724        return NewMask;
6725      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6726        return NewMask;
6727      }
6728    }
6729  }
6730
6731  if (Commuted) {
6732    // Commute is back and try unpck* again.
6733    // FIXME: this seems wrong.
6734    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6735    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6736
6737    if (X86::isUNPCKLMask(NewSVOp))
6738      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6739
6740    if (X86::isUNPCKHMask(NewSVOp))
6741      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6742  }
6743
6744  // Normalize the node to match x86 shuffle ops if needed
6745  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6746    return CommuteVectorShuffle(SVOp, DAG);
6747
6748  // The checks below are all present in isShuffleMaskLegal, but they are
6749  // inlined here right now to enable us to directly emit target specific
6750  // nodes, and remove one by one until they don't return Op anymore.
6751  SmallVector<int, 16> M;
6752  SVOp->getMask(M);
6753
6754  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6755    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6756                                X86::getShufflePALIGNRImmediate(SVOp),
6757                                DAG);
6758
6759  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6760      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6761    if (VT == MVT::v2f64)
6762      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6763    if (VT == MVT::v2i64)
6764      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6765  }
6766
6767  if (isPSHUFHWMask(M, VT))
6768    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6769                                X86::getShufflePSHUFHWImmediate(SVOp),
6770                                DAG);
6771
6772  if (isPSHUFLWMask(M, VT))
6773    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6774                                X86::getShufflePSHUFLWImmediate(SVOp),
6775                                DAG);
6776
6777  if (isSHUFPMask(M, VT))
6778    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6779                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6780
6781  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6782    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6783  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6784    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6785
6786  //===--------------------------------------------------------------------===//
6787  // Generate target specific nodes for 128 or 256-bit shuffles only
6788  // supported in the AVX instruction set.
6789  //
6790
6791  // Handle VMOVDDUPY permutations
6792  if (isMOVDDUPYMask(SVOp, Subtarget))
6793    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6794
6795  // Handle VPERMILPS* permutations
6796  if (isVPERMILPSMask(M, VT, Subtarget))
6797    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6798                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6799
6800  // Handle VPERMILPD* permutations
6801  if (isVPERMILPDMask(M, VT, Subtarget))
6802    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6803                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6804
6805  // Handle VPERM2F128 permutations
6806  if (isVPERM2F128Mask(M, VT, Subtarget))
6807    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6808                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6809
6810  // Handle VSHUFPSY permutations
6811  if (isVSHUFPSYMask(M, VT, Subtarget))
6812    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6813                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6814
6815  // Handle VSHUFPDY permutations
6816  if (isVSHUFPDYMask(M, VT, Subtarget))
6817    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6818                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6819
6820  //===--------------------------------------------------------------------===//
6821  // Since no target specific shuffle was selected for this generic one,
6822  // lower it into other known shuffles. FIXME: this isn't true yet, but
6823  // this is the plan.
6824  //
6825
6826  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6827  if (VT == MVT::v8i16) {
6828    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6829    if (NewOp.getNode())
6830      return NewOp;
6831  }
6832
6833  if (VT == MVT::v16i8) {
6834    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6835    if (NewOp.getNode())
6836      return NewOp;
6837  }
6838
6839  // Handle all 128-bit wide vectors with 4 elements, and match them with
6840  // several different shuffle types.
6841  if (NumElems == 4 && VT.getSizeInBits() == 128)
6842    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6843
6844  // Handle general 256-bit shuffles
6845  if (VT.is256BitVector())
6846    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6847
6848  return SDValue();
6849}
6850
6851SDValue
6852X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6853                                                SelectionDAG &DAG) const {
6854  EVT VT = Op.getValueType();
6855  DebugLoc dl = Op.getDebugLoc();
6856
6857  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6858    return SDValue();
6859
6860  if (VT.getSizeInBits() == 8) {
6861    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6862                                    Op.getOperand(0), Op.getOperand(1));
6863    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6864                                    DAG.getValueType(VT));
6865    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6866  } else if (VT.getSizeInBits() == 16) {
6867    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6868    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6869    if (Idx == 0)
6870      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6871                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6872                                     DAG.getNode(ISD::BITCAST, dl,
6873                                                 MVT::v4i32,
6874                                                 Op.getOperand(0)),
6875                                     Op.getOperand(1)));
6876    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6877                                    Op.getOperand(0), Op.getOperand(1));
6878    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6879                                    DAG.getValueType(VT));
6880    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6881  } else if (VT == MVT::f32) {
6882    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6883    // the result back to FR32 register. It's only worth matching if the
6884    // result has a single use which is a store or a bitcast to i32.  And in
6885    // the case of a store, it's not worth it if the index is a constant 0,
6886    // because a MOVSSmr can be used instead, which is smaller and faster.
6887    if (!Op.hasOneUse())
6888      return SDValue();
6889    SDNode *User = *Op.getNode()->use_begin();
6890    if ((User->getOpcode() != ISD::STORE ||
6891         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6892          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6893        (User->getOpcode() != ISD::BITCAST ||
6894         User->getValueType(0) != MVT::i32))
6895      return SDValue();
6896    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6897                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6898                                              Op.getOperand(0)),
6899                                              Op.getOperand(1));
6900    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6901  } else if (VT == MVT::i32) {
6902    // ExtractPS works with constant index.
6903    if (isa<ConstantSDNode>(Op.getOperand(1)))
6904      return Op;
6905  }
6906  return SDValue();
6907}
6908
6909
6910SDValue
6911X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6912                                           SelectionDAG &DAG) const {
6913  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6914    return SDValue();
6915
6916  SDValue Vec = Op.getOperand(0);
6917  EVT VecVT = Vec.getValueType();
6918
6919  // If this is a 256-bit vector result, first extract the 128-bit vector and
6920  // then extract the element from the 128-bit vector.
6921  if (VecVT.getSizeInBits() == 256) {
6922    DebugLoc dl = Op.getNode()->getDebugLoc();
6923    unsigned NumElems = VecVT.getVectorNumElements();
6924    SDValue Idx = Op.getOperand(1);
6925    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6926
6927    // Get the 128-bit vector.
6928    bool Upper = IdxVal >= NumElems/2;
6929    Vec = Extract128BitVector(Vec,
6930                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6931
6932    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6933                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6934  }
6935
6936  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6937
6938  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6939    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6940    if (Res.getNode())
6941      return Res;
6942  }
6943
6944  EVT VT = Op.getValueType();
6945  DebugLoc dl = Op.getDebugLoc();
6946  // TODO: handle v16i8.
6947  if (VT.getSizeInBits() == 16) {
6948    SDValue Vec = Op.getOperand(0);
6949    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6950    if (Idx == 0)
6951      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6952                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6953                                     DAG.getNode(ISD::BITCAST, dl,
6954                                                 MVT::v4i32, Vec),
6955                                     Op.getOperand(1)));
6956    // Transform it so it match pextrw which produces a 32-bit result.
6957    EVT EltVT = MVT::i32;
6958    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6959                                    Op.getOperand(0), Op.getOperand(1));
6960    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6961                                    DAG.getValueType(VT));
6962    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6963  } else if (VT.getSizeInBits() == 32) {
6964    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6965    if (Idx == 0)
6966      return Op;
6967
6968    // SHUFPS the element to the lowest double word, then movss.
6969    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6970    EVT VVT = Op.getOperand(0).getValueType();
6971    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6972                                       DAG.getUNDEF(VVT), Mask);
6973    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6974                       DAG.getIntPtrConstant(0));
6975  } else if (VT.getSizeInBits() == 64) {
6976    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6977    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6978    //        to match extract_elt for f64.
6979    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6980    if (Idx == 0)
6981      return Op;
6982
6983    // UNPCKHPD the element to the lowest double word, then movsd.
6984    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6985    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6986    int Mask[2] = { 1, -1 };
6987    EVT VVT = Op.getOperand(0).getValueType();
6988    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6989                                       DAG.getUNDEF(VVT), Mask);
6990    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6991                       DAG.getIntPtrConstant(0));
6992  }
6993
6994  return SDValue();
6995}
6996
6997SDValue
6998X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6999                                               SelectionDAG &DAG) const {
7000  EVT VT = Op.getValueType();
7001  EVT EltVT = VT.getVectorElementType();
7002  DebugLoc dl = Op.getDebugLoc();
7003
7004  SDValue N0 = Op.getOperand(0);
7005  SDValue N1 = Op.getOperand(1);
7006  SDValue N2 = Op.getOperand(2);
7007
7008  if (VT.getSizeInBits() == 256)
7009    return SDValue();
7010
7011  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7012      isa<ConstantSDNode>(N2)) {
7013    unsigned Opc;
7014    if (VT == MVT::v8i16)
7015      Opc = X86ISD::PINSRW;
7016    else if (VT == MVT::v16i8)
7017      Opc = X86ISD::PINSRB;
7018    else
7019      Opc = X86ISD::PINSRB;
7020
7021    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7022    // argument.
7023    if (N1.getValueType() != MVT::i32)
7024      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7025    if (N2.getValueType() != MVT::i32)
7026      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7027    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7028  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7029    // Bits [7:6] of the constant are the source select.  This will always be
7030    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7031    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7032    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7033    // Bits [5:4] of the constant are the destination select.  This is the
7034    //  value of the incoming immediate.
7035    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7036    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7037    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7038    // Create this as a scalar to vector..
7039    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7040    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7041  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7042    // PINSR* works with constant index.
7043    return Op;
7044  }
7045  return SDValue();
7046}
7047
7048SDValue
7049X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7050  EVT VT = Op.getValueType();
7051  EVT EltVT = VT.getVectorElementType();
7052
7053  DebugLoc dl = Op.getDebugLoc();
7054  SDValue N0 = Op.getOperand(0);
7055  SDValue N1 = Op.getOperand(1);
7056  SDValue N2 = Op.getOperand(2);
7057
7058  // If this is a 256-bit vector result, first extract the 128-bit vector,
7059  // insert the element into the extracted half and then place it back.
7060  if (VT.getSizeInBits() == 256) {
7061    if (!isa<ConstantSDNode>(N2))
7062      return SDValue();
7063
7064    // Get the desired 128-bit vector half.
7065    unsigned NumElems = VT.getVectorNumElements();
7066    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7067    bool Upper = IdxVal >= NumElems/2;
7068    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7069    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7070
7071    // Insert the element into the desired half.
7072    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7073                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7074
7075    // Insert the changed part back to the 256-bit vector
7076    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7077  }
7078
7079  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7080    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7081
7082  if (EltVT == MVT::i8)
7083    return SDValue();
7084
7085  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7086    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7087    // as its second argument.
7088    if (N1.getValueType() != MVT::i32)
7089      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7090    if (N2.getValueType() != MVT::i32)
7091      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7092    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7093  }
7094  return SDValue();
7095}
7096
7097SDValue
7098X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7099  LLVMContext *Context = DAG.getContext();
7100  DebugLoc dl = Op.getDebugLoc();
7101  EVT OpVT = Op.getValueType();
7102
7103  // If this is a 256-bit vector result, first insert into a 128-bit
7104  // vector and then insert into the 256-bit vector.
7105  if (OpVT.getSizeInBits() > 128) {
7106    // Insert into a 128-bit vector.
7107    EVT VT128 = EVT::getVectorVT(*Context,
7108                                 OpVT.getVectorElementType(),
7109                                 OpVT.getVectorNumElements() / 2);
7110
7111    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7112
7113    // Insert the 128-bit vector.
7114    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7115                              DAG.getConstant(0, MVT::i32),
7116                              DAG, dl);
7117  }
7118
7119  if (Op.getValueType() == MVT::v1i64 &&
7120      Op.getOperand(0).getValueType() == MVT::i64)
7121    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7122
7123  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7124  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7125         "Expected an SSE type!");
7126  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7127                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7128}
7129
7130// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7131// a simple subregister reference or explicit instructions to grab
7132// upper bits of a vector.
7133SDValue
7134X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7135  if (Subtarget->hasAVX()) {
7136    DebugLoc dl = Op.getNode()->getDebugLoc();
7137    SDValue Vec = Op.getNode()->getOperand(0);
7138    SDValue Idx = Op.getNode()->getOperand(1);
7139
7140    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7141        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7142        return Extract128BitVector(Vec, Idx, DAG, dl);
7143    }
7144  }
7145  return SDValue();
7146}
7147
7148// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7149// simple superregister reference or explicit instructions to insert
7150// the upper bits of a vector.
7151SDValue
7152X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7153  if (Subtarget->hasAVX()) {
7154    DebugLoc dl = Op.getNode()->getDebugLoc();
7155    SDValue Vec = Op.getNode()->getOperand(0);
7156    SDValue SubVec = Op.getNode()->getOperand(1);
7157    SDValue Idx = Op.getNode()->getOperand(2);
7158
7159    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7160        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7161      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7162    }
7163  }
7164  return SDValue();
7165}
7166
7167// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7168// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7169// one of the above mentioned nodes. It has to be wrapped because otherwise
7170// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7171// be used to form addressing mode. These wrapped nodes will be selected
7172// into MOV32ri.
7173SDValue
7174X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7175  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7176
7177  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7178  // global base reg.
7179  unsigned char OpFlag = 0;
7180  unsigned WrapperKind = X86ISD::Wrapper;
7181  CodeModel::Model M = getTargetMachine().getCodeModel();
7182
7183  if (Subtarget->isPICStyleRIPRel() &&
7184      (M == CodeModel::Small || M == CodeModel::Kernel))
7185    WrapperKind = X86ISD::WrapperRIP;
7186  else if (Subtarget->isPICStyleGOT())
7187    OpFlag = X86II::MO_GOTOFF;
7188  else if (Subtarget->isPICStyleStubPIC())
7189    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7190
7191  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7192                                             CP->getAlignment(),
7193                                             CP->getOffset(), OpFlag);
7194  DebugLoc DL = CP->getDebugLoc();
7195  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7196  // With PIC, the address is actually $g + Offset.
7197  if (OpFlag) {
7198    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7199                         DAG.getNode(X86ISD::GlobalBaseReg,
7200                                     DebugLoc(), getPointerTy()),
7201                         Result);
7202  }
7203
7204  return Result;
7205}
7206
7207SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7208  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7209
7210  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7211  // global base reg.
7212  unsigned char OpFlag = 0;
7213  unsigned WrapperKind = X86ISD::Wrapper;
7214  CodeModel::Model M = getTargetMachine().getCodeModel();
7215
7216  if (Subtarget->isPICStyleRIPRel() &&
7217      (M == CodeModel::Small || M == CodeModel::Kernel))
7218    WrapperKind = X86ISD::WrapperRIP;
7219  else if (Subtarget->isPICStyleGOT())
7220    OpFlag = X86II::MO_GOTOFF;
7221  else if (Subtarget->isPICStyleStubPIC())
7222    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7223
7224  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7225                                          OpFlag);
7226  DebugLoc DL = JT->getDebugLoc();
7227  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7228
7229  // With PIC, the address is actually $g + Offset.
7230  if (OpFlag)
7231    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7232                         DAG.getNode(X86ISD::GlobalBaseReg,
7233                                     DebugLoc(), getPointerTy()),
7234                         Result);
7235
7236  return Result;
7237}
7238
7239SDValue
7240X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7241  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7242
7243  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7244  // global base reg.
7245  unsigned char OpFlag = 0;
7246  unsigned WrapperKind = X86ISD::Wrapper;
7247  CodeModel::Model M = getTargetMachine().getCodeModel();
7248
7249  if (Subtarget->isPICStyleRIPRel() &&
7250      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7251    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7252      OpFlag = X86II::MO_GOTPCREL;
7253    WrapperKind = X86ISD::WrapperRIP;
7254  } else if (Subtarget->isPICStyleGOT()) {
7255    OpFlag = X86II::MO_GOT;
7256  } else if (Subtarget->isPICStyleStubPIC()) {
7257    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7258  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7259    OpFlag = X86II::MO_DARWIN_NONLAZY;
7260  }
7261
7262  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7263
7264  DebugLoc DL = Op.getDebugLoc();
7265  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7266
7267
7268  // With PIC, the address is actually $g + Offset.
7269  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7270      !Subtarget->is64Bit()) {
7271    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7272                         DAG.getNode(X86ISD::GlobalBaseReg,
7273                                     DebugLoc(), getPointerTy()),
7274                         Result);
7275  }
7276
7277  // For symbols that require a load from a stub to get the address, emit the
7278  // load.
7279  if (isGlobalStubReference(OpFlag))
7280    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7281                         MachinePointerInfo::getGOT(), false, false, 0);
7282
7283  return Result;
7284}
7285
7286SDValue
7287X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7288  // Create the TargetBlockAddressAddress node.
7289  unsigned char OpFlags =
7290    Subtarget->ClassifyBlockAddressReference();
7291  CodeModel::Model M = getTargetMachine().getCodeModel();
7292  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7293  DebugLoc dl = Op.getDebugLoc();
7294  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7295                                       /*isTarget=*/true, OpFlags);
7296
7297  if (Subtarget->isPICStyleRIPRel() &&
7298      (M == CodeModel::Small || M == CodeModel::Kernel))
7299    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7300  else
7301    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7302
7303  // With PIC, the address is actually $g + Offset.
7304  if (isGlobalRelativeToPICBase(OpFlags)) {
7305    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7306                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7307                         Result);
7308  }
7309
7310  return Result;
7311}
7312
7313SDValue
7314X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7315                                      int64_t Offset,
7316                                      SelectionDAG &DAG) const {
7317  // Create the TargetGlobalAddress node, folding in the constant
7318  // offset if it is legal.
7319  unsigned char OpFlags =
7320    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7321  CodeModel::Model M = getTargetMachine().getCodeModel();
7322  SDValue Result;
7323  if (OpFlags == X86II::MO_NO_FLAG &&
7324      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7325    // A direct static reference to a global.
7326    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7327    Offset = 0;
7328  } else {
7329    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7330  }
7331
7332  if (Subtarget->isPICStyleRIPRel() &&
7333      (M == CodeModel::Small || M == CodeModel::Kernel))
7334    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7335  else
7336    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7337
7338  // With PIC, the address is actually $g + Offset.
7339  if (isGlobalRelativeToPICBase(OpFlags)) {
7340    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7341                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7342                         Result);
7343  }
7344
7345  // For globals that require a load from a stub to get the address, emit the
7346  // load.
7347  if (isGlobalStubReference(OpFlags))
7348    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7349                         MachinePointerInfo::getGOT(), false, false, 0);
7350
7351  // If there was a non-zero offset that we didn't fold, create an explicit
7352  // addition for it.
7353  if (Offset != 0)
7354    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7355                         DAG.getConstant(Offset, getPointerTy()));
7356
7357  return Result;
7358}
7359
7360SDValue
7361X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7362  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7363  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7364  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7365}
7366
7367static SDValue
7368GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7369           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7370           unsigned char OperandFlags) {
7371  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7372  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7373  DebugLoc dl = GA->getDebugLoc();
7374  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7375                                           GA->getValueType(0),
7376                                           GA->getOffset(),
7377                                           OperandFlags);
7378  if (InFlag) {
7379    SDValue Ops[] = { Chain,  TGA, *InFlag };
7380    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7381  } else {
7382    SDValue Ops[]  = { Chain, TGA };
7383    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7384  }
7385
7386  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7387  MFI->setAdjustsStack(true);
7388
7389  SDValue Flag = Chain.getValue(1);
7390  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7391}
7392
7393// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7394static SDValue
7395LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7396                                const EVT PtrVT) {
7397  SDValue InFlag;
7398  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7399  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7400                                     DAG.getNode(X86ISD::GlobalBaseReg,
7401                                                 DebugLoc(), PtrVT), InFlag);
7402  InFlag = Chain.getValue(1);
7403
7404  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7405}
7406
7407// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7408static SDValue
7409LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7410                                const EVT PtrVT) {
7411  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7412                    X86::RAX, X86II::MO_TLSGD);
7413}
7414
7415// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7416// "local exec" model.
7417static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7418                                   const EVT PtrVT, TLSModel::Model model,
7419                                   bool is64Bit) {
7420  DebugLoc dl = GA->getDebugLoc();
7421
7422  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7423  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7424                                                         is64Bit ? 257 : 256));
7425
7426  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7427                                      DAG.getIntPtrConstant(0),
7428                                      MachinePointerInfo(Ptr), false, false, 0);
7429
7430  unsigned char OperandFlags = 0;
7431  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7432  // initialexec.
7433  unsigned WrapperKind = X86ISD::Wrapper;
7434  if (model == TLSModel::LocalExec) {
7435    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7436  } else if (is64Bit) {
7437    assert(model == TLSModel::InitialExec);
7438    OperandFlags = X86II::MO_GOTTPOFF;
7439    WrapperKind = X86ISD::WrapperRIP;
7440  } else {
7441    assert(model == TLSModel::InitialExec);
7442    OperandFlags = X86II::MO_INDNTPOFF;
7443  }
7444
7445  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7446  // exec)
7447  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7448                                           GA->getValueType(0),
7449                                           GA->getOffset(), OperandFlags);
7450  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7451
7452  if (model == TLSModel::InitialExec)
7453    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7454                         MachinePointerInfo::getGOT(), false, false, 0);
7455
7456  // The address of the thread local variable is the add of the thread
7457  // pointer with the offset of the variable.
7458  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7459}
7460
7461SDValue
7462X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7463
7464  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7465  const GlobalValue *GV = GA->getGlobal();
7466
7467  if (Subtarget->isTargetELF()) {
7468    // TODO: implement the "local dynamic" model
7469    // TODO: implement the "initial exec"model for pic executables
7470
7471    // If GV is an alias then use the aliasee for determining
7472    // thread-localness.
7473    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7474      GV = GA->resolveAliasedGlobal(false);
7475
7476    TLSModel::Model model
7477      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7478
7479    switch (model) {
7480      case TLSModel::GeneralDynamic:
7481      case TLSModel::LocalDynamic: // not implemented
7482        if (Subtarget->is64Bit())
7483          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7484        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7485
7486      case TLSModel::InitialExec:
7487      case TLSModel::LocalExec:
7488        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7489                                   Subtarget->is64Bit());
7490    }
7491  } else if (Subtarget->isTargetDarwin()) {
7492    // Darwin only has one model of TLS.  Lower to that.
7493    unsigned char OpFlag = 0;
7494    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7495                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7496
7497    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7498    // global base reg.
7499    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7500                  !Subtarget->is64Bit();
7501    if (PIC32)
7502      OpFlag = X86II::MO_TLVP_PIC_BASE;
7503    else
7504      OpFlag = X86II::MO_TLVP;
7505    DebugLoc DL = Op.getDebugLoc();
7506    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7507                                                GA->getValueType(0),
7508                                                GA->getOffset(), OpFlag);
7509    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7510
7511    // With PIC32, the address is actually $g + Offset.
7512    if (PIC32)
7513      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7514                           DAG.getNode(X86ISD::GlobalBaseReg,
7515                                       DebugLoc(), getPointerTy()),
7516                           Offset);
7517
7518    // Lowering the machine isd will make sure everything is in the right
7519    // location.
7520    SDValue Chain = DAG.getEntryNode();
7521    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7522    SDValue Args[] = { Chain, Offset };
7523    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7524
7525    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7526    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7527    MFI->setAdjustsStack(true);
7528
7529    // And our return value (tls address) is in the standard call return value
7530    // location.
7531    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7532    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7533                              Chain.getValue(1));
7534  }
7535
7536  assert(false &&
7537         "TLS not implemented for this target.");
7538
7539  llvm_unreachable("Unreachable");
7540  return SDValue();
7541}
7542
7543
7544/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7545/// take a 2 x i32 value to shift plus a shift amount.
7546SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7547  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7548  EVT VT = Op.getValueType();
7549  unsigned VTBits = VT.getSizeInBits();
7550  DebugLoc dl = Op.getDebugLoc();
7551  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7552  SDValue ShOpLo = Op.getOperand(0);
7553  SDValue ShOpHi = Op.getOperand(1);
7554  SDValue ShAmt  = Op.getOperand(2);
7555  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7556                                     DAG.getConstant(VTBits - 1, MVT::i8))
7557                       : DAG.getConstant(0, VT);
7558
7559  SDValue Tmp2, Tmp3;
7560  if (Op.getOpcode() == ISD::SHL_PARTS) {
7561    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7562    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7563  } else {
7564    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7565    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7566  }
7567
7568  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7569                                DAG.getConstant(VTBits, MVT::i8));
7570  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7571                             AndNode, DAG.getConstant(0, MVT::i8));
7572
7573  SDValue Hi, Lo;
7574  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7575  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7576  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7577
7578  if (Op.getOpcode() == ISD::SHL_PARTS) {
7579    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7580    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7581  } else {
7582    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7583    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7584  }
7585
7586  SDValue Ops[2] = { Lo, Hi };
7587  return DAG.getMergeValues(Ops, 2, dl);
7588}
7589
7590SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7591                                           SelectionDAG &DAG) const {
7592  EVT SrcVT = Op.getOperand(0).getValueType();
7593
7594  if (SrcVT.isVector())
7595    return SDValue();
7596
7597  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7598         "Unknown SINT_TO_FP to lower!");
7599
7600  // These are really Legal; return the operand so the caller accepts it as
7601  // Legal.
7602  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7603    return Op;
7604  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7605      Subtarget->is64Bit()) {
7606    return Op;
7607  }
7608
7609  DebugLoc dl = Op.getDebugLoc();
7610  unsigned Size = SrcVT.getSizeInBits()/8;
7611  MachineFunction &MF = DAG.getMachineFunction();
7612  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7613  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7614  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7615                               StackSlot,
7616                               MachinePointerInfo::getFixedStack(SSFI),
7617                               false, false, 0);
7618  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7619}
7620
7621SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7622                                     SDValue StackSlot,
7623                                     SelectionDAG &DAG) const {
7624  // Build the FILD
7625  DebugLoc DL = Op.getDebugLoc();
7626  SDVTList Tys;
7627  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7628  if (useSSE)
7629    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7630  else
7631    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7632
7633  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7634
7635  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7636  MachineMemOperand *MMO;
7637  if (FI) {
7638    int SSFI = FI->getIndex();
7639    MMO =
7640      DAG.getMachineFunction()
7641      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7642                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7643  } else {
7644    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7645    StackSlot = StackSlot.getOperand(1);
7646  }
7647  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7648  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7649                                           X86ISD::FILD, DL,
7650                                           Tys, Ops, array_lengthof(Ops),
7651                                           SrcVT, MMO);
7652
7653  if (useSSE) {
7654    Chain = Result.getValue(1);
7655    SDValue InFlag = Result.getValue(2);
7656
7657    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7658    // shouldn't be necessary except that RFP cannot be live across
7659    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7660    MachineFunction &MF = DAG.getMachineFunction();
7661    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7662    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7663    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7664    Tys = DAG.getVTList(MVT::Other);
7665    SDValue Ops[] = {
7666      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7667    };
7668    MachineMemOperand *MMO =
7669      DAG.getMachineFunction()
7670      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7671                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7672
7673    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7674                                    Ops, array_lengthof(Ops),
7675                                    Op.getValueType(), MMO);
7676    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7677                         MachinePointerInfo::getFixedStack(SSFI),
7678                         false, false, 0);
7679  }
7680
7681  return Result;
7682}
7683
7684// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7685SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7686                                               SelectionDAG &DAG) const {
7687  // This algorithm is not obvious. Here it is in C code, more or less:
7688  /*
7689    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7690      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7691      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7692
7693      // Copy ints to xmm registers.
7694      __m128i xh = _mm_cvtsi32_si128( hi );
7695      __m128i xl = _mm_cvtsi32_si128( lo );
7696
7697      // Combine into low half of a single xmm register.
7698      __m128i x = _mm_unpacklo_epi32( xh, xl );
7699      __m128d d;
7700      double sd;
7701
7702      // Merge in appropriate exponents to give the integer bits the right
7703      // magnitude.
7704      x = _mm_unpacklo_epi32( x, exp );
7705
7706      // Subtract away the biases to deal with the IEEE-754 double precision
7707      // implicit 1.
7708      d = _mm_sub_pd( (__m128d) x, bias );
7709
7710      // All conversions up to here are exact. The correctly rounded result is
7711      // calculated using the current rounding mode using the following
7712      // horizontal add.
7713      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7714      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7715                                // store doesn't really need to be here (except
7716                                // maybe to zero the other double)
7717      return sd;
7718    }
7719  */
7720
7721  DebugLoc dl = Op.getDebugLoc();
7722  LLVMContext *Context = DAG.getContext();
7723
7724  // Build some magic constants.
7725  std::vector<Constant*> CV0;
7726  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7727  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7728  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7729  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7730  Constant *C0 = ConstantVector::get(CV0);
7731  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7732
7733  std::vector<Constant*> CV1;
7734  CV1.push_back(
7735    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7736  CV1.push_back(
7737    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7738  Constant *C1 = ConstantVector::get(CV1);
7739  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7740
7741  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7742                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7743                                        Op.getOperand(0),
7744                                        DAG.getIntPtrConstant(1)));
7745  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7746                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7747                                        Op.getOperand(0),
7748                                        DAG.getIntPtrConstant(0)));
7749  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7750  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7751                              MachinePointerInfo::getConstantPool(),
7752                              false, false, 16);
7753  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7754  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7755  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7756                              MachinePointerInfo::getConstantPool(),
7757                              false, false, 16);
7758  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7759
7760  // Add the halves; easiest way is to swap them into another reg first.
7761  int ShufMask[2] = { 1, -1 };
7762  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7763                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7764  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7765  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7766                     DAG.getIntPtrConstant(0));
7767}
7768
7769// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7770SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7771                                               SelectionDAG &DAG) const {
7772  DebugLoc dl = Op.getDebugLoc();
7773  // FP constant to bias correct the final result.
7774  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7775                                   MVT::f64);
7776
7777  // Load the 32-bit value into an XMM register.
7778  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7779                             Op.getOperand(0));
7780
7781  // Zero out the upper parts of the register.
7782  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7783                                     DAG);
7784
7785  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7786                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7787                     DAG.getIntPtrConstant(0));
7788
7789  // Or the load with the bias.
7790  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7791                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7792                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7793                                                   MVT::v2f64, Load)),
7794                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7795                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7796                                                   MVT::v2f64, Bias)));
7797  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7798                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7799                   DAG.getIntPtrConstant(0));
7800
7801  // Subtract the bias.
7802  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7803
7804  // Handle final rounding.
7805  EVT DestVT = Op.getValueType();
7806
7807  if (DestVT.bitsLT(MVT::f64)) {
7808    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7809                       DAG.getIntPtrConstant(0));
7810  } else if (DestVT.bitsGT(MVT::f64)) {
7811    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7812  }
7813
7814  // Handle final rounding.
7815  return Sub;
7816}
7817
7818SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7819                                           SelectionDAG &DAG) const {
7820  SDValue N0 = Op.getOperand(0);
7821  DebugLoc dl = Op.getDebugLoc();
7822
7823  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7824  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7825  // the optimization here.
7826  if (DAG.SignBitIsZero(N0))
7827    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7828
7829  EVT SrcVT = N0.getValueType();
7830  EVT DstVT = Op.getValueType();
7831  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7832    return LowerUINT_TO_FP_i64(Op, DAG);
7833  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7834    return LowerUINT_TO_FP_i32(Op, DAG);
7835
7836  // Make a 64-bit buffer, and use it to build an FILD.
