X86ISelLowering.cpp revision 657a99c608c98bb0cad655681c1da35ddd7b1418
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getDataLayout();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
183
184  // Bypass i32 with i8 on Atom when compiling with O2
185  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
186    addBypassSlowDiv(32, 8);
187
188  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
189    // Setup Windows compiler runtime calls.
190    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
191    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
192    setLibcallName(RTLIB::SREM_I64, "_allrem");
193    setLibcallName(RTLIB::UREM_I64, "_aullrem");
194    setLibcallName(RTLIB::MUL_I64, "_allmul");
195    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
200
201    // The _ftol2 runtime function has an unusual calling conv, which
202    // is modeled by a special pseudo-instruction.
203    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
204    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
206    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
207  }
208
209  if (Subtarget->isTargetDarwin()) {
210    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
211    setUseUnderscoreSetJmp(false);
212    setUseUnderscoreLongJmp(false);
213  } else if (Subtarget->isTargetMingw()) {
214    // MS runtime is weird: it exports _setjmp, but longjmp!
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(false);
217  } else {
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(true);
220  }
221
222  // Set up the register classes.
223  addRegisterClass(MVT::i8, &X86::GR8RegClass);
224  addRegisterClass(MVT::i16, &X86::GR16RegClass);
225  addRegisterClass(MVT::i32, &X86::GR32RegClass);
226  if (Subtarget->is64Bit())
227    addRegisterClass(MVT::i64, &X86::GR64RegClass);
228
229  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
230
231  // We don't accept any truncstore of integer registers.
232  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
233  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
235  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
236  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
237  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
238
239  // SETOEQ and SETUNE require checking two conditions.
240  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
243  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
246
247  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
248  // operation.
249  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
252
253  if (Subtarget->is64Bit()) {
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256  } else if (!TM.Options.UseSoftFloat) {
257    // We have an algorithm for SSE2->double, and we turn this into a
258    // 64-bit FILD followed by conditional FADD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
260    // We have an algorithm for SSE2, and we turn this into a 64-bit
261    // FILD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
263  }
264
265  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
266  // this operation.
267  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
269
270  if (!TM.Options.UseSoftFloat) {
271    // SSE has no i16 to fp conversion, only i32
272    if (X86ScalarSSEf32) {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
274      // f32 and f64 cases are Legal, f80 case is not
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    } else {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    }
280  } else {
281    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
283  }
284
285  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
286  // are Legal, f80 is custom lowered.
287  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
288  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
289
290  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
291  // this operation.
292  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
294
295  if (X86ScalarSSEf32) {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
297    // f32 and f64 cases are Legal, f80 case is not
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  } else {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  }
303
304  // Handle FP_TO_UINT by promoting the destination to a larger signed
305  // conversion.
306  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
309
310  if (Subtarget->is64Bit()) {
311    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
313  } else if (!TM.Options.UseSoftFloat) {
314    // Since AVX is a superset of SSE3, only check for SSE here.
315    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  if (isTargetFTOL()) {
327    // Use the _ftol2 runtime function, which has a pseudo-instruction
328    // to handle its weird calling convention.
329    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
330  }
331
332  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
333  if (!X86ScalarSSEf64) {
334    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
335    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
336    if (Subtarget->is64Bit()) {
337      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
338      // Without SSE, i64->f64 goes through memory.
339      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
340    }
341  }
342
343  // Scalar integer divide and remainder are lowered to use operations that
344  // produce two results, to match the available instructions. This exposes
345  // the two-result form to trivial CSE, which is able to combine x/y and x%y
346  // into a single instruction.
347  //
348  // Scalar integer multiply-high is also lowered to use two-result
349  // operations, to match the available instructions. However, plain multiply
350  // (low) operations are left as Legal, as there are single-result
351  // instructions for this in x86. Using the two-result multiply instructions
352  // when both high and low results are needed must be arranged by dagcombine.
353  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
354    MVT VT = IntVTs[i];
355    setOperationAction(ISD::MULHS, VT, Expand);
356    setOperationAction(ISD::MULHU, VT, Expand);
357    setOperationAction(ISD::SDIV, VT, Expand);
358    setOperationAction(ISD::UDIV, VT, Expand);
359    setOperationAction(ISD::SREM, VT, Expand);
360    setOperationAction(ISD::UREM, VT, Expand);
361
362    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
363    setOperationAction(ISD::ADDC, VT, Custom);
364    setOperationAction(ISD::ADDE, VT, Custom);
365    setOperationAction(ISD::SUBC, VT, Custom);
366    setOperationAction(ISD::SUBE, VT, Custom);
367  }
368
369  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
370  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
371  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
372  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
378  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
382  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
383
384  // Promote the i8 variants and force them on up to i32 which has a shorter
385  // encoding.
386  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
387  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
388  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
389  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
390  if (Subtarget->hasBMI()) {
391    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
395  } else {
396    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
397    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
400  }
401
402  if (Subtarget->hasLZCNT()) {
403    // When promoting the i8 variants, force them to i32 for a shorter
404    // encoding.
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
406    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
408    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
411    if (Subtarget->is64Bit())
412      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
413  } else {
414    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
417    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
420    if (Subtarget->is64Bit()) {
421      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
422      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
423    }
424  }
425
426  if (Subtarget->hasPOPCNT()) {
427    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
428  } else {
429    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
432    if (Subtarget->is64Bit())
433      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
434  }
435
436  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
437  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
438
439  // These should be promoted to a larger select which is supported.
440  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
441  // X86 wants to expand cmov itself.
442  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
454  if (Subtarget->is64Bit()) {
455    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
456    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
457  }
458  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
459  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
460  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
461  // support continuation, user-level threading, and etc.. As a result, no
462  // other SjLj exception interfaces are implemented and please don't build
463  // your own exception handling based on them.
464  // LLVM/Clang supports zero-cost DWARF exception handling.
465  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
466  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
467
468  // Darwin ABI issue.
469  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
470  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
471  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
473  if (Subtarget->is64Bit())
474    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
475  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
476  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
479    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
480    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
481    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
482    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
483  }
484  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
485  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
486  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
488  if (Subtarget->is64Bit()) {
489    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
490    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
492  }
493
494  if (Subtarget->hasSSE1())
495    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
496
497  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
498  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
499
500  // On X86 and X86-64, atomic operations are lowered to locked instructions.
501  // Locked instructions, in turn, have implicit fence semantics (all memory
502  // operations are flushed before issuing the locked instruction, and they
503  // are not buffered), so we can fold away the common pattern of
504  // fence-atomic-fence.
505  setShouldFoldAtomicFences(true);
506
507  // Expand certain atomics
508  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
509    MVT VT = IntVTs[i];
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
512    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
513  }
514
515  if (!Subtarget->is64Bit()) {
516    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
517    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
528  }
529
530  if (Subtarget->hasCmpxchg16b()) {
531    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
532  }
533
534  // FIXME - use subtarget debug flags
535  if (!Subtarget->isTargetDarwin() &&
536      !Subtarget->isTargetELF() &&
537      !Subtarget->isTargetCygMing()) {
538    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
539  }
540
541  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
542  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
543  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
544  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
545  if (Subtarget->is64Bit()) {
546    setExceptionPointerRegister(X86::RAX);
547    setExceptionSelectorRegister(X86::RDX);
548  } else {
549    setExceptionPointerRegister(X86::EAX);
550    setExceptionSelectorRegister(X86::EDX);
551  }
552  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
554
555  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
556  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
557
558  setOperationAction(ISD::TRAP, MVT::Other, Legal);
559  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
560
561  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
562  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
563  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
564  if (Subtarget->is64Bit()) {
565    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
566    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
567  } else {
568    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
569    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
570  }
571
572  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
573  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
574
575  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
576    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
577                       MVT::i64 : MVT::i32, Custom);
578  else if (TM.Options.EnableSegmentedStacks)
579    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
580                       MVT::i64 : MVT::i32, Custom);
581  else
582    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
583                       MVT::i64 : MVT::i32, Expand);
584
585  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
586    // f32 and f64 use SSE.
587    // Set up the FP register classes.
588    addRegisterClass(MVT::f32, &X86::FR32RegClass);
589    addRegisterClass(MVT::f64, &X86::FR64RegClass);
590
591    // Use ANDPD to simulate FABS.
592    setOperationAction(ISD::FABS , MVT::f64, Custom);
593    setOperationAction(ISD::FABS , MVT::f32, Custom);
594
595    // Use XORP to simulate FNEG.
596    setOperationAction(ISD::FNEG , MVT::f64, Custom);
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    // Use ANDPD and ORPD to simulate FCOPYSIGN.
600    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
601    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
602
603    // Lower this to FGETSIGNx86 plus an AND.
604    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
605    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
606
607    // We don't support sin/cos/fmod
608    setOperationAction(ISD::FSIN , MVT::f64, Expand);
609    setOperationAction(ISD::FCOS , MVT::f64, Expand);
610    setOperationAction(ISD::FSIN , MVT::f32, Expand);
611    setOperationAction(ISD::FCOS , MVT::f32, Expand);
612
613    // Expand FP immediates into loads from the stack, except for the special
614    // cases we handle.
615    addLegalFPImmediate(APFloat(+0.0)); // xorpd
616    addLegalFPImmediate(APFloat(+0.0f)); // xorps
617  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
618    // Use SSE for f32, x87 for f64.
619    // Set up the FP register classes.
620    addRegisterClass(MVT::f32, &X86::FR32RegClass);
621    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
622
623    // Use ANDPS to simulate FABS.
624    setOperationAction(ISD::FABS , MVT::f32, Custom);
625
626    // Use XORP to simulate FNEG.
627    setOperationAction(ISD::FNEG , MVT::f32, Custom);
628
629    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
630
631    // Use ANDPS and ORPS to simulate FCOPYSIGN.
632    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
633    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
634
635    // We don't support sin/cos/fmod
636    setOperationAction(ISD::FSIN , MVT::f32, Expand);
637    setOperationAction(ISD::FCOS , MVT::f32, Expand);
638
639    // Special cases we handle for FP constants.
640    addLegalFPImmediate(APFloat(+0.0f)); // xorps
641    addLegalFPImmediate(APFloat(+0.0)); // FLD0
642    addLegalFPImmediate(APFloat(+1.0)); // FLD1
643    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
644    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
645
646    if (!TM.Options.UnsafeFPMath) {
647      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
648      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
649    }
650  } else if (!TM.Options.UseSoftFloat) {
651    // f32 and f64 in x87.
652    // Set up the FP register classes.
653    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
654    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
655
656    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
657    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
660
661    if (!TM.Options.UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
663      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
666    }
667    addLegalFPImmediate(APFloat(+0.0)); // FLD0
668    addLegalFPImmediate(APFloat(+1.0)); // FLD1
669    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
670    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
671    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
672    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
673    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
674    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
675  }
676
677  // We don't support FMA.
678  setOperationAction(ISD::FMA, MVT::f64, Expand);
679  setOperationAction(ISD::FMA, MVT::f32, Expand);
680
681  // Long double always uses X87.
682  if (!TM.Options.UseSoftFloat) {
683    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
684    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
685    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
686    {
687      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
688      addLegalFPImmediate(TmpFlt);  // FLD0
689      TmpFlt.changeSign();
690      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
691
692      bool ignored;
693      APFloat TmpFlt2(+1.0);
694      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
695                      &ignored);
696      addLegalFPImmediate(TmpFlt2);  // FLD1
697      TmpFlt2.changeSign();
698      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
699    }
700
701    if (!TM.Options.UnsafeFPMath) {
702      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
703      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
704    }
705
706    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
707    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
708    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
709    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
710    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
711    setOperationAction(ISD::FMA, MVT::f80, Expand);
712  }
713
714  // Always use a library call for pow.
715  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
716  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
718
719  setOperationAction(ISD::FLOG, MVT::f80, Expand);
720  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
722  setOperationAction(ISD::FEXP, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
724
725  // First set operation action for all vector types to either promote
726  // (for widening) or expand (for scalarization). Then we will selectively
727  // turn on ones that can be effectively codegen'd.
728  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
729           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
730    MVT VT = (MVT::SimpleValueType)i;
731    setOperationAction(ISD::ADD , VT, Expand);
732    setOperationAction(ISD::SUB , VT, Expand);
733    setOperationAction(ISD::FADD, VT, Expand);
734    setOperationAction(ISD::FNEG, VT, Expand);
735    setOperationAction(ISD::FSUB, VT, Expand);
736    setOperationAction(ISD::MUL , VT, Expand);
737    setOperationAction(ISD::FMUL, VT, Expand);
738    setOperationAction(ISD::SDIV, VT, Expand);
739    setOperationAction(ISD::UDIV, VT, Expand);
740    setOperationAction(ISD::FDIV, VT, Expand);
741    setOperationAction(ISD::SREM, VT, Expand);
742    setOperationAction(ISD::UREM, VT, Expand);
743    setOperationAction(ISD::LOAD, VT, Expand);
744    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
746    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
747    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
748    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
749    setOperationAction(ISD::FABS, VT, Expand);
750    setOperationAction(ISD::FSIN, VT, Expand);
751    setOperationAction(ISD::FCOS, VT, Expand);
752    setOperationAction(ISD::FREM, VT, Expand);
753    setOperationAction(ISD::FMA,  VT, Expand);
754    setOperationAction(ISD::FPOWI, VT, Expand);
755    setOperationAction(ISD::FSQRT, VT, Expand);
756    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
757    setOperationAction(ISD::FFLOOR, VT, Expand);
758    setOperationAction(ISD::FCEIL, VT, Expand);
759    setOperationAction(ISD::FTRUNC, VT, Expand);
760    setOperationAction(ISD::FRINT, VT, Expand);
761    setOperationAction(ISD::FNEARBYINT, VT, Expand);
762    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
763    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
764    setOperationAction(ISD::SDIVREM, VT, Expand);
765    setOperationAction(ISD::UDIVREM, VT, Expand);
766    setOperationAction(ISD::FPOW, VT, Expand);
767    setOperationAction(ISD::CTPOP, VT, Expand);
768    setOperationAction(ISD::CTTZ, VT, Expand);
769    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
770    setOperationAction(ISD::CTLZ, VT, Expand);
771    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
772    setOperationAction(ISD::SHL, VT, Expand);
773    setOperationAction(ISD::SRA, VT, Expand);
774    setOperationAction(ISD::SRL, VT, Expand);
775    setOperationAction(ISD::ROTL, VT, Expand);
776    setOperationAction(ISD::ROTR, VT, Expand);
777    setOperationAction(ISD::BSWAP, VT, Expand);
778    setOperationAction(ISD::SETCC, VT, Expand);
779    setOperationAction(ISD::FLOG, VT, Expand);
780    setOperationAction(ISD::FLOG2, VT, Expand);
781    setOperationAction(ISD::FLOG10, VT, Expand);
782    setOperationAction(ISD::FEXP, VT, Expand);
783    setOperationAction(ISD::FEXP2, VT, Expand);
784    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
785    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
786    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
787    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
788    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
789    setOperationAction(ISD::TRUNCATE, VT, Expand);
790    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
791    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
792    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
793    setOperationAction(ISD::VSELECT, VT, Expand);
794    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
795             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
796      setTruncStoreAction(VT,
797                          (MVT::SimpleValueType)InnerVT, Expand);
798    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
799    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
800    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
801  }
802
803  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
804  // with -msoft-float, disable use of MMX as well.
805  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
806    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
807    // No operations on x86mmx supported, everything uses intrinsics.
808  }
809
810  // MMX-sized vectors (other than x86mmx) are expected to be expanded
811  // into smaller operations.
812  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
813  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
814  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
815  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
816  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
817  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
818  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
819  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
820  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
821  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
822  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
823  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
824  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
825  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
826  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
827  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
828  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
829  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
830  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
831  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
832  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
833  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
834  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
835  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
836  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
837  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
838  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
839  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
840  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
841
842  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
843    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
844
845    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
851    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
852    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
853    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
854    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
856    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
857  }
858
859  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
860    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
861
862    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
863    // registers cannot be used even for integer operations.
864    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
865    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
866    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
867    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
868
869    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
870    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
871    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
872    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
873    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
874    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
875    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
876    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
877    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
878    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
879    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
880    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
886    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
887
888    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
889    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
890    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
891    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
892
893    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
894    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
895    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
896    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
898
899    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
900    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
901      MVT VT = (MVT::SimpleValueType)i;
902      // Do not attempt to custom lower non-power-of-2 vectors
903      if (!isPowerOf2_32(VT.getVectorNumElements()))
904        continue;
905      // Do not attempt to custom lower non-128-bit vectors
906      if (!VT.is128BitVector())
907        continue;
908      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
909      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
910      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
911    }
912
913    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
914    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
915    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
916    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
918    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
919
920    if (Subtarget->is64Bit()) {
921      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
922      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
923    }
924
925    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
926    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
927      MVT VT = (MVT::SimpleValueType)i;
928
929      // Do not attempt to promote non-128-bit vectors
930      if (!VT.is128BitVector())
931        continue;
932
933      setOperationAction(ISD::AND,    VT, Promote);
934      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
935      setOperationAction(ISD::OR,     VT, Promote);
936      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
937      setOperationAction(ISD::XOR,    VT, Promote);
938      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
939      setOperationAction(ISD::LOAD,   VT, Promote);
940      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
941      setOperationAction(ISD::SELECT, VT, Promote);
942      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
943    }
944
945    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
946
947    // Custom lower v2i64 and v2f64 selects.
948    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
949    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
950    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
951    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
952
953    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
954    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
955
956    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
957    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
958    // As there is no 64-bit GPR available, we need build a special custom
959    // sequence to convert from v2i32 to v2f32.
960    if (!Subtarget->is64Bit())
961      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
962
963    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
964    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
965
966    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
967  }
968
969  if (Subtarget->hasSSE41()) {
970    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
971    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
972    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
973    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
974    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
975    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
976    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
977    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
978    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
979    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
980
981    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
982    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
983    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
984    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
985    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
986    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
987    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
988    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
989    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
990    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
991
992    // FIXME: Do we need to handle scalar-to-vector here?
993    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
994
995    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
996    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
997    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
998    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
999    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1000
1001    // i8 and i16 vectors are custom , because the source register and source
1002    // source memory operand types are not the same width.  f32 vectors are
1003    // custom since the immediate controlling the insert encodes additional
1004    // information.
1005    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1006    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1007    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1008    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1009
1010    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1011    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1012    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1013    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1014
1015    // FIXME: these should be Legal but thats only for the case where
1016    // the index is constant.  For now custom expand to deal with that.
1017    if (Subtarget->is64Bit()) {
1018      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1019      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1020    }
1021  }
1022
1023  if (Subtarget->hasSSE2()) {
1024    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1025    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1026
1027    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1028    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1029
1030    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1031    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1032
1033    if (Subtarget->hasInt256()) {
1034      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1035      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1036
1037      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1038      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1039
1040      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1041    } else {
1042      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1043      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1044
1045      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1046      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1047
1048      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1049    }
1050    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1051    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1052  }
1053
1054  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1055    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1056    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1057    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1058    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1059    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1060    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1061
1062    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1063    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1064    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1065
1066    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1067    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1068    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1069    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1070    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1071    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1072    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1073    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1074    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1075    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1076    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1077    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1078
1079    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1080    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1081    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1082    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1083    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1084    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1085    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1086    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1087    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1088    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1089    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1090    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1091
1092    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1093    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1094
1095    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1096
1097    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1098    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1099    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1100
1101    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1102    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1103    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1104
1105    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1106
1107    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1108    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1109
1110    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1111    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1112
1113    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1114    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1115
1116    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1117
1118    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1119    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1120    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1121    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1122
1123    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1124    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1125    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1126
1127    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1128    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1129    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1130    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1131
1132    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1133    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1134    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1135    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1136    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1137    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1138
1139    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1140      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1141      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1142      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1143      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1144      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1145      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1146    }
1147
1148    if (Subtarget->hasInt256()) {
1149      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1150      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1151      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1152      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1153
1154      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1155      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1156      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1157      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1158
1159      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1160      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1161      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1162      // Don't lower v32i8 because there is no 128-bit byte mul
1163
1164      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1165
1166      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1167      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1168
1169      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1170      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1171
1172      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1173
1174      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1175    } else {
1176      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1177      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1178      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1179      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1180
1181      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1182      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1183      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1184      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1185
1186      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1187      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1188      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1189      // Don't lower v32i8 because there is no 128-bit byte mul
1190
1191      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1192      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1193
1194      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1195      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1196
1197      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1198    }
1199
1200    // Custom lower several nodes for 256-bit types.
1201    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1202             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1203      MVT VT = (MVT::SimpleValueType)i;
1204
1205      // Extract subvector is special because the value type
1206      // (result) is 128-bit but the source is 256-bit wide.
1207      if (VT.is128BitVector())
1208        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1209
1210      // Do not attempt to custom lower other non-256-bit vectors
1211      if (!VT.is256BitVector())
1212        continue;
1213
1214      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1215      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1216      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1217      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1218      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1219      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1220      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1221    }
1222
1223    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1224    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1225      MVT VT = (MVT::SimpleValueType)i;
1226
1227      // Do not attempt to promote non-256-bit vectors
1228      if (!VT.is256BitVector())
1229        continue;
1230
1231      setOperationAction(ISD::AND,    VT, Promote);
1232      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1233      setOperationAction(ISD::OR,     VT, Promote);
1234      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1235      setOperationAction(ISD::XOR,    VT, Promote);
1236      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1237      setOperationAction(ISD::LOAD,   VT, Promote);
1238      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1239      setOperationAction(ISD::SELECT, VT, Promote);
1240      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1241    }
1242  }
1243
1244  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1245  // of this type with custom code.
1246  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1247           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1248    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1249                       Custom);
1250  }
1251
1252  // We want to custom lower some of our intrinsics.
1253  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1254  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1255
1256  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1257  // handle type legalization for these operations here.
1258  //
1259  // FIXME: We really should do custom legalization for addition and
1260  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1261  // than generic legalization for 64-bit multiplication-with-overflow, though.
1262  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1263    // Add/Sub/Mul with overflow operations are custom lowered.
1264    MVT VT = IntVTs[i];
1265    setOperationAction(ISD::SADDO, VT, Custom);
1266    setOperationAction(ISD::UADDO, VT, Custom);
1267    setOperationAction(ISD::SSUBO, VT, Custom);
1268    setOperationAction(ISD::USUBO, VT, Custom);
1269    setOperationAction(ISD::SMULO, VT, Custom);
1270    setOperationAction(ISD::UMULO, VT, Custom);
1271  }
1272
1273  // There are no 8-bit 3-address imul/mul instructions
1274  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1275  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1276
1277  if (!Subtarget->is64Bit()) {
1278    // These libcalls are not available in 32-bit.
1279    setLibcallName(RTLIB::SHL_I128, 0);
1280    setLibcallName(RTLIB::SRL_I128, 0);
1281    setLibcallName(RTLIB::SRA_I128, 0);
1282  }
1283
1284  // We have target-specific dag combine patterns for the following nodes:
1285  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1286  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1287  setTargetDAGCombine(ISD::VSELECT);
1288  setTargetDAGCombine(ISD::SELECT);
1289  setTargetDAGCombine(ISD::SHL);
1290  setTargetDAGCombine(ISD::SRA);
1291  setTargetDAGCombine(ISD::SRL);
1292  setTargetDAGCombine(ISD::OR);
1293  setTargetDAGCombine(ISD::AND);
1294  setTargetDAGCombine(ISD::ADD);
1295  setTargetDAGCombine(ISD::FADD);
1296  setTargetDAGCombine(ISD::FSUB);
1297  setTargetDAGCombine(ISD::FMA);
1298  setTargetDAGCombine(ISD::SUB);
1299  setTargetDAGCombine(ISD::LOAD);
1300  setTargetDAGCombine(ISD::STORE);
1301  setTargetDAGCombine(ISD::ZERO_EXTEND);
1302  setTargetDAGCombine(ISD::ANY_EXTEND);
1303  setTargetDAGCombine(ISD::SIGN_EXTEND);
1304  setTargetDAGCombine(ISD::TRUNCATE);
1305  setTargetDAGCombine(ISD::SINT_TO_FP);
1306  setTargetDAGCombine(ISD::SETCC);
1307  if (Subtarget->is64Bit())
1308    setTargetDAGCombine(ISD::MUL);
1309  setTargetDAGCombine(ISD::XOR);
1310
1311  computeRegisterProperties();
1312
1313  // On Darwin, -Os means optimize for size without hurting performance,
1314  // do not reduce the limit.
1315  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1316  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1317  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1318  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1319  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1320  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1321  setPrefLoopAlignment(4); // 2^4 bytes.
1322  benefitFromCodePlacementOpt = true;
1323
1324  // Predictable cmov don't hurt on atom because it's in-order.
1325  predictableSelectIsExpensive = !Subtarget->isAtom();
1326
1327  setPrefFunctionAlignment(4); // 2^4 bytes.
1328}
1329
1330EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1331  if (!VT.isVector()) return MVT::i8;
1332  return VT.changeVectorElementTypeToInteger();
1333}
1334
1335/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1336/// the desired ByVal argument alignment.
1337static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1338  if (MaxAlign == 16)
1339    return;
1340  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1341    if (VTy->getBitWidth() == 128)
1342      MaxAlign = 16;
1343  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1344    unsigned EltAlign = 0;
1345    getMaxByValAlign(ATy->getElementType(), EltAlign);
1346    if (EltAlign > MaxAlign)
1347      MaxAlign = EltAlign;
1348  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1349    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1350      unsigned EltAlign = 0;
1351      getMaxByValAlign(STy->getElementType(i), EltAlign);
1352      if (EltAlign > MaxAlign)
1353        MaxAlign = EltAlign;
1354      if (MaxAlign == 16)
1355        break;
1356    }
1357  }
1358}
1359
1360/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1361/// function arguments in the caller parameter area. For X86, aggregates
1362/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1363/// are at 4-byte boundaries.
1364unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1365  if (Subtarget->is64Bit()) {
1366    // Max of 8 and alignment of type.
1367    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1368    if (TyAlign > 8)
1369      return TyAlign;
1370    return 8;
1371  }
1372
1373  unsigned Align = 4;
1374  if (Subtarget->hasSSE1())
1375    getMaxByValAlign(Ty, Align);
1376  return Align;
1377}
1378
1379/// getOptimalMemOpType - Returns the target specific optimal type for load
1380/// and store operations as a result of memset, memcpy, and memmove
1381/// lowering. If DstAlign is zero that means it's safe to destination
1382/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1383/// means there isn't a need to check it against alignment requirement,
1384/// probably because the source does not need to be loaded. If 'IsMemset' is
1385/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1386/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1387/// source is constant so it does not need to be loaded.
1388/// It returns EVT::Other if the type should be determined using generic
1389/// target-independent logic.
1390EVT
1391X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1392                                       unsigned DstAlign, unsigned SrcAlign,
1393                                       bool IsMemset, bool ZeroMemset,
1394                                       bool MemcpyStrSrc,
1395                                       MachineFunction &MF) const {
1396  const Function *F = MF.getFunction();
1397  if ((!IsMemset || ZeroMemset) &&
1398      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1399                                       Attribute::NoImplicitFloat)) {
1400    if (Size >= 16 &&
1401        (Subtarget->isUnalignedMemAccessFast() ||
1402         ((DstAlign == 0 || DstAlign >= 16) &&
1403          (SrcAlign == 0 || SrcAlign >= 16)))) {
1404      if (Size >= 32) {
1405        if (Subtarget->hasInt256())
1406          return MVT::v8i32;
1407        if (Subtarget->hasFp256())
1408          return MVT::v8f32;
1409      }
1410      if (Subtarget->hasSSE2())
1411        return MVT::v4i32;
1412      if (Subtarget->hasSSE1())
1413        return MVT::v4f32;
1414    } else if (!MemcpyStrSrc && Size >= 8 &&
1415               !Subtarget->is64Bit() &&
1416               Subtarget->hasSSE2()) {
1417      // Do not use f64 to lower memcpy if source is string constant. It's
1418      // better to use i32 to avoid the loads.
1419      return MVT::f64;
1420    }
1421  }
1422  if (Subtarget->is64Bit() && Size >= 8)
1423    return MVT::i64;
1424  return MVT::i32;
1425}
1426
1427bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1428  if (VT == MVT::f32)
1429    return X86ScalarSSEf32;
1430  else if (VT == MVT::f64)
1431    return X86ScalarSSEf64;
1432  return true;
1433}
1434
1435bool
1436X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1437  if (Fast)
1438    *Fast = Subtarget->isUnalignedMemAccessFast();
1439  return true;
1440}
1441
1442/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1443/// current function.  The returned value is a member of the
1444/// MachineJumpTableInfo::JTEntryKind enum.
1445unsigned X86TargetLowering::getJumpTableEncoding() const {
1446  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1447  // symbol.
1448  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1449      Subtarget->isPICStyleGOT())
1450    return MachineJumpTableInfo::EK_Custom32;
1451
1452  // Otherwise, use the normal jump table encoding heuristics.
1453  return TargetLowering::getJumpTableEncoding();
1454}
1455
1456const MCExpr *
1457X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1458                                             const MachineBasicBlock *MBB,
1459                                             unsigned uid,MCContext &Ctx) const{
1460  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1461         Subtarget->isPICStyleGOT());
1462  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1463  // entries.
1464  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1465                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1466}
1467
1468/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1469/// jumptable.
1470SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1471                                                    SelectionDAG &DAG) const {
1472  if (!Subtarget->is64Bit())
1473    // This doesn't have DebugLoc associated with it, but is not really the
1474    // same as a Register.
1475    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1476  return Table;
1477}
1478
1479/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1480/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1481/// MCExpr.
1482const MCExpr *X86TargetLowering::
1483getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1484                             MCContext &Ctx) const {
1485  // X86-64 uses RIP relative addressing based on the jump table label.
1486  if (Subtarget->isPICStyleRIPRel())
1487    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1488
1489  // Otherwise, the reference is relative to the PIC base.
1490  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1491}
1492
1493// FIXME: Why this routine is here? Move to RegInfo!
1494std::pair<const TargetRegisterClass*, uint8_t>
1495X86TargetLowering::findRepresentativeClass(MVT VT) const{
1496  const TargetRegisterClass *RRC = 0;
1497  uint8_t Cost = 1;
1498  switch (VT.SimpleTy) {
1499  default:
1500    return TargetLowering::findRepresentativeClass(VT);
1501  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1502    RRC = Subtarget->is64Bit() ?
1503      (const TargetRegisterClass*)&X86::GR64RegClass :
1504      (const TargetRegisterClass*)&X86::GR32RegClass;
1505    break;
1506  case MVT::x86mmx:
1507    RRC = &X86::VR64RegClass;
1508    break;
1509  case MVT::f32: case MVT::f64:
1510  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1511  case MVT::v4f32: case MVT::v2f64:
1512  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1513  case MVT::v4f64:
1514    RRC = &X86::VR128RegClass;
1515    break;
1516  }
1517  return std::make_pair(RRC, Cost);
1518}
1519
1520bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1521                                               unsigned &Offset) const {
1522  if (!Subtarget->isTargetLinux())
1523    return false;
1524
1525  if (Subtarget->is64Bit()) {
1526    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1527    Offset = 0x28;
1528    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1529      AddressSpace = 256;
1530    else
1531      AddressSpace = 257;
1532  } else {
1533    // %gs:0x14 on i386
1534    Offset = 0x14;
1535    AddressSpace = 256;
1536  }
1537  return true;
1538}
1539
1540//===----------------------------------------------------------------------===//
1541//               Return Value Calling Convention Implementation
1542//===----------------------------------------------------------------------===//
1543
1544#include "X86GenCallingConv.inc"
1545
1546bool
1547X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1548                                  MachineFunction &MF, bool isVarArg,
1549                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1550                        LLVMContext &Context) const {
1551  SmallVector<CCValAssign, 16> RVLocs;
1552  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1553                 RVLocs, Context);
1554  return CCInfo.CheckReturn(Outs, RetCC_X86);
1555}
1556
1557SDValue
1558X86TargetLowering::LowerReturn(SDValue Chain,
1559                               CallingConv::ID CallConv, bool isVarArg,
1560                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1561                               const SmallVectorImpl<SDValue> &OutVals,
1562                               DebugLoc dl, SelectionDAG &DAG) const {
1563  MachineFunction &MF = DAG.getMachineFunction();
1564  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1565
1566  SmallVector<CCValAssign, 16> RVLocs;
1567  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1568                 RVLocs, *DAG.getContext());
1569  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1570
1571  // Add the regs to the liveout set for the function.
1572  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1573  for (unsigned i = 0; i != RVLocs.size(); ++i)
1574    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1575      MRI.addLiveOut(RVLocs[i].getLocReg());
1576
1577  SDValue Flag;
1578
1579  SmallVector<SDValue, 6> RetOps;
1580  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1581  // Operand #1 = Bytes To Pop
1582  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1583                   MVT::i16));
1584
1585  // Copy the result values into the output registers.
1586  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1587    CCValAssign &VA = RVLocs[i];
1588    assert(VA.isRegLoc() && "Can only return in registers!");
1589    SDValue ValToCopy = OutVals[i];
1590    EVT ValVT = ValToCopy.getValueType();
1591
1592    // Promote values to the appropriate types
1593    if (VA.getLocInfo() == CCValAssign::SExt)
1594      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1595    else if (VA.getLocInfo() == CCValAssign::ZExt)
1596      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1597    else if (VA.getLocInfo() == CCValAssign::AExt)
1598      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1599    else if (VA.getLocInfo() == CCValAssign::BCvt)
1600      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1601
1602    // If this is x86-64, and we disabled SSE, we can't return FP values,
1603    // or SSE or MMX vectors.
1604    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1605         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1606          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1607      report_fatal_error("SSE register return with SSE disabled");
1608    }
1609    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1610    // llvm-gcc has never done it right and no one has noticed, so this
1611    // should be OK for now.
1612    if (ValVT == MVT::f64 &&
1613        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1614      report_fatal_error("SSE2 register return with SSE2 disabled");
1615
1616    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1617    // the RET instruction and handled by the FP Stackifier.
1618    if (VA.getLocReg() == X86::ST0 ||
1619        VA.getLocReg() == X86::ST1) {
1620      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1621      // change the value to the FP stack register class.
1622      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1623        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1624      RetOps.push_back(ValToCopy);
1625      // Don't emit a copytoreg.
1626      continue;
1627    }
1628
1629    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1630    // which is returned in RAX / RDX.
1631    if (Subtarget->is64Bit()) {
1632      if (ValVT == MVT::x86mmx) {
1633        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1634          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1635          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1636                                  ValToCopy);
1637          // If we don't have SSE2 available, convert to v4f32 so the generated
1638          // register is legal.
1639          if (!Subtarget->hasSSE2())
1640            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1641        }
1642      }
1643    }
1644
1645    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1646    Flag = Chain.getValue(1);
1647  }
1648
1649  // The x86-64 ABI for returning structs by value requires that we copy
1650  // the sret argument into %rax for the return. We saved the argument into
1651  // a virtual register in the entry block, so now we copy the value out
1652  // and into %rax.
1653  if (Subtarget->is64Bit() &&
1654      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1655    MachineFunction &MF = DAG.getMachineFunction();
1656    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1657    unsigned Reg = FuncInfo->getSRetReturnReg();
1658    assert(Reg &&
1659           "SRetReturnReg should have been set in LowerFormalArguments().");
1660    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1661
1662    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1663    Flag = Chain.getValue(1);
1664
1665    // RAX now acts like a return value.
1666    MRI.addLiveOut(X86::RAX);
1667  }
1668
1669  RetOps[0] = Chain;  // Update chain.
1670
1671  // Add the flag if we have it.
1672  if (Flag.getNode())
1673    RetOps.push_back(Flag);
1674
1675  return DAG.getNode(X86ISD::RET_FLAG, dl,
1676                     MVT::Other, &RetOps[0], RetOps.size());
1677}
1678
1679bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1680  if (N->getNumValues() != 1)
1681    return false;
1682  if (!N->hasNUsesOfValue(1, 0))
1683    return false;
1684
1685  SDValue TCChain = Chain;
1686  SDNode *Copy = *N->use_begin();
1687  if (Copy->getOpcode() == ISD::CopyToReg) {
1688    // If the copy has a glue operand, we conservatively assume it isn't safe to
1689    // perform a tail call.
1690    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1691      return false;
1692    TCChain = Copy->getOperand(0);
1693  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1694    return false;
1695
1696  bool HasRet = false;
1697  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1698       UI != UE; ++UI) {
1699    if (UI->getOpcode() != X86ISD::RET_FLAG)
1700      return false;
1701    HasRet = true;
1702  }
1703
1704  if (!HasRet)
1705    return false;
1706
1707  Chain = TCChain;
1708  return true;
1709}
1710
1711MVT
1712X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1713                                            ISD::NodeType ExtendKind) const {
1714  MVT ReturnMVT;
1715  // TODO: Is this also valid on 32-bit?
1716  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1717    ReturnMVT = MVT::i8;
1718  else
1719    ReturnMVT = MVT::i32;
1720
1721  MVT MinVT = getRegisterType(ReturnMVT);
1722  return VT.bitsLT(MinVT) ? MinVT : VT;
1723}
1724
1725/// LowerCallResult - Lower the result values of a call into the
1726/// appropriate copies out of appropriate physical registers.
1727///
1728SDValue
1729X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1730                                   CallingConv::ID CallConv, bool isVarArg,
1731                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1732                                   DebugLoc dl, SelectionDAG &DAG,
1733                                   SmallVectorImpl<SDValue> &InVals) const {
1734
1735  // Assign locations to each value returned by this call.
1736  SmallVector<CCValAssign, 16> RVLocs;
1737  bool Is64Bit = Subtarget->is64Bit();
1738  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1739                 getTargetMachine(), RVLocs, *DAG.getContext());
1740  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1741
1742  // Copy all of the result registers out of their specified physreg.
1743  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1744    CCValAssign &VA = RVLocs[i];
1745    EVT CopyVT = VA.getValVT();
1746
1747    // If this is x86-64, and we disabled SSE, we can't return FP values
1748    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1749        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1750      report_fatal_error("SSE register return with SSE disabled");
1751    }
1752
1753    SDValue Val;
1754
1755    // If this is a call to a function that returns an fp value on the floating
1756    // point stack, we must guarantee the value is popped from the stack, so
1757    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1758    // if the return value is not used. We use the FpPOP_RETVAL instruction
1759    // instead.
1760    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1761      // If we prefer to use the value in xmm registers, copy it out as f80 and
1762      // use a truncate to move it from fp stack reg to xmm reg.
1763      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1764      SDValue Ops[] = { Chain, InFlag };
1765      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1766                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1767      Val = Chain.getValue(0);
1768
1769      // Round the f80 to the right size, which also moves it to the appropriate
1770      // xmm register.
1771      if (CopyVT != VA.getValVT())
1772        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1773                          // This truncation won't change the value.
1774                          DAG.getIntPtrConstant(1));
1775    } else {
1776      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1777                                 CopyVT, InFlag).getValue(1);
1778      Val = Chain.getValue(0);
1779    }
1780    InFlag = Chain.getValue(2);
1781    InVals.push_back(Val);
1782  }
1783
1784  return Chain;
1785}
1786
1787//===----------------------------------------------------------------------===//
1788//                C & StdCall & Fast Calling Convention implementation
1789//===----------------------------------------------------------------------===//
1790//  StdCall calling convention seems to be standard for many Windows' API
1791//  routines and around. It differs from C calling convention just a little:
1792//  callee should clean up the stack, not caller. Symbols should be also
1793//  decorated in some fancy way :) It doesn't support any vector arguments.
1794//  For info on fast calling convention see Fast Calling Convention (tail call)
1795//  implementation LowerX86_32FastCCCallTo.
1796
1797/// CallIsStructReturn - Determines whether a call uses struct return
1798/// semantics.
1799enum StructReturnType {
1800  NotStructReturn,
1801  RegStructReturn,
1802  StackStructReturn
1803};
1804static StructReturnType
1805callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1806  if (Outs.empty())
1807    return NotStructReturn;
1808
1809  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1810  if (!Flags.isSRet())
1811    return NotStructReturn;
1812  if (Flags.isInReg())
1813    return RegStructReturn;
1814  return StackStructReturn;
1815}
1816
1817/// ArgsAreStructReturn - Determines whether a function uses struct
1818/// return semantics.
1819static StructReturnType
1820argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1821  if (Ins.empty())
1822    return NotStructReturn;
1823
1824  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1825  if (!Flags.isSRet())
1826    return NotStructReturn;
1827  if (Flags.isInReg())
1828    return RegStructReturn;
1829  return StackStructReturn;
1830}
1831
1832/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1833/// by "Src" to address "Dst" with size and alignment information specified by
1834/// the specific parameter attribute. The copy will be passed as a byval
1835/// function parameter.
1836static SDValue
1837CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1838                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1839                          DebugLoc dl) {
1840  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1841
1842  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1843                       /*isVolatile*/false, /*AlwaysInline=*/true,
1844                       MachinePointerInfo(), MachinePointerInfo());
1845}
1846
1847/// IsTailCallConvention - Return true if the calling convention is one that
1848/// supports tail call optimization.
1849static bool IsTailCallConvention(CallingConv::ID CC) {
1850  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1851          CC == CallingConv::HiPE);
1852}
1853
1854bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1855  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1856    return false;
1857
1858  CallSite CS(CI);
1859  CallingConv::ID CalleeCC = CS.getCallingConv();
1860  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1861    return false;
1862
1863  return true;
1864}
1865
1866/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1867/// a tailcall target by changing its ABI.
1868static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1869                                   bool GuaranteedTailCallOpt) {
1870  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1871}
1872
1873SDValue
1874X86TargetLowering::LowerMemArgument(SDValue Chain,
1875                                    CallingConv::ID CallConv,
1876                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1877                                    DebugLoc dl, SelectionDAG &DAG,
1878                                    const CCValAssign &VA,
1879                                    MachineFrameInfo *MFI,
1880                                    unsigned i) const {
1881  // Create the nodes corresponding to a load from this parameter slot.
1882  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1883  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1884                              getTargetMachine().Options.GuaranteedTailCallOpt);
1885  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1886  EVT ValVT;
1887
1888  // If value is passed by pointer we have address passed instead of the value
1889  // itself.
1890  if (VA.getLocInfo() == CCValAssign::Indirect)
1891    ValVT = VA.getLocVT();
1892  else
1893    ValVT = VA.getValVT();
1894
1895  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1896  // changed with more analysis.
1897  // In case of tail call optimization mark all arguments mutable. Since they
1898  // could be overwritten by lowering of arguments in case of a tail call.
1899  if (Flags.isByVal()) {
1900    unsigned Bytes = Flags.getByValSize();
1901    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1902    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1903    return DAG.getFrameIndex(FI, getPointerTy());
1904  } else {
1905    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1906                                    VA.getLocMemOffset(), isImmutable);
1907    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1908    return DAG.getLoad(ValVT, dl, Chain, FIN,
1909                       MachinePointerInfo::getFixedStack(FI),
1910                       false, false, false, 0);
1911  }
1912}
1913
1914SDValue
1915X86TargetLowering::LowerFormalArguments(SDValue Chain,
1916                                        CallingConv::ID CallConv,
1917                                        bool isVarArg,
1918                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1919                                        DebugLoc dl,
1920                                        SelectionDAG &DAG,
1921                                        SmallVectorImpl<SDValue> &InVals)
1922                                          const {
1923  MachineFunction &MF = DAG.getMachineFunction();
1924  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1925
1926  const Function* Fn = MF.getFunction();
1927  if (Fn->hasExternalLinkage() &&
1928      Subtarget->isTargetCygMing() &&
1929      Fn->getName() == "main")
1930    FuncInfo->setForceFramePointer(true);
1931
1932  MachineFrameInfo *MFI = MF.getFrameInfo();
1933  bool Is64Bit = Subtarget->is64Bit();
1934  bool IsWindows = Subtarget->isTargetWindows();
1935  bool IsWin64 = Subtarget->isTargetWin64();
1936
1937  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1938         "Var args not supported with calling convention fastcc, ghc or hipe");
1939
1940  // Assign locations to all of the incoming arguments.
1941  SmallVector<CCValAssign, 16> ArgLocs;
1942  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1943                 ArgLocs, *DAG.getContext());
1944
1945  // Allocate shadow area for Win64
1946  if (IsWin64) {
1947    CCInfo.AllocateStack(32, 8);
1948  }
1949
1950  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1951
1952  unsigned LastVal = ~0U;
1953  SDValue ArgValue;
1954  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1955    CCValAssign &VA = ArgLocs[i];
1956    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1957    // places.
1958    assert(VA.getValNo() != LastVal &&
1959           "Don't support value assigned to multiple locs yet");
1960    (void)LastVal;
1961    LastVal = VA.getValNo();
1962
1963    if (VA.isRegLoc()) {
1964      EVT RegVT = VA.getLocVT();
1965      const TargetRegisterClass *RC;
1966      if (RegVT == MVT::i32)
1967        RC = &X86::GR32RegClass;
1968      else if (Is64Bit && RegVT == MVT::i64)
1969        RC = &X86::GR64RegClass;
1970      else if (RegVT == MVT::f32)
1971        RC = &X86::FR32RegClass;
1972      else if (RegVT == MVT::f64)
1973        RC = &X86::FR64RegClass;
1974      else if (RegVT.is256BitVector())
1975        RC = &X86::VR256RegClass;
1976      else if (RegVT.is128BitVector())
1977        RC = &X86::VR128RegClass;
1978      else if (RegVT == MVT::x86mmx)
1979        RC = &X86::VR64RegClass;
1980      else
1981        llvm_unreachable("Unknown argument type!");
1982
1983      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1984      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1985
1986      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1987      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1988      // right size.
1989      if (VA.getLocInfo() == CCValAssign::SExt)
1990        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1991                               DAG.getValueType(VA.getValVT()));
1992      else if (VA.getLocInfo() == CCValAssign::ZExt)
1993        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1994                               DAG.getValueType(VA.getValVT()));
1995      else if (VA.getLocInfo() == CCValAssign::BCvt)
1996        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1997
1998      if (VA.isExtInLoc()) {
1999        // Handle MMX values passed in XMM regs.
2000        if (RegVT.isVector())
2001          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2002        else
2003          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2004      }
2005    } else {
2006      assert(VA.isMemLoc());
2007      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2008    }
2009
2010    // If value is passed via pointer - do a load.
2011    if (VA.getLocInfo() == CCValAssign::Indirect)
2012      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2013                             MachinePointerInfo(), false, false, false, 0);
2014
2015    InVals.push_back(ArgValue);
2016  }
2017
2018  // The x86-64 ABI for returning structs by value requires that we copy
2019  // the sret argument into %rax for the return. Save the argument into
2020  // a virtual register so that we can access it from the return points.
2021  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
2022    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2023    unsigned Reg = FuncInfo->getSRetReturnReg();
2024    if (!Reg) {
2025      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
2026      FuncInfo->setSRetReturnReg(Reg);
2027    }
2028    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2029    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2030  }
2031
2032  unsigned StackSize = CCInfo.getNextStackOffset();
2033  // Align stack specially for tail calls.
2034  if (FuncIsMadeTailCallSafe(CallConv,
2035                             MF.getTarget().Options.GuaranteedTailCallOpt))
2036    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2037
2038  // If the function takes variable number of arguments, make a frame index for
2039  // the start of the first vararg value... for expansion of llvm.va_start.
2040  if (isVarArg) {
2041    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2042                    CallConv != CallingConv::X86_ThisCall)) {
2043      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2044    }
2045    if (Is64Bit) {
2046      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2047
2048      // FIXME: We should really autogenerate these arrays
2049      static const uint16_t GPR64ArgRegsWin64[] = {
2050        X86::RCX, X86::RDX, X86::R8,  X86::R9
2051      };
2052      static const uint16_t GPR64ArgRegs64Bit[] = {
2053        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2054      };
2055      static const uint16_t XMMArgRegs64Bit[] = {
2056        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2057        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2058      };
2059      const uint16_t *GPR64ArgRegs;
2060      unsigned NumXMMRegs = 0;
2061
2062      if (IsWin64) {
2063        // The XMM registers which might contain var arg parameters are shadowed
2064        // in their paired GPR.  So we only need to save the GPR to their home
2065        // slots.
2066        TotalNumIntRegs = 4;
2067        GPR64ArgRegs = GPR64ArgRegsWin64;
2068      } else {
2069        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2070        GPR64ArgRegs = GPR64ArgRegs64Bit;
2071
2072        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2073                                                TotalNumXMMRegs);
2074      }
2075      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2076                                                       TotalNumIntRegs);
2077
2078      bool NoImplicitFloatOps = Fn->getAttributes().
2079        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2080      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2081             "SSE register cannot be used when SSE is disabled!");
2082      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2083               NoImplicitFloatOps) &&
2084             "SSE register cannot be used when SSE is disabled!");
2085      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2086          !Subtarget->hasSSE1())
2087        // Kernel mode asks for SSE to be disabled, so don't push them
2088        // on the stack.
2089        TotalNumXMMRegs = 0;
2090
2091      if (IsWin64) {
2092        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2093        // Get to the caller-allocated home save location.  Add 8 to account
2094        // for the return address.
2095        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2096        FuncInfo->setRegSaveFrameIndex(
2097          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2098        // Fixup to set vararg frame on shadow area (4 x i64).
2099        if (NumIntRegs < 4)
2100          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2101      } else {
2102        // For X86-64, if there are vararg parameters that are passed via
2103        // registers, then we must store them to their spots on the stack so
2104        // they may be loaded by deferencing the result of va_next.
2105        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2106        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2107        FuncInfo->setRegSaveFrameIndex(
2108          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2109                               false));
2110      }
2111
2112      // Store the integer parameter registers.
2113      SmallVector<SDValue, 8> MemOps;
2114      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2115                                        getPointerTy());
2116      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2117      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2118        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2119                                  DAG.getIntPtrConstant(Offset));
2120        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2121                                     &X86::GR64RegClass);
2122        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2123        SDValue Store =
2124          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2125                       MachinePointerInfo::getFixedStack(
2126                         FuncInfo->getRegSaveFrameIndex(), Offset),
2127                       false, false, 0);
2128        MemOps.push_back(Store);
2129        Offset += 8;
2130      }
2131
2132      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2133        // Now store the XMM (fp + vector) parameter registers.
2134        SmallVector<SDValue, 11> SaveXMMOps;
2135        SaveXMMOps.push_back(Chain);
2136
2137        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2138        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2139        SaveXMMOps.push_back(ALVal);
2140
2141        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2142                               FuncInfo->getRegSaveFrameIndex()));
2143        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2144                               FuncInfo->getVarArgsFPOffset()));
2145
2146        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2147          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2148                                       &X86::VR128RegClass);
2149          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2150          SaveXMMOps.push_back(Val);
2151        }
2152        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2153                                     MVT::Other,
2154                                     &SaveXMMOps[0], SaveXMMOps.size()));
2155      }
2156
2157      if (!MemOps.empty())
2158        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2159                            &MemOps[0], MemOps.size());
2160    }
2161  }
2162
2163  // Some CCs need callee pop.
2164  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2165                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2166    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2167  } else {
2168    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2169    // If this is an sret function, the return should pop the hidden pointer.
2170    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2171        argsAreStructReturn(Ins) == StackStructReturn)
2172      FuncInfo->setBytesToPopOnReturn(4);
2173  }
2174
2175  if (!Is64Bit) {
2176    // RegSaveFrameIndex is X86-64 only.
2177    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2178    if (CallConv == CallingConv::X86_FastCall ||
2179        CallConv == CallingConv::X86_ThisCall)
2180      // fastcc functions can't have varargs.
2181      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2182  }
2183
2184  FuncInfo->setArgumentStackSize(StackSize);
2185
2186  return Chain;
2187}
2188
2189SDValue
2190X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2191                                    SDValue StackPtr, SDValue Arg,
2192                                    DebugLoc dl, SelectionDAG &DAG,
2193                                    const CCValAssign &VA,
2194                                    ISD::ArgFlagsTy Flags) const {
2195  unsigned LocMemOffset = VA.getLocMemOffset();
2196  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2197  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2198  if (Flags.isByVal())
2199    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2200
2201  return DAG.getStore(Chain, dl, Arg, PtrOff,
2202                      MachinePointerInfo::getStack(LocMemOffset),
2203                      false, false, 0);
2204}
2205
2206/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2207/// optimization is performed and it is required.
2208SDValue
2209X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2210                                           SDValue &OutRetAddr, SDValue Chain,
2211                                           bool IsTailCall, bool Is64Bit,
2212                                           int FPDiff, DebugLoc dl) const {
2213  // Adjust the Return address stack slot.
2214  EVT VT = getPointerTy();
2215  OutRetAddr = getReturnAddressFrameIndex(DAG);
2216
2217  // Load the "old" Return address.
2218  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2219                           false, false, false, 0);
2220  return SDValue(OutRetAddr.getNode(), 1);
2221}
2222
2223/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2224/// optimization is performed and it is required (FPDiff!=0).
2225static SDValue
2226EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2227                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2228                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2229  // Store the return address to the appropriate stack slot.
2230  if (!FPDiff) return Chain;
2231  // Calculate the new stack slot for the return address.
2232  int NewReturnAddrFI =
2233    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2234  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2235  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2236                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2237                       false, false, 0);
2238  return Chain;
2239}
2240
2241SDValue
2242X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2243                             SmallVectorImpl<SDValue> &InVals) const {
2244  SelectionDAG &DAG                     = CLI.DAG;
2245  DebugLoc &dl                          = CLI.DL;
2246  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2247  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2248  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2249  SDValue Chain                         = CLI.Chain;
2250  SDValue Callee                        = CLI.Callee;
2251  CallingConv::ID CallConv              = CLI.CallConv;
2252  bool &isTailCall                      = CLI.IsTailCall;
2253  bool isVarArg                         = CLI.IsVarArg;
2254
2255  MachineFunction &MF = DAG.getMachineFunction();
2256  bool Is64Bit        = Subtarget->is64Bit();
2257  bool IsWin64        = Subtarget->isTargetWin64();
2258  bool IsWindows      = Subtarget->isTargetWindows();
2259  StructReturnType SR = callIsStructReturn(Outs);
2260  bool IsSibcall      = false;
2261
2262  if (MF.getTarget().Options.DisableTailCalls)
2263    isTailCall = false;
2264
2265  if (isTailCall) {
2266    // Check if it's really possible to do a tail call.
2267    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2268                    isVarArg, SR != NotStructReturn,
2269                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2270                    Outs, OutVals, Ins, DAG);
2271
2272    // Sibcalls are automatically detected tailcalls which do not require
2273    // ABI changes.
2274    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2275      IsSibcall = true;
2276
2277    if (isTailCall)
2278      ++NumTailCalls;
2279  }
2280
2281  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2282         "Var args not supported with calling convention fastcc, ghc or hipe");
2283
2284  // Analyze operands of the call, assigning locations to each operand.
2285  SmallVector<CCValAssign, 16> ArgLocs;
2286  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2287                 ArgLocs, *DAG.getContext());
2288
2289  // Allocate shadow area for Win64
2290  if (IsWin64) {
2291    CCInfo.AllocateStack(32, 8);
2292  }
2293
2294  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2295
2296  // Get a count of how many bytes are to be pushed on the stack.
2297  unsigned NumBytes = CCInfo.getNextStackOffset();
2298  if (IsSibcall)
2299    // This is a sibcall. The memory operands are available in caller's
2300    // own caller's stack.
2301    NumBytes = 0;
2302  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2303           IsTailCallConvention(CallConv))
2304    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2305
2306  int FPDiff = 0;
2307  if (isTailCall && !IsSibcall) {
2308    // Lower arguments at fp - stackoffset + fpdiff.
2309    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2310    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2311
2312    FPDiff = NumBytesCallerPushed - NumBytes;
2313
2314    // Set the delta of movement of the returnaddr stackslot.
2315    // But only set if delta is greater than previous delta.
2316    if (FPDiff < X86Info->getTCReturnAddrDelta())
2317      X86Info->setTCReturnAddrDelta(FPDiff);
2318  }
2319
2320  if (!IsSibcall)
2321    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2322
2323  SDValue RetAddrFrIdx;
2324  // Load return address for tail calls.
2325  if (isTailCall && FPDiff)
2326    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2327                                    Is64Bit, FPDiff, dl);
2328
2329  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2330  SmallVector<SDValue, 8> MemOpChains;
2331  SDValue StackPtr;
2332
2333  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2334  // of tail call optimization arguments are handle later.
2335  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2336    CCValAssign &VA = ArgLocs[i];
2337    EVT RegVT = VA.getLocVT();
2338    SDValue Arg = OutVals[i];
2339    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2340    bool isByVal = Flags.isByVal();
2341
2342    // Promote the value if needed.
2343    switch (VA.getLocInfo()) {
2344    default: llvm_unreachable("Unknown loc info!");
2345    case CCValAssign::Full: break;
2346    case CCValAssign::SExt:
2347      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2348      break;
2349    case CCValAssign::ZExt:
2350      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2351      break;
2352    case CCValAssign::AExt:
2353      if (RegVT.is128BitVector()) {
2354        // Special case: passing MMX values in XMM registers.
2355        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2356        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2357        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2358      } else
2359        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2360      break;
2361    case CCValAssign::BCvt:
2362      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2363      break;
2364    case CCValAssign::Indirect: {
2365      // Store the argument.
2366      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2367      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2368      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2369                           MachinePointerInfo::getFixedStack(FI),
2370                           false, false, 0);
2371      Arg = SpillSlot;
2372      break;
2373    }
2374    }
2375
2376    if (VA.isRegLoc()) {
2377      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2378      if (isVarArg && IsWin64) {
2379        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2380        // shadow reg if callee is a varargs function.
2381        unsigned ShadowReg = 0;
2382        switch (VA.getLocReg()) {
2383        case X86::XMM0: ShadowReg = X86::RCX; break;
2384        case X86::XMM1: ShadowReg = X86::RDX; break;
2385        case X86::XMM2: ShadowReg = X86::R8; break;
2386        case X86::XMM3: ShadowReg = X86::R9; break;
2387        }
2388        if (ShadowReg)
2389          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2390      }
2391    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2392      assert(VA.isMemLoc());
2393      if (StackPtr.getNode() == 0)
2394        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2395                                      getPointerTy());
2396      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2397                                             dl, DAG, VA, Flags));
2398    }
2399  }
2400
2401  if (!MemOpChains.empty())
2402    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2403                        &MemOpChains[0], MemOpChains.size());
2404
2405  if (Subtarget->isPICStyleGOT()) {
2406    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2407    // GOT pointer.
2408    if (!isTailCall) {
2409      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2410               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2411    } else {
2412      // If we are tail calling and generating PIC/GOT style code load the
2413      // address of the callee into ECX. The value in ecx is used as target of
2414      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2415      // for tail calls on PIC/GOT architectures. Normally we would just put the
2416      // address of GOT into ebx and then call target@PLT. But for tail calls
2417      // ebx would be restored (since ebx is callee saved) before jumping to the
2418      // target@PLT.
2419
2420      // Note: The actual moving to ECX is done further down.
2421      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2422      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2423          !G->getGlobal()->hasProtectedVisibility())
2424        Callee = LowerGlobalAddress(Callee, DAG);
2425      else if (isa<ExternalSymbolSDNode>(Callee))
2426        Callee = LowerExternalSymbol(Callee, DAG);
2427    }
2428  }
2429
2430  if (Is64Bit && isVarArg && !IsWin64) {
2431    // From AMD64 ABI document:
2432    // For calls that may call functions that use varargs or stdargs
2433    // (prototype-less calls or calls to functions containing ellipsis (...) in
2434    // the declaration) %al is used as hidden argument to specify the number
2435    // of SSE registers used. The contents of %al do not need to match exactly
2436    // the number of registers, but must be an ubound on the number of SSE
2437    // registers used and is in the range 0 - 8 inclusive.
2438
2439    // Count the number of XMM registers allocated.
2440    static const uint16_t XMMArgRegs[] = {
2441      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2442      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2443    };
2444    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2445    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2446           && "SSE registers cannot be used when SSE is disabled");
2447
2448    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2449                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2450  }
2451
2452  // For tail calls lower the arguments to the 'real' stack slot.
2453  if (isTailCall) {
2454    // Force all the incoming stack arguments to be loaded from the stack
2455    // before any new outgoing arguments are stored to the stack, because the
2456    // outgoing stack slots may alias the incoming argument stack slots, and
2457    // the alias isn't otherwise explicit. This is slightly more conservative
2458    // than necessary, because it means that each store effectively depends
2459    // on every argument instead of just those arguments it would clobber.
2460    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2461
2462    SmallVector<SDValue, 8> MemOpChains2;
2463    SDValue FIN;
2464    int FI = 0;
2465    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2466      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2467        CCValAssign &VA = ArgLocs[i];
2468        if (VA.isRegLoc())
2469          continue;
2470        assert(VA.isMemLoc());
2471        SDValue Arg = OutVals[i];
2472        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2473        // Create frame index.
2474        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2475        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2476        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2477        FIN = DAG.getFrameIndex(FI, getPointerTy());
2478
2479        if (Flags.isByVal()) {
2480          // Copy relative to framepointer.
2481          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2482          if (StackPtr.getNode() == 0)
2483            StackPtr = DAG.getCopyFromReg(Chain, dl,
2484                                          RegInfo->getStackRegister(),
2485                                          getPointerTy());
2486          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2487
2488          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2489                                                           ArgChain,
2490                                                           Flags, DAG, dl));
2491        } else {
2492          // Store relative to framepointer.
2493          MemOpChains2.push_back(
2494            DAG.getStore(ArgChain, dl, Arg, FIN,
2495                         MachinePointerInfo::getFixedStack(FI),
2496                         false, false, 0));
2497        }
2498      }
2499    }
2500
2501    if (!MemOpChains2.empty())
2502      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2503                          &MemOpChains2[0], MemOpChains2.size());
2504
2505    // Store the return address to the appropriate stack slot.
2506    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2507                                     getPointerTy(), RegInfo->getSlotSize(),
2508                                     FPDiff, dl);
2509  }
2510
2511  // Build a sequence of copy-to-reg nodes chained together with token chain
2512  // and flag operands which copy the outgoing args into registers.
2513  SDValue InFlag;
2514  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2515    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2516                             RegsToPass[i].second, InFlag);
2517    InFlag = Chain.getValue(1);
2518  }
2519
2520  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2521    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2522    // In the 64-bit large code model, we have to make all calls
2523    // through a register, since the call instruction's 32-bit
2524    // pc-relative offset may not be large enough to hold the whole
2525    // address.
2526  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2527    // If the callee is a GlobalAddress node (quite common, every direct call
2528    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2529    // it.
2530
2531    // We should use extra load for direct calls to dllimported functions in
2532    // non-JIT mode.
2533    const GlobalValue *GV = G->getGlobal();
2534    if (!GV->hasDLLImportLinkage()) {
2535      unsigned char OpFlags = 0;
2536      bool ExtraLoad = false;
2537      unsigned WrapperKind = ISD::DELETED_NODE;
2538
2539      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2540      // external symbols most go through the PLT in PIC mode.  If the symbol
2541      // has hidden or protected visibility, or if it is static or local, then
2542      // we don't need to use the PLT - we can directly call it.
2543      if (Subtarget->isTargetELF() &&
2544          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2545          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2546        OpFlags = X86II::MO_PLT;
2547      } else if (Subtarget->isPICStyleStubAny() &&
2548                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2549                 (!Subtarget->getTargetTriple().isMacOSX() ||
2550                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2551        // PC-relative references to external symbols should go through $stub,
2552        // unless we're building with the leopard linker or later, which
2553        // automatically synthesizes these stubs.
2554        OpFlags = X86II::MO_DARWIN_STUB;
2555      } else if (Subtarget->isPICStyleRIPRel() &&
2556                 isa<Function>(GV) &&
2557                 cast<Function>(GV)->getAttributes().
2558                   hasAttribute(AttributeSet::FunctionIndex,
2559                                Attribute::NonLazyBind)) {
2560        // If the function is marked as non-lazy, generate an indirect call
2561        // which loads from the GOT directly. This avoids runtime overhead
2562        // at the cost of eager binding (and one extra byte of encoding).
2563        OpFlags = X86II::MO_GOTPCREL;
2564        WrapperKind = X86ISD::WrapperRIP;
2565        ExtraLoad = true;
2566      }
2567
2568      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2569                                          G->getOffset(), OpFlags);
2570
2571      // Add a wrapper if needed.
2572      if (WrapperKind != ISD::DELETED_NODE)
2573        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2574      // Add extra indirection if needed.
2575      if (ExtraLoad)
2576        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2577                             MachinePointerInfo::getGOT(),
2578                             false, false, false, 0);
2579    }
2580  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2581    unsigned char OpFlags = 0;
2582
2583    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2584    // external symbols should go through the PLT.
2585    if (Subtarget->isTargetELF() &&
2586        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2587      OpFlags = X86II::MO_PLT;
2588    } else if (Subtarget->isPICStyleStubAny() &&
2589               (!Subtarget->getTargetTriple().isMacOSX() ||
2590                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2591      // PC-relative references to external symbols should go through $stub,
2592      // unless we're building with the leopard linker or later, which
2593      // automatically synthesizes these stubs.
2594      OpFlags = X86II::MO_DARWIN_STUB;
2595    }
2596
2597    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2598                                         OpFlags);
2599  }
2600
2601  // Returns a chain & a flag for retval copy to use.
2602  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2603  SmallVector<SDValue, 8> Ops;
2604
2605  if (!IsSibcall && isTailCall) {
2606    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2607                           DAG.getIntPtrConstant(0, true), InFlag);
2608    InFlag = Chain.getValue(1);
2609  }
2610
2611  Ops.push_back(Chain);
2612  Ops.push_back(Callee);
2613
2614  if (isTailCall)
2615    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2616
2617  // Add argument registers to the end of the list so that they are known live
2618  // into the call.
2619  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2620    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2621                                  RegsToPass[i].second.getValueType()));
2622
2623  // Add a register mask operand representing the call-preserved registers.
2624  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2625  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2626  assert(Mask && "Missing call preserved mask for calling convention");
2627  Ops.push_back(DAG.getRegisterMask(Mask));
2628
2629  if (InFlag.getNode())
2630    Ops.push_back(InFlag);
2631
2632  if (isTailCall) {
2633    // We used to do:
2634    //// If this is the first return lowered for this function, add the regs
2635    //// to the liveout set for the function.
2636    // This isn't right, although it's probably harmless on x86; liveouts
2637    // should be computed from returns not tail calls.  Consider a void
2638    // function making a tail call to a function returning int.
2639    return DAG.getNode(X86ISD::TC_RETURN, dl,
2640                       NodeTys, &Ops[0], Ops.size());
2641  }
2642
2643  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2644  InFlag = Chain.getValue(1);
2645
2646  // Create the CALLSEQ_END node.
2647  unsigned NumBytesForCalleeToPush;
2648  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2649                       getTargetMachine().Options.GuaranteedTailCallOpt))
2650    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2651  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2652           SR == StackStructReturn)
2653    // If this is a call to a struct-return function, the callee
2654    // pops the hidden struct pointer, so we have to push it back.
2655    // This is common for Darwin/X86, Linux & Mingw32 targets.
2656    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2657    NumBytesForCalleeToPush = 4;
2658  else
2659    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2660
2661  // Returns a flag for retval copy to use.
2662  if (!IsSibcall) {
2663    Chain = DAG.getCALLSEQ_END(Chain,
2664                               DAG.getIntPtrConstant(NumBytes, true),
2665                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2666                                                     true),
2667                               InFlag);
2668    InFlag = Chain.getValue(1);
2669  }
2670
2671  // Handle result values, copying them out of physregs into vregs that we
2672  // return.
2673  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2674                         Ins, dl, DAG, InVals);
2675}
2676
2677//===----------------------------------------------------------------------===//
2678//                Fast Calling Convention (tail call) implementation
2679//===----------------------------------------------------------------------===//
2680
2681//  Like std call, callee cleans arguments, convention except that ECX is
2682//  reserved for storing the tail called function address. Only 2 registers are
2683//  free for argument passing (inreg). Tail call optimization is performed
2684//  provided:
2685//                * tailcallopt is enabled
2686//                * caller/callee are fastcc
2687//  On X86_64 architecture with GOT-style position independent code only local
2688//  (within module) calls are supported at the moment.
2689//  To keep the stack aligned according to platform abi the function
2690//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2691//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2692//  If a tail called function callee has more arguments than the caller the
2693//  caller needs to make sure that there is room to move the RETADDR to. This is
2694//  achieved by reserving an area the size of the argument delta right after the
2695//  original REtADDR, but before the saved framepointer or the spilled registers
2696//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2697//  stack layout:
2698//    arg1
2699//    arg2
2700//    RETADDR
2701//    [ new RETADDR
2702//      move area ]
2703//    (possible EBP)
2704//    ESI
2705//    EDI
2706//    local1 ..
2707
2708/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2709/// for a 16 byte align requirement.
2710unsigned
2711X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2712                                               SelectionDAG& DAG) const {
2713  MachineFunction &MF = DAG.getMachineFunction();
2714  const TargetMachine &TM = MF.getTarget();
2715  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2716  unsigned StackAlignment = TFI.getStackAlignment();
2717  uint64_t AlignMask = StackAlignment - 1;
2718  int64_t Offset = StackSize;
2719  unsigned SlotSize = RegInfo->getSlotSize();
2720  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2721    // Number smaller than 12 so just add the difference.
2722    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2723  } else {
2724    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2725    Offset = ((~AlignMask) & Offset) + StackAlignment +
2726      (StackAlignment-SlotSize);
2727  }
2728  return Offset;
2729}
2730
2731/// MatchingStackOffset - Return true if the given stack call argument is
2732/// already available in the same position (relatively) of the caller's
2733/// incoming argument stack.
2734static
2735bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2736                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2737                         const X86InstrInfo *TII) {
2738  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2739  int FI = INT_MAX;
2740  if (Arg.getOpcode() == ISD::CopyFromReg) {
2741    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2742    if (!TargetRegisterInfo::isVirtualRegister(VR))
2743      return false;
2744    MachineInstr *Def = MRI->getVRegDef(VR);
2745    if (!Def)
2746      return false;
2747    if (!Flags.isByVal()) {
2748      if (!TII->isLoadFromStackSlot(Def, FI))
2749        return false;
2750    } else {
2751      unsigned Opcode = Def->getOpcode();
2752      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2753          Def->getOperand(1).isFI()) {
2754        FI = Def->getOperand(1).getIndex();
2755        Bytes = Flags.getByValSize();
2756      } else
2757        return false;
2758    }
2759  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2760    if (Flags.isByVal())
2761      // ByVal argument is passed in as a pointer but it's now being
2762      // dereferenced. e.g.
2763      // define @foo(%struct.X* %A) {
2764      //   tail call @bar(%struct.X* byval %A)
2765      // }
2766      return false;
2767    SDValue Ptr = Ld->getBasePtr();
2768    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2769    if (!FINode)
2770      return false;
2771    FI = FINode->getIndex();
2772  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2773    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2774    FI = FINode->getIndex();
2775    Bytes = Flags.getByValSize();
2776  } else
2777    return false;
2778
2779  assert(FI != INT_MAX);
2780  if (!MFI->isFixedObjectIndex(FI))
2781    return false;
2782  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2783}
2784
2785/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2786/// for tail call optimization. Targets which want to do tail call
2787/// optimization should implement this function.
2788bool
2789X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2790                                                     CallingConv::ID CalleeCC,
2791                                                     bool isVarArg,
2792                                                     bool isCalleeStructRet,
2793                                                     bool isCallerStructRet,
2794                                                     Type *RetTy,
2795                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2796                                    const SmallVectorImpl<SDValue> &OutVals,
2797                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2798                                                     SelectionDAG& DAG) const {
2799  if (!IsTailCallConvention(CalleeCC) &&
2800      CalleeCC != CallingConv::C)
2801    return false;
2802
2803  // If -tailcallopt is specified, make fastcc functions tail-callable.
2804  const MachineFunction &MF = DAG.getMachineFunction();
2805  const Function *CallerF = DAG.getMachineFunction().getFunction();
2806
2807  // If the function return type is x86_fp80 and the callee return type is not,
2808  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2809  // perform a tailcall optimization here.
2810  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2811    return false;
2812
2813  CallingConv::ID CallerCC = CallerF->getCallingConv();
2814  bool CCMatch = CallerCC == CalleeCC;
2815
2816  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2817    if (IsTailCallConvention(CalleeCC) && CCMatch)
2818      return true;
2819    return false;
2820  }
2821
2822  // Look for obvious safe cases to perform tail call optimization that do not
2823  // require ABI changes. This is what gcc calls sibcall.
2824
2825  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2826  // emit a special epilogue.
2827  if (RegInfo->needsStackRealignment(MF))
2828    return false;
2829
2830  // Also avoid sibcall optimization if either caller or callee uses struct
2831  // return semantics.
2832  if (isCalleeStructRet || isCallerStructRet)
2833    return false;
2834
2835  // An stdcall caller is expected to clean up its arguments; the callee
2836  // isn't going to do that.
2837  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2838    return false;
2839
2840  // Do not sibcall optimize vararg calls unless all arguments are passed via
2841  // registers.
2842  if (isVarArg && !Outs.empty()) {
2843
2844    // Optimizing for varargs on Win64 is unlikely to be safe without
2845    // additional testing.
2846    if (Subtarget->isTargetWin64())
2847      return false;
2848
2849    SmallVector<CCValAssign, 16> ArgLocs;
2850    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2851                   getTargetMachine(), ArgLocs, *DAG.getContext());
2852
2853    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2854    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2855      if (!ArgLocs[i].isRegLoc())
2856        return false;
2857  }
2858
2859  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2860  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2861  // this into a sibcall.
2862  bool Unused = false;
2863  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2864    if (!Ins[i].Used) {
2865      Unused = true;
2866      break;
2867    }
2868  }
2869  if (Unused) {
2870    SmallVector<CCValAssign, 16> RVLocs;
2871    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2872                   getTargetMachine(), RVLocs, *DAG.getContext());
2873    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2874    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2875      CCValAssign &VA = RVLocs[i];
2876      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2877        return false;
2878    }
2879  }
2880
2881  // If the calling conventions do not match, then we'd better make sure the
2882  // results are returned in the same way as what the caller expects.
2883  if (!CCMatch) {
2884    SmallVector<CCValAssign, 16> RVLocs1;
2885    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2886                    getTargetMachine(), RVLocs1, *DAG.getContext());
2887    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2888
2889    SmallVector<CCValAssign, 16> RVLocs2;
2890    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2891                    getTargetMachine(), RVLocs2, *DAG.getContext());
2892    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2893
2894    if (RVLocs1.size() != RVLocs2.size())
2895      return false;
2896    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2897      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2898        return false;
2899      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2900        return false;
2901      if (RVLocs1[i].isRegLoc()) {
2902        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2903          return false;
2904      } else {
2905        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2906          return false;
2907      }
2908    }
2909  }
2910
2911  // If the callee takes no arguments then go on to check the results of the
2912  // call.
2913  if (!Outs.empty()) {
2914    // Check if stack adjustment is needed. For now, do not do this if any
2915    // argument is passed on the stack.
2916    SmallVector<CCValAssign, 16> ArgLocs;
2917    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2918                   getTargetMachine(), ArgLocs, *DAG.getContext());
2919
2920    // Allocate shadow area for Win64
2921    if (Subtarget->isTargetWin64()) {
2922      CCInfo.AllocateStack(32, 8);
2923    }
2924
2925    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2926    if (CCInfo.getNextStackOffset()) {
2927      MachineFunction &MF = DAG.getMachineFunction();
2928      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2929        return false;
2930
2931      // Check if the arguments are already laid out in the right way as
2932      // the caller's fixed stack objects.
2933      MachineFrameInfo *MFI = MF.getFrameInfo();
2934      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2935      const X86InstrInfo *TII =
2936        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2937      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2938        CCValAssign &VA = ArgLocs[i];
2939        SDValue Arg = OutVals[i];
2940        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2941        if (VA.getLocInfo() == CCValAssign::Indirect)
2942          return false;
2943        if (!VA.isRegLoc()) {
2944          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2945                                   MFI, MRI, TII))
2946            return false;
2947        }
2948      }
2949    }
2950
2951    // If the tailcall address may be in a register, then make sure it's
2952    // possible to register allocate for it. In 32-bit, the call address can
2953    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2954    // callee-saved registers are restored. These happen to be the same
2955    // registers used to pass 'inreg' arguments so watch out for those.
2956    if (!Subtarget->is64Bit() &&
2957        !isa<GlobalAddressSDNode>(Callee) &&
2958        !isa<ExternalSymbolSDNode>(Callee)) {
2959      unsigned NumInRegs = 0;
2960      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2961        CCValAssign &VA = ArgLocs[i];
2962        if (!VA.isRegLoc())
2963          continue;
2964        unsigned Reg = VA.getLocReg();
2965        switch (Reg) {
2966        default: break;
2967        case X86::EAX: case X86::EDX: case X86::ECX:
2968          if (++NumInRegs == 3)
2969            return false;
2970          break;
2971        }
2972      }
2973    }
2974  }
2975
2976  return true;
2977}
2978
2979FastISel *
2980X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2981                                  const TargetLibraryInfo *libInfo) const {
2982  return X86::createFastISel(funcInfo, libInfo);
2983}
2984
2985//===----------------------------------------------------------------------===//
2986//                           Other Lowering Hooks
2987//===----------------------------------------------------------------------===//
2988
2989static bool MayFoldLoad(SDValue Op) {
2990  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2991}
2992
2993static bool MayFoldIntoStore(SDValue Op) {
2994  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2995}
2996
2997static bool isTargetShuffle(unsigned Opcode) {
2998  switch(Opcode) {
2999  default: return false;
3000  case X86ISD::PSHUFD:
3001  case X86ISD::PSHUFHW:
3002  case X86ISD::PSHUFLW:
3003  case X86ISD::SHUFP:
3004  case X86ISD::PALIGN:
3005  case X86ISD::MOVLHPS:
3006  case X86ISD::MOVLHPD:
3007  case X86ISD::MOVHLPS:
3008  case X86ISD::MOVLPS:
3009  case X86ISD::MOVLPD:
3010  case X86ISD::MOVSHDUP:
3011  case X86ISD::MOVSLDUP:
3012  case X86ISD::MOVDDUP:
3013  case X86ISD::MOVSS:
3014  case X86ISD::MOVSD:
3015  case X86ISD::UNPCKL:
3016  case X86ISD::UNPCKH:
3017  case X86ISD::VPERMILP:
3018  case X86ISD::VPERM2X128:
3019  case X86ISD::VPERMI:
3020    return true;
3021  }
3022}
3023
3024static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3025                                    SDValue V1, SelectionDAG &DAG) {
3026  switch(Opc) {
3027  default: llvm_unreachable("Unknown x86 shuffle node");
3028  case X86ISD::MOVSHDUP:
3029  case X86ISD::MOVSLDUP:
3030  case X86ISD::MOVDDUP:
3031    return DAG.getNode(Opc, dl, VT, V1);
3032  }
3033}
3034
3035static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3036                                    SDValue V1, unsigned TargetMask,
3037                                    SelectionDAG &DAG) {
3038  switch(Opc) {
3039  default: llvm_unreachable("Unknown x86 shuffle node");
3040  case X86ISD::PSHUFD:
3041  case X86ISD::PSHUFHW:
3042  case X86ISD::PSHUFLW:
3043  case X86ISD::VPERMILP:
3044  case X86ISD::VPERMI:
3045    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3046  }
3047}
3048
3049static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3050                                    SDValue V1, SDValue V2, unsigned TargetMask,
3051                                    SelectionDAG &DAG) {
3052  switch(Opc) {
3053  default: llvm_unreachable("Unknown x86 shuffle node");
3054  case X86ISD::PALIGN:
3055  case X86ISD::SHUFP:
3056  case X86ISD::VPERM2X128:
3057    return DAG.getNode(Opc, dl, VT, V1, V2,
3058                       DAG.getConstant(TargetMask, MVT::i8));
3059  }
3060}
3061
3062static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3063                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3064  switch(Opc) {
3065  default: llvm_unreachable("Unknown x86 shuffle node");
3066  case X86ISD::MOVLHPS:
3067  case X86ISD::MOVLHPD:
3068  case X86ISD::MOVHLPS:
3069  case X86ISD::MOVLPS:
3070  case X86ISD::MOVLPD:
3071  case X86ISD::MOVSS:
3072  case X86ISD::MOVSD:
3073  case X86ISD::UNPCKL:
3074  case X86ISD::UNPCKH:
3075    return DAG.getNode(Opc, dl, VT, V1, V2);
3076  }
3077}
3078
3079SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3080  MachineFunction &MF = DAG.getMachineFunction();
3081  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3082  int ReturnAddrIndex = FuncInfo->getRAIndex();
3083
3084  if (ReturnAddrIndex == 0) {
3085    // Set up a frame object for the return address.
3086    unsigned SlotSize = RegInfo->getSlotSize();
3087    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3088                                                           false);
3089    FuncInfo->setRAIndex(ReturnAddrIndex);
3090  }
3091
3092  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3093}
3094
3095bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3096                                       bool hasSymbolicDisplacement) {
3097  // Offset should fit into 32 bit immediate field.
3098  if (!isInt<32>(Offset))
3099    return false;
3100
3101  // If we don't have a symbolic displacement - we don't have any extra
3102  // restrictions.
3103  if (!hasSymbolicDisplacement)
3104    return true;
3105
3106  // FIXME: Some tweaks might be needed for medium code model.
3107  if (M != CodeModel::Small && M != CodeModel::Kernel)
3108    return false;
3109
3110  // For small code model we assume that latest object is 16MB before end of 31
3111  // bits boundary. We may also accept pretty large negative constants knowing
3112  // that all objects are in the positive half of address space.
3113  if (M == CodeModel::Small && Offset < 16*1024*1024)
3114    return true;
3115
3116  // For kernel code model we know that all object resist in the negative half
3117  // of 32bits address space. We may not accept negative offsets, since they may
3118  // be just off and we may accept pretty large positive ones.
3119  if (M == CodeModel::Kernel && Offset > 0)
3120    return true;
3121
3122  return false;
3123}
3124
3125/// isCalleePop - Determines whether the callee is required to pop its
3126/// own arguments. Callee pop is necessary to support tail calls.
3127bool X86::isCalleePop(CallingConv::ID CallingConv,
3128                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3129  if (IsVarArg)
3130    return false;
3131
3132  switch (CallingConv) {
3133  default:
3134    return false;
3135  case CallingConv::X86_StdCall:
3136    return !is64Bit;
3137  case CallingConv::X86_FastCall:
3138    return !is64Bit;
3139  case CallingConv::X86_ThisCall:
3140    return !is64Bit;
3141  case CallingConv::Fast:
3142    return TailCallOpt;
3143  case CallingConv::GHC:
3144    return TailCallOpt;
3145  case CallingConv::HiPE:
3146    return TailCallOpt;
3147  }
3148}
3149
3150/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3151/// specific condition code, returning the condition code and the LHS/RHS of the
3152/// comparison to make.
3153static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3154                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3155  if (!isFP) {
3156    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3157      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3158        // X > -1   -> X == 0, jump !sign.
3159        RHS = DAG.getConstant(0, RHS.getValueType());
3160        return X86::COND_NS;
3161      }
3162      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3163        // X < 0   -> X == 0, jump on sign.
3164        return X86::COND_S;
3165      }
3166      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3167        // X < 1   -> X <= 0
3168        RHS = DAG.getConstant(0, RHS.getValueType());
3169        return X86::COND_LE;
3170      }
3171    }
3172
3173    switch (SetCCOpcode) {
3174    default: llvm_unreachable("Invalid integer condition!");
3175    case ISD::SETEQ:  return X86::COND_E;
3176    case ISD::SETGT:  return X86::COND_G;
3177    case ISD::SETGE:  return X86::COND_GE;
3178    case ISD::SETLT:  return X86::COND_L;
3179    case ISD::SETLE:  return X86::COND_LE;
3180    case ISD::SETNE:  return X86::COND_NE;
3181    case ISD::SETULT: return X86::COND_B;
3182    case ISD::SETUGT: return X86::COND_A;
3183    case ISD::SETULE: return X86::COND_BE;
3184    case ISD::SETUGE: return X86::COND_AE;
3185    }
3186  }
3187
3188  // First determine if it is required or is profitable to flip the operands.
3189
3190  // If LHS is a foldable load, but RHS is not, flip the condition.
3191  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3192      !ISD::isNON_EXTLoad(RHS.getNode())) {
3193    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3194    std::swap(LHS, RHS);
3195  }
3196
3197  switch (SetCCOpcode) {
3198  default: break;
3199  case ISD::SETOLT:
3200  case ISD::SETOLE:
3201  case ISD::SETUGT:
3202  case ISD::SETUGE:
3203    std::swap(LHS, RHS);
3204    break;
3205  }
3206
3207  // On a floating point condition, the flags are set as follows:
3208  // ZF  PF  CF   op
3209  //  0 | 0 | 0 | X > Y
3210  //  0 | 0 | 1 | X < Y
3211  //  1 | 0 | 0 | X == Y
3212  //  1 | 1 | 1 | unordered
3213  switch (SetCCOpcode) {
3214  default: llvm_unreachable("Condcode should be pre-legalized away");
3215  case ISD::SETUEQ:
3216  case ISD::SETEQ:   return X86::COND_E;
3217  case ISD::SETOLT:              // flipped
3218  case ISD::SETOGT:
3219  case ISD::SETGT:   return X86::COND_A;
3220  case ISD::SETOLE:              // flipped
3221  case ISD::SETOGE:
3222  case ISD::SETGE:   return X86::COND_AE;
3223  case ISD::SETUGT:              // flipped
3224  case ISD::SETULT:
3225  case ISD::SETLT:   return X86::COND_B;
3226  case ISD::SETUGE:              // flipped
3227  case ISD::SETULE:
3228  case ISD::SETLE:   return X86::COND_BE;
3229  case ISD::SETONE:
3230  case ISD::SETNE:   return X86::COND_NE;
3231  case ISD::SETUO:   return X86::COND_P;
3232  case ISD::SETO:    return X86::COND_NP;
3233  case ISD::SETOEQ:
3234  case ISD::SETUNE:  return X86::COND_INVALID;
3235  }
3236}
3237
3238/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3239/// code. Current x86 isa includes the following FP cmov instructions:
3240/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3241static bool hasFPCMov(unsigned X86CC) {
3242  switch (X86CC) {
3243  default:
3244    return false;
3245  case X86::COND_B:
3246  case X86::COND_BE:
3247  case X86::COND_E:
3248  case X86::COND_P:
3249  case X86::COND_A:
3250  case X86::COND_AE:
3251  case X86::COND_NE:
3252  case X86::COND_NP:
3253    return true;
3254  }
3255}
3256
3257/// isFPImmLegal - Returns true if the target can instruction select the
3258/// specified FP immediate natively. If false, the legalizer will
3259/// materialize the FP immediate as a load from a constant pool.
3260bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3261  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3262    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3263      return true;
3264  }
3265  return false;
3266}
3267
3268/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3269/// the specified range (L, H].
3270static bool isUndefOrInRange(int Val, int Low, int Hi) {
3271  return (Val < 0) || (Val >= Low && Val < Hi);
3272}
3273
3274/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3275/// specified value.
3276static bool isUndefOrEqual(int Val, int CmpVal) {
3277  return (Val < 0 || Val == CmpVal);
3278}
3279
3280/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3281/// from position Pos and ending in Pos+Size, falls within the specified
3282/// sequential range (L, L+Pos]. or is undef.
3283static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3284                                       unsigned Pos, unsigned Size, int Low) {
3285  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3286    if (!isUndefOrEqual(Mask[i], Low))
3287      return false;
3288  return true;
3289}
3290
3291/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3292/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3293/// the second operand.
3294static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3295  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3296    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3297  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3298    return (Mask[0] < 2 && Mask[1] < 2);
3299  return false;
3300}
3301
3302/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3303/// is suitable for input to PSHUFHW.
3304static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3305  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3306    return false;
3307
3308  // Lower quadword copied in order or undef.
3309  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3310    return false;
3311
3312  // Upper quadword shuffled.
3313  for (unsigned i = 4; i != 8; ++i)
3314    if (!isUndefOrInRange(Mask[i], 4, 8))
3315      return false;
3316
3317  if (VT == MVT::v16i16) {
3318    // Lower quadword copied in order or undef.
3319    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3320      return false;
3321
3322    // Upper quadword shuffled.
3323    for (unsigned i = 12; i != 16; ++i)
3324      if (!isUndefOrInRange(Mask[i], 12, 16))
3325        return false;
3326  }
3327
3328  return true;
3329}
3330
3331/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3332/// is suitable for input to PSHUFLW.
3333static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3334  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3335    return false;
3336
3337  // Upper quadword copied in order.
3338  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3339    return false;
3340
3341  // Lower quadword shuffled.
3342  for (unsigned i = 0; i != 4; ++i)
3343    if (!isUndefOrInRange(Mask[i], 0, 4))
3344      return false;
3345
3346  if (VT == MVT::v16i16) {
3347    // Upper quadword copied in order.
3348    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3349      return false;
3350
3351    // Lower quadword shuffled.
3352    for (unsigned i = 8; i != 12; ++i)
3353      if (!isUndefOrInRange(Mask[i], 8, 12))
3354        return false;
3355  }
3356
3357  return true;
3358}
3359
3360/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3361/// is suitable for input to PALIGNR.
3362static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3363                          const X86Subtarget *Subtarget) {
3364  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3365      (VT.is256BitVector() && !Subtarget->hasInt256()))
3366    return false;
3367
3368  unsigned NumElts = VT.getVectorNumElements();
3369  unsigned NumLanes = VT.getSizeInBits()/128;
3370  unsigned NumLaneElts = NumElts/NumLanes;
3371
3372  // Do not handle 64-bit element shuffles with palignr.
3373  if (NumLaneElts == 2)
3374    return false;
3375
3376  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3377    unsigned i;
3378    for (i = 0; i != NumLaneElts; ++i) {
3379      if (Mask[i+l] >= 0)
3380        break;
3381    }
3382
3383    // Lane is all undef, go to next lane
3384    if (i == NumLaneElts)
3385      continue;
3386
3387    int Start = Mask[i+l];
3388
3389    // Make sure its in this lane in one of the sources
3390    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3391        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3392      return false;
3393
3394    // If not lane 0, then we must match lane 0
3395    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3396      return false;
3397
3398    // Correct second source to be contiguous with first source
3399    if (Start >= (int)NumElts)
3400      Start -= NumElts - NumLaneElts;
3401
3402    // Make sure we're shifting in the right direction.
3403    if (Start <= (int)(i+l))
3404      return false;
3405
3406    Start -= i;
3407
3408    // Check the rest of the elements to see if they are consecutive.
3409    for (++i; i != NumLaneElts; ++i) {
3410      int Idx = Mask[i+l];
3411
3412      // Make sure its in this lane
3413      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3414          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3415        return false;
3416
3417      // If not lane 0, then we must match lane 0
3418      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3419        return false;
3420
3421      if (Idx >= (int)NumElts)
3422        Idx -= NumElts - NumLaneElts;
3423
3424      if (!isUndefOrEqual(Idx, Start+i))
3425        return false;
3426
3427    }
3428  }
3429
3430  return true;
3431}
3432
3433/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3434/// the two vector operands have swapped position.
3435static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3436                                     unsigned NumElems) {
3437  for (unsigned i = 0; i != NumElems; ++i) {
3438    int idx = Mask[i];
3439    if (idx < 0)
3440      continue;
3441    else if (idx < (int)NumElems)
3442      Mask[i] = idx + NumElems;
3443    else
3444      Mask[i] = idx - NumElems;
3445  }
3446}
3447
3448/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3449/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3450/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3451/// reverse of what x86 shuffles want.
3452static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3453                        bool Commuted = false) {
3454  if (!HasFp256 && VT.is256BitVector())
3455    return false;
3456
3457  unsigned NumElems = VT.getVectorNumElements();
3458  unsigned NumLanes = VT.getSizeInBits()/128;
3459  unsigned NumLaneElems = NumElems/NumLanes;
3460
3461  if (NumLaneElems != 2 && NumLaneElems != 4)
3462    return false;
3463
3464  // VSHUFPSY divides the resulting vector into 4 chunks.
3465  // The sources are also splitted into 4 chunks, and each destination
3466  // chunk must come from a different source chunk.
3467  //
3468  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3469  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3470  //
3471  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3472  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3473  //
3474  // VSHUFPDY divides the resulting vector into 4 chunks.
3475  // The sources are also splitted into 4 chunks, and each destination
3476  // chunk must come from a different source chunk.
3477  //
3478  //  SRC1 =>      X3       X2       X1       X0
3479  //  SRC2 =>      Y3       Y2       Y1       Y0
3480  //
3481  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3482  //
3483  unsigned HalfLaneElems = NumLaneElems/2;
3484  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3485    for (unsigned i = 0; i != NumLaneElems; ++i) {
3486      int Idx = Mask[i+l];
3487      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3488      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3489        return false;
3490      // For VSHUFPSY, the mask of the second half must be the same as the
3491      // first but with the appropriate offsets. This works in the same way as
3492      // VPERMILPS works with masks.
3493      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3494        continue;
3495      if (!isUndefOrEqual(Idx, Mask[i]+l))
3496        return false;
3497    }
3498  }
3499
3500  return true;
3501}
3502
3503/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3504/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3505static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3506  if (!VT.is128BitVector())
3507    return false;
3508
3509  unsigned NumElems = VT.getVectorNumElements();
3510
3511  if (NumElems != 4)
3512    return false;
3513
3514  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3515  return isUndefOrEqual(Mask[0], 6) &&
3516         isUndefOrEqual(Mask[1], 7) &&
3517         isUndefOrEqual(Mask[2], 2) &&
3518         isUndefOrEqual(Mask[3], 3);
3519}
3520
3521/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3522/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3523/// <2, 3, 2, 3>
3524static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3525  if (!VT.is128BitVector())
3526    return false;
3527
3528  unsigned NumElems = VT.getVectorNumElements();
3529
3530  if (NumElems != 4)
3531    return false;
3532
3533  return isUndefOrEqual(Mask[0], 2) &&
3534         isUndefOrEqual(Mask[1], 3) &&
3535         isUndefOrEqual(Mask[2], 2) &&
3536         isUndefOrEqual(Mask[3], 3);
3537}
3538
3539/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3540/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3541static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3542  if (!VT.is128BitVector())
3543    return false;
3544
3545  unsigned NumElems = VT.getVectorNumElements();
3546
3547  if (NumElems != 2 && NumElems != 4)
3548    return false;
3549
3550  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3551    if (!isUndefOrEqual(Mask[i], i + NumElems))
3552      return false;
3553
3554  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3555    if (!isUndefOrEqual(Mask[i], i))
3556      return false;
3557
3558  return true;
3559}
3560
3561/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3562/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3563static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3564  if (!VT.is128BitVector())
3565    return false;
3566
3567  unsigned NumElems = VT.getVectorNumElements();
3568
3569  if (NumElems != 2 && NumElems != 4)
3570    return false;
3571
3572  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3573    if (!isUndefOrEqual(Mask[i], i))
3574      return false;
3575
3576  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3577    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3578      return false;
3579
3580  return true;
3581}
3582
3583//
3584// Some special combinations that can be optimized.
3585//
3586static
3587SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3588                               SelectionDAG &DAG) {
3589  MVT VT = SVOp->getValueType(0).getSimpleVT();
3590  DebugLoc dl = SVOp->getDebugLoc();
3591
3592  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3593    return SDValue();
3594
3595  ArrayRef<int> Mask = SVOp->getMask();
3596
3597  // These are the special masks that may be optimized.
3598  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3599  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3600  bool MatchEvenMask = true;
3601  bool MatchOddMask  = true;
3602  for (int i=0; i<8; ++i) {
3603    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3604      MatchEvenMask = false;
3605    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3606      MatchOddMask = false;
3607  }
3608
3609  if (!MatchEvenMask && !MatchOddMask)
3610    return SDValue();
3611
3612  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3613
3614  SDValue Op0 = SVOp->getOperand(0);
3615  SDValue Op1 = SVOp->getOperand(1);
3616
3617  if (MatchEvenMask) {
3618    // Shift the second operand right to 32 bits.
3619    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3620    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3621  } else {
3622    // Shift the first operand left to 32 bits.
3623    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3624    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3625  }
3626  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3627  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3628}
3629
3630/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3631/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3632static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3633                         bool HasInt256, bool V2IsSplat = false) {
3634  unsigned NumElts = VT.getVectorNumElements();
3635
3636  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3637         "Unsupported vector type for unpckh");
3638
3639  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3640      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3641    return false;
3642
3643  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3644  // independently on 128-bit lanes.
3645  unsigned NumLanes = VT.getSizeInBits()/128;
3646  unsigned NumLaneElts = NumElts/NumLanes;
3647
3648  for (unsigned l = 0; l != NumLanes; ++l) {
3649    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3650         i != (l+1)*NumLaneElts;
3651         i += 2, ++j) {
3652      int BitI  = Mask[i];
3653      int BitI1 = Mask[i+1];
3654      if (!isUndefOrEqual(BitI, j))
3655        return false;
3656      if (V2IsSplat) {
3657        if (!isUndefOrEqual(BitI1, NumElts))
3658          return false;
3659      } else {
3660        if (!isUndefOrEqual(BitI1, j + NumElts))
3661          return false;
3662      }
3663    }
3664  }
3665
3666  return true;
3667}
3668
3669/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3670/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3671static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3672                         bool HasInt256, bool V2IsSplat = false) {
3673  unsigned NumElts = VT.getVectorNumElements();
3674
3675  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3676         "Unsupported vector type for unpckh");
3677
3678  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3679      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3680    return false;
3681
3682  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3683  // independently on 128-bit lanes.
3684  unsigned NumLanes = VT.getSizeInBits()/128;
3685  unsigned NumLaneElts = NumElts/NumLanes;
3686
3687  for (unsigned l = 0; l != NumLanes; ++l) {
3688    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3689         i != (l+1)*NumLaneElts; i += 2, ++j) {
3690      int BitI  = Mask[i];
3691      int BitI1 = Mask[i+1];
3692      if (!isUndefOrEqual(BitI, j))
3693        return false;
3694      if (V2IsSplat) {
3695        if (isUndefOrEqual(BitI1, NumElts))
3696          return false;
3697      } else {
3698        if (!isUndefOrEqual(BitI1, j+NumElts))
3699          return false;
3700      }
3701    }
3702  }
3703  return true;
3704}
3705
3706/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3707/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3708/// <0, 0, 1, 1>
3709static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3710  unsigned NumElts = VT.getVectorNumElements();
3711  bool Is256BitVec = VT.is256BitVector();
3712
3713  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3714         "Unsupported vector type for unpckh");
3715
3716  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3717      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3718    return false;
3719
3720  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3721  // FIXME: Need a better way to get rid of this, there's no latency difference
3722  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3723  // the former later. We should also remove the "_undef" special mask.
3724  if (NumElts == 4 && Is256BitVec)
3725    return false;
3726
3727  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3728  // independently on 128-bit lanes.
3729  unsigned NumLanes = VT.getSizeInBits()/128;
3730  unsigned NumLaneElts = NumElts/NumLanes;
3731
3732  for (unsigned l = 0; l != NumLanes; ++l) {
3733    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3734         i != (l+1)*NumLaneElts;
3735         i += 2, ++j) {
3736      int BitI  = Mask[i];
3737      int BitI1 = Mask[i+1];
3738
3739      if (!isUndefOrEqual(BitI, j))
3740        return false;
3741      if (!isUndefOrEqual(BitI1, j))
3742        return false;
3743    }
3744  }
3745
3746  return true;
3747}
3748
3749/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3750/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3751/// <2, 2, 3, 3>
3752static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3753  unsigned NumElts = VT.getVectorNumElements();
3754
3755  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3756         "Unsupported vector type for unpckh");
3757
3758  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3759      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3760    return false;
3761
3762  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3763  // independently on 128-bit lanes.
3764  unsigned NumLanes = VT.getSizeInBits()/128;
3765  unsigned NumLaneElts = NumElts/NumLanes;
3766
3767  for (unsigned l = 0; l != NumLanes; ++l) {
3768    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3769         i != (l+1)*NumLaneElts; i += 2, ++j) {
3770      int BitI  = Mask[i];
3771      int BitI1 = Mask[i+1];
3772      if (!isUndefOrEqual(BitI, j))
3773        return false;
3774      if (!isUndefOrEqual(BitI1, j))
3775        return false;
3776    }
3777  }
3778  return true;
3779}
3780
3781/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3782/// specifies a shuffle of elements that is suitable for input to MOVSS,
3783/// MOVSD, and MOVD, i.e. setting the lowest element.
3784static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3785  if (VT.getVectorElementType().getSizeInBits() < 32)
3786    return false;
3787  if (!VT.is128BitVector())
3788    return false;
3789
3790  unsigned NumElts = VT.getVectorNumElements();
3791
3792  if (!isUndefOrEqual(Mask[0], NumElts))
3793    return false;
3794
3795  for (unsigned i = 1; i != NumElts; ++i)
3796    if (!isUndefOrEqual(Mask[i], i))
3797      return false;
3798
3799  return true;
3800}
3801
3802/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3803/// as permutations between 128-bit chunks or halves. As an example: this
3804/// shuffle bellow:
3805///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3806/// The first half comes from the second half of V1 and the second half from the
3807/// the second half of V2.
3808static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3809  if (!HasFp256 || !VT.is256BitVector())
3810    return false;
3811
3812  // The shuffle result is divided into half A and half B. In total the two
3813  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3814  // B must come from C, D, E or F.
3815  unsigned HalfSize = VT.getVectorNumElements()/2;
3816  bool MatchA = false, MatchB = false;
3817
3818  // Check if A comes from one of C, D, E, F.
3819  for (unsigned Half = 0; Half != 4; ++Half) {
3820    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3821      MatchA = true;
3822      break;
3823    }
3824  }
3825
3826  // Check if B comes from one of C, D, E, F.
3827  for (unsigned Half = 0; Half != 4; ++Half) {
3828    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3829      MatchB = true;
3830      break;
3831    }
3832  }
3833
3834  return MatchA && MatchB;
3835}
3836
3837/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3838/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3839static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3840  MVT VT = SVOp->getValueType(0).getSimpleVT();
3841
3842  unsigned HalfSize = VT.getVectorNumElements()/2;
3843
3844  unsigned FstHalf = 0, SndHalf = 0;
3845  for (unsigned i = 0; i < HalfSize; ++i) {
3846    if (SVOp->getMaskElt(i) > 0) {
3847      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3848      break;
3849    }
3850  }
3851  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3852    if (SVOp->getMaskElt(i) > 0) {
3853      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3854      break;
3855    }
3856  }
3857
3858  return (FstHalf | (SndHalf << 4));
3859}
3860
3861/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3862/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3863/// Note that VPERMIL mask matching is different depending whether theunderlying
3864/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3865/// to the same elements of the low, but to the higher half of the source.
3866/// In VPERMILPD the two lanes could be shuffled independently of each other
3867/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3868static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3869  if (!HasFp256)
3870    return false;
3871
3872  unsigned NumElts = VT.getVectorNumElements();
3873  // Only match 256-bit with 32/64-bit types
3874  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3875    return false;
3876
3877  unsigned NumLanes = VT.getSizeInBits()/128;
3878  unsigned LaneSize = NumElts/NumLanes;
3879  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3880    for (unsigned i = 0; i != LaneSize; ++i) {
3881      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3882        return false;
3883      if (NumElts != 8 || l == 0)
3884        continue;
3885      // VPERMILPS handling
3886      if (Mask[i] < 0)
3887        continue;
3888      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3889        return false;
3890    }
3891  }
3892
3893  return true;
3894}
3895
3896/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3897/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3898/// element of vector 2 and the other elements to come from vector 1 in order.
3899static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3900                               bool V2IsSplat = false, bool V2IsUndef = false) {
3901  if (!VT.is128BitVector())
3902    return false;
3903
3904  unsigned NumOps = VT.getVectorNumElements();
3905  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3906    return false;
3907
3908  if (!isUndefOrEqual(Mask[0], 0))
3909    return false;
3910
3911  for (unsigned i = 1; i != NumOps; ++i)
3912    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3913          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3914          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3915      return false;
3916
3917  return true;
3918}
3919
3920/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3921/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3922/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3923static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3924                           const X86Subtarget *Subtarget) {
3925  if (!Subtarget->hasSSE3())
3926    return false;
3927
3928  unsigned NumElems = VT.getVectorNumElements();
3929
3930  if ((VT.is128BitVector() && NumElems != 4) ||
3931      (VT.is256BitVector() && NumElems != 8))
3932    return false;
3933
3934  // "i+1" is the value the indexed mask element must have
3935  for (unsigned i = 0; i != NumElems; i += 2)
3936    if (!isUndefOrEqual(Mask[i], i+1) ||
3937        !isUndefOrEqual(Mask[i+1], i+1))
3938      return false;
3939
3940  return true;
3941}
3942
3943/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3944/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3945/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3946static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3947                           const X86Subtarget *Subtarget) {
3948  if (!Subtarget->hasSSE3())
3949    return false;
3950
3951  unsigned NumElems = VT.getVectorNumElements();
3952
3953  if ((VT.is128BitVector() && NumElems != 4) ||
3954      (VT.is256BitVector() && NumElems != 8))
3955    return false;
3956
3957  // "i" is the value the indexed mask element must have
3958  for (unsigned i = 0; i != NumElems; i += 2)
3959    if (!isUndefOrEqual(Mask[i], i) ||
3960        !isUndefOrEqual(Mask[i+1], i))
3961      return false;
3962
3963  return true;
3964}
3965
3966/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3967/// specifies a shuffle of elements that is suitable for input to 256-bit
3968/// version of MOVDDUP.
3969static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3970  if (!HasFp256 || !VT.is256BitVector())
3971    return false;
3972
3973  unsigned NumElts = VT.getVectorNumElements();
3974  if (NumElts != 4)
3975    return false;
3976
3977  for (unsigned i = 0; i != NumElts/2; ++i)
3978    if (!isUndefOrEqual(Mask[i], 0))
3979      return false;
3980  for (unsigned i = NumElts/2; i != NumElts; ++i)
3981    if (!isUndefOrEqual(Mask[i], NumElts/2))
3982      return false;
3983  return true;
3984}
3985
3986/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3987/// specifies a shuffle of elements that is suitable for input to 128-bit
3988/// version of MOVDDUP.
3989static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3990  if (!VT.is128BitVector())
3991    return false;
3992
3993  unsigned e = VT.getVectorNumElements() / 2;
3994  for (unsigned i = 0; i != e; ++i)
3995    if (!isUndefOrEqual(Mask[i], i))
3996      return false;
3997  for (unsigned i = 0; i != e; ++i)
3998    if (!isUndefOrEqual(Mask[e+i], i))
3999      return false;
4000  return true;
4001}
4002
4003/// isVEXTRACTF128Index - Return true if the specified
4004/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4005/// suitable for input to VEXTRACTF128.
4006bool X86::isVEXTRACTF128Index(SDNode *N) {
4007  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4008    return false;
4009
4010  // The index should be aligned on a 128-bit boundary.
4011  uint64_t Index =
4012    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4013
4014  MVT VT = N->getValueType(0).getSimpleVT();
4015  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4016  bool Result = (Index * ElSize) % 128 == 0;
4017
4018  return Result;
4019}
4020
4021/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4022/// operand specifies a subvector insert that is suitable for input to
4023/// VINSERTF128.
4024bool X86::isVINSERTF128Index(SDNode *N) {
4025  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4026    return false;
4027
4028  // The index should be aligned on a 128-bit boundary.
4029  uint64_t Index =
4030    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4031
4032  MVT VT = N->getValueType(0).getSimpleVT();
4033  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4034  bool Result = (Index * ElSize) % 128 == 0;
4035
4036  return Result;
4037}
4038
4039/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4040/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4041/// Handles 128-bit and 256-bit.
4042static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4043  MVT VT = N->getValueType(0).getSimpleVT();
4044
4045  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4046         "Unsupported vector type for PSHUF/SHUFP");
4047
4048  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4049  // independently on 128-bit lanes.
4050  unsigned NumElts = VT.getVectorNumElements();
4051  unsigned NumLanes = VT.getSizeInBits()/128;
4052  unsigned NumLaneElts = NumElts/NumLanes;
4053
4054  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4055         "Only supports 2 or 4 elements per lane");
4056
4057  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4058  unsigned Mask = 0;
4059  for (unsigned i = 0; i != NumElts; ++i) {
4060    int Elt = N->getMaskElt(i);
4061    if (Elt < 0) continue;
4062    Elt &= NumLaneElts - 1;
4063    unsigned ShAmt = (i << Shift) % 8;
4064    Mask |= Elt << ShAmt;
4065  }
4066
4067  return Mask;
4068}
4069
4070/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4071/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4072static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4073  MVT VT = N->getValueType(0).getSimpleVT();
4074
4075  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4076         "Unsupported vector type for PSHUFHW");
4077
4078  unsigned NumElts = VT.getVectorNumElements();
4079
4080  unsigned Mask = 0;
4081  for (unsigned l = 0; l != NumElts; l += 8) {
4082    // 8 nodes per lane, but we only care about the last 4.
4083    for (unsigned i = 0; i < 4; ++i) {
4084      int Elt = N->getMaskElt(l+i+4);
4085      if (Elt < 0) continue;
4086      Elt &= 0x3; // only 2-bits.
4087      Mask |= Elt << (i * 2);
4088    }
4089  }
4090
4091  return Mask;
4092}
4093
4094/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4095/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4096static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4097  MVT VT = N->getValueType(0).getSimpleVT();
4098
4099  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4100         "Unsupported vector type for PSHUFHW");
4101
4102  unsigned NumElts = VT.getVectorNumElements();
4103
4104  unsigned Mask = 0;
4105  for (unsigned l = 0; l != NumElts; l += 8) {
4106    // 8 nodes per lane, but we only care about the first 4.
4107    for (unsigned i = 0; i < 4; ++i) {
4108      int Elt = N->getMaskElt(l+i);
4109      if (Elt < 0) continue;
4110      Elt &= 0x3; // only 2-bits
4111      Mask |= Elt << (i * 2);
4112    }
4113  }
4114
4115  return Mask;
4116}
4117
4118/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4119/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4120static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4121  MVT VT = SVOp->getValueType(0).getSimpleVT();
4122  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4123
4124  unsigned NumElts = VT.getVectorNumElements();
4125  unsigned NumLanes = VT.getSizeInBits()/128;
4126  unsigned NumLaneElts = NumElts/NumLanes;
4127
4128  int Val = 0;
4129  unsigned i;
4130  for (i = 0; i != NumElts; ++i) {
4131    Val = SVOp->getMaskElt(i);
4132    if (Val >= 0)
4133      break;
4134  }
4135  if (Val >= (int)NumElts)
4136    Val -= NumElts - NumLaneElts;
4137
4138  assert(Val - i > 0 && "PALIGNR imm should be positive");
4139  return (Val - i) * EltSize;
4140}
4141
4142/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4143/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4144/// instructions.
4145unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4146  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4147    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4148
4149  uint64_t Index =
4150    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4151
4152  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4153  MVT ElVT = VecVT.getVectorElementType();
4154
4155  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4156  return Index / NumElemsPerChunk;
4157}
4158
4159/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4160/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4161/// instructions.
4162unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4163  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4164    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4165
4166  uint64_t Index =
4167    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4168
4169  MVT VecVT = N->getValueType(0).getSimpleVT();
4170  MVT ElVT = VecVT.getVectorElementType();
4171
4172  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4173  return Index / NumElemsPerChunk;
4174}
4175
4176/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4177/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4178/// Handles 256-bit.
4179static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4180  MVT VT = N->getValueType(0).getSimpleVT();
4181
4182  unsigned NumElts = VT.getVectorNumElements();
4183
4184  assert((VT.is256BitVector() && NumElts == 4) &&
4185         "Unsupported vector type for VPERMQ/VPERMPD");
4186
4187  unsigned Mask = 0;
4188  for (unsigned i = 0; i != NumElts; ++i) {
4189    int Elt = N->getMaskElt(i);
4190    if (Elt < 0)
4191      continue;
4192    Mask |= Elt << (i*2);
4193  }
4194
4195  return Mask;
4196}
4197/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4198/// constant +0.0.
4199bool X86::isZeroNode(SDValue Elt) {
4200  return ((isa<ConstantSDNode>(Elt) &&
4201           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4202          (isa<ConstantFPSDNode>(Elt) &&
4203           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4204}
4205
4206/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4207/// their permute mask.
4208static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4209                                    SelectionDAG &DAG) {
4210  MVT VT = SVOp->getValueType(0).getSimpleVT();
4211  unsigned NumElems = VT.getVectorNumElements();
4212  SmallVector<int, 8> MaskVec;
4213
4214  for (unsigned i = 0; i != NumElems; ++i) {
4215    int Idx = SVOp->getMaskElt(i);
4216    if (Idx >= 0) {
4217      if (Idx < (int)NumElems)
4218        Idx += NumElems;
4219      else
4220        Idx -= NumElems;
4221    }
4222    MaskVec.push_back(Idx);
4223  }
4224  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4225                              SVOp->getOperand(0), &MaskVec[0]);
4226}
4227
4228/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4229/// match movhlps. The lower half elements should come from upper half of
4230/// V1 (and in order), and the upper half elements should come from the upper
4231/// half of V2 (and in order).
4232static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4233  if (!VT.is128BitVector())
4234    return false;
4235  if (VT.getVectorNumElements() != 4)
4236    return false;
4237  for (unsigned i = 0, e = 2; i != e; ++i)
4238    if (!isUndefOrEqual(Mask[i], i+2))
4239      return false;
4240  for (unsigned i = 2; i != 4; ++i)
4241    if (!isUndefOrEqual(Mask[i], i+4))
4242      return false;
4243  return true;
4244}
4245
4246/// isScalarLoadToVector - Returns true if the node is a scalar load that
4247/// is promoted to a vector. It also returns the LoadSDNode by reference if
4248/// required.
4249static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4250  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4251    return false;
4252  N = N->getOperand(0).getNode();
4253  if (!ISD::isNON_EXTLoad(N))
4254    return false;
4255  if (LD)
4256    *LD = cast<LoadSDNode>(N);
4257  return true;
4258}
4259
4260// Test whether the given value is a vector value which will be legalized
4261// into a load.
4262static bool WillBeConstantPoolLoad(SDNode *N) {
4263  if (N->getOpcode() != ISD::BUILD_VECTOR)
4264    return false;
4265
4266  // Check for any non-constant elements.
4267  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4268    switch (N->getOperand(i).getNode()->getOpcode()) {
4269    case ISD::UNDEF:
4270    case ISD::ConstantFP:
4271    case ISD::Constant:
4272      break;
4273    default:
4274      return false;
4275    }
4276
4277  // Vectors of all-zeros and all-ones are materialized with special
4278  // instructions rather than being loaded.
4279  return !ISD::isBuildVectorAllZeros(N) &&
4280         !ISD::isBuildVectorAllOnes(N);
4281}
4282
4283/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4284/// match movlp{s|d}. The lower half elements should come from lower half of
4285/// V1 (and in order), and the upper half elements should come from the upper
4286/// half of V2 (and in order). And since V1 will become the source of the
4287/// MOVLP, it must be either a vector load or a scalar load to vector.
4288static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4289                               ArrayRef<int> Mask, EVT VT) {
4290  if (!VT.is128BitVector())
4291    return false;
4292
4293  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4294    return false;
4295  // Is V2 is a vector load, don't do this transformation. We will try to use
4296  // load folding shufps op.
4297  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4298    return false;
4299
4300  unsigned NumElems = VT.getVectorNumElements();
4301
4302  if (NumElems != 2 && NumElems != 4)
4303    return false;
4304  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4305    if (!isUndefOrEqual(Mask[i], i))
4306      return false;
4307  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4308    if (!isUndefOrEqual(Mask[i], i+NumElems))
4309      return false;
4310  return true;
4311}
4312
4313/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4314/// all the same.
4315static bool isSplatVector(SDNode *N) {
4316  if (N->getOpcode() != ISD::BUILD_VECTOR)
4317    return false;
4318
4319  SDValue SplatValue = N->getOperand(0);
4320  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4321    if (N->getOperand(i) != SplatValue)
4322      return false;
4323  return true;
4324}
4325
4326/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4327/// to an zero vector.
4328/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4329static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4330  SDValue V1 = N->getOperand(0);
4331  SDValue V2 = N->getOperand(1);
4332  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4333  for (unsigned i = 0; i != NumElems; ++i) {
4334    int Idx = N->getMaskElt(i);
4335    if (Idx >= (int)NumElems) {
4336      unsigned Opc = V2.getOpcode();
4337      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4338        continue;
4339      if (Opc != ISD::BUILD_VECTOR ||
4340          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4341        return false;
4342    } else if (Idx >= 0) {
4343      unsigned Opc = V1.getOpcode();
4344      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4345        continue;
4346      if (Opc != ISD::BUILD_VECTOR ||
4347          !X86::isZeroNode(V1.getOperand(Idx)))
4348        return false;
4349    }
4350  }
4351  return true;
4352}
4353
4354/// getZeroVector - Returns a vector of specified type with all zero elements.
4355///
4356static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4357                             SelectionDAG &DAG, DebugLoc dl) {
4358  assert(VT.isVector() && "Expected a vector type");
4359
4360  // Always build SSE zero vectors as <4 x i32> bitcasted
4361  // to their dest type. This ensures they get CSE'd.
4362  SDValue Vec;
4363  if (VT.is128BitVector()) {  // SSE
4364    if (Subtarget->hasSSE2()) {  // SSE2
4365      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4366      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4367    } else { // SSE1
4368      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4369      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4370    }
4371  } else if (VT.is256BitVector()) { // AVX
4372    if (Subtarget->hasInt256()) { // AVX2
4373      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4374      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4375      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4376    } else {
4377      // 256-bit logic and arithmetic instructions in AVX are all
4378      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4379      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4380      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4381      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4382    }
4383  } else
4384    llvm_unreachable("Unexpected vector type");
4385
4386  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4387}
4388
4389/// getOnesVector - Returns a vector of specified type with all bits set.
4390/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4391/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4392/// Then bitcast to their original type, ensuring they get CSE'd.
4393static SDValue getOnesVector(EVT VT, bool HasInt256, SelectionDAG &DAG,
4394                             DebugLoc dl) {
4395  assert(VT.isVector() && "Expected a vector type");
4396
4397  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4398  SDValue Vec;
4399  if (VT.is256BitVector()) {
4400    if (HasInt256) { // AVX2
4401      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4402      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4403    } else { // AVX
4404      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4405      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4406    }
4407  } else if (VT.is128BitVector()) {
4408    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4409  } else
4410    llvm_unreachable("Unexpected vector type");
4411
4412  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4413}
4414
4415/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4416/// that point to V2 points to its first element.
4417static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4418  for (unsigned i = 0; i != NumElems; ++i) {
4419    if (Mask[i] > (int)NumElems) {
4420      Mask[i] = NumElems;
4421    }
4422  }
4423}
4424
4425/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4426/// operation of specified width.
4427static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4428                       SDValue V2) {
4429  unsigned NumElems = VT.getVectorNumElements();
4430  SmallVector<int, 8> Mask;
4431  Mask.push_back(NumElems);
4432  for (unsigned i = 1; i != NumElems; ++i)
4433    Mask.push_back(i);
4434  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4435}
4436
4437/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4438static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4439                          SDValue V2) {
4440  unsigned NumElems = VT.getVectorNumElements();
4441  SmallVector<int, 8> Mask;
4442  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4443    Mask.push_back(i);
4444    Mask.push_back(i + NumElems);
4445  }
4446  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4447}
4448
4449/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4450static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4451                          SDValue V2) {
4452  unsigned NumElems = VT.getVectorNumElements();
4453  SmallVector<int, 8> Mask;
4454  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4455    Mask.push_back(i + Half);
4456    Mask.push_back(i + NumElems + Half);
4457  }
4458  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4459}
4460
4461// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4462// a generic shuffle instruction because the target has no such instructions.
4463// Generate shuffles which repeat i16 and i8 several times until they can be
4464// represented by v4f32 and then be manipulated by target suported shuffles.
4465static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4466  EVT VT = V.getValueType();
4467  int NumElems = VT.getVectorNumElements();
4468  DebugLoc dl = V.getDebugLoc();
4469
4470  while (NumElems > 4) {
4471    if (EltNo < NumElems/2) {
4472      V = getUnpackl(DAG, dl, VT, V, V);
4473    } else {
4474      V = getUnpackh(DAG, dl, VT, V, V);
4475      EltNo -= NumElems/2;
4476    }
4477    NumElems >>= 1;
4478  }
4479  return V;
4480}
4481
4482/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4483static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4484  EVT VT = V.getValueType();
4485  DebugLoc dl = V.getDebugLoc();
4486
4487  if (VT.is128BitVector()) {
4488    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4489    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4490    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4491                             &SplatMask[0]);
4492  } else if (VT.is256BitVector()) {
4493    // To use VPERMILPS to splat scalars, the second half of indicies must
4494    // refer to the higher part, which is a duplication of the lower one,
4495    // because VPERMILPS can only handle in-lane permutations.
4496    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4497                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4498
4499    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4500    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4501                             &SplatMask[0]);
4502  } else
4503    llvm_unreachable("Vector size not supported");
4504
4505  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4506}
4507
4508/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4509static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4510  EVT SrcVT = SV->getValueType(0);
4511  SDValue V1 = SV->getOperand(0);
4512  DebugLoc dl = SV->getDebugLoc();
4513
4514  int EltNo = SV->getSplatIndex();
4515  int NumElems = SrcVT.getVectorNumElements();
4516  bool Is256BitVec = SrcVT.is256BitVector();
4517
4518  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4519         "Unknown how to promote splat for type");
4520
4521  // Extract the 128-bit part containing the splat element and update
4522  // the splat element index when it refers to the higher register.
4523  if (Is256BitVec) {
4524    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4525    if (EltNo >= NumElems/2)
4526      EltNo -= NumElems/2;
4527  }
4528
4529  // All i16 and i8 vector types can't be used directly by a generic shuffle
4530  // instruction because the target has no such instruction. Generate shuffles
4531  // which repeat i16 and i8 several times until they fit in i32, and then can
4532  // be manipulated by target suported shuffles.
4533  EVT EltVT = SrcVT.getVectorElementType();
4534  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4535    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4536
4537  // Recreate the 256-bit vector and place the same 128-bit vector
4538  // into the low and high part. This is necessary because we want
4539  // to use VPERM* to shuffle the vectors
4540  if (Is256BitVec) {
4541    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4542  }
4543
4544  return getLegalSplat(DAG, V1, EltNo);
4545}
4546
4547/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4548/// vector of zero or undef vector.  This produces a shuffle where the low
4549/// element of V2 is swizzled into the zero/undef vector, landing at element
4550/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4551static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4552                                           bool IsZero,
4553                                           const X86Subtarget *Subtarget,
4554                                           SelectionDAG &DAG) {
4555  EVT VT = V2.getValueType();
4556  SDValue V1 = IsZero
4557    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4558  unsigned NumElems = VT.getVectorNumElements();
4559  SmallVector<int, 16> MaskVec;
4560  for (unsigned i = 0; i != NumElems; ++i)
4561    // If this is the insertion idx, put the low elt of V2 here.
4562    MaskVec.push_back(i == Idx ? NumElems : i);
4563  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4564}
4565
4566/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4567/// target specific opcode. Returns true if the Mask could be calculated.
4568/// Sets IsUnary to true if only uses one source.
4569static bool getTargetShuffleMask(SDNode *N, MVT VT,
4570                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4571  unsigned NumElems = VT.getVectorNumElements();
4572  SDValue ImmN;
4573
4574  IsUnary = false;
4575  switch(N->getOpcode()) {
4576  case X86ISD::SHUFP:
4577    ImmN = N->getOperand(N->getNumOperands()-1);
4578    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4579    break;
4580  case X86ISD::UNPCKH:
4581    DecodeUNPCKHMask(VT, Mask);
4582    break;
4583  case X86ISD::UNPCKL:
4584    DecodeUNPCKLMask(VT, Mask);
4585    break;
4586  case X86ISD::MOVHLPS:
4587    DecodeMOVHLPSMask(NumElems, Mask);
4588    break;
4589  case X86ISD::MOVLHPS:
4590    DecodeMOVLHPSMask(NumElems, Mask);
4591    break;
4592  case X86ISD::PSHUFD:
4593  case X86ISD::VPERMILP:
4594    ImmN = N->getOperand(N->getNumOperands()-1);
4595    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4596    IsUnary = true;
4597    break;
4598  case X86ISD::PSHUFHW:
4599    ImmN = N->getOperand(N->getNumOperands()-1);
4600    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4601    IsUnary = true;
4602    break;
4603  case X86ISD::PSHUFLW:
4604    ImmN = N->getOperand(N->getNumOperands()-1);
4605    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4606    IsUnary = true;
4607    break;
4608  case X86ISD::VPERMI:
4609    ImmN = N->getOperand(N->getNumOperands()-1);
4610    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4611    IsUnary = true;
4612    break;
4613  case X86ISD::MOVSS:
4614  case X86ISD::MOVSD: {
4615    // The index 0 always comes from the first element of the second source,
4616    // this is why MOVSS and MOVSD are used in the first place. The other
4617    // elements come from the other positions of the first source vector
4618    Mask.push_back(NumElems);
4619    for (unsigned i = 1; i != NumElems; ++i) {
4620      Mask.push_back(i);
4621    }
4622    break;
4623  }
4624  case X86ISD::VPERM2X128:
4625    ImmN = N->getOperand(N->getNumOperands()-1);
4626    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4627    if (Mask.empty()) return false;
4628    break;
4629  case X86ISD::MOVDDUP:
4630  case X86ISD::MOVLHPD:
4631  case X86ISD::MOVLPD:
4632  case X86ISD::MOVLPS:
4633  case X86ISD::MOVSHDUP:
4634  case X86ISD::MOVSLDUP:
4635  case X86ISD::PALIGN:
4636    // Not yet implemented
4637    return false;
4638  default: llvm_unreachable("unknown target shuffle node");
4639  }
4640
4641  return true;
4642}
4643
4644/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4645/// element of the result of the vector shuffle.
4646static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4647                                   unsigned Depth) {
4648  if (Depth == 6)
4649    return SDValue();  // Limit search depth.
4650
4651  SDValue V = SDValue(N, 0);
4652  EVT VT = V.getValueType();
4653  unsigned Opcode = V.getOpcode();
4654
4655  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4656  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4657    int Elt = SV->getMaskElt(Index);
4658
4659    if (Elt < 0)
4660      return DAG.getUNDEF(VT.getVectorElementType());
4661
4662    unsigned NumElems = VT.getVectorNumElements();
4663    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4664                                         : SV->getOperand(1);
4665    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4666  }
4667
4668  // Recurse into target specific vector shuffles to find scalars.
4669  if (isTargetShuffle(Opcode)) {
4670    MVT ShufVT = V.getValueType().getSimpleVT();
4671    unsigned NumElems = ShufVT.getVectorNumElements();
4672    SmallVector<int, 16> ShuffleMask;
4673    bool IsUnary;
4674
4675    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4676      return SDValue();
4677
4678    int Elt = ShuffleMask[Index];
4679    if (Elt < 0)
4680      return DAG.getUNDEF(ShufVT.getVectorElementType());
4681
4682    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4683                                         : N->getOperand(1);
4684    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4685                               Depth+1);
4686  }
4687
4688  // Actual nodes that may contain scalar elements
4689  if (Opcode == ISD::BITCAST) {
4690    V = V.getOperand(0);
4691    EVT SrcVT = V.getValueType();
4692    unsigned NumElems = VT.getVectorNumElements();
4693
4694    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4695      return SDValue();
4696  }
4697
4698  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4699    return (Index == 0) ? V.getOperand(0)
4700                        : DAG.getUNDEF(VT.getVectorElementType());
4701
4702  if (V.getOpcode() == ISD::BUILD_VECTOR)
4703    return V.getOperand(Index);
4704
4705  return SDValue();
4706}
4707
4708/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4709/// shuffle operation which come from a consecutively from a zero. The
4710/// search can start in two different directions, from left or right.
4711static
4712unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4713                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4714  unsigned i;
4715  for (i = 0; i != NumElems; ++i) {
4716    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4717    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4718    if (!(Elt.getNode() &&
4719         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4720      break;
4721  }
4722
4723  return i;
4724}
4725
4726/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4727/// correspond consecutively to elements from one of the vector operands,
4728/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4729static
4730bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4731                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4732                              unsigned NumElems, unsigned &OpNum) {
4733  bool SeenV1 = false;
4734  bool SeenV2 = false;
4735
4736  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4737    int Idx = SVOp->getMaskElt(i);
4738    // Ignore undef indicies
4739    if (Idx < 0)
4740      continue;
4741
4742    if (Idx < (int)NumElems)
4743      SeenV1 = true;
4744    else
4745      SeenV2 = true;
4746
4747    // Only accept consecutive elements from the same vector
4748    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4749      return false;
4750  }
4751
4752  OpNum = SeenV1 ? 0 : 1;
4753  return true;
4754}
4755
4756/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4757/// logical left shift of a vector.
4758static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4759                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4760  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4761  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4762              false /* check zeros from right */, DAG);
4763  unsigned OpSrc;
4764
4765  if (!NumZeros)
4766    return false;
4767
4768  // Considering the elements in the mask that are not consecutive zeros,
4769  // check if they consecutively come from only one of the source vectors.
4770  //
4771  //               V1 = {X, A, B, C}     0
4772  //                         \  \  \    /
4773  //   vector_shuffle V1, V2 <1, 2, 3, X>
4774  //
4775  if (!isShuffleMaskConsecutive(SVOp,
4776            0,                   // Mask Start Index
4777            NumElems-NumZeros,   // Mask End Index(exclusive)
4778            NumZeros,            // Where to start looking in the src vector
4779            NumElems,            // Number of elements in vector
4780            OpSrc))              // Which source operand ?
4781    return false;
4782
4783  isLeft = false;
4784  ShAmt = NumZeros;
4785  ShVal = SVOp->getOperand(OpSrc);
4786  return true;
4787}
4788
4789/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4790/// logical left shift of a vector.
4791static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4792                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4793  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4794  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4795              true /* check zeros from left */, DAG);
4796  unsigned OpSrc;
4797
4798  if (!NumZeros)
4799    return false;
4800
4801  // Considering the elements in the mask that are not consecutive zeros,
4802  // check if they consecutively come from only one of the source vectors.
4803  //
4804  //                           0    { A, B, X, X } = V2
4805  //                          / \    /  /
4806  //   vector_shuffle V1, V2 <X, X, 4, 5>
4807  //
4808  if (!isShuffleMaskConsecutive(SVOp,
4809            NumZeros,     // Mask Start Index
4810            NumElems,     // Mask End Index(exclusive)
4811            0,            // Where to start looking in the src vector
4812            NumElems,     // Number of elements in vector
4813            OpSrc))       // Which source operand ?
4814    return false;
4815
4816  isLeft = true;
4817  ShAmt = NumZeros;
4818  ShVal = SVOp->getOperand(OpSrc);
4819  return true;
4820}
4821
4822/// isVectorShift - Returns true if the shuffle can be implemented as a
4823/// logical left or right shift of a vector.
4824static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4825                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4826  // Although the logic below support any bitwidth size, there are no
4827  // shift instructions which handle more than 128-bit vectors.
4828  if (!SVOp->getValueType(0).is128BitVector())
4829    return false;
4830
4831  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4832      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4833    return true;
4834
4835  return false;
4836}
4837
4838/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4839///
4840static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4841                                       unsigned NumNonZero, unsigned NumZero,
4842                                       SelectionDAG &DAG,
4843                                       const X86Subtarget* Subtarget,
4844                                       const TargetLowering &TLI) {
4845  if (NumNonZero > 8)
4846    return SDValue();
4847
4848  DebugLoc dl = Op.getDebugLoc();
4849  SDValue V(0, 0);
4850  bool First = true;
4851  for (unsigned i = 0; i < 16; ++i) {
4852    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4853    if (ThisIsNonZero && First) {
4854      if (NumZero)
4855        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4856      else
4857        V = DAG.getUNDEF(MVT::v8i16);
4858      First = false;
4859    }
4860
4861    if ((i & 1) != 0) {
4862      SDValue ThisElt(0, 0), LastElt(0, 0);
4863      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4864      if (LastIsNonZero) {
4865        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4866                              MVT::i16, Op.getOperand(i-1));
4867      }
4868      if (ThisIsNonZero) {
4869        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4870        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4871                              ThisElt, DAG.getConstant(8, MVT::i8));
4872        if (LastIsNonZero)
4873          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4874      } else
4875        ThisElt = LastElt;
4876
4877      if (ThisElt.getNode())
4878        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4879                        DAG.getIntPtrConstant(i/2));
4880    }
4881  }
4882
4883  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4884}
4885
4886/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4887///
4888static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4889                                     unsigned NumNonZero, unsigned NumZero,
4890                                     SelectionDAG &DAG,
4891                                     const X86Subtarget* Subtarget,
4892                                     const TargetLowering &TLI) {
4893  if (NumNonZero > 4)
4894    return SDValue();
4895
4896  DebugLoc dl = Op.getDebugLoc();
4897  SDValue V(0, 0);
4898  bool First = true;
4899  for (unsigned i = 0; i < 8; ++i) {
4900    bool isNonZero = (NonZeros & (1 << i)) != 0;
4901    if (isNonZero) {
4902      if (First) {
4903        if (NumZero)
4904          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4905        else
4906          V = DAG.getUNDEF(MVT::v8i16);
4907        First = false;
4908      }
4909      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4910                      MVT::v8i16, V, Op.getOperand(i),
4911                      DAG.getIntPtrConstant(i));
4912    }
4913  }
4914
4915  return V;
4916}
4917
4918/// getVShift - Return a vector logical shift node.