7837  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7838  if (SrcVT == MVT::i32) {
7839    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7840    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7841                                     getPointerTy(), StackSlot, WordOff);
7842    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7843                                  StackSlot, MachinePointerInfo(),
7844                                  false, false, 0);
7845    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7846                                  OffsetSlot, MachinePointerInfo(),
7847                                  false, false, 0);
7848    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7849    return Fild;
7850  }
7851
7852  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7853  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7854                                StackSlot, MachinePointerInfo(),
7855                               false, false, 0);
7856  // For i64 source, we need to add the appropriate power of 2 if the input
7857  // was negative.  This is the same as the optimization in
7858  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7859  // we must be careful to do the computation in x87 extended precision, not
7860  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7861  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7862  MachineMemOperand *MMO =
7863    DAG.getMachineFunction()
7864    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7865                          MachineMemOperand::MOLoad, 8, 8);
7866
7867  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7868  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7869  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7870                                         MVT::i64, MMO);
7871
7872  APInt FF(32, 0x5F800000ULL);
7873
7874  // Check whether the sign bit is set.
7875  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7876                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7877                                 ISD::SETLT);
7878
7879  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7880  SDValue FudgePtr = DAG.getConstantPool(
7881                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7882                                         getPointerTy());
7883
7884  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7885  SDValue Zero = DAG.getIntPtrConstant(0);
7886  SDValue Four = DAG.getIntPtrConstant(4);
7887  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7888                               Zero, Four);
7889  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7890
7891  // Load the value out, extending it from f32 to f80.
7892  // FIXME: Avoid the extend by constructing the right constant pool?
7893  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7894                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7895                                 MVT::f32, false, false, 4);
7896  // Extend everything to 80 bits to force it to be done on x87.
7897  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7898  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7899}
7900
7901std::pair<SDValue,SDValue> X86TargetLowering::
7902FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7903  DebugLoc DL = Op.getDebugLoc();
7904
7905  EVT DstTy = Op.getValueType();
7906
7907  if (!IsSigned) {
7908    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7909    DstTy = MVT::i64;
7910  }
7911
7912  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7913         DstTy.getSimpleVT() >= MVT::i16 &&
7914         "Unknown FP_TO_SINT to lower!");
7915
7916  // These are really Legal.
7917  if (DstTy == MVT::i32 &&
7918      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7919    return std::make_pair(SDValue(), SDValue());
7920  if (Subtarget->is64Bit() &&
7921      DstTy == MVT::i64 &&
7922      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7923    return std::make_pair(SDValue(), SDValue());
7924
7925  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7926  // stack slot.
7927  MachineFunction &MF = DAG.getMachineFunction();
7928  unsigned MemSize = DstTy.getSizeInBits()/8;
7929  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7930  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7931
7932
7933
7934  unsigned Opc;
7935  switch (DstTy.getSimpleVT().SimpleTy) {
7936  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7937  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7938  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7939  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7940  }
7941
7942  SDValue Chain = DAG.getEntryNode();
7943  SDValue Value = Op.getOperand(0);
7944  EVT TheVT = Op.getOperand(0).getValueType();
7945  if (isScalarFPTypeInSSEReg(TheVT)) {
7946    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7947    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7948                         MachinePointerInfo::getFixedStack(SSFI),
7949                         false, false, 0);
7950    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7951    SDValue Ops[] = {
7952      Chain, StackSlot, DAG.getValueType(TheVT)
7953    };
7954
7955    MachineMemOperand *MMO =
7956      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7957                              MachineMemOperand::MOLoad, MemSize, MemSize);
7958    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7959                                    DstTy, MMO);
7960    Chain = Value.getValue(1);
7961    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7962    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7963  }
7964
7965  MachineMemOperand *MMO =
7966    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7967                            MachineMemOperand::MOStore, MemSize, MemSize);
7968
7969  // Build the FP_TO_INT*_IN_MEM
7970  SDValue Ops[] = { Chain, Value, StackSlot };
7971  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7972                                         Ops, 3, DstTy, MMO);
7973
7974  return std::make_pair(FIST, StackSlot);
7975}
7976
7977SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7978                                           SelectionDAG &DAG) const {
7979  if (Op.getValueType().isVector())
7980    return SDValue();
7981
7982  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7983  SDValue FIST = Vals.first, StackSlot = Vals.second;
7984  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7985  if (FIST.getNode() == 0) return Op;
7986
7987  // Load the result.
7988  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7989                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7990}
7991
7992SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7993                                           SelectionDAG &DAG) const {
7994  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7995  SDValue FIST = Vals.first, StackSlot = Vals.second;
7996  assert(FIST.getNode() && "Unexpected failure");
7997
7998  // Load the result.
7999  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8000                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
8001}
8002
8003SDValue X86TargetLowering::LowerFABS(SDValue Op,
8004                                     SelectionDAG &DAG) const {
8005  LLVMContext *Context = DAG.getContext();
8006  DebugLoc dl = Op.getDebugLoc();
8007  EVT VT = Op.getValueType();
8008  EVT EltVT = VT;
8009  if (VT.isVector())
8010    EltVT = VT.getVectorElementType();
8011  std::vector<Constant*> CV;
8012  if (EltVT == MVT::f64) {
8013    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8014    CV.push_back(C);
8015    CV.push_back(C);
8016  } else {
8017    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8018    CV.push_back(C);
8019    CV.push_back(C);
8020    CV.push_back(C);
8021    CV.push_back(C);
8022  }
8023  Constant *C = ConstantVector::get(CV);
8024  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8025  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8026                             MachinePointerInfo::getConstantPool(),
8027                             false, false, 16);
8028  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8029}
8030
8031SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8032  LLVMContext *Context = DAG.getContext();
8033  DebugLoc dl = Op.getDebugLoc();
8034  EVT VT = Op.getValueType();
8035  EVT EltVT = VT;
8036  if (VT.isVector())
8037    EltVT = VT.getVectorElementType();
8038  std::vector<Constant*> CV;
8039  if (EltVT == MVT::f64) {
8040    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8041    CV.push_back(C);
8042    CV.push_back(C);
8043  } else {
8044    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8045    CV.push_back(C);
8046    CV.push_back(C);
8047    CV.push_back(C);
8048    CV.push_back(C);
8049  }
8050  Constant *C = ConstantVector::get(CV);
8051  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8052  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8053                             MachinePointerInfo::getConstantPool(),
8054                             false, false, 16);
8055  if (VT.isVector()) {
8056    return DAG.getNode(ISD::BITCAST, dl, VT,
8057                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8058                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8059                                Op.getOperand(0)),
8060                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8061  } else {
8062    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8063  }
8064}
8065
8066SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8067  LLVMContext *Context = DAG.getContext();
8068  SDValue Op0 = Op.getOperand(0);
8069  SDValue Op1 = Op.getOperand(1);
8070  DebugLoc dl = Op.getDebugLoc();
8071  EVT VT = Op.getValueType();
8072  EVT SrcVT = Op1.getValueType();
8073
8074  // If second operand is smaller, extend it first.
8075  if (SrcVT.bitsLT(VT)) {
8076    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8077    SrcVT = VT;
8078  }
8079  // And if it is bigger, shrink it first.
8080  if (SrcVT.bitsGT(VT)) {
8081    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8082    SrcVT = VT;
8083  }
8084
8085  // At this point the operands and the result should have the same
8086  // type, and that won't be f80 since that is not custom lowered.
8087
8088  // First get the sign bit of second operand.
8089  std::vector<Constant*> CV;
8090  if (SrcVT == MVT::f64) {
8091    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8092    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8093  } else {
8094    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8095    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8096    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8097    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8098  }
8099  Constant *C = ConstantVector::get(CV);
8100  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8101  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8102                              MachinePointerInfo::getConstantPool(),
8103                              false, false, 16);
8104  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8105
8106  // Shift sign bit right or left if the two operands have different types.
8107  if (SrcVT.bitsGT(VT)) {
8108    // Op0 is MVT::f32, Op1 is MVT::f64.
8109    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8110    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8111                          DAG.getConstant(32, MVT::i32));
8112    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8113    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8114                          DAG.getIntPtrConstant(0));
8115  }
8116
8117  // Clear first operand sign bit.
8118  CV.clear();
8119  if (VT == MVT::f64) {
8120    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8121    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8122  } else {
8123    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8124    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8125    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8126    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8127  }
8128  C = ConstantVector::get(CV);
8129  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8130  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8131                              MachinePointerInfo::getConstantPool(),
8132                              false, false, 16);
8133  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8134
8135  // Or the value with the sign bit.
8136  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8137}
8138
8139SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8140  SDValue N0 = Op.getOperand(0);
8141  DebugLoc dl = Op.getDebugLoc();
8142  EVT VT = Op.getValueType();
8143
8144  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8145  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8146                                  DAG.getConstant(1, VT));
8147  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8148}
8149
8150/// Emit nodes that will be selected as "test Op0,Op0", or something
8151/// equivalent.
8152SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8153                                    SelectionDAG &DAG) const {
8154  DebugLoc dl = Op.getDebugLoc();
8155
8156  // CF and OF aren't always set the way we want. Determine which
8157  // of these we need.
8158  bool NeedCF = false;
8159  bool NeedOF = false;
8160  switch (X86CC) {
8161  default: break;
8162  case X86::COND_A: case X86::COND_AE:
8163  case X86::COND_B: case X86::COND_BE:
8164    NeedCF = true;
8165    break;
8166  case X86::COND_G: case X86::COND_GE:
8167  case X86::COND_L: case X86::COND_LE:
8168  case X86::COND_O: case X86::COND_NO:
8169    NeedOF = true;
8170    break;
8171  }
8172
8173  // See if we can use the EFLAGS value from the operand instead of
8174  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8175  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8176  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8177    // Emit a CMP with 0, which is the TEST pattern.
8178    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8179                       DAG.getConstant(0, Op.getValueType()));
8180
8181  unsigned Opcode = 0;
8182  unsigned NumOperands = 0;
8183  switch (Op.getNode()->getOpcode()) {
8184  case ISD::ADD:
8185    // Due to an isel shortcoming, be conservative if this add is likely to be
8186    // selected as part of a load-modify-store instruction. When the root node
8187    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8188    // uses of other nodes in the match, such as the ADD in this case. This
8189    // leads to the ADD being left around and reselected, with the result being
8190    // two adds in the output.  Alas, even if none our users are stores, that
8191    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8192    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8193    // climbing the DAG back to the root, and it doesn't seem to be worth the
8194    // effort.
8195    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8196           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8197      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8198        goto default_case;
8199
8200    if (ConstantSDNode *C =
8201        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8202      // An add of one will be selected as an INC.
8203      if (C->getAPIntValue() == 1) {
8204        Opcode = X86ISD::INC;
8205        NumOperands = 1;
8206        break;
8207      }
8208
8209      // An add of negative one (subtract of one) will be selected as a DEC.
8210      if (C->getAPIntValue().isAllOnesValue()) {
8211        Opcode = X86ISD::DEC;
8212        NumOperands = 1;
8213        break;
8214      }
8215    }
8216
8217    // Otherwise use a regular EFLAGS-setting add.
8218    Opcode = X86ISD::ADD;
8219    NumOperands = 2;
8220    break;
8221  case ISD::AND: {
8222    // If the primary and result isn't used, don't bother using X86ISD::AND,
8223    // because a TEST instruction will be better.
8224    bool NonFlagUse = false;
8225    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8226           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8227      SDNode *User = *UI;
8228      unsigned UOpNo = UI.getOperandNo();
8229      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8230        // Look pass truncate.
8231        UOpNo = User->use_begin().getOperandNo();
8232        User = *User->use_begin();
8233      }
8234
8235      if (User->getOpcode() != ISD::BRCOND &&
8236          User->getOpcode() != ISD::SETCC &&
8237          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8238        NonFlagUse = true;
8239        break;
8240      }
8241    }
8242
8243    if (!NonFlagUse)
8244      break;
8245  }
8246    // FALL THROUGH
8247  case ISD::SUB:
8248  case ISD::OR:
8249  case ISD::XOR:
8250    // Due to the ISEL shortcoming noted above, be conservative if this op is
8251    // likely to be selected as part of a load-modify-store instruction.
8252    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8253           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8254      if (UI->getOpcode() == ISD::STORE)
8255        goto default_case;
8256
8257    // Otherwise use a regular EFLAGS-setting instruction.
8258    switch (Op.getNode()->getOpcode()) {
8259    default: llvm_unreachable("unexpected operator!");
8260    case ISD::SUB: Opcode = X86ISD::SUB; break;
8261    case ISD::OR:  Opcode = X86ISD::OR;  break;
8262    case ISD::XOR: Opcode = X86ISD::XOR; break;
8263    case ISD::AND: Opcode = X86ISD::AND; break;
8264    }
8265
8266    NumOperands = 2;
8267    break;
8268  case X86ISD::ADD:
8269  case X86ISD::SUB:
8270  case X86ISD::INC:
8271  case X86ISD::DEC:
8272  case X86ISD::OR:
8273  case X86ISD::XOR:
8274  case X86ISD::AND:
8275    return SDValue(Op.getNode(), 1);
8276  default:
8277  default_case:
8278    break;
8279  }
8280
8281  if (Opcode == 0)
8282    // Emit a CMP with 0, which is the TEST pattern.
8283    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8284                       DAG.getConstant(0, Op.getValueType()));
8285
8286  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8287  SmallVector<SDValue, 4> Ops;
8288  for (unsigned i = 0; i != NumOperands; ++i)
8289    Ops.push_back(Op.getOperand(i));
8290
8291  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8292  DAG.ReplaceAllUsesWith(Op, New);
8293  return SDValue(New.getNode(), 1);
8294}
8295
8296/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8297/// equivalent.
8298SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8299                                   SelectionDAG &DAG) const {
8300  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8301    if (C->getAPIntValue() == 0)
8302      return EmitTest(Op0, X86CC, DAG);
8303
8304  DebugLoc dl = Op0.getDebugLoc();
8305  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8306}
8307
8308/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8309/// if it's possible.
8310SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8311                                     DebugLoc dl, SelectionDAG &DAG) const {
8312  SDValue Op0 = And.getOperand(0);
8313  SDValue Op1 = And.getOperand(1);
8314  if (Op0.getOpcode() == ISD::TRUNCATE)
8315    Op0 = Op0.getOperand(0);
8316  if (Op1.getOpcode() == ISD::TRUNCATE)
8317    Op1 = Op1.getOperand(0);
8318
8319  SDValue LHS, RHS;
8320  if (Op1.getOpcode() == ISD::SHL)
8321    std::swap(Op0, Op1);
8322  if (Op0.getOpcode() == ISD::SHL) {
8323    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8324      if (And00C->getZExtValue() == 1) {
8325        // If we looked past a truncate, check that it's only truncating away
8326        // known zeros.
8327        unsigned BitWidth = Op0.getValueSizeInBits();
8328        unsigned AndBitWidth = And.getValueSizeInBits();
8329        if (BitWidth > AndBitWidth) {
8330          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8331          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8332          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8333            return SDValue();
8334        }
8335        LHS = Op1;
8336        RHS = Op0.getOperand(1);
8337      }
8338  } else if (Op1.getOpcode() == ISD::Constant) {
8339    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8340    SDValue AndLHS = Op0;
8341    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8342      LHS = AndLHS.getOperand(0);
8343      RHS = AndLHS.getOperand(1);
8344    }
8345  }
8346
8347  if (LHS.getNode()) {
8348    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8349    // instruction.  Since the shift amount is in-range-or-undefined, we know
8350    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8351    // the encoding for the i16 version is larger than the i32 version.
8352    // Also promote i16 to i32 for performance / code size reason.
8353    if (LHS.getValueType() == MVT::i8 ||
8354        LHS.getValueType() == MVT::i16)
8355      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8356
8357    // If the operand types disagree, extend the shift amount to match.  Since
8358    // BT ignores high bits (like shifts) we can use anyextend.
8359    if (LHS.getValueType() != RHS.getValueType())
8360      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8361
8362    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8363    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8364    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8365                       DAG.getConstant(Cond, MVT::i8), BT);
8366  }
8367
8368  return SDValue();
8369}
8370
8371SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8372
8373  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8374
8375  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8376  SDValue Op0 = Op.getOperand(0);
8377  SDValue Op1 = Op.getOperand(1);
8378  DebugLoc dl = Op.getDebugLoc();
8379  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8380
8381  // Optimize to BT if possible.
8382  // Lower (X & (1 << N)) == 0 to BT(X, N).
8383  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8384  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8385  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8386      Op1.getOpcode() == ISD::Constant &&
8387      cast<ConstantSDNode>(Op1)->isNullValue() &&
8388      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8389    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8390    if (NewSetCC.getNode())
8391      return NewSetCC;
8392  }
8393
8394  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8395  // these.
8396  if (Op1.getOpcode() == ISD::Constant &&
8397      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8398       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8399      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8400
8401    // If the input is a setcc, then reuse the input setcc or use a new one with
8402    // the inverted condition.
8403    if (Op0.getOpcode() == X86ISD::SETCC) {
8404      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8405      bool Invert = (CC == ISD::SETNE) ^
8406        cast<ConstantSDNode>(Op1)->isNullValue();
8407      if (!Invert) return Op0;
8408
8409      CCode = X86::GetOppositeBranchCondition(CCode);
8410      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8411                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8412    }
8413  }
8414
8415  bool isFP = Op1.getValueType().isFloatingPoint();
8416  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8417  if (X86CC == X86::COND_INVALID)
8418    return SDValue();
8419
8420  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8421  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8422                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8423}
8424
8425// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8426// ones, and then concatenate the result back.
8427static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8428  EVT VT = Op.getValueType();
8429
8430  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8431         "Unsupported value type for operation");
8432
8433  int NumElems = VT.getVectorNumElements();
8434  DebugLoc dl = Op.getDebugLoc();
8435  SDValue CC = Op.getOperand(2);
8436  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8437  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8438
8439  // Extract the LHS vectors
8440  SDValue LHS = Op.getOperand(0);
8441  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8442  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8443
8444  // Extract the RHS vectors
8445  SDValue RHS = Op.getOperand(1);
8446  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8447  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8448
8449  // Issue the operation on the smaller types and concatenate the result back
8450  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8451  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8452  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8453                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8454                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8455}
8456
8457
8458SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8459  SDValue Cond;
8460  SDValue Op0 = Op.getOperand(0);
8461  SDValue Op1 = Op.getOperand(1);
8462  SDValue CC = Op.getOperand(2);
8463  EVT VT = Op.getValueType();
8464  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8465  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8466  DebugLoc dl = Op.getDebugLoc();
8467
8468  if (isFP) {
8469    unsigned SSECC = 8;
8470    EVT EltVT = Op0.getValueType().getVectorElementType();
8471    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8472
8473    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8474    bool Swap = false;
8475
8476    // SSE Condition code mapping:
8477    //  0 - EQ
8478    //  1 - LT
8479    //  2 - LE
8480    //  3 - UNORD
8481    //  4 - NEQ
8482    //  5 - NLT
8483    //  6 - NLE
8484    //  7 - ORD
8485    switch (SetCCOpcode) {
8486    default: break;
8487    case ISD::SETOEQ:
8488    case ISD::SETEQ:  SSECC = 0; break;
8489    case ISD::SETOGT:
8490    case ISD::SETGT: Swap = true; // Fallthrough
8491    case ISD::SETLT:
8492    case ISD::SETOLT: SSECC = 1; break;
8493    case ISD::SETOGE:
8494    case ISD::SETGE: Swap = true; // Fallthrough
8495    case ISD::SETLE:
8496    case ISD::SETOLE: SSECC = 2; break;
8497    case ISD::SETUO:  SSECC = 3; break;
8498    case ISD::SETUNE:
8499    case ISD::SETNE:  SSECC = 4; break;
8500    case ISD::SETULE: Swap = true;
8501    case ISD::SETUGE: SSECC = 5; break;
8502    case ISD::SETULT: Swap = true;
8503    case ISD::SETUGT: SSECC = 6; break;
8504    case ISD::SETO:   SSECC = 7; break;
8505    }
8506    if (Swap)
8507      std::swap(Op0, Op1);
8508
8509    // In the two special cases we can't handle, emit two comparisons.
8510    if (SSECC == 8) {
8511      if (SetCCOpcode == ISD::SETUEQ) {
8512        SDValue UNORD, EQ;
8513        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8514        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8515        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8516      }
8517      else if (SetCCOpcode == ISD::SETONE) {
8518        SDValue ORD, NEQ;
8519        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8520        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8521        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8522      }
8523      llvm_unreachable("Illegal FP comparison");
8524    }
8525    // Handle all other FP comparisons here.
8526    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8527  }
8528
8529  // Break 256-bit integer vector compare into smaller ones.
8530  if (!isFP && VT.getSizeInBits() == 256)
8531    return Lower256IntVSETCC(Op, DAG);
8532
8533  // We are handling one of the integer comparisons here.  Since SSE only has
8534  // GT and EQ comparisons for integer, swapping operands and multiple
8535  // operations may be required for some comparisons.
8536  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8537  bool Swap = false, Invert = false, FlipSigns = false;
8538
8539  switch (VT.getSimpleVT().SimpleTy) {
8540  default: break;
8541  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8542  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8543  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8544  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8545  }
8546
8547  switch (SetCCOpcode) {
8548  default: break;
8549  case ISD::SETNE:  Invert = true;
8550  case ISD::SETEQ:  Opc = EQOpc; break;
8551  case ISD::SETLT:  Swap = true;
8552  case ISD::SETGT:  Opc = GTOpc; break;
8553  case ISD::SETGE:  Swap = true;
8554  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8555  case ISD::SETULT: Swap = true;
8556  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8557  case ISD::SETUGE: Swap = true;
8558  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8559  }
8560  if (Swap)
8561    std::swap(Op0, Op1);
8562
8563  // Check that the operation in question is available (most are plain SSE2,
8564  // but PCMPGTQ and PCMPEQQ have different requirements).
8565  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8566    return SDValue();
8567  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8568    return SDValue();
8569
8570  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8571  // bits of the inputs before performing those operations.
8572  if (FlipSigns) {
8573    EVT EltVT = VT.getVectorElementType();
8574    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8575                                      EltVT);
8576    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8577    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8578                                    SignBits.size());
8579    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8580    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8581  }
8582
8583  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8584
8585  // If the logical-not of the result is required, perform that now.
8586  if (Invert)
8587    Result = DAG.getNOT(dl, Result, VT);
8588
8589  return Result;
8590}
8591
8592// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8593static bool isX86LogicalCmp(SDValue Op) {
8594  unsigned Opc = Op.getNode()->getOpcode();
8595  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8596    return true;
8597  if (Op.getResNo() == 1 &&
8598      (Opc == X86ISD::ADD ||
8599       Opc == X86ISD::SUB ||
8600       Opc == X86ISD::ADC ||
8601       Opc == X86ISD::SBB ||
8602       Opc == X86ISD::SMUL ||
8603       Opc == X86ISD::UMUL ||
8604       Opc == X86ISD::INC ||
8605       Opc == X86ISD::DEC ||
8606       Opc == X86ISD::OR ||
8607       Opc == X86ISD::XOR ||
8608       Opc == X86ISD::AND))
8609    return true;
8610
8611  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8612    return true;
8613
8614  return false;
8615}
8616
8617static bool isZero(SDValue V) {
8618  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8619  return C && C->isNullValue();
8620}
8621
8622static bool isAllOnes(SDValue V) {
8623  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8624  return C && C->isAllOnesValue();
8625}
8626
8627SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8628  bool addTest = true;
8629  SDValue Cond  = Op.getOperand(0);
8630  SDValue Op1 = Op.getOperand(1);
8631  SDValue Op2 = Op.getOperand(2);
8632  DebugLoc DL = Op.getDebugLoc();
8633  SDValue CC;
8634
8635  if (Cond.getOpcode() == ISD::SETCC) {
8636    SDValue NewCond = LowerSETCC(Cond, DAG);
8637    if (NewCond.getNode())
8638      Cond = NewCond;
8639  }
8640
8641  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8642  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8643  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8644  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8645  if (Cond.getOpcode() == X86ISD::SETCC &&
8646      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8647      isZero(Cond.getOperand(1).getOperand(1))) {
8648    SDValue Cmp = Cond.getOperand(1);
8649
8650    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8651
8652    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8653        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8654      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8655
8656      SDValue CmpOp0 = Cmp.getOperand(0);
8657      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8658                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8659
8660      SDValue Res =   // Res = 0 or -1.
8661        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8662                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8663
8664      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8665        Res = DAG.getNOT(DL, Res, Res.getValueType());
8666
8667      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8668      if (N2C == 0 || !N2C->isNullValue())
8669        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8670      return Res;
8671    }
8672  }
8673
8674  // Look past (and (setcc_carry (cmp ...)), 1).
8675  if (Cond.getOpcode() == ISD::AND &&
8676      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8677    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8678    if (C && C->getAPIntValue() == 1)
8679      Cond = Cond.getOperand(0);
8680  }
8681
8682  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8683  // setting operand in place of the X86ISD::SETCC.
8684  if (Cond.getOpcode() == X86ISD::SETCC ||
8685      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8686    CC = Cond.getOperand(0);
8687
8688    SDValue Cmp = Cond.getOperand(1);
8689    unsigned Opc = Cmp.getOpcode();
8690    EVT VT = Op.getValueType();
8691
8692    bool IllegalFPCMov = false;
8693    if (VT.isFloatingPoint() && !VT.isVector() &&
8694        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8695      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8696
8697    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8698        Opc == X86ISD::BT) { // FIXME
8699      Cond = Cmp;
8700      addTest = false;
8701    }
8702  }
8703
8704  if (addTest) {
8705    // Look pass the truncate.
8706    if (Cond.getOpcode() == ISD::TRUNCATE)
8707      Cond = Cond.getOperand(0);
8708
8709    // We know the result of AND is compared against zero. Try to match
8710    // it to BT.
8711    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8712      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8713      if (NewSetCC.getNode()) {
8714        CC = NewSetCC.getOperand(0);
8715        Cond = NewSetCC.getOperand(1);
8716        addTest = false;
8717      }
8718    }
8719  }
8720
8721  if (addTest) {
8722    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8723    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8724  }
8725
8726  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8727  // a <  b ?  0 : -1 -> RES = setcc_carry
8728  // a >= b ? -1 :  0 -> RES = setcc_carry
8729  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8730  if (Cond.getOpcode() == X86ISD::CMP) {
8731    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8732
8733    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8734        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8735      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8736                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8737      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8738        return DAG.getNOT(DL, Res, Res.getValueType());
8739      return Res;
8740    }
8741  }
8742
8743  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8744  // condition is true.
8745  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8746  SDValue Ops[] = { Op2, Op1, CC, Cond };
8747  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8748}
8749
8750// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8751// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8752// from the AND / OR.
8753static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8754  Opc = Op.getOpcode();
8755  if (Opc != ISD::OR && Opc != ISD::AND)
8756    return false;
8757  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8758          Op.getOperand(0).hasOneUse() &&
8759          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8760          Op.getOperand(1).hasOneUse());
8761}
8762
8763// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8764// 1 and that the SETCC node has a single use.
8765static bool isXor1OfSetCC(SDValue Op) {
8766  if (Op.getOpcode() != ISD::XOR)
8767    return false;
8768  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8769  if (N1C && N1C->getAPIntValue() == 1) {
8770    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8771      Op.getOperand(0).hasOneUse();
8772  }
8773  return false;
8774}
8775
8776SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8777  bool addTest = true;
8778  SDValue Chain = Op.getOperand(0);
8779  SDValue Cond  = Op.getOperand(1);
8780  SDValue Dest  = Op.getOperand(2);
8781  DebugLoc dl = Op.getDebugLoc();
8782  SDValue CC;
8783
8784  if (Cond.getOpcode() == ISD::SETCC) {
8785    SDValue NewCond = LowerSETCC(Cond, DAG);
8786    if (NewCond.getNode())
8787      Cond = NewCond;
8788  }
8789#if 0
8790  // FIXME: LowerXALUO doesn't handle these!!
8791  else if (Cond.getOpcode() == X86ISD::ADD  ||
8792           Cond.getOpcode() == X86ISD::SUB  ||
8793           Cond.getOpcode() == X86ISD::SMUL ||
8794           Cond.getOpcode() == X86ISD::UMUL)
8795    Cond = LowerXALUO(Cond, DAG);
8796#endif
8797
8798  // Look pass (and (setcc_carry (cmp ...)), 1).
8799  if (Cond.getOpcode() == ISD::AND &&
8800      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8801    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8802    if (C && C->getAPIntValue() == 1)
8803      Cond = Cond.getOperand(0);
8804  }
8805
8806  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8807  // setting operand in place of the X86ISD::SETCC.
8808  if (Cond.getOpcode() == X86ISD::SETCC ||
8809      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8810    CC = Cond.getOperand(0);
8811
8812    SDValue Cmp = Cond.getOperand(1);
8813    unsigned Opc = Cmp.getOpcode();
8814    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8815    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8816      Cond = Cmp;
8817      addTest = false;
8818    } else {
8819      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8820      default: break;
8821      case X86::COND_O:
8822      case X86::COND_B:
8823        // These can only come from an arithmetic instruction with overflow,
8824        // e.g. SADDO, UADDO.
8825        Cond = Cond.getNode()->getOperand(1);
8826        addTest = false;
8827        break;
8828      }
8829    }
8830  } else {
8831    unsigned CondOpc;
8832    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8833      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8834      if (CondOpc == ISD::OR) {
8835        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8836        // two branches instead of an explicit OR instruction with a
8837        // separate test.
8838        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8839            isX86LogicalCmp(Cmp)) {
8840          CC = Cond.getOperand(0).getOperand(0);
8841          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8842                              Chain, Dest, CC, Cmp);
8843          CC = Cond.getOperand(1).getOperand(0);
8844          Cond = Cmp;
8845          addTest = false;
8846        }
8847      } else { // ISD::AND
8848        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8849        // two branches instead of an explicit AND instruction with a
8850        // separate test. However, we only do this if this block doesn't
8851        // have a fall-through edge, because this requires an explicit
8852        // jmp when the condition is false.
8853        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8854            isX86LogicalCmp(Cmp) &&
8855            Op.getNode()->hasOneUse()) {
8856          X86::CondCode CCode =
8857            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8858          CCode = X86::GetOppositeBranchCondition(CCode);
8859          CC = DAG.getConstant(CCode, MVT::i8);
8860          SDNode *User = *Op.getNode()->use_begin();
8861          // Look for an unconditional branch following this conditional branch.
8862          // We need this because we need to reverse the successors in order
8863          // to implement FCMP_OEQ.
8864          if (User->getOpcode() == ISD::BR) {
8865            SDValue FalseBB = User->getOperand(1);
8866            SDNode *NewBR =
8867              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8868            assert(NewBR == User);
8869            (void)NewBR;
8870            Dest = FalseBB;
8871
8872            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8873                                Chain, Dest, CC, Cmp);
8874            X86::CondCode CCode =
8875              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8876            CCode = X86::GetOppositeBranchCondition(CCode);
8877            CC = DAG.getConstant(CCode, MVT::i8);
8878            Cond = Cmp;
8879            addTest = false;
8880          }
8881        }
8882      }
8883    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8884      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8885      // It should be transformed during dag combiner except when the condition
8886      // is set by a arithmetics with overflow node.
8887      X86::CondCode CCode =
8888        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8889      CCode = X86::GetOppositeBranchCondition(CCode);
8890      CC = DAG.getConstant(CCode, MVT::i8);
8891      Cond = Cond.getOperand(0).getOperand(1);
8892      addTest = false;
8893    }
8894  }
8895
8896  if (addTest) {
8897    // Look pass the truncate.
8898    if (Cond.getOpcode() == ISD::TRUNCATE)
8899      Cond = Cond.getOperand(0);
8900
8901    // We know the result of AND is compared against zero. Try to match
8902    // it to BT.