4919///
4920static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4921                         unsigned NumBits, SelectionDAG &DAG,
4922                         const TargetLowering &TLI, DebugLoc dl) {
4923  assert(VT.is128BitVector() && "Unknown type for VShift");
4924  EVT ShVT = MVT::v2i64;
4925  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4926  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4927  return DAG.getNode(ISD::BITCAST, dl, VT,
4928                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4929                             DAG.getConstant(NumBits,
4930                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4931}
4932
4933SDValue
4934X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4935                                          SelectionDAG &DAG) const {
4936
4937  // Check if the scalar load can be widened into a vector load. And if
4938  // the address is "base + cst" see if the cst can be "absorbed" into
4939  // the shuffle mask.
4940  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4941    SDValue Ptr = LD->getBasePtr();
4942    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4943      return SDValue();
4944    EVT PVT = LD->getValueType(0);
4945    if (PVT != MVT::i32 && PVT != MVT::f32)
4946      return SDValue();
4947
4948    int FI = -1;
4949    int64_t Offset = 0;
4950    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4951      FI = FINode->getIndex();
4952      Offset = 0;
4953    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4954               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4955      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4956      Offset = Ptr.getConstantOperandVal(1);
4957      Ptr = Ptr.getOperand(0);
4958    } else {
4959      return SDValue();
4960    }
4961
4962    // FIXME: 256-bit vector instructions don't require a strict alignment,
4963    // improve this code to support it better.
4964    unsigned RequiredAlign = VT.getSizeInBits()/8;
4965    SDValue Chain = LD->getChain();
4966    // Make sure the stack object alignment is at least 16 or 32.
4967    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4968    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4969      if (MFI->isFixedObjectIndex(FI)) {
4970        // Can't change the alignment. FIXME: It's possible to compute
4971        // the exact stack offset and reference FI + adjust offset instead.
4972        // If someone *really* cares about this. That's the way to implement it.
4973        return SDValue();
4974      } else {
4975        MFI->setObjectAlignment(FI, RequiredAlign);
4976      }
4977    }
4978
4979    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4980    // Ptr + (Offset & ~15).
4981    if (Offset < 0)
4982      return SDValue();
4983    if ((Offset % RequiredAlign) & 3)
4984      return SDValue();
4985    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4986    if (StartOffset)
4987      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4988                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4989
4990    int EltNo = (Offset - StartOffset) >> 2;
4991    unsigned NumElems = VT.getVectorNumElements();
4992
4993    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4994    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4995                             LD->getPointerInfo().getWithOffset(StartOffset),
4996                             false, false, false, 0);
4997
4998    SmallVector<int, 8> Mask;
4999    for (unsigned i = 0; i != NumElems; ++i)
5000      Mask.push_back(EltNo);
5001
5002    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5003  }
5004
5005  return SDValue();
5006}
5007
5008/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5009/// vector of type 'VT', see if the elements can be replaced by a single large
5010/// load which has the same value as a build_vector whose operands are 'elts'.
5011///
5012/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5013///
5014/// FIXME: we'd also like to handle the case where the last elements are zero
5015/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5016/// There's even a handy isZeroNode for that purpose.
5017static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5018                                        DebugLoc &DL, SelectionDAG &DAG) {
5019  EVT EltVT = VT.getVectorElementType();
5020  unsigned NumElems = Elts.size();
5021
5022  LoadSDNode *LDBase = NULL;
5023  unsigned LastLoadedElt = -1U;
5024
5025  // For each element in the initializer, see if we've found a load or an undef.
5026  // If we don't find an initial load element, or later load elements are
5027  // non-consecutive, bail out.
5028  for (unsigned i = 0; i < NumElems; ++i) {
5029    SDValue Elt = Elts[i];
5030
5031    if (!Elt.getNode() ||
5032        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5033      return SDValue();
5034    if (!LDBase) {
5035      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5036        return SDValue();
5037      LDBase = cast<LoadSDNode>(Elt.getNode());
5038      LastLoadedElt = i;
5039      continue;
5040    }
5041    if (Elt.getOpcode() == ISD::UNDEF)
5042      continue;
5043
5044    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5045    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5046      return SDValue();
5047    LastLoadedElt = i;
5048  }
5049
5050  // If we have found an entire vector of loads and undefs, then return a large
5051  // load of the entire vector width starting at the base pointer.  If we found
5052  // consecutive loads for the low half, generate a vzext_load node.
5053  if (LastLoadedElt == NumElems - 1) {
5054    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5055      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5056                         LDBase->getPointerInfo(),
5057                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5058                         LDBase->isInvariant(), 0);
5059    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5060                       LDBase->getPointerInfo(),
5061                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5062                       LDBase->isInvariant(), LDBase->getAlignment());
5063  }
5064  if (NumElems == 4 && LastLoadedElt == 1 &&
5065      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5066    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5067    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5068    SDValue ResNode =
5069        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5070                                LDBase->getPointerInfo(),
5071                                LDBase->getAlignment(),
5072                                false/*isVolatile*/, true/*ReadMem*/,
5073                                false/*WriteMem*/);
5074
5075    // Make sure the newly-created LOAD is in the same position as LDBase in
5076    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5077    // update uses of LDBase's output chain to use the TokenFactor.
5078    if (LDBase->hasAnyUseOfValue(1)) {
5079      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5080                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5081      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5082      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5083                             SDValue(ResNode.getNode(), 1));
5084    }
5085
5086    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5087  }
5088  return SDValue();
5089}
5090
5091/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5092/// to generate a splat value for the following cases:
5093/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5094/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5095/// a scalar load, or a constant.
5096/// The VBROADCAST node is returned when a pattern is found,
5097/// or SDValue() otherwise.
5098SDValue
5099X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5100  if (!Subtarget->hasFp256())
5101    return SDValue();
5102
5103  EVT VT = Op.getValueType();
5104  DebugLoc dl = Op.getDebugLoc();
5105
5106  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5107         "Unsupported vector type for broadcast.");
5108
5109  SDValue Ld;
5110  bool ConstSplatVal;
5111
5112  switch (Op.getOpcode()) {
5113    default:
5114      // Unknown pattern found.
5115      return SDValue();
5116
5117    case ISD::BUILD_VECTOR: {
5118      // The BUILD_VECTOR node must be a splat.
5119      if (!isSplatVector(Op.getNode()))
5120        return SDValue();
5121
5122      Ld = Op.getOperand(0);
5123      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5124                     Ld.getOpcode() == ISD::ConstantFP);
5125
5126      // The suspected load node has several users. Make sure that all
5127      // of its users are from the BUILD_VECTOR node.
5128      // Constants may have multiple users.
5129      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5130        return SDValue();
5131      break;
5132    }
5133
5134    case ISD::VECTOR_SHUFFLE: {
5135      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5136
5137      // Shuffles must have a splat mask where the first element is
5138      // broadcasted.
5139      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5140        return SDValue();
5141
5142      SDValue Sc = Op.getOperand(0);
5143      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5144          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5145
5146        if (!Subtarget->hasInt256())
5147          return SDValue();
5148
5149        // Use the register form of the broadcast instruction available on AVX2.
5150        if (VT.is256BitVector())
5151          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5152        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5153      }
5154
5155      Ld = Sc.getOperand(0);
5156      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5157                       Ld.getOpcode() == ISD::ConstantFP);
5158
5159      // The scalar_to_vector node and the suspected
5160      // load node must have exactly one user.
5161      // Constants may have multiple users.
5162      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5163        return SDValue();
5164      break;
5165    }
5166  }
5167
5168  bool Is256 = VT.is256BitVector();
5169
5170  // Handle the broadcasting a single constant scalar from the constant pool
5171  // into a vector. On Sandybridge it is still better to load a constant vector
5172  // from the constant pool and not to broadcast it from a scalar.
5173  if (ConstSplatVal && Subtarget->hasInt256()) {
5174    EVT CVT = Ld.getValueType();
5175    assert(!CVT.isVector() && "Must not broadcast a vector type");
5176    unsigned ScalarSize = CVT.getSizeInBits();
5177
5178    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5179      const Constant *C = 0;
5180      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5181        C = CI->getConstantIntValue();
5182      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5183        C = CF->getConstantFPValue();
5184
5185      assert(C && "Invalid constant type");
5186
5187      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5188      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5189      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5190                       MachinePointerInfo::getConstantPool(),
5191                       false, false, false, Alignment);
5192
5193      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5194    }
5195  }
5196
5197  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5198  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5199
5200  // Handle AVX2 in-register broadcasts.
5201  if (!IsLoad && Subtarget->hasInt256() &&
5202      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5203    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5204
5205  // The scalar source must be a normal load.
5206  if (!IsLoad)
5207    return SDValue();
5208
5209  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5210    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5211
5212  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5213  // double since there is no vbroadcastsd xmm
5214  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5215    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5216      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5217  }
5218
5219  // Unsupported broadcast.
5220  return SDValue();
5221}
5222
5223SDValue
5224X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5225  EVT VT = Op.getValueType();
5226
5227  // Skip if insert_vec_elt is not supported.
5228  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5229    return SDValue();
5230
5231  DebugLoc DL = Op.getDebugLoc();
5232  unsigned NumElems = Op.getNumOperands();
5233
5234  SDValue VecIn1;
5235  SDValue VecIn2;
5236  SmallVector<unsigned, 4> InsertIndices;
5237  SmallVector<int, 8> Mask(NumElems, -1);
5238
5239  for (unsigned i = 0; i != NumElems; ++i) {
5240    unsigned Opc = Op.getOperand(i).getOpcode();
5241
5242    if (Opc == ISD::UNDEF)
5243      continue;
5244
5245    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5246      // Quit if more than 1 elements need inserting.
5247      if (InsertIndices.size() > 1)
5248        return SDValue();
5249
5250      InsertIndices.push_back(i);
5251      continue;
5252    }
5253
5254    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5255    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5256
5257    // Quit if extracted from vector of different type.
5258    if (ExtractedFromVec.getValueType() != VT)
5259      return SDValue();
5260
5261    // Quit if non-constant index.
5262    if (!isa<ConstantSDNode>(ExtIdx))
5263      return SDValue();
5264
5265    if (VecIn1.getNode() == 0)
5266      VecIn1 = ExtractedFromVec;
5267    else if (VecIn1 != ExtractedFromVec) {
5268      if (VecIn2.getNode() == 0)
5269        VecIn2 = ExtractedFromVec;
5270      else if (VecIn2 != ExtractedFromVec)
5271        // Quit if more than 2 vectors to shuffle
5272        return SDValue();
5273    }
5274
5275    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5276
5277    if (ExtractedFromVec == VecIn1)
5278      Mask[i] = Idx;
5279    else if (ExtractedFromVec == VecIn2)
5280      Mask[i] = Idx + NumElems;
5281  }
5282
5283  if (VecIn1.getNode() == 0)
5284    return SDValue();
5285
5286  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5287  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5288  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5289    unsigned Idx = InsertIndices[i];
5290    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5291                     DAG.getIntPtrConstant(Idx));
5292  }
5293
5294  return NV;
5295}
5296
5297SDValue
5298X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5299  DebugLoc dl = Op.getDebugLoc();
5300
5301  EVT VT = Op.getValueType();
5302  EVT ExtVT = VT.getVectorElementType();
5303  unsigned NumElems = Op.getNumOperands();
5304
5305  // Vectors containing all zeros can be matched by pxor and xorps later
5306  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5307    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5308    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5309    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5310      return Op;
5311
5312    return getZeroVector(VT, Subtarget, DAG, dl);
5313  }
5314
5315  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5316  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5317  // vpcmpeqd on 256-bit vectors.
5318  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5319    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5320      return Op;
5321
5322    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5323  }
5324
5325  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5326  if (Broadcast.getNode())
5327    return Broadcast;
5328
5329  unsigned EVTBits = ExtVT.getSizeInBits();
5330
5331  unsigned NumZero  = 0;
5332  unsigned NumNonZero = 0;
5333  unsigned NonZeros = 0;
5334  bool IsAllConstants = true;
5335  SmallSet<SDValue, 8> Values;
5336  for (unsigned i = 0; i < NumElems; ++i) {
5337    SDValue Elt = Op.getOperand(i);
5338    if (Elt.getOpcode() == ISD::UNDEF)
5339      continue;
5340    Values.insert(Elt);
5341    if (Elt.getOpcode() != ISD::Constant &&
5342        Elt.getOpcode() != ISD::ConstantFP)
5343      IsAllConstants = false;
5344    if (X86::isZeroNode(Elt))
5345      NumZero++;
5346    else {
5347      NonZeros |= (1 << i);
5348      NumNonZero++;
5349    }
5350  }
5351
5352  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5353  if (NumNonZero == 0)
5354    return DAG.getUNDEF(VT);
5355
5356  // Special case for single non-zero, non-undef, element.
5357  if (NumNonZero == 1) {
5358    unsigned Idx = CountTrailingZeros_32(NonZeros);
5359    SDValue Item = Op.getOperand(Idx);
5360
5361    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5362    // the value are obviously zero, truncate the value to i32 and do the
5363    // insertion that way.  Only do this if the value is non-constant or if the
5364    // value is a constant being inserted into element 0.  It is cheaper to do
5365    // a constant pool load than it is to do a movd + shuffle.
5366    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5367        (!IsAllConstants || Idx == 0)) {
5368      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5369        // Handle SSE only.
5370        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5371        EVT VecVT = MVT::v4i32;
5372        unsigned VecElts = 4;
5373
5374        // Truncate the value (which may itself be a constant) to i32, and
5375        // convert it to a vector with movd (S2V+shuffle to zero extend).
5376        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5377        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5378        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5379
5380        // Now we have our 32-bit value zero extended in the low element of
5381        // a vector.  If Idx != 0, swizzle it into place.
5382        if (Idx != 0) {
5383          SmallVector<int, 4> Mask;
5384          Mask.push_back(Idx);
5385          for (unsigned i = 1; i != VecElts; ++i)
5386            Mask.push_back(i);
5387          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5388                                      &Mask[0]);
5389        }
5390        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5391      }
5392    }
5393
5394    // If we have a constant or non-constant insertion into the low element of
5395    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5396    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5397    // depending on what the source datatype is.
5398    if (Idx == 0) {
5399      if (NumZero == 0)
5400        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5401
5402      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5403          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5404        if (VT.is256BitVector()) {
5405          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5406          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5407                             Item, DAG.getIntPtrConstant(0));
5408        }
5409        assert(VT.is128BitVector() && "Expected an SSE value type!");
5410        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5411        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5412        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5413      }
5414
5415      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5416        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5417        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5418        if (VT.is256BitVector()) {
5419          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5420          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5421        } else {
5422          assert(VT.is128BitVector() && "Expected an SSE value type!");
5423          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5424        }
5425        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5426      }
5427    }
5428
5429    // Is it a vector logical left shift?
5430    if (NumElems == 2 && Idx == 1 &&
5431        X86::isZeroNode(Op.getOperand(0)) &&
5432        !X86::isZeroNode(Op.getOperand(1))) {
5433      unsigned NumBits = VT.getSizeInBits();
5434      return getVShift(true, VT,
5435                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5436                                   VT, Op.getOperand(1)),
5437                       NumBits/2, DAG, *this, dl);
5438    }
5439
5440    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5441      return SDValue();
5442
5443    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5444    // is a non-constant being inserted into an element other than the low one,
5445    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5446    // movd/movss) to move this into the low element, then shuffle it into
5447    // place.
5448    if (EVTBits == 32) {
5449      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5450
5451      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5452      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5453      SmallVector<int, 8> MaskVec;
5454      for (unsigned i = 0; i != NumElems; ++i)
5455        MaskVec.push_back(i == Idx ? 0 : 1);
5456      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5457    }
5458  }
5459
5460  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5461  if (Values.size() == 1) {
5462    if (EVTBits == 32) {
5463      // Instead of a shuffle like this:
5464      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5465      // Check if it's possible to issue this instead.
5466      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5467      unsigned Idx = CountTrailingZeros_32(NonZeros);
5468      SDValue Item = Op.getOperand(Idx);
5469      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5470        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5471    }
5472    return SDValue();
5473  }
5474
5475  // A vector full of immediates; various special cases are already
5476  // handled, so this is best done with a single constant-pool load.
5477  if (IsAllConstants)
5478    return SDValue();
5479
5480  // For AVX-length vectors, build the individual 128-bit pieces and use
5481  // shuffles to put them in place.
5482  if (VT.is256BitVector()) {
5483    SmallVector<SDValue, 32> V;
5484    for (unsigned i = 0; i != NumElems; ++i)
5485      V.push_back(Op.getOperand(i));
5486
5487    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5488
5489    // Build both the lower and upper subvector.
5490    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5491    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5492                                NumElems/2);
5493
5494    // Recreate the wider vector with the lower and upper part.
5495    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5496  }
5497
5498  // Let legalizer expand 2-wide build_vectors.
5499  if (EVTBits == 64) {
5500    if (NumNonZero == 1) {
5501      // One half is zero or undef.
5502      unsigned Idx = CountTrailingZeros_32(NonZeros);
5503      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5504                                 Op.getOperand(Idx));
5505      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5506    }
5507    return SDValue();
5508  }
5509
5510  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5511  if (EVTBits == 8 && NumElems == 16) {
5512    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5513                                        Subtarget, *this);
5514    if (V.getNode()) return V;
5515  }
5516
5517  if (EVTBits == 16 && NumElems == 8) {
5518    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5519                                      Subtarget, *this);
5520    if (V.getNode()) return V;
5521  }
5522
5523  // If element VT is == 32 bits, turn it into a number of shuffles.
5524  SmallVector<SDValue, 8> V(NumElems);
5525  if (NumElems == 4 && NumZero > 0) {
5526    for (unsigned i = 0; i < 4; ++i) {
5527      bool isZero = !(NonZeros & (1 << i));
5528      if (isZero)
5529        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5530      else
5531        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5532    }
5533
5534    for (unsigned i = 0; i < 2; ++i) {
5535      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5536        default: break;
5537        case 0:
5538          V[i] = V[i*2];  // Must be a zero vector.
5539          break;
5540        case 1:
5541          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5542          break;
5543        case 2:
5544          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5545          break;
5546        case 3:
5547          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5548          break;
5549      }
5550    }
5551
5552    bool Reverse1 = (NonZeros & 0x3) == 2;
5553    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5554    int MaskVec[] = {
5555      Reverse1 ? 1 : 0,
5556      Reverse1 ? 0 : 1,
5557      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5558      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5559    };
5560    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5561  }
5562
5563  if (Values.size() > 1 && VT.is128BitVector()) {
5564    // Check for a build vector of consecutive loads.
5565    for (unsigned i = 0; i < NumElems; ++i)
5566      V[i] = Op.getOperand(i);
5567
5568    // Check for elements which are consecutive loads.
5569    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5570    if (LD.getNode())
5571      return LD;
5572
5573    // Check for a build vector from mostly shuffle plus few inserting.
5574    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5575    if (Sh.getNode())
5576      return Sh;
5577
5578    // For SSE 4.1, use insertps to put the high elements into the low element.
5579    if (getSubtarget()->hasSSE41()) {
5580      SDValue Result;
5581      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5582        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5583      else
5584        Result = DAG.getUNDEF(VT);
5585
5586      for (unsigned i = 1; i < NumElems; ++i) {
5587        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5588        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5589                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5590      }
5591      return Result;
5592    }
5593
5594    // Otherwise, expand into a number of unpckl*, start by extending each of
5595    // our (non-undef) elements to the full vector width with the element in the
5596    // bottom slot of the vector (which generates no code for SSE).
5597    for (unsigned i = 0; i < NumElems; ++i) {
5598      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5599        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5600      else
5601        V[i] = DAG.getUNDEF(VT);
5602    }
5603
5604    // Next, we iteratively mix elements, e.g. for v4f32:
5605    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5606    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5607    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5608    unsigned EltStride = NumElems >> 1;
5609    while (EltStride != 0) {
5610      for (unsigned i = 0; i < EltStride; ++i) {
5611        // If V[i+EltStride] is undef and this is the first round of mixing,
5612        // then it is safe to just drop this shuffle: V[i] is already in the
5613        // right place, the one element (since it's the first round) being
5614        // inserted as undef can be dropped.  This isn't safe for successive
5615        // rounds because they will permute elements within both vectors.
5616        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5617            EltStride == NumElems/2)
5618          continue;
5619
5620        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5621      }
5622      EltStride >>= 1;
5623    }
5624    return V[0];
5625  }
5626  return SDValue();
5627}
5628
5629// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5630// to create 256-bit vectors from two other 128-bit ones.
5631static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5632  DebugLoc dl = Op.getDebugLoc();
5633  EVT ResVT = Op.getValueType();
5634
5635  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5636
5637  SDValue V1 = Op.getOperand(0);
5638  SDValue V2 = Op.getOperand(1);
5639  unsigned NumElems = ResVT.getVectorNumElements();
5640
5641  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5642}
5643
5644static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5645  assert(Op.getNumOperands() == 2);
5646
5647  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5648  // from two other 128-bit ones.
5649  return LowerAVXCONCAT_VECTORS(Op, DAG);
5650}
5651
5652// Try to lower a shuffle node into a simple blend instruction.
5653static SDValue
5654LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5655                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5656  SDValue V1 = SVOp->getOperand(0);
5657  SDValue V2 = SVOp->getOperand(1);
5658  DebugLoc dl = SVOp->getDebugLoc();
5659  MVT VT = SVOp->getValueType(0).getSimpleVT();
5660  MVT EltVT = VT.getVectorElementType();
5661  unsigned NumElems = VT.getVectorNumElements();
5662
5663  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5664    return SDValue();
5665  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5666    return SDValue();
5667
5668  // Check the mask for BLEND and build the value.
5669  unsigned MaskValue = 0;
5670  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5671  unsigned NumLanes = (NumElems-1)/8 + 1;
5672  unsigned NumElemsInLane = NumElems / NumLanes;
5673
5674  // Blend for v16i16 should be symetric for the both lanes.
5675  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5676
5677    int SndLaneEltIdx = (NumLanes == 2) ?
5678      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5679    int EltIdx = SVOp->getMaskElt(i);
5680
5681    if ((EltIdx == -1 || EltIdx == (int)i) &&
5682        (SndLaneEltIdx == -1 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5683      continue;
5684
5685    if (((unsigned)EltIdx == (i + NumElems)) &&
5686        (SndLaneEltIdx == -1 ||
5687         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5688      MaskValue |= (1<<i);
5689    else
5690      return SDValue();
5691  }
5692
5693  // Convert i32 vectors to floating point if it is not AVX2.
5694  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5695  EVT BlendVT = VT;
5696  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5697    BlendVT = EVT::getVectorVT(*DAG.getContext(),
5698                              EVT::getFloatingPointVT(EltVT.getSizeInBits()),
5699                              NumElems);
5700    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5701    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5702  }
5703
5704  SDValue Ret =  DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5705                             DAG.getConstant(MaskValue, MVT::i32));
5706  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5707}
5708
5709// v8i16 shuffles - Prefer shuffles in the following order:
5710// 1. [all]   pshuflw, pshufhw, optional move
5711// 2. [ssse3] 1 x pshufb
5712// 3. [ssse3] 2 x pshufb + 1 x por
5713// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5714static SDValue
5715LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5716                         SelectionDAG &DAG) {
5717  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5718  SDValue V1 = SVOp->getOperand(0);
5719  SDValue V2 = SVOp->getOperand(1);
5720  DebugLoc dl = SVOp->getDebugLoc();
5721  SmallVector<int, 8> MaskVals;
5722
5723  // Determine if more than 1 of the words in each of the low and high quadwords
5724  // of the result come from the same quadword of one of the two inputs.  Undef
5725  // mask values count as coming from any quadword, for better codegen.
5726  unsigned LoQuad[] = { 0, 0, 0, 0 };
5727  unsigned HiQuad[] = { 0, 0, 0, 0 };
5728  std::bitset<4> InputQuads;
5729  for (unsigned i = 0; i < 8; ++i) {
5730    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5731    int EltIdx = SVOp->getMaskElt(i);
5732    MaskVals.push_back(EltIdx);
5733    if (EltIdx < 0) {
5734      ++Quad[0];
5735      ++Quad[1];
5736      ++Quad[2];
5737      ++Quad[3];
5738      continue;
5739    }
5740    ++Quad[EltIdx / 4];
5741    InputQuads.set(EltIdx / 4);
5742  }
5743
5744  int BestLoQuad = -1;
5745  unsigned MaxQuad = 1;
5746  for (unsigned i = 0; i < 4; ++i) {
5747    if (LoQuad[i] > MaxQuad) {
5748      BestLoQuad = i;
5749      MaxQuad = LoQuad[i];
5750    }
5751  }
5752
5753  int BestHiQuad = -1;
5754  MaxQuad = 1;
5755  for (unsigned i = 0; i < 4; ++i) {
5756    if (HiQuad[i] > MaxQuad) {
5757      BestHiQuad = i;
5758      MaxQuad = HiQuad[i];
5759    }
5760  }
5761
5762  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5763  // of the two input vectors, shuffle them into one input vector so only a
5764  // single pshufb instruction is necessary. If There are more than 2 input
5765  // quads, disable the next transformation since it does not help SSSE3.
5766  bool V1Used = InputQuads[0] || InputQuads[1];
5767  bool V2Used = InputQuads[2] || InputQuads[3];
5768  if (Subtarget->hasSSSE3()) {
5769    if (InputQuads.count() == 2 && V1Used && V2Used) {
5770      BestLoQuad = InputQuads[0] ? 0 : 1;
5771      BestHiQuad = InputQuads[2] ? 2 : 3;
5772    }
5773    if (InputQuads.count() > 2) {
5774      BestLoQuad = -1;
5775      BestHiQuad = -1;
5776    }
5777  }
5778
5779  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5780  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5781  // words from all 4 input quadwords.
5782  SDValue NewV;
5783  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5784    int MaskV[] = {
5785      BestLoQuad < 0 ? 0 : BestLoQuad,
5786      BestHiQuad < 0 ? 1 : BestHiQuad
5787    };
5788    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5789                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5790                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5791    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5792
5793    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5794    // source words for the shuffle, to aid later transformations.
5795    bool AllWordsInNewV = true;
5796    bool InOrder[2] = { true, true };
5797    for (unsigned i = 0; i != 8; ++i) {
5798      int idx = MaskVals[i];
5799      if (idx != (int)i)
5800        InOrder[i/4] = false;
5801      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5802        continue;
5803      AllWordsInNewV = false;
5804      break;
5805    }
5806
5807    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5808    if (AllWordsInNewV) {
5809      for (int i = 0; i != 8; ++i) {
5810        int idx = MaskVals[i];
5811        if (idx < 0)
5812          continue;
5813        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5814        if ((idx != i) && idx < 4)
5815          pshufhw = false;
5816        if ((idx != i) && idx > 3)
5817          pshuflw = false;
5818      }
5819      V1 = NewV;
5820      V2Used = false;
5821      BestLoQuad = 0;
5822      BestHiQuad = 1;
5823    }
5824
5825    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5826    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5827    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5828      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5829      unsigned TargetMask = 0;
5830      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5831                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5832      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5833      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5834                             getShufflePSHUFLWImmediate(SVOp);
5835      V1 = NewV.getOperand(0);
5836      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5837    }
5838  }
5839
5840  // If we have SSSE3, and all words of the result are from 1 input vector,
5841  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5842  // is present, fall back to case 4.
5843  if (Subtarget->hasSSSE3()) {
5844    SmallVector<SDValue,16> pshufbMask;
5845
5846    // If we have elements from both input vectors, set the high bit of the
5847    // shuffle mask element to zero out elements that come from V2 in the V1
5848    // mask, and elements that come from V1 in the V2 mask, so that the two
5849    // results can be OR'd together.
5850    bool TwoInputs = V1Used && V2Used;
5851    for (unsigned i = 0; i != 8; ++i) {
5852      int EltIdx = MaskVals[i] * 2;
5853      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5854      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5855      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5856      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5857    }
5858    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5859    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5860                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5861                                 MVT::v16i8, &pshufbMask[0], 16));
5862    if (!TwoInputs)
5863      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5864
5865    // Calculate the shuffle mask for the second input, shuffle it, and
5866    // OR it with the first shuffled input.
5867    pshufbMask.clear();
5868    for (unsigned i = 0; i != 8; ++i) {
5869      int EltIdx = MaskVals[i] * 2;
5870      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5871      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5872      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5873      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5874    }
5875    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5876    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5877                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5878                                 MVT::v16i8, &pshufbMask[0], 16));
5879    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5880    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5881  }
5882
5883  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5884  // and update MaskVals with new element order.
5885  std::bitset<8> InOrder;
5886  if (BestLoQuad >= 0) {
5887    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5888    for (int i = 0; i != 4; ++i) {
5889      int idx = MaskVals[i];
5890      if (idx < 0) {
5891        InOrder.set(i);
5892      } else if ((idx / 4) == BestLoQuad) {
5893        MaskV[i] = idx & 3;
5894        InOrder.set(i);
5895      }
5896    }
5897    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5898                                &MaskV[0]);
5899
5900    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5901      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5902      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5903                                  NewV.getOperand(0),
5904                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5905    }
5906  }
5907
5908  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5909  // and update MaskVals with the new element order.
5910  if (BestHiQuad >= 0) {
5911    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5912    for (unsigned i = 4; i != 8; ++i) {
5913      int idx = MaskVals[i];
5914      if (idx < 0) {
5915        InOrder.set(i);
5916      } else if ((idx / 4) == BestHiQuad) {
5917        MaskV[i] = (idx & 3) + 4;
5918        InOrder.set(i);
5919      }
5920    }
5921    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5922                                &MaskV[0]);
5923
5924    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5925      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5926      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5927                                  NewV.getOperand(0),
5928                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5929    }
5930  }
5931
5932  // In case BestHi & BestLo were both -1, which means each quadword has a word
5933  // from each of the four input quadwords, calculate the InOrder bitvector now
5934  // before falling through to the insert/extract cleanup.
5935  if (BestLoQuad == -1 && BestHiQuad == -1) {
5936    NewV = V1;
5937    for (int i = 0; i != 8; ++i)
5938      if (MaskVals[i] < 0 || MaskVals[i] == i)
5939        InOrder.set(i);
5940  }
5941
5942  // The other elements are put in the right place using pextrw and pinsrw.
5943  for (unsigned i = 0; i != 8; ++i) {
5944    if (InOrder[i])
5945      continue;
5946    int EltIdx = MaskVals[i];
5947    if (EltIdx < 0)
5948      continue;
5949    SDValue ExtOp = (EltIdx < 8) ?
5950      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5951                  DAG.getIntPtrConstant(EltIdx)) :
5952      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5953                  DAG.getIntPtrConstant(EltIdx - 8));
5954    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5955                       DAG.getIntPtrConstant(i));
5956  }
5957  return NewV;
5958}
5959
5960// v16i8 shuffles - Prefer shuffles in the following order:
5961// 1. [ssse3] 1 x pshufb
5962// 2. [ssse3] 2 x pshufb + 1 x por
5963// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5964static
5965SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5966                                 SelectionDAG &DAG,
5967                                 const X86TargetLowering &TLI) {
5968  SDValue V1 = SVOp->getOperand(0);
5969  SDValue V2 = SVOp->getOperand(1);
5970  DebugLoc dl = SVOp->getDebugLoc();
5971  ArrayRef<int> MaskVals = SVOp->getMask();
5972
5973  // If we have SSSE3, case 1 is generated when all result bytes come from
5974  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5975  // present, fall back to case 3.
5976
5977  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5978  if (TLI.getSubtarget()->hasSSSE3()) {
5979    SmallVector<SDValue,16> pshufbMask;
5980
5981    // If all result elements are from one input vector, then only translate
5982    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5983    //
5984    // Otherwise, we have elements from both input vectors, and must zero out
5985    // elements that come from V2 in the first mask, and V1 in the second mask
5986    // so that we can OR them together.
5987    for (unsigned i = 0; i != 16; ++i) {
5988      int EltIdx = MaskVals[i];
5989      if (EltIdx < 0 || EltIdx >= 16)
5990        EltIdx = 0x80;
5991      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5992    }
5993    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5994                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5995                                 MVT::v16i8, &pshufbMask[0], 16));
5996
5997    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5998    // the 2nd operand if it's undefined or zero.
5999    if (V2.getOpcode() == ISD::UNDEF ||
6000        ISD::isBuildVectorAllZeros(V2.getNode()))
6001      return V1;
6002
6003    // Calculate the shuffle mask for the second input, shuffle it, and
6004    // OR it with the first shuffled input.
6005    pshufbMask.clear();
6006    for (unsigned i = 0; i != 16; ++i) {
6007      int EltIdx = MaskVals[i];
6008      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6009      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6010    }
6011    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6012                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6013                                 MVT::v16i8, &pshufbMask[0], 16));
6014    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6015  }
6016
6017  // No SSSE3 - Calculate in place words and then fix all out of place words
6018  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6019  // the 16 different words that comprise the two doublequadword input vectors.
6020  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6021  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6022  SDValue NewV = V1;
6023  for (int i = 0; i != 8; ++i) {
6024    int Elt0 = MaskVals[i*2];
6025    int Elt1 = MaskVals[i*2+1];
6026
6027    // This word of the result is all undef, skip it.
6028    if (Elt0 < 0 && Elt1 < 0)
6029      continue;
6030
6031    // This word of the result is already in the correct place, skip it.
6032    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6033      continue;
6034
6035    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6036    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6037    SDValue InsElt;
6038
6039    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6040    // using a single extract together, load it and store it.
6041    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6042      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6043                           DAG.getIntPtrConstant(Elt1 / 2));
6044      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6045                        DAG.getIntPtrConstant(i));
6046      continue;
6047    }
6048
6049    // If Elt1 is defined, extract it from the appropriate source.  If the
6050    // source byte is not also odd, shift the extracted word left 8 bits
6051    // otherwise clear the bottom 8 bits if we need to do an or.
6052    if (Elt1 >= 0) {
6053      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6054                           DAG.getIntPtrConstant(Elt1 / 2));
6055      if ((Elt1 & 1) == 0)
6056        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6057                             DAG.getConstant(8,
6058                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6059      else if (Elt0 >= 0)
6060        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6061                             DAG.getConstant(0xFF00, MVT::i16));
6062    }
6063    // If Elt0 is defined, extract it from the appropriate source.  If the
6064    // source byte is not also even, shift the extracted word right 8 bits. If
6065    // Elt1 was also defined, OR the extracted values together before
6066    // inserting them in the result.
6067    if (Elt0 >= 0) {
6068      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6069                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6070      if ((Elt0 & 1) != 0)
6071        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6072                              DAG.getConstant(8,
6073                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6074      else if (Elt1 >= 0)
6075        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6076                             DAG.getConstant(0x00FF, MVT::i16));
6077      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6078                         : InsElt0;
6079    }
6080    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6081                       DAG.getIntPtrConstant(i));
6082  }
6083  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6084}
6085
6086// v32i8 shuffles - Translate to VPSHUFB if possible.
6087static
6088SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6089                                 const X86Subtarget *Subtarget,
6090                                 SelectionDAG &DAG) {
6091  MVT VT = SVOp->getValueType(0).getSimpleVT();
6092  SDValue V1 = SVOp->getOperand(0);
6093  SDValue V2 = SVOp->getOperand(1);
6094  DebugLoc dl = SVOp->getDebugLoc();
6095  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6096
6097  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6098  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6099  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6100
6101  // VPSHUFB may be generated if
6102  // (1) one of input vector is undefined or zeroinitializer.
6103  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6104  // And (2) the mask indexes don't cross the 128-bit lane.
6105  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6106      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6107    return SDValue();
6108
6109  if (V1IsAllZero && !V2IsAllZero) {
6110    CommuteVectorShuffleMask(MaskVals, 32);
6111    V1 = V2;
6112  }
6113  SmallVector<SDValue, 32> pshufbMask;
6114  for (unsigned i = 0; i != 32; i++) {
6115    int EltIdx = MaskVals[i];
6116    if (EltIdx < 0 || EltIdx >= 32)
6117      EltIdx = 0x80;
6118    else {
6119      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6120        // Cross lane is not allowed.
6121        return SDValue();
6122      EltIdx &= 0xf;
6123    }
6124    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6125  }
6126  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6127                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6128                                  MVT::v32i8, &pshufbMask[0], 32));
6129}
6130
6131/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6132/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6133/// done when every pair / quad of shuffle mask elements point to elements in
6134/// the right sequence. e.g.
6135/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6136static
6137SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6138                                 SelectionDAG &DAG, DebugLoc dl) {
6139  MVT VT = SVOp->getValueType(0).getSimpleVT();
6140  unsigned NumElems = VT.getVectorNumElements();
6141  MVT NewVT;
6142  unsigned Scale;
6143  switch (VT.SimpleTy) {
6144  default: llvm_unreachable("Unexpected!");
6145  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6146  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6147  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6148  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6149  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6150  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6151  }
6152
6153  SmallVector<int, 8> MaskVec;
6154  for (unsigned i = 0; i != NumElems; i += Scale) {
6155    int StartIdx = -1;
6156    for (unsigned j = 0; j != Scale; ++j) {
6157      int EltIdx = SVOp->getMaskElt(i+j);
6158      if (EltIdx < 0)
6159        continue;
6160      if (StartIdx < 0)
6161        StartIdx = (EltIdx / Scale);
6162      if (EltIdx != (int)(StartIdx*Scale + j))
6163        return SDValue();
6164    }
6165    MaskVec.push_back(StartIdx);
6166  }
6167
6168  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6169  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6170  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6171}
6172
6173/// getVZextMovL - Return a zero-extending vector move low node.
6174///
6175static SDValue getVZextMovL(EVT VT, EVT OpVT,
6176                            SDValue SrcOp, SelectionDAG &DAG,
6177                            const X86Subtarget *Subtarget, DebugLoc dl) {
6178  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6179    LoadSDNode *LD = NULL;
6180    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6181      LD = dyn_cast<LoadSDNode>(SrcOp);
6182    if (!LD) {
6183      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6184      // instead.
6185      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6186      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6187          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6188          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6189          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6190        // PR2108
6191        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6192        return DAG.getNode(ISD::BITCAST, dl, VT,
6193                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6194                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6195                                                   OpVT,
6196                                                   SrcOp.getOperand(0)
6197                                                          .getOperand(0))));
6198      }
6199    }
6200  }
6201
6202  return DAG.getNode(ISD::BITCAST, dl, VT,
6203                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6204                                 DAG.getNode(ISD::BITCAST, dl,
6205                                             OpVT, SrcOp)));
6206}
6207
6208/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6209/// which could not be matched by any known target speficic shuffle
6210static SDValue
6211LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6212
6213  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6214  if (NewOp.getNode())
6215    return NewOp;
6216
6217  MVT VT = SVOp->getValueType(0).getSimpleVT();
6218
6219  unsigned NumElems = VT.getVectorNumElements();
6220  unsigned NumLaneElems = NumElems / 2;
6221
6222  DebugLoc dl = SVOp->getDebugLoc();
6223  MVT EltVT = VT.getVectorElementType();
6224  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6225  SDValue Output[2];
6226
6227  SmallVector<int, 16> Mask;
6228  for (unsigned l = 0; l < 2; ++l) {
6229    // Build a shuffle mask for the output, discovering on the fly which
6230    // input vectors to use as shuffle operands (recorded in InputUsed).
6231    // If building a suitable shuffle vector proves too hard, then bail
6232    // out with UseBuildVector set.
6233    bool UseBuildVector = false;
6234    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6235    unsigned LaneStart = l * NumLaneElems;
6236    for (unsigned i = 0; i != NumLaneElems; ++i) {
6237      // The mask element.  This indexes into the input.
6238      int Idx = SVOp->getMaskElt(i+LaneStart);
6239      if (Idx < 0) {
6240        // the mask element does not index into any input vector.
6241        Mask.push_back(-1);
6242        continue;
6243      }
6244
6245      // The input vector this mask element indexes into.
6246      int Input = Idx / NumLaneElems;
6247
6248      // Turn the index into an offset from the start of the input vector.
6249      Idx -= Input * NumLaneElems;
6250
6251      // Find or create a shuffle vector operand to hold this input.
6252      unsigned OpNo;
6253      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6254        if (InputUsed[OpNo] == Input)
6255          // This input vector is already an operand.
6256          break;
6257        if (InputUsed[OpNo] < 0) {
6258          // Create a new operand for this input vector.
6259          InputUsed[OpNo] = Input;
6260          break;
6261        }
6262      }
6263
6264      if (OpNo >= array_lengthof(InputUsed)) {
6265        // More than two input vectors used!  Give up on trying to create a
6266        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6267        UseBuildVector = true;
6268        break;
6269      }
6270
6271      // Add the mask index for the new shuffle vector.
6272      Mask.push_back(Idx + OpNo * NumLaneElems);
6273    }
6274
6275    if (UseBuildVector) {
6276      SmallVector<SDValue, 16> SVOps;
6277      for (unsigned i = 0; i != NumLaneElems; ++i) {
6278        // The mask element.  This indexes into the input.
6279        int Idx = SVOp->getMaskElt(i+LaneStart);
6280        if (Idx < 0) {
6281          SVOps.push_back(DAG.getUNDEF(EltVT));
6282          continue;
6283        }
6284
6285        // The input vector this mask element indexes into.
6286        int Input = Idx / NumElems;
6287
6288        // Turn the index into an offset from the start of the input vector.
6289        Idx -= Input * NumElems;
6290
6291        // Extract the vector element by hand.
6292        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6293                                    SVOp->getOperand(Input),
6294                                    DAG.getIntPtrConstant(Idx)));
6295      }
6296
6297      // Construct the output using a BUILD_VECTOR.
6298      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6299                              SVOps.size());
6300    } else if (InputUsed[0] < 0) {
6301      // No input vectors were used! The result is undefined.
6302      Output[l] = DAG.getUNDEF(NVT);
6303    } else {
6304      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6305                                        (InputUsed[0] % 2) * NumLaneElems,
6306                                        DAG, dl);
6307      // If only one input was used, use an undefined vector for the other.
6308      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6309        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6310                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6311      // At least one input vector was used. Create a new shuffle vector.
6312      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6313    }
6314
6315    Mask.clear();
6316  }
6317
6318  // Concatenate the result back
6319  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6320}
6321
6322/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6323/// 4 elements, and match them with several different shuffle types.
6324static SDValue
6325LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6326  SDValue V1 = SVOp->getOperand(0);
6327  SDValue V2 = SVOp->getOperand(1);
6328  DebugLoc dl = SVOp->getDebugLoc();
6329  MVT VT = SVOp->getValueType(0).getSimpleVT();
6330
6331  assert(VT.is128BitVector() && "Unsupported vector size");
6332
6333  std::pair<int, int> Locs[4];
6334  int Mask1[] = { -1, -1, -1, -1 };
6335  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6336
6337  unsigned NumHi = 0;
6338  unsigned NumLo = 0;
6339  for (unsigned i = 0; i != 4; ++i) {
6340    int Idx = PermMask[i];
6341    if (Idx < 0) {
6342      Locs[i] = std::make_pair(-1, -1);
6343    } else {
6344      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6345      if (Idx < 4) {
6346        Locs[i] = std::make_pair(0, NumLo);
6347        Mask1[NumLo] = Idx;
6348        NumLo++;
6349      } else {
6350        Locs[i] = std::make_pair(1, NumHi);
6351        if (2+NumHi < 4)
6352          Mask1[2+NumHi] = Idx;
6353        NumHi++;
6354      }
6355    }
6356  }
6357
6358  if (NumLo <= 2 && NumHi <= 2) {
6359    // If no more than two elements come from either vector. This can be
6360    // implemented with two shuffles. First shuffle gather the elements.
6361    // The second shuffle, which takes the first shuffle as both of its
6362    // vector operands, put the elements into the right order.
6363    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6364
6365    int Mask2[] = { -1, -1, -1, -1 };
6366
6367    for (unsigned i = 0; i != 4; ++i)
6368      if (Locs[i].first != -1) {
6369        unsigned Idx = (i < 2) ? 0 : 4;
6370        Idx += Locs[i].first * 2 + Locs[i].second;
6371        Mask2[i] = Idx;
6372      }
6373
6374    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6375  }
6376
6377  if (NumLo == 3 || NumHi == 3) {
6378    // Otherwise, we must have three elements from one vector, call it X, and
6379    // one element from the other, call it Y.  First, use a shufps to build an
6380    // intermediate vector with the one element from Y and the element from X
6381    // that will be in the same half in the final destination (the indexes don't
6382    // matter). Then, use a shufps to build the final vector, taking the half
6383    // containing the element from Y from the intermediate, and the other half
6384    // from X.
6385    if (NumHi == 3) {
6386      // Normalize it so the 3 elements come from V1.
6387      CommuteVectorShuffleMask(PermMask, 4);
6388      std::swap(V1, V2);
6389    }
6390
6391    // Find the element from V2.
6392    unsigned HiIndex;
6393    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6394      int Val = PermMask[HiIndex];
6395      if (Val < 0)
6396        continue;
6397      if (Val >= 4)
6398        break;
6399    }
6400
6401    Mask1[0] = PermMask[HiIndex];
6402    Mask1[1] = -1;
6403    Mask1[2] = PermMask[HiIndex^1];
6404    Mask1[3] = -1;
6405    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6406
6407    if (HiIndex >= 2) {
6408      Mask1[0] = PermMask[0];
6409      Mask1[1] = PermMask[1];
6410      Mask1[2] = HiIndex & 1 ? 6 : 4;
6411      Mask1[3] = HiIndex & 1 ? 4 : 6;
6412      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6413    }
6414
6415    Mask1[0] = HiIndex & 1 ? 2 : 0;
6416    Mask1[1] = HiIndex & 1 ? 0 : 2;
6417    Mask1[2] = PermMask[2];
6418    Mask1[3] = PermMask[3];
6419    if (Mask1[2] >= 0)
6420      Mask1[2] += 4;
6421    if (Mask1[3] >= 0)
6422      Mask1[3] += 4;
6423    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6424  }
6425
6426  // Break it into (shuffle shuffle_hi, shuffle_lo).
6427  int LoMask[] = { -1, -1, -1, -1 };
6428  int HiMask[] = { -1, -1, -1, -1 };
6429
6430  int *MaskPtr = LoMask;
6431  unsigned MaskIdx = 0;
6432  unsigned LoIdx = 0;
6433  unsigned HiIdx = 2;
6434  for (unsigned i = 0; i != 4; ++i) {
6435    if (i == 2) {
6436      MaskPtr = HiMask;
6437      MaskIdx = 1;
6438      LoIdx = 0;
6439      HiIdx = 2;
6440    }
6441    int Idx = PermMask[i];
6442    if (Idx < 0) {
6443      Locs[i] = std::make_pair(-1, -1);
6444    } else if (Idx < 4) {
6445      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6446      MaskPtr[LoIdx] = Idx;
6447      LoIdx++;
6448    } else {
6449      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6450      MaskPtr[HiIdx] = Idx;
6451      HiIdx++;
6452    }
6453  }
6454
6455  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6456  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6457  int MaskOps[] = { -1, -1, -1, -1 };
6458  for (unsigned i = 0; i != 4; ++i)
6459    if (Locs[i].first != -1)
6460      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6461  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6462}
6463
6464static bool MayFoldVectorLoad(SDValue V) {
6465  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6466    V = V.getOperand(0);
6467
6468  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6469    V = V.getOperand(0);
6470  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6471      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6472    // BUILD_VECTOR (load), undef
6473    V = V.getOperand(0);
6474
6475  return MayFoldLoad(V);
6476}
6477
6478static
6479SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6480  EVT VT = Op.getValueType();
6481
6482  // Canonizalize to v2f64.
6483  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6484  return DAG.getNode(ISD::BITCAST, dl, VT,
6485                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6486                                          V1, DAG));
6487}
6488
6489static
6490SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6491                        bool HasSSE2) {
6492  SDValue V1 = Op.getOperand(0);
6493  SDValue V2 = Op.getOperand(1);
6494  EVT VT = Op.getValueType();
6495
6496  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6497
6498  if (HasSSE2 && VT == MVT::v2f64)
6499    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6500
6501  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6502  return DAG.getNode(ISD::BITCAST, dl, VT,
6503                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6504                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6505                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6506}
6507
6508static
6509SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6510  SDValue V1 = Op.getOperand(0);
6511  SDValue V2 = Op.getOperand(1);
6512  EVT VT = Op.getValueType();
6513
6514  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6515         "unsupported shuffle type");
6516
6517  if (V2.getOpcode() == ISD::UNDEF)
6518    V2 = V1;
6519
6520  // v4i32 or v4f32
6521  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6522}
6523
6524static
6525SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6526  SDValue V1 = Op.getOperand(0);
6527  SDValue V2 = Op.getOperand(1);
6528  EVT VT = Op.getValueType();
6529  unsigned NumElems = VT.getVectorNumElements();
6530
6531  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6532  // operand of these instructions is only memory, so check if there's a
6533  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6534  // same masks.
6535  bool CanFoldLoad = false;
6536
6537  // Trivial case, when V2 comes from a load.
6538  if (MayFoldVectorLoad(V2))
6539    CanFoldLoad = true;
6540
6541  // When V1 is a load, it can be folded later into a store in isel, example:
6542  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6543  //    turns into:
6544  //  (MOVLPSmr addr:$src1, VR128:$src2)
6545  // So, recognize this potential and also use MOVLPS or MOVLPD
6546  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6547    CanFoldLoad = true;
6548
6549  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6550  if (CanFoldLoad) {
6551    if (HasSSE2 && NumElems == 2)
6552      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6553
6554    if (NumElems == 4)
6555      // If we don't care about the second element, proceed to use movss.
6556      if (SVOp->getMaskElt(1) != -1)
6557        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6558  }
6559
6560  // movl and movlp will both match v2i64, but v2i64 is never matched by
6561  // movl earlier because we make it strict to avoid messing with the movlp load
6562  // folding logic (see the code above getMOVLP call). Match it here then,
6563  // this is horrible, but will stay like this until we move all shuffle
6564  // matching to x86 specific nodes. Note that for the 1st condition all
6565  // types are matched with movsd.
6566  if (HasSSE2) {
6567    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6568    // as to remove this logic from here, as much as possible
6569    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6570      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6571    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6572  }
6573
6574  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6575
6576  // Invert the operand order and use SHUFPS to match it.
6577  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6578                              getShuffleSHUFImmediate(SVOp), DAG);
6579}
6580
6581// Reduce a vector shuffle to zext.
6582SDValue
6583X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6584  // PMOVZX is only available from SSE41.
6585  if (!Subtarget->hasSSE41())
6586    return SDValue();
6587
6588  EVT VT = Op.getValueType();
6589
6590  // Only AVX2 support 256-bit vector integer extending.
6591  if (!Subtarget->hasInt256() && VT.is256BitVector())
6592    return SDValue();
6593
6594  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6595  DebugLoc DL = Op.getDebugLoc();
6596  SDValue V1 = Op.getOperand(0);
6597  SDValue V2 = Op.getOperand(1);
6598  unsigned NumElems = VT.getVectorNumElements();
6599
6600  // Extending is an unary operation and the element type of the source vector
6601  // won't be equal to or larger than i64.
6602  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6603      VT.getVectorElementType() == MVT::i64)
6604    return SDValue();
6605
6606  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6607  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6608  while ((1U << Shift) < NumElems) {
6609    if (SVOp->getMaskElt(1U << Shift) == 1)
6610      break;
6611    Shift += 1;
6612    // The maximal ratio is 8, i.e. from i8 to i64.
6613    if (Shift > 3)
6614      return SDValue();
6615  }
6616
6617  // Check the shuffle mask.
6618  unsigned Mask = (1U << Shift) - 1;
6619  for (unsigned i = 0; i != NumElems; ++i) {
6620    int EltIdx = SVOp->getMaskElt(i);
6621    if ((i & Mask) != 0 && EltIdx != -1)
6622      return SDValue();
6623    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6624      return SDValue();
6625  }
6626
6627  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6628  EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits);
6629  EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift);
6630
6631  if (!isTypeLegal(NVT))
6632    return SDValue();
6633
6634  // Simplify the operand as it's prepared to be fed into shuffle.
6635  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6636  if (V1.getOpcode() == ISD::BITCAST &&
6637      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6638      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6639      V1.getOperand(0)
6640        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6641    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6642    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6643    ConstantSDNode *CIdx =
6644      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6645    // If it's foldable, i.e. normal load with single use, we will let code
6646    // selection to fold it. Otherwise, we will short the conversion sequence.
6647    if (CIdx && CIdx->getZExtValue() == 0 &&
6648        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse()))
6649      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6650  }
6651
6652  return DAG.getNode(ISD::BITCAST, DL, VT,
6653                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6654}
6655
6656SDValue
6657X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6658  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6659  MVT VT = Op.getValueType().getSimpleVT();
6660  DebugLoc dl = Op.getDebugLoc();
6661  SDValue V1 = Op.getOperand(0);
6662  SDValue V2 = Op.getOperand(1);
6663
6664  if (isZeroShuffle(SVOp))
6665    return getZeroVector(VT, Subtarget, DAG, dl);
6666
6667  // Handle splat operations
6668  if (SVOp->isSplat()) {
6669    unsigned NumElem = VT.getVectorNumElements();
6670
6671    // Use vbroadcast whenever the splat comes from a foldable load
6672    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6673    if (Broadcast.getNode())
6674      return Broadcast;
6675
6676    // Handle splats by matching through known shuffle masks
6677    if ((VT.is128BitVector() && NumElem <= 4) ||
6678        (VT.is256BitVector() && NumElem <= 8))
6679      return SDValue();
6680
6681    // All remaning splats are promoted to target supported vector shuffles.
6682    return PromoteSplat(SVOp, DAG);
6683  }
6684
6685  // Check integer expanding shuffles.
6686  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6687  if (NewOp.getNode())
6688    return NewOp;
6689
6690  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6691  // do it!
6692  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6693      VT == MVT::v16i16 || VT == MVT::v32i8) {
6694    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6695    if (NewOp.getNode())
6696      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6697  } else if ((VT == MVT::v4i32 ||
6698             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6699    // FIXME: Figure out a cleaner way to do this.
6700    // Try to make use of movq to zero out the top part.
6701    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6702      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6703      if (NewOp.getNode()) {
6704        MVT NewVT = NewOp.getValueType().getSimpleVT();
6705        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6706                               NewVT, true, false))
6707          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6708                              DAG, Subtarget, dl);
6709      }
6710    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6711      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6712      if (NewOp.getNode()) {
6713        MVT NewVT = NewOp.getValueType().getSimpleVT();
6714        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6715          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6716                              DAG, Subtarget, dl);
6717      }
6718    }
6719  }
6720  return SDValue();
6721}
6722
6723SDValue
6724X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6725  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6726  SDValue V1 = Op.getOperand(0);
6727  SDValue V2 = Op.getOperand(1);
6728  MVT VT = Op.getValueType().getSimpleVT();
6729  DebugLoc dl = Op.getDebugLoc();
6730  unsigned NumElems = VT.getVectorNumElements();
6731  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6732  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6733  bool V1IsSplat = false;
6734  bool V2IsSplat = false;
6735  bool HasSSE2 = Subtarget->hasSSE2();
6736  bool HasFp256    = Subtarget->hasFp256();
6737  bool HasInt256   = Subtarget->hasInt256();
6738  MachineFunction &MF = DAG.getMachineFunction();
6739  bool OptForSize = MF.getFunction()->getAttributes().
6740    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6741
6742  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6743
6744  if (V1IsUndef && V2IsUndef)
6745    return DAG.getUNDEF(VT);
6746
6747  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6748
6749  // Vector shuffle lowering takes 3 steps:
6750  //
6751  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6752  //    narrowing and commutation of operands should be handled.
6753  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6754  //    shuffle nodes.
6755  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6756  //    so the shuffle can be broken into other shuffles and the legalizer can
6757  //    try the lowering again.
6758  //
6759  // The general idea is that no vector_shuffle operation should be left to
6760  // be matched during isel, all of them must be converted to a target specific
6761  // node here.
6762
6763  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6764  // narrowing and commutation of operands should be handled. The actual code
6765  // doesn't include all of those, work in progress...
6766  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6767  if (NewOp.getNode())
6768    return NewOp;
6769
6770  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6771
6772  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6773  // unpckh_undef). Only use pshufd if speed is more important than size.
6774  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6775    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6776  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6777    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6778
6779  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6780      V2IsUndef && MayFoldVectorLoad(V1))
6781    return getMOVDDup(Op, dl, V1, DAG);
6782
6783  if (isMOVHLPS_v_undef_Mask(M, VT))
6784    return getMOVHighToLow(Op, dl, DAG);
6785
6786  // Use to match splats
6787  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6788      (VT == MVT::v2f64 || VT == MVT::v2i64))
6789    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6790
6791  if (isPSHUFDMask(M, VT)) {
6792    // The actual implementation will match the mask in the if above and then
6793    // during isel it can match several different instructions, not only pshufd
6794    // as its name says, sad but true, emulate the behavior for now...
6795    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6796      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6797
6798    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6799
6800    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6801      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6802
6803    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6804      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6805                                  DAG);
6806
6807    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6808                                TargetMask, DAG);
6809  }
6810
6811  // Check if this can be converted into a logical shift.
6812  bool isLeft = false;
6813  unsigned ShAmt = 0;
6814  SDValue ShVal;
6815  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6816  if (isShift && ShVal.hasOneUse()) {
6817    // If the shifted value has multiple uses, it may be cheaper to use
6818    // v_set0 + movlhps or movhlps, etc.
6819    MVT EltVT = VT.getVectorElementType();
6820    ShAmt *= EltVT.getSizeInBits();
6821    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6822  }
6823
6824  if (isMOVLMask(M, VT)) {
6825    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6826      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6827    if (!isMOVLPMask(M, VT)) {
6828      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6829        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6830
6831      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6832        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6833    }
6834  }
6835
6836  // FIXME: fold these into legal mask.
6837  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6838    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6839
6840  if (isMOVHLPSMask(M, VT))
6841    return getMOVHighToLow(Op, dl, DAG);
6842
6843  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6844    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6845
6846  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6847    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6848
6849  if (isMOVLPMask(M, VT))
6850    return getMOVLP(Op, dl, DAG, HasSSE2);
6851
6852  if (ShouldXformToMOVHLPS(M, VT) ||
6853      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6854    return CommuteVectorShuffle(SVOp, DAG);
6855
6856  if (isShift) {
6857    // No better options. Use a vshldq / vsrldq.
6858    MVT EltVT = VT.getVectorElementType();
6859    ShAmt *= EltVT.getSizeInBits();
6860    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6861  }
6862
6863  bool Commuted = false;
6864  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6865  // 1,1,1,1 -> v8i16 though.
6866  V1IsSplat = isSplatVector(V1.getNode());
6867  V2IsSplat = isSplatVector(V2.getNode());
6868
6869  // Canonicalize the splat or undef, if present, to be on the RHS.
6870  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6871    CommuteVectorShuffleMask(M, NumElems);
6872    std::swap(V1, V2);
6873    std::swap(V1IsSplat, V2IsSplat);
6874    Commuted = true;
6875  }
6876
6877  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6878    // Shuffling low element of v1 into undef, just return v1.
6879    if (V2IsUndef)
6880      return V1;
6881    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6882    // the instruction selector will not match, so get a canonical MOVL with
6883    // swapped operands to undo the commute.
6884    return getMOVL(DAG, dl, VT, V2, V1);
6885  }
6886
6887  if (isUNPCKLMask(M, VT, HasInt256))
6888    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6889
6890  if (isUNPCKHMask(M, VT, HasInt256))
6891    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6892
6893  if (V2IsSplat) {
6894    // Normalize mask so all entries that point to V2 points to its first
6895    // element then try to match unpck{h|l} again. If match, return a
6896    // new vector_shuffle with the corrected mask.p
6897    SmallVector<int, 8> NewMask(M.begin(), M.end());
6898    NormalizeMask(NewMask, NumElems);
6899    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6900      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6901    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6902      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6903  }
6904
6905  if (Commuted) {
6906    // Commute is back and try unpck* again.
6907    // FIXME: this seems wrong.
6908    CommuteVectorShuffleMask(M, NumElems);
6909    std::swap(V1, V2);
6910    std::swap(V1IsSplat, V2IsSplat);
6911    Commuted = false;
6912
6913    if (isUNPCKLMask(M, VT, HasInt256))
6914      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6915
6916    if (isUNPCKHMask(M, VT, HasInt256))
6917      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6918  }
6919
6920  // Normalize the node to match x86 shuffle ops if needed
6921  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6922    return CommuteVectorShuffle(SVOp, DAG);
6923
6924  // The checks below are all present in isShuffleMaskLegal, but they are
6925  // inlined here right now to enable us to directly emit target specific
6926  // nodes, and remove one by one until they don't return Op anymore.
6927
6928  if (isPALIGNRMask(M, VT, Subtarget))
6929    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6930                                getShufflePALIGNRImmediate(SVOp),
6931                                DAG);
6932
6933  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6934      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6935    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6936      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6937  }
6938
6939  if (isPSHUFHWMask(M, VT, HasInt256))
6940    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6941                                getShufflePSHUFHWImmediate(SVOp),
6942                                DAG);
6943
6944  if (isPSHUFLWMask(M, VT, HasInt256))
6945    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6946                                getShufflePSHUFLWImmediate(SVOp),
6947                                DAG);
6948
6949  if (isSHUFPMask(M, VT, HasFp256))
6950    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6951                                getShuffleSHUFImmediate(SVOp), DAG);
6952
6953  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6954    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6955  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6956    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6957
6958  //===--------------------------------------------------------------------===//
6959  // Generate target specific nodes for 128 or 256-bit shuffles only
6960  // supported in the AVX instruction set.
6961  //
6962
6963  // Handle VMOVDDUPY permutations
6964  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
6965    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6966
6967  // Handle VPERMILPS/D* permutations
6968  if (isVPERMILPMask(M, VT, HasFp256)) {
6969    if (HasInt256 && VT == MVT::v8i32)
6970      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6971                                  getShuffleSHUFImmediate(SVOp), DAG);
6972    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6973                                getShuffleSHUFImmediate(SVOp), DAG);
6974  }
6975
6976  // Handle VPERM2F128/VPERM2I128 permutations
6977  if (isVPERM2X128Mask(M, VT, HasFp256))
6978    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6979                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6980
6981  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6982  if (BlendOp.getNode())
6983    return BlendOp;
6984
6985  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6986    SmallVector<SDValue, 8> permclMask;
6987    for (unsigned i = 0; i != 8; ++i) {
6988      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6989    }
6990    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6991                               &permclMask[0], 8);
6992    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6993    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6994                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6995  }
6996
6997  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6998    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6999                                getShuffleCLImmediate(SVOp), DAG);
7000
7001  //===--------------------------------------------------------------------===//
7002  // Since no target specific shuffle was selected for this generic one,
7003  // lower it into other known shuffles. FIXME: this isn't true yet, but
7004  // this is the plan.
7005  //
7006
7007  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7008  if (VT == MVT::v8i16) {
7009    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7010    if (NewOp.getNode())
7011      return NewOp;
7012  }
7013
7014  if (VT == MVT::v16i8) {
7015    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7016    if (NewOp.getNode())
7017      return NewOp;
7018  }
7019
7020  if (VT == MVT::v32i8) {
7021    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7022    if (NewOp.getNode())
7023      return NewOp;
7024  }
7025
7026  // Handle all 128-bit wide vectors with 4 elements, and match them with
7027  // several different shuffle types.
7028  if (NumElems == 4 && VT.is128BitVector())
7029    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7030
7031  // Handle general 256-bit shuffles
7032  if (VT.is256BitVector())
7033    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7034
7035  return SDValue();
7036}
7037
7038SDValue
7039X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
7040                                                SelectionDAG &DAG) const {
7041  EVT VT = Op.getValueType();
7042  DebugLoc dl = Op.getDebugLoc();
7043
7044  if (!Op.getOperand(0).getValueType().is128BitVector())
7045    return SDValue();
7046
7047  if (VT.getSizeInBits() == 8) {
7048    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7049                                  Op.getOperand(0), Op.getOperand(1));
7050    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7051                                  DAG.getValueType(VT));
7052    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7053  }
7054
7055  if (VT.getSizeInBits() == 16) {
7056    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7057    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7058    if (Idx == 0)
7059      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7060                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7061                                     DAG.getNode(ISD::BITCAST, dl,
7062                                                 MVT::v4i32,
7063                                                 Op.getOperand(0)),
7064                                     Op.getOperand(1)));
7065    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7066                                  Op.getOperand(0), Op.getOperand(1));
7067    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7068                                  DAG.getValueType(VT));
7069    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7070  }
7071
7072  if (VT == MVT::f32) {
7073    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7074    // the result back to FR32 register. It's only worth matching if the
7075    // result has a single use which is a store or a bitcast to i32.  And in
7076    // the case of a store, it's not worth it if the index is a constant 0,
7077    // because a MOVSSmr can be used instead, which is smaller and faster.
7078    if (!Op.hasOneUse())
7079      return SDValue();
7080    SDNode *User = *Op.getNode()->use_begin();
7081    if ((User->getOpcode() != ISD::STORE ||
7082         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7083          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7084        (User->getOpcode() != ISD::BITCAST ||
7085         User->getValueType(0) != MVT::i32))
7086      return SDValue();
7087    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7088                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7089                                              Op.getOperand(0)),
7090                                              Op.getOperand(1));
7091    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7092  }
7093
7094  if (VT == MVT::i32 || VT == MVT::i64) {
7095    // ExtractPS/pextrq works with constant index.