8903    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8904      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8905      if (NewSetCC.getNode()) {
8906        CC = NewSetCC.getOperand(0);
8907        Cond = NewSetCC.getOperand(1);
8908        addTest = false;
8909      }
8910    }
8911  }
8912
8913  if (addTest) {
8914    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8915    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8916  }
8917  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8918                     Chain, Dest, CC, Cond);
8919}
8920
8921
8922// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8923// Calls to _alloca is needed to probe the stack when allocating more than 4k
8924// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8925// that the guard pages used by the OS virtual memory manager are allocated in
8926// correct sequence.
8927SDValue
8928X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8929                                           SelectionDAG &DAG) const {
8930  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8931          EnableSegmentedStacks) &&
8932         "This should be used only on Windows targets or when segmented stacks "
8933         "are being used");
8934  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8935  DebugLoc dl = Op.getDebugLoc();
8936
8937  // Get the inputs.
8938  SDValue Chain = Op.getOperand(0);
8939  SDValue Size  = Op.getOperand(1);
8940  // FIXME: Ensure alignment here
8941
8942  bool Is64Bit = Subtarget->is64Bit();
8943  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8944
8945  if (EnableSegmentedStacks) {
8946    MachineFunction &MF = DAG.getMachineFunction();
8947    MachineRegisterInfo &MRI = MF.getRegInfo();
8948
8949    if (Is64Bit) {
8950      // The 64 bit implementation of segmented stacks needs to clobber both r10
8951      // r11. This makes it impossible to use it along with nested parameters.
8952      const Function *F = MF.getFunction();
8953
8954      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8955           I != E; I++)
8956        if (I->hasNestAttr())
8957          report_fatal_error("Cannot use segmented stacks with functions that "
8958                             "have nested arguments.");
8959    }
8960
8961    const TargetRegisterClass *AddrRegClass =
8962      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8963    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8964    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8965    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8966                                DAG.getRegister(Vreg, SPTy));
8967    SDValue Ops1[2] = { Value, Chain };
8968    return DAG.getMergeValues(Ops1, 2, dl);
8969  } else {
8970    SDValue Flag;
8971    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8972
8973    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8974    Flag = Chain.getValue(1);
8975    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8976
8977    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8978    Flag = Chain.getValue(1);
8979
8980    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8981
8982    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8983    return DAG.getMergeValues(Ops1, 2, dl);
8984  }
8985}
8986
8987SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8988  MachineFunction &MF = DAG.getMachineFunction();
8989  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8990
8991  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8992  DebugLoc DL = Op.getDebugLoc();
8993
8994  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8995    // vastart just stores the address of the VarArgsFrameIndex slot into the
8996    // memory location argument.
8997    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8998                                   getPointerTy());
8999    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9000                        MachinePointerInfo(SV), false, false, 0);
9001  }
9002
9003  // __va_list_tag:
9004  //   gp_offset         (0 - 6 * 8)
9005  //   fp_offset         (48 - 48 + 8 * 16)
9006  //   overflow_arg_area (point to parameters coming in memory).
9007  //   reg_save_area
9008  SmallVector<SDValue, 8> MemOps;
9009  SDValue FIN = Op.getOperand(1);
9010  // Store gp_offset
9011  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9012                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9013                                               MVT::i32),
9014                               FIN, MachinePointerInfo(SV), false, false, 0);
9015  MemOps.push_back(Store);
9016
9017  // Store fp_offset
9018  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9019                    FIN, DAG.getIntPtrConstant(4));
9020  Store = DAG.getStore(Op.getOperand(0), DL,
9021                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9022                                       MVT::i32),
9023                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9024  MemOps.push_back(Store);
9025
9026  // Store ptr to overflow_arg_area
9027  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9028                    FIN, DAG.getIntPtrConstant(4));
9029  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9030                                    getPointerTy());
9031  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9032                       MachinePointerInfo(SV, 8),
9033                       false, false, 0);
9034  MemOps.push_back(Store);
9035
9036  // Store ptr to reg_save_area.
9037  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9038                    FIN, DAG.getIntPtrConstant(8));
9039  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9040                                    getPointerTy());
9041  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9042                       MachinePointerInfo(SV, 16), false, false, 0);
9043  MemOps.push_back(Store);
9044  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9045                     &MemOps[0], MemOps.size());
9046}
9047
9048SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9049  assert(Subtarget->is64Bit() &&
9050         "LowerVAARG only handles 64-bit va_arg!");
9051  assert((Subtarget->isTargetLinux() ||
9052          Subtarget->isTargetDarwin()) &&
9053          "Unhandled target in LowerVAARG");
9054  assert(Op.getNode()->getNumOperands() == 4);
9055  SDValue Chain = Op.getOperand(0);
9056  SDValue SrcPtr = Op.getOperand(1);
9057  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9058  unsigned Align = Op.getConstantOperandVal(3);
9059  DebugLoc dl = Op.getDebugLoc();
9060
9061  EVT ArgVT = Op.getNode()->getValueType(0);
9062  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9063  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9064  uint8_t ArgMode;
9065
9066  // Decide which area this value should be read from.
9067  // TODO: Implement the AMD64 ABI in its entirety. This simple
9068  // selection mechanism works only for the basic types.
9069  if (ArgVT == MVT::f80) {
9070    llvm_unreachable("va_arg for f80 not yet implemented");
9071  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9072    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9073  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9074    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9075  } else {
9076    llvm_unreachable("Unhandled argument type in LowerVAARG");
9077  }
9078
9079  if (ArgMode == 2) {
9080    // Sanity Check: Make sure using fp_offset makes sense.
9081    assert(!UseSoftFloat &&
9082           !(DAG.getMachineFunction()
9083                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9084           Subtarget->hasXMM());
9085  }
9086
9087  // Insert VAARG_64 node into the DAG
9088  // VAARG_64 returns two values: Variable Argument Address, Chain
9089  SmallVector<SDValue, 11> InstOps;
9090  InstOps.push_back(Chain);
9091  InstOps.push_back(SrcPtr);
9092  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9093  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9094  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9095  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9096  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9097                                          VTs, &InstOps[0], InstOps.size(),
9098                                          MVT::i64,
9099                                          MachinePointerInfo(SV),
9100                                          /*Align=*/0,
9101                                          /*Volatile=*/false,
9102                                          /*ReadMem=*/true,
9103                                          /*WriteMem=*/true);
9104  Chain = VAARG.getValue(1);
9105
9106  // Load the next argument and return it
9107  return DAG.getLoad(ArgVT, dl,
9108                     Chain,
9109                     VAARG,
9110                     MachinePointerInfo(),
9111                     false, false, 0);
9112}
9113
9114SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9115  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9116  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9117  SDValue Chain = Op.getOperand(0);
9118  SDValue DstPtr = Op.getOperand(1);
9119  SDValue SrcPtr = Op.getOperand(2);
9120  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9121  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9122  DebugLoc DL = Op.getDebugLoc();
9123
9124  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9125                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9126                       false,
9127                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9128}
9129
9130SDValue
9131X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9132  DebugLoc dl = Op.getDebugLoc();
9133  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9134  switch (IntNo) {
9135  default: return SDValue();    // Don't custom lower most intrinsics.
9136  // Comparison intrinsics.
9137  case Intrinsic::x86_sse_comieq_ss:
9138  case Intrinsic::x86_sse_comilt_ss:
9139  case Intrinsic::x86_sse_comile_ss:
9140  case Intrinsic::x86_sse_comigt_ss:
9141  case Intrinsic::x86_sse_comige_ss:
9142  case Intrinsic::x86_sse_comineq_ss:
9143  case Intrinsic::x86_sse_ucomieq_ss:
9144  case Intrinsic::x86_sse_ucomilt_ss:
9145  case Intrinsic::x86_sse_ucomile_ss:
9146  case Intrinsic::x86_sse_ucomigt_ss:
9147  case Intrinsic::x86_sse_ucomige_ss:
9148  case Intrinsic::x86_sse_ucomineq_ss:
9149  case Intrinsic::x86_sse2_comieq_sd:
9150  case Intrinsic::x86_sse2_comilt_sd:
9151  case Intrinsic::x86_sse2_comile_sd:
9152  case Intrinsic::x86_sse2_comigt_sd:
9153  case Intrinsic::x86_sse2_comige_sd:
9154  case Intrinsic::x86_sse2_comineq_sd:
9155  case Intrinsic::x86_sse2_ucomieq_sd:
9156  case Intrinsic::x86_sse2_ucomilt_sd:
9157  case Intrinsic::x86_sse2_ucomile_sd:
9158  case Intrinsic::x86_sse2_ucomigt_sd:
9159  case Intrinsic::x86_sse2_ucomige_sd:
9160  case Intrinsic::x86_sse2_ucomineq_sd: {
9161    unsigned Opc = 0;
9162    ISD::CondCode CC = ISD::SETCC_INVALID;
9163    switch (IntNo) {
9164    default: break;
9165    case Intrinsic::x86_sse_comieq_ss:
9166    case Intrinsic::x86_sse2_comieq_sd:
9167      Opc = X86ISD::COMI;
9168      CC = ISD::SETEQ;
9169      break;
9170    case Intrinsic::x86_sse_comilt_ss:
9171    case Intrinsic::x86_sse2_comilt_sd:
9172      Opc = X86ISD::COMI;
9173      CC = ISD::SETLT;
9174      break;
9175    case Intrinsic::x86_sse_comile_ss:
9176    case Intrinsic::x86_sse2_comile_sd:
9177      Opc = X86ISD::COMI;
9178      CC = ISD::SETLE;
9179      break;
9180    case Intrinsic::x86_sse_comigt_ss:
9181    case Intrinsic::x86_sse2_comigt_sd:
9182      Opc = X86ISD::COMI;
9183      CC = ISD::SETGT;
9184      break;
9185    case Intrinsic::x86_sse_comige_ss:
9186    case Intrinsic::x86_sse2_comige_sd:
9187      Opc = X86ISD::COMI;
9188      CC = ISD::SETGE;
9189      break;
9190    case Intrinsic::x86_sse_comineq_ss:
9191    case Intrinsic::x86_sse2_comineq_sd:
9192      Opc = X86ISD::COMI;
9193      CC = ISD::SETNE;
9194      break;
9195    case Intrinsic::x86_sse_ucomieq_ss:
9196    case Intrinsic::x86_sse2_ucomieq_sd:
9197      Opc = X86ISD::UCOMI;
9198      CC = ISD::SETEQ;
9199      break;
9200    case Intrinsic::x86_sse_ucomilt_ss:
9201    case Intrinsic::x86_sse2_ucomilt_sd:
9202      Opc = X86ISD::UCOMI;
9203      CC = ISD::SETLT;
9204      break;
9205    case Intrinsic::x86_sse_ucomile_ss:
9206    case Intrinsic::x86_sse2_ucomile_sd:
9207      Opc = X86ISD::UCOMI;
9208      CC = ISD::SETLE;
9209      break;
9210    case Intrinsic::x86_sse_ucomigt_ss:
9211    case Intrinsic::x86_sse2_ucomigt_sd:
9212      Opc = X86ISD::UCOMI;
9213      CC = ISD::SETGT;
9214      break;
9215    case Intrinsic::x86_sse_ucomige_ss:
9216    case Intrinsic::x86_sse2_ucomige_sd:
9217      Opc = X86ISD::UCOMI;
9218      CC = ISD::SETGE;
9219      break;
9220    case Intrinsic::x86_sse_ucomineq_ss:
9221    case Intrinsic::x86_sse2_ucomineq_sd:
9222      Opc = X86ISD::UCOMI;
9223      CC = ISD::SETNE;
9224      break;
9225    }
9226
9227    SDValue LHS = Op.getOperand(1);
9228    SDValue RHS = Op.getOperand(2);
9229    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9230    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9231    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9232    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9233                                DAG.getConstant(X86CC, MVT::i8), Cond);
9234    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9235  }
9236  // Arithmetic intrinsics.
9237  case Intrinsic::x86_sse3_hadd_ps:
9238  case Intrinsic::x86_sse3_hadd_pd:
9239  case Intrinsic::x86_avx_hadd_ps_256:
9240  case Intrinsic::x86_avx_hadd_pd_256:
9241    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9242                       Op.getOperand(1), Op.getOperand(2));
9243  case Intrinsic::x86_sse3_hsub_ps:
9244  case Intrinsic::x86_sse3_hsub_pd:
9245  case Intrinsic::x86_avx_hsub_ps_256:
9246  case Intrinsic::x86_avx_hsub_pd_256:
9247    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9248                       Op.getOperand(1), Op.getOperand(2));
9249  // ptest and testp intrinsics. The intrinsic these come from are designed to
9250  // return an integer value, not just an instruction so lower it to the ptest
9251  // or testp pattern and a setcc for the result.
9252  case Intrinsic::x86_sse41_ptestz:
9253  case Intrinsic::x86_sse41_ptestc:
9254  case Intrinsic::x86_sse41_ptestnzc:
9255  case Intrinsic::x86_avx_ptestz_256:
9256  case Intrinsic::x86_avx_ptestc_256:
9257  case Intrinsic::x86_avx_ptestnzc_256:
9258  case Intrinsic::x86_avx_vtestz_ps:
9259  case Intrinsic::x86_avx_vtestc_ps:
9260  case Intrinsic::x86_avx_vtestnzc_ps:
9261  case Intrinsic::x86_avx_vtestz_pd:
9262  case Intrinsic::x86_avx_vtestc_pd:
9263  case Intrinsic::x86_avx_vtestnzc_pd:
9264  case Intrinsic::x86_avx_vtestz_ps_256:
9265  case Intrinsic::x86_avx_vtestc_ps_256:
9266  case Intrinsic::x86_avx_vtestnzc_ps_256:
9267  case Intrinsic::x86_avx_vtestz_pd_256:
9268  case Intrinsic::x86_avx_vtestc_pd_256:
9269  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9270    bool IsTestPacked = false;
9271    unsigned X86CC = 0;
9272    switch (IntNo) {
9273    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9274    case Intrinsic::x86_avx_vtestz_ps:
9275    case Intrinsic::x86_avx_vtestz_pd:
9276    case Intrinsic::x86_avx_vtestz_ps_256:
9277    case Intrinsic::x86_avx_vtestz_pd_256:
9278      IsTestPacked = true; // Fallthrough
9279    case Intrinsic::x86_sse41_ptestz:
9280    case Intrinsic::x86_avx_ptestz_256:
9281      // ZF = 1
9282      X86CC = X86::COND_E;
9283      break;
9284    case Intrinsic::x86_avx_vtestc_ps:
9285    case Intrinsic::x86_avx_vtestc_pd:
9286    case Intrinsic::x86_avx_vtestc_ps_256:
9287    case Intrinsic::x86_avx_vtestc_pd_256:
9288      IsTestPacked = true; // Fallthrough
9289    case Intrinsic::x86_sse41_ptestc:
9290    case Intrinsic::x86_avx_ptestc_256:
9291      // CF = 1
9292      X86CC = X86::COND_B;
9293      break;
9294    case Intrinsic::x86_avx_vtestnzc_ps:
9295    case Intrinsic::x86_avx_vtestnzc_pd:
9296    case Intrinsic::x86_avx_vtestnzc_ps_256:
9297    case Intrinsic::x86_avx_vtestnzc_pd_256:
9298      IsTestPacked = true; // Fallthrough
9299    case Intrinsic::x86_sse41_ptestnzc:
9300    case Intrinsic::x86_avx_ptestnzc_256:
9301      // ZF and CF = 0
9302      X86CC = X86::COND_A;
9303      break;
9304    }
9305
9306    SDValue LHS = Op.getOperand(1);
9307    SDValue RHS = Op.getOperand(2);
9308    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9309    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9310    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9311    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9312    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9313  }
9314
9315  // Fix vector shift instructions where the last operand is a non-immediate
9316  // i32 value.
9317  case Intrinsic::x86_sse2_pslli_w:
9318  case Intrinsic::x86_sse2_pslli_d:
9319  case Intrinsic::x86_sse2_pslli_q:
9320  case Intrinsic::x86_sse2_psrli_w:
9321  case Intrinsic::x86_sse2_psrli_d:
9322  case Intrinsic::x86_sse2_psrli_q:
9323  case Intrinsic::x86_sse2_psrai_w:
9324  case Intrinsic::x86_sse2_psrai_d:
9325  case Intrinsic::x86_mmx_pslli_w:
9326  case Intrinsic::x86_mmx_pslli_d:
9327  case Intrinsic::x86_mmx_pslli_q:
9328  case Intrinsic::x86_mmx_psrli_w:
9329  case Intrinsic::x86_mmx_psrli_d:
9330  case Intrinsic::x86_mmx_psrli_q:
9331  case Intrinsic::x86_mmx_psrai_w:
9332  case Intrinsic::x86_mmx_psrai_d: {
9333    SDValue ShAmt = Op.getOperand(2);
9334    if (isa<ConstantSDNode>(ShAmt))
9335      return SDValue();
9336
9337    unsigned NewIntNo = 0;
9338    EVT ShAmtVT = MVT::v4i32;
9339    switch (IntNo) {
9340    case Intrinsic::x86_sse2_pslli_w:
9341      NewIntNo = Intrinsic::x86_sse2_psll_w;
9342      break;
9343    case Intrinsic::x86_sse2_pslli_d:
9344      NewIntNo = Intrinsic::x86_sse2_psll_d;
9345      break;
9346    case Intrinsic::x86_sse2_pslli_q:
9347      NewIntNo = Intrinsic::x86_sse2_psll_q;
9348      break;
9349    case Intrinsic::x86_sse2_psrli_w:
9350      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9351      break;
9352    case Intrinsic::x86_sse2_psrli_d:
9353      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9354      break;
9355    case Intrinsic::x86_sse2_psrli_q:
9356      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9357      break;
9358    case Intrinsic::x86_sse2_psrai_w:
9359      NewIntNo = Intrinsic::x86_sse2_psra_w;
9360      break;
9361    case Intrinsic::x86_sse2_psrai_d:
9362      NewIntNo = Intrinsic::x86_sse2_psra_d;
9363      break;
9364    default: {
9365      ShAmtVT = MVT::v2i32;
9366      switch (IntNo) {
9367      case Intrinsic::x86_mmx_pslli_w:
9368        NewIntNo = Intrinsic::x86_mmx_psll_w;
9369        break;
9370      case Intrinsic::x86_mmx_pslli_d:
9371        NewIntNo = Intrinsic::x86_mmx_psll_d;
9372        break;
9373      case Intrinsic::x86_mmx_pslli_q:
9374        NewIntNo = Intrinsic::x86_mmx_psll_q;
9375        break;
9376      case Intrinsic::x86_mmx_psrli_w:
9377        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9378        break;
9379      case Intrinsic::x86_mmx_psrli_d:
9380        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9381        break;
9382      case Intrinsic::x86_mmx_psrli_q:
9383        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9384        break;
9385      case Intrinsic::x86_mmx_psrai_w:
9386        NewIntNo = Intrinsic::x86_mmx_psra_w;
9387        break;
9388      case Intrinsic::x86_mmx_psrai_d:
9389        NewIntNo = Intrinsic::x86_mmx_psra_d;
9390        break;
9391      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9392      }
9393      break;
9394    }
9395    }
9396
9397    // The vector shift intrinsics with scalars uses 32b shift amounts but
9398    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9399    // to be zero.
9400    SDValue ShOps[4];
9401    ShOps[0] = ShAmt;
9402    ShOps[1] = DAG.getConstant(0, MVT::i32);
9403    if (ShAmtVT == MVT::v4i32) {
9404      ShOps[2] = DAG.getUNDEF(MVT::i32);
9405      ShOps[3] = DAG.getUNDEF(MVT::i32);
9406      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9407    } else {
9408      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9409// FIXME this must be lowered to get rid of the invalid type.
9410    }
9411
9412    EVT VT = Op.getValueType();
9413    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9414    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9415                       DAG.getConstant(NewIntNo, MVT::i32),
9416                       Op.getOperand(1), ShAmt);
9417  }
9418  }
9419}
9420
9421SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9422                                           SelectionDAG &DAG) const {
9423  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9424  MFI->setReturnAddressIsTaken(true);
9425
9426  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9427  DebugLoc dl = Op.getDebugLoc();
9428
9429  if (Depth > 0) {
9430    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9431    SDValue Offset =
9432      DAG.getConstant(TD->getPointerSize(),
9433                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9434    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9435                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9436                                   FrameAddr, Offset),
9437                       MachinePointerInfo(), false, false, 0);
9438  }
9439
9440  // Just load the return address.
9441  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9442  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9443                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9444}
9445
9446SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9447  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9448  MFI->setFrameAddressIsTaken(true);
9449
9450  EVT VT = Op.getValueType();
9451  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9452  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9453  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9454  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9455  while (Depth--)
9456    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9457                            MachinePointerInfo(),
9458                            false, false, 0);
9459  return FrameAddr;
9460}
9461
9462SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9463                                                     SelectionDAG &DAG) const {
9464  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9465}
9466
9467SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9468  MachineFunction &MF = DAG.getMachineFunction();
9469  SDValue Chain     = Op.getOperand(0);
9470  SDValue Offset    = Op.getOperand(1);
9471  SDValue Handler   = Op.getOperand(2);
9472  DebugLoc dl       = Op.getDebugLoc();
9473
9474  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9475                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9476                                     getPointerTy());
9477  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9478
9479  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9480                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9481  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9482  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9483                       false, false, 0);
9484  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9485  MF.getRegInfo().addLiveOut(StoreAddrReg);
9486
9487  return DAG.getNode(X86ISD::EH_RETURN, dl,
9488                     MVT::Other,
9489                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9490}
9491
9492SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9493                                                  SelectionDAG &DAG) const {
9494  return Op.getOperand(0);
9495}
9496
9497SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9498                                                SelectionDAG &DAG) const {
9499  SDValue Root = Op.getOperand(0);
9500  SDValue Trmp = Op.getOperand(1); // trampoline
9501  SDValue FPtr = Op.getOperand(2); // nested function
9502  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9503  DebugLoc dl  = Op.getDebugLoc();
9504
9505  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9506
9507  if (Subtarget->is64Bit()) {
9508    SDValue OutChains[6];
9509
9510    // Large code-model.
9511    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9512    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9513
9514    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9515    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9516
9517    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9518
9519    // Load the pointer to the nested function into R11.
9520    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9521    SDValue Addr = Trmp;
9522    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9523                                Addr, MachinePointerInfo(TrmpAddr),
9524                                false, false, 0);
9525
9526    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9527                       DAG.getConstant(2, MVT::i64));
9528    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9529                                MachinePointerInfo(TrmpAddr, 2),
9530                                false, false, 2);
9531
9532    // Load the 'nest' parameter value into R10.
9533    // R10 is specified in X86CallingConv.td
9534    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9535    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9536                       DAG.getConstant(10, MVT::i64));
9537    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9538                                Addr, MachinePointerInfo(TrmpAddr, 10),
9539                                false, false, 0);
9540
9541    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9542                       DAG.getConstant(12, MVT::i64));
9543    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9544                                MachinePointerInfo(TrmpAddr, 12),
9545                                false, false, 2);
9546
9547    // Jump to the nested function.
9548    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9549    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9550                       DAG.getConstant(20, MVT::i64));
9551    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9552                                Addr, MachinePointerInfo(TrmpAddr, 20),
9553                                false, false, 0);
9554
9555    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9556    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9557                       DAG.getConstant(22, MVT::i64));
9558    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9559                                MachinePointerInfo(TrmpAddr, 22),
9560                                false, false, 0);
9561
9562    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9563  } else {
9564    const Function *Func =
9565      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9566    CallingConv::ID CC = Func->getCallingConv();
9567    unsigned NestReg;
9568
9569    switch (CC) {
9570    default:
9571      llvm_unreachable("Unsupported calling convention");
9572    case CallingConv::C:
9573    case CallingConv::X86_StdCall: {
9574      // Pass 'nest' parameter in ECX.
9575      // Must be kept in sync with X86CallingConv.td
9576      NestReg = X86::ECX;
9577
9578      // Check that ECX wasn't needed by an 'inreg' parameter.
9579      FunctionType *FTy = Func->getFunctionType();
9580      const AttrListPtr &Attrs = Func->getAttributes();
9581
9582      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9583        unsigned InRegCount = 0;
9584        unsigned Idx = 1;
9585
9586        for (FunctionType::param_iterator I = FTy->param_begin(),
9587             E = FTy->param_end(); I != E; ++I, ++Idx)
9588          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9589            // FIXME: should only count parameters that are lowered to integers.
9590            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9591
9592        if (InRegCount > 2) {
9593          report_fatal_error("Nest register in use - reduce number of inreg"
9594                             " parameters!");
9595        }
9596      }
9597      break;
9598    }
9599    case CallingConv::X86_FastCall:
9600    case CallingConv::X86_ThisCall:
9601    case CallingConv::Fast:
9602      // Pass 'nest' parameter in EAX.
9603      // Must be kept in sync with X86CallingConv.td
9604      NestReg = X86::EAX;
9605      break;
9606    }
9607
9608    SDValue OutChains[4];
9609    SDValue Addr, Disp;
9610
9611    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9612                       DAG.getConstant(10, MVT::i32));
9613    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9614
9615    // This is storing the opcode for MOV32ri.
9616    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9617    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9618    OutChains[0] = DAG.getStore(Root, dl,
9619                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9620                                Trmp, MachinePointerInfo(TrmpAddr),
9621                                false, false, 0);
9622
9623    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9624                       DAG.getConstant(1, MVT::i32));
9625    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9626                                MachinePointerInfo(TrmpAddr, 1),
9627                                false, false, 1);
9628
9629    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9630    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9631                       DAG.getConstant(5, MVT::i32));
9632    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9633                                MachinePointerInfo(TrmpAddr, 5),
9634                                false, false, 1);
9635
9636    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9637                       DAG.getConstant(6, MVT::i32));
9638    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9639                                MachinePointerInfo(TrmpAddr, 6),
9640                                false, false, 1);
9641
9642    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9643  }
9644}
9645
9646SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9647                                            SelectionDAG &DAG) const {
9648  /*
9649   The rounding mode is in bits 11:10 of FPSR, and has the following
9650   settings:
9651     00 Round to nearest
9652     01 Round to -inf
9653     10 Round to +inf
9654     11 Round to 0
9655
9656  FLT_ROUNDS, on the other hand, expects the following:
9657    -1 Undefined
9658     0 Round to 0
9659     1 Round to nearest
9660     2 Round to +inf
9661     3 Round to -inf
9662
9663  To perform the conversion, we do:
9664    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9665  */
9666
9667  MachineFunction &MF = DAG.getMachineFunction();
9668  const TargetMachine &TM = MF.getTarget();
9669  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9670  unsigned StackAlignment = TFI.getStackAlignment();
9671  EVT VT = Op.getValueType();
9672  DebugLoc DL = Op.getDebugLoc();
9673
9674  // Save FP Control Word to stack slot
9675  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9676  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9677
9678
9679  MachineMemOperand *MMO =
9680   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9681                           MachineMemOperand::MOStore, 2, 2);
9682
9683  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9684  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9685                                          DAG.getVTList(MVT::Other),
9686                                          Ops, 2, MVT::i16, MMO);
9687
9688  // Load FP Control Word from stack slot
9689  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9690                            MachinePointerInfo(), false, false, 0);
9691
9692  // Transform as necessary
9693  SDValue CWD1 =
9694    DAG.getNode(ISD::SRL, DL, MVT::i16,
9695                DAG.getNode(ISD::AND, DL, MVT::i16,
9696                            CWD, DAG.getConstant(0x800, MVT::i16)),
9697                DAG.getConstant(11, MVT::i8));
9698  SDValue CWD2 =
9699    DAG.getNode(ISD::SRL, DL, MVT::i16,
9700                DAG.getNode(ISD::AND, DL, MVT::i16,
9701                            CWD, DAG.getConstant(0x400, MVT::i16)),
9702                DAG.getConstant(9, MVT::i8));
9703
9704  SDValue RetVal =
9705    DAG.getNode(ISD::AND, DL, MVT::i16,
9706                DAG.getNode(ISD::ADD, DL, MVT::i16,
9707                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9708                            DAG.getConstant(1, MVT::i16)),
9709                DAG.getConstant(3, MVT::i16));
9710
9711
9712  return DAG.getNode((VT.getSizeInBits() < 16 ?
9713                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9714}
9715
9716SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9717  EVT VT = Op.getValueType();
9718  EVT OpVT = VT;
9719  unsigned NumBits = VT.getSizeInBits();
9720  DebugLoc dl = Op.getDebugLoc();
9721
9722  Op = Op.getOperand(0);
9723  if (VT == MVT::i8) {
9724    // Zero extend to i32 since there is not an i8 bsr.
9725    OpVT = MVT::i32;
9726    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9727  }
9728
9729  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9730  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9731  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9732
9733  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9734  SDValue Ops[] = {
9735    Op,
9736    DAG.getConstant(NumBits+NumBits-1, OpVT),
9737    DAG.getConstant(X86::COND_E, MVT::i8),
9738    Op.getValue(1)
9739  };
9740  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9741
9742  // Finally xor with NumBits-1.
9743  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9744
9745  if (VT == MVT::i8)
9746    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9747  return Op;
9748}
9749
9750SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9751  EVT VT = Op.getValueType();
9752  EVT OpVT = VT;
9753  unsigned NumBits = VT.getSizeInBits();
9754  DebugLoc dl = Op.getDebugLoc();
9755
9756  Op = Op.getOperand(0);
9757  if (VT == MVT::i8) {
9758    OpVT = MVT::i32;
9759    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9760  }
9761
9762  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9763  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9764  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9765
9766  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9767  SDValue Ops[] = {
9768    Op,
9769    DAG.getConstant(NumBits, OpVT),
9770    DAG.getConstant(X86::COND_E, MVT::i8),
9771    Op.getValue(1)
9772  };
9773  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9774
9775  if (VT == MVT::i8)
9776    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9777  return Op;
9778}
9779
9780// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9781// ones, and then concatenate the result back.
9782static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9783  EVT VT = Op.getValueType();
9784
9785  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9786         "Unsupported value type for operation");
9787
9788  int NumElems = VT.getVectorNumElements();
9789  DebugLoc dl = Op.getDebugLoc();
9790  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9791  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9792
9793  // Extract the LHS vectors
9794  SDValue LHS = Op.getOperand(0);
9795  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9796  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9797
9798  // Extract the RHS vectors
9799  SDValue RHS = Op.getOperand(1);
9800  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9801  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9802
9803  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9804  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9805
9806  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9807                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9808                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9809}
9810
9811SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9812  assert(Op.getValueType().getSizeInBits() == 256 &&
9813         Op.getValueType().isInteger() &&
9814         "Only handle AVX 256-bit vector integer operation");
9815  return Lower256IntArith(Op, DAG);
9816}
9817
9818SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9819  assert(Op.getValueType().getSizeInBits() == 256 &&
9820         Op.getValueType().isInteger() &&
9821         "Only handle AVX 256-bit vector integer operation");
9822  return Lower256IntArith(Op, DAG);
9823}
9824
9825SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9826  EVT VT = Op.getValueType();
9827
9828  // Decompose 256-bit ops into smaller 128-bit ops.