7096    if (isa<ConstantSDNode>(Op.getOperand(1)))
7097      return Op;
7098  }
7099  return SDValue();
7100}
7101
7102SDValue
7103X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7104                                           SelectionDAG &DAG) const {
7105  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7106    return SDValue();
7107
7108  SDValue Vec = Op.getOperand(0);
7109  EVT VecVT = Vec.getValueType();
7110
7111  // If this is a 256-bit vector result, first extract the 128-bit vector and
7112  // then extract the element from the 128-bit vector.
7113  if (VecVT.is256BitVector()) {
7114    DebugLoc dl = Op.getNode()->getDebugLoc();
7115    unsigned NumElems = VecVT.getVectorNumElements();
7116    SDValue Idx = Op.getOperand(1);
7117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7118
7119    // Get the 128-bit vector.
7120    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7121
7122    if (IdxVal >= NumElems/2)
7123      IdxVal -= NumElems/2;
7124    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7125                       DAG.getConstant(IdxVal, MVT::i32));
7126  }
7127
7128  assert(VecVT.is128BitVector() && "Unexpected vector length");
7129
7130  if (Subtarget->hasSSE41()) {
7131    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7132    if (Res.getNode())
7133      return Res;
7134  }
7135
7136  EVT VT = Op.getValueType();
7137  DebugLoc dl = Op.getDebugLoc();
7138  // TODO: handle v16i8.
7139  if (VT.getSizeInBits() == 16) {
7140    SDValue Vec = Op.getOperand(0);
7141    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7142    if (Idx == 0)
7143      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7144                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7145                                     DAG.getNode(ISD::BITCAST, dl,
7146                                                 MVT::v4i32, Vec),
7147                                     Op.getOperand(1)));
7148    // Transform it so it match pextrw which produces a 32-bit result.
7149    EVT EltVT = MVT::i32;
7150    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7151                                  Op.getOperand(0), Op.getOperand(1));
7152    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7153                                  DAG.getValueType(VT));
7154    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7155  }
7156
7157  if (VT.getSizeInBits() == 32) {
7158    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7159    if (Idx == 0)
7160      return Op;
7161
7162    // SHUFPS the element to the lowest double word, then movss.
7163    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7164    EVT VVT = Op.getOperand(0).getValueType();
7165    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7166                                       DAG.getUNDEF(VVT), Mask);
7167    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7168                       DAG.getIntPtrConstant(0));
7169  }
7170
7171  if (VT.getSizeInBits() == 64) {
7172    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7173    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7174    //        to match extract_elt for f64.
7175    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7176    if (Idx == 0)
7177      return Op;
7178
7179    // UNPCKHPD the element to the lowest double word, then movsd.
7180    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7181    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7182    int Mask[2] = { 1, -1 };
7183    EVT VVT = Op.getOperand(0).getValueType();
7184    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7185                                       DAG.getUNDEF(VVT), Mask);
7186    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7187                       DAG.getIntPtrConstant(0));
7188  }
7189
7190  return SDValue();
7191}
7192
7193SDValue
7194X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7195                                               SelectionDAG &DAG) const {
7196  EVT VT = Op.getValueType();
7197  EVT EltVT = VT.getVectorElementType();
7198  DebugLoc dl = Op.getDebugLoc();
7199
7200  SDValue N0 = Op.getOperand(0);
7201  SDValue N1 = Op.getOperand(1);
7202  SDValue N2 = Op.getOperand(2);
7203
7204  if (!VT.is128BitVector())
7205    return SDValue();
7206
7207  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7208      isa<ConstantSDNode>(N2)) {
7209    unsigned Opc;
7210    if (VT == MVT::v8i16)
7211      Opc = X86ISD::PINSRW;
7212    else if (VT == MVT::v16i8)
7213      Opc = X86ISD::PINSRB;
7214    else
7215      Opc = X86ISD::PINSRB;
7216
7217    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7218    // argument.
7219    if (N1.getValueType() != MVT::i32)
7220      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7221    if (N2.getValueType() != MVT::i32)
7222      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7223    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7224  }
7225
7226  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7227    // Bits [7:6] of the constant are the source select.  This will always be
7228    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7229    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7230    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7231    // Bits [5:4] of the constant are the destination select.  This is the
7232    //  value of the incoming immediate.
7233    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7234    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7235    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7236    // Create this as a scalar to vector..
7237    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7238    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7239  }
7240
7241  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7242    // PINSR* works with constant index.
7243    return Op;
7244  }
7245  return SDValue();
7246}
7247
7248SDValue
7249X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7250  EVT VT = Op.getValueType();
7251  EVT EltVT = VT.getVectorElementType();
7252
7253  DebugLoc dl = Op.getDebugLoc();
7254  SDValue N0 = Op.getOperand(0);
7255  SDValue N1 = Op.getOperand(1);
7256  SDValue N2 = Op.getOperand(2);
7257
7258  // If this is a 256-bit vector result, first extract the 128-bit vector,
7259  // insert the element into the extracted half and then place it back.
7260  if (VT.is256BitVector()) {
7261    if (!isa<ConstantSDNode>(N2))
7262      return SDValue();
7263
7264    // Get the desired 128-bit vector half.
7265    unsigned NumElems = VT.getVectorNumElements();
7266    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7267    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7268
7269    // Insert the element into the desired half.
7270    bool Upper = IdxVal >= NumElems/2;
7271    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7272                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7273
7274    // Insert the changed part back to the 256-bit vector
7275    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7276  }
7277
7278  if (Subtarget->hasSSE41())
7279    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7280
7281  if (EltVT == MVT::i8)
7282    return SDValue();
7283
7284  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7285    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7286    // as its second argument.
7287    if (N1.getValueType() != MVT::i32)
7288      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7289    if (N2.getValueType() != MVT::i32)
7290      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7291    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7292  }
7293  return SDValue();
7294}
7295
7296static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7297  LLVMContext *Context = DAG.getContext();
7298  DebugLoc dl = Op.getDebugLoc();
7299  EVT OpVT = Op.getValueType();
7300
7301  // If this is a 256-bit vector result, first insert into a 128-bit
7302  // vector and then insert into the 256-bit vector.
7303  if (!OpVT.is128BitVector()) {
7304    // Insert into a 128-bit vector.
7305    EVT VT128 = EVT::getVectorVT(*Context,
7306                                 OpVT.getVectorElementType(),
7307                                 OpVT.getVectorNumElements() / 2);
7308
7309    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7310
7311    // Insert the 128-bit vector.
7312    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7313  }
7314
7315  if (OpVT == MVT::v1i64 &&
7316      Op.getOperand(0).getValueType() == MVT::i64)
7317    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7318
7319  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7320  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7321  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7322                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7323}
7324
7325// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7326// a simple subregister reference or explicit instructions to grab
7327// upper bits of a vector.
7328static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7329                                      SelectionDAG &DAG) {
7330  if (Subtarget->hasFp256()) {
7331    DebugLoc dl = Op.getNode()->getDebugLoc();
7332    SDValue Vec = Op.getNode()->getOperand(0);
7333    SDValue Idx = Op.getNode()->getOperand(1);
7334
7335    if (Op.getNode()->getValueType(0).is128BitVector() &&
7336        Vec.getNode()->getValueType(0).is256BitVector() &&
7337        isa<ConstantSDNode>(Idx)) {
7338      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7339      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7340    }
7341  }
7342  return SDValue();
7343}
7344
7345// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7346// simple superregister reference or explicit instructions to insert
7347// the upper bits of a vector.
7348static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7349                                     SelectionDAG &DAG) {
7350  if (Subtarget->hasFp256()) {
7351    DebugLoc dl = Op.getNode()->getDebugLoc();
7352    SDValue Vec = Op.getNode()->getOperand(0);
7353    SDValue SubVec = Op.getNode()->getOperand(1);
7354    SDValue Idx = Op.getNode()->getOperand(2);
7355
7356    if (Op.getNode()->getValueType(0).is256BitVector() &&
7357        SubVec.getNode()->getValueType(0).is128BitVector() &&
7358        isa<ConstantSDNode>(Idx)) {
7359      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7360      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7361    }
7362  }
7363  return SDValue();
7364}
7365
7366// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7367// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7368// one of the above mentioned nodes. It has to be wrapped because otherwise
7369// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7370// be used to form addressing mode. These wrapped nodes will be selected
7371// into MOV32ri.
7372SDValue
7373X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7374  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7375
7376  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7377  // global base reg.
7378  unsigned char OpFlag = 0;
7379  unsigned WrapperKind = X86ISD::Wrapper;
7380  CodeModel::Model M = getTargetMachine().getCodeModel();
7381
7382  if (Subtarget->isPICStyleRIPRel() &&
7383      (M == CodeModel::Small || M == CodeModel::Kernel))
7384    WrapperKind = X86ISD::WrapperRIP;
7385  else if (Subtarget->isPICStyleGOT())
7386    OpFlag = X86II::MO_GOTOFF;
7387  else if (Subtarget->isPICStyleStubPIC())
7388    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7389
7390  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7391                                             CP->getAlignment(),
7392                                             CP->getOffset(), OpFlag);
7393  DebugLoc DL = CP->getDebugLoc();
7394  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7395  // With PIC, the address is actually $g + Offset.
7396  if (OpFlag) {
7397    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7398                         DAG.getNode(X86ISD::GlobalBaseReg,
7399                                     DebugLoc(), getPointerTy()),
7400                         Result);
7401  }
7402
7403  return Result;
7404}
7405
7406SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7407  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7408
7409  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7410  // global base reg.
7411  unsigned char OpFlag = 0;
7412  unsigned WrapperKind = X86ISD::Wrapper;
7413  CodeModel::Model M = getTargetMachine().getCodeModel();
7414
7415  if (Subtarget->isPICStyleRIPRel() &&
7416      (M == CodeModel::Small || M == CodeModel::Kernel))
7417    WrapperKind = X86ISD::WrapperRIP;
7418  else if (Subtarget->isPICStyleGOT())
7419    OpFlag = X86II::MO_GOTOFF;
7420  else if (Subtarget->isPICStyleStubPIC())
7421    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7422
7423  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7424                                          OpFlag);
7425  DebugLoc DL = JT->getDebugLoc();
7426  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7427
7428  // With PIC, the address is actually $g + Offset.
7429  if (OpFlag)
7430    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7431                         DAG.getNode(X86ISD::GlobalBaseReg,
7432                                     DebugLoc(), getPointerTy()),
7433                         Result);
7434
7435  return Result;
7436}
7437
7438SDValue
7439X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7440  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7441
7442  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7443  // global base reg.
7444  unsigned char OpFlag = 0;
7445  unsigned WrapperKind = X86ISD::Wrapper;
7446  CodeModel::Model M = getTargetMachine().getCodeModel();
7447
7448  if (Subtarget->isPICStyleRIPRel() &&
7449      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7450    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7451      OpFlag = X86II::MO_GOTPCREL;
7452    WrapperKind = X86ISD::WrapperRIP;
7453  } else if (Subtarget->isPICStyleGOT()) {
7454    OpFlag = X86II::MO_GOT;
7455  } else if (Subtarget->isPICStyleStubPIC()) {
7456    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7457  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7458    OpFlag = X86II::MO_DARWIN_NONLAZY;
7459  }
7460
7461  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7462
7463  DebugLoc DL = Op.getDebugLoc();
7464  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7465
7466  // With PIC, the address is actually $g + Offset.
7467  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7468      !Subtarget->is64Bit()) {
7469    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7470                         DAG.getNode(X86ISD::GlobalBaseReg,
7471                                     DebugLoc(), getPointerTy()),
7472                         Result);
7473  }
7474
7475  // For symbols that require a load from a stub to get the address, emit the
7476  // load.
7477  if (isGlobalStubReference(OpFlag))
7478    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7479                         MachinePointerInfo::getGOT(), false, false, false, 0);
7480
7481  return Result;
7482}
7483
7484SDValue
7485X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7486  // Create the TargetBlockAddressAddress node.
7487  unsigned char OpFlags =
7488    Subtarget->ClassifyBlockAddressReference();
7489  CodeModel::Model M = getTargetMachine().getCodeModel();
7490  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7491  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7492  DebugLoc dl = Op.getDebugLoc();
7493  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7494                                             OpFlags);
7495
7496  if (Subtarget->isPICStyleRIPRel() &&
7497      (M == CodeModel::Small || M == CodeModel::Kernel))
7498    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7499  else
7500    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7501
7502  // With PIC, the address is actually $g + Offset.
7503  if (isGlobalRelativeToPICBase(OpFlags)) {
7504    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7505                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7506                         Result);
7507  }
7508
7509  return Result;
7510}
7511
7512SDValue
7513X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7514                                      int64_t Offset,
7515                                      SelectionDAG &DAG) const {
7516  // Create the TargetGlobalAddress node, folding in the constant
7517  // offset if it is legal.
7518  unsigned char OpFlags =
7519    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7520  CodeModel::Model M = getTargetMachine().getCodeModel();
7521  SDValue Result;
7522  if (OpFlags == X86II::MO_NO_FLAG &&
7523      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7524    // A direct static reference to a global.
7525    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7526    Offset = 0;
7527  } else {
7528    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7529  }
7530
7531  if (Subtarget->isPICStyleRIPRel() &&
7532      (M == CodeModel::Small || M == CodeModel::Kernel))
7533    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7534  else
7535    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7536
7537  // With PIC, the address is actually $g + Offset.
7538  if (isGlobalRelativeToPICBase(OpFlags)) {
7539    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7540                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7541                         Result);
7542  }
7543
7544  // For globals that require a load from a stub to get the address, emit the
7545  // load.
7546  if (isGlobalStubReference(OpFlags))
7547    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7548                         MachinePointerInfo::getGOT(), false, false, false, 0);
7549
7550  // If there was a non-zero offset that we didn't fold, create an explicit
7551  // addition for it.
7552  if (Offset != 0)
7553    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7554                         DAG.getConstant(Offset, getPointerTy()));
7555
7556  return Result;
7557}
7558
7559SDValue
7560X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7561  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7562  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7563  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7564}
7565
7566static SDValue
7567GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7568           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7569           unsigned char OperandFlags, bool LocalDynamic = false) {
7570  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7571  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7572  DebugLoc dl = GA->getDebugLoc();
7573  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7574                                           GA->getValueType(0),
7575                                           GA->getOffset(),
7576                                           OperandFlags);
7577
7578  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7579                                           : X86ISD::TLSADDR;
7580
7581  if (InFlag) {
7582    SDValue Ops[] = { Chain,  TGA, *InFlag };
7583    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7584  } else {
7585    SDValue Ops[]  = { Chain, TGA };
7586    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7587  }
7588
7589  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7590  MFI->setAdjustsStack(true);
7591
7592  SDValue Flag = Chain.getValue(1);
7593  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7594}
7595
7596// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7597static SDValue
7598LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7599                                const EVT PtrVT) {
7600  SDValue InFlag;
7601  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7602  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7603                                   DAG.getNode(X86ISD::GlobalBaseReg,
7604                                               DebugLoc(), PtrVT), InFlag);
7605  InFlag = Chain.getValue(1);
7606
7607  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7608}
7609
7610// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7611static SDValue
7612LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7613                                const EVT PtrVT) {
7614  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7615                    X86::RAX, X86II::MO_TLSGD);
7616}
7617
7618static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7619                                           SelectionDAG &DAG,
7620                                           const EVT PtrVT,
7621                                           bool is64Bit) {
7622  DebugLoc dl = GA->getDebugLoc();
7623
7624  // Get the start address of the TLS block for this module.
7625  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7626      .getInfo<X86MachineFunctionInfo>();
7627  MFI->incNumLocalDynamicTLSAccesses();
7628
7629  SDValue Base;
7630  if (is64Bit) {
7631    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7632                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7633  } else {
7634    SDValue InFlag;
7635    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7636        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7637    InFlag = Chain.getValue(1);
7638    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7639                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7640  }
7641
7642  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7643  // of Base.
7644
7645  // Build x@dtpoff.
7646  unsigned char OperandFlags = X86II::MO_DTPOFF;
7647  unsigned WrapperKind = X86ISD::Wrapper;
7648  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7649                                           GA->getValueType(0),
7650                                           GA->getOffset(), OperandFlags);
7651  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7652
7653  // Add x@dtpoff with the base.
7654  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7655}
7656
7657// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7658static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7659                                   const EVT PtrVT, TLSModel::Model model,
7660                                   bool is64Bit, bool isPIC) {
7661  DebugLoc dl = GA->getDebugLoc();
7662
7663  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7664  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7665                                                         is64Bit ? 257 : 256));
7666
7667  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7668                                      DAG.getIntPtrConstant(0),
7669                                      MachinePointerInfo(Ptr),
7670                                      false, false, false, 0);
7671
7672  unsigned char OperandFlags = 0;
7673  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7674  // initialexec.
7675  unsigned WrapperKind = X86ISD::Wrapper;
7676  if (model == TLSModel::LocalExec) {
7677    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7678  } else if (model == TLSModel::InitialExec) {
7679    if (is64Bit) {
7680      OperandFlags = X86II::MO_GOTTPOFF;
7681      WrapperKind = X86ISD::WrapperRIP;
7682    } else {
7683      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7684    }
7685  } else {
7686    llvm_unreachable("Unexpected model");
7687  }
7688
7689  // emit "addl x@ntpoff,%eax" (local exec)
7690  // or "addl x@indntpoff,%eax" (initial exec)
7691  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7692  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7693                                           GA->getValueType(0),
7694                                           GA->getOffset(), OperandFlags);
7695  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7696
7697  if (model == TLSModel::InitialExec) {
7698    if (isPIC && !is64Bit) {
7699      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7700                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7701                           Offset);
7702    }
7703
7704    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7705                         MachinePointerInfo::getGOT(), false, false, false,
7706                         0);
7707  }
7708
7709  // The address of the thread local variable is the add of the thread
7710  // pointer with the offset of the variable.
7711  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7712}
7713
7714SDValue
7715X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7716
7717  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7718  const GlobalValue *GV = GA->getGlobal();
7719
7720  if (Subtarget->isTargetELF()) {
7721    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7722
7723    switch (model) {
7724      case TLSModel::GeneralDynamic:
7725        if (Subtarget->is64Bit())
7726          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7727        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7728      case TLSModel::LocalDynamic:
7729        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7730                                           Subtarget->is64Bit());
7731      case TLSModel::InitialExec:
7732      case TLSModel::LocalExec:
7733        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7734                                   Subtarget->is64Bit(),
7735                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7736    }
7737    llvm_unreachable("Unknown TLS model.");
7738  }
7739
7740  if (Subtarget->isTargetDarwin()) {
7741    // Darwin only has one model of TLS.  Lower to that.
7742    unsigned char OpFlag = 0;
7743    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7744                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7745
7746    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7747    // global base reg.
7748    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7749                  !Subtarget->is64Bit();
7750    if (PIC32)
7751      OpFlag = X86II::MO_TLVP_PIC_BASE;
7752    else
7753      OpFlag = X86II::MO_TLVP;
7754    DebugLoc DL = Op.getDebugLoc();
7755    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7756                                                GA->getValueType(0),
7757                                                GA->getOffset(), OpFlag);
7758    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7759
7760    // With PIC32, the address is actually $g + Offset.
7761    if (PIC32)
7762      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7763                           DAG.getNode(X86ISD::GlobalBaseReg,
7764                                       DebugLoc(), getPointerTy()),
7765                           Offset);
7766
7767    // Lowering the machine isd will make sure everything is in the right
7768    // location.
7769    SDValue Chain = DAG.getEntryNode();
7770    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7771    SDValue Args[] = { Chain, Offset };
7772    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7773
7774    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7775    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7776    MFI->setAdjustsStack(true);
7777
7778    // And our return value (tls address) is in the standard call return value
7779    // location.
7780    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7781    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7782                              Chain.getValue(1));
7783  }
7784
7785  if (Subtarget->isTargetWindows()) {
7786    // Just use the implicit TLS architecture
7787    // Need to generate someting similar to:
7788    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7789    //                                  ; from TEB
7790    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7791    //   mov     rcx, qword [rdx+rcx*8]
7792    //   mov     eax, .tls$:tlsvar
7793    //   [rax+rcx] contains the address
7794    // Windows 64bit: gs:0x58
7795    // Windows 32bit: fs:__tls_array
7796
7797    // If GV is an alias then use the aliasee for determining
7798    // thread-localness.
7799    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7800      GV = GA->resolveAliasedGlobal(false);
7801    DebugLoc dl = GA->getDebugLoc();
7802    SDValue Chain = DAG.getEntryNode();
7803
7804    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7805    // %gs:0x58 (64-bit).
7806    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7807                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7808                                                             256)
7809                                        : Type::getInt32PtrTy(*DAG.getContext(),
7810                                                              257));
7811
7812    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7813                                        Subtarget->is64Bit()
7814                                        ? DAG.getIntPtrConstant(0x58)
7815                                        : DAG.getExternalSymbol("_tls_array",
7816                                                                getPointerTy()),
7817                                        MachinePointerInfo(Ptr),
7818                                        false, false, false, 0);
7819
7820    // Load the _tls_index variable
7821    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7822    if (Subtarget->is64Bit())
7823      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7824                           IDX, MachinePointerInfo(), MVT::i32,
7825                           false, false, 0);
7826    else
7827      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7828                        false, false, false, 0);
7829
7830    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7831                                    getPointerTy());
7832    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7833
7834    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7835    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7836                      false, false, false, 0);
7837
7838    // Get the offset of start of .tls section
7839    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7840                                             GA->getValueType(0),
7841                                             GA->getOffset(), X86II::MO_SECREL);
7842    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7843
7844    // The address of the thread local variable is the add of the thread
7845    // pointer with the offset of the variable.
7846    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7847  }
7848
7849  llvm_unreachable("TLS not implemented for this target.");
7850}
7851
7852/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7853/// and take a 2 x i32 value to shift plus a shift amount.
7854SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7855  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7856  EVT VT = Op.getValueType();
7857  unsigned VTBits = VT.getSizeInBits();
7858  DebugLoc dl = Op.getDebugLoc();
7859  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7860  SDValue ShOpLo = Op.getOperand(0);
7861  SDValue ShOpHi = Op.getOperand(1);
7862  SDValue ShAmt  = Op.getOperand(2);
7863  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7864                                     DAG.getConstant(VTBits - 1, MVT::i8))
7865                       : DAG.getConstant(0, VT);
7866
7867  SDValue Tmp2, Tmp3;
7868  if (Op.getOpcode() == ISD::SHL_PARTS) {
7869    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7870    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7871  } else {
7872    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7873    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7874  }
7875
7876  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7877                                DAG.getConstant(VTBits, MVT::i8));
7878  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7879                             AndNode, DAG.getConstant(0, MVT::i8));
7880
7881  SDValue Hi, Lo;
7882  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7883  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7884  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7885
7886  if (Op.getOpcode() == ISD::SHL_PARTS) {
7887    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7888    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7889  } else {
7890    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7891    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7892  }
7893
7894  SDValue Ops[2] = { Lo, Hi };
7895  return DAG.getMergeValues(Ops, 2, dl);
7896}
7897
7898SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7899                                           SelectionDAG &DAG) const {
7900  EVT SrcVT = Op.getOperand(0).getValueType();
7901
7902  if (SrcVT.isVector())
7903    return SDValue();
7904
7905  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7906         "Unknown SINT_TO_FP to lower!");
7907
7908  // These are really Legal; return the operand so the caller accepts it as
7909  // Legal.
7910  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7911    return Op;
7912  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7913      Subtarget->is64Bit()) {
7914    return Op;
7915  }
7916
7917  DebugLoc dl = Op.getDebugLoc();
7918  unsigned Size = SrcVT.getSizeInBits()/8;
7919  MachineFunction &MF = DAG.getMachineFunction();
7920  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7921  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7922  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7923                               StackSlot,
7924                               MachinePointerInfo::getFixedStack(SSFI),
7925                               false, false, 0);
7926  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7927}
7928
7929SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7930                                     SDValue StackSlot,
7931                                     SelectionDAG &DAG) const {
7932  // Build the FILD
7933  DebugLoc DL = Op.getDebugLoc();
7934  SDVTList Tys;
7935  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7936  if (useSSE)
7937    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7938  else
7939    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7940
7941  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7942
7943  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7944  MachineMemOperand *MMO;
7945  if (FI) {
7946    int SSFI = FI->getIndex();
7947    MMO =
7948      DAG.getMachineFunction()
7949      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7950                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7951  } else {
7952    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7953    StackSlot = StackSlot.getOperand(1);
7954  }
7955  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7956  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7957                                           X86ISD::FILD, DL,
7958                                           Tys, Ops, array_lengthof(Ops),
7959                                           SrcVT, MMO);
7960
7961  if (useSSE) {
7962    Chain = Result.getValue(1);
7963    SDValue InFlag = Result.getValue(2);
7964
7965    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7966    // shouldn't be necessary except that RFP cannot be live across
7967    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7968    MachineFunction &MF = DAG.getMachineFunction();
7969    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7970    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7971    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7972    Tys = DAG.getVTList(MVT::Other);
7973    SDValue Ops[] = {
7974      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7975    };
7976    MachineMemOperand *MMO =
7977      DAG.getMachineFunction()
7978      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7979                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7980
7981    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7982                                    Ops, array_lengthof(Ops),
7983                                    Op.getValueType(), MMO);
7984    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7985                         MachinePointerInfo::getFixedStack(SSFI),
7986                         false, false, false, 0);
7987  }
7988
7989  return Result;
7990}
7991
7992// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7993SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7994                                               SelectionDAG &DAG) const {
7995  // This algorithm is not obvious. Here it is what we're trying to output:
7996  /*
7997     movq       %rax,  %xmm0
7998     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7999     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8000     #ifdef __SSE3__
8001       haddpd   %xmm0, %xmm0
8002     #else
8003       pshufd   $0x4e, %xmm0, %xmm1
8004       addpd    %xmm1, %xmm0
8005     #endif
8006  */
8007
8008  DebugLoc dl = Op.getDebugLoc();
8009  LLVMContext *Context = DAG.getContext();
8010
8011  // Build some magic constants.
8012  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8013  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8014  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8015
8016  SmallVector<Constant*,2> CV1;
8017  CV1.push_back(
8018        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
8019  CV1.push_back(
8020        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
8021  Constant *C1 = ConstantVector::get(CV1);
8022  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8023
8024  // Load the 64-bit value into an XMM register.
8025  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8026                            Op.getOperand(0));
8027  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8028                              MachinePointerInfo::getConstantPool(),
8029                              false, false, false, 16);
8030  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8031                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8032                              CLod0);
8033
8034  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8035                              MachinePointerInfo::getConstantPool(),
8036                              false, false, false, 16);
8037  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8038  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8039  SDValue Result;
8040
8041  if (Subtarget->hasSSE3()) {
8042    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8043    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8044  } else {
8045    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8046    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8047                                           S2F, 0x4E, DAG);
8048    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8049                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8050                         Sub);
8051  }
8052
8053  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8054                     DAG.getIntPtrConstant(0));
8055}
8056
8057// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8058SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8059                                               SelectionDAG &DAG) const {
8060  DebugLoc dl = Op.getDebugLoc();
8061  // FP constant to bias correct the final result.
8062  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8063                                   MVT::f64);
8064
8065  // Load the 32-bit value into an XMM register.
8066  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8067                             Op.getOperand(0));
8068
8069  // Zero out the upper parts of the register.
8070  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8071
8072  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8073                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8074                     DAG.getIntPtrConstant(0));
8075
8076  // Or the load with the bias.
8077  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8078                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8079                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8080                                                   MVT::v2f64, Load)),
8081                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8082                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8083                                                   MVT::v2f64, Bias)));
8084  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8085                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8086                   DAG.getIntPtrConstant(0));
8087
8088  // Subtract the bias.
8089  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8090
8091  // Handle final rounding.
8092  EVT DestVT = Op.getValueType();
8093
8094  if (DestVT.bitsLT(MVT::f64))
8095    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8096                       DAG.getIntPtrConstant(0));
8097  if (DestVT.bitsGT(MVT::f64))
8098    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8099
8100  // Handle final rounding.
8101  return Sub;
8102}
8103
8104SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8105                                               SelectionDAG &DAG) const {
8106  SDValue N0 = Op.getOperand(0);
8107  EVT SVT = N0.getValueType();
8108  DebugLoc dl = Op.getDebugLoc();
8109
8110  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8111          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8112         "Custom UINT_TO_FP is not supported!");
8113
8114  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements());
8115  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8116                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8117}
8118
8119SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8120                                           SelectionDAG &DAG) const {
8121  SDValue N0 = Op.getOperand(0);
8122  DebugLoc dl = Op.getDebugLoc();
8123
8124  if (Op.getValueType().isVector())
8125    return lowerUINT_TO_FP_vec(Op, DAG);
8126
8127  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8128  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8129  // the optimization here.
8130  if (DAG.SignBitIsZero(N0))
8131    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8132
8133  EVT SrcVT = N0.getValueType();
8134  EVT DstVT = Op.getValueType();
8135  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8136    return LowerUINT_TO_FP_i64(Op, DAG);
8137  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8138    return LowerUINT_TO_FP_i32(Op, DAG);
8139  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8140    return SDValue();
8141
8142  // Make a 64-bit buffer, and use it to build an FILD.
8143  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8144  if (SrcVT == MVT::i32) {
8145    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8146    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8147                                     getPointerTy(), StackSlot, WordOff);
8148    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8149                                  StackSlot, MachinePointerInfo(),
8150                                  false, false, 0);
8151    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8152                                  OffsetSlot, MachinePointerInfo(),
8153                                  false, false, 0);
8154    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8155    return Fild;
8156  }
8157
8158  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8159  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8160                               StackSlot, MachinePointerInfo(),
8161                               false, false, 0);
8162  // For i64 source, we need to add the appropriate power of 2 if the input
8163  // was negative.  This is the same as the optimization in
8164  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8165  // we must be careful to do the computation in x87 extended precision, not
8166  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8167  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8168  MachineMemOperand *MMO =
8169    DAG.getMachineFunction()
8170    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8171                          MachineMemOperand::MOLoad, 8, 8);
8172
8173  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8174  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8175  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8176                                         MVT::i64, MMO);
8177
8178  APInt FF(32, 0x5F800000ULL);
8179
8180  // Check whether the sign bit is set.
8181  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8182                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8183                                 ISD::SETLT);
8184
8185  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8186  SDValue FudgePtr = DAG.getConstantPool(
8187                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8188                                         getPointerTy());
8189
8190  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8191  SDValue Zero = DAG.getIntPtrConstant(0);
8192  SDValue Four = DAG.getIntPtrConstant(4);
8193  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8194                               Zero, Four);
8195  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8196
8197  // Load the value out, extending it from f32 to f80.
8198  // FIXME: Avoid the extend by constructing the right constant pool?
8199  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8200                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8201                                 MVT::f32, false, false, 4);
8202  // Extend everything to 80 bits to force it to be done on x87.
8203  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8204  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8205}
8206
8207std::pair<SDValue,SDValue> X86TargetLowering::
8208FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8209  DebugLoc DL = Op.getDebugLoc();
8210
8211  EVT DstTy = Op.getValueType();
8212
8213  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8214    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8215    DstTy = MVT::i64;
8216  }
8217
8218  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8219         DstTy.getSimpleVT() >= MVT::i16 &&
8220         "Unknown FP_TO_INT to lower!");
8221
8222  // These are really Legal.
8223  if (DstTy == MVT::i32 &&
8224      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8225    return std::make_pair(SDValue(), SDValue());
8226  if (Subtarget->is64Bit() &&
8227      DstTy == MVT::i64 &&
8228      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8229    return std::make_pair(SDValue(), SDValue());
8230
8231  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8232  // stack slot, or into the FTOL runtime function.
8233  MachineFunction &MF = DAG.getMachineFunction();
8234  unsigned MemSize = DstTy.getSizeInBits()/8;
8235  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8236  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8237
8238  unsigned Opc;
8239  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8240    Opc = X86ISD::WIN_FTOL;
8241  else
8242    switch (DstTy.getSimpleVT().SimpleTy) {
8243    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8244    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8245    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8246    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8247    }
8248
8249  SDValue Chain = DAG.getEntryNode();
8250  SDValue Value = Op.getOperand(0);
8251  EVT TheVT = Op.getOperand(0).getValueType();
8252  // FIXME This causes a redundant load/store if the SSE-class value is already
8253  // in memory, such as if it is on the callstack.
8254  if (isScalarFPTypeInSSEReg(TheVT)) {
8255    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8256    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8257                         MachinePointerInfo::getFixedStack(SSFI),
8258                         false, false, 0);
8259    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8260    SDValue Ops[] = {
8261      Chain, StackSlot, DAG.getValueType(TheVT)
8262    };
8263
8264    MachineMemOperand *MMO =
8265      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8266                              MachineMemOperand::MOLoad, MemSize, MemSize);
8267    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8268                                    DstTy, MMO);
8269    Chain = Value.getValue(1);
8270    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8271    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8272  }
8273
8274  MachineMemOperand *MMO =
8275    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8276                            MachineMemOperand::MOStore, MemSize, MemSize);
8277
8278  if (Opc != X86ISD::WIN_FTOL) {
8279    // Build the FP_TO_INT*_IN_MEM
8280    SDValue Ops[] = { Chain, Value, StackSlot };
8281    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8282                                           Ops, 3, DstTy, MMO);
8283    return std::make_pair(FIST, StackSlot);
8284  } else {
8285    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8286      DAG.getVTList(MVT::Other, MVT::Glue),
8287      Chain, Value);
8288    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8289      MVT::i32, ftol.getValue(1));
8290    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8291      MVT::i32, eax.getValue(2));
8292    SDValue Ops[] = { eax, edx };
8293    SDValue pair = IsReplace
8294      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8295      : DAG.getMergeValues(Ops, 2, DL);
8296    return std::make_pair(pair, SDValue());
8297  }
8298}
8299
8300static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8301                              const X86Subtarget *Subtarget) {
8302  EVT VT = Op->getValueType(0);
8303  SDValue In = Op->getOperand(0);
8304  EVT InVT = In.getValueType();
8305  DebugLoc dl = Op->getDebugLoc();
8306
8307  // Optimize vectors in AVX mode:
8308  //
8309  //   v8i16 -> v8i32
8310  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8311  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8312  //   Concat upper and lower parts.
8313  //
8314  //   v4i32 -> v4i64
8315  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8316  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8317  //   Concat upper and lower parts.
8318  //
8319
8320  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8321      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8322    return SDValue();
8323
8324  if (Subtarget->hasInt256())
8325    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8326
8327  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8328  SDValue Undef = DAG.getUNDEF(InVT);
8329  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8330  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8331  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8332
8333  EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8334                             VT.getVectorNumElements()/2);
8335
8336  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8337  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8338
8339  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8340}
8341
8342SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8343                                           SelectionDAG &DAG) const {
8344  if (Subtarget->hasFp256()) {
8345    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8346    if (Res.getNode())
8347      return Res;
8348  }
8349
8350  return SDValue();
8351}
8352SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8353                                            SelectionDAG &DAG) const {
8354  DebugLoc DL = Op.getDebugLoc();
8355  EVT VT = Op.getValueType();
8356  SDValue In = Op.getOperand(0);
8357  EVT SVT = In.getValueType();
8358
8359  if (Subtarget->hasFp256()) {
8360    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8361    if (Res.getNode())
8362      return Res;
8363  }
8364
8365  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8366      VT.getVectorNumElements() != SVT.getVectorNumElements())
8367    return SDValue();
8368
8369  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8370
8371  // AVX2 has better support of integer extending.
8372  if (Subtarget->hasInt256())
8373    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8374
8375  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8376  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8377  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8378                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8379                                                DAG.getUNDEF(MVT::v8i16),
8380                                                &Mask[0]));
8381
8382  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8383}
8384
8385SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8386  DebugLoc DL = Op.getDebugLoc();
8387  EVT VT = Op.getValueType();
8388  SDValue In = Op.getOperand(0);
8389  EVT SVT = In.getValueType();
8390
8391  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8392    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8393    if (Subtarget->hasInt256()) {
8394      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8395      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8396      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8397                                ShufMask);
8398      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8399                         DAG.getIntPtrConstant(0));
8400    }
8401
8402    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8403    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8404                               DAG.getIntPtrConstant(0));
8405    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8406                               DAG.getIntPtrConstant(2));
8407
8408    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8409    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8410
8411    // The PSHUFD mask:
8412    static const int ShufMask1[] = {0, 2, 0, 0};
8413    SDValue Undef = DAG.getUNDEF(VT);
8414    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8415    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8416
8417    // The MOVLHPS mask:
8418    static const int ShufMask2[] = {0, 1, 4, 5};
8419    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8420  }
8421
8422  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8423    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8424    if (Subtarget->hasInt256()) {
8425      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8426
8427      SmallVector<SDValue,32> pshufbMask;
8428      for (unsigned i = 0; i < 2; ++i) {
8429        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8430        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8431        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8432        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8433        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8434        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8435        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8436        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8437        for (unsigned j = 0; j < 8; ++j)
8438          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8439      }
8440      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8441                               &pshufbMask[0], 32);
8442      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8443      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8444
8445      static const int ShufMask[] = {0,  2,  -1,  -1};
8446      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8447                                &ShufMask[0]);
8448      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8449                       DAG.getIntPtrConstant(0));
8450      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8451    }
8452
8453    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8454                               DAG.getIntPtrConstant(0));
8455
8456    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8457                               DAG.getIntPtrConstant(4));
8458
8459    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8460    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8461
8462    // The PSHUFB mask:
8463    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8464                                   -1, -1, -1, -1, -1, -1, -1, -1};
8465
8466    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8467    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8468    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8469
8470    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8471    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8472
8473    // The MOVLHPS Mask:
8474    static const int ShufMask2[] = {0, 1, 4, 5};
8475    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8476    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8477  }
8478
8479  // Handle truncation of V256 to V128 using shuffles.
8480  if (!VT.is128BitVector() || !SVT.is256BitVector())
8481    return SDValue();
8482
8483  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8484         "Invalid op");
8485  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8486
8487  unsigned NumElems = VT.getVectorNumElements();
8488  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8489                             NumElems * 2);
8490
8491  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8492  // Prepare truncation shuffle mask
8493  for (unsigned i = 0; i != NumElems; ++i)
8494    MaskVec[i] = i * 2;
8495  SDValue V = DAG.getVectorShuffle(NVT, DL,
8496                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8497                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8498  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8499                     DAG.getIntPtrConstant(0));
8500}
8501
8502SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8503                                           SelectionDAG &DAG) const {
8504  if (Op.getValueType().isVector()) {
8505    if (Op.getValueType() == MVT::v8i16)
8506      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8507                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8508                                     MVT::v8i32, Op.getOperand(0)));
8509    return SDValue();
8510  }
8511
8512  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8513    /*IsSigned=*/ true, /*IsReplace=*/ false);
8514  SDValue FIST = Vals.first, StackSlot = Vals.second;
8515  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8516  if (FIST.getNode() == 0) return Op;
8517
8518  if (StackSlot.getNode())
8519    // Load the result.
8520    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8521                       FIST, StackSlot, MachinePointerInfo(),
8522                       false, false, false, 0);
8523
8524  // The node is the result.
8525  return FIST;
8526}
8527
8528SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8529                                           SelectionDAG &DAG) const {
8530  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8531    /*IsSigned=*/ false, /*IsReplace=*/ false);
8532  SDValue FIST = Vals.first, StackSlot = Vals.second;
8533  assert(FIST.getNode() && "Unexpected failure");
8534
8535  if (StackSlot.getNode())
8536    // Load the result.
8537    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8538                       FIST, StackSlot, MachinePointerInfo(),
8539                       false, false, false, 0);
8540
8541  // The node is the result.
8542  return FIST;
8543}
8544
8545SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8546                                          SelectionDAG &DAG) const {
8547  DebugLoc DL = Op.getDebugLoc();
8548  EVT VT = Op.getValueType();
8549  SDValue In = Op.getOperand(0);
8550  EVT SVT = In.getValueType();
8551
8552  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8553
8554  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8555                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8556                                 In, DAG.getUNDEF(SVT)));
8557}
8558
8559SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8560  LLVMContext *Context = DAG.getContext();
8561  DebugLoc dl = Op.getDebugLoc();
8562  EVT VT = Op.getValueType();
8563  EVT EltVT = VT;
8564  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8565  if (VT.isVector()) {
8566    EltVT = VT.getVectorElementType();
8567    NumElts = VT.getVectorNumElements();
8568  }
8569  Constant *C;
8570  if (EltVT == MVT::f64)
8571    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8572  else
8573    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8574  C = ConstantVector::getSplat(NumElts, C);
8575  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8576  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8577  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8578                             MachinePointerInfo::getConstantPool(),
8579                             false, false, false, Alignment);
8580  if (VT.isVector()) {
8581    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8582    return DAG.getNode(ISD::BITCAST, dl, VT,
8583                       DAG.getNode(ISD::AND, dl, ANDVT,
8584                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8585                                               Op.getOperand(0)),
8586                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8587  }
8588  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8589}
8590
8591SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8592  LLVMContext *Context = DAG.getContext();
8593  DebugLoc dl = Op.getDebugLoc();
8594  EVT VT = Op.getValueType();
8595  EVT EltVT = VT;
8596  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8597  if (VT.isVector()) {
8598    EltVT = VT.getVectorElementType();
8599    NumElts = VT.getVectorNumElements();
8600  }
8601  Constant *C;
8602  if (EltVT == MVT::f64)
8603    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8604  else
8605    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8606  C = ConstantVector::getSplat(NumElts, C);
8607  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8608  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8609  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8610                             MachinePointerInfo::getConstantPool(),
8611                             false, false, false, Alignment);
8612  if (VT.isVector()) {
8613    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8614    return DAG.getNode(ISD::BITCAST, dl, VT,
8615                       DAG.getNode(ISD::XOR, dl, XORVT,
8616                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8617                                               Op.getOperand(0)),
8618                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8619  }
8620
8621  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8622}
8623
8624SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8625  LLVMContext *Context = DAG.getContext();
8626  SDValue Op0 = Op.getOperand(0);
8627  SDValue Op1 = Op.getOperand(1);
8628  DebugLoc dl = Op.getDebugLoc();
8629  EVT VT = Op.getValueType();
8630  EVT SrcVT = Op1.getValueType();
8631
8632  // If second operand is smaller, extend it first.
8633  if (SrcVT.bitsLT(VT)) {
8634    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8635    SrcVT = VT;
8636  }
8637  // And if it is bigger, shrink it first.
8638  if (SrcVT.bitsGT(VT)) {
8639    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8640    SrcVT = VT;
8641  }
8642
8643  // At this point the operands and the result should have the same
8644  // type, and that won't be f80 since that is not custom lowered.
8645
8646  // First get the sign bit of second operand.
8647  SmallVector<Constant*,4> CV;
8648  if (SrcVT == MVT::f64) {
8649    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8650    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8651  } else {
8652    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8653    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8654    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8655    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8656  }
8657  Constant *C = ConstantVector::get(CV);
8658  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8659  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8660                              MachinePointerInfo::getConstantPool(),
8661                              false, false, false, 16);
8662  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8663
8664  // Shift sign bit right or left if the two operands have different types.
8665  if (SrcVT.bitsGT(VT)) {
8666    // Op0 is MVT::f32, Op1 is MVT::f64.
8667    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8668    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8669                          DAG.getConstant(32, MVT::i32));
8670    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8671    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8672                          DAG.getIntPtrConstant(0));
8673  }
8674
8675  // Clear first operand sign bit.
8676  CV.clear();
8677  if (VT == MVT::f64) {
8678    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8679    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8680  } else {
8681    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8682    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8683    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8684    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8685  }
8686  C = ConstantVector::get(CV);
8687  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8688  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8689                              MachinePointerInfo::getConstantPool(),
8690                              false, false, false, 16);
8691  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8692
8693  // Or the value with the sign bit.
8694  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8695}
8696
8697static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8698  SDValue N0 = Op.getOperand(0);
8699  DebugLoc dl = Op.getDebugLoc();
8700  EVT VT = Op.getValueType();
8701
8702  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8703  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8704                                  DAG.getConstant(1, VT));
8705  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8706}
8707
8708// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8709//
8710SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8711  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8712
8713  if (!Subtarget->hasSSE41())
8714    return SDValue();
8715
8716  if (!Op->hasOneUse())
8717    return SDValue();
8718
8719  SDNode *N = Op.getNode();
8720  DebugLoc DL = N->getDebugLoc();
8721
8722  SmallVector<SDValue, 8> Opnds;
8723  DenseMap<SDValue, unsigned> VecInMap;
8724  EVT VT = MVT::Other;
8725
8726  // Recognize a special case where a vector is casted into wide integer to
8727  // test all 0s.
8728  Opnds.push_back(N->getOperand(0));
8729  Opnds.push_back(N->getOperand(1));
8730
8731  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8732    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8733    // BFS traverse all OR'd operands.
8734    if (I->getOpcode() == ISD::OR) {
8735      Opnds.push_back(I->getOperand(0));
8736      Opnds.push_back(I->getOperand(1));
8737      // Re-evaluate the number of nodes to be traversed.
8738      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8739      continue;
8740    }
8741
8742    // Quit if a non-EXTRACT_VECTOR_ELT
8743    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8744      return SDValue();
8745
8746    // Quit if without a constant index.
8747    SDValue Idx = I->getOperand(1);
8748    if (!isa<ConstantSDNode>(Idx))
8749      return SDValue();
8750
8751    SDValue ExtractedFromVec = I->getOperand(0);
8752    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8753    if (M == VecInMap.end()) {
8754      VT = ExtractedFromVec.getValueType();
8755      // Quit if not 128/256-bit vector.
8756      if (!VT.is128BitVector() && !VT.is256BitVector())
8757        return SDValue();
8758      // Quit if not the same type.
8759      if (VecInMap.begin() != VecInMap.end() &&
8760          VT != VecInMap.begin()->first.getValueType())
8761        return SDValue();
8762      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8763    }
8764    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8765  }
8766
8767  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8768         "Not extracted from 128-/256-bit vector.");
8769
8770  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8771  SmallVector<SDValue, 8> VecIns;
8772
8773  for (DenseMap<SDValue, unsigned>::const_iterator
8774        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8775    // Quit if not all elements are used.
8776    if (I->second != FullMask)
8777      return SDValue();
8778    VecIns.push_back(I->first);
8779  }
8780
8781  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8782
8783  // Cast all vectors into TestVT for PTEST.
8784  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8785    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8786
8787  // If more than one full vectors are evaluated, OR them first before PTEST.
8788  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8789    // Each iteration will OR 2 nodes and append the result until there is only
8790    // 1 node left, i.e. the final OR'd value of all vectors.
8791    SDValue LHS = VecIns[Slot];
8792    SDValue RHS = VecIns[Slot + 1];
8793    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8794  }
8795
8796  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8797                     VecIns.back(), VecIns.back());
8798}
8799
8800/// Emit nodes that will be selected as "test Op0,Op0", or something
8801/// equivalent.
8802SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8803                                    SelectionDAG &DAG) const {
8804  DebugLoc dl = Op.getDebugLoc();
8805
8806  // CF and OF aren't always set the way we want. Determine which
8807  // of these we need.
8808  bool NeedCF = false;
8809  bool NeedOF = false;
8810  switch (X86CC) {
8811  default: break;
8812  case X86::COND_A: case X86::COND_AE:
8813  case X86::COND_B: case X86::COND_BE:
8814    NeedCF = true;
8815    break;
8816  case X86::COND_G: case X86::COND_GE:
8817  case X86::COND_L: case X86::COND_LE:
8818  case X86::COND_O: case X86::COND_NO:
8819    NeedOF = true;
8820    break;
8821  }
8822
8823  // See if we can use the EFLAGS value from the operand instead of
8824  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8825  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8826  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8827    // Emit a CMP with 0, which is the TEST pattern.
8828    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8829                       DAG.getConstant(0, Op.getValueType()));
8830
8831  unsigned Opcode = 0;
8832  unsigned NumOperands = 0;
8833
8834  // Truncate operations may prevent the merge of the SETCC instruction
8835  // and the arithmetic intruction before it. Attempt to truncate the operands
8836  // of the arithmetic instruction and use a reduced bit-width instruction.
8837  bool NeedTruncation = false;
8838  SDValue ArithOp = Op;
8839  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8840    SDValue Arith = Op->getOperand(0);
8841    // Both the trunc and the arithmetic op need to have one user each.
8842    if (Arith->hasOneUse())
8843      switch (Arith.getOpcode()) {
8844        default: break;
8845        case ISD::ADD:
8846        case ISD::SUB:
8847        case ISD::AND:
8848        case ISD::OR:
8849        case ISD::XOR: {
8850          NeedTruncation = true;
8851          ArithOp = Arith;
8852        }
8853      }
8854  }
8855
8856  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8857  // which may be the result of a CAST.  We use the variable 'Op', which is the
8858  // non-casted variable when we check for possible users.
8859  switch (ArithOp.getOpcode()) {
8860  case ISD::ADD:
8861    // Due to an isel shortcoming, be conservative if this add is likely to be
8862    // selected as part of a load-modify-store instruction. When the root node
8863    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8864    // uses of other nodes in the match, such as the ADD in this case. This
8865    // leads to the ADD being left around and reselected, with the result being
8866    // two adds in the output.  Alas, even if none our users are stores, that
8867    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8868    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8869    // climbing the DAG back to the root, and it doesn't seem to be worth the
8870    // effort.
8871    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8872         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8873      if (UI->getOpcode() != ISD::CopyToReg &&
8874          UI->getOpcode() != ISD::SETCC &&
8875          UI->getOpcode() != ISD::STORE)
8876        goto default_case;
8877
8878    if (ConstantSDNode *C =
8879        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8880      // An add of one will be selected as an INC.
8881      if (C->getAPIntValue() == 1) {
8882        Opcode = X86ISD::INC;
8883        NumOperands = 1;
8884        break;
8885      }
8886
8887      // An add of negative one (subtract of one) will be selected as a DEC.
8888      if (C->getAPIntValue().isAllOnesValue()) {
8889        Opcode = X86ISD::DEC;
8890        NumOperands = 1;
8891        break;
8892      }
8893    }
8894
8895    // Otherwise use a regular EFLAGS-setting add.
8896    Opcode = X86ISD::ADD;
8897    NumOperands = 2;
8898    break;
8899  case ISD::AND: {
8900    // If the primary and result isn't used, don't bother using X86ISD::AND,
8901    // because a TEST instruction will be better.
8902    bool NonFlagUse = false;
8903    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8904           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8905      SDNode *User = *UI;
8906      unsigned UOpNo = UI.getOperandNo();
8907      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8908        // Look pass truncate.
8909        UOpNo = User->use_begin().getOperandNo();
8910        User = *User->use_begin();
8911      }
8912
8913      if (User->getOpcode() != ISD::BRCOND &&
8914          User->getOpcode() != ISD::SETCC &&
8915          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8916        NonFlagUse = true;
8917        break;
8918      }
8919    }
8920
8921    if (!NonFlagUse)
8922      break;
8923  }
8924    // FALL THROUGH
8925  case ISD::SUB:
8926  case ISD::OR:
8927  case ISD::XOR:
8928    // Due to the ISEL shortcoming noted above, be conservative if this op is
8929    // likely to be selected as part of a load-modify-store instruction.
8930    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8931           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8932      if (UI->getOpcode() == ISD::STORE)
8933        goto default_case;
8934
8935    // Otherwise use a regular EFLAGS-setting instruction.
8936    switch (ArithOp.getOpcode()) {
8937    default: llvm_unreachable("unexpected operator!");
8938    case ISD::SUB: Opcode = X86ISD::SUB; break;
8939    case ISD::XOR: Opcode = X86ISD::XOR; break;
8940    case ISD::AND: Opcode = X86ISD::AND; break;
8941    case ISD::OR: {
8942      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8943        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8944        if (EFLAGS.getNode())
8945          return EFLAGS;
8946      }
8947      Opcode = X86ISD::OR;
8948      break;
8949    }
8950    }
8951
8952    NumOperands = 2;
8953    break;
8954  case X86ISD::ADD:
8955  case X86ISD::SUB:
8956  case X86ISD::INC:
8957  case X86ISD::DEC:
8958  case X86ISD::OR:
8959  case X86ISD::XOR:
8960  case X86ISD::AND:
8961    return SDValue(Op.getNode(), 1);
8962  default:
8963  default_case:
8964    break;
8965  }
8966
8967  // If we found that truncation is beneficial, perform the truncation and
8968  // update 'Op'.
8969  if (NeedTruncation) {
8970    EVT VT = Op.getValueType();
8971    SDValue WideVal = Op->getOperand(0);
8972    EVT WideVT = WideVal.getValueType();
8973    unsigned ConvertedOp = 0;
8974    // Use a target machine opcode to prevent further DAGCombine
8975    // optimizations that may separate the arithmetic operations
8976    // from the setcc node.
8977    switch (WideVal.getOpcode()) {
8978      default: break;
8979      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8980      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8981      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8982      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8983      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8984    }
8985
8986    if (ConvertedOp) {
8987      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8988      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8989        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8990        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8991        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8992      }
8993    }
8994  }
8995
8996  if (Opcode == 0)
8997    // Emit a CMP with 0, which is the TEST pattern.
8998    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8999                       DAG.getConstant(0, Op.getValueType()));
9000
9001  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9002  SmallVector<SDValue, 4> Ops;
9003  for (unsigned i = 0; i != NumOperands; ++i)
9004    Ops.push_back(Op.getOperand(i));
9005
9006  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9007  DAG.ReplaceAllUsesWith(Op, New);
9008  return SDValue(New.getNode(), 1);
9009}
9010
9011/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9012/// equivalent.
9013SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9014                                   SelectionDAG &DAG) const {
9015  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9016    if (C->getAPIntValue() == 0)
9017      return EmitTest(Op0, X86CC, DAG);
9018
9019  DebugLoc dl = Op0.getDebugLoc();
9020  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9021       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9022    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9023    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9024    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9025                              Op0, Op1);
9026    return SDValue(Sub.getNode(), 1);
9027  }
9028  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9029}
9030
9031/// Convert a comparison if required by the subtarget.
9032SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9033                                                 SelectionDAG &DAG) const {
9034  // If the subtarget does not support the FUCOMI instruction, floating-point
9035  // comparisons have to be converted.
9036  if (Subtarget->hasCMov() ||
9037      Cmp.getOpcode() != X86ISD::CMP ||
9038      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9039      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9040    return Cmp;
9041
9042  // The instruction selector will select an FUCOM instruction instead of
9043  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9044  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9045  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9046  DebugLoc dl = Cmp.getDebugLoc();
9047  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9048  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9049  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9050                            DAG.getConstant(8, MVT::i8));
9051  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9052  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9053}
9054
9055static bool isAllOnes(SDValue V) {
9056  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9057  return C && C->isAllOnesValue();
9058}
9059
9060/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9061/// if it's possible.
9062SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9063                                     DebugLoc dl, SelectionDAG &DAG) const {
9064  SDValue Op0 = And.getOperand(0);
9065  SDValue Op1 = And.getOperand(1);
9066  if (Op0.getOpcode() == ISD::TRUNCATE)
9067    Op0 = Op0.getOperand(0);
9068  if (Op1.getOpcode() == ISD::TRUNCATE)
9069    Op1 = Op1.getOperand(0);
9070
9071  SDValue LHS, RHS;
9072  if (Op1.getOpcode() == ISD::SHL)
9073    std::swap(Op0, Op1);
9074  if (Op0.getOpcode() == ISD::SHL) {
9075    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9076      if (And00C->getZExtValue() == 1) {
9077        // If we looked past a truncate, check that it's only truncating away
9078        // known zeros.
9079        unsigned BitWidth = Op0.getValueSizeInBits();
9080        unsigned AndBitWidth = And.getValueSizeInBits();
9081        if (BitWidth > AndBitWidth) {
9082          APInt Zeros, Ones;
9083          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9084          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9085            return SDValue();
9086        }
9087        LHS = Op1;
9088        RHS = Op0.getOperand(1);
9089      }
9090  } else if (Op1.getOpcode() == ISD::Constant) {
9091    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9092    uint64_t AndRHSVal = AndRHS->getZExtValue();
9093    SDValue AndLHS = Op0;
9094
9095    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9096      LHS = AndLHS.getOperand(0);
9097      RHS = AndLHS.getOperand(1);
9098    }
9099
9100    // Use BT if the immediate can't be encoded in a TEST instruction.
9101    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9102      LHS = AndLHS;
9103      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9104    }
9105  }
9106
9107  if (LHS.getNode()) {
9108    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
9109    // the condition code later.
9110    bool Invert = false;
9111    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
9112      Invert = true;
9113      LHS = LHS.getOperand(0);
9114    }
9115
9116    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9117    // instruction.  Since the shift amount is in-range-or-undefined, we know
9118    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9119    // the encoding for the i16 version is larger than the i32 version.
9120    // Also promote i16 to i32 for performance / code size reason.
9121    if (LHS.getValueType() == MVT::i8 ||
9122        LHS.getValueType() == MVT::i16)
9123      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9124
9125    // If the operand types disagree, extend the shift amount to match.  Since
9126    // BT ignores high bits (like shifts) we can use anyextend.
9127    if (LHS.getValueType() != RHS.getValueType())
9128      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9129
9130    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9131    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9132    // Flip the condition if the LHS was a not instruction
9133    if (Invert)
9134      Cond = X86::GetOppositeBranchCondition(Cond);
9135    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9136                       DAG.getConstant(Cond, MVT::i8), BT);
9137  }
9138
9139  return SDValue();
9140}
9141
9142SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9143
9144  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
9145
9146  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
9147  SDValue Op0 = Op.getOperand(0);
9148  SDValue Op1 = Op.getOperand(1);
9149  DebugLoc dl = Op.getDebugLoc();
9150  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9151
9152  // Optimize to BT if possible.
9153  // Lower (X & (1 << N)) == 0 to BT(X, N).
9154  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9155  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9156  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9157      Op1.getOpcode() == ISD::Constant &&
9158      cast<ConstantSDNode>(Op1)->isNullValue() &&
9159      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9160    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9161    if (NewSetCC.getNode())
9162      return NewSetCC;
9163  }
9164
9165  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9166  // these.
9167  if (Op1.getOpcode() == ISD::Constant &&
9168      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9169       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9170      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9171
9172    // If the input is a setcc, then reuse the input setcc or use a new one with
9173    // the inverted condition.
9174    if (Op0.getOpcode() == X86ISD::SETCC) {
9175      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9176      bool Invert = (CC == ISD::SETNE) ^
9177        cast<ConstantSDNode>(Op1)->isNullValue();
9178      if (!Invert) return Op0;
9179
9180      CCode = X86::GetOppositeBranchCondition(CCode);
9181      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9182                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9183    }
9184  }
9185
9186  bool isFP = Op1.getValueType().isFloatingPoint();
9187  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9188  if (X86CC == X86::COND_INVALID)
9189    return SDValue();
9190
9191  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9192  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9193  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9194                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9195}
9196
9197// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9198// ones, and then concatenate the result back.
9199static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9200  EVT VT = Op.getValueType();
9201
9202  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9203         "Unsupported value type for operation");
9204
9205  unsigned NumElems = VT.getVectorNumElements();
9206  DebugLoc dl = Op.getDebugLoc();
9207  SDValue CC = Op.getOperand(2);
9208
9209  // Extract the LHS vectors
9210  SDValue LHS = Op.getOperand(0);
9211  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9212  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9213
9214  // Extract the RHS vectors
9215  SDValue RHS = Op.getOperand(1);
9216  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9217  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9218
9219  // Issue the operation on the smaller types and concatenate the result back
9220  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9221  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9222  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9223                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9224                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9225}
9226
9227SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
9228  SDValue Cond;
9229  SDValue Op0 = Op.getOperand(0);
9230  SDValue Op1 = Op.getOperand(1);
9231  SDValue CC = Op.getOperand(2);
9232  EVT VT = Op.getValueType();
9233  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9234  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
9235  DebugLoc dl = Op.getDebugLoc();
9236
9237  if (isFP) {
9238#ifndef NDEBUG
9239    EVT EltVT = Op0.getValueType().getVectorElementType();
9240    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9241#endif
9242
9243    unsigned SSECC;
9244    bool Swap = false;
9245
9246    // SSE Condition code mapping:
9247    //  0 - EQ
9248    //  1 - LT
9249    //  2 - LE
9250    //  3 - UNORD
9251    //  4 - NEQ
9252    //  5 - NLT
9253    //  6 - NLE
9254    //  7 - ORD
9255    switch (SetCCOpcode) {
9256    default: llvm_unreachable("Unexpected SETCC condition");
9257    case ISD::SETOEQ:
9258    case ISD::SETEQ:  SSECC = 0; break;
9259    case ISD::SETOGT:
9260    case ISD::SETGT: Swap = true; // Fallthrough
9261    case ISD::SETLT:
9262    case ISD::SETOLT: SSECC = 1; break;
9263    case ISD::SETOGE:
9264    case ISD::SETGE: Swap = true; // Fallthrough
9265    case ISD::SETLE:
9266    case ISD::SETOLE: SSECC = 2; break;
9267    case ISD::SETUO:  SSECC = 3; break;
9268    case ISD::SETUNE:
9269    case ISD::SETNE:  SSECC = 4; break;
9270    case ISD::SETULE: Swap = true; // Fallthrough
9271    case ISD::SETUGE: SSECC = 5; break;
9272    case ISD::SETULT: Swap = true; // Fallthrough
9273    case ISD::SETUGT: SSECC = 6; break;
9274    case ISD::SETO:   SSECC = 7; break;
9275    case ISD::SETUEQ:
9276    case ISD::SETONE: SSECC = 8; break;
9277    }
9278    if (Swap)
9279      std::swap(Op0, Op1);
9280
9281    // In the two special cases we can't handle, emit two comparisons.
9282    if (SSECC == 8) {
9283      unsigned CC0, CC1;
9284      unsigned CombineOpc;
9285      if (SetCCOpcode == ISD::SETUEQ) {
9286        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9287      } else {
9288        assert(SetCCOpcode == ISD::SETONE);
9289        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9290      }
9291
9292      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9293                                 DAG.getConstant(CC0, MVT::i8));
9294      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9295                                 DAG.getConstant(CC1, MVT::i8));
9296      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9297    }
9298    // Handle all other FP comparisons here.
9299    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9300                       DAG.getConstant(SSECC, MVT::i8));
9301  }
9302
9303  // Break 256-bit integer vector compare into smaller ones.
9304  if (VT.is256BitVector() && !Subtarget->hasInt256())
9305    return Lower256IntVSETCC(Op, DAG);
9306
9307  // We are handling one of the integer comparisons here.  Since SSE only has
9308  // GT and EQ comparisons for integer, swapping operands and multiple
9309  // operations may be required for some comparisons.
9310  unsigned Opc;
9311  bool Swap = false, Invert = false, FlipSigns = false;
9312
9313  switch (SetCCOpcode) {
9314  default: llvm_unreachable("Unexpected SETCC condition");
9315  case ISD::SETNE:  Invert = true;
9316  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9317  case ISD::SETLT:  Swap = true;
9318  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9319  case ISD::SETGE:  Swap = true;
9320  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9321  case ISD::SETULT: Swap = true;
9322  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9323  case ISD::SETUGE: Swap = true;
9324  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9325  }
9326  if (Swap)
9327    std::swap(Op0, Op1);
9328
9329  // Check that the operation in question is available (most are plain SSE2,
9330  // but PCMPGTQ and PCMPEQQ have different requirements).
9331  if (VT == MVT::v2i64) {
9332    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9333      return SDValue();
9334    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9335      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9336      // pcmpeqd + pshufd + pand.
9337      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9338
9339      // First cast everything to the right type,
9340      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9341      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9342
9343      // Do the compare.
9344      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9345
9346      // Make sure the lower and upper halves are both all-ones.
9347      const int Mask[] = { 1, 0, 3, 2 };
9348      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9349      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9350
9351      if (Invert)
9352        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9353
9354      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9355    }
9356  }
9357
9358  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9359  // bits of the inputs before performing those operations.
9360  if (FlipSigns) {
9361    EVT EltVT = VT.getVectorElementType();
9362    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9363                                      EltVT);
9364    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9365    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9366                                    SignBits.size());
9367    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9368    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9369  }
9370
9371  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9372
9373  // If the logical-not of the result is required, perform that now.
9374  if (Invert)
9375    Result = DAG.getNOT(dl, Result, VT);
9376
9377  return Result;
9378}
9379
9380// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9381static bool isX86LogicalCmp(SDValue Op) {
9382  unsigned Opc = Op.getNode()->getOpcode();
9383  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9384      Opc == X86ISD::SAHF)
9385    return true;
9386  if (Op.getResNo() == 1 &&
9387      (Opc == X86ISD::ADD ||
9388       Opc == X86ISD::SUB ||
9389       Opc == X86ISD::ADC ||
9390       Opc == X86ISD::SBB ||
9391       Opc == X86ISD::SMUL ||
9392       Opc == X86ISD::UMUL ||
9393       Opc == X86ISD::INC ||
9394       Opc == X86ISD::DEC ||
9395       Opc == X86ISD::OR ||
9396       Opc == X86ISD::XOR ||
9397       Opc == X86ISD::AND))
9398    return true;
9399
9400  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9401    return true;
9402
9403  return false;
9404}
9405
9406static bool isZero(SDValue V) {
9407  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9408  return C && C->isNullValue();
9409}
9410
9411static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9412  if (V.getOpcode() != ISD::TRUNCATE)
9413    return false;
9414
9415  SDValue VOp0 = V.getOperand(0);
9416  unsigned InBits = VOp0.getValueSizeInBits();
9417  unsigned Bits = V.getValueSizeInBits();
9418  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9419}
9420
9421SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9422  bool addTest = true;
9423  SDValue Cond  = Op.getOperand(0);
9424  SDValue Op1 = Op.getOperand(1);
9425  SDValue Op2 = Op.getOperand(2);
9426  DebugLoc DL = Op.getDebugLoc();
9427  SDValue CC;
9428
9429  if (Cond.getOpcode() == ISD::SETCC) {
9430    SDValue NewCond = LowerSETCC(Cond, DAG);
9431    if (NewCond.getNode())
9432      Cond = NewCond;
9433  }
9434
9435  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9436  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9437  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9438  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9439  if (Cond.getOpcode() == X86ISD::SETCC &&
9440      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9441      isZero(Cond.getOperand(1).getOperand(1))) {
9442    SDValue Cmp = Cond.getOperand(1);
9443
9444    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9445
9446    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9447        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9448      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9449
9450      SDValue CmpOp0 = Cmp.getOperand(0);
9451      // Apply further optimizations for special cases
9452      // (select (x != 0), -1, 0) -> neg & sbb
9453      // (select (x == 0), 0, -1) -> neg & sbb
9454      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9455        if (YC->isNullValue() &&
9456            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9457          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9458          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9459                                    DAG.getConstant(0, CmpOp0.getValueType()),
9460                                    CmpOp0);
9461          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9462                                    DAG.getConstant(X86::COND_B, MVT::i8),
9463                                    SDValue(Neg.getNode(), 1));
9464          return Res;
9465        }
9466
9467      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9468                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9469      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9470
9471      SDValue Res =   // Res = 0 or -1.
9472        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9473                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9474
9475      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9476        Res = DAG.getNOT(DL, Res, Res.getValueType());
9477
9478      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9479      if (N2C == 0 || !N2C->isNullValue())
9480        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9481      return Res;
9482    }
9483  }
9484
9485  // Look past (and (setcc_carry (cmp ...)), 1).