9829  if (VT.getSizeInBits() == 256)
9830    return Lower256IntArith(Op, DAG);
9831
9832  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9833  DebugLoc dl = Op.getDebugLoc();
9834
9835  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9836  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9837  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9838  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9839  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9840  //
9841  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9842  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9843  //  return AloBlo + AloBhi + AhiBlo;
9844
9845  SDValue A = Op.getOperand(0);
9846  SDValue B = Op.getOperand(1);
9847
9848  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9849                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9850                       A, DAG.getConstant(32, MVT::i32));
9851  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9852                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9853                       B, DAG.getConstant(32, MVT::i32));
9854  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9855                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9856                       A, B);
9857  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9858                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9859                       A, Bhi);
9860  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9861                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9862                       Ahi, B);
9863  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9864                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9865                       AloBhi, DAG.getConstant(32, MVT::i32));
9866  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9867                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9868                       AhiBlo, DAG.getConstant(32, MVT::i32));
9869  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9870  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9871  return Res;
9872}
9873
9874SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9875
9876  EVT VT = Op.getValueType();
9877  DebugLoc dl = Op.getDebugLoc();
9878  SDValue R = Op.getOperand(0);
9879  SDValue Amt = Op.getOperand(1);
9880  LLVMContext *Context = DAG.getContext();
9881
9882  if (!Subtarget->hasXMMInt())
9883    return SDValue();
9884
9885  // Decompose 256-bit shifts into smaller 128-bit shifts.
9886  if (VT.getSizeInBits() == 256) {
9887    int NumElems = VT.getVectorNumElements();
9888    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9889    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9890
9891    // Extract the two vectors
9892    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9893    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9894                                     DAG, dl);
9895
9896    // Recreate the shift amount vectors
9897    SDValue Amt1, Amt2;
9898    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9899      // Constant shift amount
9900      SmallVector<SDValue, 4> Amt1Csts;
9901      SmallVector<SDValue, 4> Amt2Csts;
9902      for (int i = 0; i < NumElems/2; ++i)
9903        Amt1Csts.push_back(Amt->getOperand(i));
9904      for (int i = NumElems/2; i < NumElems; ++i)
9905        Amt2Csts.push_back(Amt->getOperand(i));
9906
9907      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9908                                 &Amt1Csts[0], NumElems/2);
9909      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9910                                 &Amt2Csts[0], NumElems/2);
9911    } else {
9912      // Variable shift amount
9913      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9914      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9915                                 DAG, dl);
9916    }
9917
9918    // Issue new vector shifts for the smaller types
9919    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9920    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9921
9922    // Concatenate the result back
9923    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9924  }
9925
9926  // Optimize shl/srl/sra with constant shift amount.
9927  if (isSplatVector(Amt.getNode())) {
9928    SDValue SclrAmt = Amt->getOperand(0);
9929    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9930      uint64_t ShiftAmt = C->getZExtValue();
9931
9932      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9933       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9934                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9935                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9936
9937      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9938       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9939                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9940                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9941
9942      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9943       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9944                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9945                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9946
9947      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9948       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9949                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9950                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9951
9952      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9953       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9954                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9955                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9956
9957      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9958       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9959                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9960                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9961
9962      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9963       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9964                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9965                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9966
9967      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9968       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9969                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9970                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9971    }
9972  }
9973
9974  // Lower SHL with variable shift amount.
9975  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9976    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9977                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9978                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9979
9980    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9981
9982    std::vector<Constant*> CV(4, CI);
9983    Constant *C = ConstantVector::get(CV);
9984    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9985    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9986                                 MachinePointerInfo::getConstantPool(),
9987                                 false, false, 16);
9988
9989    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9990    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9991    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9992    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9993  }
9994  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9995    // a = a << 5;
9996    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9997                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9998                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9999
10000    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10001    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10002
10003    std::vector<Constant*> CVM1(16, CM1);
10004    std::vector<Constant*> CVM2(16, CM2);
10005    Constant *C = ConstantVector::get(CVM1);
10006    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10007    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10008                            MachinePointerInfo::getConstantPool(),
10009                            false, false, 16);
10010
10011    // r = pblendv(r, psllw(r & (char16)15, 4), a);
10012    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10013    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10014                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10015                    DAG.getConstant(4, MVT::i32));
10016    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10017    // a += a
10018    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10019
10020    C = ConstantVector::get(CVM2);
10021    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10022    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10023                    MachinePointerInfo::getConstantPool(),
10024                    false, false, 16);
10025
10026    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10027    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10028    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10029                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10030                    DAG.getConstant(2, MVT::i32));
10031    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10032    // a += a
10033    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10034
10035    // return pblendv(r, r+r, a);
10036    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10037                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10038    return R;
10039  }
10040  return SDValue();
10041}
10042
10043SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10044  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10045  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10046  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10047  // has only one use.
10048  SDNode *N = Op.getNode();
10049  SDValue LHS = N->getOperand(0);
10050  SDValue RHS = N->getOperand(1);
10051  unsigned BaseOp = 0;
10052  unsigned Cond = 0;
10053  DebugLoc DL = Op.getDebugLoc();
10054  switch (Op.getOpcode()) {
10055  default: llvm_unreachable("Unknown ovf instruction!");
10056  case ISD::SADDO:
10057    // A subtract of one will be selected as a INC. Note that INC doesn't
10058    // set CF, so we can't do this for UADDO.
10059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10060      if (C->isOne()) {
10061        BaseOp = X86ISD::INC;
10062        Cond = X86::COND_O;
10063        break;
10064      }
10065    BaseOp = X86ISD::ADD;
10066    Cond = X86::COND_O;
10067    break;
10068  case ISD::UADDO:
10069    BaseOp = X86ISD::ADD;
10070    Cond = X86::COND_B;
10071    break;
10072  case ISD::SSUBO:
10073    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10074    // set CF, so we can't do this for USUBO.
10075    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10076      if (C->isOne()) {
10077        BaseOp = X86ISD::DEC;
10078        Cond = X86::COND_O;
10079        break;
10080      }
10081    BaseOp = X86ISD::SUB;
10082    Cond = X86::COND_O;
10083    break;
10084  case ISD::USUBO:
10085    BaseOp = X86ISD::SUB;
10086    Cond = X86::COND_B;
10087    break;
10088  case ISD::SMULO:
10089    BaseOp = X86ISD::SMUL;
10090    Cond = X86::COND_O;
10091    break;
10092  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10093    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10094                                 MVT::i32);
10095    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10096
10097    SDValue SetCC =
10098      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10099                  DAG.getConstant(X86::COND_O, MVT::i32),
10100                  SDValue(Sum.getNode(), 2));
10101
10102    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10103  }
10104  }
10105
10106  // Also sets EFLAGS.
10107  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10108  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10109
10110  SDValue SetCC =
10111    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10112                DAG.getConstant(Cond, MVT::i32),
10113                SDValue(Sum.getNode(), 1));
10114
10115  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10116}
10117
10118SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10119  DebugLoc dl = Op.getDebugLoc();
10120  SDNode* Node = Op.getNode();
10121  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10122  EVT VT = Node->getValueType(0);
10123  if (Subtarget->hasXMMInt() && VT.isVector()) {
10124    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10125                        ExtraVT.getScalarType().getSizeInBits();
10126    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10127
10128    unsigned SHLIntrinsicsID = 0;
10129    unsigned SRAIntrinsicsID = 0;
10130    switch (VT.getSimpleVT().SimpleTy) {
10131      default:
10132        return SDValue();
10133      case MVT::v4i32: {
10134        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10135        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10136        break;
10137      }
10138      case MVT::v8i16: {
10139        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10140        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10141        break;
10142      }
10143    }
10144
10145    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10146                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10147                         Node->getOperand(0), ShAmt);
10148
10149    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10150                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10151                       Tmp1, ShAmt);
10152  }
10153
10154  return SDValue();
10155}
10156
10157
10158SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10159  DebugLoc dl = Op.getDebugLoc();
10160
10161  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10162  // There isn't any reason to disable it if the target processor supports it.
10163  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10164    SDValue Chain = Op.getOperand(0);
10165    SDValue Zero = DAG.getConstant(0, MVT::i32);
10166    SDValue Ops[] = {
10167      DAG.getRegister(X86::ESP, MVT::i32), // Base
10168      DAG.getTargetConstant(1, MVT::i8),   // Scale
10169      DAG.getRegister(0, MVT::i32),        // Index
10170      DAG.getTargetConstant(0, MVT::i32),  // Disp
10171      DAG.getRegister(0, MVT::i32),        // Segment.
10172      Zero,
10173      Chain
10174    };
10175    SDNode *Res =
10176      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10177                          array_lengthof(Ops));
10178    return SDValue(Res, 0);
10179  }
10180
10181  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10182  if (!isDev)
10183    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10184
10185  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10186  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10187  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10188  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10189
10190  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10191  if (!Op1 && !Op2 && !Op3 && Op4)
10192    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10193
10194  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10195  if (Op1 && !Op2 && !Op3 && !Op4)
10196    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10197
10198  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10199  //           (MFENCE)>;
10200  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10201}
10202
10203SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10204                                             SelectionDAG &DAG) const {
10205  DebugLoc dl = Op.getDebugLoc();
10206  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10207    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10208  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10209    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10210
10211  // The only fence that needs an instruction is a sequentially-consistent
10212  // cross-thread fence.
10213  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10214    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10215    // no-sse2). There isn't any reason to disable it if the target processor
10216    // supports it.
10217    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10218      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10219
10220    SDValue Chain = Op.getOperand(0);
10221    SDValue Zero = DAG.getConstant(0, MVT::i32);
10222    SDValue Ops[] = {
10223      DAG.getRegister(X86::ESP, MVT::i32), // Base
10224      DAG.getTargetConstant(1, MVT::i8),   // Scale
10225      DAG.getRegister(0, MVT::i32),        // Index
10226      DAG.getTargetConstant(0, MVT::i32),  // Disp
10227      DAG.getRegister(0, MVT::i32),        // Segment.
10228      Zero,
10229      Chain
10230    };
10231    SDNode *Res =
10232      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10233                         array_lengthof(Ops));
10234    return SDValue(Res, 0);
10235  }
10236
10237  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10238  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10239}
10240
10241
10242SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10243  EVT T = Op.getValueType();
10244  DebugLoc DL = Op.getDebugLoc();
10245  unsigned Reg = 0;
10246  unsigned size = 0;
10247  switch(T.getSimpleVT().SimpleTy) {
10248  default:
10249    assert(false && "Invalid value type!");
10250  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10251  case MVT::i16: Reg = X86::AX;  size = 2; break;
10252  case MVT::i32: Reg = X86::EAX; size = 4; break;
10253  case MVT::i64:
10254    assert(Subtarget->is64Bit() && "Node not type legal!");
10255    Reg = X86::RAX; size = 8;
10256    break;
10257  }
10258  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10259                                    Op.getOperand(2), SDValue());
10260  SDValue Ops[] = { cpIn.getValue(0),
10261                    Op.getOperand(1),
10262                    Op.getOperand(3),
10263                    DAG.getTargetConstant(size, MVT::i8),
10264                    cpIn.getValue(1) };
10265  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10266  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10267  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10268                                           Ops, 5, T, MMO);
10269  SDValue cpOut =
10270    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10271  return cpOut;
10272}
10273
10274SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10275                                                 SelectionDAG &DAG) const {
10276  assert(Subtarget->is64Bit() && "Result not type legalized?");
10277  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10278  SDValue TheChain = Op.getOperand(0);
10279  DebugLoc dl = Op.getDebugLoc();
10280  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10281  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10282  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10283                                   rax.getValue(2));
10284  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10285                            DAG.getConstant(32, MVT::i8));
10286  SDValue Ops[] = {
10287    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10288    rdx.getValue(1)
10289  };
10290  return DAG.getMergeValues(Ops, 2, dl);
10291}
10292
10293SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10294                                            SelectionDAG &DAG) const {
10295  EVT SrcVT = Op.getOperand(0).getValueType();
10296  EVT DstVT = Op.getValueType();
10297  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10298         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10299  assert((DstVT == MVT::i64 ||
10300          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10301         "Unexpected custom BITCAST");
10302  // i64 <=> MMX conversions are Legal.
10303  if (SrcVT==MVT::i64 && DstVT.isVector())
10304    return Op;
10305  if (DstVT==MVT::i64 && SrcVT.isVector())
10306    return Op;
10307  // MMX <=> MMX conversions are Legal.
10308  if (SrcVT.isVector() && DstVT.isVector())
10309    return Op;
10310  // All other conversions need to be expanded.
10311  return SDValue();
10312}
10313
10314SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10315  SDNode *Node = Op.getNode();
10316  DebugLoc dl = Node->getDebugLoc();
10317  EVT T = Node->getValueType(0);
10318  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10319                              DAG.getConstant(0, T), Node->getOperand(2));
10320  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10321                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10322                       Node->getOperand(0),
10323                       Node->getOperand(1), negOp,
10324                       cast<AtomicSDNode>(Node)->getSrcValue(),
10325                       cast<AtomicSDNode>(Node)->getAlignment(),
10326                       cast<AtomicSDNode>(Node)->getOrdering(),
10327                       cast<AtomicSDNode>(Node)->getSynchScope());
10328}
10329
10330static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10331  SDNode *Node = Op.getNode();
10332  DebugLoc dl = Node->getDebugLoc();
10333  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10334
10335  // Convert seq_cst store -> xchg
10336  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10337  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10338  //        (The only way to get a 16-byte store is cmpxchg16b)
10339  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10340  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10341      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10342    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10343                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10344                                 Node->getOperand(0),
10345                                 Node->getOperand(1), Node->getOperand(2),
10346                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10347                                 cast<AtomicSDNode>(Node)->getOrdering(),
10348                                 cast<AtomicSDNode>(Node)->getSynchScope());
10349    return Swap.getValue(1);
10350  }
10351  // Other atomic stores have a simple pattern.
10352  return Op;
10353}
10354
10355static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10356  EVT VT = Op.getNode()->getValueType(0);
10357
10358  // Let legalize expand this if it isn't a legal type yet.
10359  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10360    return SDValue();
10361
10362  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10363
10364  unsigned Opc;
10365  bool ExtraOp = false;
10366  switch (Op.getOpcode()) {
10367  default: assert(0 && "Invalid code");
10368  case ISD::ADDC: Opc = X86ISD::ADD; break;
10369  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10370  case ISD::SUBC: Opc = X86ISD::SUB; break;
10371  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10372  }
10373
10374  if (!ExtraOp)
10375    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10376                       Op.getOperand(1));
10377  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10378                     Op.getOperand(1), Op.getOperand(2));
10379}
10380
10381/// LowerOperation - Provide custom lowering hooks for some operations.
10382///
10383SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10384  switch (Op.getOpcode()) {
10385  default: llvm_unreachable("Should not custom lower this!");
10386  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10387  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10388  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10389  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10390  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10391  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10392  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10393  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10394  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10395  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10396  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10397  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10398  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10399  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10400  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10401  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10402  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10403  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10404  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10405  case ISD::SHL_PARTS:
10406  case ISD::SRA_PARTS:
10407  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10408  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10409  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10410  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10411  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10412  case ISD::FABS:               return LowerFABS(Op, DAG);
10413  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10414  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10415  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10416  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10417  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10418  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10419  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10420  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10421  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10422  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10423  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10424  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10425  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10426  case ISD::FRAME_TO_ARGS_OFFSET:
10427                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10428  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10429  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10430  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10431  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10432  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10433  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10434  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10435  case ISD::MUL:                return LowerMUL(Op, DAG);
10436  case ISD::SRA:
10437  case ISD::SRL:
10438  case ISD::SHL:                return LowerShift(Op, DAG);
10439  case ISD::SADDO:
10440  case ISD::UADDO:
10441  case ISD::SSUBO:
10442  case ISD::USUBO:
10443  case ISD::SMULO:
10444  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10445  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10446  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10447  case ISD::ADDC:
10448  case ISD::ADDE:
10449  case ISD::SUBC:
10450  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10451  case ISD::ADD:                return LowerADD(Op, DAG);
10452  case ISD::SUB:                return LowerSUB(Op, DAG);
10453  }
10454}
10455
10456static void ReplaceATOMIC_LOAD(SDNode *Node,
10457                                  SmallVectorImpl<SDValue> &Results,
10458                                  SelectionDAG &DAG) {
10459  DebugLoc dl = Node->getDebugLoc();
10460  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10461
10462  // Convert wide load -> cmpxchg8b/cmpxchg16b
10463  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10464  //        (The only way to get a 16-byte load is cmpxchg16b)
10465  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10466  SDValue Zero = DAG.getConstant(0, VT);
10467  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10468                               Node->getOperand(0),
10469                               Node->getOperand(1), Zero, Zero,
10470                               cast<AtomicSDNode>(Node)->getMemOperand(),
10471                               cast<AtomicSDNode>(Node)->getOrdering(),
10472                               cast<AtomicSDNode>(Node)->getSynchScope());
10473  Results.push_back(Swap.getValue(0));
10474  Results.push_back(Swap.getValue(1));
10475}
10476
10477void X86TargetLowering::
10478ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10479                        SelectionDAG &DAG, unsigned NewOp) const {
10480  DebugLoc dl = Node->getDebugLoc();
10481  assert (Node->getValueType(0) == MVT::i64 &&
10482          "Only know how to expand i64 atomics");
10483
10484  SDValue Chain = Node->getOperand(0);
10485  SDValue In1 = Node->getOperand(1);
10486  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10487                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10488  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10489                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10490  SDValue Ops[] = { Chain, In1, In2L, In2H };
10491  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10492  SDValue Result =
10493    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10494                            cast<MemSDNode>(Node)->getMemOperand());
10495  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10496  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10497  Results.push_back(Result.getValue(2));
10498}
10499
10500/// ReplaceNodeResults - Replace a node with an illegal result type
10501/// with a new node built out of custom code.
10502void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10503                                           SmallVectorImpl<SDValue>&Results,
10504                                           SelectionDAG &DAG) const {
10505  DebugLoc dl = N->getDebugLoc();
10506  switch (N->getOpcode()) {
10507  default:
10508    assert(false && "Do not know how to custom type legalize this operation!");
10509    return;
10510  case ISD::SIGN_EXTEND_INREG:
10511  case ISD::ADDC:
10512  case ISD::ADDE:
10513  case ISD::SUBC:
10514  case ISD::SUBE:
10515    // We don't want to expand or promote these.
10516    return;
10517  case ISD::FP_TO_SINT: {
10518    std::pair<SDValue,SDValue> Vals =
10519        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10520    SDValue FIST = Vals.first, StackSlot = Vals.second;
10521    if (FIST.getNode() != 0) {
10522      EVT VT = N->getValueType(0);
10523      // Return a load from the stack slot.
10524      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10525                                    MachinePointerInfo(), false, false, 0));
10526    }
10527    return;
10528  }
10529  case ISD::READCYCLECOUNTER: {
10530    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10531    SDValue TheChain = N->getOperand(0);
10532    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10533    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10534                                     rd.getValue(1));
10535    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10536                                     eax.getValue(2));
10537    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10538    SDValue Ops[] = { eax, edx };
10539    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10540    Results.push_back(edx.getValue(1));
10541    return;
10542  }
10543  case ISD::ATOMIC_CMP_SWAP: {
10544    EVT T = N->getValueType(0);
10545    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10546    bool Regs64bit = T == MVT::i128;
10547    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10548    SDValue cpInL, cpInH;
10549    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10550                        DAG.getConstant(0, HalfT));
10551    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10552                        DAG.getConstant(1, HalfT));
10553    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10554                             Regs64bit ? X86::RAX : X86::EAX,
10555                             cpInL, SDValue());
10556    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10557                             Regs64bit ? X86::RDX : X86::EDX,
10558                             cpInH, cpInL.getValue(1));
10559    SDValue swapInL, swapInH;
10560    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10561                          DAG.getConstant(0, HalfT));
10562    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10563                          DAG.getConstant(1, HalfT));
10564    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10565                               Regs64bit ? X86::RBX : X86::EBX,
10566                               swapInL, cpInH.getValue(1));
10567    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10568                               Regs64bit ? X86::RCX : X86::ECX,
10569                               swapInH, swapInL.getValue(1));
10570    SDValue Ops[] = { swapInH.getValue(0),
10571                      N->getOperand(1),
10572                      swapInH.getValue(1) };
10573    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10574    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10575    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10576                                  X86ISD::LCMPXCHG8_DAG;
10577    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10578                                             Ops, 3, T, MMO);
10579    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10580                                        Regs64bit ? X86::RAX : X86::EAX,
10581                                        HalfT, Result.getValue(1));
10582    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10583                                        Regs64bit ? X86::RDX : X86::EDX,
10584                                        HalfT, cpOutL.getValue(2));
10585    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10586    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10587    Results.push_back(cpOutH.getValue(1));
10588    return;
10589  }
10590  case ISD::ATOMIC_LOAD_ADD:
10591    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10592    return;
10593  case ISD::ATOMIC_LOAD_AND:
10594    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10595    return;
10596  case ISD::ATOMIC_LOAD_NAND:
10597    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10598    return;
10599  case ISD::ATOMIC_LOAD_OR:
10600    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10601    return;
10602  case ISD::ATOMIC_LOAD_SUB:
10603    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10604    return;
10605  case ISD::ATOMIC_LOAD_XOR:
10606    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10607    return;
10608  case ISD::ATOMIC_SWAP:
10609    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10610    return;
10611  case ISD::ATOMIC_LOAD:
10612    ReplaceATOMIC_LOAD(N, Results, DAG);
10613  }
10614}
10615
10616const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10617  switch (Opcode) {
10618  default: return NULL;
10619  case X86ISD::BSF:                return "X86ISD::BSF";
10620  case X86ISD::BSR:                return "X86ISD::BSR";
10621  case X86ISD::SHLD:               return "X86ISD::SHLD";
10622  case X86ISD::SHRD:               return "X86ISD::SHRD";
10623  case X86ISD::FAND:               return "X86ISD::FAND";
10624  case X86ISD::FOR:                return "X86ISD::FOR";
10625  case X86ISD::FXOR:               return "X86ISD::FXOR";
10626  case X86ISD::FSRL:               return "X86ISD::FSRL";
10627  case X86ISD::FILD:               return "X86ISD::FILD";
10628  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10629  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10630  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10631  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10632  case X86ISD::FLD:                return "X86ISD::FLD";
10633  case X86ISD::FST:                return "X86ISD::FST";
10634  case X86ISD::CALL:               return "X86ISD::CALL";
10635  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10636  case X86ISD::BT:                 return "X86ISD::BT";
10637  case X86ISD::CMP:                return "X86ISD::CMP";
10638  case X86ISD::COMI:               return "X86ISD::COMI";
10639  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10640  case X86ISD::SETCC:              return "X86ISD::SETCC";
10641  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10642  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10643  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10644  case X86ISD::CMOV:               return "X86ISD::CMOV";
10645  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10646  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10647  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10648  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10649  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10650  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10651  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10652  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10653  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10654  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10655  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10656  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10657  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10658  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10659  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10660  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10661  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10662  case X86ISD::FMAX:               return "X86ISD::FMAX";
10663  case X86ISD::FMIN:               return "X86ISD::FMIN";
10664  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10665  case X86ISD::FRCP:               return "X86ISD::FRCP";
10666  case X86ISD::FHADD:              return "X86ISD::FHADD";
10667  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10668  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10669  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10670  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10671  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10672  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10673  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10674  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10675  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10676  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10677  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10678  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10679  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10680  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10681  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10682  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10683  case X86ISD::VSHL:               return "X86ISD::VSHL";
10684  case X86ISD::VSRL:               return "X86ISD::VSRL";
10685  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10686  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10687  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10688  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10689  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10690  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10691  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10692  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10693  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10694  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10695  case X86ISD::ADD:                return "X86ISD::ADD";
10696  case X86ISD::SUB:                return "X86ISD::SUB";
10697  case X86ISD::ADC:                return "X86ISD::ADC";
10698  case X86ISD::SBB:                return "X86ISD::SBB";
10699  case X86ISD::SMUL:               return "X86ISD::SMUL";
10700  case X86ISD::UMUL:               return "X86ISD::UMUL";
10701  case X86ISD::INC:                return "X86ISD::INC";
10702  case X86ISD::DEC:                return "X86ISD::DEC";
10703  case X86ISD::OR:                 return "X86ISD::OR";
10704  case X86ISD::XOR:                return "X86ISD::XOR";
10705  case X86ISD::AND:                return "X86ISD::AND";
10706  case X86ISD::ANDN:               return "X86ISD::ANDN";
10707  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10708  case X86ISD::PTEST:              return "X86ISD::PTEST";
10709  case X86ISD::TESTP:              return "X86ISD::TESTP";
10710  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10711  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10712  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10713  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10714  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10715  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10716  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10717  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10718  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10719  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10720  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10721  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10722  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10723  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10724  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10725  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10726  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10727  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10728  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10729  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10730  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10731  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10732  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10733  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10734  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10735  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10736  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10737  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10738  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10739  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10740  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10741  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10742  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10743  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10744  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10745  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10746  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10747  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10748  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10749  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10750  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10751  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10752  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10753  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10754  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10755  }
10756}
10757
10758// isLegalAddressingMode - Return true if the addressing mode represented
10759// by AM is legal for this target, for a load/store of the specified type.
10760bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10761                                              Type *Ty) const {
10762  // X86 supports extremely general addressing modes.
10763  CodeModel::Model M = getTargetMachine().getCodeModel();
10764  Reloc::Model R = getTargetMachine().getRelocationModel();
10765
10766  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10767  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10768    return false;
10769
10770  if (AM.BaseGV) {
10771    unsigned GVFlags =
10772      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10773
10774    // If a reference to this global requires an extra load, we can't fold it.
10775    if (isGlobalStubReference(GVFlags))
10776      return false;
10777
10778    // If BaseGV requires a register for the PIC base, we cannot also have a
10779    // BaseReg specified.
10780    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10781      return false;
10782
10783    // If lower 4G is not available, then we must use rip-relative addressing.
10784    if ((M != CodeModel::Small || R != Reloc::Static) &&
10785        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10786      return false;
10787  }
10788
10789  switch (AM.Scale) {
10790  case 0:
10791  case 1:
10792  case 2:
10793  case 4:
10794  case 8:
10795    // These scales always work.
10796    break;
10797  case 3:
10798  case 5:
10799  case 9:
10800    // These scales are formed with basereg+scalereg.  Only accept if there is
10801    // no basereg yet.
10802    if (AM.HasBaseReg)
10803      return false;
10804    break;
10805  default:  // Other stuff never works.
10806    return false;
10807  }
10808
10809  return true;
10810}
10811
10812
10813bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10814  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10815    return false;
10816  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10817  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10818  if (NumBits1 <= NumBits2)
10819    return false;
10820  return true;
10821}
10822
10823bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10824  if (!VT1.isInteger() || !VT2.isInteger())
10825    return false;
10826  unsigned NumBits1 = VT1.getSizeInBits();
10827  unsigned NumBits2 = VT2.getSizeInBits();
10828  if (NumBits1 <= NumBits2)
10829    return false;
10830  return true;
10831}
10832
10833bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10834  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10835  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10836}
10837
10838bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10839  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10840  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10841}
10842
10843bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10844  // i16 instructions are longer (0x66 prefix) and potentially slower.
10845  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10846}
10847
10848/// isShuffleMaskLegal - Targets can use this to indicate that they only
10849/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10850/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10851/// are assumed to be legal.
10852bool
10853X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10854                                      EVT VT) const {
10855  // Very little shuffling can be done for 64-bit vectors right now.
10856  if (VT.getSizeInBits() == 64)
10857    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
10858
10859  // FIXME: pshufb, blends, shifts.
10860  return (VT.getVectorNumElements() == 2 ||
10861          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10862          isMOVLMask(M, VT) ||
10863          isSHUFPMask(M, VT) ||
10864          isPSHUFDMask(M, VT) ||
10865          isPSHUFHWMask(M, VT) ||
10866          isPSHUFLWMask(M, VT) ||
10867          isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
10868          isUNPCKLMask(M, VT) ||
10869          isUNPCKHMask(M, VT) ||
10870          isUNPCKL_v_undef_Mask(M, VT) ||
10871          isUNPCKH_v_undef_Mask(M, VT));
10872}
10873
10874bool
10875X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10876                                          EVT VT) const {
10877  unsigned NumElts = VT.getVectorNumElements();
10878  // FIXME: This collection of masks seems suspect.
10879  if (NumElts == 2)
10880    return true;
10881  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10882    return (isMOVLMask(Mask, VT)  ||
10883            isCommutedMOVLMask(Mask, VT, true) ||
10884            isSHUFPMask(Mask, VT) ||
10885            isCommutedSHUFPMask(Mask, VT));
10886  }
10887  return false;
10888}
10889
10890//===----------------------------------------------------------------------===//
10891//                           X86 Scheduler Hooks
10892//===----------------------------------------------------------------------===//
10893
10894// private utility function
10895MachineBasicBlock *
10896X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10897                                                       MachineBasicBlock *MBB,
10898                                                       unsigned regOpc,
10899                                                       unsigned immOpc,
10900                                                       unsigned LoadOpc,
10901                                                       unsigned CXchgOpc,
10902                                                       unsigned notOpc,
10903                                                       unsigned EAXreg,
10904                                                       TargetRegisterClass *RC,
10905                                                       bool invSrc) const {
10906  // For the atomic bitwise operator, we generate
10907  //   thisMBB:
10908  //   newMBB:
10909  //     ld  t1 = [bitinstr.addr]
10910  //     op  t2 = t1, [bitinstr.val]
10911  //     mov EAX = t1
10912  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10913  //     bz  newMBB
10914  //     fallthrough -->nextMBB
10915  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10916  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10917  MachineFunction::iterator MBBIter = MBB;
10918  ++MBBIter;
10919
10920  /// First build the CFG
10921  MachineFunction *F = MBB->getParent();
10922  MachineBasicBlock *thisMBB = MBB;
10923  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10924  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10925  F->insert(MBBIter, newMBB);
10926  F->insert(MBBIter, nextMBB);
10927
10928  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10929  nextMBB->splice(nextMBB->begin(), thisMBB,
10930                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10931                  thisMBB->end());
10932  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10933
10934  // Update thisMBB to fall through to newMBB
10935  thisMBB->addSuccessor(newMBB);
10936
10937  // newMBB jumps to itself and fall through to nextMBB
10938  newMBB->addSuccessor(nextMBB);
10939  newMBB->addSuccessor(newMBB);
10940
10941  // Insert instructions into newMBB based on incoming instruction
10942  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10943         "unexpected number of operands");
10944  DebugLoc dl = bInstr->getDebugLoc();
10945  MachineOperand& destOper = bInstr->getOperand(0);
10946  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10947  int numArgs = bInstr->getNumOperands() - 1;
10948  for (int i=0; i < numArgs; ++i)
10949    argOpers[i] = &bInstr->getOperand(i+1);
10950
10951  // x86 address has 4 operands: base, index, scale, and displacement
10952  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10953  int valArgIndx = lastAddrIndx + 1;
10954
10955  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10956  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10957  for (int i=0; i <= lastAddrIndx; ++i)
10958    (*MIB).addOperand(*argOpers[i]);
10959
10960  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10961  if (invSrc) {
10962    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10963  }
10964  else
10965    tt = t1;
10966
10967  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10968  assert((argOpers[valArgIndx]->isReg() ||
10969          argOpers[valArgIndx]->isImm()) &&
10970         "invalid operand");
10971  if (argOpers[valArgIndx]->isReg())
10972    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10973  else
10974    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10975  MIB.addReg(tt);
10976  (*MIB).addOperand(*argOpers[valArgIndx]);
10977
10978  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10979  MIB.addReg(t1);
10980
10981  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10982  for (int i=0; i <= lastAddrIndx; ++i)
10983    (*MIB).addOperand(*argOpers[i]);
10984  MIB.addReg(t2);
10985  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10986  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10987                    bInstr->memoperands_end());
10988
10989  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10990  MIB.addReg(EAXreg);
10991
10992  // insert branch
10993  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10994
10995  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10996  return nextMBB;
10997}
10998
10999// private utility function:  64 bit atomics on 32 bit host.