9486  if (Cond.getOpcode() == ISD::AND &&
9487      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9488    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9489    if (C && C->getAPIntValue() == 1)
9490      Cond = Cond.getOperand(0);
9491  }
9492
9493  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9494  // setting operand in place of the X86ISD::SETCC.
9495  unsigned CondOpcode = Cond.getOpcode();
9496  if (CondOpcode == X86ISD::SETCC ||
9497      CondOpcode == X86ISD::SETCC_CARRY) {
9498    CC = Cond.getOperand(0);
9499
9500    SDValue Cmp = Cond.getOperand(1);
9501    unsigned Opc = Cmp.getOpcode();
9502    EVT VT = Op.getValueType();
9503
9504    bool IllegalFPCMov = false;
9505    if (VT.isFloatingPoint() && !VT.isVector() &&
9506        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9507      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9508
9509    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9510        Opc == X86ISD::BT) { // FIXME
9511      Cond = Cmp;
9512      addTest = false;
9513    }
9514  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9515             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9516             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9517              Cond.getOperand(0).getValueType() != MVT::i8)) {
9518    SDValue LHS = Cond.getOperand(0);
9519    SDValue RHS = Cond.getOperand(1);
9520    unsigned X86Opcode;
9521    unsigned X86Cond;
9522    SDVTList VTs;
9523    switch (CondOpcode) {
9524    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9525    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9526    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9527    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9528    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9529    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9530    default: llvm_unreachable("unexpected overflowing operator");
9531    }
9532    if (CondOpcode == ISD::UMULO)
9533      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9534                          MVT::i32);
9535    else
9536      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9537
9538    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9539
9540    if (CondOpcode == ISD::UMULO)
9541      Cond = X86Op.getValue(2);
9542    else
9543      Cond = X86Op.getValue(1);
9544
9545    CC = DAG.getConstant(X86Cond, MVT::i8);
9546    addTest = false;
9547  }
9548
9549  if (addTest) {
9550    // Look pass the truncate if the high bits are known zero.
9551    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9552        Cond = Cond.getOperand(0);
9553
9554    // We know the result of AND is compared against zero. Try to match
9555    // it to BT.
9556    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9557      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9558      if (NewSetCC.getNode()) {
9559        CC = NewSetCC.getOperand(0);
9560        Cond = NewSetCC.getOperand(1);
9561        addTest = false;
9562      }
9563    }
9564  }
9565
9566  if (addTest) {
9567    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9568    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9569  }
9570
9571  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9572  // a <  b ?  0 : -1 -> RES = setcc_carry
9573  // a >= b ? -1 :  0 -> RES = setcc_carry
9574  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9575  if (Cond.getOpcode() == X86ISD::SUB) {
9576    Cond = ConvertCmpIfNecessary(Cond, DAG);
9577    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9578
9579    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9580        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9581      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9582                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9583      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9584        return DAG.getNOT(DL, Res, Res.getValueType());
9585      return Res;
9586    }
9587  }
9588
9589  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9590  // widen the cmov and push the truncate through. This avoids introducing a new
9591  // branch during isel and doesn't add any extensions.
9592  if (Op.getValueType() == MVT::i8 &&
9593      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9594    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9595    if (T1.getValueType() == T2.getValueType() &&
9596        // Blacklist CopyFromReg to avoid partial register stalls.
9597        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9598      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9599      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9600      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9601    }
9602  }
9603
9604  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9605  // condition is true.
9606  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9607  SDValue Ops[] = { Op2, Op1, CC, Cond };
9608  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9609}
9610
9611SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9612                                            SelectionDAG &DAG) const {
9613  EVT VT = Op->getValueType(0);
9614  SDValue In = Op->getOperand(0);
9615  EVT InVT = In.getValueType();
9616  DebugLoc dl = Op->getDebugLoc();
9617
9618  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9619      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9620    return SDValue();
9621
9622  if (Subtarget->hasInt256())
9623    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9624
9625  // Optimize vectors in AVX mode
9626  // Sign extend  v8i16 to v8i32 and
9627  //              v4i32 to v4i64
9628  //
9629  // Divide input vector into two parts
9630  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9631  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9632  // concat the vectors to original VT
9633
9634  unsigned NumElems = InVT.getVectorNumElements();
9635  SDValue Undef = DAG.getUNDEF(InVT);
9636
9637  SmallVector<int,8> ShufMask1(NumElems, -1);
9638  for (unsigned i = 0; i != NumElems/2; ++i)
9639    ShufMask1[i] = i;
9640
9641  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9642
9643  SmallVector<int,8> ShufMask2(NumElems, -1);
9644  for (unsigned i = 0; i != NumElems/2; ++i)
9645    ShufMask2[i] = i + NumElems/2;
9646
9647  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9648
9649  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
9650                                VT.getVectorNumElements()/2);
9651
9652  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9653  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9654
9655  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9656}
9657
9658// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9659// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9660// from the AND / OR.
9661static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9662  Opc = Op.getOpcode();
9663  if (Opc != ISD::OR && Opc != ISD::AND)
9664    return false;
9665  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9666          Op.getOperand(0).hasOneUse() &&
9667          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9668          Op.getOperand(1).hasOneUse());
9669}
9670
9671// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9672// 1 and that the SETCC node has a single use.
9673static bool isXor1OfSetCC(SDValue Op) {
9674  if (Op.getOpcode() != ISD::XOR)
9675    return false;
9676  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9677  if (N1C && N1C->getAPIntValue() == 1) {
9678    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9679      Op.getOperand(0).hasOneUse();
9680  }
9681  return false;
9682}
9683
9684SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9685  bool addTest = true;
9686  SDValue Chain = Op.getOperand(0);
9687  SDValue Cond  = Op.getOperand(1);
9688  SDValue Dest  = Op.getOperand(2);
9689  DebugLoc dl = Op.getDebugLoc();
9690  SDValue CC;
9691  bool Inverted = false;
9692
9693  if (Cond.getOpcode() == ISD::SETCC) {
9694    // Check for setcc([su]{add,sub,mul}o == 0).
9695    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9696        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9697        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9698        Cond.getOperand(0).getResNo() == 1 &&
9699        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9700         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9701         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9702         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9703         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9704         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9705      Inverted = true;
9706      Cond = Cond.getOperand(0);
9707    } else {
9708      SDValue NewCond = LowerSETCC(Cond, DAG);
9709      if (NewCond.getNode())
9710        Cond = NewCond;
9711    }
9712  }
9713#if 0
9714  // FIXME: LowerXALUO doesn't handle these!!
9715  else if (Cond.getOpcode() == X86ISD::ADD  ||
9716           Cond.getOpcode() == X86ISD::SUB  ||
9717           Cond.getOpcode() == X86ISD::SMUL ||
9718           Cond.getOpcode() == X86ISD::UMUL)
9719    Cond = LowerXALUO(Cond, DAG);
9720#endif
9721
9722  // Look pass (and (setcc_carry (cmp ...)), 1).
9723  if (Cond.getOpcode() == ISD::AND &&
9724      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9725    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9726    if (C && C->getAPIntValue() == 1)
9727      Cond = Cond.getOperand(0);
9728  }
9729
9730  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9731  // setting operand in place of the X86ISD::SETCC.
9732  unsigned CondOpcode = Cond.getOpcode();
9733  if (CondOpcode == X86ISD::SETCC ||
9734      CondOpcode == X86ISD::SETCC_CARRY) {
9735    CC = Cond.getOperand(0);
9736
9737    SDValue Cmp = Cond.getOperand(1);
9738    unsigned Opc = Cmp.getOpcode();
9739    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9740    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9741      Cond = Cmp;
9742      addTest = false;
9743    } else {
9744      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9745      default: break;
9746      case X86::COND_O:
9747      case X86::COND_B:
9748        // These can only come from an arithmetic instruction with overflow,
9749        // e.g. SADDO, UADDO.
9750        Cond = Cond.getNode()->getOperand(1);
9751        addTest = false;
9752        break;
9753      }
9754    }
9755  }
9756  CondOpcode = Cond.getOpcode();
9757  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9758      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9759      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9760       Cond.getOperand(0).getValueType() != MVT::i8)) {
9761    SDValue LHS = Cond.getOperand(0);
9762    SDValue RHS = Cond.getOperand(1);
9763    unsigned X86Opcode;
9764    unsigned X86Cond;
9765    SDVTList VTs;
9766    switch (CondOpcode) {
9767    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9768    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9769    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9770    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9771    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9772    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9773    default: llvm_unreachable("unexpected overflowing operator");
9774    }
9775    if (Inverted)
9776      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9777    if (CondOpcode == ISD::UMULO)
9778      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9779                          MVT::i32);
9780    else
9781      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9782
9783    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9784
9785    if (CondOpcode == ISD::UMULO)
9786      Cond = X86Op.getValue(2);
9787    else
9788      Cond = X86Op.getValue(1);
9789
9790    CC = DAG.getConstant(X86Cond, MVT::i8);
9791    addTest = false;
9792  } else {
9793    unsigned CondOpc;
9794    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9795      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9796      if (CondOpc == ISD::OR) {
9797        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9798        // two branches instead of an explicit OR instruction with a
9799        // separate test.
9800        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9801            isX86LogicalCmp(Cmp)) {
9802          CC = Cond.getOperand(0).getOperand(0);
9803          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9804                              Chain, Dest, CC, Cmp);
9805          CC = Cond.getOperand(1).getOperand(0);
9806          Cond = Cmp;
9807          addTest = false;
9808        }
9809      } else { // ISD::AND
9810        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9811        // two branches instead of an explicit AND instruction with a
9812        // separate test. However, we only do this if this block doesn't
9813        // have a fall-through edge, because this requires an explicit
9814        // jmp when the condition is false.
9815        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9816            isX86LogicalCmp(Cmp) &&
9817            Op.getNode()->hasOneUse()) {
9818          X86::CondCode CCode =
9819            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9820          CCode = X86::GetOppositeBranchCondition(CCode);
9821          CC = DAG.getConstant(CCode, MVT::i8);
9822          SDNode *User = *Op.getNode()->use_begin();
9823          // Look for an unconditional branch following this conditional branch.
9824          // We need this because we need to reverse the successors in order
9825          // to implement FCMP_OEQ.
9826          if (User->getOpcode() == ISD::BR) {
9827            SDValue FalseBB = User->getOperand(1);
9828            SDNode *NewBR =
9829              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9830            assert(NewBR == User);
9831            (void)NewBR;
9832            Dest = FalseBB;
9833
9834            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9835                                Chain, Dest, CC, Cmp);
9836            X86::CondCode CCode =
9837              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9838            CCode = X86::GetOppositeBranchCondition(CCode);
9839            CC = DAG.getConstant(CCode, MVT::i8);
9840            Cond = Cmp;
9841            addTest = false;
9842          }
9843        }
9844      }
9845    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9846      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9847      // It should be transformed during dag combiner except when the condition
9848      // is set by a arithmetics with overflow node.
9849      X86::CondCode CCode =
9850        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9851      CCode = X86::GetOppositeBranchCondition(CCode);
9852      CC = DAG.getConstant(CCode, MVT::i8);
9853      Cond = Cond.getOperand(0).getOperand(1);
9854      addTest = false;
9855    } else if (Cond.getOpcode() == ISD::SETCC &&
9856               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9857      // For FCMP_OEQ, we can emit
9858      // two branches instead of an explicit AND instruction with a
9859      // separate test. However, we only do this if this block doesn't
9860      // have a fall-through edge, because this requires an explicit
9861      // jmp when the condition is false.
9862      if (Op.getNode()->hasOneUse()) {
9863        SDNode *User = *Op.getNode()->use_begin();
9864        // Look for an unconditional branch following this conditional branch.
9865        // We need this because we need to reverse the successors in order
9866        // to implement FCMP_OEQ.
9867        if (User->getOpcode() == ISD::BR) {
9868          SDValue FalseBB = User->getOperand(1);
9869          SDNode *NewBR =
9870            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9871          assert(NewBR == User);
9872          (void)NewBR;
9873          Dest = FalseBB;
9874
9875          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9876                                    Cond.getOperand(0), Cond.getOperand(1));
9877          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9878          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9879          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9880                              Chain, Dest, CC, Cmp);
9881          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9882          Cond = Cmp;
9883          addTest = false;
9884        }
9885      }
9886    } else if (Cond.getOpcode() == ISD::SETCC &&
9887               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9888      // For FCMP_UNE, we can emit
9889      // two branches instead of an explicit AND instruction with a
9890      // separate test. However, we only do this if this block doesn't
9891      // have a fall-through edge, because this requires an explicit
9892      // jmp when the condition is false.
9893      if (Op.getNode()->hasOneUse()) {
9894        SDNode *User = *Op.getNode()->use_begin();
9895        // Look for an unconditional branch following this conditional branch.
9896        // We need this because we need to reverse the successors in order
9897        // to implement FCMP_UNE.
9898        if (User->getOpcode() == ISD::BR) {
9899          SDValue FalseBB = User->getOperand(1);
9900          SDNode *NewBR =
9901            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9902          assert(NewBR == User);
9903          (void)NewBR;
9904
9905          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9906                                    Cond.getOperand(0), Cond.getOperand(1));
9907          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9908          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9909          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9910                              Chain, Dest, CC, Cmp);
9911          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9912          Cond = Cmp;
9913          addTest = false;
9914          Dest = FalseBB;
9915        }
9916      }
9917    }
9918  }
9919
9920  if (addTest) {
9921    // Look pass the truncate if the high bits are known zero.
9922    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9923        Cond = Cond.getOperand(0);
9924
9925    // We know the result of AND is compared against zero. Try to match
9926    // it to BT.
9927    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9928      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9929      if (NewSetCC.getNode()) {
9930        CC = NewSetCC.getOperand(0);
9931        Cond = NewSetCC.getOperand(1);
9932        addTest = false;
9933      }
9934    }
9935  }
9936
9937  if (addTest) {
9938    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9939    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9940  }
9941  Cond = ConvertCmpIfNecessary(Cond, DAG);
9942  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9943                     Chain, Dest, CC, Cond);
9944}
9945
9946// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9947// Calls to _alloca is needed to probe the stack when allocating more than 4k
9948// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9949// that the guard pages used by the OS virtual memory manager are allocated in
9950// correct sequence.
9951SDValue
9952X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9953                                           SelectionDAG &DAG) const {
9954  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9955          getTargetMachine().Options.EnableSegmentedStacks) &&
9956         "This should be used only on Windows targets or when segmented stacks "
9957         "are being used");
9958  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9959  DebugLoc dl = Op.getDebugLoc();
9960
9961  // Get the inputs.
9962  SDValue Chain = Op.getOperand(0);
9963  SDValue Size  = Op.getOperand(1);
9964  // FIXME: Ensure alignment here
9965
9966  bool Is64Bit = Subtarget->is64Bit();
9967  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9968
9969  if (getTargetMachine().Options.EnableSegmentedStacks) {
9970    MachineFunction &MF = DAG.getMachineFunction();
9971    MachineRegisterInfo &MRI = MF.getRegInfo();
9972
9973    if (Is64Bit) {
9974      // The 64 bit implementation of segmented stacks needs to clobber both r10
9975      // r11. This makes it impossible to use it along with nested parameters.
9976      const Function *F = MF.getFunction();
9977
9978      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9979           I != E; ++I)
9980        if (I->hasNestAttr())
9981          report_fatal_error("Cannot use segmented stacks with functions that "
9982                             "have nested arguments.");
9983    }
9984
9985    const TargetRegisterClass *AddrRegClass =
9986      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9987    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9988    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9989    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9990                                DAG.getRegister(Vreg, SPTy));
9991    SDValue Ops1[2] = { Value, Chain };
9992    return DAG.getMergeValues(Ops1, 2, dl);
9993  } else {
9994    SDValue Flag;
9995    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9996
9997    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9998    Flag = Chain.getValue(1);
9999    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10000
10001    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10002    Flag = Chain.getValue(1);
10003
10004    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10005                               SPTy).getValue(1);
10006
10007    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10008    return DAG.getMergeValues(Ops1, 2, dl);
10009  }
10010}
10011
10012SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10013  MachineFunction &MF = DAG.getMachineFunction();
10014  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10015
10016  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10017  DebugLoc DL = Op.getDebugLoc();
10018
10019  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10020    // vastart just stores the address of the VarArgsFrameIndex slot into the
10021    // memory location argument.
10022    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10023                                   getPointerTy());
10024    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10025                        MachinePointerInfo(SV), false, false, 0);
10026  }
10027
10028  // __va_list_tag:
10029  //   gp_offset         (0 - 6 * 8)
10030  //   fp_offset         (48 - 48 + 8 * 16)
10031  //   overflow_arg_area (point to parameters coming in memory).
10032  //   reg_save_area
10033  SmallVector<SDValue, 8> MemOps;
10034  SDValue FIN = Op.getOperand(1);
10035  // Store gp_offset
10036  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10037                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10038                                               MVT::i32),
10039                               FIN, MachinePointerInfo(SV), false, false, 0);
10040  MemOps.push_back(Store);
10041
10042  // Store fp_offset
10043  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10044                    FIN, DAG.getIntPtrConstant(4));
10045  Store = DAG.getStore(Op.getOperand(0), DL,
10046                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10047                                       MVT::i32),
10048                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10049  MemOps.push_back(Store);
10050
10051  // Store ptr to overflow_arg_area
10052  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10053                    FIN, DAG.getIntPtrConstant(4));
10054  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10055                                    getPointerTy());
10056  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10057                       MachinePointerInfo(SV, 8),
10058                       false, false, 0);
10059  MemOps.push_back(Store);
10060
10061  // Store ptr to reg_save_area.
10062  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10063                    FIN, DAG.getIntPtrConstant(8));
10064  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10065                                    getPointerTy());
10066  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10067                       MachinePointerInfo(SV, 16), false, false, 0);
10068  MemOps.push_back(Store);
10069  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10070                     &MemOps[0], MemOps.size());
10071}
10072
10073SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10074  assert(Subtarget->is64Bit() &&
10075         "LowerVAARG only handles 64-bit va_arg!");
10076  assert((Subtarget->isTargetLinux() ||
10077          Subtarget->isTargetDarwin()) &&
10078          "Unhandled target in LowerVAARG");
10079  assert(Op.getNode()->getNumOperands() == 4);
10080  SDValue Chain = Op.getOperand(0);
10081  SDValue SrcPtr = Op.getOperand(1);
10082  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10083  unsigned Align = Op.getConstantOperandVal(3);
10084  DebugLoc dl = Op.getDebugLoc();
10085
10086  EVT ArgVT = Op.getNode()->getValueType(0);
10087  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10088  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10089  uint8_t ArgMode;
10090
10091  // Decide which area this value should be read from.
10092  // TODO: Implement the AMD64 ABI in its entirety. This simple
10093  // selection mechanism works only for the basic types.
10094  if (ArgVT == MVT::f80) {
10095    llvm_unreachable("va_arg for f80 not yet implemented");
10096  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10097    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10098  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10099    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10100  } else {
10101    llvm_unreachable("Unhandled argument type in LowerVAARG");
10102  }
10103
10104  if (ArgMode == 2) {
10105    // Sanity Check: Make sure using fp_offset makes sense.
10106    assert(!getTargetMachine().Options.UseSoftFloat &&
10107           !(DAG.getMachineFunction()
10108                .getFunction()->getAttributes()
10109                .hasAttribute(AttributeSet::FunctionIndex,
10110                              Attribute::NoImplicitFloat)) &&
10111           Subtarget->hasSSE1());
10112  }
10113
10114  // Insert VAARG_64 node into the DAG
10115  // VAARG_64 returns two values: Variable Argument Address, Chain
10116  SmallVector<SDValue, 11> InstOps;
10117  InstOps.push_back(Chain);
10118  InstOps.push_back(SrcPtr);
10119  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10120  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10121  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10122  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10123  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10124                                          VTs, &InstOps[0], InstOps.size(),
10125                                          MVT::i64,
10126                                          MachinePointerInfo(SV),
10127                                          /*Align=*/0,
10128                                          /*Volatile=*/false,
10129                                          /*ReadMem=*/true,
10130                                          /*WriteMem=*/true);
10131  Chain = VAARG.getValue(1);
10132
10133  // Load the next argument and return it
10134  return DAG.getLoad(ArgVT, dl,
10135                     Chain,
10136                     VAARG,
10137                     MachinePointerInfo(),
10138                     false, false, false, 0);
10139}
10140
10141static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10142                           SelectionDAG &DAG) {
10143  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10144  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10145  SDValue Chain = Op.getOperand(0);
10146  SDValue DstPtr = Op.getOperand(1);
10147  SDValue SrcPtr = Op.getOperand(2);
10148  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10149  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10150  DebugLoc DL = Op.getDebugLoc();
10151
10152  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10153                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10154                       false,
10155                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10156}
10157
10158// getTargetVShiftNOde - Handle vector element shifts where the shift amount
10159// may or may not be a constant. Takes immediate version of shift as input.
10160static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10161                                   SDValue SrcOp, SDValue ShAmt,
10162                                   SelectionDAG &DAG) {
10163  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10164
10165  if (isa<ConstantSDNode>(ShAmt)) {
10166    // Constant may be a TargetConstant. Use a regular constant.
10167    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10168    switch (Opc) {
10169      default: llvm_unreachable("Unknown target vector shift node");
10170      case X86ISD::VSHLI:
10171      case X86ISD::VSRLI:
10172      case X86ISD::VSRAI:
10173        return DAG.getNode(Opc, dl, VT, SrcOp,
10174                           DAG.getConstant(ShiftAmt, MVT::i32));
10175    }
10176  }
10177
10178  // Change opcode to non-immediate version
10179  switch (Opc) {
10180    default: llvm_unreachable("Unknown target vector shift node");
10181    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10182    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10183    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10184  }
10185
10186  // Need to build a vector containing shift amount
10187  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10188  SDValue ShOps[4];
10189  ShOps[0] = ShAmt;
10190  ShOps[1] = DAG.getConstant(0, MVT::i32);
10191  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10192  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10193
10194  // The return type has to be a 128-bit type with the same element
10195  // type as the input type.
10196  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10197  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10198
10199  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10200  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10201}
10202
10203static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10204  DebugLoc dl = Op.getDebugLoc();
10205  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10206  switch (IntNo) {
10207  default: return SDValue();    // Don't custom lower most intrinsics.
10208  // Comparison intrinsics.
10209  case Intrinsic::x86_sse_comieq_ss:
10210  case Intrinsic::x86_sse_comilt_ss:
10211  case Intrinsic::x86_sse_comile_ss:
10212  case Intrinsic::x86_sse_comigt_ss:
10213  case Intrinsic::x86_sse_comige_ss:
10214  case Intrinsic::x86_sse_comineq_ss:
10215  case Intrinsic::x86_sse_ucomieq_ss:
10216  case Intrinsic::x86_sse_ucomilt_ss:
10217  case Intrinsic::x86_sse_ucomile_ss:
10218  case Intrinsic::x86_sse_ucomigt_ss:
10219  case Intrinsic::x86_sse_ucomige_ss:
10220  case Intrinsic::x86_sse_ucomineq_ss:
10221  case Intrinsic::x86_sse2_comieq_sd:
10222  case Intrinsic::x86_sse2_comilt_sd:
10223  case Intrinsic::x86_sse2_comile_sd:
10224  case Intrinsic::x86_sse2_comigt_sd:
10225  case Intrinsic::x86_sse2_comige_sd:
10226  case Intrinsic::x86_sse2_comineq_sd:
10227  case Intrinsic::x86_sse2_ucomieq_sd:
10228  case Intrinsic::x86_sse2_ucomilt_sd:
10229  case Intrinsic::x86_sse2_ucomile_sd:
10230  case Intrinsic::x86_sse2_ucomigt_sd:
10231  case Intrinsic::x86_sse2_ucomige_sd:
10232  case Intrinsic::x86_sse2_ucomineq_sd: {
10233    unsigned Opc;
10234    ISD::CondCode CC;
10235    switch (IntNo) {
10236    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10237    case Intrinsic::x86_sse_comieq_ss:
10238    case Intrinsic::x86_sse2_comieq_sd:
10239      Opc = X86ISD::COMI;
10240      CC = ISD::SETEQ;
10241      break;
10242    case Intrinsic::x86_sse_comilt_ss:
10243    case Intrinsic::x86_sse2_comilt_sd:
10244      Opc = X86ISD::COMI;
10245      CC = ISD::SETLT;
10246      break;
10247    case Intrinsic::x86_sse_comile_ss:
10248    case Intrinsic::x86_sse2_comile_sd:
10249      Opc = X86ISD::COMI;
10250      CC = ISD::SETLE;
10251      break;
10252    case Intrinsic::x86_sse_comigt_ss:
10253    case Intrinsic::x86_sse2_comigt_sd:
10254      Opc = X86ISD::COMI;
10255      CC = ISD::SETGT;
10256      break;
10257    case Intrinsic::x86_sse_comige_ss:
10258    case Intrinsic::x86_sse2_comige_sd:
10259      Opc = X86ISD::COMI;
10260      CC = ISD::SETGE;
10261      break;
10262    case Intrinsic::x86_sse_comineq_ss:
10263    case Intrinsic::x86_sse2_comineq_sd:
10264      Opc = X86ISD::COMI;
10265      CC = ISD::SETNE;
10266      break;
10267    case Intrinsic::x86_sse_ucomieq_ss:
10268    case Intrinsic::x86_sse2_ucomieq_sd:
10269      Opc = X86ISD::UCOMI;
10270      CC = ISD::SETEQ;
10271      break;
10272    case Intrinsic::x86_sse_ucomilt_ss:
10273    case Intrinsic::x86_sse2_ucomilt_sd:
10274      Opc = X86ISD::UCOMI;
10275      CC = ISD::SETLT;
10276      break;
10277    case Intrinsic::x86_sse_ucomile_ss:
10278    case Intrinsic::x86_sse2_ucomile_sd:
10279      Opc = X86ISD::UCOMI;
10280      CC = ISD::SETLE;
10281      break;
10282    case Intrinsic::x86_sse_ucomigt_ss:
10283    case Intrinsic::x86_sse2_ucomigt_sd:
10284      Opc = X86ISD::UCOMI;
10285      CC = ISD::SETGT;
10286      break;
10287    case Intrinsic::x86_sse_ucomige_ss:
10288    case Intrinsic::x86_sse2_ucomige_sd:
10289      Opc = X86ISD::UCOMI;
10290      CC = ISD::SETGE;
10291      break;
10292    case Intrinsic::x86_sse_ucomineq_ss:
10293    case Intrinsic::x86_sse2_ucomineq_sd:
10294      Opc = X86ISD::UCOMI;
10295      CC = ISD::SETNE;
10296      break;
10297    }
10298
10299    SDValue LHS = Op.getOperand(1);
10300    SDValue RHS = Op.getOperand(2);
10301    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10302    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10303    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10304    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10305                                DAG.getConstant(X86CC, MVT::i8), Cond);
10306    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10307  }
10308
10309  // Arithmetic intrinsics.
10310  case Intrinsic::x86_sse2_pmulu_dq:
10311  case Intrinsic::x86_avx2_pmulu_dq:
10312    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10313                       Op.getOperand(1), Op.getOperand(2));
10314
10315  // SSE2/AVX2 sub with unsigned saturation intrinsics
10316  case Intrinsic::x86_sse2_psubus_b:
10317  case Intrinsic::x86_sse2_psubus_w:
10318  case Intrinsic::x86_avx2_psubus_b:
10319  case Intrinsic::x86_avx2_psubus_w:
10320    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10321                       Op.getOperand(1), Op.getOperand(2));
10322
10323  // SSE3/AVX horizontal add/sub intrinsics
10324  case Intrinsic::x86_sse3_hadd_ps:
10325  case Intrinsic::x86_sse3_hadd_pd:
10326  case Intrinsic::x86_avx_hadd_ps_256:
10327  case Intrinsic::x86_avx_hadd_pd_256:
10328  case Intrinsic::x86_sse3_hsub_ps:
10329  case Intrinsic::x86_sse3_hsub_pd:
10330  case Intrinsic::x86_avx_hsub_ps_256:
10331  case Intrinsic::x86_avx_hsub_pd_256:
10332  case Intrinsic::x86_ssse3_phadd_w_128:
10333  case Intrinsic::x86_ssse3_phadd_d_128:
10334  case Intrinsic::x86_avx2_phadd_w:
10335  case Intrinsic::x86_avx2_phadd_d:
10336  case Intrinsic::x86_ssse3_phsub_w_128:
10337  case Intrinsic::x86_ssse3_phsub_d_128:
10338  case Intrinsic::x86_avx2_phsub_w:
10339  case Intrinsic::x86_avx2_phsub_d: {
10340    unsigned Opcode;
10341    switch (IntNo) {
10342    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10343    case Intrinsic::x86_sse3_hadd_ps:
10344    case Intrinsic::x86_sse3_hadd_pd:
10345    case Intrinsic::x86_avx_hadd_ps_256:
10346    case Intrinsic::x86_avx_hadd_pd_256:
10347      Opcode = X86ISD::FHADD;
10348      break;
10349    case Intrinsic::x86_sse3_hsub_ps:
10350    case Intrinsic::x86_sse3_hsub_pd:
10351    case Intrinsic::x86_avx_hsub_ps_256:
10352    case Intrinsic::x86_avx_hsub_pd_256:
10353      Opcode = X86ISD::FHSUB;
10354      break;
10355    case Intrinsic::x86_ssse3_phadd_w_128:
10356    case Intrinsic::x86_ssse3_phadd_d_128:
10357    case Intrinsic::x86_avx2_phadd_w:
10358    case Intrinsic::x86_avx2_phadd_d:
10359      Opcode = X86ISD::HADD;
10360      break;
10361    case Intrinsic::x86_ssse3_phsub_w_128:
10362    case Intrinsic::x86_ssse3_phsub_d_128:
10363    case Intrinsic::x86_avx2_phsub_w:
10364    case Intrinsic::x86_avx2_phsub_d:
10365      Opcode = X86ISD::HSUB;
10366      break;
10367    }
10368    return DAG.getNode(Opcode, dl, Op.getValueType(),
10369                       Op.getOperand(1), Op.getOperand(2));
10370  }
10371
10372  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10373  case Intrinsic::x86_sse2_pmaxu_b:
10374  case Intrinsic::x86_sse41_pmaxuw:
10375  case Intrinsic::x86_sse41_pmaxud:
10376  case Intrinsic::x86_avx2_pmaxu_b:
10377  case Intrinsic::x86_avx2_pmaxu_w:
10378  case Intrinsic::x86_avx2_pmaxu_d:
10379  case Intrinsic::x86_sse2_pminu_b:
10380  case Intrinsic::x86_sse41_pminuw:
10381  case Intrinsic::x86_sse41_pminud:
10382  case Intrinsic::x86_avx2_pminu_b:
10383  case Intrinsic::x86_avx2_pminu_w:
10384  case Intrinsic::x86_avx2_pminu_d:
10385  case Intrinsic::x86_sse41_pmaxsb:
10386  case Intrinsic::x86_sse2_pmaxs_w:
10387  case Intrinsic::x86_sse41_pmaxsd:
10388  case Intrinsic::x86_avx2_pmaxs_b:
10389  case Intrinsic::x86_avx2_pmaxs_w:
10390  case Intrinsic::x86_avx2_pmaxs_d:
10391  case Intrinsic::x86_sse41_pminsb:
10392  case Intrinsic::x86_sse2_pmins_w:
10393  case Intrinsic::x86_sse41_pminsd:
10394  case Intrinsic::x86_avx2_pmins_b:
10395  case Intrinsic::x86_avx2_pmins_w:
10396  case Intrinsic::x86_avx2_pmins_d: {
10397    unsigned Opcode;
10398    switch (IntNo) {
10399    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10400    case Intrinsic::x86_sse2_pmaxu_b:
10401    case Intrinsic::x86_sse41_pmaxuw:
10402    case Intrinsic::x86_sse41_pmaxud:
10403    case Intrinsic::x86_avx2_pmaxu_b:
10404    case Intrinsic::x86_avx2_pmaxu_w:
10405    case Intrinsic::x86_avx2_pmaxu_d:
10406      Opcode = X86ISD::UMAX;
10407      break;
10408    case Intrinsic::x86_sse2_pminu_b:
10409    case Intrinsic::x86_sse41_pminuw:
10410    case Intrinsic::x86_sse41_pminud:
10411    case Intrinsic::x86_avx2_pminu_b:
10412    case Intrinsic::x86_avx2_pminu_w:
10413    case Intrinsic::x86_avx2_pminu_d:
10414      Opcode = X86ISD::UMIN;
10415      break;
10416    case Intrinsic::x86_sse41_pmaxsb:
10417    case Intrinsic::x86_sse2_pmaxs_w:
10418    case Intrinsic::x86_sse41_pmaxsd:
10419    case Intrinsic::x86_avx2_pmaxs_b:
10420    case Intrinsic::x86_avx2_pmaxs_w:
10421    case Intrinsic::x86_avx2_pmaxs_d:
10422      Opcode = X86ISD::SMAX;
10423      break;
10424    case Intrinsic::x86_sse41_pminsb:
10425    case Intrinsic::x86_sse2_pmins_w:
10426    case Intrinsic::x86_sse41_pminsd:
10427    case Intrinsic::x86_avx2_pmins_b:
10428    case Intrinsic::x86_avx2_pmins_w:
10429    case Intrinsic::x86_avx2_pmins_d:
10430      Opcode = X86ISD::SMIN;
10431      break;
10432    }
10433    return DAG.getNode(Opcode, dl, Op.getValueType(),
10434                       Op.getOperand(1), Op.getOperand(2));
10435  }
10436
10437  // SSE/SSE2/AVX floating point max/min intrinsics.
10438  case Intrinsic::x86_sse_max_ps:
10439  case Intrinsic::x86_sse2_max_pd:
10440  case Intrinsic::x86_avx_max_ps_256:
10441  case Intrinsic::x86_avx_max_pd_256:
10442  case Intrinsic::x86_sse_min_ps:
10443  case Intrinsic::x86_sse2_min_pd:
10444  case Intrinsic::x86_avx_min_ps_256:
10445  case Intrinsic::x86_avx_min_pd_256: {
10446    unsigned Opcode;
10447    switch (IntNo) {
10448    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10449    case Intrinsic::x86_sse_max_ps:
10450    case Intrinsic::x86_sse2_max_pd:
10451    case Intrinsic::x86_avx_max_ps_256:
10452    case Intrinsic::x86_avx_max_pd_256:
10453      Opcode = X86ISD::FMAX;
10454      break;
10455    case Intrinsic::x86_sse_min_ps:
10456    case Intrinsic::x86_sse2_min_pd:
10457    case Intrinsic::x86_avx_min_ps_256:
10458    case Intrinsic::x86_avx_min_pd_256:
10459      Opcode = X86ISD::FMIN;
10460      break;
10461    }
10462    return DAG.getNode(Opcode, dl, Op.getValueType(),
10463                       Op.getOperand(1), Op.getOperand(2));
10464  }
10465
10466  // AVX2 variable shift intrinsics
10467  case Intrinsic::x86_avx2_psllv_d:
10468  case Intrinsic::x86_avx2_psllv_q:
10469  case Intrinsic::x86_avx2_psllv_d_256:
10470  case Intrinsic::x86_avx2_psllv_q_256:
10471  case Intrinsic::x86_avx2_psrlv_d:
10472  case Intrinsic::x86_avx2_psrlv_q:
10473  case Intrinsic::x86_avx2_psrlv_d_256:
10474  case Intrinsic::x86_avx2_psrlv_q_256:
10475  case Intrinsic::x86_avx2_psrav_d:
10476  case Intrinsic::x86_avx2_psrav_d_256: {
10477    unsigned Opcode;
10478    switch (IntNo) {
10479    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10480    case Intrinsic::x86_avx2_psllv_d:
10481    case Intrinsic::x86_avx2_psllv_q:
10482    case Intrinsic::x86_avx2_psllv_d_256:
10483    case Intrinsic::x86_avx2_psllv_q_256:
10484      Opcode = ISD::SHL;
10485      break;
10486    case Intrinsic::x86_avx2_psrlv_d:
10487    case Intrinsic::x86_avx2_psrlv_q:
10488    case Intrinsic::x86_avx2_psrlv_d_256:
10489    case Intrinsic::x86_avx2_psrlv_q_256:
10490      Opcode = ISD::SRL;
10491      break;
10492    case Intrinsic::x86_avx2_psrav_d:
10493    case Intrinsic::x86_avx2_psrav_d_256:
10494      Opcode = ISD::SRA;
10495      break;
10496    }
10497    return DAG.getNode(Opcode, dl, Op.getValueType(),
10498                       Op.getOperand(1), Op.getOperand(2));
10499  }
10500
10501  case Intrinsic::x86_ssse3_pshuf_b_128:
10502  case Intrinsic::x86_avx2_pshuf_b:
10503    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10504                       Op.getOperand(1), Op.getOperand(2));
10505
10506  case Intrinsic::x86_ssse3_psign_b_128:
10507  case Intrinsic::x86_ssse3_psign_w_128:
10508  case Intrinsic::x86_ssse3_psign_d_128:
10509  case Intrinsic::x86_avx2_psign_b:
10510  case Intrinsic::x86_avx2_psign_w:
10511  case Intrinsic::x86_avx2_psign_d:
10512    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10513                       Op.getOperand(1), Op.getOperand(2));
10514
10515  case Intrinsic::x86_sse41_insertps:
10516    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10517                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10518
10519  case Intrinsic::x86_avx_vperm2f128_ps_256:
10520  case Intrinsic::x86_avx_vperm2f128_pd_256:
10521  case Intrinsic::x86_avx_vperm2f128_si_256:
10522  case Intrinsic::x86_avx2_vperm2i128:
10523    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10524                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10525
10526  case Intrinsic::x86_avx2_permd:
10527  case Intrinsic::x86_avx2_permps:
10528    // Operands intentionally swapped. Mask is last operand to intrinsic,
10529    // but second operand for node/intruction.
10530    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10531                       Op.getOperand(2), Op.getOperand(1));
10532
10533  case Intrinsic::x86_sse_sqrt_ps:
10534  case Intrinsic::x86_sse2_sqrt_pd:
10535  case Intrinsic::x86_avx_sqrt_ps_256:
10536  case Intrinsic::x86_avx_sqrt_pd_256:
10537    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10538
10539  // ptest and testp intrinsics. The intrinsic these come from are designed to
10540  // return an integer value, not just an instruction so lower it to the ptest
10541  // or testp pattern and a setcc for the result.
10542  case Intrinsic::x86_sse41_ptestz:
10543  case Intrinsic::x86_sse41_ptestc:
10544  case Intrinsic::x86_sse41_ptestnzc:
10545  case Intrinsic::x86_avx_ptestz_256:
10546  case Intrinsic::x86_avx_ptestc_256:
10547  case Intrinsic::x86_avx_ptestnzc_256:
10548  case Intrinsic::x86_avx_vtestz_ps:
10549  case Intrinsic::x86_avx_vtestc_ps:
10550  case Intrinsic::x86_avx_vtestnzc_ps:
10551  case Intrinsic::x86_avx_vtestz_pd:
10552  case Intrinsic::x86_avx_vtestc_pd:
10553  case Intrinsic::x86_avx_vtestnzc_pd:
10554  case Intrinsic::x86_avx_vtestz_ps_256:
10555  case Intrinsic::x86_avx_vtestc_ps_256:
10556  case Intrinsic::x86_avx_vtestnzc_ps_256:
10557  case Intrinsic::x86_avx_vtestz_pd_256:
10558  case Intrinsic::x86_avx_vtestc_pd_256:
10559  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10560    bool IsTestPacked = false;
10561    unsigned X86CC;
10562    switch (IntNo) {
10563    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10564    case Intrinsic::x86_avx_vtestz_ps:
10565    case Intrinsic::x86_avx_vtestz_pd:
10566    case Intrinsic::x86_avx_vtestz_ps_256:
10567    case Intrinsic::x86_avx_vtestz_pd_256:
10568      IsTestPacked = true; // Fallthrough
10569    case Intrinsic::x86_sse41_ptestz:
10570    case Intrinsic::x86_avx_ptestz_256:
10571      // ZF = 1
10572      X86CC = X86::COND_E;
10573      break;
10574    case Intrinsic::x86_avx_vtestc_ps:
10575    case Intrinsic::x86_avx_vtestc_pd:
10576    case Intrinsic::x86_avx_vtestc_ps_256:
10577    case Intrinsic::x86_avx_vtestc_pd_256:
10578      IsTestPacked = true; // Fallthrough
10579    case Intrinsic::x86_sse41_ptestc:
10580    case Intrinsic::x86_avx_ptestc_256:
10581      // CF = 1
10582      X86CC = X86::COND_B;
10583      break;
10584    case Intrinsic::x86_avx_vtestnzc_ps:
10585    case Intrinsic::x86_avx_vtestnzc_pd:
10586    case Intrinsic::x86_avx_vtestnzc_ps_256:
10587    case Intrinsic::x86_avx_vtestnzc_pd_256:
10588      IsTestPacked = true; // Fallthrough
10589    case Intrinsic::x86_sse41_ptestnzc:
10590    case Intrinsic::x86_avx_ptestnzc_256:
10591      // ZF and CF = 0
10592      X86CC = X86::COND_A;
10593      break;
10594    }
10595
10596    SDValue LHS = Op.getOperand(1);
10597    SDValue RHS = Op.getOperand(2);
10598    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10599    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10600    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10601    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10602    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10603  }
10604
10605  // SSE/AVX shift intrinsics
10606  case Intrinsic::x86_sse2_psll_w:
10607  case Intrinsic::x86_sse2_psll_d:
10608  case Intrinsic::x86_sse2_psll_q:
10609  case Intrinsic::x86_avx2_psll_w:
10610  case Intrinsic::x86_avx2_psll_d:
10611  case Intrinsic::x86_avx2_psll_q:
10612  case Intrinsic::x86_sse2_psrl_w:
10613  case Intrinsic::x86_sse2_psrl_d:
10614  case Intrinsic::x86_sse2_psrl_q:
10615  case Intrinsic::x86_avx2_psrl_w:
10616  case Intrinsic::x86_avx2_psrl_d:
10617  case Intrinsic::x86_avx2_psrl_q:
10618  case Intrinsic::x86_sse2_psra_w:
10619  case Intrinsic::x86_sse2_psra_d:
10620  case Intrinsic::x86_avx2_psra_w:
10621  case Intrinsic::x86_avx2_psra_d: {
10622    unsigned Opcode;
10623    switch (IntNo) {
10624    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10625    case Intrinsic::x86_sse2_psll_w:
10626    case Intrinsic::x86_sse2_psll_d:
10627    case Intrinsic::x86_sse2_psll_q:
10628    case Intrinsic::x86_avx2_psll_w:
10629    case Intrinsic::x86_avx2_psll_d:
10630    case Intrinsic::x86_avx2_psll_q:
10631      Opcode = X86ISD::VSHL;
10632      break;
10633    case Intrinsic::x86_sse2_psrl_w:
10634    case Intrinsic::x86_sse2_psrl_d:
10635    case Intrinsic::x86_sse2_psrl_q:
10636    case Intrinsic::x86_avx2_psrl_w:
10637    case Intrinsic::x86_avx2_psrl_d:
10638    case Intrinsic::x86_avx2_psrl_q:
10639      Opcode = X86ISD::VSRL;
10640      break;
10641    case Intrinsic::x86_sse2_psra_w:
10642    case Intrinsic::x86_sse2_psra_d:
10643    case Intrinsic::x86_avx2_psra_w:
10644    case Intrinsic::x86_avx2_psra_d:
10645      Opcode = X86ISD::VSRA;
10646      break;
10647    }
10648    return DAG.getNode(Opcode, dl, Op.getValueType(),
10649                       Op.getOperand(1), Op.getOperand(2));
10650  }
10651
10652  // SSE/AVX immediate shift intrinsics
10653  case Intrinsic::x86_sse2_pslli_w:
10654  case Intrinsic::x86_sse2_pslli_d:
10655  case Intrinsic::x86_sse2_pslli_q:
10656  case Intrinsic::x86_avx2_pslli_w:
10657  case Intrinsic::x86_avx2_pslli_d:
10658  case Intrinsic::x86_avx2_pslli_q:
10659  case Intrinsic::x86_sse2_psrli_w:
10660  case Intrinsic::x86_sse2_psrli_d:
10661  case Intrinsic::x86_sse2_psrli_q:
10662  case Intrinsic::x86_avx2_psrli_w:
10663  case Intrinsic::x86_avx2_psrli_d:
10664  case Intrinsic::x86_avx2_psrli_q:
10665  case Intrinsic::x86_sse2_psrai_w:
10666  case Intrinsic::x86_sse2_psrai_d:
10667  case Intrinsic::x86_avx2_psrai_w:
10668  case Intrinsic::x86_avx2_psrai_d: {
10669    unsigned Opcode;
10670    switch (IntNo) {
10671    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10672    case Intrinsic::x86_sse2_pslli_w:
10673    case Intrinsic::x86_sse2_pslli_d:
10674    case Intrinsic::x86_sse2_pslli_q:
10675    case Intrinsic::x86_avx2_pslli_w:
10676    case Intrinsic::x86_avx2_pslli_d:
10677    case Intrinsic::x86_avx2_pslli_q:
10678      Opcode = X86ISD::VSHLI;
10679      break;
10680    case Intrinsic::x86_sse2_psrli_w:
10681    case Intrinsic::x86_sse2_psrli_d:
10682    case Intrinsic::x86_sse2_psrli_q:
10683    case Intrinsic::x86_avx2_psrli_w:
10684    case Intrinsic::x86_avx2_psrli_d:
10685    case Intrinsic::x86_avx2_psrli_q:
10686      Opcode = X86ISD::VSRLI;
10687      break;
10688    case Intrinsic::x86_sse2_psrai_w:
10689    case Intrinsic::x86_sse2_psrai_d:
10690    case Intrinsic::x86_avx2_psrai_w:
10691    case Intrinsic::x86_avx2_psrai_d:
10692      Opcode = X86ISD::VSRAI;
10693      break;
10694    }
10695    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10696                               Op.getOperand(1), Op.getOperand(2), DAG);
10697  }
10698
10699  case Intrinsic::x86_sse42_pcmpistria128:
10700  case Intrinsic::x86_sse42_pcmpestria128:
10701  case Intrinsic::x86_sse42_pcmpistric128:
10702  case Intrinsic::x86_sse42_pcmpestric128:
10703  case Intrinsic::x86_sse42_pcmpistrio128:
10704  case Intrinsic::x86_sse42_pcmpestrio128:
10705  case Intrinsic::x86_sse42_pcmpistris128:
10706  case Intrinsic::x86_sse42_pcmpestris128:
10707  case Intrinsic::x86_sse42_pcmpistriz128:
10708  case Intrinsic::x86_sse42_pcmpestriz128: {
10709    unsigned Opcode;
10710    unsigned X86CC;
10711    switch (IntNo) {
10712    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10713    case Intrinsic::x86_sse42_pcmpistria128:
10714      Opcode = X86ISD::PCMPISTRI;
10715      X86CC = X86::COND_A;
10716      break;
10717    case Intrinsic::x86_sse42_pcmpestria128:
10718      Opcode = X86ISD::PCMPESTRI;
10719      X86CC = X86::COND_A;
10720      break;
10721    case Intrinsic::x86_sse42_pcmpistric128:
10722      Opcode = X86ISD::PCMPISTRI;
10723      X86CC = X86::COND_B;
10724      break;
10725    case Intrinsic::x86_sse42_pcmpestric128:
10726      Opcode = X86ISD::PCMPESTRI;
10727      X86CC = X86::COND_B;
10728      break;
10729    case Intrinsic::x86_sse42_pcmpistrio128:
10730      Opcode = X86ISD::PCMPISTRI;
10731      X86CC = X86::COND_O;
10732      break;
10733    case Intrinsic::x86_sse42_pcmpestrio128:
10734      Opcode = X86ISD::PCMPESTRI;
10735      X86CC = X86::COND_O;
10736      break;
10737    case Intrinsic::x86_sse42_pcmpistris128:
10738      Opcode = X86ISD::PCMPISTRI;
10739      X86CC = X86::COND_S;
10740      break;
10741    case Intrinsic::x86_sse42_pcmpestris128:
10742      Opcode = X86ISD::PCMPESTRI;
10743      X86CC = X86::COND_S;
10744      break;
10745    case Intrinsic::x86_sse42_pcmpistriz128:
10746      Opcode = X86ISD::PCMPISTRI;
10747      X86CC = X86::COND_E;
10748      break;
10749    case Intrinsic::x86_sse42_pcmpestriz128:
10750      Opcode = X86ISD::PCMPESTRI;
10751      X86CC = X86::COND_E;
10752      break;
10753    }
10754    SmallVector<SDValue, 5> NewOps;
10755    NewOps.append(Op->op_begin()+1, Op->op_end());
10756    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10757    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10758    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10759                                DAG.getConstant(X86CC, MVT::i8),
10760                                SDValue(PCMP.getNode(), 1));
10761    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10762  }
10763
10764  case Intrinsic::x86_sse42_pcmpistri128:
10765  case Intrinsic::x86_sse42_pcmpestri128: {
10766    unsigned Opcode;
10767    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10768      Opcode = X86ISD::PCMPISTRI;
10769    else
10770      Opcode = X86ISD::PCMPESTRI;
10771
10772    SmallVector<SDValue, 5> NewOps;
10773    NewOps.append(Op->op_begin()+1, Op->op_end());
10774    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10775    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10776  }
10777  case Intrinsic::x86_fma_vfmadd_ps:
10778  case Intrinsic::x86_fma_vfmadd_pd:
10779  case Intrinsic::x86_fma_vfmsub_ps:
10780  case Intrinsic::x86_fma_vfmsub_pd:
10781  case Intrinsic::x86_fma_vfnmadd_ps:
10782  case Intrinsic::x86_fma_vfnmadd_pd:
10783  case Intrinsic::x86_fma_vfnmsub_ps:
10784  case Intrinsic::x86_fma_vfnmsub_pd:
10785  case Intrinsic::x86_fma_vfmaddsub_ps:
10786  case Intrinsic::x86_fma_vfmaddsub_pd:
10787  case Intrinsic::x86_fma_vfmsubadd_ps:
10788  case Intrinsic::x86_fma_vfmsubadd_pd:
10789  case Intrinsic::x86_fma_vfmadd_ps_256:
10790  case Intrinsic::x86_fma_vfmadd_pd_256:
10791  case Intrinsic::x86_fma_vfmsub_ps_256:
10792  case Intrinsic::x86_fma_vfmsub_pd_256:
10793  case Intrinsic::x86_fma_vfnmadd_ps_256:
10794  case Intrinsic::x86_fma_vfnmadd_pd_256:
10795  case Intrinsic::x86_fma_vfnmsub_ps_256:
10796  case Intrinsic::x86_fma_vfnmsub_pd_256:
10797  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10798  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10799  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10800  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10801    unsigned Opc;
10802    switch (IntNo) {
10803    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10804    case Intrinsic::x86_fma_vfmadd_ps:
10805    case Intrinsic::x86_fma_vfmadd_pd:
10806    case Intrinsic::x86_fma_vfmadd_ps_256:
10807    case Intrinsic::x86_fma_vfmadd_pd_256:
10808      Opc = X86ISD::FMADD;
10809      break;
10810    case Intrinsic::x86_fma_vfmsub_ps:
10811    case Intrinsic::x86_fma_vfmsub_pd:
10812    case Intrinsic::x86_fma_vfmsub_ps_256:
10813    case Intrinsic::x86_fma_vfmsub_pd_256:
10814      Opc = X86ISD::FMSUB;
10815      break;
10816    case Intrinsic::x86_fma_vfnmadd_ps:
10817    case Intrinsic::x86_fma_vfnmadd_pd:
10818    case Intrinsic::x86_fma_vfnmadd_ps_256:
10819    case Intrinsic::x86_fma_vfnmadd_pd_256:
10820      Opc = X86ISD::FNMADD;
10821      break;
10822    case Intrinsic::x86_fma_vfnmsub_ps:
10823    case Intrinsic::x86_fma_vfnmsub_pd:
10824    case Intrinsic::x86_fma_vfnmsub_ps_256:
10825    case Intrinsic::x86_fma_vfnmsub_pd_256:
10826      Opc = X86ISD::FNMSUB;
10827      break;
10828    case Intrinsic::x86_fma_vfmaddsub_ps:
10829    case Intrinsic::x86_fma_vfmaddsub_pd:
10830    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10831    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10832      Opc = X86ISD::FMADDSUB;
10833      break;
10834    case Intrinsic::x86_fma_vfmsubadd_ps:
10835    case Intrinsic::x86_fma_vfmsubadd_pd:
10836    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10837    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10838      Opc = X86ISD::FMSUBADD;
10839      break;
10840    }
10841
10842    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10843                       Op.getOperand(2), Op.getOperand(3));
10844  }
10845  }
10846}
10847
10848static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10849  DebugLoc dl = Op.getDebugLoc();
10850  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10851  switch (IntNo) {
10852  default: return SDValue();    // Don't custom lower most intrinsics.
10853
10854  // RDRAND intrinsics.
10855  case Intrinsic::x86_rdrand_16:
10856  case Intrinsic::x86_rdrand_32:
10857  case Intrinsic::x86_rdrand_64: {
10858    // Emit the node with the right value type.
10859    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10860    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10861
10862    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10863    // return the value from Rand, which is always 0, casted to i32.
10864    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10865                      DAG.getConstant(1, Op->getValueType(1)),
10866                      DAG.getConstant(X86::COND_B, MVT::i32),
10867                      SDValue(Result.getNode(), 1) };
10868    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10869                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10870                                  Ops, 4);
10871
10872    // Return { result, isValid, chain }.
10873    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10874                       SDValue(Result.getNode(), 2));
10875  }
10876  }
10877}
10878
10879SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10880                                           SelectionDAG &DAG) const {
10881  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10882  MFI->setReturnAddressIsTaken(true);
10883
10884  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10885  DebugLoc dl = Op.getDebugLoc();
10886  EVT PtrVT = getPointerTy();
10887
10888  if (Depth > 0) {
10889    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10890    SDValue Offset =
10891      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10892    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10893                       DAG.getNode(ISD::ADD, dl, PtrVT,
10894                                   FrameAddr, Offset),
10895                       MachinePointerInfo(), false, false, false, 0);
10896  }
10897
10898  // Just load the return address.
10899  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10900  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10901                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10902}
10903
10904SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10905  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10906  MFI->setFrameAddressIsTaken(true);
10907
10908  EVT VT = Op.getValueType();
10909  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10910  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10911  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10912  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10913  while (Depth--)
10914    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10915                            MachinePointerInfo(),
10916                            false, false, false, 0);
10917  return FrameAddr;
10918}
10919
10920SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10921                                                     SelectionDAG &DAG) const {
10922  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10923}
10924
10925SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10926  SDValue Chain     = Op.getOperand(0);
10927  SDValue Offset    = Op.getOperand(1);
10928  SDValue Handler   = Op.getOperand(2);
10929  DebugLoc dl       = Op.getDebugLoc();
10930
10931  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10932                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10933                                     getPointerTy());
10934  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10935
10936  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10937                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
10938  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10939  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10940                       false, false, 0);
10941  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10942
10943  return DAG.getNode(X86ISD::EH_RETURN, dl,
10944                     MVT::Other,
10945                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10946}
10947
10948SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10949                                               SelectionDAG &DAG) const {
10950  DebugLoc DL = Op.getDebugLoc();
10951  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10952                     DAG.getVTList(MVT::i32, MVT::Other),
10953                     Op.getOperand(0), Op.getOperand(1));
10954}
10955
10956SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10957                                                SelectionDAG &DAG) const {
10958  DebugLoc DL = Op.getDebugLoc();
10959  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10960                     Op.getOperand(0), Op.getOperand(1));
10961}
10962
10963static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10964  return Op.getOperand(0);
10965}
10966
10967SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10968                                                SelectionDAG &DAG) const {
10969  SDValue Root = Op.getOperand(0);
10970  SDValue Trmp = Op.getOperand(1); // trampoline
10971  SDValue FPtr = Op.getOperand(2); // nested function
10972  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10973  DebugLoc dl  = Op.getDebugLoc();
10974
10975  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10976  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10977
10978  if (Subtarget->is64Bit()) {
10979    SDValue OutChains[6];
10980
10981    // Large code-model.
10982    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10983    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10984
10985    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10986    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10987
10988    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10989
10990    // Load the pointer to the nested function into R11.
10991    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10992    SDValue Addr = Trmp;
10993    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10994                                Addr, MachinePointerInfo(TrmpAddr),
10995                                false, false, 0);
10996
10997    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10998                       DAG.getConstant(2, MVT::i64));
10999    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11000                                MachinePointerInfo(TrmpAddr, 2),
11001                                false, false, 2);
11002
11003    // Load the 'nest' parameter value into R10.
11004    // R10 is specified in X86CallingConv.td
11005    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11006    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11007                       DAG.getConstant(10, MVT::i64));
11008    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11009                                Addr, MachinePointerInfo(TrmpAddr, 10),
11010                                false, false, 0);
11011
11012    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11013                       DAG.getConstant(12, MVT::i64));
11014    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11015                                MachinePointerInfo(TrmpAddr, 12),
11016                                false, false, 2);
11017
11018    // Jump to the nested function.
11019    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11020    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11021                       DAG.getConstant(20, MVT::i64));
11022    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11023                                Addr, MachinePointerInfo(TrmpAddr, 20),
11024                                false, false, 0);
11025
11026    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11027    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11028                       DAG.getConstant(22, MVT::i64));
11029    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11030                                MachinePointerInfo(TrmpAddr, 22),
11031                                false, false, 0);
11032
11033    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11034  } else {
11035    const Function *Func =
11036      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11037    CallingConv::ID CC = Func->getCallingConv();
11038    unsigned NestReg;
11039
11040    switch (CC) {
11041    default:
11042      llvm_unreachable("Unsupported calling convention");
11043    case CallingConv::C:
11044    case CallingConv::X86_StdCall: {
11045      // Pass 'nest' parameter in ECX.
11046      // Must be kept in sync with X86CallingConv.td
11047      NestReg = X86::ECX;
11048
11049      // Check that ECX wasn't needed by an 'inreg' parameter.
11050      FunctionType *FTy = Func->getFunctionType();
11051      const AttributeSet &Attrs = Func->getAttributes();
11052
11053      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11054        unsigned InRegCount = 0;
11055        unsigned Idx = 1;
11056
11057        for (FunctionType::param_iterator I = FTy->param_begin(),
11058             E = FTy->param_end(); I != E; ++I, ++Idx)
11059          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11060            // FIXME: should only count parameters that are lowered to integers.
11061            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11062
11063        if (InRegCount > 2) {
11064          report_fatal_error("Nest register in use - reduce number of inreg"
11065                             " parameters!");
11066        }
11067      }
11068      break;
11069    }
11070    case CallingConv::X86_FastCall:
11071    case CallingConv::X86_ThisCall:
11072    case CallingConv::Fast:
11073      // Pass 'nest' parameter in EAX.
11074      // Must be kept in sync with X86CallingConv.td
11075      NestReg = X86::EAX;
11076      break;
11077    }
11078
11079    SDValue OutChains[4];
11080    SDValue Addr, Disp;
11081
11082    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11083                       DAG.getConstant(10, MVT::i32));
11084    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11085
11086    // This is storing the opcode for MOV32ri.
11087    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11088    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11089    OutChains[0] = DAG.getStore(Root, dl,
11090                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11091                                Trmp, MachinePointerInfo(TrmpAddr),
11092                                false, false, 0);
11093
11094    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11095                       DAG.getConstant(1, MVT::i32));
11096    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11097                                MachinePointerInfo(TrmpAddr, 1),
11098                                false, false, 1);
11099
11100    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11101    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11102                       DAG.getConstant(5, MVT::i32));
11103    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11104                                MachinePointerInfo(TrmpAddr, 5),
11105                                false, false, 1);
11106
11107    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11108                       DAG.getConstant(6, MVT::i32));
11109    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11110                                MachinePointerInfo(TrmpAddr, 6),
11111                                false, false, 1);
11112
11113    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11114  }
11115}
11116
11117SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11118                                            SelectionDAG &DAG) const {
11119  /*
11120   The rounding mode is in bits 11:10 of FPSR, and has the following
11121   settings:
11122     00 Round to nearest
11123     01 Round to -inf
11124     10 Round to +inf
11125     11 Round to 0
11126
11127  FLT_ROUNDS, on the other hand, expects the following:
11128    -1 Undefined
11129     0 Round to 0
11130     1 Round to nearest
11131     2 Round to +inf
11132     3 Round to -inf
11133
11134  To perform the conversion, we do:
11135    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11136  */
11137
11138  MachineFunction &MF = DAG.getMachineFunction();
11139  const TargetMachine &TM = MF.getTarget();
11140  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11141  unsigned StackAlignment = TFI.getStackAlignment();
11142  EVT VT = Op.getValueType();
11143  DebugLoc DL = Op.getDebugLoc();
11144
11145  // Save FP Control Word to stack slot
11146  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11147  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11148
11149  MachineMemOperand *MMO =
11150   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11151                           MachineMemOperand::MOStore, 2, 2);
11152
11153  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11154  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11155                                          DAG.getVTList(MVT::Other),
11156                                          Ops, 2, MVT::i16, MMO);
11157
11158  // Load FP Control Word from stack slot
11159  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11160                            MachinePointerInfo(), false, false, false, 0);
11161
11162  // Transform as necessary
11163  SDValue CWD1 =
11164    DAG.getNode(ISD::SRL, DL, MVT::i16,
11165                DAG.getNode(ISD::AND, DL, MVT::i16,
11166                            CWD, DAG.getConstant(0x800, MVT::i16)),
11167                DAG.getConstant(11, MVT::i8));
11168  SDValue CWD2 =
11169    DAG.getNode(ISD::SRL, DL, MVT::i16,
11170                DAG.getNode(ISD::AND, DL, MVT::i16,
11171                            CWD, DAG.getConstant(0x400, MVT::i16)),
11172                DAG.getConstant(9, MVT::i8));
11173
11174  SDValue RetVal =
11175    DAG.getNode(ISD::AND, DL, MVT::i16,
11176                DAG.getNode(ISD::ADD, DL, MVT::i16,
11177                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11178                            DAG.getConstant(1, MVT::i16)),
11179                DAG.getConstant(3, MVT::i16));
11180
11181  return DAG.getNode((VT.getSizeInBits() < 16 ?
11182                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11183}
11184
11185static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11186  EVT VT = Op.getValueType();
11187  EVT OpVT = VT;
11188  unsigned NumBits = VT.getSizeInBits();
11189  DebugLoc dl = Op.getDebugLoc();
11190
11191  Op = Op.getOperand(0);
11192  if (VT == MVT::i8) {
11193    // Zero extend to i32 since there is not an i8 bsr.
11194    OpVT = MVT::i32;
11195    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11196  }
11197
11198  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11199  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11200  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11201
11202  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11203  SDValue Ops[] = {
11204    Op,
11205    DAG.getConstant(NumBits+NumBits-1, OpVT),
11206    DAG.getConstant(X86::COND_E, MVT::i8),
11207    Op.getValue(1)
11208  };
11209  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11210
11211  // Finally xor with NumBits-1.
11212  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11213
11214  if (VT == MVT::i8)
11215    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11216  return Op;
11217}
11218
11219static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11220  EVT VT = Op.getValueType();
11221  EVT OpVT = VT;
11222  unsigned NumBits = VT.getSizeInBits();
11223  DebugLoc dl = Op.getDebugLoc();
11224
11225  Op = Op.getOperand(0);
11226  if (VT == MVT::i8) {
11227    // Zero extend to i32 since there is not an i8 bsr.
11228    OpVT = MVT::i32;
11229    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11230  }
11231
11232  // Issue a bsr (scan bits in reverse).
11233  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11234  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11235
11236  // And xor with NumBits-1.
11237  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11238
11239  if (VT == MVT::i8)
11240    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11241  return Op;
11242}
11243
11244static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11245  EVT VT = Op.getValueType();
11246  unsigned NumBits = VT.getSizeInBits();
11247  DebugLoc dl = Op.getDebugLoc();
11248  Op = Op.getOperand(0);
11249
11250  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11251  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11252  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11253
11254  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11255  SDValue Ops[] = {
11256    Op,
11257    DAG.getConstant(NumBits, VT),
11258    DAG.getConstant(X86::COND_E, MVT::i8),
11259    Op.getValue(1)
11260  };
11261  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11262}
11263
11264// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11265// ones, and then concatenate the result back.
11266static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11267  EVT VT = Op.getValueType();
11268
11269  assert(VT.is256BitVector() && VT.isInteger() &&
11270         "Unsupported value type for operation");
11271
11272  unsigned NumElems = VT.getVectorNumElements();
11273  DebugLoc dl = Op.getDebugLoc();
11274
11275  // Extract the LHS vectors
11276  SDValue LHS = Op.getOperand(0);
11277  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11278  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11279
11280  // Extract the RHS vectors
11281  SDValue RHS = Op.getOperand(1);
11282  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11283  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11284
11285  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11286  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11287
11288  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11289                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11290                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11291}
11292
11293static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11294  assert(Op.getValueType().is256BitVector() &&
11295         Op.getValueType().isInteger() &&
11296         "Only handle AVX 256-bit vector integer operation");
11297  return Lower256IntArith(Op, DAG);
11298}
11299
11300static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11301  assert(Op.getValueType().is256BitVector() &&
11302         Op.getValueType().isInteger() &&
11303         "Only handle AVX 256-bit vector integer operation");
11304  return Lower256IntArith(Op, DAG);
11305}
11306
11307static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11308                        SelectionDAG &DAG) {
11309  DebugLoc dl = Op.getDebugLoc();
11310  EVT VT = Op.getValueType();
11311
11312  // Decompose 256-bit ops into smaller 128-bit ops.
11313  if (VT.is256BitVector() && !Subtarget->hasInt256())
11314    return Lower256IntArith(Op, DAG);
11315
11316  SDValue A = Op.getOperand(0);
11317  SDValue B = Op.getOperand(1);
11318
11319  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11320  if (VT == MVT::v4i32) {
11321    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11322           "Should not custom lower when pmuldq is available!");
11323
11324    // Extract the odd parts.
11325    const int UnpackMask[] = { 1, -1, 3, -1 };
11326    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11327    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11328
11329    // Multiply the even parts.
11330    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11331    // Now multiply odd parts.
11332    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11333
11334    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11335    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11336
11337    // Merge the two vectors back together with a shuffle. This expands into 2
11338    // shuffles.
11339    const int ShufMask[] = { 0, 4, 2, 6 };
11340    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11341  }
11342
11343  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11344         "Only know how to lower V2I64/V4I64 multiply");
11345
11346  //  Ahi = psrlqi(a, 32);
11347  //  Bhi = psrlqi(b, 32);
11348  //
11349  //  AloBlo = pmuludq(a, b);
11350  //  AloBhi = pmuludq(a, Bhi);
11351  //  AhiBlo = pmuludq(Ahi, b);
11352
11353  //  AloBhi = psllqi(AloBhi, 32);
11354  //  AhiBlo = psllqi(AhiBlo, 32);
11355  //  return AloBlo + AloBhi + AhiBlo;
11356
11357  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11358
11359  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11360  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11361
11362  // Bit cast to 32-bit vectors for MULUDQ
11363  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11364  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11365  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11366  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11367  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11368
11369  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11370  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11371  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11372
11373  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11374  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11375
11376  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11377  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11378}
11379
11380SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11381  EVT VT = Op.getValueType();
11382  EVT EltTy = VT.getVectorElementType();
11383  unsigned NumElts = VT.getVectorNumElements();
11384  SDValue N0 = Op.getOperand(0);
11385  DebugLoc dl = Op.getDebugLoc();
11386
11387  // Lower sdiv X, pow2-const.
11388  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11389  if (!C)
11390    return SDValue();
11391
11392  APInt SplatValue, SplatUndef;
11393  unsigned MinSplatBits;
11394  bool HasAnyUndefs;
11395  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11396    return SDValue();
11397
11398  if ((SplatValue != 0) &&
11399      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11400    unsigned lg2 = SplatValue.countTrailingZeros();
11401    // Splat the sign bit.
11402    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11403    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11404    // Add (N0 < 0) ? abs2 - 1 : 0;
11405    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11406    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11407    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11408    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11409    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11410
11411    // If we're dividing by a positive value, we're done.  Otherwise, we must
11412    // negate the result.
11413    if (SplatValue.isNonNegative())
11414      return SRA;
11415
11416    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11417    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11418    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11419  }
11420  return SDValue();
11421}
11422
11423SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11424
11425  EVT VT = Op.getValueType();
11426  DebugLoc dl = Op.getDebugLoc();
11427  SDValue R = Op.getOperand(0);
11428  SDValue Amt = Op.getOperand(1);
11429  LLVMContext *Context = DAG.getContext();
11430
11431  if (!Subtarget->hasSSE2())
11432    return SDValue();
11433
11434  // Optimize shl/srl/sra with constant shift amount.
11435  if (isSplatVector(Amt.getNode())) {
11436    SDValue SclrAmt = Amt->getOperand(0);
11437    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11438      uint64_t ShiftAmt = C->getZExtValue();
11439
11440      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11441          (Subtarget->hasInt256() &&
11442           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11443        if (Op.getOpcode() == ISD::SHL)
11444          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11445                             DAG.getConstant(ShiftAmt, MVT::i32));
11446        if (Op.getOpcode() == ISD::SRL)
11447          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11448                             DAG.getConstant(ShiftAmt, MVT::i32));
11449        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11450          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11451                             DAG.getConstant(ShiftAmt, MVT::i32));
11452      }
11453
11454      if (VT == MVT::v16i8) {
11455        if (Op.getOpcode() == ISD::SHL) {
11456          // Make a large shift.
11457          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11458                                    DAG.getConstant(ShiftAmt, MVT::i32));
11459          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11460          // Zero out the rightmost bits.
11461          SmallVector<SDValue, 16> V(16,
11462                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11463                                                     MVT::i8));
11464          return DAG.getNode(ISD::AND, dl, VT, SHL,
11465                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11466        }
11467        if (Op.getOpcode() == ISD::SRL) {
11468          // Make a large shift.
11469          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11470                                    DAG.getConstant(ShiftAmt, MVT::i32));
11471          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11472          // Zero out the leftmost bits.
11473          SmallVector<SDValue, 16> V(16,
11474                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11475                                                     MVT::i8));
11476          return DAG.getNode(ISD::AND, dl, VT, SRL,
11477                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11478        }
11479        if (Op.getOpcode() == ISD::SRA) {
11480          if (ShiftAmt == 7) {
11481            // R s>> 7  ===  R s< 0
11482            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11483            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11484          }
11485
11486          // R s>> a === ((R u>> a) ^ m) - m
11487          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11488          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11489                                                         MVT::i8));
11490          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11491          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11492          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11493          return Res;
11494        }
11495        llvm_unreachable("Unknown shift opcode.");
11496      }
11497
11498      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11499        if (Op.getOpcode() == ISD::SHL) {
11500          // Make a large shift.
11501          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11502                                    DAG.getConstant(ShiftAmt, MVT::i32));
11503          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11504          // Zero out the rightmost bits.
11505          SmallVector<SDValue, 32> V(32,
11506                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11507                                                     MVT::i8));
11508          return DAG.getNode(ISD::AND, dl, VT, SHL,
11509                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11510        }
11511        if (Op.getOpcode() == ISD::SRL) {
11512          // Make a large shift.
11513          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11514                                    DAG.getConstant(ShiftAmt, MVT::i32));
11515          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11516          // Zero out the leftmost bits.
11517          SmallVector<SDValue, 32> V(32,
11518                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11519                                                     MVT::i8));
11520          return DAG.getNode(ISD::AND, dl, VT, SRL,
11521                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11522        }
11523        if (Op.getOpcode() == ISD::SRA) {
11524          if (ShiftAmt == 7) {
11525            // R s>> 7  ===  R s< 0
11526            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11527            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11528          }
11529
11530          // R s>> a === ((R u>> a) ^ m) - m
11531          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11532          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11533                                                         MVT::i8));
11534          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11535          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11536          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11537          return Res;
11538        }
11539        llvm_unreachable("Unknown shift opcode.");
11540      }
11541    }
11542  }
11543
11544  // Lower SHL with variable shift amount.
11545  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11546    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
11547                     DAG.getConstant(23, MVT::i32));
11548
11549    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
11550    Constant *C = ConstantDataVector::get(*Context, CV);
11551    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
11552    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11553                                 MachinePointerInfo::getConstantPool(),
11554                                 false, false, false, 16);
11555
11556    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
11557    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11558    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11559    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11560  }
11561  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11562    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11563
11564    // a = a << 5;
11565    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
11566                     DAG.getConstant(5, MVT::i32));
11567    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11568
11569    // Turn 'a' into a mask suitable for VSELECT
11570    SDValue VSelM = DAG.getConstant(0x80, VT);
11571    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11572    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11573
11574    SDValue CM1 = DAG.getConstant(0x0f, VT);
11575    SDValue CM2 = DAG.getConstant(0x3f, VT);
11576
11577    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11578    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11579    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11580                            DAG.getConstant(4, MVT::i32), DAG);
11581    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11582    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11583
11584    // a += a
11585    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11586    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11587    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11588
11589    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11590    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11591    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11592                            DAG.getConstant(2, MVT::i32), DAG);
11593    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11594    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11595
11596    // a += a
11597    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11598    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11599    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11600
11601    // return VSELECT(r, r+r, a);
11602    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11603                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11604    return R;
11605  }
11606
11607  // Decompose 256-bit shifts into smaller 128-bit shifts.
11608  if (VT.is256BitVector()) {
11609    unsigned NumElems = VT.getVectorNumElements();
11610    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11611    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11612
11613    // Extract the two vectors
11614    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11615    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11616
11617    // Recreate the shift amount vectors
11618    SDValue Amt1, Amt2;
11619    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11620      // Constant shift amount
11621      SmallVector<SDValue, 4> Amt1Csts;
11622      SmallVector<SDValue, 4> Amt2Csts;
11623      for (unsigned i = 0; i != NumElems/2; ++i)
11624        Amt1Csts.push_back(Amt->getOperand(i));
11625      for (unsigned i = NumElems/2; i != NumElems; ++i)
11626        Amt2Csts.push_back(Amt->getOperand(i));
11627
11628      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11629                                 &Amt1Csts[0], NumElems/2);
11630      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11631                                 &Amt2Csts[0], NumElems/2);
11632    } else {
11633      // Variable shift amount
11634      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11635      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11636    }
11637
11638    // Issue new vector shifts for the smaller types
11639    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11640    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11641
11642    // Concatenate the result back
11643    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11644  }
11645
11646  return SDValue();
11647}
11648
11649static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11650  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11651  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11652  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11653  // has only one use.
11654  SDNode *N = Op.getNode();
11655  SDValue LHS = N->getOperand(0);
11656  SDValue RHS = N->getOperand(1);
11657  unsigned BaseOp = 0;
11658  unsigned Cond = 0;
11659  DebugLoc DL = Op.getDebugLoc();
11660  switch (Op.getOpcode()) {
11661  default: llvm_unreachable("Unknown ovf instruction!");
11662  case ISD::SADDO:
11663    // A subtract of one will be selected as a INC. Note that INC doesn't
11664    // set CF, so we can't do this for UADDO.
11665    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11666      if (C->isOne()) {
11667        BaseOp = X86ISD::INC;
11668        Cond = X86::COND_O;
11669        break;
11670      }
11671    BaseOp = X86ISD::ADD;
11672    Cond = X86::COND_O;
11673    break;
11674  case ISD::UADDO:
11675    BaseOp = X86ISD::ADD;
11676    Cond = X86::COND_B;
11677    break;
11678  case ISD::SSUBO:
11679    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11680    // set CF, so we can't do this for USUBO.
11681    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11682      if (C->isOne()) {
11683        BaseOp = X86ISD::DEC;
11684        Cond = X86::COND_O;
11685        break;
11686      }
11687    BaseOp = X86ISD::SUB;
11688    Cond = X86::COND_O;
11689    break;
11690  case ISD::USUBO:
11691    BaseOp = X86ISD::SUB;
11692    Cond = X86::COND_B;
11693    break;
11694  case ISD::SMULO:
11695    BaseOp = X86ISD::SMUL;
11696    Cond = X86::COND_O;
11697    break;
11698  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11699    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11700                                 MVT::i32);
11701    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11702
11703    SDValue SetCC =
11704      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11705                  DAG.getConstant(X86::COND_O, MVT::i32),
11706                  SDValue(Sum.getNode(), 2));
11707
11708    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11709  }
11710  }
11711
11712  // Also sets EFLAGS.
11713  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11714  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11715
11716  SDValue SetCC =
11717    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11718                DAG.getConstant(Cond, MVT::i32),
11719                SDValue(Sum.getNode(), 1));
11720
11721  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11722}
11723
11724SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11725                                                  SelectionDAG &DAG) const {
11726  DebugLoc dl = Op.getDebugLoc();
11727  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11728  EVT VT = Op.getValueType();
11729
11730  if (!Subtarget->hasSSE2() || !VT.isVector())
11731    return SDValue();
11732
11733  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11734                      ExtraVT.getScalarType().getSizeInBits();
11735  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11736
11737  switch (VT.getSimpleVT().SimpleTy) {
11738    default: return SDValue();
11739    case MVT::v8i32:
11740    case MVT::v16i16:
11741      if (!Subtarget->hasFp256())
11742        return SDValue();
11743      if (!Subtarget->hasInt256()) {
11744        // needs to be split
11745        unsigned NumElems = VT.getVectorNumElements();
11746
11747        // Extract the LHS vectors
11748        SDValue LHS = Op.getOperand(0);
11749        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11750        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11751
11752        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11753        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11754
11755        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11756        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11757        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11758                                   ExtraNumElems/2);
11759        SDValue Extra = DAG.getValueType(ExtraVT);
11760
11761        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11762        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11763
11764        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11765      }
11766      // fall through
11767    case MVT::v4i32:
11768    case MVT::v8i16: {
11769      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11770                                         Op.getOperand(0), ShAmt, DAG);
11771      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11772    }
11773  }
11774}
11775
11776static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11777                              SelectionDAG &DAG) {
11778  DebugLoc dl = Op.getDebugLoc();
11779
11780  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11781  // There isn't any reason to disable it if the target processor supports it.
11782  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11783    SDValue Chain = Op.getOperand(0);
11784    SDValue Zero = DAG.getConstant(0, MVT::i32);
11785    SDValue Ops[] = {
11786      DAG.getRegister(X86::ESP, MVT::i32), // Base
11787      DAG.getTargetConstant(1, MVT::i8),   // Scale
11788      DAG.getRegister(0, MVT::i32),        // Index
11789      DAG.getTargetConstant(0, MVT::i32),  // Disp
11790      DAG.getRegister(0, MVT::i32),        // Segment.
11791      Zero,
11792      Chain
11793    };
11794    SDNode *Res =
11795      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11796                          array_lengthof(Ops));
11797    return SDValue(Res, 0);
11798  }
11799
11800  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11801  if (!isDev)
11802    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11803
11804  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11805  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11806  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11807  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11808
11809  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11810  if (!Op1 && !Op2 && !Op3 && Op4)
11811    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11812
11813  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11814  if (Op1 && !Op2 && !Op3 && !Op4)
11815    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11816
11817  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11818  //           (MFENCE)>;
11819  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11820}
11821
11822static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11823                                 SelectionDAG &DAG) {
11824  DebugLoc dl = Op.getDebugLoc();
11825  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11826    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11827  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11828    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11829
11830  // The only fence that needs an instruction is a sequentially-consistent
11831  // cross-thread fence.
11832  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11833    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11834    // no-sse2). There isn't any reason to disable it if the target processor
11835    // supports it.
11836    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11837      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11838
11839    SDValue Chain = Op.getOperand(0);
11840    SDValue Zero = DAG.getConstant(0, MVT::i32);
11841    SDValue Ops[] = {
11842      DAG.getRegister(X86::ESP, MVT::i32), // Base
11843      DAG.getTargetConstant(1, MVT::i8),   // Scale
11844      DAG.getRegister(0, MVT::i32),        // Index
11845      DAG.getTargetConstant(0, MVT::i32),  // Disp
11846      DAG.getRegister(0, MVT::i32),        // Segment.
11847      Zero,
11848      Chain
11849    };
11850    SDNode *Res =
11851      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11852                         array_lengthof(Ops));
11853    return SDValue(Res, 0);
11854  }
11855
11856  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11857  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11858}
11859
11860static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11861                             SelectionDAG &DAG) {
11862  EVT T = Op.getValueType();
11863  DebugLoc DL = Op.getDebugLoc();
11864  unsigned Reg = 0;
11865  unsigned size = 0;
11866  switch(T.getSimpleVT().SimpleTy) {
11867  default: llvm_unreachable("Invalid value type!");
11868  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11869  case MVT::i16: Reg = X86::AX;  size = 2; break;
11870  case MVT::i32: Reg = X86::EAX; size = 4; break;
11871  case MVT::i64:
11872    assert(Subtarget->is64Bit() && "Node not type legal!");
11873    Reg = X86::RAX; size = 8;
11874    break;
11875  }
11876  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11877                                    Op.getOperand(2), SDValue());
11878  SDValue Ops[] = { cpIn.getValue(0),
11879                    Op.getOperand(1),
11880                    Op.getOperand(3),
11881                    DAG.getTargetConstant(size, MVT::i8),
11882                    cpIn.getValue(1) };
11883  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11884  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11885  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11886                                           Ops, 5, T, MMO);
11887  SDValue cpOut =
11888    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11889  return cpOut;
11890}
11891
11892static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11893                                     SelectionDAG &DAG) {
11894  assert(Subtarget->is64Bit() && "Result not type legalized?");
11895  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11896  SDValue TheChain = Op.getOperand(0);
11897  DebugLoc dl = Op.getDebugLoc();
11898  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11899  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11900  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11901                                   rax.getValue(2));
11902  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11903                            DAG.getConstant(32, MVT::i8));
11904  SDValue Ops[] = {
11905    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11906    rdx.getValue(1)
11907  };
11908  return DAG.getMergeValues(Ops, 2, dl);
11909}
11910
11911SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11912  EVT SrcVT = Op.getOperand(0).getValueType();
11913  EVT DstVT = Op.getValueType();
11914  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11915         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11916  assert((DstVT == MVT::i64 ||
11917          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11918         "Unexpected custom BITCAST");
11919  // i64 <=> MMX conversions are Legal.
11920  if (SrcVT==MVT::i64 && DstVT.isVector())
11921    return Op;
11922  if (DstVT==MVT::i64 && SrcVT.isVector())
11923    return Op;
11924  // MMX <=> MMX conversions are Legal.
11925  if (SrcVT.isVector() && DstVT.isVector())
11926    return Op;
11927  // All other conversions need to be expanded.
11928  return SDValue();
11929}
11930
11931static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11932  SDNode *Node = Op.getNode();
11933  DebugLoc dl = Node->getDebugLoc();
11934  EVT T = Node->getValueType(0);
11935  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11936                              DAG.getConstant(0, T), Node->getOperand(2));
11937  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11938                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11939                       Node->getOperand(0),
11940                       Node->getOperand(1), negOp,
11941                       cast<AtomicSDNode>(Node)->getSrcValue(),
11942                       cast<AtomicSDNode>(Node)->getAlignment(),
11943                       cast<AtomicSDNode>(Node)->getOrdering(),
11944                       cast<AtomicSDNode>(Node)->getSynchScope());
11945}
11946
11947static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11948  SDNode *Node = Op.getNode();
11949  DebugLoc dl = Node->getDebugLoc();
11950  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11951
11952  // Convert seq_cst store -> xchg
11953  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11954  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11955  //        (The only way to get a 16-byte store is cmpxchg16b)
11956  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11957  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11958      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11959    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11960                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11961                                 Node->getOperand(0),
11962                                 Node->getOperand(1), Node->getOperand(2),
11963                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11964                                 cast<AtomicSDNode>(Node)->getOrdering(),
11965                                 cast<AtomicSDNode>(Node)->getSynchScope());
11966    return Swap.getValue(1);
11967  }
11968  // Other atomic stores have a simple pattern.
11969  return Op;
11970}
11971
11972static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11973  EVT VT = Op.getNode()->getValueType(0);
11974
11975  // Let legalize expand this if it isn't a legal type yet.
11976  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11977    return SDValue();
11978
11979  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11980
11981  unsigned Opc;
11982  bool ExtraOp = false;
11983  switch (Op.getOpcode()) {
11984  default: llvm_unreachable("Invalid code");
11985  case ISD::ADDC: Opc = X86ISD::ADD; break;
11986  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11987  case ISD::SUBC: Opc = X86ISD::SUB; break;
11988  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11989  }
11990
11991  if (!ExtraOp)
11992    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11993                       Op.getOperand(1));
11994  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11995                     Op.getOperand(1), Op.getOperand(2));
11996}
11997
11998/// LowerOperation - Provide custom lowering hooks for some operations.
11999///
12000SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12001  switch (Op.getOpcode()) {
12002  default: llvm_unreachable("Should not custom lower this!");
12003  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12004  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
12005  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12006  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12007  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12008  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12009  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12010  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12011  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12012  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12013  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12014  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12015  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12016  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12017  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12018  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12019  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12020  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12021  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12022  case ISD::SHL_PARTS:
12023  case ISD::SRA_PARTS:
12024  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12025  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12026  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12027  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
12028  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12029  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12030  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12031  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12032  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12033  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
12034  case ISD::FABS:               return LowerFABS(Op, DAG);
12035  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12036  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12037  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12038  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12039  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12040  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12041  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12042  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12043  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12044  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12045  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12046  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12047  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12048  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12049  case ISD::FRAME_TO_ARGS_OFFSET:
12050                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12051  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12052  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12053  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12054  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12055  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12056  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12057  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12058  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12059  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12060  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12061  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12062  case ISD::SRA:
12063  case ISD::SRL:
12064  case ISD::SHL:                return LowerShift(Op, DAG);
12065  case ISD::SADDO:
12066  case ISD::UADDO:
12067  case ISD::SSUBO:
12068  case ISD::USUBO:
12069  case ISD::SMULO:
12070  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12071  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12072  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12073  case ISD::ADDC:
12074  case ISD::ADDE:
12075  case ISD::SUBC:
12076  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12077  case ISD::ADD:                return LowerADD(Op, DAG);
12078  case ISD::SUB:                return LowerSUB(Op, DAG);
12079  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12080  }
12081}
12082
12083static void ReplaceATOMIC_LOAD(SDNode *Node,
12084                                  SmallVectorImpl<SDValue> &Results,
12085                                  SelectionDAG &DAG) {
12086  DebugLoc dl = Node->getDebugLoc();
12087  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12088
12089  // Convert wide load -> cmpxchg8b/cmpxchg16b
12090  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12091  //        (The only way to get a 16-byte load is cmpxchg16b)
12092  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12093  SDValue Zero = DAG.getConstant(0, VT);
12094  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12095                               Node->getOperand(0),
12096                               Node->getOperand(1), Zero, Zero,
12097                               cast<AtomicSDNode>(Node)->getMemOperand(),
12098                               cast<AtomicSDNode>(Node)->getOrdering(),
12099                               cast<AtomicSDNode>(Node)->getSynchScope());
12100  Results.push_back(Swap.getValue(0));
12101  Results.push_back(Swap.getValue(1));
12102}
12103
12104static void
12105ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12106                        SelectionDAG &DAG, unsigned NewOp) {
12107  DebugLoc dl = Node->getDebugLoc();
12108  assert (Node->getValueType(0) == MVT::i64 &&
12109          "Only know how to expand i64 atomics");
12110
12111  SDValue Chain = Node->getOperand(0);
12112  SDValue In1 = Node->getOperand(1);
12113  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12114                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12115  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12116                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12117  SDValue Ops[] = { Chain, In1, In2L, In2H };
12118  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12119  SDValue Result =
12120    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
12121                            cast<MemSDNode>(Node)->getMemOperand());
12122  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12123  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12124  Results.push_back(Result.getValue(2));
12125}
12126
12127/// ReplaceNodeResults - Replace a node with an illegal result type
12128/// with a new node built out of custom code.
12129void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12130                                           SmallVectorImpl<SDValue>&Results,
12131                                           SelectionDAG &DAG) const {
12132  DebugLoc dl = N->getDebugLoc();
12133  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12134  switch (N->getOpcode()) {
12135  default:
12136    llvm_unreachable("Do not know how to custom type legalize this operation!");
12137  case ISD::SIGN_EXTEND_INREG:
12138  case ISD::ADDC:
12139  case ISD::ADDE:
12140  case ISD::SUBC:
12141  case ISD::SUBE:
12142    // We don't want to expand or promote these.
12143    return;
12144  case ISD::FP_TO_SINT:
12145  case ISD::FP_TO_UINT: {
12146    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12147
12148    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12149      return;
12150
12151    std::pair<SDValue,SDValue> Vals =
12152        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12153    SDValue FIST = Vals.first, StackSlot = Vals.second;
12154    if (FIST.getNode() != 0) {
12155      EVT VT = N->getValueType(0);
12156      // Return a load from the stack slot.
12157      if (StackSlot.getNode() != 0)
12158        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12159                                      MachinePointerInfo(),
12160                                      false, false, false, 0));
12161      else
12162        Results.push_back(FIST);
12163    }
12164    return;
12165  }
12166  case ISD::UINT_TO_FP: {
12167    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
12168        N->getValueType(0) != MVT::v2f32)
12169      return;
12170    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12171                                 N->getOperand(0));
12172    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12173                                     MVT::f64);
12174    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12175    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12176                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12177    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12178    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12179    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12180    return;
12181  }
12182  case ISD::FP_ROUND: {
12183    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12184        return;
12185    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12186    Results.push_back(V);
12187    return;
12188  }
12189  case ISD::READCYCLECOUNTER: {
12190    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12191    SDValue TheChain = N->getOperand(0);
12192    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12193    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12194                                     rd.getValue(1));
12195    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12196                                     eax.getValue(2));
12197    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12198    SDValue Ops[] = { eax, edx };
12199    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
12200    Results.push_back(edx.getValue(1));
12201    return;
12202  }
12203  case ISD::ATOMIC_CMP_SWAP: {
12204    EVT T = N->getValueType(0);
12205    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12206    bool Regs64bit = T == MVT::i128;
12207    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12208    SDValue cpInL, cpInH;
12209    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12210                        DAG.getConstant(0, HalfT));
12211    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12212                        DAG.getConstant(1, HalfT));
12213    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12214                             Regs64bit ? X86::RAX : X86::EAX,
12215                             cpInL, SDValue());
12216    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12217                             Regs64bit ? X86::RDX : X86::EDX,
12218                             cpInH, cpInL.getValue(1));
12219    SDValue swapInL, swapInH;
12220    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12221                          DAG.getConstant(0, HalfT));
12222    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12223                          DAG.getConstant(1, HalfT));
12224    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12225                               Regs64bit ? X86::RBX : X86::EBX,
12226                               swapInL, cpInH.getValue(1));
12227    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12228                               Regs64bit ? X86::RCX : X86::ECX,
12229                               swapInH, swapInL.getValue(1));
12230    SDValue Ops[] = { swapInH.getValue(0),
12231                      N->getOperand(1),
12232                      swapInH.getValue(1) };
12233    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12234    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12235    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12236                                  X86ISD::LCMPXCHG8_DAG;
12237    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12238                                             Ops, 3, T, MMO);
12239    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12240                                        Regs64bit ? X86::RAX : X86::EAX,
12241                                        HalfT, Result.getValue(1));
12242    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12243                                        Regs64bit ? X86::RDX : X86::EDX,
12244                                        HalfT, cpOutL.getValue(2));
12245    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12246    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12247    Results.push_back(cpOutH.getValue(1));
12248    return;
12249  }
12250  case ISD::ATOMIC_LOAD_ADD:
12251  case ISD::ATOMIC_LOAD_AND:
12252  case ISD::ATOMIC_LOAD_NAND:
12253  case ISD::ATOMIC_LOAD_OR:
12254  case ISD::ATOMIC_LOAD_SUB:
12255  case ISD::ATOMIC_LOAD_XOR:
12256  case ISD::ATOMIC_LOAD_MAX:
12257  case ISD::ATOMIC_LOAD_MIN:
12258  case ISD::ATOMIC_LOAD_UMAX:
12259  case ISD::ATOMIC_LOAD_UMIN:
12260  case ISD::ATOMIC_SWAP: {
12261    unsigned Opc;
12262    switch (N->getOpcode()) {
12263    default: llvm_unreachable("Unexpected opcode");
12264    case ISD::ATOMIC_LOAD_ADD:
12265      Opc = X86ISD::ATOMADD64_DAG;
12266      break;
12267    case ISD::ATOMIC_LOAD_AND:
12268      Opc = X86ISD::ATOMAND64_DAG;
12269      break;
12270    case ISD::ATOMIC_LOAD_NAND:
12271      Opc = X86ISD::ATOMNAND64_DAG;
12272      break;
12273    case ISD::ATOMIC_LOAD_OR:
12274      Opc = X86ISD::ATOMOR64_DAG;
12275      break;
12276    case ISD::ATOMIC_LOAD_SUB:
12277      Opc = X86ISD::ATOMSUB64_DAG;
12278      break;
12279    case ISD::ATOMIC_LOAD_XOR:
12280      Opc = X86ISD::ATOMXOR64_DAG;
12281      break;
12282    case ISD::ATOMIC_LOAD_MAX:
12283      Opc = X86ISD::ATOMMAX64_DAG;
12284      break;
12285    case ISD::ATOMIC_LOAD_MIN:
12286      Opc = X86ISD::ATOMMIN64_DAG;
12287      break;
12288    case ISD::ATOMIC_LOAD_UMAX:
12289      Opc = X86ISD::ATOMUMAX64_DAG;
12290      break;
12291    case ISD::ATOMIC_LOAD_UMIN:
12292      Opc = X86ISD::ATOMUMIN64_DAG;
12293      break;
12294    case ISD::ATOMIC_SWAP:
12295      Opc = X86ISD::ATOMSWAP64_DAG;
12296      break;
12297    }
12298    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12299    return;
12300  }
12301  case ISD::ATOMIC_LOAD:
12302    ReplaceATOMIC_LOAD(N, Results, DAG);
12303  }
12304}
12305
12306const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12307  switch (Opcode) {
12308  default: return NULL;
12309  case X86ISD::BSF:                return "X86ISD::BSF";
12310  case X86ISD::BSR:                return "X86ISD::BSR";
12311  case X86ISD::SHLD:               return "X86ISD::SHLD";
12312  case X86ISD::SHRD:               return "X86ISD::SHRD";
12313  case X86ISD::FAND:               return "X86ISD::FAND";
12314  case X86ISD::FOR:                return "X86ISD::FOR";
12315  case X86ISD::FXOR:               return "X86ISD::FXOR";
12316  case X86ISD::FSRL:               return "X86ISD::FSRL";
12317  case X86ISD::FILD:               return "X86ISD::FILD";
12318  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12319  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12320  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12321  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12322  case X86ISD::FLD:                return "X86ISD::FLD";
12323  case X86ISD::FST:                return "X86ISD::FST";
12324  case X86ISD::CALL:               return "X86ISD::CALL";
12325  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12326  case X86ISD::BT:                 return "X86ISD::BT";
12327  case X86ISD::CMP:                return "X86ISD::CMP";
12328  case X86ISD::COMI:               return "X86ISD::COMI";
12329  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12330  case X86ISD::SETCC:              return "X86ISD::SETCC";
12331  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12332  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12333  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12334  case X86ISD::CMOV:               return "X86ISD::CMOV";
12335  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12336  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12337  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12338  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12339  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12340  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12341  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12342  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12343  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12344  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12345  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12346  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12347  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12348  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12349  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12350  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12351  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12352  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12353  case X86ISD::HADD:               return "X86ISD::HADD";
12354  case X86ISD::HSUB:               return "X86ISD::HSUB";
12355  case X86ISD::FHADD:              return "X86ISD::FHADD";
12356  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12357  case X86ISD::UMAX:               return "X86ISD::UMAX";
12358  case X86ISD::UMIN:               return "X86ISD::UMIN";
12359  case X86ISD::SMAX:               return "X86ISD::SMAX";
12360  case X86ISD::SMIN:               return "X86ISD::SMIN";
12361  case X86ISD::FMAX:               return "X86ISD::FMAX";
12362  case X86ISD::FMIN:               return "X86ISD::FMIN";
12363  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12364  case X86ISD::FMINC:              return "X86ISD::FMINC";
12365  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12366  case X86ISD::FRCP:               return "X86ISD::FRCP";
12367  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12368  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12369  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12370  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12371  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12372  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12373  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12374  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12375  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12376  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12377  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12378  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12379  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12380  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12381  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12382  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12383  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12384  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12385  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12386  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12387  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12388  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12389  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12390  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12391  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12392  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12393  case X86ISD::VSHL:               return "X86ISD::VSHL";
12394  case X86ISD::VSRL:               return "X86ISD::VSRL";
12395  case X86ISD::VSRA:               return "X86ISD::VSRA";
12396  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12397  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12398  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12399  case X86ISD::CMPP:               return "X86ISD::CMPP";
12400  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12401  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12402  case X86ISD::ADD:                return "X86ISD::ADD";
12403  case X86ISD::SUB:                return "X86ISD::SUB";
12404  case X86ISD::ADC:                return "X86ISD::ADC";
12405  case X86ISD::SBB:                return "X86ISD::SBB";
12406  case X86ISD::SMUL:               return "X86ISD::SMUL";
12407  case X86ISD::UMUL:               return "X86ISD::UMUL";
12408  case X86ISD::INC:                return "X86ISD::INC";
12409  case X86ISD::DEC:                return "X86ISD::DEC";
12410  case X86ISD::OR:                 return "X86ISD::OR";
12411  case X86ISD::XOR:                return "X86ISD::XOR";
12412  case X86ISD::AND:                return "X86ISD::AND";
12413  case X86ISD::BLSI:               return "X86ISD::BLSI";
12414  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12415  case X86ISD::BLSR:               return "X86ISD::BLSR";
12416  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12417  case X86ISD::PTEST:              return "X86ISD::PTEST";
12418  case X86ISD::TESTP:              return "X86ISD::TESTP";
12419  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
12420  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12421  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12422  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12423  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12424  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12425  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12426  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12427  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12428  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12429  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12430  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12431  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12432  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12433  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12434  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12435  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12436  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12437  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12438  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12439  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12440  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12441  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12442  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12443  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12444  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12445  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12446  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12447  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12448  case X86ISD::SAHF:               return "X86ISD::SAHF";
12449  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12450  case X86ISD::FMADD:              return "X86ISD::FMADD";
12451  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12452  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12453  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12454  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12455  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12456  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12457  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12458  }
12459}
12460
12461// isLegalAddressingMode - Return true if the addressing mode represented
12462// by AM is legal for this target, for a load/store of the specified type.
12463bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12464                                              Type *Ty) const {
12465  // X86 supports extremely general addressing modes.
12466  CodeModel::Model M = getTargetMachine().getCodeModel();
12467  Reloc::Model R = getTargetMachine().getRelocationModel();
12468
12469  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12470  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12471    return false;
12472
12473  if (AM.BaseGV) {
12474    unsigned GVFlags =
12475      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12476
12477    // If a reference to this global requires an extra load, we can't fold it.
12478    if (isGlobalStubReference(GVFlags))
12479      return false;
12480
12481    // If BaseGV requires a register for the PIC base, we cannot also have a
12482    // BaseReg specified.
12483    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12484      return false;
12485
12486    // If lower 4G is not available, then we must use rip-relative addressing.
12487    if ((M != CodeModel::Small || R != Reloc::Static) &&
12488        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12489      return false;
12490  }
12491
12492  switch (AM.Scale) {
12493  case 0:
12494  case 1:
12495  case 2:
12496  case 4:
12497  case 8:
12498    // These scales always work.
12499    break;
12500  case 3:
12501  case 5:
12502  case 9:
12503    // These scales are formed with basereg+scalereg.  Only accept if there is
12504    // no basereg yet.
12505    if (AM.HasBaseReg)
12506      return false;
12507    break;
12508  default:  // Other stuff never works.
12509    return false;
12510  }
12511
12512  return true;
12513}
12514
12515bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12516  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12517    return false;
12518  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12519  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12520  return NumBits1 > NumBits2;
12521}
12522
12523bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12524  return isInt<32>(Imm);
12525}
12526
12527bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12528  // Can also use sub to handle negated immediates.
12529  return isInt<32>(Imm);
12530}
12531
12532bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12533  if (!VT1.isInteger() || !VT2.isInteger())
12534    return false;
12535  unsigned NumBits1 = VT1.getSizeInBits();
12536  unsigned NumBits2 = VT2.getSizeInBits();
12537  return NumBits1 > NumBits2;
12538}
12539
12540bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12541  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12542  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12543}
12544
12545bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12546  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12547  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12548}
12549
12550bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12551  EVT VT1 = Val.getValueType();
12552  if (isZExtFree(VT1, VT2))
12553    return true;
12554
12555  if (Val.getOpcode() != ISD::LOAD)
12556    return false;
12557
12558  if (!VT1.isSimple() || !VT1.isInteger() ||
12559      !VT2.isSimple() || !VT2.isInteger())
12560    return false;
12561
12562  switch (VT1.getSimpleVT().SimpleTy) {
12563  default: break;
12564  case MVT::i8:
12565  case MVT::i16:
12566  case MVT::i32:
12567    // X86 has 8, 16, and 32-bit zero-extending loads.
12568    return true;
12569  }
12570
12571  return false;
12572}
12573
12574bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12575  // i16 instructions are longer (0x66 prefix) and potentially slower.
12576  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12577}
12578
12579/// isShuffleMaskLegal - Targets can use this to indicate that they only
12580/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12581/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12582/// are assumed to be legal.
12583bool
12584X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12585                                      EVT VT) const {
12586  // Very little shuffling can be done for 64-bit vectors right now.
12587  if (VT.getSizeInBits() == 64)
12588    return false;
12589
12590  // FIXME: pshufb, blends, shifts.
12591  return (VT.getVectorNumElements() == 2 ||
12592          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12593          isMOVLMask(M, VT) ||
12594          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12595          isPSHUFDMask(M, VT) ||
12596          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12597          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12598          isPALIGNRMask(M, VT, Subtarget) ||
12599          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12600          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12601          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12602          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12603}
12604
12605bool
12606X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12607                                          EVT VT) const {
12608  unsigned NumElts = VT.getVectorNumElements();
12609  // FIXME: This collection of masks seems suspect.
12610  if (NumElts == 2)
12611    return true;
12612  if (NumElts == 4 && VT.is128BitVector()) {
12613    return (isMOVLMask(Mask, VT)  ||
12614            isCommutedMOVLMask(Mask, VT, true) ||
12615            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12616            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12617  }
12618  return false;
12619}
12620
12621//===----------------------------------------------------------------------===//
12622//                           X86 Scheduler Hooks
12623//===----------------------------------------------------------------------===//
12624
12625/// Utility function to emit xbegin specifying the start of an RTM region.
12626static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12627                                     const TargetInstrInfo *TII) {
12628  DebugLoc DL = MI->getDebugLoc();
12629
12630  const BasicBlock *BB = MBB->getBasicBlock();
12631  MachineFunction::iterator I = MBB;
12632  ++I;
12633
12634  // For the v = xbegin(), we generate
12635  //
12636  // thisMBB:
12637  //  xbegin sinkMBB
12638  //
12639  // mainMBB:
12640  //  eax = -1
12641  //
12642  // sinkMBB:
12643  //  v = eax
12644
12645  MachineBasicBlock *thisMBB = MBB;
12646  MachineFunction *MF = MBB->getParent();
12647  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12648  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12649  MF->insert(I, mainMBB);
12650  MF->insert(I, sinkMBB);
12651
12652  // Transfer the remainder of BB and its successor edges to sinkMBB.
12653  sinkMBB->splice(sinkMBB->begin(), MBB,
12654                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12655  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12656
12657  // thisMBB:
12658  //  xbegin sinkMBB
12659  //  # fallthrough to mainMBB
12660  //  # abortion to sinkMBB
12661  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12662  thisMBB->addSuccessor(mainMBB);
12663  thisMBB->addSuccessor(sinkMBB);
12664
12665  // mainMBB:
12666  //  EAX = -1
12667  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12668  mainMBB->addSuccessor(sinkMBB);
12669
12670  // sinkMBB:
12671  // EAX is live into the sinkMBB
12672  sinkMBB->addLiveIn(X86::EAX);
12673  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12674          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12675    .addReg(X86::EAX);
12676
12677  MI->eraseFromParent();
12678  return sinkMBB;
12679}
12680
12681// Get CMPXCHG opcode for the specified data type.
12682static unsigned getCmpXChgOpcode(EVT VT) {
12683  switch (VT.getSimpleVT().SimpleTy) {
12684  case MVT::i8:  return X86::LCMPXCHG8;
12685  case MVT::i16: return X86::LCMPXCHG16;
12686  case MVT::i32: return X86::LCMPXCHG32;
12687  case MVT::i64: return X86::LCMPXCHG64;
12688  default:
12689    break;
12690  }
12691  llvm_unreachable("Invalid operand size!");
12692}
12693
12694// Get LOAD opcode for the specified data type.
12695static unsigned getLoadOpcode(EVT VT) {
12696  switch (VT.getSimpleVT().SimpleTy) {
12697  case MVT::i8:  return X86::MOV8rm;
12698  case MVT::i16: return X86::MOV16rm;
12699  case MVT::i32: return X86::MOV32rm;
12700  case MVT::i64: return X86::MOV64rm;
12701  default:
12702    break;
12703  }
12704  llvm_unreachable("Invalid operand size!");
12705}
12706
12707// Get opcode of the non-atomic one from the specified atomic instruction.
12708static unsigned getNonAtomicOpcode(unsigned Opc) {
12709  switch (Opc) {
12710  case X86::ATOMAND8:  return X86::AND8rr;
12711  case X86::ATOMAND16: return X86::AND16rr;
12712  case X86::ATOMAND32: return X86::AND32rr;
12713  case X86::ATOMAND64: return X86::AND64rr;
12714  case X86::ATOMOR8:   return X86::OR8rr;
12715  case X86::ATOMOR16:  return X86::OR16rr;
12716  case X86::ATOMOR32:  return X86::OR32rr;
12717  case X86::ATOMOR64:  return X86::OR64rr;
12718  case X86::ATOMXOR8:  return X86::XOR8rr;
12719  case X86::ATOMXOR16: return X86::XOR16rr;
12720  case X86::ATOMXOR32: return X86::XOR32rr;
12721  case X86::ATOMXOR64: return X86::XOR64rr;
12722  }
12723  llvm_unreachable("Unhandled atomic-load-op opcode!");
12724}
12725
12726// Get opcode of the non-atomic one from the specified atomic instruction with
12727// extra opcode.
12728static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12729                                               unsigned &ExtraOpc) {
12730  switch (Opc) {
12731  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12732  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12733  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12734  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12735  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12736  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12737  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12738  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12739  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12740  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12741  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12742  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12743  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12744  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12745  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12746  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12747  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12748  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12749  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12750  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12751  }
12752  llvm_unreachable("Unhandled atomic-load-op opcode!");
12753}
12754
12755// Get opcode of the non-atomic one from the specified atomic instruction for
12756// 64-bit data type on 32-bit target.
12757static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12758  switch (Opc) {
12759  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12760  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12761  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12762  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12763  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12764  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12765  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12766  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12767  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12768  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12769  }
12770  llvm_unreachable("Unhandled atomic-load-op opcode!");
12771}
12772
12773// Get opcode of the non-atomic one from the specified atomic instruction for
12774// 64-bit data type on 32-bit target with extra opcode.
12775static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12776                                                   unsigned &HiOpc,
12777                                                   unsigned &ExtraOpc) {
12778  switch (Opc) {
12779  case X86::ATOMNAND6432:
12780    ExtraOpc = X86::NOT32r;
12781    HiOpc = X86::AND32rr;
12782    return X86::AND32rr;
12783  }
12784  llvm_unreachable("Unhandled atomic-load-op opcode!");
12785}
12786
12787// Get pseudo CMOV opcode from the specified data type.
12788static unsigned getPseudoCMOVOpc(EVT VT) {
12789  switch (VT.getSimpleVT().SimpleTy) {
12790  case MVT::i8:  return X86::CMOV_GR8;
12791  case MVT::i16: return X86::CMOV_GR16;
12792  case MVT::i32: return X86::CMOV_GR32;
12793  default:
12794    break;
12795  }
12796  llvm_unreachable("Unknown CMOV opcode!");
12797}
12798
12799// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12800// They will be translated into a spin-loop or compare-exchange loop from
12801//
12802//    ...
12803//    dst = atomic-fetch-op MI.addr, MI.val
12804//    ...
12805//
12806// to
12807//
12808//    ...
12809//    EAX = LOAD MI.addr
12810// loop:
12811//    t1 = OP MI.val, EAX
12812//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12813//    JNE loop
12814// sink:
12815//    dst = EAX
12816//    ...
12817MachineBasicBlock *
12818X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12819                                       MachineBasicBlock *MBB) const {
12820  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12821  DebugLoc DL = MI->getDebugLoc();
12822
12823  MachineFunction *MF = MBB->getParent();
12824  MachineRegisterInfo &MRI = MF->getRegInfo();
12825
12826  const BasicBlock *BB = MBB->getBasicBlock();
12827  MachineFunction::iterator I = MBB;
12828  ++I;
12829
12830  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12831         "Unexpected number of operands");
12832
12833  assert(MI->hasOneMemOperand() &&
12834         "Expected atomic-load-op to have one memoperand");
12835
12836  // Memory Reference
12837  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12838  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12839
12840  unsigned DstReg, SrcReg;
12841  unsigned MemOpndSlot;
12842
12843  unsigned CurOp = 0;
12844
12845  DstReg = MI->getOperand(CurOp++).getReg();
12846  MemOpndSlot = CurOp;
12847  CurOp += X86::AddrNumOperands;
12848  SrcReg = MI->getOperand(CurOp++).getReg();
12849
12850  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12851  MVT::SimpleValueType VT = *RC->vt_begin();
12852  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12853
12854  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12855  unsigned LOADOpc = getLoadOpcode(VT);
12856
12857  // For the atomic load-arith operator, we generate
12858  //
12859  //  thisMBB:
12860  //    EAX = LOAD [MI.addr]
12861  //  mainMBB:
12862  //    t1 = OP MI.val, EAX
12863  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12864  //    JNE mainMBB
12865  //  sinkMBB:
12866
12867  MachineBasicBlock *thisMBB = MBB;
12868  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12869  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12870  MF->insert(I, mainMBB);
12871  MF->insert(I, sinkMBB);
12872
12873  MachineInstrBuilder MIB;
12874
12875  // Transfer the remainder of BB and its successor edges to sinkMBB.
12876  sinkMBB->splice(sinkMBB->begin(), MBB,
12877                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12878  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12879
12880  // thisMBB:
12881  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12882  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12883    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12884  MIB.setMemRefs(MMOBegin, MMOEnd);
12885
12886  thisMBB->addSuccessor(mainMBB);
12887
12888  // mainMBB:
12889  MachineBasicBlock *origMainMBB = mainMBB;
12890  mainMBB->addLiveIn(AccPhyReg);
12891
12892  // Copy AccPhyReg as it is used more than once.
12893  unsigned AccReg = MRI.createVirtualRegister(RC);
12894  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12895    .addReg(AccPhyReg);
12896
12897  unsigned t1 = MRI.createVirtualRegister(RC);
12898  unsigned Opc = MI->getOpcode();
12899  switch (Opc) {
12900  default:
12901    llvm_unreachable("Unhandled atomic-load-op opcode!");
12902  case X86::ATOMAND8:
12903  case X86::ATOMAND16:
12904  case X86::ATOMAND32:
12905  case X86::ATOMAND64:
12906  case X86::ATOMOR8:
12907  case X86::ATOMOR16:
12908  case X86::ATOMOR32:
12909  case X86::ATOMOR64:
12910  case X86::ATOMXOR8:
12911  case X86::ATOMXOR16:
12912  case X86::ATOMXOR32:
12913  case X86::ATOMXOR64: {
12914    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12915    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12916      .addReg(AccReg);
12917    break;
12918  }
12919  case X86::ATOMNAND8:
12920  case X86::ATOMNAND16:
12921  case X86::ATOMNAND32:
12922  case X86::ATOMNAND64: {
12923    unsigned t2 = MRI.createVirtualRegister(RC);
12924    unsigned NOTOpc;
12925    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12926    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12927      .addReg(AccReg);
12928    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12929    break;
12930  }
12931  case X86::ATOMMAX8:
12932  case X86::ATOMMAX16:
12933  case X86::ATOMMAX32:
12934  case X86::ATOMMAX64:
12935  case X86::ATOMMIN8:
12936  case X86::ATOMMIN16:
12937  case X86::ATOMMIN32:
12938  case X86::ATOMMIN64:
12939  case X86::ATOMUMAX8:
12940  case X86::ATOMUMAX16:
12941  case X86::ATOMUMAX32:
12942  case X86::ATOMUMAX64:
12943  case X86::ATOMUMIN8:
12944  case X86::ATOMUMIN16:
12945  case X86::ATOMUMIN32:
12946  case X86::ATOMUMIN64: {
12947    unsigned CMPOpc;
12948    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12949
12950    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12951      .addReg(SrcReg)
12952      .addReg(AccReg);
12953
12954    if (Subtarget->hasCMov()) {
12955      if (VT != MVT::i8) {
12956        // Native support
12957        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12958          .addReg(SrcReg)
12959          .addReg(AccReg);
12960      } else {
12961        // Promote i8 to i32 to use CMOV32
12962        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12963        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12964        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12965        unsigned t2 = MRI.createVirtualRegister(RC32);
12966
12967        unsigned Undef = MRI.createVirtualRegister(RC32);
12968        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12969
12970        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12971          .addReg(Undef)
12972          .addReg(SrcReg)
12973          .addImm(X86::sub_8bit);
12974        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12975          .addReg(Undef)
12976          .addReg(AccReg)
12977          .addImm(X86::sub_8bit);
12978
12979        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12980          .addReg(SrcReg32)
12981          .addReg(AccReg32);
12982
12983        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12984          .addReg(t2, 0, X86::sub_8bit);
12985      }
12986    } else {
12987      // Use pseudo select and lower them.
12988      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12989             "Invalid atomic-load-op transformation!");
12990      unsigned SelOpc = getPseudoCMOVOpc(VT);
12991      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12992      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12993      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12994              .addReg(SrcReg).addReg(AccReg)
12995              .addImm(CC);
12996      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12997    }
12998    break;
12999  }
13000  }
13001
13002  // Copy AccPhyReg back from virtual register.
13003  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
13004    .addReg(AccReg);
13005
13006  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13007  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13008    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13009  MIB.addReg(t1);
13010  MIB.setMemRefs(MMOBegin, MMOEnd);
13011
13012  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13013
13014  mainMBB->addSuccessor(origMainMBB);
13015  mainMBB->addSuccessor(sinkMBB);
13016
13017  // sinkMBB:
13018  sinkMBB->addLiveIn(AccPhyReg);
13019
13020  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13021          TII->get(TargetOpcode::COPY), DstReg)
13022    .addReg(AccPhyReg);
13023
13024  MI->eraseFromParent();
13025  return sinkMBB;
13026}
13027
13028// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13029// instructions. They will be translated into a spin-loop or compare-exchange
13030// loop from
13031//
13032//    ...
13033//    dst = atomic-fetch-op MI.addr, MI.val
13034//    ...
13035//
13036// to
13037//
13038//    ...
13039//    EAX = LOAD [MI.addr + 0]
13040//    EDX = LOAD [MI.addr + 4]
13041// loop:
13042//    EBX = OP MI.val.lo, EAX
13043//    ECX = OP MI.val.hi, EDX
13044//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13045//    JNE loop
13046// sink:
13047//    dst = EDX:EAX
13048//    ...
13049MachineBasicBlock *
13050X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13051                                           MachineBasicBlock *MBB) const {
13052  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13053  DebugLoc DL = MI->getDebugLoc();
13054
13055  MachineFunction *MF = MBB->getParent();
13056  MachineRegisterInfo &MRI = MF->getRegInfo();
13057
13058  const BasicBlock *BB = MBB->getBasicBlock();
13059  MachineFunction::iterator I = MBB;
13060  ++I;
13061
13062  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13063         "Unexpected number of operands");
13064
13065  assert(MI->hasOneMemOperand() &&
13066         "Expected atomic-load-op32 to have one memoperand");
13067
13068  // Memory Reference
13069  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13070  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13071
13072  unsigned DstLoReg, DstHiReg;
13073  unsigned SrcLoReg, SrcHiReg;
13074  unsigned MemOpndSlot;
13075
13076  unsigned CurOp = 0;
13077
13078  DstLoReg = MI->getOperand(CurOp++).getReg();
13079  DstHiReg = MI->getOperand(CurOp++).getReg();
13080  MemOpndSlot = CurOp;
13081  CurOp += X86::AddrNumOperands;
13082  SrcLoReg = MI->getOperand(CurOp++).getReg();
13083  SrcHiReg = MI->getOperand(CurOp++).getReg();
13084
13085  const TargetRegisterClass *RC = &X86::GR32RegClass;
13086  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13087
13088  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13089  unsigned LOADOpc = X86::MOV32rm;
13090
13091  // For the atomic load-arith operator, we generate
13092  //
13093  //  thisMBB:
13094  //    EAX = LOAD [MI.addr + 0]
13095  //    EDX = LOAD [MI.addr + 4]
13096  //  mainMBB:
13097  //    EBX = OP MI.vallo, EAX
13098  //    ECX = OP MI.valhi, EDX
13099  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13100  //    JNE mainMBB
13101  //  sinkMBB:
13102
13103  MachineBasicBlock *thisMBB = MBB;
13104  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13105  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13106  MF->insert(I, mainMBB);
13107  MF->insert(I, sinkMBB);
13108
13109  MachineInstrBuilder MIB;
13110
13111  // Transfer the remainder of BB and its successor edges to sinkMBB.
13112  sinkMBB->splice(sinkMBB->begin(), MBB,
13113                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13114  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13115
13116  // thisMBB:
13117  // Lo
13118  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
13119  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13120    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13121  MIB.setMemRefs(MMOBegin, MMOEnd);
13122  // Hi
13123  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
13124  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13125    if (i == X86::AddrDisp)
13126      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13127    else
13128      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13129  }
13130  MIB.setMemRefs(MMOBegin, MMOEnd);
13131
13132  thisMBB->addSuccessor(mainMBB);
13133
13134  // mainMBB:
13135  MachineBasicBlock *origMainMBB = mainMBB;
13136  mainMBB->addLiveIn(X86::EAX);
13137  mainMBB->addLiveIn(X86::EDX);
13138
13139  // Copy EDX:EAX as they are used more than once.
13140  unsigned LoReg = MRI.createVirtualRegister(RC);
13141  unsigned HiReg = MRI.createVirtualRegister(RC);
13142  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
13143  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
13144
13145  unsigned t1L = MRI.createVirtualRegister(RC);
13146  unsigned t1H = MRI.createVirtualRegister(RC);
13147
13148  unsigned Opc = MI->getOpcode();
13149  switch (Opc) {
13150  default:
13151    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13152  case X86::ATOMAND6432:
13153  case X86::ATOMOR6432:
13154  case X86::ATOMXOR6432:
13155  case X86::ATOMADD6432:
13156  case X86::ATOMSUB6432: {
13157    unsigned HiOpc;
13158    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13159    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(LoReg).addReg(SrcLoReg);
13160    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(HiReg).addReg(SrcHiReg);
13161    break;
13162  }
13163  case X86::ATOMNAND6432: {
13164    unsigned HiOpc, NOTOpc;
13165    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13166    unsigned t2L = MRI.createVirtualRegister(RC);
13167    unsigned t2H = MRI.createVirtualRegister(RC);
13168    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
13169    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
13170    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
13171    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
13172    break;
13173  }
13174  case X86::ATOMMAX6432:
13175  case X86::ATOMMIN6432:
13176  case X86::ATOMUMAX6432:
13177  case X86::ATOMUMIN6432: {
13178    unsigned HiOpc;
13179    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13180    unsigned cL = MRI.createVirtualRegister(RC8);
13181    unsigned cH = MRI.createVirtualRegister(RC8);
13182    unsigned cL32 = MRI.createVirtualRegister(RC);
13183    unsigned cH32 = MRI.createVirtualRegister(RC);
13184    unsigned cc = MRI.createVirtualRegister(RC);
13185    // cl := cmp src_lo, lo
13186    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13187      .addReg(SrcLoReg).addReg(LoReg);
13188    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13189    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13190    // ch := cmp src_hi, hi
13191    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13192      .addReg(SrcHiReg).addReg(HiReg);
13193    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13194    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13195    // cc := if (src_hi == hi) ? cl : ch;
13196    if (Subtarget->hasCMov()) {
13197      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13198        .addReg(cH32).addReg(cL32);
13199    } else {
13200      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13201              .addReg(cH32).addReg(cL32)
13202              .addImm(X86::COND_E);
13203      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13204    }
13205    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13206    if (Subtarget->hasCMov()) {
13207      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
13208        .addReg(SrcLoReg).addReg(LoReg);
13209      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
13210        .addReg(SrcHiReg).addReg(HiReg);
13211    } else {
13212      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
13213              .addReg(SrcLoReg).addReg(LoReg)
13214              .addImm(X86::COND_NE);
13215      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13216      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
13217              .addReg(SrcHiReg).addReg(HiReg)
13218              .addImm(X86::COND_NE);
13219      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13220    }
13221    break;
13222  }
13223  case X86::ATOMSWAP6432: {
13224    unsigned HiOpc;
13225    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13226    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
13227    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
13228    break;
13229  }
13230  }
13231
13232  // Copy EDX:EAX back from HiReg:LoReg
13233  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
13234  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
13235  // Copy ECX:EBX from t1H:t1L
13236  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
13237  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
13238
13239  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13240  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13241    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13242  MIB.setMemRefs(MMOBegin, MMOEnd);
13243
13244  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13245
13246  mainMBB->addSuccessor(origMainMBB);
13247  mainMBB->addSuccessor(sinkMBB);
13248
13249  // sinkMBB:
13250  sinkMBB->addLiveIn(X86::EAX);
13251  sinkMBB->addLiveIn(X86::EDX);
13252
13253  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13254          TII->get(TargetOpcode::COPY), DstLoReg)
13255    .addReg(X86::EAX);
13256  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13257          TII->get(TargetOpcode::COPY), DstHiReg)
13258    .addReg(X86::EDX);
13259
13260  MI->eraseFromParent();
13261  return sinkMBB;
13262}
13263
13264// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13265// or XMM0_V32I8 in AVX all of this code can be replaced with that
13266// in the .td file.
13267static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13268                                       const TargetInstrInfo *TII) {
13269  unsigned Opc;
13270  switch (MI->getOpcode()) {
13271  default: llvm_unreachable("illegal opcode!");
13272  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13273  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13274  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13275  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13276  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13277  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13278  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13279  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13280  }
13281
13282  DebugLoc dl = MI->getDebugLoc();
13283  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13284
13285  unsigned NumArgs = MI->getNumOperands();
13286  for (unsigned i = 1; i < NumArgs; ++i) {
13287    MachineOperand &Op = MI->getOperand(i);
13288    if (!(Op.isReg() && Op.isImplicit()))
13289      MIB.addOperand(Op);
13290  }
13291  if (MI->hasOneMemOperand())
13292    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13293
13294  BuildMI(*BB, MI, dl,
13295    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13296    .addReg(X86::XMM0);
13297
13298  MI->eraseFromParent();
13299  return BB;
13300}
13301
13302// FIXME: Custom handling because TableGen doesn't support multiple implicit
13303// defs in an instruction pattern
13304static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13305                                       const TargetInstrInfo *TII) {
13306  unsigned Opc;
13307  switch (MI->getOpcode()) {
13308  default: llvm_unreachable("illegal opcode!");
13309  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13310  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13311  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13312  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13313  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13314  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13315  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13316  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13317  }
13318
13319  DebugLoc dl = MI->getDebugLoc();
13320  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13321
13322  unsigned NumArgs = MI->getNumOperands(); // remove the results
13323  for (unsigned i = 1; i < NumArgs; ++i) {
13324    MachineOperand &Op = MI->getOperand(i);
13325    if (!(Op.isReg() && Op.isImplicit()))
13326      MIB.addOperand(Op);
13327  }
13328  if (MI->hasOneMemOperand())
13329    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13330
13331  BuildMI(*BB, MI, dl,
13332    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13333    .addReg(X86::ECX);
13334
13335  MI->eraseFromParent();
13336  return BB;
13337}
13338
13339static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13340                                       const TargetInstrInfo *TII,
13341                                       const X86Subtarget* Subtarget) {
13342  DebugLoc dl = MI->getDebugLoc();
13343
13344  // Address into RAX/EAX, other two args into ECX, EDX.
13345  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13346  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13347  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13348  for (int i = 0; i < X86::AddrNumOperands; ++i)
13349    MIB.addOperand(MI->getOperand(i));
13350
13351  unsigned ValOps = X86::AddrNumOperands;
13352  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13353    .addReg(MI->getOperand(ValOps).getReg());
13354  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13355    .addReg(MI->getOperand(ValOps+1).getReg());
13356
13357  // The instruction doesn't actually take any operands though.
13358  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13359
13360  MI->eraseFromParent(); // The pseudo is gone now.
13361  return BB;
13362}
13363
13364MachineBasicBlock *
13365X86TargetLowering::EmitVAARG64WithCustomInserter(
13366                   MachineInstr *MI,
13367                   MachineBasicBlock *MBB) const {
13368  // Emit va_arg instruction on X86-64.
13369
13370  // Operands to this pseudo-instruction:
13371  // 0  ) Output        : destination address (reg)
13372  // 1-5) Input         : va_list address (addr, i64mem)
13373  // 6  ) ArgSize       : Size (in bytes) of vararg type
13374  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13375  // 8  ) Align         : Alignment of type
13376  // 9  ) EFLAGS (implicit-def)
13377
13378  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13379  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13380
13381  unsigned DestReg = MI->getOperand(0).getReg();
13382  MachineOperand &Base = MI->getOperand(1);
13383  MachineOperand &Scale = MI->getOperand(2);
13384  MachineOperand &Index = MI->getOperand(3);
13385  MachineOperand &Disp = MI->getOperand(4);
13386  MachineOperand &Segment = MI->getOperand(5);
13387  unsigned ArgSize = MI->getOperand(6).getImm();
13388  unsigned ArgMode = MI->getOperand(7).getImm();
13389  unsigned Align = MI->getOperand(8).getImm();
13390
13391  // Memory Reference
13392  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13393  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13394  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13395
13396  // Machine Information
13397  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13398  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13399  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13400  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13401  DebugLoc DL = MI->getDebugLoc();
13402
13403  // struct va_list {
13404  //   i32   gp_offset
13405  //   i32   fp_offset
13406  //   i64   overflow_area (address)
13407  //   i64   reg_save_area (address)
13408  // }
13409  // sizeof(va_list) = 24
13410  // alignment(va_list) = 8
13411
13412  unsigned TotalNumIntRegs = 6;
13413  unsigned TotalNumXMMRegs = 8;
13414  bool UseGPOffset = (ArgMode == 1);
13415  bool UseFPOffset = (ArgMode == 2);
13416  unsigned MaxOffset = TotalNumIntRegs * 8 +
13417                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13418
13419  /* Align ArgSize to a multiple of 8 */
13420  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13421  bool NeedsAlign = (Align > 8);
13422
13423  MachineBasicBlock *thisMBB = MBB;
13424  MachineBasicBlock *overflowMBB;
13425  MachineBasicBlock *offsetMBB;
13426  MachineBasicBlock *endMBB;
13427
13428  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13429  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13430  unsigned OffsetReg = 0;
13431
13432  if (!UseGPOffset && !UseFPOffset) {
13433    // If we only pull from the overflow region, we don't create a branch.
13434    // We don't need to alter control flow.
13435    OffsetDestReg = 0; // unused
13436    OverflowDestReg = DestReg;
13437
13438    offsetMBB = NULL;
13439    overflowMBB = thisMBB;
13440    endMBB = thisMBB;
13441  } else {
13442    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13443    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13444    // If not, pull from overflow_area. (branch to overflowMBB)
13445    //
13446    //       thisMBB
13447    //         |     .
13448    //         |        .
13449    //     offsetMBB   overflowMBB
13450    //         |        .
13451    //         |     .
13452    //        endMBB
13453
13454    // Registers for the PHI in endMBB
13455    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13456    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13457
13458    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13459    MachineFunction *MF = MBB->getParent();
13460    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13461    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13462    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13463
13464    MachineFunction::iterator MBBIter = MBB;
13465    ++MBBIter;
13466
13467    // Insert the new basic blocks
13468    MF->insert(MBBIter, offsetMBB);
13469    MF->insert(MBBIter, overflowMBB);
13470    MF->insert(MBBIter, endMBB);
13471
13472    // Transfer the remainder of MBB and its successor edges to endMBB.
13473    endMBB->splice(endMBB->begin(), thisMBB,
13474                    llvm::next(MachineBasicBlock::iterator(MI)),
13475                    thisMBB->end());
13476    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13477
13478    // Make offsetMBB and overflowMBB successors of thisMBB
13479    thisMBB->addSuccessor(offsetMBB);
13480    thisMBB->addSuccessor(overflowMBB);
13481
13482    // endMBB is a successor of both offsetMBB and overflowMBB
13483    offsetMBB->addSuccessor(endMBB);
13484    overflowMBB->addSuccessor(endMBB);
13485
13486    // Load the offset value into a register
13487    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13488    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13489      .addOperand(Base)
13490      .addOperand(Scale)
13491      .addOperand(Index)
13492      .addDisp(Disp, UseFPOffset ? 4 : 0)
13493      .addOperand(Segment)
13494      .setMemRefs(MMOBegin, MMOEnd);
13495
13496    // Check if there is enough room left to pull this argument.
13497    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13498      .addReg(OffsetReg)
13499      .addImm(MaxOffset + 8 - ArgSizeA8);
13500
13501    // Branch to "overflowMBB" if offset >= max
13502    // Fall through to "offsetMBB" otherwise
13503    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13504      .addMBB(overflowMBB);
13505  }
13506
13507  // In offsetMBB, emit code to use the reg_save_area.
13508  if (offsetMBB) {
13509    assert(OffsetReg != 0);
13510
13511    // Read the reg_save_area address.
13512    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13513    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13514      .addOperand(Base)
13515      .addOperand(Scale)
13516      .addOperand(Index)
13517      .addDisp(Disp, 16)
13518      .addOperand(Segment)
13519      .setMemRefs(MMOBegin, MMOEnd);
13520
13521    // Zero-extend the offset
13522    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13523      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13524        .addImm(0)
13525        .addReg(OffsetReg)
13526        .addImm(X86::sub_32bit);
13527
13528    // Add the offset to the reg_save_area to get the final address.
13529    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13530      .addReg(OffsetReg64)
13531      .addReg(RegSaveReg);
13532
13533    // Compute the offset for the next argument
13534    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13535    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13536      .addReg(OffsetReg)
13537      .addImm(UseFPOffset ? 16 : 8);
13538
13539    // Store it back into the va_list.
13540    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13541      .addOperand(Base)
13542      .addOperand(Scale)
13543      .addOperand(Index)
13544      .addDisp(Disp, UseFPOffset ? 4 : 0)
13545      .addOperand(Segment)
13546      .addReg(NextOffsetReg)
13547      .setMemRefs(MMOBegin, MMOEnd);
13548
13549    // Jump to endMBB
13550    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13551      .addMBB(endMBB);
13552  }
13553
13554  //
13555  // Emit code to use overflow area
13556  //
13557
13558  // Load the overflow_area address into a register.
13559  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13560  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13561    .addOperand(Base)
13562    .addOperand(Scale)
13563    .addOperand(Index)
13564    .addDisp(Disp, 8)
13565    .addOperand(Segment)
13566    .setMemRefs(MMOBegin, MMOEnd);
13567
13568  // If we need to align it, do so. Otherwise, just copy the address
13569  // to OverflowDestReg.