11000MachineBasicBlock *
11001X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11002                                                       MachineBasicBlock *MBB,
11003                                                       unsigned regOpcL,
11004                                                       unsigned regOpcH,
11005                                                       unsigned immOpcL,
11006                                                       unsigned immOpcH,
11007                                                       bool invSrc) const {
11008  // For the atomic bitwise operator, we generate
11009  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11010  //     ld t1,t2 = [bitinstr.addr]
11011  //   newMBB:
11012  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11013  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11014  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11015  //     mov ECX, EBX <- t5, t6
11016  //     mov EAX, EDX <- t1, t2
11017  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11018  //     mov t3, t4 <- EAX, EDX
11019  //     bz  newMBB
11020  //     result in out1, out2
11021  //     fallthrough -->nextMBB
11022
11023  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11024  const unsigned LoadOpc = X86::MOV32rm;
11025  const unsigned NotOpc = X86::NOT32r;
11026  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11027  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11028  MachineFunction::iterator MBBIter = MBB;
11029  ++MBBIter;
11030
11031  /// First build the CFG
11032  MachineFunction *F = MBB->getParent();
11033  MachineBasicBlock *thisMBB = MBB;
11034  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11035  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11036  F->insert(MBBIter, newMBB);
11037  F->insert(MBBIter, nextMBB);
11038
11039  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11040  nextMBB->splice(nextMBB->begin(), thisMBB,
11041                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11042                  thisMBB->end());
11043  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11044
11045  // Update thisMBB to fall through to newMBB
11046  thisMBB->addSuccessor(newMBB);
11047
11048  // newMBB jumps to itself and fall through to nextMBB
11049  newMBB->addSuccessor(nextMBB);
11050  newMBB->addSuccessor(newMBB);
11051
11052  DebugLoc dl = bInstr->getDebugLoc();
11053  // Insert instructions into newMBB based on incoming instruction
11054  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11055  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11056         "unexpected number of operands");
11057  MachineOperand& dest1Oper = bInstr->getOperand(0);
11058  MachineOperand& dest2Oper = bInstr->getOperand(1);
11059  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11060  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11061    argOpers[i] = &bInstr->getOperand(i+2);
11062
11063    // We use some of the operands multiple times, so conservatively just
11064    // clear any kill flags that might be present.
11065    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11066      argOpers[i]->setIsKill(false);
11067  }
11068
11069  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11070  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11071
11072  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11073  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11074  for (int i=0; i <= lastAddrIndx; ++i)
11075    (*MIB).addOperand(*argOpers[i]);
11076  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11077  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11078  // add 4 to displacement.
11079  for (int i=0; i <= lastAddrIndx-2; ++i)
11080    (*MIB).addOperand(*argOpers[i]);
11081  MachineOperand newOp3 = *(argOpers[3]);
11082  if (newOp3.isImm())
11083    newOp3.setImm(newOp3.getImm()+4);
11084  else
11085    newOp3.setOffset(newOp3.getOffset()+4);
11086  (*MIB).addOperand(newOp3);
11087  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11088
11089  // t3/4 are defined later, at the bottom of the loop
11090  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11091  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11092  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11093    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11094  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11095    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11096
11097  // The subsequent operations should be using the destination registers of
11098  //the PHI instructions.
11099  if (invSrc) {
11100    t1 = F->getRegInfo().createVirtualRegister(RC);
11101    t2 = F->getRegInfo().createVirtualRegister(RC);
11102    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11103    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11104  } else {
11105    t1 = dest1Oper.getReg();
11106    t2 = dest2Oper.getReg();
11107  }
11108
11109  int valArgIndx = lastAddrIndx + 1;
11110  assert((argOpers[valArgIndx]->isReg() ||
11111          argOpers[valArgIndx]->isImm()) &&
11112         "invalid operand");
11113  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11114  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11115  if (argOpers[valArgIndx]->isReg())
11116    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11117  else
11118    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11119  if (regOpcL != X86::MOV32rr)
11120    MIB.addReg(t1);
11121  (*MIB).addOperand(*argOpers[valArgIndx]);
11122  assert(argOpers[valArgIndx + 1]->isReg() ==
11123         argOpers[valArgIndx]->isReg());
11124  assert(argOpers[valArgIndx + 1]->isImm() ==
11125         argOpers[valArgIndx]->isImm());
11126  if (argOpers[valArgIndx + 1]->isReg())
11127    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11128  else
11129    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11130  if (regOpcH != X86::MOV32rr)
11131    MIB.addReg(t2);
11132  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11133
11134  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11135  MIB.addReg(t1);
11136  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11137  MIB.addReg(t2);
11138
11139  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11140  MIB.addReg(t5);
11141  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11142  MIB.addReg(t6);
11143
11144  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11145  for (int i=0; i <= lastAddrIndx; ++i)
11146    (*MIB).addOperand(*argOpers[i]);
11147
11148  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11149  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11150                    bInstr->memoperands_end());
11151
11152  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11153  MIB.addReg(X86::EAX);
11154  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11155  MIB.addReg(X86::EDX);
11156
11157  // insert branch
11158  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11159
11160  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11161  return nextMBB;
11162}
11163
11164// private utility function
11165MachineBasicBlock *
11166X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11167                                                      MachineBasicBlock *MBB,
11168                                                      unsigned cmovOpc) const {
11169  // For the atomic min/max operator, we generate
11170  //   thisMBB:
11171  //   newMBB:
11172  //     ld t1 = [min/max.addr]
11173  //     mov t2 = [min/max.val]
11174  //     cmp  t1, t2
11175  //     cmov[cond] t2 = t1
11176  //     mov EAX = t1
11177  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11178  //     bz   newMBB
11179  //     fallthrough -->nextMBB
11180  //
11181  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11182  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11183  MachineFunction::iterator MBBIter = MBB;
11184  ++MBBIter;
11185
11186  /// First build the CFG
11187  MachineFunction *F = MBB->getParent();
11188  MachineBasicBlock *thisMBB = MBB;
11189  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11190  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11191  F->insert(MBBIter, newMBB);
11192  F->insert(MBBIter, nextMBB);
11193
11194  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11195  nextMBB->splice(nextMBB->begin(), thisMBB,
11196                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11197                  thisMBB->end());
11198  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11199
11200  // Update thisMBB to fall through to newMBB
11201  thisMBB->addSuccessor(newMBB);
11202
11203  // newMBB jumps to newMBB and fall through to nextMBB
11204  newMBB->addSuccessor(nextMBB);
11205  newMBB->addSuccessor(newMBB);
11206
11207  DebugLoc dl = mInstr->getDebugLoc();
11208  // Insert instructions into newMBB based on incoming instruction
11209  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11210         "unexpected number of operands");
11211  MachineOperand& destOper = mInstr->getOperand(0);
11212  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11213  int numArgs = mInstr->getNumOperands() - 1;
11214  for (int i=0; i < numArgs; ++i)
11215    argOpers[i] = &mInstr->getOperand(i+1);
11216
11217  // x86 address has 4 operands: base, index, scale, and displacement
11218  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11219  int valArgIndx = lastAddrIndx + 1;
11220
11221  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11222  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11223  for (int i=0; i <= lastAddrIndx; ++i)
11224    (*MIB).addOperand(*argOpers[i]);
11225
11226  // We only support register and immediate values
11227  assert((argOpers[valArgIndx]->isReg() ||
11228          argOpers[valArgIndx]->isImm()) &&
11229         "invalid operand");
11230
11231  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11232  if (argOpers[valArgIndx]->isReg())
11233    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11234  else
11235    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11236  (*MIB).addOperand(*argOpers[valArgIndx]);
11237
11238  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11239  MIB.addReg(t1);
11240
11241  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11242  MIB.addReg(t1);
11243  MIB.addReg(t2);
11244
11245  // Generate movc
11246  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11247  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11248  MIB.addReg(t2);
11249  MIB.addReg(t1);
11250
11251  // Cmp and exchange if none has modified the memory location
11252  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11253  for (int i=0; i <= lastAddrIndx; ++i)
11254    (*MIB).addOperand(*argOpers[i]);
11255  MIB.addReg(t3);
11256  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11257  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11258                    mInstr->memoperands_end());
11259
11260  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11261  MIB.addReg(X86::EAX);
11262
11263  // insert branch
11264  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11265
11266  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11267  return nextMBB;
11268}
11269
11270// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11271// or XMM0_V32I8 in AVX all of this code can be replaced with that
11272// in the .td file.
11273MachineBasicBlock *
11274X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11275                            unsigned numArgs, bool memArg) const {
11276  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11277         "Target must have SSE4.2 or AVX features enabled");
11278
11279  DebugLoc dl = MI->getDebugLoc();
11280  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11281  unsigned Opc;
11282  if (!Subtarget->hasAVX()) {
11283    if (memArg)
11284      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11285    else
11286      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11287  } else {
11288    if (memArg)
11289      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11290    else
11291      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11292  }
11293
11294  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11295  for (unsigned i = 0; i < numArgs; ++i) {
11296    MachineOperand &Op = MI->getOperand(i+1);
11297    if (!(Op.isReg() && Op.isImplicit()))
11298      MIB.addOperand(Op);
11299  }
11300  BuildMI(*BB, MI, dl,
11301    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11302             MI->getOperand(0).getReg())
11303    .addReg(X86::XMM0);
11304
11305  MI->eraseFromParent();
11306  return BB;
11307}
11308
11309MachineBasicBlock *
11310X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11311  DebugLoc dl = MI->getDebugLoc();
11312  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11313
11314  // Address into RAX/EAX, other two args into ECX, EDX.
11315  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11316  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11317  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11318  for (int i = 0; i < X86::AddrNumOperands; ++i)
11319    MIB.addOperand(MI->getOperand(i));
11320
11321  unsigned ValOps = X86::AddrNumOperands;
11322  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11323    .addReg(MI->getOperand(ValOps).getReg());
11324  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11325    .addReg(MI->getOperand(ValOps+1).getReg());
11326
11327  // The instruction doesn't actually take any operands though.
11328  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11329
11330  MI->eraseFromParent(); // The pseudo is gone now.
11331  return BB;
11332}
11333
11334MachineBasicBlock *
11335X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11336  DebugLoc dl = MI->getDebugLoc();
11337  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11338
11339  // First arg in ECX, the second in EAX.
11340  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11341    .addReg(MI->getOperand(0).getReg());
11342  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11343    .addReg(MI->getOperand(1).getReg());
11344
11345  // The instruction doesn't actually take any operands though.
11346  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11347
11348  MI->eraseFromParent(); // The pseudo is gone now.
11349  return BB;
11350}
11351
11352MachineBasicBlock *
11353X86TargetLowering::EmitVAARG64WithCustomInserter(
11354                   MachineInstr *MI,
11355                   MachineBasicBlock *MBB) const {
11356  // Emit va_arg instruction on X86-64.
11357
11358  // Operands to this pseudo-instruction:
11359  // 0  ) Output        : destination address (reg)
11360  // 1-5) Input         : va_list address (addr, i64mem)
11361  // 6  ) ArgSize       : Size (in bytes) of vararg type
11362  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11363  // 8  ) Align         : Alignment of type
11364  // 9  ) EFLAGS (implicit-def)
11365
11366  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11367  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11368
11369  unsigned DestReg = MI->getOperand(0).getReg();
11370  MachineOperand &Base = MI->getOperand(1);
11371  MachineOperand &Scale = MI->getOperand(2);
11372  MachineOperand &Index = MI->getOperand(3);
11373  MachineOperand &Disp = MI->getOperand(4);
11374  MachineOperand &Segment = MI->getOperand(5);
11375  unsigned ArgSize = MI->getOperand(6).getImm();
11376  unsigned ArgMode = MI->getOperand(7).getImm();
11377  unsigned Align = MI->getOperand(8).getImm();
11378
11379  // Memory Reference
11380  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11381  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11382  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11383
11384  // Machine Information
11385  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11386  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11387  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11388  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11389  DebugLoc DL = MI->getDebugLoc();
11390
11391  // struct va_list {
11392  //   i32   gp_offset
11393  //   i32   fp_offset
11394  //   i64   overflow_area (address)
11395  //   i64   reg_save_area (address)
11396  // }
11397  // sizeof(va_list) = 24
11398  // alignment(va_list) = 8
11399
11400  unsigned TotalNumIntRegs = 6;
11401  unsigned TotalNumXMMRegs = 8;
11402  bool UseGPOffset = (ArgMode == 1);
11403  bool UseFPOffset = (ArgMode == 2);
11404  unsigned MaxOffset = TotalNumIntRegs * 8 +
11405                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11406
11407  /* Align ArgSize to a multiple of 8 */
11408  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11409  bool NeedsAlign = (Align > 8);
11410
11411  MachineBasicBlock *thisMBB = MBB;
11412  MachineBasicBlock *overflowMBB;
11413  MachineBasicBlock *offsetMBB;
11414  MachineBasicBlock *endMBB;
11415
11416  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11417  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11418  unsigned OffsetReg = 0;
11419
11420  if (!UseGPOffset && !UseFPOffset) {
11421    // If we only pull from the overflow region, we don't create a branch.
11422    // We don't need to alter control flow.
11423    OffsetDestReg = 0; // unused
11424    OverflowDestReg = DestReg;
11425
11426    offsetMBB = NULL;
11427    overflowMBB = thisMBB;
11428    endMBB = thisMBB;
11429  } else {
11430    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11431    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11432    // If not, pull from overflow_area. (branch to overflowMBB)
11433    //
11434    //       thisMBB
11435    //         |     .
11436    //         |        .
11437    //     offsetMBB   overflowMBB
11438    //         |        .
11439    //         |     .
11440    //        endMBB
11441
11442    // Registers for the PHI in endMBB
11443    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11444    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11445
11446    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11447    MachineFunction *MF = MBB->getParent();
11448    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11449    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11450    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11451
11452    MachineFunction::iterator MBBIter = MBB;
11453    ++MBBIter;
11454
11455    // Insert the new basic blocks
11456    MF->insert(MBBIter, offsetMBB);
11457    MF->insert(MBBIter, overflowMBB);
11458    MF->insert(MBBIter, endMBB);
11459
11460    // Transfer the remainder of MBB and its successor edges to endMBB.
11461    endMBB->splice(endMBB->begin(), thisMBB,
11462                    llvm::next(MachineBasicBlock::iterator(MI)),
11463                    thisMBB->end());
11464    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11465
11466    // Make offsetMBB and overflowMBB successors of thisMBB
11467    thisMBB->addSuccessor(offsetMBB);
11468    thisMBB->addSuccessor(overflowMBB);
11469
11470    // endMBB is a successor of both offsetMBB and overflowMBB
11471    offsetMBB->addSuccessor(endMBB);
11472    overflowMBB->addSuccessor(endMBB);
11473
11474    // Load the offset value into a register
11475    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11476    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11477      .addOperand(Base)
11478      .addOperand(Scale)
11479      .addOperand(Index)
11480      .addDisp(Disp, UseFPOffset ? 4 : 0)
11481      .addOperand(Segment)
11482      .setMemRefs(MMOBegin, MMOEnd);
11483
11484    // Check if there is enough room left to pull this argument.
11485    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11486      .addReg(OffsetReg)
11487      .addImm(MaxOffset + 8 - ArgSizeA8);
11488
11489    // Branch to "overflowMBB" if offset >= max
11490    // Fall through to "offsetMBB" otherwise
11491    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11492      .addMBB(overflowMBB);
11493  }
11494
11495  // In offsetMBB, emit code to use the reg_save_area.
11496  if (offsetMBB) {
11497    assert(OffsetReg != 0);
11498
11499    // Read the reg_save_area address.
11500    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11501    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11502      .addOperand(Base)
11503      .addOperand(Scale)
11504      .addOperand(Index)
11505      .addDisp(Disp, 16)
11506      .addOperand(Segment)
11507      .setMemRefs(MMOBegin, MMOEnd);
11508
11509    // Zero-extend the offset
11510    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11511      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11512        .addImm(0)
11513        .addReg(OffsetReg)
11514        .addImm(X86::sub_32bit);
11515
11516    // Add the offset to the reg_save_area to get the final address.
11517    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11518      .addReg(OffsetReg64)
11519      .addReg(RegSaveReg);
11520
11521    // Compute the offset for the next argument
11522    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11523    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11524      .addReg(OffsetReg)
11525      .addImm(UseFPOffset ? 16 : 8);
11526
11527    // Store it back into the va_list.
11528    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11529      .addOperand(Base)
11530      .addOperand(Scale)
11531      .addOperand(Index)
11532      .addDisp(Disp, UseFPOffset ? 4 : 0)
11533      .addOperand(Segment)
11534      .addReg(NextOffsetReg)
11535      .setMemRefs(MMOBegin, MMOEnd);
11536
11537    // Jump to endMBB
11538    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11539      .addMBB(endMBB);
11540  }
11541
11542  //
11543  // Emit code to use overflow area
11544  //
11545
11546  // Load the overflow_area address into a register.
11547  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11548  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11549    .addOperand(Base)
11550    .addOperand(Scale)
11551    .addOperand(Index)
11552    .addDisp(Disp, 8)
11553    .addOperand(Segment)
11554    .setMemRefs(MMOBegin, MMOEnd);
11555
11556  // If we need to align it, do so. Otherwise, just copy the address
11557  // to OverflowDestReg.
11558  if (NeedsAlign) {
11559    // Align the overflow address
11560    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11561    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11562
11563    // aligned_addr = (addr + (align-1)) & ~(align-1)
11564    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11565      .addReg(OverflowAddrReg)
11566      .addImm(Align-1);
11567
11568    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11569      .addReg(TmpReg)
11570      .addImm(~(uint64_t)(Align-1));
11571  } else {
11572    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11573      .addReg(OverflowAddrReg);
11574  }
11575
11576  // Compute the next overflow address after this argument.
11577  // (the overflow address should be kept 8-byte aligned)
11578  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11579  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11580    .addReg(OverflowDestReg)
11581    .addImm(ArgSizeA8);
11582
11583  // Store the new overflow address.
11584  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11585    .addOperand(Base)
11586    .addOperand(Scale)
11587    .addOperand(Index)
11588    .addDisp(Disp, 8)
11589    .addOperand(Segment)
11590    .addReg(NextAddrReg)
11591    .setMemRefs(MMOBegin, MMOEnd);
11592
11593  // If we branched, emit the PHI to the front of endMBB.
11594  if (offsetMBB) {
11595    BuildMI(*endMBB, endMBB->begin(), DL,
11596            TII->get(X86::PHI), DestReg)
11597      .addReg(OffsetDestReg).addMBB(offsetMBB)
11598      .addReg(OverflowDestReg).addMBB(overflowMBB);
11599  }
11600
11601  // Erase the pseudo instruction
11602  MI->eraseFromParent();
11603
11604  return endMBB;
11605}
11606
11607MachineBasicBlock *
11608X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11609                                                 MachineInstr *MI,
11610                                                 MachineBasicBlock *MBB) const {
11611  // Emit code to save XMM registers to the stack. The ABI says that the
11612  // number of registers to save is given in %al, so it's theoretically
11613  // possible to do an indirect jump trick to avoid saving all of them,
11614  // however this code takes a simpler approach and just executes all
11615  // of the stores if %al is non-zero. It's less code, and it's probably
11616  // easier on the hardware branch predictor, and stores aren't all that
11617  // expensive anyway.
11618
11619  // Create the new basic blocks. One block contains all the XMM stores,
11620  // and one block is the final destination regardless of whether any
11621  // stores were performed.
11622  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11623  MachineFunction *F = MBB->getParent();
11624  MachineFunction::iterator MBBIter = MBB;
11625  ++MBBIter;
11626  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11627  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11628  F->insert(MBBIter, XMMSaveMBB);
11629  F->insert(MBBIter, EndMBB);
11630
11631  // Transfer the remainder of MBB and its successor edges to EndMBB.
11632  EndMBB->splice(EndMBB->begin(), MBB,
11633                 llvm::next(MachineBasicBlock::iterator(MI)),
11634                 MBB->end());
11635  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11636
11637  // The original block will now fall through to the XMM save block.
11638  MBB->addSuccessor(XMMSaveMBB);
11639  // The XMMSaveMBB will fall through to the end block.
11640  XMMSaveMBB->addSuccessor(EndMBB);
11641
11642  // Now add the instructions.
11643  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11644  DebugLoc DL = MI->getDebugLoc();
11645
11646  unsigned CountReg = MI->getOperand(0).getReg();
11647  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11648  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11649
11650  if (!Subtarget->isTargetWin64()) {
11651    // If %al is 0, branch around the XMM save block.
11652    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11653    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11654    MBB->addSuccessor(EndMBB);
11655  }
11656
11657  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11658  // In the XMM save block, save all the XMM argument registers.
11659  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11660    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11661    MachineMemOperand *MMO =
11662      F->getMachineMemOperand(
11663          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11664        MachineMemOperand::MOStore,
11665        /*Size=*/16, /*Align=*/16);
11666    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11667      .addFrameIndex(RegSaveFrameIndex)
11668      .addImm(/*Scale=*/1)
11669      .addReg(/*IndexReg=*/0)
11670      .addImm(/*Disp=*/Offset)
11671      .addReg(/*Segment=*/0)
11672      .addReg(MI->getOperand(i).getReg())
11673      .addMemOperand(MMO);
11674  }
11675
11676  MI->eraseFromParent();   // The pseudo instruction is gone now.
11677
11678  return EndMBB;
11679}
11680
11681MachineBasicBlock *
11682X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11683                                     MachineBasicBlock *BB) const {
11684  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11685  DebugLoc DL = MI->getDebugLoc();
11686
11687  // To "insert" a SELECT_CC instruction, we actually have to insert the
11688  // diamond control-flow pattern.  The incoming instruction knows the
11689  // destination vreg to set, the condition code register to branch on, the
11690  // true/false values to select between, and a branch opcode to use.
11691  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11692  MachineFunction::iterator It = BB;
11693  ++It;
11694
11695  //  thisMBB:
11696  //  ...
11697  //   TrueVal = ...
11698  //   cmpTY ccX, r1, r2
11699  //   bCC copy1MBB
11700  //   fallthrough --> copy0MBB
11701  MachineBasicBlock *thisMBB = BB;
11702  MachineFunction *F = BB->getParent();
11703  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11704  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11705  F->insert(It, copy0MBB);
11706  F->insert(It, sinkMBB);
11707
11708  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11709  // live into the sink and copy blocks.
11710  if (!MI->killsRegister(X86::EFLAGS)) {
11711    copy0MBB->addLiveIn(X86::EFLAGS);
11712    sinkMBB->addLiveIn(X86::EFLAGS);
11713  }
11714
11715  // Transfer the remainder of BB and its successor edges to sinkMBB.
11716  sinkMBB->splice(sinkMBB->begin(), BB,
11717                  llvm::next(MachineBasicBlock::iterator(MI)),
11718                  BB->end());
11719  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11720
11721  // Add the true and fallthrough blocks as its successors.
11722  BB->addSuccessor(copy0MBB);
11723  BB->addSuccessor(sinkMBB);
11724
11725  // Create the conditional branch instruction.
11726  unsigned Opc =
11727    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11728  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11729
11730  //  copy0MBB:
11731  //   %FalseValue = ...
11732  //   # fallthrough to sinkMBB
11733  copy0MBB->addSuccessor(sinkMBB);
11734
11735  //  sinkMBB:
11736  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11737  //  ...
11738  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11739          TII->get(X86::PHI), MI->getOperand(0).getReg())
11740    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11741    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11742
11743  MI->eraseFromParent();   // The pseudo instruction is gone now.
11744  return sinkMBB;
11745}
11746
11747MachineBasicBlock *
11748X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11749                                        bool Is64Bit) const {
11750  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11751  DebugLoc DL = MI->getDebugLoc();
11752  MachineFunction *MF = BB->getParent();
11753  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11754
11755  assert(EnableSegmentedStacks);
11756
11757  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11758  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11759
11760  // BB:
11761  //  ... [Till the alloca]
11762  // If stacklet is not large enough, jump to mallocMBB
11763  //
11764  // bumpMBB:
11765  //  Allocate by subtracting from RSP
11766  //  Jump to continueMBB
11767  //
11768  // mallocMBB:
11769  //  Allocate by call to runtime
11770  //
11771  // continueMBB:
11772  //  ...
11773  //  [rest of original BB]
11774  //
11775
11776  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11777  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11778  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11779
11780  MachineRegisterInfo &MRI = MF->getRegInfo();
11781  const TargetRegisterClass *AddrRegClass =
11782    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11783
11784  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11785    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11786    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11787    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
11788    sizeVReg = MI->getOperand(1).getReg(),
11789    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11790
11791  MachineFunction::iterator MBBIter = BB;
11792  ++MBBIter;
11793
11794  MF->insert(MBBIter, bumpMBB);
11795  MF->insert(MBBIter, mallocMBB);
11796  MF->insert(MBBIter, continueMBB);
11797
11798  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11799                      (MachineBasicBlock::iterator(MI)), BB->end());
11800  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11801
11802  // Add code to the main basic block to check if the stack limit has been hit,
11803  // and if so, jump to mallocMBB otherwise to bumpMBB.
11804  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11805  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
11806    .addReg(tmpSPVReg).addReg(sizeVReg);
11807  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11808    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11809    .addReg(SPLimitVReg);
11810  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11811
11812  // bumpMBB simply decreases the stack pointer, since we know the current
11813  // stacklet has enough space.
11814  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11815    .addReg(SPLimitVReg);
11816  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11817    .addReg(SPLimitVReg);
11818  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11819
11820  // Calls into a routine in libgcc to allocate more space from the heap.
11821  if (Is64Bit) {
11822    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11823      .addReg(sizeVReg);
11824    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11825    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11826  } else {
11827    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11828      .addImm(12);
11829    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11830    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11831      .addExternalSymbol("__morestack_allocate_stack_space");
11832  }
11833
11834  if (!Is64Bit)
11835    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11836      .addImm(16);
11837
11838  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11839    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11840  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11841
11842  // Set up the CFG correctly.
11843  BB->addSuccessor(bumpMBB);
11844  BB->addSuccessor(mallocMBB);
11845  mallocMBB->addSuccessor(continueMBB);
11846  bumpMBB->addSuccessor(continueMBB);
11847
11848  // Take care of the PHI nodes.
11849  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11850          MI->getOperand(0).getReg())
11851    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11852    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11853
11854  // Delete the original pseudo instruction.
11855  MI->eraseFromParent();
11856
11857  // And we're done.
11858  return continueMBB;
11859}
11860
11861MachineBasicBlock *
11862X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11863                                          MachineBasicBlock *BB) const {
11864  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11865  DebugLoc DL = MI->getDebugLoc();
11866
11867  assert(!Subtarget->isTargetEnvMacho());
11868
11869  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11870  // non-trivial part is impdef of ESP.
11871
11872  if (Subtarget->isTargetWin64()) {
11873    if (Subtarget->isTargetCygMing()) {
11874      // ___chkstk(Mingw64):
11875      // Clobbers R10, R11, RAX and EFLAGS.
11876      // Updates RSP.
11877      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11878        .addExternalSymbol("___chkstk")
11879        .addReg(X86::RAX, RegState::Implicit)
11880        .addReg(X86::RSP, RegState::Implicit)
11881        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11882        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11883        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11884    } else {
11885      // __chkstk(MSVCRT): does not update stack pointer.
11886      // Clobbers R10, R11 and EFLAGS.
11887      // FIXME: RAX(allocated size) might be reused and not killed.
11888      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11889        .addExternalSymbol("__chkstk")
11890        .addReg(X86::RAX, RegState::Implicit)
11891        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11892      // RAX has the offset to subtracted from RSP.
11893      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11894        .addReg(X86::RSP)
11895        .addReg(X86::RAX);
11896    }
11897  } else {
11898    const char *StackProbeSymbol =
11899      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11900
11901    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11902      .addExternalSymbol(StackProbeSymbol)
11903      .addReg(X86::EAX, RegState::Implicit)
11904      .addReg(X86::ESP, RegState::Implicit)
11905      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11906      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11907      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11908  }
11909
11910  MI->eraseFromParent();   // The pseudo instruction is gone now.
11911  return BB;
11912}
11913
11914MachineBasicBlock *
11915X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11916                                      MachineBasicBlock *BB) const {
11917  // This is pretty easy.  We're taking the value that we received from
11918  // our load from the relocation, sticking it in either RDI (x86-64)
11919  // or EAX and doing an indirect call.  The return value will then
11920  // be in the normal return register.
11921  const X86InstrInfo *TII
11922    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11923  DebugLoc DL = MI->getDebugLoc();
11924  MachineFunction *F = BB->getParent();
11925
11926  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11927  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11928
11929  if (Subtarget->is64Bit()) {
11930    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11931                                      TII->get(X86::MOV64rm), X86::RDI)
11932    .addReg(X86::RIP)
11933    .addImm(0).addReg(0)
11934    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11935                      MI->getOperand(3).getTargetFlags())
11936    .addReg(0);
11937    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11938    addDirectMem(MIB, X86::RDI);
11939  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11940    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11941                                      TII->get(X86::MOV32rm), X86::EAX)
11942    .addReg(0)
11943    .addImm(0).addReg(0)
11944    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11945                      MI->getOperand(3).getTargetFlags())
11946    .addReg(0);
11947    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11948    addDirectMem(MIB, X86::EAX);
11949  } else {
11950    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11951                                      TII->get(X86::MOV32rm), X86::EAX)
11952    .addReg(TII->getGlobalBaseReg(F))
11953    .addImm(0).addReg(0)
11954    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11955                      MI->getOperand(3).getTargetFlags())
11956    .addReg(0);
11957    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11958    addDirectMem(MIB, X86::EAX);
11959  }
11960
11961  MI->eraseFromParent(); // The pseudo instruction is gone now.
11962  return BB;
11963}
11964
11965MachineBasicBlock *
11966X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11967                                               MachineBasicBlock *BB) const {
11968  switch (MI->getOpcode()) {
11969  default: assert(0 && "Unexpected instr type to insert");
11970  case X86::TAILJMPd64:
11971  case X86::TAILJMPr64:
11972  case X86::TAILJMPm64:
11973    assert(0 && "TAILJMP64 would not be touched here.");
11974  case X86::TCRETURNdi64:
11975  case X86::TCRETURNri64:
11976  case X86::TCRETURNmi64:
11977    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11978    // On AMD64, additional defs should be added before register allocation.