13570  if (NeedsAlign) {
13571    // Align the overflow address
13572    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13573    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13574
13575    // aligned_addr = (addr + (align-1)) & ~(align-1)
13576    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13577      .addReg(OverflowAddrReg)
13578      .addImm(Align-1);
13579
13580    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13581      .addReg(TmpReg)
13582      .addImm(~(uint64_t)(Align-1));
13583  } else {
13584    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13585      .addReg(OverflowAddrReg);
13586  }
13587
13588  // Compute the next overflow address after this argument.
13589  // (the overflow address should be kept 8-byte aligned)
13590  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13591  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13592    .addReg(OverflowDestReg)
13593    .addImm(ArgSizeA8);
13594
13595  // Store the new overflow address.
13596  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13597    .addOperand(Base)
13598    .addOperand(Scale)
13599    .addOperand(Index)
13600    .addDisp(Disp, 8)
13601    .addOperand(Segment)
13602    .addReg(NextAddrReg)
13603    .setMemRefs(MMOBegin, MMOEnd);
13604
13605  // If we branched, emit the PHI to the front of endMBB.
13606  if (offsetMBB) {
13607    BuildMI(*endMBB, endMBB->begin(), DL,
13608            TII->get(X86::PHI), DestReg)
13609      .addReg(OffsetDestReg).addMBB(offsetMBB)
13610      .addReg(OverflowDestReg).addMBB(overflowMBB);
13611  }
13612
13613  // Erase the pseudo instruction
13614  MI->eraseFromParent();
13615
13616  return endMBB;
13617}
13618
13619MachineBasicBlock *
13620X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13621                                                 MachineInstr *MI,
13622                                                 MachineBasicBlock *MBB) const {
13623  // Emit code to save XMM registers to the stack. The ABI says that the
13624  // number of registers to save is given in %al, so it's theoretically
13625  // possible to do an indirect jump trick to avoid saving all of them,
13626  // however this code takes a simpler approach and just executes all
13627  // of the stores if %al is non-zero. It's less code, and it's probably
13628  // easier on the hardware branch predictor, and stores aren't all that
13629  // expensive anyway.
13630
13631  // Create the new basic blocks. One block contains all the XMM stores,
13632  // and one block is the final destination regardless of whether any
13633  // stores were performed.
13634  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13635  MachineFunction *F = MBB->getParent();
13636  MachineFunction::iterator MBBIter = MBB;
13637  ++MBBIter;
13638  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13639  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13640  F->insert(MBBIter, XMMSaveMBB);
13641  F->insert(MBBIter, EndMBB);
13642
13643  // Transfer the remainder of MBB and its successor edges to EndMBB.
13644  EndMBB->splice(EndMBB->begin(), MBB,
13645                 llvm::next(MachineBasicBlock::iterator(MI)),
13646                 MBB->end());
13647  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13648
13649  // The original block will now fall through to the XMM save block.
13650  MBB->addSuccessor(XMMSaveMBB);
13651  // The XMMSaveMBB will fall through to the end block.
13652  XMMSaveMBB->addSuccessor(EndMBB);
13653
13654  // Now add the instructions.
13655  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13656  DebugLoc DL = MI->getDebugLoc();
13657
13658  unsigned CountReg = MI->getOperand(0).getReg();
13659  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13660  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13661
13662  if (!Subtarget->isTargetWin64()) {
13663    // If %al is 0, branch around the XMM save block.
13664    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13665    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13666    MBB->addSuccessor(EndMBB);
13667  }
13668
13669  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13670  // In the XMM save block, save all the XMM argument registers.
13671  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13672    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13673    MachineMemOperand *MMO =
13674      F->getMachineMemOperand(
13675          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13676        MachineMemOperand::MOStore,
13677        /*Size=*/16, /*Align=*/16);
13678    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13679      .addFrameIndex(RegSaveFrameIndex)
13680      .addImm(/*Scale=*/1)
13681      .addReg(/*IndexReg=*/0)
13682      .addImm(/*Disp=*/Offset)
13683      .addReg(/*Segment=*/0)
13684      .addReg(MI->getOperand(i).getReg())
13685      .addMemOperand(MMO);
13686  }
13687
13688  MI->eraseFromParent();   // The pseudo instruction is gone now.
13689
13690  return EndMBB;
13691}
13692
13693// The EFLAGS operand of SelectItr might be missing a kill marker
13694// because there were multiple uses of EFLAGS, and ISel didn't know
13695// which to mark. Figure out whether SelectItr should have had a
13696// kill marker, and set it if it should. Returns the correct kill
13697// marker value.
13698static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13699                                     MachineBasicBlock* BB,
13700                                     const TargetRegisterInfo* TRI) {
13701  // Scan forward through BB for a use/def of EFLAGS.
13702  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13703  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13704    const MachineInstr& mi = *miI;
13705    if (mi.readsRegister(X86::EFLAGS))
13706      return false;
13707    if (mi.definesRegister(X86::EFLAGS))
13708      break; // Should have kill-flag - update below.
13709  }
13710
13711  // If we hit the end of the block, check whether EFLAGS is live into a
13712  // successor.
13713  if (miI == BB->end()) {
13714    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13715                                          sEnd = BB->succ_end();
13716         sItr != sEnd; ++sItr) {
13717      MachineBasicBlock* succ = *sItr;
13718      if (succ->isLiveIn(X86::EFLAGS))
13719        return false;
13720    }
13721  }
13722
13723  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13724  // out. SelectMI should have a kill flag on EFLAGS.
13725  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13726  return true;
13727}
13728
13729MachineBasicBlock *
13730X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13731                                     MachineBasicBlock *BB) const {
13732  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13733  DebugLoc DL = MI->getDebugLoc();
13734
13735  // To "insert" a SELECT_CC instruction, we actually have to insert the
13736  // diamond control-flow pattern.  The incoming instruction knows the
13737  // destination vreg to set, the condition code register to branch on, the
13738  // true/false values to select between, and a branch opcode to use.
13739  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13740  MachineFunction::iterator It = BB;
13741  ++It;
13742
13743  //  thisMBB:
13744  //  ...
13745  //   TrueVal = ...
13746  //   cmpTY ccX, r1, r2
13747  //   bCC copy1MBB
13748  //   fallthrough --> copy0MBB
13749  MachineBasicBlock *thisMBB = BB;
13750  MachineFunction *F = BB->getParent();
13751  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13752  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13753  F->insert(It, copy0MBB);
13754  F->insert(It, sinkMBB);
13755
13756  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13757  // live into the sink and copy blocks.
13758  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13759  if (!MI->killsRegister(X86::EFLAGS) &&
13760      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13761    copy0MBB->addLiveIn(X86::EFLAGS);
13762    sinkMBB->addLiveIn(X86::EFLAGS);
13763  }
13764
13765  // Transfer the remainder of BB and its successor edges to sinkMBB.
13766  sinkMBB->splice(sinkMBB->begin(), BB,
13767                  llvm::next(MachineBasicBlock::iterator(MI)),
13768                  BB->end());
13769  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13770
13771  // Add the true and fallthrough blocks as its successors.
13772  BB->addSuccessor(copy0MBB);
13773  BB->addSuccessor(sinkMBB);
13774
13775  // Create the conditional branch instruction.
13776  unsigned Opc =
13777    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13778  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13779
13780  //  copy0MBB:
13781  //   %FalseValue = ...
13782  //   # fallthrough to sinkMBB
13783  copy0MBB->addSuccessor(sinkMBB);
13784
13785  //  sinkMBB:
13786  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13787  //  ...
13788  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13789          TII->get(X86::PHI), MI->getOperand(0).getReg())
13790    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13791    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13792
13793  MI->eraseFromParent();   // The pseudo instruction is gone now.
13794  return sinkMBB;
13795}
13796
13797MachineBasicBlock *
13798X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13799                                        bool Is64Bit) const {
13800  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13801  DebugLoc DL = MI->getDebugLoc();
13802  MachineFunction *MF = BB->getParent();
13803  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13804
13805  assert(getTargetMachine().Options.EnableSegmentedStacks);
13806
13807  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13808  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13809
13810  // BB:
13811  //  ... [Till the alloca]
13812  // If stacklet is not large enough, jump to mallocMBB
13813  //
13814  // bumpMBB:
13815  //  Allocate by subtracting from RSP
13816  //  Jump to continueMBB
13817  //
13818  // mallocMBB:
13819  //  Allocate by call to runtime
13820  //
13821  // continueMBB:
13822  //  ...
13823  //  [rest of original BB]
13824  //
13825
13826  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13827  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13828  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13829
13830  MachineRegisterInfo &MRI = MF->getRegInfo();
13831  const TargetRegisterClass *AddrRegClass =
13832    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13833
13834  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13835    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13836    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13837    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13838    sizeVReg = MI->getOperand(1).getReg(),
13839    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13840
13841  MachineFunction::iterator MBBIter = BB;
13842  ++MBBIter;
13843
13844  MF->insert(MBBIter, bumpMBB);
13845  MF->insert(MBBIter, mallocMBB);
13846  MF->insert(MBBIter, continueMBB);
13847
13848  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13849                      (MachineBasicBlock::iterator(MI)), BB->end());
13850  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13851
13852  // Add code to the main basic block to check if the stack limit has been hit,
13853  // and if so, jump to mallocMBB otherwise to bumpMBB.
13854  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13855  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13856    .addReg(tmpSPVReg).addReg(sizeVReg);
13857  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13858    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13859    .addReg(SPLimitVReg);
13860  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13861
13862  // bumpMBB simply decreases the stack pointer, since we know the current
13863  // stacklet has enough space.
13864  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13865    .addReg(SPLimitVReg);
13866  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13867    .addReg(SPLimitVReg);
13868  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13869
13870  // Calls into a routine in libgcc to allocate more space from the heap.
13871  const uint32_t *RegMask =
13872    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13873  if (Is64Bit) {
13874    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13875      .addReg(sizeVReg);
13876    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13877      .addExternalSymbol("__morestack_allocate_stack_space")
13878      .addRegMask(RegMask)
13879      .addReg(X86::RDI, RegState::Implicit)
13880      .addReg(X86::RAX, RegState::ImplicitDefine);
13881  } else {
13882    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13883      .addImm(12);
13884    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13885    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13886      .addExternalSymbol("__morestack_allocate_stack_space")
13887      .addRegMask(RegMask)
13888      .addReg(X86::EAX, RegState::ImplicitDefine);
13889  }
13890
13891  if (!Is64Bit)
13892    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13893      .addImm(16);
13894
13895  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13896    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13897  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13898
13899  // Set up the CFG correctly.
13900  BB->addSuccessor(bumpMBB);
13901  BB->addSuccessor(mallocMBB);
13902  mallocMBB->addSuccessor(continueMBB);
13903  bumpMBB->addSuccessor(continueMBB);
13904
13905  // Take care of the PHI nodes.
13906  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13907          MI->getOperand(0).getReg())
13908    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13909    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13910
13911  // Delete the original pseudo instruction.
13912  MI->eraseFromParent();
13913
13914  // And we're done.
13915  return continueMBB;
13916}
13917
13918MachineBasicBlock *
13919X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13920                                          MachineBasicBlock *BB) const {
13921  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13922  DebugLoc DL = MI->getDebugLoc();
13923
13924  assert(!Subtarget->isTargetEnvMacho());
13925
13926  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13927  // non-trivial part is impdef of ESP.
13928
13929  if (Subtarget->isTargetWin64()) {
13930    if (Subtarget->isTargetCygMing()) {
13931      // ___chkstk(Mingw64):
13932      // Clobbers R10, R11, RAX and EFLAGS.
13933      // Updates RSP.
13934      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13935        .addExternalSymbol("___chkstk")
13936        .addReg(X86::RAX, RegState::Implicit)
13937        .addReg(X86::RSP, RegState::Implicit)
13938        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13939        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13940        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13941    } else {
13942      // __chkstk(MSVCRT): does not update stack pointer.
13943      // Clobbers R10, R11 and EFLAGS.
13944      // FIXME: RAX(allocated size) might be reused and not killed.
13945      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13946        .addExternalSymbol("__chkstk")
13947        .addReg(X86::RAX, RegState::Implicit)
13948        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13949      // RAX has the offset to subtracted from RSP.
13950      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13951        .addReg(X86::RSP)
13952        .addReg(X86::RAX);
13953    }
13954  } else {
13955    const char *StackProbeSymbol =
13956      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13957
13958    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13959      .addExternalSymbol(StackProbeSymbol)
13960      .addReg(X86::EAX, RegState::Implicit)
13961      .addReg(X86::ESP, RegState::Implicit)
13962      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13963      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13964      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13965  }
13966
13967  MI->eraseFromParent();   // The pseudo instruction is gone now.
13968  return BB;
13969}
13970
13971MachineBasicBlock *
13972X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13973                                      MachineBasicBlock *BB) const {
13974  // This is pretty easy.  We're taking the value that we received from
13975  // our load from the relocation, sticking it in either RDI (x86-64)
13976  // or EAX and doing an indirect call.  The return value will then
13977  // be in the normal return register.
13978  const X86InstrInfo *TII
13979    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13980  DebugLoc DL = MI->getDebugLoc();
13981  MachineFunction *F = BB->getParent();
13982
13983  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13984  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13985
13986  // Get a register mask for the lowered call.
13987  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13988  // proper register mask.
13989  const uint32_t *RegMask =
13990    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13991  if (Subtarget->is64Bit()) {
13992    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13993                                      TII->get(X86::MOV64rm), X86::RDI)
13994    .addReg(X86::RIP)
13995    .addImm(0).addReg(0)
13996    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13997                      MI->getOperand(3).getTargetFlags())
13998    .addReg(0);
13999    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14000    addDirectMem(MIB, X86::RDI);
14001    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14002  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14003    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14004                                      TII->get(X86::MOV32rm), X86::EAX)
14005    .addReg(0)
14006    .addImm(0).addReg(0)
14007    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14008                      MI->getOperand(3).getTargetFlags())
14009    .addReg(0);
14010    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14011    addDirectMem(MIB, X86::EAX);
14012    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14013  } else {
14014    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14015                                      TII->get(X86::MOV32rm), X86::EAX)
14016    .addReg(TII->getGlobalBaseReg(F))
14017    .addImm(0).addReg(0)
14018    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14019                      MI->getOperand(3).getTargetFlags())
14020    .addReg(0);
14021    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14022    addDirectMem(MIB, X86::EAX);
14023    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14024  }
14025
14026  MI->eraseFromParent(); // The pseudo instruction is gone now.
14027  return BB;
14028}
14029
14030MachineBasicBlock *
14031X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14032                                    MachineBasicBlock *MBB) const {
14033  DebugLoc DL = MI->getDebugLoc();
14034  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14035
14036  MachineFunction *MF = MBB->getParent();
14037  MachineRegisterInfo &MRI = MF->getRegInfo();
14038
14039  const BasicBlock *BB = MBB->getBasicBlock();
14040  MachineFunction::iterator I = MBB;
14041  ++I;
14042
14043  // Memory Reference
14044  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14045  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14046
14047  unsigned DstReg;
14048  unsigned MemOpndSlot = 0;
14049
14050  unsigned CurOp = 0;
14051
14052  DstReg = MI->getOperand(CurOp++).getReg();
14053  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14054  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14055  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14056  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14057
14058  MemOpndSlot = CurOp;
14059
14060  MVT PVT = getPointerTy();
14061  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14062         "Invalid Pointer Size!");
14063
14064  // For v = setjmp(buf), we generate
14065  //
14066  // thisMBB:
14067  //  buf[LabelOffset] = restoreMBB
14068  //  SjLjSetup restoreMBB
14069  //
14070  // mainMBB:
14071  //  v_main = 0
14072  //
14073  // sinkMBB:
14074  //  v = phi(main, restore)
14075  //
14076  // restoreMBB:
14077  //  v_restore = 1
14078
14079  MachineBasicBlock *thisMBB = MBB;
14080  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14081  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14082  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14083  MF->insert(I, mainMBB);
14084  MF->insert(I, sinkMBB);
14085  MF->push_back(restoreMBB);
14086
14087  MachineInstrBuilder MIB;
14088
14089  // Transfer the remainder of BB and its successor edges to sinkMBB.
14090  sinkMBB->splice(sinkMBB->begin(), MBB,
14091                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14092  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14093
14094  // thisMBB:
14095  unsigned PtrStoreOpc = 0;
14096  unsigned LabelReg = 0;
14097  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14098  Reloc::Model RM = getTargetMachine().getRelocationModel();
14099  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14100                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14101
14102  // Prepare IP either in reg or imm.
14103  if (!UseImmLabel) {
14104    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14105    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14106    LabelReg = MRI.createVirtualRegister(PtrRC);
14107    if (Subtarget->is64Bit()) {
14108      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14109              .addReg(X86::RIP)
14110              .addImm(0)
14111              .addReg(0)
14112              .addMBB(restoreMBB)
14113              .addReg(0);
14114    } else {
14115      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14116      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14117              .addReg(XII->getGlobalBaseReg(MF))
14118              .addImm(0)
14119              .addReg(0)
14120              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14121              .addReg(0);
14122    }
14123  } else
14124    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14125  // Store IP
14126  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14127  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14128    if (i == X86::AddrDisp)
14129      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14130    else
14131      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14132  }
14133  if (!UseImmLabel)
14134    MIB.addReg(LabelReg);
14135  else
14136    MIB.addMBB(restoreMBB);
14137  MIB.setMemRefs(MMOBegin, MMOEnd);
14138  // Setup
14139  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14140          .addMBB(restoreMBB);
14141  MIB.addRegMask(RegInfo->getNoPreservedMask());
14142  thisMBB->addSuccessor(mainMBB);
14143  thisMBB->addSuccessor(restoreMBB);
14144
14145  // mainMBB:
14146  //  EAX = 0
14147  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14148  mainMBB->addSuccessor(sinkMBB);
14149
14150  // sinkMBB:
14151  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14152          TII->get(X86::PHI), DstReg)
14153    .addReg(mainDstReg).addMBB(mainMBB)
14154    .addReg(restoreDstReg).addMBB(restoreMBB);
14155
14156  // restoreMBB:
14157  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14158  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14159  restoreMBB->addSuccessor(sinkMBB);
14160
14161  MI->eraseFromParent();
14162  return sinkMBB;
14163}
14164
14165MachineBasicBlock *
14166X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14167                                     MachineBasicBlock *MBB) const {
14168  DebugLoc DL = MI->getDebugLoc();
14169  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14170
14171  MachineFunction *MF = MBB->getParent();
14172  MachineRegisterInfo &MRI = MF->getRegInfo();
14173
14174  // Memory Reference
14175  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14176  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14177
14178  MVT PVT = getPointerTy();
14179  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14180         "Invalid Pointer Size!");
14181
14182  const TargetRegisterClass *RC =
14183    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14184  unsigned Tmp = MRI.createVirtualRegister(RC);
14185  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14186  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14187  unsigned SP = RegInfo->getStackRegister();
14188
14189  MachineInstrBuilder MIB;
14190
14191  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14192  const int64_t SPOffset = 2 * PVT.getStoreSize();
14193
14194  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14195  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14196
14197  // Reload FP
14198  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14199  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14200    MIB.addOperand(MI->getOperand(i));
14201  MIB.setMemRefs(MMOBegin, MMOEnd);
14202  // Reload IP
14203  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14204  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14205    if (i == X86::AddrDisp)
14206      MIB.addDisp(MI->getOperand(i), LabelOffset);
14207    else
14208      MIB.addOperand(MI->getOperand(i));
14209  }
14210  MIB.setMemRefs(MMOBegin, MMOEnd);
14211  // Reload SP
14212  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14213  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14214    if (i == X86::AddrDisp)
14215      MIB.addDisp(MI->getOperand(i), SPOffset);
14216    else
14217      MIB.addOperand(MI->getOperand(i));
14218  }
14219  MIB.setMemRefs(MMOBegin, MMOEnd);
14220  // Jump
14221  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14222
14223  MI->eraseFromParent();
14224  return MBB;
14225}
14226
14227MachineBasicBlock *
14228X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14229                                               MachineBasicBlock *BB) const {
14230  switch (MI->getOpcode()) {
14231  default: llvm_unreachable("Unexpected instr type to insert");
14232  case X86::TAILJMPd64:
14233  case X86::TAILJMPr64:
14234  case X86::TAILJMPm64:
14235    llvm_unreachable("TAILJMP64 would not be touched here.");
14236  case X86::TCRETURNdi64:
14237  case X86::TCRETURNri64:
14238  case X86::TCRETURNmi64:
14239    return BB;
14240  case X86::WIN_ALLOCA:
14241    return EmitLoweredWinAlloca(MI, BB);
14242  case X86::SEG_ALLOCA_32:
14243    return EmitLoweredSegAlloca(MI, BB, false);
14244  case X86::SEG_ALLOCA_64:
14245    return EmitLoweredSegAlloca(MI, BB, true);
14246  case X86::TLSCall_32:
14247  case X86::TLSCall_64:
14248    return EmitLoweredTLSCall(MI, BB);
14249  case X86::CMOV_GR8:
14250  case X86::CMOV_FR32:
14251  case X86::CMOV_FR64:
14252  case X86::CMOV_V4F32:
14253  case X86::CMOV_V2F64:
14254  case X86::CMOV_V2I64:
14255  case X86::CMOV_V8F32:
14256  case X86::CMOV_V4F64:
14257  case X86::CMOV_V4I64:
14258  case X86::CMOV_GR16:
14259  case X86::CMOV_GR32:
14260  case X86::CMOV_RFP32:
14261  case X86::CMOV_RFP64:
14262  case X86::CMOV_RFP80:
14263    return EmitLoweredSelect(MI, BB);
14264
14265  case X86::FP32_TO_INT16_IN_MEM:
14266  case X86::FP32_TO_INT32_IN_MEM:
14267  case X86::FP32_TO_INT64_IN_MEM:
14268  case X86::FP64_TO_INT16_IN_MEM:
14269  case X86::FP64_TO_INT32_IN_MEM:
14270  case X86::FP64_TO_INT64_IN_MEM:
14271  case X86::FP80_TO_INT16_IN_MEM:
14272  case X86::FP80_TO_INT32_IN_MEM:
14273  case X86::FP80_TO_INT64_IN_MEM: {
14274    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14275    DebugLoc DL = MI->getDebugLoc();
14276
14277    // Change the floating point control register to use "round towards zero"
14278    // mode when truncating to an integer value.
14279    MachineFunction *F = BB->getParent();
14280    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14281    addFrameReference(BuildMI(*BB, MI, DL,
14282                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14283
14284    // Load the old value of the high byte of the control word...
14285    unsigned OldCW =
14286      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14287    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14288                      CWFrameIdx);
14289
14290    // Set the high part to be round to zero...
14291    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14292      .addImm(0xC7F);
14293
14294    // Reload the modified control word now...
14295    addFrameReference(BuildMI(*BB, MI, DL,
14296                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14297
14298    // Restore the memory image of control word to original value
14299    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14300      .addReg(OldCW);
14301
14302    // Get the X86 opcode to use.
14303    unsigned Opc;
14304    switch (MI->getOpcode()) {
14305    default: llvm_unreachable("illegal opcode!");
14306    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14307    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14308    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14309    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14310    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14311    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14312    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14313    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14314    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14315    }
14316
14317    X86AddressMode AM;
14318    MachineOperand &Op = MI->getOperand(0);
14319    if (Op.isReg()) {
14320      AM.BaseType = X86AddressMode::RegBase;
14321      AM.Base.Reg = Op.getReg();
14322    } else {
14323      AM.BaseType = X86AddressMode::FrameIndexBase;
14324      AM.Base.FrameIndex = Op.getIndex();
14325    }
14326    Op = MI->getOperand(1);
14327    if (Op.isImm())
14328      AM.Scale = Op.getImm();
14329    Op = MI->getOperand(2);
14330    if (Op.isImm())
14331      AM.IndexReg = Op.getImm();
14332    Op = MI->getOperand(3);
14333    if (Op.isGlobal()) {
14334      AM.GV = Op.getGlobal();
14335    } else {
14336      AM.Disp = Op.getImm();
14337    }
14338    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14339                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14340
14341    // Reload the original control word now.
14342    addFrameReference(BuildMI(*BB, MI, DL,
14343                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14344
14345    MI->eraseFromParent();   // The pseudo instruction is gone now.
14346    return BB;
14347  }
14348    // String/text processing lowering.
14349  case X86::PCMPISTRM128REG:
14350  case X86::VPCMPISTRM128REG:
14351  case X86::PCMPISTRM128MEM:
14352  case X86::VPCMPISTRM128MEM:
14353  case X86::PCMPESTRM128REG:
14354  case X86::VPCMPESTRM128REG:
14355  case X86::PCMPESTRM128MEM:
14356  case X86::VPCMPESTRM128MEM:
14357    assert(Subtarget->hasSSE42() &&
14358           "Target must have SSE4.2 or AVX features enabled");
14359    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14360
14361  // String/text processing lowering.
14362  case X86::PCMPISTRIREG:
14363  case X86::VPCMPISTRIREG:
14364  case X86::PCMPISTRIMEM:
14365  case X86::VPCMPISTRIMEM:
14366  case X86::PCMPESTRIREG:
14367  case X86::VPCMPESTRIREG:
14368  case X86::PCMPESTRIMEM:
14369  case X86::VPCMPESTRIMEM:
14370    assert(Subtarget->hasSSE42() &&
14371           "Target must have SSE4.2 or AVX features enabled");
14372    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14373
14374  // Thread synchronization.
14375  case X86::MONITOR:
14376    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14377
14378  // xbegin
14379  case X86::XBEGIN:
14380    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14381
14382  // Atomic Lowering.
14383  case X86::ATOMAND8:
14384  case X86::ATOMAND16:
14385  case X86::ATOMAND32:
14386  case X86::ATOMAND64:
14387    // Fall through
14388  case X86::ATOMOR8:
14389  case X86::ATOMOR16:
14390  case X86::ATOMOR32:
14391  case X86::ATOMOR64:
14392    // Fall through
14393  case X86::ATOMXOR16:
14394  case X86::ATOMXOR8:
14395  case X86::ATOMXOR32:
14396  case X86::ATOMXOR64:
14397    // Fall through
14398  case X86::ATOMNAND8:
14399  case X86::ATOMNAND16:
14400  case X86::ATOMNAND32:
14401  case X86::ATOMNAND64:
14402    // Fall through
14403  case X86::ATOMMAX8:
14404  case X86::ATOMMAX16:
14405  case X86::ATOMMAX32:
14406  case X86::ATOMMAX64:
14407    // Fall through
14408  case X86::ATOMMIN8:
14409  case X86::ATOMMIN16:
14410  case X86::ATOMMIN32:
14411  case X86::ATOMMIN64:
14412    // Fall through
14413  case X86::ATOMUMAX8:
14414  case X86::ATOMUMAX16:
14415  case X86::ATOMUMAX32:
14416  case X86::ATOMUMAX64:
14417    // Fall through
14418  case X86::ATOMUMIN8:
14419  case X86::ATOMUMIN16:
14420  case X86::ATOMUMIN32:
14421  case X86::ATOMUMIN64:
14422    return EmitAtomicLoadArith(MI, BB);
14423
14424  // This group does 64-bit operations on a 32-bit host.
14425  case X86::ATOMAND6432:
14426  case X86::ATOMOR6432:
14427  case X86::ATOMXOR6432:
14428  case X86::ATOMNAND6432:
14429  case X86::ATOMADD6432:
14430  case X86::ATOMSUB6432:
14431  case X86::ATOMMAX6432:
14432  case X86::ATOMMIN6432:
14433  case X86::ATOMUMAX6432:
14434  case X86::ATOMUMIN6432:
14435  case X86::ATOMSWAP6432:
14436    return EmitAtomicLoadArith6432(MI, BB);
14437
14438  case X86::VASTART_SAVE_XMM_REGS:
14439    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14440
14441  case X86::VAARG_64:
14442    return EmitVAARG64WithCustomInserter(MI, BB);
14443
14444  case X86::EH_SjLj_SetJmp32:
14445  case X86::EH_SjLj_SetJmp64:
14446    return emitEHSjLjSetJmp(MI, BB);
14447
14448  case X86::EH_SjLj_LongJmp32:
14449  case X86::EH_SjLj_LongJmp64:
14450    return emitEHSjLjLongJmp(MI, BB);
14451  }
14452}
14453
14454//===----------------------------------------------------------------------===//
14455//                           X86 Optimization Hooks
14456//===----------------------------------------------------------------------===//
14457
14458void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14459                                                       APInt &KnownZero,
14460                                                       APInt &KnownOne,
14461                                                       const SelectionDAG &DAG,
14462                                                       unsigned Depth) const {
14463  unsigned BitWidth = KnownZero.getBitWidth();
14464  unsigned Opc = Op.getOpcode();
14465  assert((Opc >= ISD::BUILTIN_OP_END ||
14466          Opc == ISD::INTRINSIC_WO_CHAIN ||
14467          Opc == ISD::INTRINSIC_W_CHAIN ||
14468          Opc == ISD::INTRINSIC_VOID) &&
14469         "Should use MaskedValueIsZero if you don't know whether Op"
14470         " is a target node!");
14471
14472  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14473  switch (Opc) {
14474  default: break;
14475  case X86ISD::ADD:
14476  case X86ISD::SUB:
14477  case X86ISD::ADC:
14478  case X86ISD::SBB:
14479  case X86ISD::SMUL:
14480  case X86ISD::UMUL:
14481  case X86ISD::INC:
14482  case X86ISD::DEC:
14483  case X86ISD::OR:
14484  case X86ISD::XOR:
14485  case X86ISD::AND:
14486    // These nodes' second result is a boolean.
14487    if (Op.getResNo() == 0)
14488      break;
14489    // Fallthrough
14490  case X86ISD::SETCC:
14491    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14492    break;
14493  case ISD::INTRINSIC_WO_CHAIN: {
14494    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14495    unsigned NumLoBits = 0;
14496    switch (IntId) {
14497    default: break;
14498    case Intrinsic::x86_sse_movmsk_ps:
14499    case Intrinsic::x86_avx_movmsk_ps_256:
14500    case Intrinsic::x86_sse2_movmsk_pd:
14501    case Intrinsic::x86_avx_movmsk_pd_256:
14502    case Intrinsic::x86_mmx_pmovmskb:
14503    case Intrinsic::x86_sse2_pmovmskb_128:
14504    case Intrinsic::x86_avx2_pmovmskb: {
14505      // High bits of movmskp{s|d}, pmovmskb are known zero.
14506      switch (IntId) {
14507        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14508        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14509        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14510        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14511        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14512        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14513        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14514        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14515      }
14516      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14517      break;
14518    }
14519    }
14520    break;
14521  }
14522  }
14523}
14524
14525unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14526                                                         unsigned Depth) const {
14527  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14528  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14529    return Op.getValueType().getScalarType().getSizeInBits();
14530
14531  // Fallback case.
14532  return 1;
14533}
14534
14535/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14536/// node is a GlobalAddress + offset.
14537bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14538                                       const GlobalValue* &GA,
14539                                       int64_t &Offset) const {
14540  if (N->getOpcode() == X86ISD::Wrapper) {
14541    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14542      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14543      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14544      return true;
14545    }
14546  }
14547  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14548}
14549
14550/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14551/// same as extracting the high 128-bit part of 256-bit vector and then
14552/// inserting the result into the low part of a new 256-bit vector
14553static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14554  EVT VT = SVOp->getValueType(0);
14555  unsigned NumElems = VT.getVectorNumElements();
14556
14557  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14558  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14559    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14560        SVOp->getMaskElt(j) >= 0)
14561      return false;
14562
14563  return true;
14564}
14565
14566/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14567/// same as extracting the low 128-bit part of 256-bit vector and then
14568/// inserting the result into the high part of a new 256-bit vector
14569static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14570  EVT VT = SVOp->getValueType(0);
14571  unsigned NumElems = VT.getVectorNumElements();
14572
14573  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14574  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14575    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14576        SVOp->getMaskElt(j) >= 0)
14577      return false;
14578
14579  return true;
14580}
14581
14582/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14583static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14584                                        TargetLowering::DAGCombinerInfo &DCI,
14585                                        const X86Subtarget* Subtarget) {
14586  DebugLoc dl = N->getDebugLoc();
14587  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14588  SDValue V1 = SVOp->getOperand(0);
14589  SDValue V2 = SVOp->getOperand(1);
14590  EVT VT = SVOp->getValueType(0);
14591  unsigned NumElems = VT.getVectorNumElements();
14592
14593  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14594      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14595    //
14596    //                   0,0,0,...
14597    //                      |
14598    //    V      UNDEF    BUILD_VECTOR    UNDEF
14599    //     \      /           \           /
14600    //  CONCAT_VECTOR         CONCAT_VECTOR
14601    //         \                  /
14602    //          \                /
14603    //          RESULT: V + zero extended
14604    //
14605    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14606        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14607        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14608      return SDValue();
14609
14610    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14611      return SDValue();
14612
14613    // To match the shuffle mask, the first half of the mask should
14614    // be exactly the first vector, and all the rest a splat with the
14615    // first element of the second one.
14616    for (unsigned i = 0; i != NumElems/2; ++i)
14617      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14618          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14619        return SDValue();
14620
14621    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14622    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14623      if (Ld->hasNUsesOfValue(1, 0)) {
14624        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14625        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14626        SDValue ResNode =
14627          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14628                                  Ld->getMemoryVT(),
14629                                  Ld->getPointerInfo(),
14630                                  Ld->getAlignment(),
14631                                  false/*isVolatile*/, true/*ReadMem*/,
14632                                  false/*WriteMem*/);
14633
14634        // Make sure the newly-created LOAD is in the same position as Ld in
14635        // terms of dependency. We create a TokenFactor for Ld and ResNode,
14636        // and update uses of Ld's output chain to use the TokenFactor.
14637        if (Ld->hasAnyUseOfValue(1)) {
14638          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14639                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
14640          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
14641          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
14642                                 SDValue(ResNode.getNode(), 1));
14643        }
14644
14645        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14646      }
14647    }
14648
14649    // Emit a zeroed vector and insert the desired subvector on its
14650    // first half.
14651    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14652    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14653    return DCI.CombineTo(N, InsV);
14654  }
14655
14656  //===--------------------------------------------------------------------===//
14657  // Combine some shuffles into subvector extracts and inserts:
14658  //
14659
14660  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14661  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14662    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14663    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14664    return DCI.CombineTo(N, InsV);
14665  }
14666
14667  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14668  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14669    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14670    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14671    return DCI.CombineTo(N, InsV);
14672  }
14673
14674  return SDValue();
14675}
14676
14677/// PerformShuffleCombine - Performs several different shuffle combines.
14678static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14679                                     TargetLowering::DAGCombinerInfo &DCI,
14680                                     const X86Subtarget *Subtarget) {
14681  DebugLoc dl = N->getDebugLoc();
14682  EVT VT = N->getValueType(0);
14683
14684  // Don't create instructions with illegal types after legalize types has run.
14685  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14686  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14687    return SDValue();
14688
14689  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14690  if (Subtarget->hasFp256() && VT.is256BitVector() &&
14691      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14692    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14693
14694  // Only handle 128 wide vector from here on.
14695  if (!VT.is128BitVector())
14696    return SDValue();
14697
14698  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14699  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14700  // consecutive, non-overlapping, and in the right order.
14701  SmallVector<SDValue, 16> Elts;
14702  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14703    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14704
14705  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14706}
14707
14708/// PerformTruncateCombine - Converts truncate operation to
14709/// a sequence of vector shuffle operations.
14710/// It is possible when we truncate 256-bit vector to 128-bit vector
14711static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14712                                      TargetLowering::DAGCombinerInfo &DCI,
14713                                      const X86Subtarget *Subtarget)  {
14714  return SDValue();
14715}
14716
14717/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14718/// specific shuffle of a load can be folded into a single element load.
14719/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14720/// shuffles have been customed lowered so we need to handle those here.
14721static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14722                                         TargetLowering::DAGCombinerInfo &DCI) {
14723  if (DCI.isBeforeLegalizeOps())
14724    return SDValue();
14725
14726  SDValue InVec = N->getOperand(0);
14727  SDValue EltNo = N->getOperand(1);
14728
14729  if (!isa<ConstantSDNode>(EltNo))
14730    return SDValue();
14731
14732  EVT VT = InVec.getValueType();
14733
14734  bool HasShuffleIntoBitcast = false;
14735  if (InVec.getOpcode() == ISD::BITCAST) {
14736    // Don't duplicate a load with other uses.
14737    if (!InVec.hasOneUse())
14738      return SDValue();
14739    EVT BCVT = InVec.getOperand(0).getValueType();
14740    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14741      return SDValue();
14742    InVec = InVec.getOperand(0);
14743    HasShuffleIntoBitcast = true;
14744  }
14745
14746  if (!isTargetShuffle(InVec.getOpcode()))
14747    return SDValue();
14748
14749  // Don't duplicate a load with other uses.
14750  if (!InVec.hasOneUse())
14751    return SDValue();
14752
14753  SmallVector<int, 16> ShuffleMask;
14754  bool UnaryShuffle;
14755  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14756                            UnaryShuffle))
14757    return SDValue();
14758
14759  // Select the input vector, guarding against out of range extract vector.
14760  unsigned NumElems = VT.getVectorNumElements();
14761  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14762  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14763  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14764                                         : InVec.getOperand(1);
14765
14766  // If inputs to shuffle are the same for both ops, then allow 2 uses
14767  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14768
14769  if (LdNode.getOpcode() == ISD::BITCAST) {
14770    // Don't duplicate a load with other uses.
14771    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14772      return SDValue();
14773
14774    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14775    LdNode = LdNode.getOperand(0);
14776  }
14777
14778  if (!ISD::isNormalLoad(LdNode.getNode()))
14779    return SDValue();
14780
14781  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14782
14783  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14784    return SDValue();
14785
14786  if (HasShuffleIntoBitcast) {
14787    // If there's a bitcast before the shuffle, check if the load type and
14788    // alignment is valid.
14789    unsigned Align = LN0->getAlignment();
14790    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14791    unsigned NewAlign = TLI.getDataLayout()->
14792      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14793
14794    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14795      return SDValue();
14796  }
14797
14798  // All checks match so transform back to vector_shuffle so that DAG combiner
14799  // can finish the job
14800  DebugLoc dl = N->getDebugLoc();
14801
14802  // Create shuffle node taking into account the case that its a unary shuffle
14803  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14804  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14805                                 InVec.getOperand(0), Shuffle,
14806                                 &ShuffleMask[0]);
14807  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14808  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14809                     EltNo);
14810}
14811
14812/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14813/// generation and convert it from being a bunch of shuffles and extracts
14814/// to a simple store and scalar loads to extract the elements.
14815static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14816                                         TargetLowering::DAGCombinerInfo &DCI) {
14817  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14818  if (NewOp.getNode())
14819    return NewOp;
14820
14821  SDValue InputVector = N->getOperand(0);
14822  // Detect whether we are trying to convert from mmx to i32 and the bitcast
14823  // from mmx to v2i32 has a single usage.
14824  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
14825      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
14826      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
14827    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
14828                       N->getValueType(0),
14829                       InputVector.getNode()->getOperand(0));
14830
14831  // Only operate on vectors of 4 elements, where the alternative shuffling
14832  // gets to be more expensive.
14833  if (InputVector.getValueType() != MVT::v4i32)
14834    return SDValue();
14835
14836  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14837  // single use which is a sign-extend or zero-extend, and all elements are
14838  // used.
14839  SmallVector<SDNode *, 4> Uses;
14840  unsigned ExtractedElements = 0;
14841  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14842       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14843    if (UI.getUse().getResNo() != InputVector.getResNo())
14844      return SDValue();
14845
14846    SDNode *Extract = *UI;
14847    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14848      return SDValue();
14849
14850    if (Extract->getValueType(0) != MVT::i32)
14851      return SDValue();
14852    if (!Extract->hasOneUse())
14853      return SDValue();
14854    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14855        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14856      return SDValue();
14857    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14858      return SDValue();
14859
14860    // Record which element was extracted.
14861    ExtractedElements |=
14862      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14863
14864    Uses.push_back(Extract);
14865  }
14866
14867  // If not all the elements were used, this may not be worthwhile.
14868  if (ExtractedElements != 15)
14869    return SDValue();
14870
14871  // Ok, we've now decided to do the transformation.
14872  DebugLoc dl = InputVector.getDebugLoc();
14873
14874  // Store the value to a temporary stack slot.
14875  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14876  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14877                            MachinePointerInfo(), false, false, 0);
14878
14879  // Replace each use (extract) with a load of the appropriate element.
14880  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14881       UE = Uses.end(); UI != UE; ++UI) {
14882    SDNode *Extract = *UI;
14883
14884    // cOMpute the element's address.
14885    SDValue Idx = Extract->getOperand(1);
14886    unsigned EltSize =
14887        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14888    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14889    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14890    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14891
14892    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14893                                     StackPtr, OffsetVal);
14894
14895    // Load the scalar.
14896    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14897                                     ScalarAddr, MachinePointerInfo(),
14898                                     false, false, false, 0);
14899
14900    // Replace the exact with the load.
14901    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14902  }
14903
14904  // The replacement was made in place; don't return anything.
14905  return SDValue();
14906}
14907
14908/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
14909static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
14910                                   SDValue RHS, SelectionDAG &DAG,
14911                                   const X86Subtarget *Subtarget) {
14912  if (!VT.isVector())
14913    return 0;
14914
14915  switch (VT.getSimpleVT().SimpleTy) {
14916  default: return 0;
14917  case MVT::v32i8:
14918  case MVT::v16i16:
14919  case MVT::v8i32:
14920    if (!Subtarget->hasAVX2())
14921      return 0;
14922  case MVT::v16i8:
14923  case MVT::v8i16:
14924  case MVT::v4i32:
14925    if (!Subtarget->hasSSE2())
14926      return 0;
14927  }
14928
14929  // SSE2 has only a small subset of the operations.
14930  bool hasUnsigned = Subtarget->hasSSE41() ||
14931                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
14932  bool hasSigned = Subtarget->hasSSE41() ||
14933                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
14934
14935  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14936
14937  // Check for x CC y ? x : y.
14938  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14939      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14940    switch (CC) {
14941    default: break;
14942    case ISD::SETULT:
14943    case ISD::SETULE:
14944      return hasUnsigned ? X86ISD::UMIN : 0;
14945    case ISD::SETUGT:
14946    case ISD::SETUGE:
14947      return hasUnsigned ? X86ISD::UMAX : 0;
14948    case ISD::SETLT:
14949    case ISD::SETLE:
14950      return hasSigned ? X86ISD::SMIN : 0;
14951    case ISD::SETGT:
14952    case ISD::SETGE:
14953      return hasSigned ? X86ISD::SMAX : 0;
14954    }
14955  // Check for x CC y ? y : x -- a min/max with reversed arms.
14956  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14957             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14958    switch (CC) {
14959    default: break;
14960    case ISD::SETULT:
14961    case ISD::SETULE:
14962      return hasUnsigned ? X86ISD::UMAX : 0;
14963    case ISD::SETUGT:
14964    case ISD::SETUGE:
14965      return hasUnsigned ? X86ISD::UMIN : 0;
14966    case ISD::SETLT:
14967    case ISD::SETLE:
14968      return hasSigned ? X86ISD::SMAX : 0;
14969    case ISD::SETGT:
14970    case ISD::SETGE:
14971      return hasSigned ? X86ISD::SMIN : 0;
14972    }
14973  }
14974
14975  return 0;
14976}
14977
14978/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14979/// nodes.
14980static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14981                                    TargetLowering::DAGCombinerInfo &DCI,
14982                                    const X86Subtarget *Subtarget) {
14983  DebugLoc DL = N->getDebugLoc();
14984  SDValue Cond = N->getOperand(0);
14985  // Get the LHS/RHS of the select.
14986  SDValue LHS = N->getOperand(1);
14987  SDValue RHS = N->getOperand(2);
14988  EVT VT = LHS.getValueType();
14989
14990  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14991  // instructions match the semantics of the common C idiom x<y?x:y but not
14992  // x<=y?x:y, because of how they handle negative zero (which can be
14993  // ignored in unsafe-math mode).
14994  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14995      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14996      (Subtarget->hasSSE2() ||
14997       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14998    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14999
15000    unsigned Opcode = 0;
15001    // Check for x CC y ? x : y.
15002    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15003        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15004      switch (CC) {
15005      default: break;
15006      case ISD::SETULT:
15007        // Converting this to a min would handle NaNs incorrectly, and swapping
15008        // the operands would cause it to handle comparisons between positive
15009        // and negative zero incorrectly.
15010        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15011          if (!DAG.getTarget().Options.UnsafeFPMath &&
15012              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15013            break;
15014          std::swap(LHS, RHS);
15015        }
15016        Opcode = X86ISD::FMIN;
15017        break;
15018      case ISD::SETOLE:
15019        // Converting this to a min would handle comparisons between positive
15020        // and negative zero incorrectly.
15021        if (!DAG.getTarget().Options.UnsafeFPMath &&
15022            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15023          break;
15024        Opcode = X86ISD::FMIN;
15025        break;
15026      case ISD::SETULE:
15027        // Converting this to a min would handle both negative zeros and NaNs
15028        // incorrectly, but we can swap the operands to fix both.
15029        std::swap(LHS, RHS);
15030      case ISD::SETOLT:
15031      case ISD::SETLT:
15032      case ISD::SETLE:
15033        Opcode = X86ISD::FMIN;
15034        break;
15035
15036      case ISD::SETOGE:
15037        // Converting this to a max would handle comparisons between positive
15038        // and negative zero incorrectly.
15039        if (!DAG.getTarget().Options.UnsafeFPMath &&
15040            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15041          break;
15042        Opcode = X86ISD::FMAX;
15043        break;
15044      case ISD::SETUGT:
15045        // Converting this to a max would handle NaNs incorrectly, and swapping
15046        // the operands would cause it to handle comparisons between positive
15047        // and negative zero incorrectly.
15048        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15049          if (!DAG.getTarget().Options.UnsafeFPMath &&
15050              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15051            break;
15052          std::swap(LHS, RHS);
15053        }
15054        Opcode = X86ISD::FMAX;
15055        break;
15056      case ISD::SETUGE:
15057        // Converting this to a max would handle both negative zeros and NaNs
15058        // incorrectly, but we can swap the operands to fix both.
15059        std::swap(LHS, RHS);
15060      case ISD::SETOGT:
15061      case ISD::SETGT:
15062      case ISD::SETGE:
15063        Opcode = X86ISD::FMAX;
15064        break;
15065      }
15066    // Check for x CC y ? y : x -- a min/max with reversed arms.
15067    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15068               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15069      switch (CC) {
15070      default: break;
15071      case ISD::SETOGE:
15072        // Converting this to a min would handle comparisons between positive
15073        // and negative zero incorrectly, and swapping the operands would
15074        // cause it to handle NaNs incorrectly.
15075        if (!DAG.getTarget().Options.UnsafeFPMath &&
15076            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15077          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15078            break;
15079          std::swap(LHS, RHS);
15080        }
15081        Opcode = X86ISD::FMIN;
15082        break;
15083      case ISD::SETUGT:
15084        // Converting this to a min would handle NaNs incorrectly.
15085        if (!DAG.getTarget().Options.UnsafeFPMath &&
15086            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15087          break;
15088        Opcode = X86ISD::FMIN;
15089        break;
15090      case ISD::SETUGE:
15091        // Converting this to a min would handle both negative zeros and NaNs
15092        // incorrectly, but we can swap the operands to fix both.
15093        std::swap(LHS, RHS);
15094      case ISD::SETOGT:
15095      case ISD::SETGT:
15096      case ISD::SETGE:
15097        Opcode = X86ISD::FMIN;
15098        break;
15099
15100      case ISD::SETULT:
15101        // Converting this to a max would handle NaNs incorrectly.
15102        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15103          break;
15104        Opcode = X86ISD::FMAX;
15105        break;
15106      case ISD::SETOLE:
15107        // Converting this to a max would handle comparisons between positive
15108        // and negative zero incorrectly, and swapping the operands would
15109        // cause it to handle NaNs incorrectly.
15110        if (!DAG.getTarget().Options.UnsafeFPMath &&
15111            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15112          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15113            break;
15114          std::swap(LHS, RHS);
15115        }
15116        Opcode = X86ISD::FMAX;
15117        break;
15118      case ISD::SETULE:
15119        // Converting this to a max would handle both negative zeros and NaNs
15120        // incorrectly, but we can swap the operands to fix both.
15121        std::swap(LHS, RHS);
15122      case ISD::SETOLT:
15123      case ISD::SETLT:
15124      case ISD::SETLE:
15125        Opcode = X86ISD::FMAX;
15126        break;
15127      }
15128    }
15129
15130    if (Opcode)
15131      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15132  }
15133
15134  // If this is a select between two integer constants, try to do some
15135  // optimizations.
15136  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15137    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15138      // Don't do this for crazy integer types.
15139      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15140        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15141        // so that TrueC (the true value) is larger than FalseC.
15142        bool NeedsCondInvert = false;
15143
15144        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15145            // Efficiently invertible.
15146            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15147             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15148              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15149          NeedsCondInvert = true;
15150          std::swap(TrueC, FalseC);
15151        }
15152
15153        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15154        if (FalseC->getAPIntValue() == 0 &&
15155            TrueC->getAPIntValue().isPowerOf2()) {
15156          if (NeedsCondInvert) // Invert the condition if needed.
15157            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15158                               DAG.getConstant(1, Cond.getValueType()));
15159
15160          // Zero extend the condition if needed.
15161          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15162
15163          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15164          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15165                             DAG.getConstant(ShAmt, MVT::i8));
15166        }
15167
15168        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15169        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15170          if (NeedsCondInvert) // Invert the condition if needed.
15171            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15172                               DAG.getConstant(1, Cond.getValueType()));
15173
15174          // Zero extend the condition if needed.
15175          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15176                             FalseC->getValueType(0), Cond);
15177          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15178                             SDValue(FalseC, 0));
15179        }
15180
15181        // Optimize cases that will turn into an LEA instruction.  This requires
15182        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15183        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15184          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15185          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15186
15187          bool isFastMultiplier = false;
15188          if (Diff < 10) {
15189            switch ((unsigned char)Diff) {
15190              default: break;
15191              case 1:  // result = add base, cond
15192              case 2:  // result = lea base(    , cond*2)
15193              case 3:  // result = lea base(cond, cond*2)
15194              case 4:  // result = lea base(    , cond*4)
15195              case 5:  // result = lea base(cond, cond*4)
15196              case 8:  // result = lea base(    , cond*8)
15197              case 9:  // result = lea base(cond, cond*8)
15198                isFastMultiplier = true;
15199                break;
15200            }
15201          }
15202
15203          if (isFastMultiplier) {
15204            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15205            if (NeedsCondInvert) // Invert the condition if needed.
15206              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15207                                 DAG.getConstant(1, Cond.getValueType()));
15208
15209            // Zero extend the condition if needed.
15210            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15211                               Cond);
15212            // Scale the condition by the difference.
15213            if (Diff != 1)
15214              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15215                                 DAG.getConstant(Diff, Cond.getValueType()));
15216
15217            // Add the base if non-zero.
15218            if (FalseC->getAPIntValue() != 0)
15219              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15220                                 SDValue(FalseC, 0));
15221            return Cond;
15222          }
15223        }
15224      }
15225  }
15226
15227  // Canonicalize max and min:
15228  // (x > y) ? x : y -> (x >= y) ? x : y
15229  // (x < y) ? x : y -> (x <= y) ? x : y
15230  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15231  // the need for an extra compare
15232  // against zero. e.g.
15233  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15234  // subl   %esi, %edi
15235  // testl  %edi, %edi
15236  // movl   $0, %eax
15237  // cmovgl %edi, %eax
15238  // =>
15239  // xorl   %eax, %eax
15240  // subl   %esi, $edi
15241  // cmovsl %eax, %edi
15242  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15243      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15244      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15245    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15246    switch (CC) {
15247    default: break;
15248    case ISD::SETLT:
15249    case ISD::SETGT: {
15250      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15251      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15252                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15253      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15254    }
15255    }
15256  }
15257
15258  // Match VSELECTs into subs with unsigned saturation.
15259  if (!DCI.isBeforeLegalize() &&
15260      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15261      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15262      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15263       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15264    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15265
15266    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15267    // left side invert the predicate to simplify logic below.
15268    SDValue Other;
15269    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15270      Other = RHS;
15271      CC = ISD::getSetCCInverse(CC, true);
15272    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15273      Other = LHS;
15274    }
15275
15276    if (Other.getNode() && Other->getNumOperands() == 2 &&
15277        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15278      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15279      SDValue CondRHS = Cond->getOperand(1);
15280
15281      // Look for a general sub with unsigned saturation first.
15282      // x >= y ? x-y : 0 --> subus x, y
15283      // x >  y ? x-y : 0 --> subus x, y
15284      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15285          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15286        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15287
15288      // If the RHS is a constant we have to reverse the const canonicalization.
15289      // x > C-1 ? x+-C : 0 --> subus x, C
15290      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15291          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15292        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15293        if (CondRHS.getConstantOperandVal(0) == -A-1) {
15294          SmallVector<SDValue, 32> V(VT.getVectorNumElements(),
15295                                     DAG.getConstant(-A, VT.getScalarType()));
15296          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15297                             DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
15298                                         V.data(), V.size()));
15299        }
15300      }
15301
15302      // Another special case: If C was a sign bit, the sub has been
15303      // canonicalized into a xor.
15304      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15305      //        it's safe to decanonicalize the xor?
15306      // x s< 0 ? x^C : 0 --> subus x, C
15307      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15308          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15309          isSplatVector(OpRHS.getNode())) {
15310        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15311        if (A.isSignBit())
15312          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15313      }
15314    }
15315  }
15316
15317  // Try to match a min/max vector operation.
15318  if (!DCI.isBeforeLegalize() &&
15319      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15320    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15321      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15322
15323  // If we know that this node is legal then we know that it is going to be
15324  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15325  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15326  // to simplify previous instructions.
15327  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15328  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15329      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15330    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15331
15332    // Don't optimize vector selects that map to mask-registers.
15333    if (BitWidth == 1)
15334      return SDValue();
15335
15336    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15337    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15338
15339    APInt KnownZero, KnownOne;
15340    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15341                                          DCI.isBeforeLegalizeOps());
15342    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15343        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15344      DCI.CommitTargetLoweringOpt(TLO);
15345  }
15346
15347  return SDValue();
15348}
15349
15350// Check whether a boolean test is testing a boolean value generated by
15351// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15352// code.
15353//
15354// Simplify the following patterns:
15355// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15356// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15357// to (Op EFLAGS Cond)
15358//
15359// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15360// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15361// to (Op EFLAGS !Cond)
15362//
15363// where Op could be BRCOND or CMOV.
15364//
15365static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15366  // Quit if not CMP and SUB with its value result used.
15367  if (Cmp.getOpcode() != X86ISD::CMP &&
15368      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15369      return SDValue();
15370
15371  // Quit if not used as a boolean value.
15372  if (CC != X86::COND_E && CC != X86::COND_NE)
15373    return SDValue();
15374
15375  // Check CMP operands. One of them should be 0 or 1 and the other should be
15376  // an SetCC or extended from it.
15377  SDValue Op1 = Cmp.getOperand(0);
15378  SDValue Op2 = Cmp.getOperand(1);
15379
15380  SDValue SetCC;
15381  const ConstantSDNode* C = 0;
15382  bool needOppositeCond = (CC == X86::COND_E);
15383
15384  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15385    SetCC = Op2;
15386  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15387    SetCC = Op1;
15388  else // Quit if all operands are not constants.
15389    return SDValue();
15390
15391  if (C->getZExtValue() == 1)
15392    needOppositeCond = !needOppositeCond;
15393  else if (C->getZExtValue() != 0)
15394    // Quit if the constant is neither 0 or 1.
15395    return SDValue();
15396
15397  // Skip 'zext' node.
15398  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
15399    SetCC = SetCC.getOperand(0);
15400
15401  switch (SetCC.getOpcode()) {
15402  case X86ISD::SETCC:
15403    // Set the condition code or opposite one if necessary.
15404    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15405    if (needOppositeCond)
15406      CC = X86::GetOppositeBranchCondition(CC);
15407    return SetCC.getOperand(1);
15408  case X86ISD::CMOV: {
15409    // Check whether false/true value has canonical one, i.e. 0 or 1.
15410    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15411    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15412    // Quit if true value is not a constant.
15413    if (!TVal)
15414      return SDValue();
15415    // Quit if false value is not a constant.
15416    if (!FVal) {
15417      // A special case for rdrand, where 0 is set if false cond is found.
15418      SDValue Op = SetCC.getOperand(0);
15419      if (Op.getOpcode() != X86ISD::RDRAND)
15420        return SDValue();
15421    }
15422    // Quit if false value is not the constant 0 or 1.
15423    bool FValIsFalse = true;
15424    if (FVal && FVal->getZExtValue() != 0) {
15425      if (FVal->getZExtValue() != 1)
15426        return SDValue();
15427      // If FVal is 1, opposite cond is needed.
15428      needOppositeCond = !needOppositeCond;
15429      FValIsFalse = false;
15430    }
15431    // Quit if TVal is not the constant opposite of FVal.
15432    if (FValIsFalse && TVal->getZExtValue() != 1)
15433      return SDValue();
15434    if (!FValIsFalse && TVal->getZExtValue() != 0)
15435      return SDValue();
15436    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15437    if (needOppositeCond)
15438      CC = X86::GetOppositeBranchCondition(CC);
15439    return SetCC.getOperand(3);
15440  }
15441  }
15442
15443  return SDValue();
15444}
15445
15446/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15447static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15448                                  TargetLowering::DAGCombinerInfo &DCI,
15449                                  const X86Subtarget *Subtarget) {
15450  DebugLoc DL = N->getDebugLoc();
15451
15452  // If the flag operand isn't dead, don't touch this CMOV.
15453  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15454    return SDValue();
15455
15456  SDValue FalseOp = N->getOperand(0);
15457  SDValue TrueOp = N->getOperand(1);
15458  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15459  SDValue Cond = N->getOperand(3);
15460
15461  if (CC == X86::COND_E || CC == X86::COND_NE) {
15462    switch (Cond.getOpcode()) {
15463    default: break;
15464    case X86ISD::BSR:
15465    case X86ISD::BSF:
15466      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15467      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15468        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15469    }
15470  }
15471
15472  SDValue Flags;
15473
15474  Flags = checkBoolTestSetCCCombine(Cond, CC);
15475  if (Flags.getNode() &&
15476      // Extra check as FCMOV only supports a subset of X86 cond.
15477      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15478    SDValue Ops[] = { FalseOp, TrueOp,
15479                      DAG.getConstant(CC, MVT::i8), Flags };
15480    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15481                       Ops, array_lengthof(Ops));
15482  }
15483
15484  // If this is a select between two integer constants, try to do some
15485  // optimizations.  Note that the operands are ordered the opposite of SELECT
15486  // operands.
15487  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15488    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15489      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15490      // larger than FalseC (the false value).
15491      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15492        CC = X86::GetOppositeBranchCondition(CC);
15493        std::swap(TrueC, FalseC);
15494        std::swap(TrueOp, FalseOp);
15495      }
15496
15497      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15498      // This is efficient for any integer data type (including i8/i16) and
15499      // shift amount.
15500      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15501        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15502                           DAG.getConstant(CC, MVT::i8), Cond);
15503
15504        // Zero extend the condition if needed.
15505        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15506
15507        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15508        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15509                           DAG.getConstant(ShAmt, MVT::i8));
15510        if (N->getNumValues() == 2)  // Dead flag value?
15511          return DCI.CombineTo(N, Cond, SDValue());
15512        return Cond;
15513      }
15514
15515      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15516      // for any integer data type, including i8/i16.
15517      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15518        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15519                           DAG.getConstant(CC, MVT::i8), Cond);
15520
15521        // Zero extend the condition if needed.
15522        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15523                           FalseC->getValueType(0), Cond);
15524        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15525                           SDValue(FalseC, 0));
15526
15527        if (N->getNumValues() == 2)  // Dead flag value?
15528          return DCI.CombineTo(N, Cond, SDValue());
15529        return Cond;
15530      }
15531
15532      // Optimize cases that will turn into an LEA instruction.  This requires
15533      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15534      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15535        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15536        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15537
15538        bool isFastMultiplier = false;
15539        if (Diff < 10) {
15540          switch ((unsigned char)Diff) {
15541          default: break;
15542          case 1:  // result = add base, cond
15543          case 2:  // result = lea base(    , cond*2)
15544          case 3:  // result = lea base(cond, cond*2)
15545          case 4:  // result = lea base(    , cond*4)
15546          case 5:  // result = lea base(cond, cond*4)
15547          case 8:  // result = lea base(    , cond*8)
15548          case 9:  // result = lea base(cond, cond*8)
15549            isFastMultiplier = true;
15550            break;
15551          }
15552        }
15553
15554        if (isFastMultiplier) {
15555          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15556          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15557                             DAG.getConstant(CC, MVT::i8), Cond);
15558          // Zero extend the condition if needed.
15559          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15560                             Cond);
15561          // Scale the condition by the difference.
15562          if (Diff != 1)
15563            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15564                               DAG.getConstant(Diff, Cond.getValueType()));
15565
15566          // Add the base if non-zero.
15567          if (FalseC->getAPIntValue() != 0)
15568            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15569                               SDValue(FalseC, 0));
15570          if (N->getNumValues() == 2)  // Dead flag value?
15571            return DCI.CombineTo(N, Cond, SDValue());
15572          return Cond;
15573        }
15574      }
15575    }
15576  }
15577
15578  // Handle these cases:
15579  //   (select (x != c), e, c) -> select (x != c), e, x),
15580  //   (select (x == c), c, e) -> select (x == c), x, e)
15581  // where the c is an integer constant, and the "select" is the combination
15582  // of CMOV and CMP.
15583  //
15584  // The rationale for this change is that the conditional-move from a constant
15585  // needs two instructions, however, conditional-move from a register needs
15586  // only one instruction.
15587  //
15588  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15589  //  some instruction-combining opportunities. This opt needs to be
15590  //  postponed as late as possible.
15591  //
15592  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15593    // the DCI.xxxx conditions are provided to postpone the optimization as
15594    // late as possible.
15595
15596    ConstantSDNode *CmpAgainst = 0;
15597    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15598        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15599        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
15600
15601      if (CC == X86::COND_NE &&
15602          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15603        CC = X86::GetOppositeBranchCondition(CC);
15604        std::swap(TrueOp, FalseOp);
15605      }
15606
15607      if (CC == X86::COND_E &&
15608          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15609        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15610                          DAG.getConstant(CC, MVT::i8), Cond };
15611        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15612                           array_lengthof(Ops));
15613      }
15614    }
15615  }
15616
15617  return SDValue();
15618}
15619
15620/// PerformMulCombine - Optimize a single multiply with constant into two
15621/// in order to implement it with two cheaper instructions, e.g.
15622/// LEA + SHL, LEA + LEA.
15623static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15624                                 TargetLowering::DAGCombinerInfo &DCI) {
15625  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15626    return SDValue();
15627
15628  EVT VT = N->getValueType(0);
15629  if (VT != MVT::i64)
15630    return SDValue();
15631
15632  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15633  if (!C)
15634    return SDValue();
15635  uint64_t MulAmt = C->getZExtValue();
15636  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15637    return SDValue();
15638
15639  uint64_t MulAmt1 = 0;
15640  uint64_t MulAmt2 = 0;
15641  if ((MulAmt % 9) == 0) {
15642    MulAmt1 = 9;
15643    MulAmt2 = MulAmt / 9;
15644  } else if ((MulAmt % 5) == 0) {
15645    MulAmt1 = 5;
15646    MulAmt2 = MulAmt / 5;
15647  } else if ((MulAmt % 3) == 0) {
15648    MulAmt1 = 3;
15649    MulAmt2 = MulAmt / 3;
15650  }
15651  if (MulAmt2 &&
15652      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15653    DebugLoc DL = N->getDebugLoc();
15654
15655    if (isPowerOf2_64(MulAmt2) &&
15656        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15657      // If second multiplifer is pow2, issue it first. We want the multiply by
15658      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15659      // is an add.
15660      std::swap(MulAmt1, MulAmt2);
15661
15662    SDValue NewMul;
15663    if (isPowerOf2_64(MulAmt1))
15664      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15665                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15666    else
15667      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15668                           DAG.getConstant(MulAmt1, VT));
15669
15670    if (isPowerOf2_64(MulAmt2))
15671      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15672                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15673    else
15674      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15675                           DAG.getConstant(MulAmt2, VT));
15676
15677    // Do not add new nodes to DAG combiner worklist.
15678    DCI.CombineTo(N, NewMul, false);
15679  }
15680  return SDValue();
15681}
15682
15683static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15684  SDValue N0 = N->getOperand(0);
15685  SDValue N1 = N->getOperand(1);
15686  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15687  EVT VT = N0.getValueType();
15688
15689  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15690  // since the result of setcc_c is all zero's or all ones.
15691  if (VT.isInteger() && !VT.isVector() &&
15692      N1C && N0.getOpcode() == ISD::AND &&
15693      N0.getOperand(1).getOpcode() == ISD::Constant) {
15694    SDValue N00 = N0.getOperand(0);
15695    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15696        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15697          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15698         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15699      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15700      APInt ShAmt = N1C->getAPIntValue();
15701      Mask = Mask.shl(ShAmt);
15702      if (Mask != 0)
15703        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15704                           N00, DAG.getConstant(Mask, VT));
15705    }
15706  }
15707
15708  // Hardware support for vector shifts is sparse which makes us scalarize the
15709  // vector operations in many cases. Also, on sandybridge ADD is faster than
15710  // shl.
15711  // (shl V, 1) -> add V,V
15712  if (isSplatVector(N1.getNode())) {
15713    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15714    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15715    // We shift all of the values by one. In many cases we do not have
15716    // hardware support for this operation. This is better expressed as an ADD
15717    // of two values.
15718    if (N1C && (1 == N1C->getZExtValue())) {
15719      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15720    }
15721  }
15722
15723  return SDValue();
15724}
15725
15726/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15727///                       when possible.
15728static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15729                                   TargetLowering::DAGCombinerInfo &DCI,
15730                                   const X86Subtarget *Subtarget) {
15731  EVT VT = N->getValueType(0);
15732  if (N->getOpcode() == ISD::SHL) {
15733    SDValue V = PerformSHLCombine(N, DAG);
15734    if (V.getNode()) return V;
15735  }
15736
15737  // On X86 with SSE2 support, we can transform this to a vector shift if
15738  // all elements are shifted by the same amount.  We can't do this in legalize
15739  // because the a constant vector is typically transformed to a constant pool
15740  // so we have no knowledge of the shift amount.