11979    if (!Subtarget->isTargetWin64()) {
11980      MI->addRegisterDefined(X86::RSI);
11981      MI->addRegisterDefined(X86::RDI);
11982      MI->addRegisterDefined(X86::XMM6);
11983      MI->addRegisterDefined(X86::XMM7);
11984      MI->addRegisterDefined(X86::XMM8);
11985      MI->addRegisterDefined(X86::XMM9);
11986      MI->addRegisterDefined(X86::XMM10);
11987      MI->addRegisterDefined(X86::XMM11);
11988      MI->addRegisterDefined(X86::XMM12);
11989      MI->addRegisterDefined(X86::XMM13);
11990      MI->addRegisterDefined(X86::XMM14);
11991      MI->addRegisterDefined(X86::XMM15);
11992    }
11993    return BB;
11994  case X86::WIN_ALLOCA:
11995    return EmitLoweredWinAlloca(MI, BB);
11996  case X86::SEG_ALLOCA_32:
11997    return EmitLoweredSegAlloca(MI, BB, false);
11998  case X86::SEG_ALLOCA_64:
11999    return EmitLoweredSegAlloca(MI, BB, true);
12000  case X86::TLSCall_32:
12001  case X86::TLSCall_64:
12002    return EmitLoweredTLSCall(MI, BB);
12003  case X86::CMOV_GR8:
12004  case X86::CMOV_FR32:
12005  case X86::CMOV_FR64:
12006  case X86::CMOV_V4F32:
12007  case X86::CMOV_V2F64:
12008  case X86::CMOV_V2I64:
12009  case X86::CMOV_V8F32:
12010  case X86::CMOV_V4F64:
12011  case X86::CMOV_V4I64:
12012  case X86::CMOV_GR16:
12013  case X86::CMOV_GR32:
12014  case X86::CMOV_RFP32:
12015  case X86::CMOV_RFP64:
12016  case X86::CMOV_RFP80:
12017    return EmitLoweredSelect(MI, BB);
12018
12019  case X86::FP32_TO_INT16_IN_MEM:
12020  case X86::FP32_TO_INT32_IN_MEM:
12021  case X86::FP32_TO_INT64_IN_MEM:
12022  case X86::FP64_TO_INT16_IN_MEM:
12023  case X86::FP64_TO_INT32_IN_MEM:
12024  case X86::FP64_TO_INT64_IN_MEM:
12025  case X86::FP80_TO_INT16_IN_MEM:
12026  case X86::FP80_TO_INT32_IN_MEM:
12027  case X86::FP80_TO_INT64_IN_MEM: {
12028    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12029    DebugLoc DL = MI->getDebugLoc();
12030
12031    // Change the floating point control register to use "round towards zero"
12032    // mode when truncating to an integer value.
12033    MachineFunction *F = BB->getParent();
12034    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12035    addFrameReference(BuildMI(*BB, MI, DL,
12036                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12037
12038    // Load the old value of the high byte of the control word...
12039    unsigned OldCW =
12040      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12041    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12042                      CWFrameIdx);
12043
12044    // Set the high part to be round to zero...
12045    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12046      .addImm(0xC7F);
12047
12048    // Reload the modified control word now...
12049    addFrameReference(BuildMI(*BB, MI, DL,
12050                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12051
12052    // Restore the memory image of control word to original value
12053    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12054      .addReg(OldCW);
12055
12056    // Get the X86 opcode to use.
12057    unsigned Opc;
12058    switch (MI->getOpcode()) {
12059    default: llvm_unreachable("illegal opcode!");
12060    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12061    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12062    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12063    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12064    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12065    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12066    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12067    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12068    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12069    }
12070
12071    X86AddressMode AM;
12072    MachineOperand &Op = MI->getOperand(0);
12073    if (Op.isReg()) {
12074      AM.BaseType = X86AddressMode::RegBase;
12075      AM.Base.Reg = Op.getReg();
12076    } else {
12077      AM.BaseType = X86AddressMode::FrameIndexBase;
12078      AM.Base.FrameIndex = Op.getIndex();
12079    }
12080    Op = MI->getOperand(1);
12081    if (Op.isImm())
12082      AM.Scale = Op.getImm();
12083    Op = MI->getOperand(2);
12084    if (Op.isImm())
12085      AM.IndexReg = Op.getImm();
12086    Op = MI->getOperand(3);
12087    if (Op.isGlobal()) {
12088      AM.GV = Op.getGlobal();
12089    } else {
12090      AM.Disp = Op.getImm();
12091    }
12092    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12093                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12094
12095    // Reload the original control word now.
12096    addFrameReference(BuildMI(*BB, MI, DL,
12097                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12098
12099    MI->eraseFromParent();   // The pseudo instruction is gone now.
12100    return BB;
12101  }
12102    // String/text processing lowering.
12103  case X86::PCMPISTRM128REG:
12104  case X86::VPCMPISTRM128REG:
12105    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12106  case X86::PCMPISTRM128MEM:
12107  case X86::VPCMPISTRM128MEM:
12108    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12109  case X86::PCMPESTRM128REG:
12110  case X86::VPCMPESTRM128REG:
12111    return EmitPCMP(MI, BB, 5, false /* in mem */);
12112  case X86::PCMPESTRM128MEM:
12113  case X86::VPCMPESTRM128MEM:
12114    return EmitPCMP(MI, BB, 5, true /* in mem */);
12115
12116    // Thread synchronization.
12117  case X86::MONITOR:
12118    return EmitMonitor(MI, BB);
12119  case X86::MWAIT:
12120    return EmitMwait(MI, BB);
12121
12122    // Atomic Lowering.
12123  case X86::ATOMAND32:
12124    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12125                                               X86::AND32ri, X86::MOV32rm,
12126                                               X86::LCMPXCHG32,
12127                                               X86::NOT32r, X86::EAX,
12128                                               X86::GR32RegisterClass);
12129  case X86::ATOMOR32:
12130    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12131                                               X86::OR32ri, X86::MOV32rm,
12132                                               X86::LCMPXCHG32,
12133                                               X86::NOT32r, X86::EAX,
12134                                               X86::GR32RegisterClass);
12135  case X86::ATOMXOR32:
12136    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12137                                               X86::XOR32ri, X86::MOV32rm,
12138                                               X86::LCMPXCHG32,
12139                                               X86::NOT32r, X86::EAX,
12140                                               X86::GR32RegisterClass);
12141  case X86::ATOMNAND32:
12142    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12143                                               X86::AND32ri, X86::MOV32rm,
12144                                               X86::LCMPXCHG32,
12145                                               X86::NOT32r, X86::EAX,
12146                                               X86::GR32RegisterClass, true);
12147  case X86::ATOMMIN32:
12148    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12149  case X86::ATOMMAX32:
12150    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12151  case X86::ATOMUMIN32:
12152    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12153  case X86::ATOMUMAX32:
12154    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12155
12156  case X86::ATOMAND16:
12157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12158                                               X86::AND16ri, X86::MOV16rm,
12159                                               X86::LCMPXCHG16,
12160                                               X86::NOT16r, X86::AX,
12161                                               X86::GR16RegisterClass);
12162  case X86::ATOMOR16:
12163    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12164                                               X86::OR16ri, X86::MOV16rm,
12165                                               X86::LCMPXCHG16,
12166                                               X86::NOT16r, X86::AX,
12167                                               X86::GR16RegisterClass);
12168  case X86::ATOMXOR16:
12169    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12170                                               X86::XOR16ri, X86::MOV16rm,
12171                                               X86::LCMPXCHG16,
12172                                               X86::NOT16r, X86::AX,
12173                                               X86::GR16RegisterClass);
12174  case X86::ATOMNAND16:
12175    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12176                                               X86::AND16ri, X86::MOV16rm,
12177                                               X86::LCMPXCHG16,
12178                                               X86::NOT16r, X86::AX,
12179                                               X86::GR16RegisterClass, true);
12180  case X86::ATOMMIN16:
12181    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12182  case X86::ATOMMAX16:
12183    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12184  case X86::ATOMUMIN16:
12185    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12186  case X86::ATOMUMAX16:
12187    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12188
12189  case X86::ATOMAND8:
12190    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12191                                               X86::AND8ri, X86::MOV8rm,
12192                                               X86::LCMPXCHG8,
12193                                               X86::NOT8r, X86::AL,
12194                                               X86::GR8RegisterClass);
12195  case X86::ATOMOR8:
12196    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12197                                               X86::OR8ri, X86::MOV8rm,
12198                                               X86::LCMPXCHG8,
12199                                               X86::NOT8r, X86::AL,
12200                                               X86::GR8RegisterClass);
12201  case X86::ATOMXOR8:
12202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12203                                               X86::XOR8ri, X86::MOV8rm,
12204                                               X86::LCMPXCHG8,
12205                                               X86::NOT8r, X86::AL,
12206                                               X86::GR8RegisterClass);
12207  case X86::ATOMNAND8:
12208    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12209                                               X86::AND8ri, X86::MOV8rm,
12210                                               X86::LCMPXCHG8,
12211                                               X86::NOT8r, X86::AL,
12212                                               X86::GR8RegisterClass, true);
12213  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12214  // This group is for 64-bit host.
12215  case X86::ATOMAND64:
12216    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12217                                               X86::AND64ri32, X86::MOV64rm,
12218                                               X86::LCMPXCHG64,
12219                                               X86::NOT64r, X86::RAX,
12220                                               X86::GR64RegisterClass);
12221  case X86::ATOMOR64:
12222    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12223                                               X86::OR64ri32, X86::MOV64rm,
12224                                               X86::LCMPXCHG64,
12225                                               X86::NOT64r, X86::RAX,
12226                                               X86::GR64RegisterClass);
12227  case X86::ATOMXOR64:
12228    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12229                                               X86::XOR64ri32, X86::MOV64rm,
12230                                               X86::LCMPXCHG64,
12231                                               X86::NOT64r, X86::RAX,
12232                                               X86::GR64RegisterClass);
12233  case X86::ATOMNAND64:
12234    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12235                                               X86::AND64ri32, X86::MOV64rm,
12236                                               X86::LCMPXCHG64,
12237                                               X86::NOT64r, X86::RAX,
12238                                               X86::GR64RegisterClass, true);
12239  case X86::ATOMMIN64:
12240    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12241  case X86::ATOMMAX64:
12242    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12243  case X86::ATOMUMIN64:
12244    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12245  case X86::ATOMUMAX64:
12246    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12247
12248  // This group does 64-bit operations on a 32-bit host.
12249  case X86::ATOMAND6432:
12250    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12251                                               X86::AND32rr, X86::AND32rr,
12252                                               X86::AND32ri, X86::AND32ri,
12253                                               false);
12254  case X86::ATOMOR6432:
12255    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12256                                               X86::OR32rr, X86::OR32rr,
12257                                               X86::OR32ri, X86::OR32ri,
12258                                               false);
12259  case X86::ATOMXOR6432:
12260    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12261                                               X86::XOR32rr, X86::XOR32rr,
12262                                               X86::XOR32ri, X86::XOR32ri,
12263                                               false);
12264  case X86::ATOMNAND6432:
12265    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12266                                               X86::AND32rr, X86::AND32rr,
12267                                               X86::AND32ri, X86::AND32ri,
12268                                               true);
12269  case X86::ATOMADD6432:
12270    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12271                                               X86::ADD32rr, X86::ADC32rr,
12272                                               X86::ADD32ri, X86::ADC32ri,
12273                                               false);
12274  case X86::ATOMSUB6432:
12275    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12276                                               X86::SUB32rr, X86::SBB32rr,
12277                                               X86::SUB32ri, X86::SBB32ri,
12278                                               false);
12279  case X86::ATOMSWAP6432:
12280    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12281                                               X86::MOV32rr, X86::MOV32rr,
12282                                               X86::MOV32ri, X86::MOV32ri,
12283                                               false);
12284  case X86::VASTART_SAVE_XMM_REGS:
12285    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12286
12287  case X86::VAARG_64:
12288    return EmitVAARG64WithCustomInserter(MI, BB);
12289  }
12290}
12291
12292//===----------------------------------------------------------------------===//
12293//                           X86 Optimization Hooks
12294//===----------------------------------------------------------------------===//
12295
12296void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12297                                                       const APInt &Mask,
12298                                                       APInt &KnownZero,
12299                                                       APInt &KnownOne,
12300                                                       const SelectionDAG &DAG,
12301                                                       unsigned Depth) const {
12302  unsigned Opc = Op.getOpcode();
12303  assert((Opc >= ISD::BUILTIN_OP_END ||
12304          Opc == ISD::INTRINSIC_WO_CHAIN ||
12305          Opc == ISD::INTRINSIC_W_CHAIN ||
12306          Opc == ISD::INTRINSIC_VOID) &&
12307         "Should use MaskedValueIsZero if you don't know whether Op"
12308         " is a target node!");
12309
12310  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12311  switch (Opc) {
12312  default: break;
12313  case X86ISD::ADD:
12314  case X86ISD::SUB:
12315  case X86ISD::ADC:
12316  case X86ISD::SBB:
12317  case X86ISD::SMUL:
12318  case X86ISD::UMUL:
12319  case X86ISD::INC:
12320  case X86ISD::DEC:
12321  case X86ISD::OR:
12322  case X86ISD::XOR:
12323  case X86ISD::AND:
12324    // These nodes' second result is a boolean.
12325    if (Op.getResNo() == 0)
12326      break;
12327    // Fallthrough
12328  case X86ISD::SETCC:
12329    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12330                                       Mask.getBitWidth() - 1);
12331    break;
12332  case ISD::INTRINSIC_WO_CHAIN: {
12333    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12334    unsigned NumLoBits = 0;
12335    switch (IntId) {
12336    default: break;
12337    case Intrinsic::x86_sse_movmsk_ps:
12338    case Intrinsic::x86_avx_movmsk_ps_256:
12339    case Intrinsic::x86_sse2_movmsk_pd:
12340    case Intrinsic::x86_avx_movmsk_pd_256:
12341    case Intrinsic::x86_mmx_pmovmskb:
12342    case Intrinsic::x86_sse2_pmovmskb_128: {
12343      // High bits of movmskp{s|d}, pmovmskb are known zero.
12344      switch (IntId) {
12345        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12346        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12347        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12348        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12349        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12350        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12351      }
12352      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12353                                        Mask.getBitWidth() - NumLoBits);
12354      break;
12355    }
12356    }
12357    break;
12358  }
12359  }
12360}
12361
12362unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12363                                                         unsigned Depth) const {
12364  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12365  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12366    return Op.getValueType().getScalarType().getSizeInBits();
12367
12368  // Fallback case.
12369  return 1;
12370}
12371
12372/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12373/// node is a GlobalAddress + offset.
12374bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12375                                       const GlobalValue* &GA,
12376                                       int64_t &Offset) const {
12377  if (N->getOpcode() == X86ISD::Wrapper) {
12378    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12379      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12380      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12381      return true;
12382    }
12383  }
12384  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12385}
12386
12387/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12388/// same as extracting the high 128-bit part of 256-bit vector and then
12389/// inserting the result into the low part of a new 256-bit vector
12390static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12391  EVT VT = SVOp->getValueType(0);
12392  int NumElems = VT.getVectorNumElements();
12393
12394  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12395  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12396    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12397        SVOp->getMaskElt(j) >= 0)
12398      return false;
12399
12400  return true;
12401}
12402
12403/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12404/// same as extracting the low 128-bit part of 256-bit vector and then
12405/// inserting the result into the high part of a new 256-bit vector
12406static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12407  EVT VT = SVOp->getValueType(0);
12408  int NumElems = VT.getVectorNumElements();
12409
12410  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12411  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12412    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12413        SVOp->getMaskElt(j) >= 0)
12414      return false;
12415
12416  return true;
12417}
12418
12419/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12420static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12421                                        TargetLowering::DAGCombinerInfo &DCI) {
12422  DebugLoc dl = N->getDebugLoc();
12423  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12424  SDValue V1 = SVOp->getOperand(0);
12425  SDValue V2 = SVOp->getOperand(1);
12426  EVT VT = SVOp->getValueType(0);
12427  int NumElems = VT.getVectorNumElements();
12428
12429  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12430      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12431    //
12432    //                   0,0,0,...
12433    //                      |
12434    //    V      UNDEF    BUILD_VECTOR    UNDEF
12435    //     \      /           \           /
12436    //  CONCAT_VECTOR         CONCAT_VECTOR
12437    //         \                  /
12438    //          \                /
12439    //          RESULT: V + zero extended
12440    //
12441    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12442        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12443        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12444      return SDValue();
12445
12446    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12447      return SDValue();
12448
12449    // To match the shuffle mask, the first half of the mask should
12450    // be exactly the first vector, and all the rest a splat with the
12451    // first element of the second one.
12452    for (int i = 0; i < NumElems/2; ++i)
12453      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12454          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12455        return SDValue();
12456
12457    // Emit a zeroed vector and insert the desired subvector on its
12458    // first half.
12459    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12460    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12461                         DAG.getConstant(0, MVT::i32), DAG, dl);
12462    return DCI.CombineTo(N, InsV);
12463  }
12464
12465  //===--------------------------------------------------------------------===//
12466  // Combine some shuffles into subvector extracts and inserts:
12467  //
12468
12469  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12470  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12471    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12472                                    DAG, dl);
12473    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12474                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12475    return DCI.CombineTo(N, InsV);
12476  }
12477
12478  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12479  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12480    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12481    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12482                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12483    return DCI.CombineTo(N, InsV);
12484  }
12485
12486  return SDValue();
12487}
12488
12489/// PerformShuffleCombine - Performs several different shuffle combines.
12490static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12491                                     TargetLowering::DAGCombinerInfo &DCI,
12492                                     const X86Subtarget *Subtarget) {
12493  DebugLoc dl = N->getDebugLoc();
12494  EVT VT = N->getValueType(0);
12495
12496  // Don't create instructions with illegal types after legalize types has run.
12497  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12498  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12499    return SDValue();
12500
12501  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12502  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12503      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12504    return PerformShuffleCombine256(N, DAG, DCI);
12505
12506  // Only handle 128 wide vector from here on.
12507  if (VT.getSizeInBits() != 128)
12508    return SDValue();
12509
12510  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12511  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12512  // consecutive, non-overlapping, and in the right order.
12513  SmallVector<SDValue, 16> Elts;
12514  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12515    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12516
12517  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12518}
12519
12520/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12521/// generation and convert it from being a bunch of shuffles and extracts
12522/// to a simple store and scalar loads to extract the elements.
12523static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12524                                                const TargetLowering &TLI) {
12525  SDValue InputVector = N->getOperand(0);
12526
12527  // Only operate on vectors of 4 elements, where the alternative shuffling
12528  // gets to be more expensive.
12529  if (InputVector.getValueType() != MVT::v4i32)
12530    return SDValue();
12531
12532  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12533  // single use which is a sign-extend or zero-extend, and all elements are
12534  // used.
12535  SmallVector<SDNode *, 4> Uses;
12536  unsigned ExtractedElements = 0;
12537  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12538       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12539    if (UI.getUse().getResNo() != InputVector.getResNo())
12540      return SDValue();
12541
12542    SDNode *Extract = *UI;
12543    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12544      return SDValue();
12545
12546    if (Extract->getValueType(0) != MVT::i32)
12547      return SDValue();
12548    if (!Extract->hasOneUse())
12549      return SDValue();
12550    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12551        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12552      return SDValue();
12553    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12554      return SDValue();
12555
12556    // Record which element was extracted.
12557    ExtractedElements |=
12558      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12559
12560    Uses.push_back(Extract);
12561  }
12562
12563  // If not all the elements were used, this may not be worthwhile.
12564  if (ExtractedElements != 15)
12565    return SDValue();
12566
12567  // Ok, we've now decided to do the transformation.
12568  DebugLoc dl = InputVector.getDebugLoc();
12569
12570  // Store the value to a temporary stack slot.
12571  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12572  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12573                            MachinePointerInfo(), false, false, 0);
12574
12575  // Replace each use (extract) with a load of the appropriate element.
12576  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12577       UE = Uses.end(); UI != UE; ++UI) {
12578    SDNode *Extract = *UI;
12579
12580    // cOMpute the element's address.
12581    SDValue Idx = Extract->getOperand(1);
12582    unsigned EltSize =
12583        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12584    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12585    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12586
12587    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12588                                     StackPtr, OffsetVal);
12589
12590    // Load the scalar.
12591    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12592                                     ScalarAddr, MachinePointerInfo(),
12593                                     false, false, 0);
12594
12595    // Replace the exact with the load.
12596    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12597  }
12598
12599  // The replacement was made in place; don't return anything.
12600  return SDValue();
12601}
12602
12603/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12604/// nodes.
12605static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12606                                    const X86Subtarget *Subtarget) {
12607  DebugLoc DL = N->getDebugLoc();
12608  SDValue Cond = N->getOperand(0);
12609  // Get the LHS/RHS of the select.
12610  SDValue LHS = N->getOperand(1);
12611  SDValue RHS = N->getOperand(2);
12612  EVT VT = LHS.getValueType();
12613
12614  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12615  // instructions match the semantics of the common C idiom x<y?x:y but not
12616  // x<=y?x:y, because of how they handle negative zero (which can be
12617  // ignored in unsafe-math mode).
12618  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12619      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12620      (Subtarget->hasXMMInt() ||
12621       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12622    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12623
12624    unsigned Opcode = 0;
12625    // Check for x CC y ? x : y.
12626    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12627        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12628      switch (CC) {
12629      default: break;
12630      case ISD::SETULT:
12631        // Converting this to a min would handle NaNs incorrectly, and swapping
12632        // the operands would cause it to handle comparisons between positive
12633        // and negative zero incorrectly.
12634        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12635          if (!UnsafeFPMath &&
12636              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12637            break;
12638          std::swap(LHS, RHS);
12639        }
12640        Opcode = X86ISD::FMIN;
12641        break;
12642      case ISD::SETOLE:
12643        // Converting this to a min would handle comparisons between positive
12644        // and negative zero incorrectly.
12645        if (!UnsafeFPMath &&
12646            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12647          break;
12648        Opcode = X86ISD::FMIN;
12649        break;
12650      case ISD::SETULE:
12651        // Converting this to a min would handle both negative zeros and NaNs
12652        // incorrectly, but we can swap the operands to fix both.
12653        std::swap(LHS, RHS);
12654      case ISD::SETOLT:
12655      case ISD::SETLT:
12656      case ISD::SETLE:
12657        Opcode = X86ISD::FMIN;
12658        break;
12659
12660      case ISD::SETOGE:
12661        // Converting this to a max would handle comparisons between positive
12662        // and negative zero incorrectly.
12663        if (!UnsafeFPMath &&
12664            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12665          break;
12666        Opcode = X86ISD::FMAX;
12667        break;
12668      case ISD::SETUGT:
12669        // Converting this to a max would handle NaNs incorrectly, and swapping
12670        // the operands would cause it to handle comparisons between positive
12671        // and negative zero incorrectly.
12672        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12673          if (!UnsafeFPMath &&
12674              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12675            break;
12676          std::swap(LHS, RHS);
12677        }
12678        Opcode = X86ISD::FMAX;
12679        break;
12680      case ISD::SETUGE:
12681        // Converting this to a max would handle both negative zeros and NaNs
12682        // incorrectly, but we can swap the operands to fix both.
12683        std::swap(LHS, RHS);
12684      case ISD::SETOGT:
12685      case ISD::SETGT:
12686      case ISD::SETGE:
12687        Opcode = X86ISD::FMAX;
12688        break;
12689      }
12690    // Check for x CC y ? y : x -- a min/max with reversed arms.
12691    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12692               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12693      switch (CC) {
12694      default: break;
12695      case ISD::SETOGE:
12696        // Converting this to a min would handle comparisons between positive
12697        // and negative zero incorrectly, and swapping the operands would
12698        // cause it to handle NaNs incorrectly.
12699        if (!UnsafeFPMath &&
12700            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12701          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12702            break;
12703          std::swap(LHS, RHS);
12704        }
12705        Opcode = X86ISD::FMIN;
12706        break;
12707      case ISD::SETUGT:
12708        // Converting this to a min would handle NaNs incorrectly.
12709        if (!UnsafeFPMath &&
12710            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12711          break;
12712        Opcode = X86ISD::FMIN;
12713        break;
12714      case ISD::SETUGE:
12715        // Converting this to a min would handle both negative zeros and NaNs
12716        // incorrectly, but we can swap the operands to fix both.
12717        std::swap(LHS, RHS);
12718      case ISD::SETOGT:
12719      case ISD::SETGT:
12720      case ISD::SETGE:
12721        Opcode = X86ISD::FMIN;
12722        break;
12723
12724      case ISD::SETULT:
12725        // Converting this to a max would handle NaNs incorrectly.
12726        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12727          break;
12728        Opcode = X86ISD::FMAX;
12729        break;
12730      case ISD::SETOLE:
12731        // Converting this to a max would handle comparisons between positive
12732        // and negative zero incorrectly, and swapping the operands would
12733        // cause it to handle NaNs incorrectly.
12734        if (!UnsafeFPMath &&
12735            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12736          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12737            break;
12738          std::swap(LHS, RHS);
12739        }
12740        Opcode = X86ISD::FMAX;
12741        break;
12742      case ISD::SETULE:
12743        // Converting this to a max would handle both negative zeros and NaNs
12744        // incorrectly, but we can swap the operands to fix both.
12745        std::swap(LHS, RHS);
12746      case ISD::SETOLT:
12747      case ISD::SETLT:
12748      case ISD::SETLE:
12749        Opcode = X86ISD::FMAX;
12750        break;
12751      }
12752    }
12753
12754    if (Opcode)
12755      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12756  }
12757
12758  // If this is a select between two integer constants, try to do some
12759  // optimizations.
12760  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12761    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12762      // Don't do this for crazy integer types.
12763      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12764        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12765        // so that TrueC (the true value) is larger than FalseC.
12766        bool NeedsCondInvert = false;
12767
12768        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12769            // Efficiently invertible.
12770            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12771             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12772              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12773          NeedsCondInvert = true;
12774          std::swap(TrueC, FalseC);
12775        }
12776
12777        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12778        if (FalseC->getAPIntValue() == 0 &&
12779            TrueC->getAPIntValue().isPowerOf2()) {
12780          if (NeedsCondInvert) // Invert the condition if needed.
12781            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12782                               DAG.getConstant(1, Cond.getValueType()));
12783
12784          // Zero extend the condition if needed.
12785          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12786
12787          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12788          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12789                             DAG.getConstant(ShAmt, MVT::i8));
12790        }
12791
12792        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12793        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12794          if (NeedsCondInvert) // Invert the condition if needed.
12795            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12796                               DAG.getConstant(1, Cond.getValueType()));
12797
12798          // Zero extend the condition if needed.
12799          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12800                             FalseC->getValueType(0), Cond);
12801          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12802                             SDValue(FalseC, 0));
12803        }
12804
12805        // Optimize cases that will turn into an LEA instruction.  This requires
12806        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12807        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12808          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12809          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12810
12811          bool isFastMultiplier = false;
12812          if (Diff < 10) {
12813            switch ((unsigned char)Diff) {
12814              default: break;
12815              case 1:  // result = add base, cond
12816              case 2:  // result = lea base(    , cond*2)
12817              case 3:  // result = lea base(cond, cond*2)
12818              case 4:  // result = lea base(    , cond*4)
12819              case 5:  // result = lea base(cond, cond*4)
12820              case 8:  // result = lea base(    , cond*8)
12821              case 9:  // result = lea base(cond, cond*8)
12822                isFastMultiplier = true;
12823                break;
12824            }
12825          }
12826
12827          if (isFastMultiplier) {
12828            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12829            if (NeedsCondInvert) // Invert the condition if needed.
12830              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12831                                 DAG.getConstant(1, Cond.getValueType()));
12832
12833            // Zero extend the condition if needed.
12834            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12835                               Cond);
12836            // Scale the condition by the difference.
12837            if (Diff != 1)
12838              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12839                                 DAG.getConstant(Diff, Cond.getValueType()));
12840
12841            // Add the base if non-zero.
12842            if (FalseC->getAPIntValue() != 0)
12843              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12844                                 SDValue(FalseC, 0));
12845            return Cond;
12846          }
12847        }
12848      }
12849  }
12850
12851  return SDValue();
12852}
12853
12854/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12855static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12856                                  TargetLowering::DAGCombinerInfo &DCI) {
12857  DebugLoc DL = N->getDebugLoc();
12858
12859  // If the flag operand isn't dead, don't touch this CMOV.
12860  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12861    return SDValue();
12862
12863  SDValue FalseOp = N->getOperand(0);
12864  SDValue TrueOp = N->getOperand(1);
12865  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12866  SDValue Cond = N->getOperand(3);
12867  if (CC == X86::COND_E || CC == X86::COND_NE) {
12868    switch (Cond.getOpcode()) {
12869    default: break;
12870    case X86ISD::BSR:
12871    case X86ISD::BSF:
12872      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12873      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12874        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12875    }
12876  }
12877
12878  // If this is a select between two integer constants, try to do some
12879  // optimizations.  Note that the operands are ordered the opposite of SELECT
12880  // operands.
12881  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12882    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12883      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12884      // larger than FalseC (the false value).
12885      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12886        CC = X86::GetOppositeBranchCondition(CC);
12887        std::swap(TrueC, FalseC);
12888      }
12889
12890      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12891      // This is efficient for any integer data type (including i8/i16) and
12892      // shift amount.
12893      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12894        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12895                           DAG.getConstant(CC, MVT::i8), Cond);
12896
12897        // Zero extend the condition if needed.
12898        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12899
12900        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12901        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12902                           DAG.getConstant(ShAmt, MVT::i8));
12903        if (N->getNumValues() == 2)  // Dead flag value?
12904          return DCI.CombineTo(N, Cond, SDValue());
12905        return Cond;
12906      }
12907
12908      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12909      // for any integer data type, including i8/i16.
12910      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12911        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12912                           DAG.getConstant(CC, MVT::i8), Cond);
12913
12914        // Zero extend the condition if needed.
12915        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12916                           FalseC->getValueType(0), Cond);
12917        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12918                           SDValue(FalseC, 0));
12919
12920        if (N->getNumValues() == 2)  // Dead flag value?
12921          return DCI.CombineTo(N, Cond, SDValue());
12922        return Cond;
12923      }
12924
12925      // Optimize cases that will turn into an LEA instruction.  This requires
12926      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12927      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12928        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12929        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12930
12931        bool isFastMultiplier = false;
12932        if (Diff < 10) {
12933          switch ((unsigned char)Diff) {
12934          default: break;
12935          case 1:  // result = add base, cond
12936          case 2:  // result = lea base(    , cond*2)
12937          case 3:  // result = lea base(cond, cond*2)
12938          case 4:  // result = lea base(    , cond*4)
12939          case 5:  // result = lea base(cond, cond*4)
12940          case 8:  // result = lea base(    , cond*8)
12941          case 9:  // result = lea base(cond, cond*8)
12942            isFastMultiplier = true;
12943            break;
12944          }
12945        }
12946
12947        if (isFastMultiplier) {
12948          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12949          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12950                             DAG.getConstant(CC, MVT::i8), Cond);
12951          // Zero extend the condition if needed.
12952          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12953                             Cond);
12954          // Scale the condition by the difference.
12955          if (Diff != 1)
12956            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12957                               DAG.getConstant(Diff, Cond.getValueType()));
12958
12959          // Add the base if non-zero.
12960          if (FalseC->getAPIntValue() != 0)
12961            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12962                               SDValue(FalseC, 0));
12963          if (N->getNumValues() == 2)  // Dead flag value?
12964            return DCI.CombineTo(N, Cond, SDValue());
12965          return Cond;
12966        }
12967      }
12968    }
12969  }
12970  return SDValue();
12971}
12972
12973
12974/// PerformMulCombine - Optimize a single multiply with constant into two
12975/// in order to implement it with two cheaper instructions, e.g.
12976/// LEA + SHL, LEA + LEA.
12977static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12978                                 TargetLowering::DAGCombinerInfo &DCI) {
12979  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12980    return SDValue();
12981
12982  EVT VT = N->getValueType(0);
12983  if (VT != MVT::i64)
12984    return SDValue();
12985
12986  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12987  if (!C)
12988    return SDValue();
12989  uint64_t MulAmt = C->getZExtValue();
12990  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12991    return SDValue();
12992
12993  uint64_t MulAmt1 = 0;
12994  uint64_t MulAmt2 = 0;
12995  if ((MulAmt % 9) == 0) {
12996    MulAmt1 = 9;
12997    MulAmt2 = MulAmt / 9;
12998  } else if ((MulAmt % 5) == 0) {
12999    MulAmt1 = 5;
13000    MulAmt2 = MulAmt / 5;
13001  } else if ((MulAmt % 3) == 0) {
13002    MulAmt1 = 3;
13003    MulAmt2 = MulAmt / 3;
13004  }
13005  if (MulAmt2 &&
13006      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13007    DebugLoc DL = N->getDebugLoc();
13008
13009    if (isPowerOf2_64(MulAmt2) &&
13010        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13011      // If second multiplifer is pow2, issue it first. We want the multiply by
13012      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13013      // is an add.
13014      std::swap(MulAmt1, MulAmt2);
13015
13016    SDValue NewMul;
13017    if (isPowerOf2_64(MulAmt1))
13018      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13019                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13020    else
13021      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13022                           DAG.getConstant(MulAmt1, VT));
13023
13024    if (isPowerOf2_64(MulAmt2))
13025      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13026                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13027    else
13028      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13029                           DAG.getConstant(MulAmt2, VT));
13030
13031    // Do not add new nodes to DAG combiner worklist.
13032    DCI.CombineTo(N, NewMul, false);
13033  }
13034  return SDValue();
13035}
13036
13037static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13038  SDValue N0 = N->getOperand(0);
13039  SDValue N1 = N->getOperand(1);
13040  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13041  EVT VT = N0.getValueType();
13042
13043  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13044  // since the result of setcc_c is all zero's or all ones.
13045  if (N1C && N0.getOpcode() == ISD::AND &&
13046      N0.getOperand(1).getOpcode() == ISD::Constant) {
13047    SDValue N00 = N0.getOperand(0);
13048    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13049        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13050          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13051         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13052      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13053      APInt ShAmt = N1C->getAPIntValue();
13054      Mask = Mask.shl(ShAmt);
13055      if (Mask != 0)
13056        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13057                           N00, DAG.getConstant(Mask, VT));
13058    }
13059  }
13060
13061  return SDValue();
13062}
13063
13064/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13065///                       when possible.
13066static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13067                                   const X86Subtarget *Subtarget) {
13068  EVT VT = N->getValueType(0);
13069  if (!VT.isVector() && VT.isInteger() &&
13070      N->getOpcode() == ISD::SHL)
13071    return PerformSHLCombine(N, DAG);
13072
13073  // On X86 with SSE2 support, we can transform this to a vector shift if
13074  // all elements are shifted by the same amount.  We can't do this in legalize
13075  // because the a constant vector is typically transformed to a constant pool
13076  // so we have no knowledge of the shift amount.
13077  if (!Subtarget->hasXMMInt())
13078    return SDValue();
13079
13080  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13081    return SDValue();
13082
13083  SDValue ShAmtOp = N->getOperand(1);
13084  EVT EltVT = VT.getVectorElementType();
13085  DebugLoc DL = N->getDebugLoc();
13086  SDValue BaseShAmt = SDValue();
13087  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13088    unsigned NumElts = VT.getVectorNumElements();
13089    unsigned i = 0;
13090    for (; i != NumElts; ++i) {
13091      SDValue Arg = ShAmtOp.getOperand(i);
13092      if (Arg.getOpcode() == ISD::UNDEF) continue;
13093      BaseShAmt = Arg;
13094      break;
13095    }
13096    for (; i != NumElts; ++i) {
13097      SDValue Arg = ShAmtOp.getOperand(i);
13098      if (Arg.getOpcode() == ISD::UNDEF) continue;
13099      if (Arg != BaseShAmt) {
13100        return SDValue();
13101      }
13102    }
13103  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13104             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13105    SDValue InVec = ShAmtOp.getOperand(0);
13106    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13107      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13108      unsigned i = 0;
13109      for (; i != NumElts; ++i) {
13110        SDValue Arg = InVec.getOperand(i);
13111        if (Arg.getOpcode() == ISD::UNDEF) continue;
13112        BaseShAmt = Arg;
13113        break;
13114      }
13115    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13116       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13117         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13118         if (C->getZExtValue() == SplatIdx)
13119           BaseShAmt = InVec.getOperand(1);
13120       }
13121    }
13122    if (BaseShAmt.getNode() == 0)
13123      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13124                              DAG.getIntPtrConstant(0));
13125  } else
13126    return SDValue();
13127
13128  // The shift amount is an i32.
13129  if (EltVT.bitsGT(MVT::i32))
13130    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13131  else if (EltVT.bitsLT(MVT::i32))
13132    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13133
13134  // The shift amount is identical so we can do a vector shift.
13135  SDValue  ValOp = N->getOperand(0);
13136  switch (N->getOpcode()) {
13137  default:
13138    llvm_unreachable("Unknown shift opcode!");
13139    break;
13140  case ISD::SHL:
13141    if (VT == MVT::v2i64)
13142      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13143                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13144                         ValOp, BaseShAmt);
13145    if (VT == MVT::v4i32)
13146      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13147                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13148                         ValOp, BaseShAmt);
13149    if (VT == MVT::v8i16)
13150      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13151                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13152                         ValOp, BaseShAmt);
13153    break;
13154  case ISD::SRA:
13155    if (VT == MVT::v4i32)
13156      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13157                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13158                         ValOp, BaseShAmt);
13159    if (VT == MVT::v8i16)
13160      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13161                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13162                         ValOp, BaseShAmt);
13163    break;
13164  case ISD::SRL:
13165    if (VT == MVT::v2i64)
13166      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13167                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13168                         ValOp, BaseShAmt);
13169    if (VT == MVT::v4i32)
13170      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13171                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13172                         ValOp, BaseShAmt);
13173    if (VT ==  MVT::v8i16)
13174      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13175                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13176                         ValOp, BaseShAmt);
13177    break;
13178  }
13179  return SDValue();
13180}
13181
13182
13183// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13184// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13185// and friends.  Likewise for OR -> CMPNEQSS.
13186static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13187                            TargetLowering::DAGCombinerInfo &DCI,
13188                            const X86Subtarget *Subtarget) {
13189  unsigned opcode;
13190
13191  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13192  // we're requiring SSE2 for both.
13193  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13194    SDValue N0 = N->getOperand(0);
13195    SDValue N1 = N->getOperand(1);
13196    SDValue CMP0 = N0->getOperand(1);
13197    SDValue CMP1 = N1->getOperand(1);
13198    DebugLoc DL = N->getDebugLoc();
13199
13200    // The SETCCs should both refer to the same CMP.
13201    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13202      return SDValue();
13203
13204    SDValue CMP00 = CMP0->getOperand(0);
13205    SDValue CMP01 = CMP0->getOperand(1);
13206    EVT     VT    = CMP00.getValueType();
13207
13208    if (VT == MVT::f32 || VT == MVT::f64) {
13209      bool ExpectingFlags = false;
13210      // Check for any users that want flags:
13211      for (SDNode::use_iterator UI = N->use_begin(),
13212             UE = N->use_end();
13213           !ExpectingFlags && UI != UE; ++UI)
13214        switch (UI->getOpcode()) {
13215        default:
13216        case ISD::BR_CC:
13217        case ISD::BRCOND:
13218        case ISD::SELECT:
13219          ExpectingFlags = true;
13220          break;
13221        case ISD::CopyToReg:
13222        case ISD::SIGN_EXTEND:
13223        case ISD::ZERO_EXTEND:
13224        case ISD::ANY_EXTEND:
13225          break;
13226        }
13227
13228      if (!ExpectingFlags) {
13229        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13230        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13231
13232        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13233          X86::CondCode tmp = cc0;
13234          cc0 = cc1;
13235          cc1 = tmp;
13236        }
13237
13238        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13239            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13240          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13241          X86ISD::NodeType NTOperator = is64BitFP ?
13242            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13243          // FIXME: need symbolic constants for these magic numbers.
13244          // See X86ATTInstPrinter.cpp:printSSECC().
13245          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13246          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13247                                              DAG.getConstant(x86cc, MVT::i8));
13248          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13249                                              OnesOrZeroesF);
13250          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13251                                      DAG.getConstant(1, MVT::i32));
13252          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13253          return OneBitOfTruth;
13254        }
13255      }
13256    }
13257  }
13258  return SDValue();
13259}
13260
13261/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13262/// so it can be folded inside ANDNP.
13263static bool CanFoldXORWithAllOnes(const SDNode *N) {
13264  EVT VT = N->getValueType(0);
13265
13266  // Match direct AllOnes for 128 and 256-bit vectors
13267  if (ISD::isBuildVectorAllOnes(N))
13268    return true;
13269
13270  // Look through a bit convert.
13271  if (N->getOpcode() == ISD::BITCAST)
13272    N = N->getOperand(0).getNode();
13273
13274  // Sometimes the operand may come from a insert_subvector building a 256-bit
13275  // allones vector
13276  if (VT.getSizeInBits() == 256 &&
13277      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13278    SDValue V1 = N->getOperand(0);
13279    SDValue V2 = N->getOperand(1);
13280
13281    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13282        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13283        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13284        ISD::isBuildVectorAllOnes(V2.getNode()))
13285      return true;
13286  }
13287
13288  return false;
13289}
13290
13291static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13292                                 TargetLowering::DAGCombinerInfo &DCI,
13293                                 const X86Subtarget *Subtarget) {
13294  if (DCI.isBeforeLegalizeOps())
13295    return SDValue();
13296
13297  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13298  if (R.getNode())
13299    return R;
13300
13301  EVT VT = N->getValueType(0);
13302
13303  // Create ANDN, BLSI, and BLSR instructions
13304  // BLSI is X & (-X)
13305  // BLSR is X & (X-1)
13306  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13307    SDValue N0 = N->getOperand(0);
13308    SDValue N1 = N->getOperand(1);
13309    DebugLoc DL = N->getDebugLoc();
13310
13311    // Check LHS for not
13312    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13313      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13314    // Check RHS for not
13315    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13316      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13317
13318    // Check LHS for neg
13319    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13320        isZero(N0.getOperand(0)))
13321      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13322
13323    // Check RHS for neg
13324    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13325        isZero(N1.getOperand(0)))
13326      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13327
13328    // Check LHS for X-1
13329    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13330        isAllOnes(N0.getOperand(1)))
13331      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13332
13333    // Check RHS for X-1
13334    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13335        isAllOnes(N1.getOperand(1)))
13336      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13337
13338    return SDValue();
13339  }
13340
13341  // Want to form ANDNP nodes:
13342  // 1) In the hopes of then easily combining them with OR and AND nodes
13343  //    to form PBLEND/PSIGN.
13344  // 2) To match ANDN packed intrinsics
13345  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13346    return SDValue();
13347
13348  SDValue N0 = N->getOperand(0);
13349  SDValue N1 = N->getOperand(1);
13350  DebugLoc DL = N->getDebugLoc();
13351
13352  // Check LHS for vnot
13353  if (N0.getOpcode() == ISD::XOR &&
13354      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13355      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13356    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13357
13358  // Check RHS for vnot
13359  if (N1.getOpcode() == ISD::XOR &&
13360      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13361      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13362    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13363
13364  return SDValue();
13365}
13366
13367static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13368                                TargetLowering::DAGCombinerInfo &DCI,
13369                                const X86Subtarget *Subtarget) {
13370  if (DCI.isBeforeLegalizeOps())
13371    return SDValue();
13372
13373  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13374  if (R.getNode())
13375    return R;
13376
13377  EVT VT = N->getValueType(0);
13378  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13379    return SDValue();
13380
13381  SDValue N0 = N->getOperand(0);
13382  SDValue N1 = N->getOperand(1);
13383
13384  // look for psign/blend
13385  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13386    if (VT == MVT::v2i64) {
13387      // Canonicalize pandn to RHS
13388      if (N0.getOpcode() == X86ISD::ANDNP)
13389        std::swap(N0, N1);
13390      // or (and (m, x), (pandn m, y))
13391      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13392        SDValue Mask = N1.getOperand(0);
13393        SDValue X    = N1.getOperand(1);
13394        SDValue Y;
13395        if (N0.getOperand(0) == Mask)
13396          Y = N0.getOperand(1);
13397        if (N0.getOperand(1) == Mask)
13398          Y = N0.getOperand(0);
13399
13400        // Check to see if the mask appeared in both the AND and ANDNP and
13401        if (!Y.getNode())
13402          return SDValue();
13403
13404        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13405        if (Mask.getOpcode() != ISD::BITCAST ||
13406            X.getOpcode() != ISD::BITCAST ||
13407            Y.getOpcode() != ISD::BITCAST)
13408          return SDValue();
13409
13410        // Look through mask bitcast.
13411        Mask = Mask.getOperand(0);
13412        EVT MaskVT = Mask.getValueType();
13413
13414        // Validate that the Mask operand is a vector sra node.  The sra node
13415        // will be an intrinsic.
13416        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13417          return SDValue();
13418
13419        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13420        // there is no psrai.b
13421        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13422        case Intrinsic::x86_sse2_psrai_w:
13423        case Intrinsic::x86_sse2_psrai_d:
13424          break;
13425        default: return SDValue();
13426        }
13427
13428        // Check that the SRA is all signbits.
13429        SDValue SraC = Mask.getOperand(2);
13430        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13431        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13432        if ((SraAmt + 1) != EltBits)
13433          return SDValue();
13434
13435        DebugLoc DL = N->getDebugLoc();
13436
13437        // Now we know we at least have a plendvb with the mask val.  See if
13438        // we can form a psignb/w/d.
13439        // psign = x.type == y.type == mask.type && y = sub(0, x);
13440        X = X.getOperand(0);
13441        Y = Y.getOperand(0);
13442        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13443            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13444            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13445          unsigned Opc = 0;
13446          switch (EltBits) {
13447          case 8: Opc = X86ISD::PSIGNB; break;
13448          case 16: Opc = X86ISD::PSIGNW; break;
13449          case 32: Opc = X86ISD::PSIGND; break;
13450          default: break;
13451          }
13452          if (Opc) {
13453            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13454            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13455          }
13456        }
13457        // PBLENDVB only available on SSE 4.1
13458        if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13459          return SDValue();
13460
13461        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13462        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13463        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13464        Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13465        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13466      }
13467    }
13468  }
13469
13470  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13471  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13472    std::swap(N0, N1);
13473  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13474    return SDValue();
13475  if (!N0.hasOneUse() || !N1.hasOneUse())
13476    return SDValue();
13477
13478  SDValue ShAmt0 = N0.getOperand(1);
13479  if (ShAmt0.getValueType() != MVT::i8)
13480    return SDValue();
13481  SDValue ShAmt1 = N1.getOperand(1);
13482  if (ShAmt1.getValueType() != MVT::i8)
13483    return SDValue();
13484  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13485    ShAmt0 = ShAmt0.getOperand(0);
13486  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13487    ShAmt1 = ShAmt1.getOperand(0);
13488
13489  DebugLoc DL = N->getDebugLoc();
13490  unsigned Opc = X86ISD::SHLD;
13491  SDValue Op0 = N0.getOperand(0);
13492  SDValue Op1 = N1.getOperand(0);
13493  if (ShAmt0.getOpcode() == ISD::SUB) {
13494    Opc = X86ISD::SHRD;
13495    std::swap(Op0, Op1);
13496    std::swap(ShAmt0, ShAmt1);
13497  }
13498
13499  unsigned Bits = VT.getSizeInBits();
13500  if (ShAmt1.getOpcode() == ISD::SUB) {
13501    SDValue Sum = ShAmt1.getOperand(0);
13502    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13503      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13504      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13505        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13506      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13507        return DAG.getNode(Opc, DL, VT,
13508                           Op0, Op1,
13509                           DAG.getNode(ISD::TRUNCATE, DL,
13510                                       MVT::i8, ShAmt0));
13511    }
13512  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13513    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13514    if (ShAmt0C &&
13515        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13516      return DAG.getNode(Opc, DL, VT,
13517                         N0.getOperand(0), N1.getOperand(0),
13518                         DAG.getNode(ISD::TRUNCATE, DL,
13519                                       MVT::i8, ShAmt0));
13520  }
13521
13522  return SDValue();
13523}
13524
13525static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13526                                 TargetLowering::DAGCombinerInfo &DCI,
13527                                 const X86Subtarget *Subtarget) {
13528  if (DCI.isBeforeLegalizeOps())
13529    return SDValue();
13530
13531  EVT VT = N->getValueType(0);
13532
13533  if (VT != MVT::i32 && VT != MVT::i64)
13534    return SDValue();
13535
13536  // Create BLSMSK instructions by finding X ^ (X-1)
13537  SDValue N0 = N->getOperand(0);
13538  SDValue N1 = N->getOperand(1);
13539  DebugLoc DL = N->getDebugLoc();
13540
13541  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13542      isAllOnes(N0.getOperand(1)))
13543    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13544
13545  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13546      isAllOnes(N1.getOperand(1)))
13547    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13548
13549  return SDValue();
13550}
13551
13552/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13553static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13554                                   const X86Subtarget *Subtarget) {
13555  LoadSDNode *Ld = cast<LoadSDNode>(N);
13556  EVT RegVT = Ld->getValueType(0);
13557  EVT MemVT = Ld->getMemoryVT();
13558  DebugLoc dl = Ld->getDebugLoc();
13559  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13560
13561  ISD::LoadExtType Ext = Ld->getExtensionType();
13562
13563  // If this is a vector EXT Load then attempt to optimize it using a
13564  // shuffle. We need SSE4 for the shuffles.
13565  // TODO: It is possible to support ZExt by zeroing the undef values
13566  // during the shuffle phase or after the shuffle.
13567  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13568    assert(MemVT != RegVT && "Cannot extend to the same type");
13569    assert(MemVT.isVector() && "Must load a vector from memory");
13570
13571    unsigned NumElems = RegVT.getVectorNumElements();
13572    unsigned RegSz = RegVT.getSizeInBits();
13573    unsigned MemSz = MemVT.getSizeInBits();
13574    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13575    // All sizes must be a power of two
13576    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13577
13578    // Attempt to load the original value using a single load op.
13579    // Find a scalar type which is equal to the loaded word size.
13580    MVT SclrLoadTy = MVT::i8;
13581    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13582         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13583      MVT Tp = (MVT::SimpleValueType)tp;
13584      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13585        SclrLoadTy = Tp;
13586        break;
13587      }
13588    }
13589
13590    // Proceed if a load word is found.
13591    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13592
13593    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13594      RegSz/SclrLoadTy.getSizeInBits());
13595
13596    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13597                                  RegSz/MemVT.getScalarType().getSizeInBits());
13598    // Can't shuffle using an illegal type.
13599    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13600
13601    // Perform a single load.
13602    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13603                                  Ld->getBasePtr(),
13604                                  Ld->getPointerInfo(), Ld->isVolatile(),
13605                                  Ld->isNonTemporal(), Ld->getAlignment());
13606
13607    // Insert the word loaded into a vector.
13608    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13609      LoadUnitVecVT, ScalarLoad);
13610
13611    // Bitcast the loaded value to a vector of the original element type, in
13612    // the size of the target vector type.
13613    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13614    unsigned SizeRatio = RegSz/MemSz;
13615
13616    // Redistribute the loaded elements into the different locations.
13617    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13618    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13619
13620    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13621                                DAG.getUNDEF(SlicedVec.getValueType()),
13622                                ShuffleVec.data());
13623
13624    // Bitcast to the requested type.
13625    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13626    // Replace the original load with the new sequence
13627    // and return the new chain.
13628    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13629    return SDValue(ScalarLoad.getNode(), 1);
13630  }
13631
13632  return SDValue();
13633}
13634
13635/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13636static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13637                                   const X86Subtarget *Subtarget) {
13638  StoreSDNode *St = cast<StoreSDNode>(N);
13639  EVT VT = St->getValue().getValueType();
13640  EVT StVT = St->getMemoryVT();
13641  DebugLoc dl = St->getDebugLoc();
13642  SDValue StoredVal = St->getOperand(1);
13643  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13644
13645  // If we are saving a concatination of two XMM registers, perform two stores.
13646  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13647  // 128-bit ones. If in the future the cost becomes only one memory access the
13648  // first version would be better.
13649  if (VT.getSizeInBits() == 256 &&
13650    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13651    StoredVal.getNumOperands() == 2) {
13652
13653    SDValue Value0 = StoredVal.getOperand(0);
13654    SDValue Value1 = StoredVal.getOperand(1);
13655
13656    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13657    SDValue Ptr0 = St->getBasePtr();
13658    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13659
13660    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13661                                St->getPointerInfo(), St->isVolatile(),
13662                                St->isNonTemporal(), St->getAlignment());
13663    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13664                                St->getPointerInfo(), St->isVolatile(),
13665                                St->isNonTemporal(), St->getAlignment());
13666    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13667  }
13668
13669  // Optimize trunc store (of multiple scalars) to shuffle and store.
13670  // First, pack all of the elements in one place. Next, store to memory
13671  // in fewer chunks.
13672  if (St->isTruncatingStore() && VT.isVector()) {
13673    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13674    unsigned NumElems = VT.getVectorNumElements();
13675    assert(StVT != VT && "Cannot truncate to the same type");
13676    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13677    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13678
13679    // From, To sizes and ElemCount must be pow of two
13680    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13681    // We are going to use the original vector elt for storing.
13682    // Accumulated smaller vector elements must be a multiple of the store size.
13683    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13684
13685    unsigned SizeRatio  = FromSz / ToSz;
13686
13687    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13688
13689    // Create a type on which we perform the shuffle
13690    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13691            StVT.getScalarType(), NumElems*SizeRatio);
13692
13693    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13694
13695    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13696    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13697    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13698
13699    // Can't shuffle using an illegal type
13700    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13701
13702    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13703                                DAG.getUNDEF(WideVec.getValueType()),
13704                                ShuffleVec.data());
13705    // At this point all of the data is stored at the bottom of the
13706    // register. We now need to save it to mem.
13707
13708    // Find the largest store unit
13709    MVT StoreType = MVT::i8;
13710    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13711         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13712      MVT Tp = (MVT::SimpleValueType)tp;
13713      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13714        StoreType = Tp;
13715    }
13716
13717    // Bitcast the original vector into a vector of store-size units
13718    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13719            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13720    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13721    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13722    SmallVector<SDValue, 8> Chains;
13723    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13724                                        TLI.getPointerTy());
13725    SDValue Ptr = St->getBasePtr();
13726
13727    // Perform one or more big stores into memory.
13728    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13729      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13730                                   StoreType, ShuffWide,
13731                                   DAG.getIntPtrConstant(i));
13732      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13733                                St->getPointerInfo(), St->isVolatile(),
13734                                St->isNonTemporal(), St->getAlignment());
13735      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13736      Chains.push_back(Ch);
13737    }
13738
13739    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13740                               Chains.size());
13741  }
13742
13743
13744  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13745  // the FP state in cases where an emms may be missing.
13746  // A preferable solution to the general problem is to figure out the right
13747  // places to insert EMMS.  This qualifies as a quick hack.
13748
13749  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13750  if (VT.getSizeInBits() != 64)
13751    return SDValue();
13752
13753  const Function *F = DAG.getMachineFunction().getFunction();
13754  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13755  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13756                     && Subtarget->hasXMMInt();
13757  if ((VT.isVector() ||
13758       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13759      isa<LoadSDNode>(St->getValue()) &&
13760      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13761      St->getChain().hasOneUse() && !St->isVolatile()) {
13762    SDNode* LdVal = St->getValue().getNode();
13763    LoadSDNode *Ld = 0;
13764    int TokenFactorIndex = -1;
13765    SmallVector<SDValue, 8> Ops;
13766    SDNode* ChainVal = St->getChain().getNode();
13767    // Must be a store of a load.  We currently handle two cases:  the load
13768    // is a direct child, and it's under an intervening TokenFactor.  It is
13769    // possible to dig deeper under nested TokenFactors.
13770    if (ChainVal == LdVal)
13771      Ld = cast<LoadSDNode>(St->getChain());
13772    else if (St->getValue().hasOneUse() &&
13773             ChainVal->getOpcode() == ISD::TokenFactor) {
13774      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13775        if (ChainVal->getOperand(i).getNode() == LdVal) {
13776          TokenFactorIndex = i;
13777          Ld = cast<LoadSDNode>(St->getValue());
13778        } else
13779          Ops.push_back(ChainVal->getOperand(i));
13780      }
13781    }
13782
13783    if (!Ld || !ISD::isNormalLoad(Ld))
13784      return SDValue();
13785
13786    // If this is not the MMX case, i.e. we are just turning i64 load/store
13787    // into f64 load/store, avoid the transformation if there are multiple
13788    // uses of the loaded value.
13789    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13790      return SDValue();
13791
13792    DebugLoc LdDL = Ld->getDebugLoc();
13793    DebugLoc StDL = N->getDebugLoc();
13794    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13795    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13796    // pair instead.
13797    if (Subtarget->is64Bit() || F64IsLegal) {
13798      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13799      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13800                                  Ld->getPointerInfo(), Ld->isVolatile(),
13801                                  Ld->isNonTemporal(), Ld->getAlignment());
13802      SDValue NewChain = NewLd.getValue(1);
13803      if (TokenFactorIndex != -1) {
13804        Ops.push_back(NewChain);
13805        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13806                               Ops.size());
13807      }
13808      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13809                          St->getPointerInfo(),
13810                          St->isVolatile(), St->isNonTemporal(),
13811                          St->getAlignment());
13812    }
13813
13814    // Otherwise, lower to two pairs of 32-bit loads / stores.
13815    SDValue LoAddr = Ld->getBasePtr();
13816    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13817                                 DAG.getConstant(4, MVT::i32));
13818
13819    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13820                               Ld->getPointerInfo(),
13821                               Ld->isVolatile(), Ld->isNonTemporal(),
13822                               Ld->getAlignment());
13823    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13824                               Ld->getPointerInfo().getWithOffset(4),
13825                               Ld->isVolatile(), Ld->isNonTemporal(),
13826                               MinAlign(Ld->getAlignment(), 4));
13827
13828    SDValue NewChain = LoLd.getValue(1);
13829    if (TokenFactorIndex != -1) {
13830      Ops.push_back(LoLd);
13831      Ops.push_back(HiLd);
13832      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13833                             Ops.size());
13834    }
13835
13836    LoAddr = St->getBasePtr();
13837    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13838                         DAG.getConstant(4, MVT::i32));
13839
13840    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13841                                St->getPointerInfo(),
13842                                St->isVolatile(), St->isNonTemporal(),
13843                                St->getAlignment());
13844    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13845                                St->getPointerInfo().getWithOffset(4),
13846                                St->isVolatile(),
13847                                St->isNonTemporal(),
13848                                MinAlign(St->getAlignment(), 4));
13849    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13850  }
13851  return SDValue();
13852}
13853
13854/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
13855/// and return the operands for the horizontal operation in LHS and RHS.  A
13856/// horizontal operation performs the binary operation on successive elements
13857/// of its first operand, then on successive elements of its second operand,
13858/// returning the resulting values in a vector.  For example, if
13859///   A = < float a0, float a1, float a2, float a3 >
13860/// and
13861///   B = < float b0, float b1, float b2, float b3 >
13862/// then the result of doing a horizontal operation on A and B is
13863///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
13864/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
13865/// A horizontal-op B, for some already available A and B, and if so then LHS is
13866/// set to A, RHS to B, and the routine returns 'true'.
13867/// Note that the binary operation should have the property that if one of the
13868/// operands is UNDEF then the result is UNDEF.
13869static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
13870  // Look for the following pattern: if
13871  //   A = < float a0, float a1, float a2, float a3 >
13872  //   B = < float b0, float b1, float b2, float b3 >
13873  // and
13874  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
13875  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
13876  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
13877  // which is A horizontal-op B.
13878
13879  // At least one of the operands should be a vector shuffle.
13880  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13881      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
13882    return false;
13883
13884  EVT VT = LHS.getValueType();
13885  unsigned N = VT.getVectorNumElements();
13886
13887  // View LHS in the form
13888  //   LHS = VECTOR_SHUFFLE A, B, LMask
13889  // If LHS is not a shuffle then pretend it is the shuffle
13890  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
13891  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
13892  // type VT.
13893  SDValue A, B;
13894  SmallVector<int, 8> LMask(N);
13895  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13896    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
13897      A = LHS.getOperand(0);
13898    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
13899      B = LHS.getOperand(1);
13900    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
13901  } else {
13902    if (LHS.getOpcode() != ISD::UNDEF)
13903      A = LHS;
13904    for (unsigned i = 0; i != N; ++i)
13905      LMask[i] = i;
13906  }
13907
13908  // Likewise, view RHS in the form
13909  //   RHS = VECTOR_SHUFFLE C, D, RMask
13910  SDValue C, D;
13911  SmallVector<int, 8> RMask(N);
13912  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13913    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
13914      C = RHS.getOperand(0);
13915    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
13916      D = RHS.getOperand(1);
13917    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
13918  } else {
13919    if (RHS.getOpcode() != ISD::UNDEF)
13920      C = RHS;
13921    for (unsigned i = 0; i != N; ++i)
13922      RMask[i] = i;
13923  }
13924
13925  // Check that the shuffles are both shuffling the same vectors.
13926  if (!(A == C && B == D) && !(A == D && B == C))
13927    return false;
13928
13929  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
13930  if (!A.getNode() && !B.getNode())
13931    return false;
13932
13933  // If A and B occur in reverse order in RHS, then "swap" them (which means
13934  // rewriting the mask).
13935  if (A != C)
13936    for (unsigned i = 0; i != N; ++i) {
13937      unsigned Idx = RMask[i];
13938      if (Idx < N)
13939        RMask[i] += N;
13940      else if (Idx < 2*N)
13941        RMask[i] -= N;
13942    }
13943
13944  // At this point LHS and RHS are equivalent to
13945  //   LHS = VECTOR_SHUFFLE A, B, LMask
13946  //   RHS = VECTOR_SHUFFLE A, B, RMask
13947  // Check that the masks correspond to performing a horizontal operation.
13948  for (unsigned i = 0; i != N; ++i) {
13949    unsigned LIdx = LMask[i], RIdx = RMask[i];
13950
13951    // Ignore any UNDEF components.
13952    if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
13953        || (!B.getNode() && (LIdx >= N || RIdx >= N)))
13954      continue;
13955
13956    // Check that successive elements are being operated on.  If not, this is
13957    // not a horizontal operation.
13958    if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
13959        !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
13960      return false;
13961  }
13962
13963  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
13964  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
13965  return true;
13966}
13967
13968/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
13969static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
13970                                  const X86Subtarget *Subtarget) {
13971  EVT VT = N->getValueType(0);
13972  SDValue LHS = N->getOperand(0);
13973  SDValue RHS = N->getOperand(1);
13974
13975  // Try to synthesize horizontal adds from adds of shuffles.
13976  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13977      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13978      isHorizontalBinOp(LHS, RHS, true))
13979    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
13980  return SDValue();
13981}
13982
13983/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
13984static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
13985                                  const X86Subtarget *Subtarget) {
13986  EVT VT = N->getValueType(0);
13987  SDValue LHS = N->getOperand(0);
13988  SDValue RHS = N->getOperand(1);
13989
13990  // Try to synthesize horizontal subs from subs of shuffles.
13991  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13992      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13993      isHorizontalBinOp(LHS, RHS, false))
13994    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
13995  return SDValue();
13996}
13997
13998/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13999/// X86ISD::FXOR nodes.
14000static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14001  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14002  // F[X]OR(0.0, x) -> x
14003  // F[X]OR(x, 0.0) -> x
14004  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14005    if (C->getValueAPF().isPosZero())
14006      return N->getOperand(1);
14007  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14008    if (C->getValueAPF().isPosZero())
14009      return N->getOperand(0);
14010  return SDValue();
14011}
14012
14013/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14014static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14015  // FAND(0.0, x) -> 0.0
14016  // FAND(x, 0.0) -> 0.0
14017  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14018    if (C->getValueAPF().isPosZero())
14019      return N->getOperand(0);
14020  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14021    if (C->getValueAPF().isPosZero())
14022      return N->getOperand(1);
14023  return SDValue();
14024}
14025
14026static SDValue PerformBTCombine(SDNode *N,
14027                                SelectionDAG &DAG,
14028                                TargetLowering::DAGCombinerInfo &DCI) {
14029  // BT ignores high bits in the bit index operand.
14030  SDValue Op1 = N->getOperand(1);
14031  if (Op1.hasOneUse()) {
14032    unsigned BitWidth = Op1.getValueSizeInBits();
14033    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14034    APInt KnownZero, KnownOne;
14035    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14036                                          !DCI.isBeforeLegalizeOps());
14037    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14038    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14039        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14040      DCI.CommitTargetLoweringOpt(TLO);
14041  }
14042  return SDValue();
14043}
14044
14045static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14046  SDValue Op = N->getOperand(0);
14047  if (Op.getOpcode() == ISD::BITCAST)
14048    Op = Op.getOperand(0);
14049  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14050  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14051      VT.getVectorElementType().getSizeInBits() ==
14052      OpVT.getVectorElementType().getSizeInBits()) {
14053    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14054  }
14055  return SDValue();
14056}
14057
14058static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14059  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14060  //           (and (i32 x86isd::setcc_carry), 1)
14061  // This eliminates the zext. This transformation is necessary because
14062  // ISD::SETCC is always legalized to i8.
14063  DebugLoc dl = N->getDebugLoc();
14064  SDValue N0 = N->getOperand(0);
14065  EVT VT = N->getValueType(0);
14066  if (N0.getOpcode() == ISD::AND &&
14067      N0.hasOneUse() &&
14068      N0.getOperand(0).hasOneUse()) {
14069    SDValue N00 = N0.getOperand(0);
14070    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14071      return SDValue();
14072    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14073    if (!C || C->getZExtValue() != 1)
14074      return SDValue();
14075    return DAG.getNode(ISD::AND, dl, VT,
14076                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14077                                   N00.getOperand(0), N00.getOperand(1)),
14078                       DAG.getConstant(1, VT));
14079  }
14080
14081  return SDValue();
14082}
14083
14084// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14085static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14086  unsigned X86CC = N->getConstantOperandVal(0);
14087  SDValue EFLAG = N->getOperand(1);
14088  DebugLoc DL = N->getDebugLoc();
14089
14090  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14091  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14092  // cases.
14093  if (X86CC == X86::COND_B)
14094    return DAG.getNode(ISD::AND, DL, MVT::i8,
14095                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14096                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14097                       DAG.getConstant(1, MVT::i8));
14098
14099  return SDValue();
14100}
14101
14102static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14103                                        const X86TargetLowering *XTLI) {
14104  SDValue Op0 = N->getOperand(0);
14105  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14106  // a 32-bit target where SSE doesn't support i64->FP operations.
14107  if (Op0.getOpcode() == ISD::LOAD) {
14108    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14109    EVT VT = Ld->getValueType(0);
14110    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14111        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14112        !XTLI->getSubtarget()->is64Bit() &&
14113        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14114      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14115                                          Ld->getChain(), Op0, DAG);
14116      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14117      return FILDChain;
14118    }
14119  }
14120  return SDValue();
14121}
14122
14123// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14124static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14125                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14126  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14127  // the result is either zero or one (depending on the input carry bit).
14128  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14129  if (X86::isZeroNode(N->getOperand(0)) &&
14130      X86::isZeroNode(N->getOperand(1)) &&
14131      // We don't have a good way to replace an EFLAGS use, so only do this when
14132      // dead right now.
14133      SDValue(N, 1).use_empty()) {
14134    DebugLoc DL = N->getDebugLoc();
14135    EVT VT = N->getValueType(0);
14136    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14137    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14138                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14139                                           DAG.getConstant(X86::COND_B,MVT::i8),
14140                                           N->getOperand(2)),
14141                               DAG.getConstant(1, VT));
14142    return DCI.CombineTo(N, Res1, CarryOut);
14143  }
14144
14145  return SDValue();
14146}
14147
14148// fold (add Y, (sete  X, 0)) -> adc  0, Y
14149//      (add Y, (setne X, 0)) -> sbb -1, Y
14150//      (sub (sete  X, 0), Y) -> sbb  0, Y
14151//      (sub (setne X, 0), Y) -> adc -1, Y
14152static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14153  DebugLoc DL = N->getDebugLoc();
14154
14155  // Look through ZExts.
14156  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14157  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14158    return SDValue();
14159
14160  SDValue SetCC = Ext.getOperand(0);
14161  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14162    return SDValue();
14163
14164  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14165  if (CC != X86::COND_E && CC != X86::COND_NE)
14166    return SDValue();
14167
14168  SDValue Cmp = SetCC.getOperand(1);
14169  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14170      !X86::isZeroNode(Cmp.getOperand(1)) ||
14171      !Cmp.getOperand(0).getValueType().isInteger())
14172    return SDValue();
14173
14174  SDValue CmpOp0 = Cmp.getOperand(0);
14175  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14176                               DAG.getConstant(1, CmpOp0.getValueType()));
14177
14178  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14179  if (CC == X86::COND_NE)
14180    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14181                       DL, OtherVal.getValueType(), OtherVal,
14182                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14183  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14184                     DL, OtherVal.getValueType(), OtherVal,
14185                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14186}
14187
14188static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14189  SDValue Op0 = N->getOperand(0);
14190  SDValue Op1 = N->getOperand(1);
14191
14192  // X86 can't encode an immediate LHS of a sub. See if we can push the
14193  // negation into a preceding instruction.
14194  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14195    // If the RHS of the sub is a XOR with one use and a constant, invert the
14196    // immediate. Then add one to the LHS of the sub so we can turn
14197    // X-Y -> X+~Y+1, saving one register.
14198    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14199        isa<ConstantSDNode>(Op1.getOperand(1))) {
14200      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14201      EVT VT = Op0.getValueType();
14202      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14203                                   Op1.getOperand(0),
14204                                   DAG.getConstant(~XorC, VT));
14205      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14206                         DAG.getConstant(C->getAPIntValue()+1, VT));
14207    }
14208  }
14209
14210  return OptimizeConditionalInDecrement(N, DAG);
14211}
14212
14213SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14214                                             DAGCombinerInfo &DCI) const {
14215  SelectionDAG &DAG = DCI.DAG;
14216  switch (N->getOpcode()) {
14217  default: break;
14218  case ISD::EXTRACT_VECTOR_ELT:
14219    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14220  case ISD::VSELECT:
14221  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14222  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14223  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
14224  case ISD::SUB:            return PerformSubCombine(N, DAG);
14225  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14226  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14227  case ISD::SHL:
14228  case ISD::SRA:
14229  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14230  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14231  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14232  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14233  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14234  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14235  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14236  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14237  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14238  case X86ISD::FXOR:
14239  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14240  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14241  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14242  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14243  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14244  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14245  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14246  case X86ISD::SHUFPD:
14247  case X86ISD::PALIGN:
14248  case X86ISD::PUNPCKHBW:
14249  case X86ISD::PUNPCKHWD:
14250  case X86ISD::PUNPCKHDQ:
14251  case X86ISD::PUNPCKHQDQ:
14252  case X86ISD::UNPCKHPS:
14253  case X86ISD::UNPCKHPD:
14254  case X86ISD::VUNPCKHPSY:
14255  case X86ISD::VUNPCKHPDY:
14256  case X86ISD::PUNPCKLBW:
14257  case X86ISD::PUNPCKLWD:
14258  case X86ISD::PUNPCKLDQ:
14259  case X86ISD::PUNPCKLQDQ:
14260  case X86ISD::UNPCKLPS:
14261  case X86ISD::UNPCKLPD:
14262  case X86ISD::VUNPCKLPSY:
14263  case X86ISD::VUNPCKLPDY:
14264  case X86ISD::MOVHLPS:
14265  case X86ISD::MOVLHPS:
14266  case X86ISD::PSHUFD:
14267  case X86ISD::PSHUFHW:
14268  case X86ISD::PSHUFLW:
14269  case X86ISD::MOVSS:
14270  case X86ISD::MOVSD:
14271  case X86ISD::VPERMILPS:
14272  case X86ISD::VPERMILPSY:
14273  case X86ISD::VPERMILPD:
14274  case X86ISD::VPERMILPDY:
14275  case X86ISD::VPERM2F128:
14276  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14277  }
14278
14279  return SDValue();
14280}
14281
14282/// isTypeDesirableForOp - Return true if the target has native support for
14283/// the specified value type and it is 'desirable' to use the type for the
14284/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14285/// instruction encodings are longer and some i16 instructions are slow.
14286bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14287  if (!isTypeLegal(VT))
14288    return false;
14289  if (VT != MVT::i16)
14290    return true;
14291
14292  switch (Opc) {
14293  default:
14294    return true;
14295  case ISD::LOAD:
14296  case ISD::SIGN_EXTEND:
14297  case ISD::ZERO_EXTEND:
14298  case ISD::ANY_EXTEND:
14299  case ISD::SHL:
14300  case ISD::SRL:
14301  case ISD::SUB:
14302  case ISD::ADD:
14303  case ISD::MUL:
14304  case ISD::AND:
14305  case ISD::OR:
14306  case ISD::XOR:
14307    return false;
14308  }
14309}
14310
14311/// IsDesirableToPromoteOp - This method query the target whether it is
14312/// beneficial for dag combiner to promote the specified node. If true, it
14313/// should return the desired promotion type by reference.
14314bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14315  EVT VT = Op.getValueType();
14316  if (VT != MVT::i16)
14317    return false;
14318
14319  bool Promote = false;
14320  bool Commute = false;
14321  switch (Op.getOpcode()) {
14322  default: break;
14323  case ISD::LOAD: {
14324    LoadSDNode *LD = cast<LoadSDNode>(Op);
14325    // If the non-extending load has a single use and it's not live out, then it
14326    // might be folded.
14327    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14328                                                     Op.hasOneUse()*/) {
14329      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14330             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14331        // The only case where we'd want to promote LOAD (rather then it being
14332        // promoted as an operand is when it's only use is liveout.
14333        if (UI->getOpcode() != ISD::CopyToReg)
14334          return false;
14335      }
14336    }
14337    Promote = true;
14338    break;
14339  }
14340  case ISD::SIGN_EXTEND:
14341  case ISD::ZERO_EXTEND:
14342  case ISD::ANY_EXTEND:
14343    Promote = true;
14344    break;
14345  case ISD::SHL:
14346  case ISD::SRL: {
14347    SDValue N0 = Op.getOperand(0);
14348    // Look out for (store (shl (load), x)).
14349    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14350      return false;
14351    Promote = true;
14352    break;
14353  }
14354  case ISD::ADD:
14355  case ISD::MUL:
14356  case ISD::AND:
14357  case ISD::OR:
14358  case ISD::XOR:
14359    Commute = true;
14360    // fallthrough
14361  case ISD::SUB: {
14362    SDValue N0 = Op.getOperand(0);
14363    SDValue N1 = Op.getOperand(1);
14364    if (!Commute && MayFoldLoad(N1))
14365      return false;
14366    // Avoid disabling potential load folding opportunities.
14367    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14368      return false;
14369    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14370      return false;
14371    Promote = true;
14372  }
14373  }
14374
14375  PVT = MVT::i32;
14376  return Promote;
14377}
14378
14379//===----------------------------------------------------------------------===//
14380//                           X86 Inline Assembly Support
14381//===----------------------------------------------------------------------===//
14382
14383bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14384  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14385
14386  std::string AsmStr = IA->getAsmString();
14387
14388  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14389  SmallVector<StringRef, 4> AsmPieces;
14390  SplitString(AsmStr, AsmPieces, ";\n");
14391
14392  switch (AsmPieces.size()) {
14393  default: return false;
14394  case 1:
14395    AsmStr = AsmPieces[0];
14396    AsmPieces.clear();
14397    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14398
14399    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14400    // we will turn this bswap into something that will be lowered to logical ops
14401    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14402    // so don't worry about this.
14403    // bswap $0
14404    if (AsmPieces.size() == 2 &&
14405        (AsmPieces[0] == "bswap" ||
14406         AsmPieces[0] == "bswapq" ||
14407         AsmPieces[0] == "bswapl") &&
14408        (AsmPieces[1] == "$0" ||
14409         AsmPieces[1] == "${0:q}")) {
14410      // No need to check constraints, nothing other than the equivalent of
14411      // "=r,0" would be valid here.
14412      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14413      if (!Ty || Ty->getBitWidth() % 16 != 0)
14414        return false;
14415      return IntrinsicLowering::LowerToByteSwap(CI);
14416    }
14417    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14418    if (CI->getType()->isIntegerTy(16) &&
14419        AsmPieces.size() == 3 &&
14420        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14421        AsmPieces[1] == "$$8," &&
14422        AsmPieces[2] == "${0:w}" &&
14423        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14424      AsmPieces.clear();
14425      const std::string &ConstraintsStr = IA->getConstraintString();
14426      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14427      std::sort(AsmPieces.begin(), AsmPieces.end());
14428      if (AsmPieces.size() == 4 &&
14429          AsmPieces[0] == "~{cc}" &&
14430          AsmPieces[1] == "~{dirflag}" &&
14431          AsmPieces[2] == "~{flags}" &&
14432          AsmPieces[3] == "~{fpsr}") {
14433        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14434        if (!Ty || Ty->getBitWidth() % 16 != 0)
14435          return false;
14436        return IntrinsicLowering::LowerToByteSwap(CI);
14437      }
14438    }
14439    break;
14440  case 3:
14441    if (CI->getType()->isIntegerTy(32) &&
14442        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14443      SmallVector<StringRef, 4> Words;
14444      SplitString(AsmPieces[0], Words, " \t,");
14445      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14446          Words[2] == "${0:w}") {
14447        Words.clear();
14448        SplitString(AsmPieces[1], Words, " \t,");
14449        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14450            Words[2] == "$0") {
14451          Words.clear();
14452          SplitString(AsmPieces[2], Words, " \t,");
14453          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14454              Words[2] == "${0:w}") {
14455            AsmPieces.clear();
14456            const std::string &ConstraintsStr = IA->getConstraintString();
14457            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14458            std::sort(AsmPieces.begin(), AsmPieces.end());
14459            if (AsmPieces.size() == 4 &&
14460                AsmPieces[0] == "~{cc}" &&
14461                AsmPieces[1] == "~{dirflag}" &&
14462                AsmPieces[2] == "~{flags}" &&
14463                AsmPieces[3] == "~{fpsr}") {
14464              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14465              if (!Ty || Ty->getBitWidth() % 16 != 0)
14466                return false;
14467              return IntrinsicLowering::LowerToByteSwap(CI);
14468            }
14469          }
14470        }
14471      }
14472    }
14473
14474    if (CI->getType()->isIntegerTy(64)) {
14475      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14476      if (Constraints.size() >= 2 &&
14477          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14478          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14479        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14480        SmallVector<StringRef, 4> Words;
14481        SplitString(AsmPieces[0], Words, " \t");
14482        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14483          Words.clear();
14484          SplitString(AsmPieces[1], Words, " \t");
14485          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14486            Words.clear();
14487            SplitString(AsmPieces[2], Words, " \t,");
14488            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14489                Words[2] == "%edx") {
14490              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14491              if (!Ty || Ty->getBitWidth() % 16 != 0)
14492                return false;
14493              return IntrinsicLowering::LowerToByteSwap(CI);
14494            }
14495          }
14496        }
14497      }
14498    }
14499    break;
14500  }
14501  return false;
14502}
14503
14504
14505
14506/// getConstraintType - Given a constraint letter, return the type of
14507/// constraint it is for this target.
14508X86TargetLowering::ConstraintType
14509X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14510  if (Constraint.size() == 1) {
14511    switch (Constraint[0]) {
14512    case 'R':
14513    case 'q':
14514    case 'Q':
14515    case 'f':
14516    case 't':
14517    case 'u':
14518    case 'y':
14519    case 'x':
14520    case 'Y':
14521    case 'l':
14522      return C_RegisterClass;
14523    case 'a':
14524    case 'b':
14525    case 'c':
14526    case 'd':
14527    case 'S':
14528    case 'D':
14529    case 'A':
14530      return C_Register;
14531    case 'I':
14532    case 'J':
14533    case 'K':
14534    case 'L':
14535    case 'M':
14536    case 'N':
14537    case 'G':
14538    case 'C':
14539    case 'e':
14540    case 'Z':
14541      return C_Other;
14542    default:
14543      break;
14544    }
14545  }
14546  return TargetLowering::getConstraintType(Constraint);
14547}
14548
14549/// Examine constraint type and operand type and determine a weight value.
14550/// This object must already have been set up with the operand type
14551/// and the current alternative constraint selected.
14552TargetLowering::ConstraintWeight
14553  X86TargetLowering::getSingleConstraintMatchWeight(
14554    AsmOperandInfo &info, const char *constraint) const {
14555  ConstraintWeight weight = CW_Invalid;
14556  Value *CallOperandVal = info.CallOperandVal;
14557    // If we don't have a value, we can't do a match,
14558    // but allow it at the lowest weight.
14559  if (CallOperandVal == NULL)
14560    return CW_Default;
14561  Type *type = CallOperandVal->getType();
14562  // Look at the constraint type.
14563  switch (*constraint) {
14564  default:
14565    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14566  case 'R':
14567  case 'q':
14568  case 'Q':
14569  case 'a':
14570  case 'b':
14571  case 'c':
14572  case 'd':
14573  case 'S':
14574  case 'D':
14575  case 'A':
14576    if (CallOperandVal->getType()->isIntegerTy())
14577      weight = CW_SpecificReg;
14578    break;
14579  case 'f':
14580  case 't':
14581  case 'u':
14582      if (type->isFloatingPointTy())
14583        weight = CW_SpecificReg;
14584      break;
14585  case 'y':
14586      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14587        weight = CW_SpecificReg;
14588      break;
14589  case 'x':
14590  case 'Y':
14591    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14592      weight = CW_Register;
14593    break;
14594  case 'I':
14595    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14596      if (C->getZExtValue() <= 31)
14597        weight = CW_Constant;
14598    }
14599    break;
14600  case 'J':
14601    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14602      if (C->getZExtValue() <= 63)
14603        weight = CW_Constant;
14604    }
14605    break;
14606  case 'K':
14607    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14608      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14609        weight = CW_Constant;
14610    }
14611    break;
14612  case 'L':
14613    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14614      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14615        weight = CW_Constant;
14616    }
14617    break;
14618  case 'M':
14619    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14620      if (C->getZExtValue() <= 3)
14621        weight = CW_Constant;
14622    }
14623    break;
14624  case 'N':
14625    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14626      if (C->getZExtValue() <= 0xff)
14627        weight = CW_Constant;
14628    }
14629    break;
14630  case 'G':
14631  case 'C':
14632    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14633      weight = CW_Constant;
14634    }
14635    break;
14636  case 'e':
14637    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14638      if ((C->getSExtValue() >= -0x80000000LL) &&
14639          (C->getSExtValue() <= 0x7fffffffLL))
14640        weight = CW_Constant;
14641    }
14642    break;
14643  case 'Z':
14644    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14645      if (C->getZExtValue() <= 0xffffffff)
14646        weight = CW_Constant;
14647    }
14648    break;
14649  }
14650  return weight;
14651}
14652
14653/// LowerXConstraint - try to replace an X constraint, which matches anything,
14654/// with another that has more specific requirements based on the type of the
14655/// corresponding operand.
14656const char *X86TargetLowering::
14657LowerXConstraint(EVT ConstraintVT) const {
14658  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14659  // 'f' like normal targets.
14660  if (ConstraintVT.isFloatingPoint()) {
14661    if (Subtarget->hasXMMInt())
14662      return "Y";
14663    if (Subtarget->hasXMM())
14664      return "x";
14665  }
14666
14667  return TargetLowering::LowerXConstraint(ConstraintVT);
14668}
14669
14670/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14671/// vector.  If it is invalid, don't add anything to Ops.
14672void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14673                                                     std::string &Constraint,
14674                                                     std::vector<SDValue>&Ops,
14675                                                     SelectionDAG &DAG) const {
14676  SDValue Result(0, 0);
14677
14678  // Only support length 1 constraints for now.
14679  if (Constraint.length() > 1) return;
14680
14681  char ConstraintLetter = Constraint[0];
14682  switch (ConstraintLetter) {
14683  default: break;
14684  case 'I':
14685    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14686      if (C->getZExtValue() <= 31) {
14687        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14688        break;
14689      }
14690    }
14691    return;
14692  case 'J':
14693    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14694      if (C->getZExtValue() <= 63) {
14695        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14696        break;
14697      }
14698    }
14699    return;
14700  case 'K':
14701    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14702      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14703        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14704        break;
14705      }
14706    }
14707    return;
14708  case 'N':
14709    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14710      if (C->getZExtValue() <= 255) {
14711        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14712        break;
14713      }
14714    }
14715    return;
14716  case 'e': {
14717    // 32-bit signed value
14718    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14719      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14720                                           C->getSExtValue())) {
14721        // Widen to 64 bits here to get it sign extended.
14722        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14723        break;
14724      }
14725    // FIXME gcc accepts some relocatable values here too, but only in certain
14726    // memory models; it's complicated.
14727    }
14728    return;
14729  }
14730  case 'Z': {
14731    // 32-bit unsigned value
14732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14733      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14734                                           C->getZExtValue())) {
14735        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14736        break;
14737      }
14738    }
14739    // FIXME gcc accepts some relocatable values here too, but only in certain
14740    // memory models; it's complicated.
14741    return;
14742  }
14743  case 'i': {
14744    // Literal immediates are always ok.
14745    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14746      // Widen to 64 bits here to get it sign extended.
14747      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14748      break;
14749    }
14750
14751    // In any sort of PIC mode addresses need to be computed at runtime by
14752    // adding in a register or some sort of table lookup.  These can't
14753    // be used as immediates.
14754    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14755      return;
14756
14757    // If we are in non-pic codegen mode, we allow the address of a global (with
14758    // an optional displacement) to be used with 'i'.
14759    GlobalAddressSDNode *GA = 0;
14760    int64_t Offset = 0;
14761
14762    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14763    while (1) {
14764      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14765        Offset += GA->getOffset();
14766        break;
14767      } else if (Op.getOpcode() == ISD::ADD) {
14768        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14769          Offset += C->getZExtValue();
14770          Op = Op.getOperand(0);
14771          continue;
14772        }
14773      } else if (Op.getOpcode() == ISD::SUB) {
14774        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14775          Offset += -C->getZExtValue();
14776          Op = Op.getOperand(0);
14777          continue;
14778        }
14779      }
14780
14781      // Otherwise, this isn't something we can handle, reject it.
14782      return;
14783    }
14784
14785    const GlobalValue *GV = GA->getGlobal();
14786    // If we require an extra load to get this address, as in PIC mode, we
14787    // can't accept it.
14788    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14789                                                        getTargetMachine())))
14790      return;
14791
14792    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14793                                        GA->getValueType(0), Offset);
14794    break;
14795  }
14796  }
14797
14798  if (Result.getNode()) {
14799    Ops.push_back(Result);
14800    return;
14801  }
14802  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14803}
14804
14805std::pair<unsigned, const TargetRegisterClass*>
14806X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14807                                                EVT VT) const {
14808  // First, see if this is a constraint that directly corresponds to an LLVM
14809  // register class.
14810  if (Constraint.size() == 1) {
14811    // GCC Constraint Letters
14812    switch (Constraint[0]) {
14813    default: break;
14814      // TODO: Slight differences here in allocation order and leaving
14815      // RIP in the class. Do they matter any more here than they do
14816      // in the normal allocation?
14817    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14818      if (Subtarget->is64Bit()) {
14819	if (VT == MVT::i32 || VT == MVT::f32)
14820	  return std::make_pair(0U, X86::GR32RegisterClass);
14821	else if (VT == MVT::i16)
14822	  return std::make_pair(0U, X86::GR16RegisterClass);
14823	else if (VT == MVT::i8 || VT == MVT::i1)
14824	  return std::make_pair(0U, X86::GR8RegisterClass);
14825	else if (VT == MVT::i64 || VT == MVT::f64)
14826	  return std::make_pair(0U, X86::GR64RegisterClass);
14827	break;
14828      }
14829      // 32-bit fallthrough
14830    case 'Q':   // Q_REGS
14831      if (VT == MVT::i32 || VT == MVT::f32)
14832	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14833      else if (VT == MVT::i16)
14834	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14835      else if (VT == MVT::i8 || VT == MVT::i1)
14836	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14837      else if (VT == MVT::i64)
14838	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14839      break;
14840    case 'r':   // GENERAL_REGS
14841    case 'l':   // INDEX_REGS
14842      if (VT == MVT::i8 || VT == MVT::i1)
14843        return std::make_pair(0U, X86::GR8RegisterClass);
14844      if (VT == MVT::i16)
14845        return std::make_pair(0U, X86::GR16RegisterClass);
14846      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14847        return std::make_pair(0U, X86::GR32RegisterClass);
14848      return std::make_pair(0U, X86::GR64RegisterClass);
14849    case 'R':   // LEGACY_REGS
14850      if (VT == MVT::i8 || VT == MVT::i1)
14851        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14852      if (VT == MVT::i16)
14853        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14854      if (VT == MVT::i32 || !Subtarget->is64Bit())
14855        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14856      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14857    case 'f':  // FP Stack registers.
14858      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14859      // value to the correct fpstack register class.
14860      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14861        return std::make_pair(0U, X86::RFP32RegisterClass);
14862      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14863        return std::make_pair(0U, X86::RFP64RegisterClass);
14864      return std::make_pair(0U, X86::RFP80RegisterClass);
14865    case 'y':   // MMX_REGS if MMX allowed.
14866      if (!Subtarget->hasMMX()) break;
14867      return std::make_pair(0U, X86::VR64RegisterClass);
14868    case 'Y':   // SSE_REGS if SSE2 allowed
14869      if (!Subtarget->hasXMMInt()) break;
14870      // FALL THROUGH.
14871    case 'x':   // SSE_REGS if SSE1 allowed
14872      if (!Subtarget->hasXMM()) break;
14873
14874      switch (VT.getSimpleVT().SimpleTy) {
14875      default: break;
14876      // Scalar SSE types.
14877      case MVT::f32:
14878      case MVT::i32:
14879        return std::make_pair(0U, X86::FR32RegisterClass);
14880      case MVT::f64:
14881      case MVT::i64:
14882        return std::make_pair(0U, X86::FR64RegisterClass);
14883      // Vector types.
14884      case MVT::v16i8:
14885      case MVT::v8i16:
14886      case MVT::v4i32:
14887      case MVT::v2i64:
14888      case MVT::v4f32:
14889      case MVT::v2f64:
14890        return std::make_pair(0U, X86::VR128RegisterClass);
14891      }
14892      break;
14893    }
14894  }
14895
14896  // Use the default implementation in TargetLowering to convert the register
14897  // constraint into a member of a register class.
14898  std::pair<unsigned, const TargetRegisterClass*> Res;
14899  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14900
14901  // Not found as a standard register?
14902  if (Res.second == 0) {
14903    // Map st(0) -> st(7) -> ST0
14904    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14905        tolower(Constraint[1]) == 's' &&
14906        tolower(Constraint[2]) == 't' &&
14907        Constraint[3] == '(' &&
14908        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14909        Constraint[5] == ')' &&
14910        Constraint[6] == '}') {
14911
14912      Res.first = X86::ST0+Constraint[4]-'0';
14913      Res.second = X86::RFP80RegisterClass;
14914      return Res;
14915    }
14916
14917    // GCC allows "st(0)" to be called just plain "st".
14918    if (StringRef("{st}").equals_lower(Constraint)) {
14919      Res.first = X86::ST0;
14920      Res.second = X86::RFP80RegisterClass;
14921      return Res;
14922    }
14923
14924    // flags -> EFLAGS
14925    if (StringRef("{flags}").equals_lower(Constraint)) {
14926      Res.first = X86::EFLAGS;
14927      Res.second = X86::CCRRegisterClass;
14928      return Res;
14929    }
14930
14931    // 'A' means EAX + EDX.
14932    if (Constraint == "A") {
14933      Res.first = X86::EAX;
14934      Res.second = X86::GR32_ADRegisterClass;
14935      return Res;
14936    }
14937    return Res;
14938  }
14939
14940  // Otherwise, check to see if this is a register class of the wrong value
14941  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14942  // turn into {ax},{dx}.
14943  if (Res.second->hasType(VT))
14944    return Res;   // Correct type already, nothing to do.
14945
14946  // All of the single-register GCC register classes map their values onto
14947  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14948  // really want an 8-bit or 32-bit register, map to the appropriate register
14949  // class and return the appropriate register.
14950  if (Res.second == X86::GR16RegisterClass) {
14951    if (VT == MVT::i8) {
14952      unsigned DestReg = 0;
14953      switch (Res.first) {
14954      default: break;
14955      case X86::AX: DestReg = X86::AL; break;
14956      case X86::DX: DestReg = X86::DL; break;
14957      case X86::CX: DestReg = X86::CL; break;
14958      case X86::BX: DestReg = X86::BL; break;
14959      }
14960      if (DestReg) {
14961        Res.first = DestReg;
14962        Res.second = X86::GR8RegisterClass;
14963      }
14964    } else if (VT == MVT::i32) {
14965      unsigned DestReg = 0;
14966      switch (Res.first) {
14967      default: break;
14968      case X86::AX: DestReg = X86::EAX; break;
14969      case X86::DX: DestReg = X86::EDX; break;
14970      case X86::CX: DestReg = X86::ECX; break;
14971      case X86::BX: DestReg = X86::EBX; break;
14972      case X86::SI: DestReg = X86::ESI; break;
14973      case X86::DI: DestReg = X86::EDI; break;
14974      case X86::BP: DestReg = X86::EBP; break;
14975      case X86::SP: DestReg = X86::ESP; break;
14976      }
14977      if (DestReg) {
14978        Res.first = DestReg;
14979        Res.second = X86::GR32RegisterClass;
14980      }
14981    } else if (VT == MVT::i64) {
14982      unsigned DestReg = 0;
14983      switch (Res.first) {
14984      default: break;
14985      case X86::AX: DestReg = X86::RAX; break;
14986      case X86::DX: DestReg = X86::RDX; break;
14987      case X86::CX: DestReg = X86::RCX; break;
14988      case X86::BX: DestReg = X86::RBX; break;
14989      case X86::SI: DestReg = X86::RSI; break;
14990      case X86::DI: DestReg = X86::RDI; break;
14991      case X86::BP: DestReg = X86::RBP; break;
14992      case X86::SP: DestReg = X86::RSP; break;
14993      }
14994      if (DestReg) {
14995        Res.first = DestReg;
14996        Res.second = X86::GR64RegisterClass;
14997      }
14998    }
14999  } else if (Res.second == X86::FR32RegisterClass ||
15000             Res.second == X86::FR64RegisterClass ||
15001             Res.second == X86::VR128RegisterClass) {
15002    // Handle references to XMM physical registers that got mapped into the
15003    // wrong class.  This can happen with constraints like {xmm0} where the
15004    // target independent register mapper will just pick the first match it can
15005    // find, ignoring the required type.
15006    if (VT == MVT::f32)
15007      Res.second = X86::FR32RegisterClass;
15008    else if (VT == MVT::f64)
15009      Res.second = X86::FR64RegisterClass;
15010    else if (X86::VR128RegisterClass->hasType(VT))
15011      Res.second = X86::VR128RegisterClass;
15012  }
15013
15014  return Res;
15015}
15016