15741  if (!Subtarget->hasSSE2())
15742    return SDValue();
15743
15744  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15745      (!Subtarget->hasInt256() ||
15746       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15747    return SDValue();
15748
15749  SDValue ShAmtOp = N->getOperand(1);
15750  EVT EltVT = VT.getVectorElementType();
15751  DebugLoc DL = N->getDebugLoc();
15752  SDValue BaseShAmt = SDValue();
15753  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15754    unsigned NumElts = VT.getVectorNumElements();
15755    unsigned i = 0;
15756    for (; i != NumElts; ++i) {
15757      SDValue Arg = ShAmtOp.getOperand(i);
15758      if (Arg.getOpcode() == ISD::UNDEF) continue;
15759      BaseShAmt = Arg;
15760      break;
15761    }
15762    // Handle the case where the build_vector is all undef
15763    // FIXME: Should DAG allow this?
15764    if (i == NumElts)
15765      return SDValue();
15766
15767    for (; i != NumElts; ++i) {
15768      SDValue Arg = ShAmtOp.getOperand(i);
15769      if (Arg.getOpcode() == ISD::UNDEF) continue;
15770      if (Arg != BaseShAmt) {
15771        return SDValue();
15772      }
15773    }
15774  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15775             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15776    SDValue InVec = ShAmtOp.getOperand(0);
15777    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15778      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15779      unsigned i = 0;
15780      for (; i != NumElts; ++i) {
15781        SDValue Arg = InVec.getOperand(i);
15782        if (Arg.getOpcode() == ISD::UNDEF) continue;
15783        BaseShAmt = Arg;
15784        break;
15785      }
15786    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15787       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15788         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15789         if (C->getZExtValue() == SplatIdx)
15790           BaseShAmt = InVec.getOperand(1);
15791       }
15792    }
15793    if (BaseShAmt.getNode() == 0) {
15794      // Don't create instructions with illegal types after legalize
15795      // types has run.
15796      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15797          !DCI.isBeforeLegalize())
15798        return SDValue();
15799
15800      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15801                              DAG.getIntPtrConstant(0));
15802    }
15803  } else
15804    return SDValue();
15805
15806  // The shift amount is an i32.
15807  if (EltVT.bitsGT(MVT::i32))
15808    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15809  else if (EltVT.bitsLT(MVT::i32))
15810    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15811
15812  // The shift amount is identical so we can do a vector shift.
15813  SDValue  ValOp = N->getOperand(0);
15814  switch (N->getOpcode()) {
15815  default:
15816    llvm_unreachable("Unknown shift opcode!");
15817  case ISD::SHL:
15818    switch (VT.getSimpleVT().SimpleTy) {
15819    default: return SDValue();
15820    case MVT::v2i64:
15821    case MVT::v4i32:
15822    case MVT::v8i16:
15823    case MVT::v4i64:
15824    case MVT::v8i32:
15825    case MVT::v16i16:
15826      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15827    }
15828  case ISD::SRA:
15829    switch (VT.getSimpleVT().SimpleTy) {
15830    default: return SDValue();
15831    case MVT::v4i32:
15832    case MVT::v8i16:
15833    case MVT::v8i32:
15834    case MVT::v16i16:
15835      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15836    }
15837  case ISD::SRL:
15838    switch (VT.getSimpleVT().SimpleTy) {
15839    default: return SDValue();
15840    case MVT::v2i64:
15841    case MVT::v4i32:
15842    case MVT::v8i16:
15843    case MVT::v4i64:
15844    case MVT::v8i32:
15845    case MVT::v16i16:
15846      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15847    }
15848  }
15849}
15850
15851// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15852// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15853// and friends.  Likewise for OR -> CMPNEQSS.
15854static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15855                            TargetLowering::DAGCombinerInfo &DCI,
15856                            const X86Subtarget *Subtarget) {
15857  unsigned opcode;
15858
15859  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15860  // we're requiring SSE2 for both.
15861  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15862    SDValue N0 = N->getOperand(0);
15863    SDValue N1 = N->getOperand(1);
15864    SDValue CMP0 = N0->getOperand(1);
15865    SDValue CMP1 = N1->getOperand(1);
15866    DebugLoc DL = N->getDebugLoc();
15867
15868    // The SETCCs should both refer to the same CMP.
15869    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15870      return SDValue();
15871
15872    SDValue CMP00 = CMP0->getOperand(0);
15873    SDValue CMP01 = CMP0->getOperand(1);
15874    EVT     VT    = CMP00.getValueType();
15875
15876    if (VT == MVT::f32 || VT == MVT::f64) {
15877      bool ExpectingFlags = false;
15878      // Check for any users that want flags:
15879      for (SDNode::use_iterator UI = N->use_begin(),
15880             UE = N->use_end();
15881           !ExpectingFlags && UI != UE; ++UI)
15882        switch (UI->getOpcode()) {
15883        default:
15884        case ISD::BR_CC:
15885        case ISD::BRCOND:
15886        case ISD::SELECT:
15887          ExpectingFlags = true;
15888          break;
15889        case ISD::CopyToReg:
15890        case ISD::SIGN_EXTEND:
15891        case ISD::ZERO_EXTEND:
15892        case ISD::ANY_EXTEND:
15893          break;
15894        }
15895
15896      if (!ExpectingFlags) {
15897        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15898        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15899
15900        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15901          X86::CondCode tmp = cc0;
15902          cc0 = cc1;
15903          cc1 = tmp;
15904        }
15905
15906        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15907            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15908          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15909          X86ISD::NodeType NTOperator = is64BitFP ?
15910            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15911          // FIXME: need symbolic constants for these magic numbers.
15912          // See X86ATTInstPrinter.cpp:printSSECC().
15913          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15914          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15915                                              DAG.getConstant(x86cc, MVT::i8));
15916          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15917                                              OnesOrZeroesF);
15918          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15919                                      DAG.getConstant(1, MVT::i32));
15920          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15921          return OneBitOfTruth;
15922        }
15923      }
15924    }
15925  }
15926  return SDValue();
15927}
15928
15929/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15930/// so it can be folded inside ANDNP.
15931static bool CanFoldXORWithAllOnes(const SDNode *N) {
15932  EVT VT = N->getValueType(0);
15933
15934  // Match direct AllOnes for 128 and 256-bit vectors
15935  if (ISD::isBuildVectorAllOnes(N))
15936    return true;
15937
15938  // Look through a bit convert.
15939  if (N->getOpcode() == ISD::BITCAST)
15940    N = N->getOperand(0).getNode();
15941
15942  // Sometimes the operand may come from a insert_subvector building a 256-bit
15943  // allones vector
15944  if (VT.is256BitVector() &&
15945      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15946    SDValue V1 = N->getOperand(0);
15947    SDValue V2 = N->getOperand(1);
15948
15949    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15950        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15951        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15952        ISD::isBuildVectorAllOnes(V2.getNode()))
15953      return true;
15954  }
15955
15956  return false;
15957}
15958
15959// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
15960// register. In most cases we actually compare or select YMM-sized registers
15961// and mixing the two types creates horrible code. This method optimizes
15962// some of the transition sequences.
15963static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
15964                                 TargetLowering::DAGCombinerInfo &DCI,
15965                                 const X86Subtarget *Subtarget) {
15966  EVT VT = N->getValueType(0);
15967  if (!VT.is256BitVector())
15968    return SDValue();
15969
15970  assert((N->getOpcode() == ISD::ANY_EXTEND ||
15971          N->getOpcode() == ISD::ZERO_EXTEND ||
15972          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
15973
15974  SDValue Narrow = N->getOperand(0);
15975  EVT NarrowVT = Narrow->getValueType(0);
15976  if (!NarrowVT.is128BitVector())
15977    return SDValue();
15978
15979  if (Narrow->getOpcode() != ISD::XOR &&
15980      Narrow->getOpcode() != ISD::AND &&
15981      Narrow->getOpcode() != ISD::OR)
15982    return SDValue();
15983
15984  SDValue N0  = Narrow->getOperand(0);
15985  SDValue N1  = Narrow->getOperand(1);
15986  DebugLoc DL = Narrow->getDebugLoc();
15987
15988  // The Left side has to be a trunc.
15989  if (N0.getOpcode() != ISD::TRUNCATE)
15990    return SDValue();
15991
15992  // The type of the truncated inputs.
15993  EVT WideVT = N0->getOperand(0)->getValueType(0);
15994  if (WideVT != VT)
15995    return SDValue();
15996
15997  // The right side has to be a 'trunc' or a constant vector.
15998  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
15999  bool RHSConst = (isSplatVector(N1.getNode()) &&
16000                   isa<ConstantSDNode>(N1->getOperand(0)));
16001  if (!RHSTrunc && !RHSConst)
16002    return SDValue();
16003
16004  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16005
16006  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16007    return SDValue();
16008
16009  // Set N0 and N1 to hold the inputs to the new wide operation.
16010  N0 = N0->getOperand(0);
16011  if (RHSConst) {
16012    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16013                     N1->getOperand(0));
16014    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16015    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16016  } else if (RHSTrunc) {
16017    N1 = N1->getOperand(0);
16018  }
16019
16020  // Generate the wide operation.
16021  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16022  unsigned Opcode = N->getOpcode();
16023  switch (Opcode) {
16024  case ISD::ANY_EXTEND:
16025    return Op;
16026  case ISD::ZERO_EXTEND: {
16027    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16028    APInt Mask = APInt::getAllOnesValue(InBits);
16029    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16030    return DAG.getNode(ISD::AND, DL, VT,
16031                       Op, DAG.getConstant(Mask, VT));
16032  }
16033  case ISD::SIGN_EXTEND:
16034    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16035                       Op, DAG.getValueType(NarrowVT));
16036  default:
16037    llvm_unreachable("Unexpected opcode");
16038  }
16039}
16040
16041static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16042                                 TargetLowering::DAGCombinerInfo &DCI,
16043                                 const X86Subtarget *Subtarget) {
16044  EVT VT = N->getValueType(0);
16045  if (DCI.isBeforeLegalizeOps())
16046    return SDValue();
16047
16048  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16049  if (R.getNode())
16050    return R;
16051
16052  // Create BLSI, and BLSR instructions
16053  // BLSI is X & (-X)
16054  // BLSR is X & (X-1)
16055  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16056    SDValue N0 = N->getOperand(0);
16057    SDValue N1 = N->getOperand(1);
16058    DebugLoc DL = N->getDebugLoc();
16059
16060    // Check LHS for neg
16061    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16062        isZero(N0.getOperand(0)))
16063      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16064
16065    // Check RHS for neg
16066    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16067        isZero(N1.getOperand(0)))
16068      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16069
16070    // Check LHS for X-1
16071    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16072        isAllOnes(N0.getOperand(1)))
16073      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16074
16075    // Check RHS for X-1
16076    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16077        isAllOnes(N1.getOperand(1)))
16078      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16079
16080    return SDValue();
16081  }
16082
16083  // Want to form ANDNP nodes:
16084  // 1) In the hopes of then easily combining them with OR and AND nodes
16085  //    to form PBLEND/PSIGN.
16086  // 2) To match ANDN packed intrinsics
16087  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16088    return SDValue();
16089
16090  SDValue N0 = N->getOperand(0);
16091  SDValue N1 = N->getOperand(1);
16092  DebugLoc DL = N->getDebugLoc();
16093
16094  // Check LHS for vnot
16095  if (N0.getOpcode() == ISD::XOR &&
16096      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16097      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16098    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16099
16100  // Check RHS for vnot
16101  if (N1.getOpcode() == ISD::XOR &&
16102      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16103      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16104    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16105
16106  return SDValue();
16107}
16108
16109static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16110                                TargetLowering::DAGCombinerInfo &DCI,
16111                                const X86Subtarget *Subtarget) {
16112  EVT VT = N->getValueType(0);
16113  if (DCI.isBeforeLegalizeOps())
16114    return SDValue();
16115
16116  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16117  if (R.getNode())
16118    return R;
16119
16120  SDValue N0 = N->getOperand(0);
16121  SDValue N1 = N->getOperand(1);
16122
16123  // look for psign/blend
16124  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16125    if (!Subtarget->hasSSSE3() ||
16126        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16127      return SDValue();
16128
16129    // Canonicalize pandn to RHS
16130    if (N0.getOpcode() == X86ISD::ANDNP)
16131      std::swap(N0, N1);
16132    // or (and (m, y), (pandn m, x))
16133    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16134      SDValue Mask = N1.getOperand(0);
16135      SDValue X    = N1.getOperand(1);
16136      SDValue Y;
16137      if (N0.getOperand(0) == Mask)
16138        Y = N0.getOperand(1);
16139      if (N0.getOperand(1) == Mask)
16140        Y = N0.getOperand(0);
16141
16142      // Check to see if the mask appeared in both the AND and ANDNP and
16143      if (!Y.getNode())
16144        return SDValue();
16145
16146      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16147      // Look through mask bitcast.
16148      if (Mask.getOpcode() == ISD::BITCAST)
16149        Mask = Mask.getOperand(0);
16150      if (X.getOpcode() == ISD::BITCAST)
16151        X = X.getOperand(0);
16152      if (Y.getOpcode() == ISD::BITCAST)
16153        Y = Y.getOperand(0);
16154
16155      EVT MaskVT = Mask.getValueType();
16156
16157      // Validate that the Mask operand is a vector sra node.
16158      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16159      // there is no psrai.b
16160      if (Mask.getOpcode() != X86ISD::VSRAI)
16161        return SDValue();
16162
16163      // Check that the SRA is all signbits.
16164      SDValue SraC = Mask.getOperand(1);
16165      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16166      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16167      if ((SraAmt + 1) != EltBits)
16168        return SDValue();
16169
16170      DebugLoc DL = N->getDebugLoc();
16171
16172      // We are going to replace the AND, OR, NAND with either BLEND
16173      // or PSIGN, which only look at the MSB. The VSRAI instruction
16174      // does not affect the highest bit, so we can get rid of it.
16175      Mask = Mask.getOperand(0);
16176
16177      // Now we know we at least have a plendvb with the mask val.  See if
16178      // we can form a psignb/w/d.
16179      // psign = x.type == y.type == mask.type && y = sub(0, x);
16180      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16181          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16182          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16183        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16184               "Unsupported VT for PSIGN");
16185        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask);
16186        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16187      }
16188      // PBLENDVB only available on SSE 4.1
16189      if (!Subtarget->hasSSE41())
16190        return SDValue();
16191
16192      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16193
16194      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16195      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16196      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16197      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16198      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16199    }
16200  }
16201
16202  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16203    return SDValue();
16204
16205  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16206  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16207    std::swap(N0, N1);
16208  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16209    return SDValue();
16210  if (!N0.hasOneUse() || !N1.hasOneUse())
16211    return SDValue();
16212
16213  SDValue ShAmt0 = N0.getOperand(1);
16214  if (ShAmt0.getValueType() != MVT::i8)
16215    return SDValue();
16216  SDValue ShAmt1 = N1.getOperand(1);
16217  if (ShAmt1.getValueType() != MVT::i8)
16218    return SDValue();
16219  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16220    ShAmt0 = ShAmt0.getOperand(0);
16221  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16222    ShAmt1 = ShAmt1.getOperand(0);
16223
16224  DebugLoc DL = N->getDebugLoc();
16225  unsigned Opc = X86ISD::SHLD;
16226  SDValue Op0 = N0.getOperand(0);
16227  SDValue Op1 = N1.getOperand(0);
16228  if (ShAmt0.getOpcode() == ISD::SUB) {
16229    Opc = X86ISD::SHRD;
16230    std::swap(Op0, Op1);
16231    std::swap(ShAmt0, ShAmt1);
16232  }
16233
16234  unsigned Bits = VT.getSizeInBits();
16235  if (ShAmt1.getOpcode() == ISD::SUB) {
16236    SDValue Sum = ShAmt1.getOperand(0);
16237    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16238      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16239      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16240        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16241      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16242        return DAG.getNode(Opc, DL, VT,
16243                           Op0, Op1,
16244                           DAG.getNode(ISD::TRUNCATE, DL,
16245                                       MVT::i8, ShAmt0));
16246    }
16247  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16248    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16249    if (ShAmt0C &&
16250        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16251      return DAG.getNode(Opc, DL, VT,
16252                         N0.getOperand(0), N1.getOperand(0),
16253                         DAG.getNode(ISD::TRUNCATE, DL,
16254                                       MVT::i8, ShAmt0));
16255  }
16256
16257  return SDValue();
16258}
16259
16260// Generate NEG and CMOV for integer abs.
16261static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16262  EVT VT = N->getValueType(0);
16263
16264  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16265  // 8-bit integer abs to NEG and CMOV.
16266  if (VT.isInteger() && VT.getSizeInBits() == 8)
16267    return SDValue();
16268
16269  SDValue N0 = N->getOperand(0);
16270  SDValue N1 = N->getOperand(1);
16271  DebugLoc DL = N->getDebugLoc();
16272
16273  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16274  // and change it to SUB and CMOV.
16275  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16276      N0.getOpcode() == ISD::ADD &&
16277      N0.getOperand(1) == N1 &&
16278      N1.getOpcode() == ISD::SRA &&
16279      N1.getOperand(0) == N0.getOperand(0))
16280    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16281      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16282        // Generate SUB & CMOV.
16283        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16284                                  DAG.getConstant(0, VT), N0.getOperand(0));
16285
16286        SDValue Ops[] = { N0.getOperand(0), Neg,
16287                          DAG.getConstant(X86::COND_GE, MVT::i8),
16288                          SDValue(Neg.getNode(), 1) };
16289        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16290                           Ops, array_lengthof(Ops));
16291      }
16292  return SDValue();
16293}
16294
16295// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16296static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16297                                 TargetLowering::DAGCombinerInfo &DCI,
16298                                 const X86Subtarget *Subtarget) {
16299  EVT VT = N->getValueType(0);
16300  if (DCI.isBeforeLegalizeOps())
16301    return SDValue();
16302
16303  if (Subtarget->hasCMov()) {
16304    SDValue RV = performIntegerAbsCombine(N, DAG);
16305    if (RV.getNode())
16306      return RV;
16307  }
16308
16309  // Try forming BMI if it is available.
16310  if (!Subtarget->hasBMI())
16311    return SDValue();
16312
16313  if (VT != MVT::i32 && VT != MVT::i64)
16314    return SDValue();
16315
16316  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16317
16318  // Create BLSMSK instructions by finding X ^ (X-1)
16319  SDValue N0 = N->getOperand(0);
16320  SDValue N1 = N->getOperand(1);
16321  DebugLoc DL = N->getDebugLoc();
16322
16323  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16324      isAllOnes(N0.getOperand(1)))
16325    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16326
16327  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16328      isAllOnes(N1.getOperand(1)))
16329    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16330
16331  return SDValue();
16332}
16333
16334/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16335static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16336                                  TargetLowering::DAGCombinerInfo &DCI,
16337                                  const X86Subtarget *Subtarget) {
16338  LoadSDNode *Ld = cast<LoadSDNode>(N);
16339  EVT RegVT = Ld->getValueType(0);
16340  EVT MemVT = Ld->getMemoryVT();
16341  DebugLoc dl = Ld->getDebugLoc();
16342  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16343  unsigned RegSz = RegVT.getSizeInBits();
16344
16345  ISD::LoadExtType Ext = Ld->getExtensionType();
16346  unsigned Alignment = Ld->getAlignment();
16347  bool IsAligned = Alignment == 0 || Alignment == MemVT.getSizeInBits()/8;
16348
16349  // On Sandybridge unaligned 256bit loads are inefficient.
16350  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16351      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16352    unsigned NumElems = RegVT.getVectorNumElements();
16353    if (NumElems < 2)
16354      return SDValue();
16355
16356    SDValue Ptr = Ld->getBasePtr();
16357    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16358
16359    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16360                                  NumElems/2);
16361    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16362                                Ld->getPointerInfo(), Ld->isVolatile(),
16363                                Ld->isNonTemporal(), Ld->isInvariant(),
16364                                Alignment);
16365    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16366    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16367                                Ld->getPointerInfo(), Ld->isVolatile(),
16368                                Ld->isNonTemporal(), Ld->isInvariant(),
16369                                std::max(Alignment/2U, 1U));
16370    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16371                             Load1.getValue(1),
16372                             Load2.getValue(1));
16373
16374    SDValue NewVec = DAG.getUNDEF(RegVT);
16375    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16376    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16377    return DCI.CombineTo(N, NewVec, TF, true);
16378  }
16379
16380  // If this is a vector EXT Load then attempt to optimize it using a
16381  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16382  // expansion is still better than scalar code.
16383  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16384  // emit a shuffle and a arithmetic shift.
16385  // TODO: It is possible to support ZExt by zeroing the undef values
16386  // during the shuffle phase or after the shuffle.
16387  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16388      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16389    assert(MemVT != RegVT && "Cannot extend to the same type");
16390    assert(MemVT.isVector() && "Must load a vector from memory");
16391
16392    unsigned NumElems = RegVT.getVectorNumElements();
16393    unsigned MemSz = MemVT.getSizeInBits();
16394    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16395
16396    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16397      return SDValue();
16398
16399    // All sizes must be a power of two.
16400    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16401      return SDValue();
16402
16403    // Attempt to load the original value using scalar loads.
16404    // Find the largest scalar type that divides the total loaded size.
16405    MVT SclrLoadTy = MVT::i8;
16406    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16407         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16408      MVT Tp = (MVT::SimpleValueType)tp;
16409      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16410        SclrLoadTy = Tp;
16411      }
16412    }
16413
16414    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16415    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16416        (64 <= MemSz))
16417      SclrLoadTy = MVT::f64;
16418
16419    // Calculate the number of scalar loads that we need to perform
16420    // in order to load our vector from memory.
16421    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16422    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16423      return SDValue();
16424
16425    unsigned loadRegZize = RegSz;
16426    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16427      loadRegZize /= 2;
16428
16429    // Represent our vector as a sequence of elements which are the
16430    // largest scalar that we can load.
16431    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16432      loadRegZize/SclrLoadTy.getSizeInBits());
16433
16434    // Represent the data using the same element type that is stored in
16435    // memory. In practice, we ''widen'' MemVT.
16436    EVT WideVecVT =
16437	  EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16438                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16439
16440    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16441      "Invalid vector type");
16442
16443    // We can't shuffle using an illegal type.
16444    if (!TLI.isTypeLegal(WideVecVT))
16445      return SDValue();
16446
16447    SmallVector<SDValue, 8> Chains;
16448    SDValue Ptr = Ld->getBasePtr();
16449    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16450                                        TLI.getPointerTy());
16451    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16452
16453    for (unsigned i = 0; i < NumLoads; ++i) {
16454      // Perform a single load.
16455      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16456                                       Ptr, Ld->getPointerInfo(),
16457                                       Ld->isVolatile(), Ld->isNonTemporal(),
16458                                       Ld->isInvariant(), Ld->getAlignment());
16459      Chains.push_back(ScalarLoad.getValue(1));
16460      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16461      // another round of DAGCombining.
16462      if (i == 0)
16463        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16464      else
16465        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16466                          ScalarLoad, DAG.getIntPtrConstant(i));
16467
16468      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16469    }
16470
16471    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16472                               Chains.size());
16473
16474    // Bitcast the loaded value to a vector of the original element type, in
16475    // the size of the target vector type.
16476    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16477    unsigned SizeRatio = RegSz/MemSz;
16478
16479    if (Ext == ISD::SEXTLOAD) {
16480      // If we have SSE4.1 we can directly emit a VSEXT node.
16481      if (Subtarget->hasSSE41()) {
16482        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16483        return DCI.CombineTo(N, Sext, TF, true);
16484      }
16485
16486      // Otherwise we'll shuffle the small elements in the high bits of the
16487      // larger type and perform an arithmetic shift. If the shift is not legal
16488      // it's better to scalarize.
16489      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16490        return SDValue();
16491
16492      // Redistribute the loaded elements into the different locations.
16493      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16494      for (unsigned i = 0; i != NumElems; ++i)
16495        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16496
16497      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16498                                           DAG.getUNDEF(WideVecVT),
16499                                           &ShuffleVec[0]);
16500
16501      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16502
16503      // Build the arithmetic shift.
16504      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16505                     MemVT.getVectorElementType().getSizeInBits();
16506      SmallVector<SDValue, 8> C(NumElems,
16507                                DAG.getConstant(Amt, RegVT.getScalarType()));
16508      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, RegVT, &C[0], C.size());
16509      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, BV);
16510
16511      return DCI.CombineTo(N, Shuff, TF, true);
16512    }
16513
16514    // Redistribute the loaded elements into the different locations.
16515    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16516    for (unsigned i = 0; i != NumElems; ++i)
16517      ShuffleVec[i*SizeRatio] = i;
16518
16519    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16520                                         DAG.getUNDEF(WideVecVT),
16521                                         &ShuffleVec[0]);
16522
16523    // Bitcast to the requested type.
16524    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16525    // Replace the original load with the new sequence
16526    // and return the new chain.
16527    return DCI.CombineTo(N, Shuff, TF, true);
16528  }
16529
16530  return SDValue();
16531}
16532
16533/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16534static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16535                                   const X86Subtarget *Subtarget) {
16536  StoreSDNode *St = cast<StoreSDNode>(N);
16537  EVT VT = St->getValue().getValueType();
16538  EVT StVT = St->getMemoryVT();
16539  DebugLoc dl = St->getDebugLoc();
16540  SDValue StoredVal = St->getOperand(1);
16541  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16542  unsigned Alignment = St->getAlignment();
16543  bool IsAligned = Alignment == 0 || Alignment == VT.getSizeInBits()/8;
16544
16545  // If we are saving a concatenation of two XMM registers, perform two stores.
16546  // On Sandy Bridge, 256-bit memory operations are executed by two
16547  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16548  // memory  operation.
16549  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16550      StVT == VT && !IsAligned) {
16551    unsigned NumElems = VT.getVectorNumElements();
16552    if (NumElems < 2)
16553      return SDValue();
16554
16555    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16556    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16557
16558    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16559    SDValue Ptr0 = St->getBasePtr();
16560    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16561
16562    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16563                                St->getPointerInfo(), St->isVolatile(),
16564                                St->isNonTemporal(), Alignment);
16565    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16566                                St->getPointerInfo(), St->isVolatile(),
16567                                St->isNonTemporal(),
16568                                std::max(Alignment/2U, 1U));
16569    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16570  }
16571
16572  // Optimize trunc store (of multiple scalars) to shuffle and store.
16573  // First, pack all of the elements in one place. Next, store to memory
16574  // in fewer chunks.
16575  if (St->isTruncatingStore() && VT.isVector()) {
16576    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16577    unsigned NumElems = VT.getVectorNumElements();
16578    assert(StVT != VT && "Cannot truncate to the same type");
16579    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16580    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16581
16582    // From, To sizes and ElemCount must be pow of two
16583    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16584    // We are going to use the original vector elt for storing.
16585    // Accumulated smaller vector elements must be a multiple of the store size.
16586    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16587
16588    unsigned SizeRatio  = FromSz / ToSz;
16589
16590    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16591
16592    // Create a type on which we perform the shuffle
16593    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16594            StVT.getScalarType(), NumElems*SizeRatio);
16595
16596    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16597
16598    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16599    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16600    for (unsigned i = 0; i != NumElems; ++i)
16601      ShuffleVec[i] = i * SizeRatio;
16602
16603    // Can't shuffle using an illegal type.
16604    if (!TLI.isTypeLegal(WideVecVT))
16605      return SDValue();
16606
16607    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16608                                         DAG.getUNDEF(WideVecVT),
16609                                         &ShuffleVec[0]);
16610    // At this point all of the data is stored at the bottom of the
16611    // register. We now need to save it to mem.
16612
16613    // Find the largest store unit
16614    MVT StoreType = MVT::i8;
16615    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16616         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16617      MVT Tp = (MVT::SimpleValueType)tp;
16618      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16619        StoreType = Tp;
16620    }
16621
16622    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16623    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16624        (64 <= NumElems * ToSz))
16625      StoreType = MVT::f64;
16626
16627    // Bitcast the original vector into a vector of store-size units
16628    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16629            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16630    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16631    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16632    SmallVector<SDValue, 8> Chains;
16633    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16634                                        TLI.getPointerTy());
16635    SDValue Ptr = St->getBasePtr();
16636
16637    // Perform one or more big stores into memory.
16638    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16639      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16640                                   StoreType, ShuffWide,
16641                                   DAG.getIntPtrConstant(i));
16642      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16643                                St->getPointerInfo(), St->isVolatile(),
16644                                St->isNonTemporal(), St->getAlignment());
16645      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16646      Chains.push_back(Ch);
16647    }
16648
16649    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16650                               Chains.size());
16651  }
16652
16653  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16654  // the FP state in cases where an emms may be missing.
16655  // A preferable solution to the general problem is to figure out the right
16656  // places to insert EMMS.  This qualifies as a quick hack.
16657
16658  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16659  if (VT.getSizeInBits() != 64)
16660    return SDValue();
16661
16662  const Function *F = DAG.getMachineFunction().getFunction();
16663  bool NoImplicitFloatOps = F->getAttributes().
16664    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
16665  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16666                     && Subtarget->hasSSE2();
16667  if ((VT.isVector() ||
16668       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16669      isa<LoadSDNode>(St->getValue()) &&
16670      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16671      St->getChain().hasOneUse() && !St->isVolatile()) {
16672    SDNode* LdVal = St->getValue().getNode();
16673    LoadSDNode *Ld = 0;
16674    int TokenFactorIndex = -1;
16675    SmallVector<SDValue, 8> Ops;
16676    SDNode* ChainVal = St->getChain().getNode();
16677    // Must be a store of a load.  We currently handle two cases:  the load
16678    // is a direct child, and it's under an intervening TokenFactor.  It is
16679    // possible to dig deeper under nested TokenFactors.
16680    if (ChainVal == LdVal)
16681      Ld = cast<LoadSDNode>(St->getChain());
16682    else if (St->getValue().hasOneUse() &&
16683             ChainVal->getOpcode() == ISD::TokenFactor) {
16684      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16685        if (ChainVal->getOperand(i).getNode() == LdVal) {
16686          TokenFactorIndex = i;
16687          Ld = cast<LoadSDNode>(St->getValue());
16688        } else
16689          Ops.push_back(ChainVal->getOperand(i));
16690      }
16691    }
16692
16693    if (!Ld || !ISD::isNormalLoad(Ld))
16694      return SDValue();
16695
16696    // If this is not the MMX case, i.e. we are just turning i64 load/store
16697    // into f64 load/store, avoid the transformation if there are multiple
16698    // uses of the loaded value.
16699    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
16700      return SDValue();
16701
16702    DebugLoc LdDL = Ld->getDebugLoc();
16703    DebugLoc StDL = N->getDebugLoc();
16704    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
16705    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
16706    // pair instead.
16707    if (Subtarget->is64Bit() || F64IsLegal) {
16708      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
16709      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
16710                                  Ld->getPointerInfo(), Ld->isVolatile(),
16711                                  Ld->isNonTemporal(), Ld->isInvariant(),
16712                                  Ld->getAlignment());
16713      SDValue NewChain = NewLd.getValue(1);
16714      if (TokenFactorIndex != -1) {
16715        Ops.push_back(NewChain);
16716        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16717                               Ops.size());
16718      }
16719      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
16720                          St->getPointerInfo(),
16721                          St->isVolatile(), St->isNonTemporal(),
16722                          St->getAlignment());
16723    }
16724
16725    // Otherwise, lower to two pairs of 32-bit loads / stores.
16726    SDValue LoAddr = Ld->getBasePtr();
16727    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16728                                 DAG.getConstant(4, MVT::i32));
16729
16730    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16731                               Ld->getPointerInfo(),
16732                               Ld->isVolatile(), Ld->isNonTemporal(),
16733                               Ld->isInvariant(), Ld->getAlignment());
16734    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16735                               Ld->getPointerInfo().getWithOffset(4),
16736                               Ld->isVolatile(), Ld->isNonTemporal(),
16737                               Ld->isInvariant(),
16738                               MinAlign(Ld->getAlignment(), 4));
16739
16740    SDValue NewChain = LoLd.getValue(1);
16741    if (TokenFactorIndex != -1) {
16742      Ops.push_back(LoLd);
16743      Ops.push_back(HiLd);
16744      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16745                             Ops.size());
16746    }
16747
16748    LoAddr = St->getBasePtr();
16749    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16750                         DAG.getConstant(4, MVT::i32));
16751
16752    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16753                                St->getPointerInfo(),
16754                                St->isVolatile(), St->isNonTemporal(),
16755                                St->getAlignment());
16756    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16757                                St->getPointerInfo().getWithOffset(4),
16758                                St->isVolatile(),
16759                                St->isNonTemporal(),
16760                                MinAlign(St->getAlignment(), 4));
16761    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16762  }
16763  return SDValue();
16764}
16765
16766/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16767/// and return the operands for the horizontal operation in LHS and RHS.  A
16768/// horizontal operation performs the binary operation on successive elements
16769/// of its first operand, then on successive elements of its second operand,
16770/// returning the resulting values in a vector.  For example, if
16771///   A = < float a0, float a1, float a2, float a3 >
16772/// and
16773///   B = < float b0, float b1, float b2, float b3 >
16774/// then the result of doing a horizontal operation on A and B is
16775///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16776/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16777/// A horizontal-op B, for some already available A and B, and if so then LHS is
16778/// set to A, RHS to B, and the routine returns 'true'.
16779/// Note that the binary operation should have the property that if one of the
16780/// operands is UNDEF then the result is UNDEF.
16781static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16782  // Look for the following pattern: if
16783  //   A = < float a0, float a1, float a2, float a3 >
16784  //   B = < float b0, float b1, float b2, float b3 >
16785  // and
16786  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16787  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16788  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16789  // which is A horizontal-op B.
16790
16791  // At least one of the operands should be a vector shuffle.
16792  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16793      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16794    return false;
16795
16796  EVT VT = LHS.getValueType();
16797
16798  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16799         "Unsupported vector type for horizontal add/sub");
16800
16801  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16802  // operate independently on 128-bit lanes.
16803  unsigned NumElts = VT.getVectorNumElements();
16804  unsigned NumLanes = VT.getSizeInBits()/128;
16805  unsigned NumLaneElts = NumElts / NumLanes;
16806  assert((NumLaneElts % 2 == 0) &&
16807         "Vector type should have an even number of elements in each lane");
16808  unsigned HalfLaneElts = NumLaneElts/2;
16809
16810  // View LHS in the form
16811  //   LHS = VECTOR_SHUFFLE A, B, LMask
16812  // If LHS is not a shuffle then pretend it is the shuffle
16813  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16814  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16815  // type VT.
16816  SDValue A, B;
16817  SmallVector<int, 16> LMask(NumElts);
16818  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16819    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16820      A = LHS.getOperand(0);
16821    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16822      B = LHS.getOperand(1);
16823    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
16824    std::copy(Mask.begin(), Mask.end(), LMask.begin());
16825  } else {
16826    if (LHS.getOpcode() != ISD::UNDEF)
16827      A = LHS;
16828    for (unsigned i = 0; i != NumElts; ++i)
16829      LMask[i] = i;
16830  }
16831
16832  // Likewise, view RHS in the form
16833  //   RHS = VECTOR_SHUFFLE C, D, RMask
16834  SDValue C, D;
16835  SmallVector<int, 16> RMask(NumElts);
16836  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16837    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
16838      C = RHS.getOperand(0);
16839    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
16840      D = RHS.getOperand(1);
16841    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
16842    std::copy(Mask.begin(), Mask.end(), RMask.begin());
16843  } else {
16844    if (RHS.getOpcode() != ISD::UNDEF)
16845      C = RHS;
16846    for (unsigned i = 0; i != NumElts; ++i)
16847      RMask[i] = i;
16848  }
16849
16850  // Check that the shuffles are both shuffling the same vectors.
16851  if (!(A == C && B == D) && !(A == D && B == C))
16852    return false;
16853
16854  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
16855  if (!A.getNode() && !B.getNode())
16856    return false;
16857
16858  // If A and B occur in reverse order in RHS, then "swap" them (which means
16859  // rewriting the mask).
16860  if (A != C)
16861    CommuteVectorShuffleMask(RMask, NumElts);
16862
16863  // At this point LHS and RHS are equivalent to
16864  //   LHS = VECTOR_SHUFFLE A, B, LMask
16865  //   RHS = VECTOR_SHUFFLE A, B, RMask
16866  // Check that the masks correspond to performing a horizontal operation.
16867  for (unsigned i = 0; i != NumElts; ++i) {
16868    int LIdx = LMask[i], RIdx = RMask[i];
16869
16870    // Ignore any UNDEF components.
16871    if (LIdx < 0 || RIdx < 0 ||
16872        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
16873        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
16874      continue;
16875
16876    // Check that successive elements are being operated on.  If not, this is
16877    // not a horizontal operation.
16878    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
16879    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
16880    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
16881    if (!(LIdx == Index && RIdx == Index + 1) &&
16882        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
16883      return false;
16884  }
16885
16886  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
16887  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
16888  return true;
16889}
16890
16891/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
16892static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
16893                                  const X86Subtarget *Subtarget) {
16894  EVT VT = N->getValueType(0);
16895  SDValue LHS = N->getOperand(0);
16896  SDValue RHS = N->getOperand(1);
16897
16898  // Try to synthesize horizontal adds from adds of shuffles.
16899  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16900       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16901      isHorizontalBinOp(LHS, RHS, true))
16902    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
16903  return SDValue();
16904}
16905
16906/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
16907static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
16908                                  const X86Subtarget *Subtarget) {
16909  EVT VT = N->getValueType(0);
16910  SDValue LHS = N->getOperand(0);
16911  SDValue RHS = N->getOperand(1);
16912
16913  // Try to synthesize horizontal subs from subs of shuffles.
16914  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16915       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16916      isHorizontalBinOp(LHS, RHS, false))
16917    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
16918  return SDValue();
16919}
16920
16921/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
16922/// X86ISD::FXOR nodes.
16923static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
16924  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
16925  // F[X]OR(0.0, x) -> x
16926  // F[X]OR(x, 0.0) -> x
16927  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16928    if (C->getValueAPF().isPosZero())
16929      return N->getOperand(1);
16930  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16931    if (C->getValueAPF().isPosZero())
16932      return N->getOperand(0);
16933  return SDValue();
16934}
16935
16936/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
16937/// X86ISD::FMAX nodes.
16938static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
16939  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
16940
16941  // Only perform optimizations if UnsafeMath is used.
16942  if (!DAG.getTarget().Options.UnsafeFPMath)
16943    return SDValue();
16944
16945  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
16946  // into FMINC and FMAXC, which are Commutative operations.
16947  unsigned NewOp = 0;
16948  switch (N->getOpcode()) {
16949    default: llvm_unreachable("unknown opcode");
16950    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
16951    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
16952  }
16953
16954  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
16955                     N->getOperand(0), N->getOperand(1));
16956}
16957
16958/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
16959static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
16960  // FAND(0.0, x) -> 0.0
16961  // FAND(x, 0.0) -> 0.0
16962  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16963    if (C->getValueAPF().isPosZero())
16964      return N->getOperand(0);
16965  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16966    if (C->getValueAPF().isPosZero())
16967      return N->getOperand(1);
16968  return SDValue();
16969}
16970
16971static SDValue PerformBTCombine(SDNode *N,
16972                                SelectionDAG &DAG,
16973                                TargetLowering::DAGCombinerInfo &DCI) {
16974  // BT ignores high bits in the bit index operand.
16975  SDValue Op1 = N->getOperand(1);
16976  if (Op1.hasOneUse()) {
16977    unsigned BitWidth = Op1.getValueSizeInBits();
16978    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
16979    APInt KnownZero, KnownOne;
16980    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
16981                                          !DCI.isBeforeLegalizeOps());
16982    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16983    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16984        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16985      DCI.CommitTargetLoweringOpt(TLO);
16986  }
16987  return SDValue();
16988}
16989
16990static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16991  SDValue Op = N->getOperand(0);
16992  if (Op.getOpcode() == ISD::BITCAST)
16993    Op = Op.getOperand(0);
16994  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16995  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16996      VT.getVectorElementType().getSizeInBits() ==
16997      OpVT.getVectorElementType().getSizeInBits()) {
16998    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16999  }
17000  return SDValue();
17001}
17002
17003static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17004                                  TargetLowering::DAGCombinerInfo &DCI,
17005                                  const X86Subtarget *Subtarget) {
17006  EVT VT = N->getValueType(0);
17007
17008  if (!VT.isVector())
17009    return SDValue();
17010
17011  SDValue In = N->getOperand(0);
17012  EVT InVT = In.getValueType();
17013  DebugLoc dl = N->getDebugLoc();
17014  unsigned ExtendedEltSize = VT.getVectorElementType().getSizeInBits();
17015
17016  // Split SIGN_EXTEND operation to use vmovsx instruction when possible
17017  if (InVT == MVT::v8i8) {
17018    if (ExtendedEltSize > 16 && !Subtarget->hasInt256())
17019      In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, In);
17020    if (ExtendedEltSize > 32)
17021      In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i32, In);
17022    return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, In);
17023  }
17024
17025  if ((InVT == MVT::v4i8 || InVT == MVT::v4i16) &&
17026      ExtendedEltSize > 32 && !Subtarget->hasInt256()) {
17027    In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, In);
17028    return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, In);
17029  }
17030
17031  if (!DCI.isBeforeLegalizeOps())
17032    return SDValue();
17033
17034  if (!Subtarget->hasFp256())
17035    return SDValue();
17036
17037  if (VT.is256BitVector()) {
17038    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17039    if (R.getNode())
17040      return R;
17041  }
17042
17043  return SDValue();
17044}
17045
17046static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17047                                 const X86Subtarget* Subtarget) {
17048  DebugLoc dl = N->getDebugLoc();
17049  EVT VT = N->getValueType(0);
17050
17051  // Let legalize expand this if it isn't a legal type yet.
17052  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17053    return SDValue();
17054
17055  EVT ScalarVT = VT.getScalarType();
17056  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17057      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17058    return SDValue();
17059
17060  SDValue A = N->getOperand(0);
17061  SDValue B = N->getOperand(1);
17062  SDValue C = N->getOperand(2);
17063
17064  bool NegA = (A.getOpcode() == ISD::FNEG);
17065  bool NegB = (B.getOpcode() == ISD::FNEG);
17066  bool NegC = (C.getOpcode() == ISD::FNEG);
17067
17068  // Negative multiplication when NegA xor NegB
17069  bool NegMul = (NegA != NegB);
17070  if (NegA)
17071    A = A.getOperand(0);
17072  if (NegB)
17073    B = B.getOperand(0);
17074  if (NegC)
17075    C = C.getOperand(0);
17076
17077  unsigned Opcode;
17078  if (!NegMul)
17079    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17080  else
17081    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17082
17083  return DAG.getNode(Opcode, dl, VT, A, B, C);
17084}
17085
17086static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17087                                  TargetLowering::DAGCombinerInfo &DCI,
17088                                  const X86Subtarget *Subtarget) {
17089  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17090  //           (and (i32 x86isd::setcc_carry), 1)
17091  // This eliminates the zext. This transformation is necessary because
17092  // ISD::SETCC is always legalized to i8.
17093  DebugLoc dl = N->getDebugLoc();
17094  SDValue N0 = N->getOperand(0);
17095  EVT VT = N->getValueType(0);
17096
17097  if (N0.getOpcode() == ISD::AND &&
17098      N0.hasOneUse() &&
17099      N0.getOperand(0).hasOneUse()) {
17100    SDValue N00 = N0.getOperand(0);
17101    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17102      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17103      if (!C || C->getZExtValue() != 1)
17104        return SDValue();
17105      return DAG.getNode(ISD::AND, dl, VT,
17106                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17107                                     N00.getOperand(0), N00.getOperand(1)),
17108                         DAG.getConstant(1, VT));
17109    }
17110  }
17111
17112  if (VT.is256BitVector()) {
17113    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17114    if (R.getNode())
17115      return R;
17116  }
17117
17118  return SDValue();
17119}
17120
17121// Optimize x == -y --> x+y == 0
17122//          x != -y --> x+y != 0
17123static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17124  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17125  SDValue LHS = N->getOperand(0);
17126  SDValue RHS = N->getOperand(1);
17127
17128  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17129    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17130      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17131        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17132                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17133        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17134                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17135      }
17136  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17137    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17138      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17139        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17140                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17141        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17142                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17143      }
17144  return SDValue();
17145}
17146
17147// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17148// as "sbb reg,reg", since it can be extended without zext and produces
17149// an all-ones bit which is more useful than 0/1 in some cases.
17150static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17151  return DAG.getNode(ISD::AND, DL, MVT::i8,
17152                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17153                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17154                     DAG.getConstant(1, MVT::i8));
17155}
17156
17157// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17158static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17159                                   TargetLowering::DAGCombinerInfo &DCI,
17160                                   const X86Subtarget *Subtarget) {
17161  DebugLoc DL = N->getDebugLoc();
17162  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17163  SDValue EFLAGS = N->getOperand(1);
17164
17165  if (CC == X86::COND_A) {
17166    // Try to convert COND_A into COND_B in an attempt to facilitate
17167    // materializing "setb reg".
17168    //
17169    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17170    // cannot take an immediate as its first operand.
17171    //
17172    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17173        EFLAGS.getValueType().isInteger() &&
17174        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17175      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17176                                   EFLAGS.getNode()->getVTList(),
17177                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17178      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17179      return MaterializeSETB(DL, NewEFLAGS, DAG);
17180    }
17181  }
17182
17183  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17184  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17185  // cases.
17186  if (CC == X86::COND_B)
17187    return MaterializeSETB(DL, EFLAGS, DAG);
17188
17189  SDValue Flags;
17190
17191  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17192  if (Flags.getNode()) {
17193    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17194    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17195  }
17196
17197  return SDValue();
17198}
17199
17200// Optimize branch condition evaluation.
17201//
17202static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17203                                    TargetLowering::DAGCombinerInfo &DCI,
17204                                    const X86Subtarget *Subtarget) {
17205  DebugLoc DL = N->getDebugLoc();
17206  SDValue Chain = N->getOperand(0);
17207  SDValue Dest = N->getOperand(1);
17208  SDValue EFLAGS = N->getOperand(3);
17209  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17210
17211  SDValue Flags;
17212
17213  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17214  if (Flags.getNode()) {
17215    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17216    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17217                       Flags);
17218  }
17219
17220  return SDValue();
17221}
17222
17223static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17224                                        const X86TargetLowering *XTLI) {
17225  SDValue Op0 = N->getOperand(0);
17226  EVT InVT = Op0->getValueType(0);
17227
17228  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17229  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17230    DebugLoc dl = N->getDebugLoc();
17231    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17232    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17233    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17234  }
17235
17236  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17237  // a 32-bit target where SSE doesn't support i64->FP operations.
17238  if (Op0.getOpcode() == ISD::LOAD) {
17239    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17240    EVT VT = Ld->getValueType(0);
17241    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17242        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17243        !XTLI->getSubtarget()->is64Bit() &&
17244        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17245      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17246                                          Ld->getChain(), Op0, DAG);
17247      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17248      return FILDChain;
17249    }
17250  }
17251  return SDValue();
17252}
17253
17254// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17255static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17256                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17257  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17258  // the result is either zero or one (depending on the input carry bit).
17259  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17260  if (X86::isZeroNode(N->getOperand(0)) &&
17261      X86::isZeroNode(N->getOperand(1)) &&
17262      // We don't have a good way to replace an EFLAGS use, so only do this when
17263      // dead right now.
17264      SDValue(N, 1).use_empty()) {
17265    DebugLoc DL = N->getDebugLoc();
17266    EVT VT = N->getValueType(0);
17267    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17268    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17269                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17270                                           DAG.getConstant(X86::COND_B,MVT::i8),
17271                                           N->getOperand(2)),
17272                               DAG.getConstant(1, VT));
17273    return DCI.CombineTo(N, Res1, CarryOut);
17274  }
17275
17276  return SDValue();
17277}
17278
17279// fold (add Y, (sete  X, 0)) -> adc  0, Y
17280//      (add Y, (setne X, 0)) -> sbb -1, Y
17281//      (sub (sete  X, 0), Y) -> sbb  0, Y
17282//      (sub (setne X, 0), Y) -> adc -1, Y
17283static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17284  DebugLoc DL = N->getDebugLoc();
17285
17286  // Look through ZExts.
17287  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17288  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17289    return SDValue();
17290
17291  SDValue SetCC = Ext.getOperand(0);
17292  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17293    return SDValue();
17294
17295  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17296  if (CC != X86::COND_E && CC != X86::COND_NE)
17297    return SDValue();
17298
17299  SDValue Cmp = SetCC.getOperand(1);
17300  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17301      !X86::isZeroNode(Cmp.getOperand(1)) ||
17302      !Cmp.getOperand(0).getValueType().isInteger())
17303    return SDValue();
17304
17305  SDValue CmpOp0 = Cmp.getOperand(0);
17306  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17307                               DAG.getConstant(1, CmpOp0.getValueType()));
17308
17309  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17310  if (CC == X86::COND_NE)
17311    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17312                       DL, OtherVal.getValueType(), OtherVal,
17313                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17314  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17315                     DL, OtherVal.getValueType(), OtherVal,
17316                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17317}
17318
17319/// PerformADDCombine - Do target-specific dag combines on integer adds.
17320static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17321                                 const X86Subtarget *Subtarget) {
17322  EVT VT = N->getValueType(0);
17323  SDValue Op0 = N->getOperand(0);
17324  SDValue Op1 = N->getOperand(1);
17325
17326  // Try to synthesize horizontal adds from adds of shuffles.
17327  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17328       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17329      isHorizontalBinOp(Op0, Op1, true))
17330    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17331
17332  return OptimizeConditionalInDecrement(N, DAG);
17333}
17334
17335static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17336                                 const X86Subtarget *Subtarget) {
17337  SDValue Op0 = N->getOperand(0);
17338  SDValue Op1 = N->getOperand(1);
17339
17340  // X86 can't encode an immediate LHS of a sub. See if we can push the
17341  // negation into a preceding instruction.
17342  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17343    // If the RHS of the sub is a XOR with one use and a constant, invert the
17344    // immediate. Then add one to the LHS of the sub so we can turn
17345    // X-Y -> X+~Y+1, saving one register.
17346    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17347        isa<ConstantSDNode>(Op1.getOperand(1))) {
17348      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17349      EVT VT = Op0.getValueType();
17350      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17351                                   Op1.getOperand(0),
17352                                   DAG.getConstant(~XorC, VT));
17353      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17354                         DAG.getConstant(C->getAPIntValue()+1, VT));
17355    }
17356  }
17357
17358  // Try to synthesize horizontal adds from adds of shuffles.
17359  EVT VT = N->getValueType(0);
17360  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17361       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17362      isHorizontalBinOp(Op0, Op1, true))
17363    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17364
17365  return OptimizeConditionalInDecrement(N, DAG);
17366}
17367
17368/// performVZEXTCombine - Performs build vector combines
17369static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17370                                        TargetLowering::DAGCombinerInfo &DCI,
17371                                        const X86Subtarget *Subtarget) {
17372  // (vzext (bitcast (vzext (x)) -> (vzext x)
17373  SDValue In = N->getOperand(0);
17374  while (In.getOpcode() == ISD::BITCAST)
17375    In = In.getOperand(0);
17376
17377  if (In.getOpcode() != X86ISD::VZEXT)
17378    return SDValue();
17379
17380  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0));
17381}
17382
17383SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17384                                             DAGCombinerInfo &DCI) const {
17385  SelectionDAG &DAG = DCI.DAG;
17386  switch (N->getOpcode()) {
17387  default: break;
17388  case ISD::EXTRACT_VECTOR_ELT:
17389    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17390  case ISD::VSELECT:
17391  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17392  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17393  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17394  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17395  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17396  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17397  case ISD::SHL:
17398  case ISD::SRA:
17399  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17400  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17401  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17402  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17403  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17404  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17405  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17406  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17407  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17408  case X86ISD::FXOR:
17409  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17410  case X86ISD::FMIN:
17411  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17412  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17413  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17414  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17415  case ISD::ANY_EXTEND:
17416  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17417  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17418  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17419  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17420  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17421  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17422  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17423  case X86ISD::SHUFP:       // Handle all target specific shuffles
17424  case X86ISD::PALIGN:
17425  case X86ISD::UNPCKH:
17426  case X86ISD::UNPCKL:
17427  case X86ISD::MOVHLPS:
17428  case X86ISD::MOVLHPS:
17429  case X86ISD::PSHUFD:
17430  case X86ISD::PSHUFHW:
17431  case X86ISD::PSHUFLW:
17432  case X86ISD::MOVSS:
17433  case X86ISD::MOVSD:
17434  case X86ISD::VPERMILP:
17435  case X86ISD::VPERM2X128:
17436  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17437  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17438  }
17439
17440  return SDValue();
17441}
17442
17443/// isTypeDesirableForOp - Return true if the target has native support for
17444/// the specified value type and it is 'desirable' to use the type for the
17445/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17446/// instruction encodings are longer and some i16 instructions are slow.
17447bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17448  if (!isTypeLegal(VT))
17449    return false;
17450  if (VT != MVT::i16)
17451    return true;
17452
17453  switch (Opc) {
17454  default:
17455    return true;
17456  case ISD::LOAD:
17457  case ISD::SIGN_EXTEND:
17458  case ISD::ZERO_EXTEND:
17459  case ISD::ANY_EXTEND:
17460  case ISD::SHL:
17461  case ISD::SRL:
17462  case ISD::SUB:
17463  case ISD::ADD:
17464  case ISD::MUL:
17465  case ISD::AND:
17466  case ISD::OR:
17467  case ISD::XOR:
17468    return false;
17469  }
17470}
17471
17472/// IsDesirableToPromoteOp - This method query the target whether it is
17473/// beneficial for dag combiner to promote the specified node. If true, it
17474/// should return the desired promotion type by reference.
17475bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17476  EVT VT = Op.getValueType();
17477  if (VT != MVT::i16)
17478    return false;
17479
17480  bool Promote = false;
17481  bool Commute = false;
17482  switch (Op.getOpcode()) {
17483  default: break;
17484  case ISD::LOAD: {
17485    LoadSDNode *LD = cast<LoadSDNode>(Op);
17486    // If the non-extending load has a single use and it's not live out, then it
17487    // might be folded.
17488    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17489                                                     Op.hasOneUse()*/) {
17490      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17491             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17492        // The only case where we'd want to promote LOAD (rather then it being
17493        // promoted as an operand is when it's only use is liveout.
17494        if (UI->getOpcode() != ISD::CopyToReg)
17495          return false;
17496      }
17497    }
17498    Promote = true;
17499    break;
17500  }
17501  case ISD::SIGN_EXTEND:
17502  case ISD::ZERO_EXTEND:
17503  case ISD::ANY_EXTEND:
17504    Promote = true;
17505    break;
17506  case ISD::SHL:
17507  case ISD::SRL: {
17508    SDValue N0 = Op.getOperand(0);
17509    // Look out for (store (shl (load), x)).
17510    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17511      return false;
17512    Promote = true;
17513    break;
17514  }
17515  case ISD::ADD:
17516  case ISD::MUL:
17517  case ISD::AND:
17518  case ISD::OR:
17519  case ISD::XOR:
17520    Commute = true;
17521    // fallthrough
17522  case ISD::SUB: {
17523    SDValue N0 = Op.getOperand(0);
17524    SDValue N1 = Op.getOperand(1);
17525    if (!Commute && MayFoldLoad(N1))
17526      return false;
17527    // Avoid disabling potential load folding opportunities.
17528    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17529      return false;
17530    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17531      return false;
17532    Promote = true;
17533  }
17534  }
17535
17536  PVT = MVT::i32;
17537  return Promote;
17538}
17539
17540//===----------------------------------------------------------------------===//
17541//                           X86 Inline Assembly Support
17542//===----------------------------------------------------------------------===//
17543
17544namespace {
17545  // Helper to match a string separated by whitespace.
17546  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17547    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17548
17549    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17550      StringRef piece(*args[i]);
17551      if (!s.startswith(piece)) // Check if the piece matches.
17552        return false;
17553
17554      s = s.substr(piece.size());
17555      StringRef::size_type pos = s.find_first_not_of(" \t");
17556      if (pos == 0) // We matched a prefix.
17557        return false;
17558
17559      s = s.substr(pos);
17560    }
17561
17562    return s.empty();
17563  }
17564  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17565}
17566
17567bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17568  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17569
17570  std::string AsmStr = IA->getAsmString();
17571
17572  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17573  if (!Ty || Ty->getBitWidth() % 16 != 0)
17574    return false;
17575
17576  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17577  SmallVector<StringRef, 4> AsmPieces;
17578  SplitString(AsmStr, AsmPieces, ";\n");
17579
17580  switch (AsmPieces.size()) {
17581  default: return false;
17582  case 1:
17583    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17584    // we will turn this bswap into something that will be lowered to logical
17585    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17586    // lower so don't worry about this.
17587    // bswap $0
17588    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17589        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17590        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17591        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17592        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17593        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17594      // No need to check constraints, nothing other than the equivalent of
17595      // "=r,0" would be valid here.
17596      return IntrinsicLowering::LowerToByteSwap(CI);
17597    }
17598
17599    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17600    if (CI->getType()->isIntegerTy(16) &&
17601        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17602        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17603         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17604      AsmPieces.clear();
17605      const std::string &ConstraintsStr = IA->getConstraintString();
17606      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17607      std::sort(AsmPieces.begin(), AsmPieces.end());
17608      if (AsmPieces.size() == 4 &&
17609          AsmPieces[0] == "~{cc}" &&
17610          AsmPieces[1] == "~{dirflag}" &&
17611          AsmPieces[2] == "~{flags}" &&
17612          AsmPieces[3] == "~{fpsr}")
17613      return IntrinsicLowering::LowerToByteSwap(CI);
17614    }
17615    break;
17616  case 3:
17617    if (CI->getType()->isIntegerTy(32) &&
17618        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17619        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17620        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17621        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17622      AsmPieces.clear();
17623      const std::string &ConstraintsStr = IA->getConstraintString();
17624      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17625      std::sort(AsmPieces.begin(), AsmPieces.end());
17626      if (AsmPieces.size() == 4 &&
17627          AsmPieces[0] == "~{cc}" &&
17628          AsmPieces[1] == "~{dirflag}" &&
17629          AsmPieces[2] == "~{flags}" &&
17630          AsmPieces[3] == "~{fpsr}")
17631        return IntrinsicLowering::LowerToByteSwap(CI);
17632    }
17633
17634    if (CI->getType()->isIntegerTy(64)) {
17635      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17636      if (Constraints.size() >= 2 &&
17637          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17638          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17639        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17640        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17641            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17642            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17643          return IntrinsicLowering::LowerToByteSwap(CI);
17644      }
17645    }
17646    break;
17647  }
17648  return false;
17649}
17650
17651/// getConstraintType - Given a constraint letter, return the type of
17652/// constraint it is for this target.
17653X86TargetLowering::ConstraintType
17654X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17655  if (Constraint.size() == 1) {
17656    switch (Constraint[0]) {
17657    case 'R':
17658    case 'q':
17659    case 'Q':
17660    case 'f':
17661    case 't':
17662    case 'u':
17663    case 'y':
17664    case 'x':
17665    case 'Y':
17666    case 'l':
17667      return C_RegisterClass;
17668    case 'a':
17669    case 'b':
17670    case 'c':
17671    case 'd':
17672    case 'S':
17673    case 'D':
17674    case 'A':
17675      return C_Register;
17676    case 'I':
17677    case 'J':
17678    case 'K':
17679    case 'L':
17680    case 'M':
17681    case 'N':
17682    case 'G':
17683    case 'C':
17684    case 'e':
17685    case 'Z':
17686      return C_Other;
17687    default:
17688      break;
17689    }
17690  }
17691  return TargetLowering::getConstraintType(Constraint);
17692}
17693
17694/// Examine constraint type and operand type and determine a weight value.
17695/// This object must already have been set up with the operand type
17696/// and the current alternative constraint selected.
17697TargetLowering::ConstraintWeight
17698  X86TargetLowering::getSingleConstraintMatchWeight(
17699    AsmOperandInfo &info, const char *constraint) const {
17700  ConstraintWeight weight = CW_Invalid;
17701  Value *CallOperandVal = info.CallOperandVal;
17702    // If we don't have a value, we can't do a match,
17703    // but allow it at the lowest weight.
17704  if (CallOperandVal == NULL)
17705    return CW_Default;
17706  Type *type = CallOperandVal->getType();
17707  // Look at the constraint type.
17708  switch (*constraint) {
17709  default:
17710    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17711  case 'R':
17712  case 'q':
17713  case 'Q':
17714  case 'a':
17715  case 'b':
17716  case 'c':
17717  case 'd':
17718  case 'S':
17719  case 'D':
17720  case 'A':
17721    if (CallOperandVal->getType()->isIntegerTy())
17722      weight = CW_SpecificReg;
17723    break;
17724  case 'f':
17725  case 't':
17726  case 'u':
17727    if (type->isFloatingPointTy())
17728      weight = CW_SpecificReg;
17729    break;
17730  case 'y':
17731    if (type->isX86_MMXTy() && Subtarget->hasMMX())
17732      weight = CW_SpecificReg;
17733    break;
17734  case 'x':
17735  case 'Y':
17736    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17737        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
17738      weight = CW_Register;
17739    break;
17740  case 'I':
17741    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17742      if (C->getZExtValue() <= 31)
17743        weight = CW_Constant;
17744    }
17745    break;
17746  case 'J':
17747    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17748      if (C->getZExtValue() <= 63)
17749        weight = CW_Constant;
17750    }
17751    break;
17752  case 'K':
17753    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17754      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17755        weight = CW_Constant;
17756    }
17757    break;
17758  case 'L':
17759    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17760      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17761        weight = CW_Constant;
17762    }
17763    break;
17764  case 'M':
17765    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17766      if (C->getZExtValue() <= 3)
17767        weight = CW_Constant;
17768    }
17769    break;
17770  case 'N':
17771    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17772      if (C->getZExtValue() <= 0xff)
17773        weight = CW_Constant;
17774    }
17775    break;
17776  case 'G':
17777  case 'C':
17778    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17779      weight = CW_Constant;
17780    }
17781    break;
17782  case 'e':
17783    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17784      if ((C->getSExtValue() >= -0x80000000LL) &&
17785          (C->getSExtValue() <= 0x7fffffffLL))
17786        weight = CW_Constant;
17787    }
17788    break;
17789  case 'Z':
17790    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17791      if (C->getZExtValue() <= 0xffffffff)
17792        weight = CW_Constant;
17793    }
17794    break;
17795  }
17796  return weight;
17797}
17798
17799/// LowerXConstraint - try to replace an X constraint, which matches anything,
17800/// with another that has more specific requirements based on the type of the
17801/// corresponding operand.
17802const char *X86TargetLowering::
17803LowerXConstraint(EVT ConstraintVT) const {
17804  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17805  // 'f' like normal targets.
17806  if (ConstraintVT.isFloatingPoint()) {
17807    if (Subtarget->hasSSE2())
17808      return "Y";
17809    if (Subtarget->hasSSE1())
17810      return "x";
17811  }
17812
17813  return TargetLowering::LowerXConstraint(ConstraintVT);
17814}
17815
17816/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17817/// vector.  If it is invalid, don't add anything to Ops.
17818void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17819                                                     std::string &Constraint,
17820                                                     std::vector<SDValue>&Ops,
17821                                                     SelectionDAG &DAG) const {
17822  SDValue Result(0, 0);
17823
17824  // Only support length 1 constraints for now.
17825  if (Constraint.length() > 1) return;
17826
17827  char ConstraintLetter = Constraint[0];
17828  switch (ConstraintLetter) {
17829  default: break;
17830  case 'I':
17831    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17832      if (C->getZExtValue() <= 31) {
17833        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17834        break;
17835      }
17836    }
17837    return;
17838  case 'J':
17839    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17840      if (C->getZExtValue() <= 63) {
17841        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17842        break;
17843      }
17844    }
17845    return;
17846  case 'K':
17847    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17848      if (isInt<8>(C->getSExtValue())) {
17849        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17850        break;
17851      }
17852    }
17853    return;
17854  case 'N':
17855    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17856      if (C->getZExtValue() <= 255) {
17857        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17858        break;
17859      }
17860    }
17861    return;
17862  case 'e': {
17863    // 32-bit signed value
17864    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17865      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17866                                           C->getSExtValue())) {
17867        // Widen to 64 bits here to get it sign extended.
17868        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
17869        break;
17870      }
17871    // FIXME gcc accepts some relocatable values here too, but only in certain
17872    // memory models; it's complicated.
17873    }
17874    return;
17875  }
17876  case 'Z': {
17877    // 32-bit unsigned value
17878    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17879      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17880                                           C->getZExtValue())) {
17881        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17882        break;
17883      }
17884    }
17885    // FIXME gcc accepts some relocatable values here too, but only in certain
17886    // memory models; it's complicated.
17887    return;
17888  }
17889  case 'i': {
17890    // Literal immediates are always ok.
17891    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
17892      // Widen to 64 bits here to get it sign extended.
17893      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
17894      break;
17895    }
17896
17897    // In any sort of PIC mode addresses need to be computed at runtime by
17898    // adding in a register or some sort of table lookup.  These can't
17899    // be used as immediates.
17900    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
17901      return;
17902
17903    // If we are in non-pic codegen mode, we allow the address of a global (with
17904    // an optional displacement) to be used with 'i'.
17905    GlobalAddressSDNode *GA = 0;
17906    int64_t Offset = 0;
17907
17908    // Match either (GA), (GA+C), (GA+C1+C2), etc.
17909    while (1) {
17910      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
17911        Offset += GA->getOffset();
17912        break;
17913      } else if (Op.getOpcode() == ISD::ADD) {
17914        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17915          Offset += C->getZExtValue();
17916          Op = Op.getOperand(0);
17917          continue;
17918        }
17919      } else if (Op.getOpcode() == ISD::SUB) {
17920        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17921          Offset += -C->getZExtValue();
17922          Op = Op.getOperand(0);
17923          continue;
17924        }
17925      }
17926
17927      // Otherwise, this isn't something we can handle, reject it.
17928      return;
17929    }
17930
17931    const GlobalValue *GV = GA->getGlobal();
17932    // If we require an extra load to get this address, as in PIC mode, we
17933    // can't accept it.
17934    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
17935                                                        getTargetMachine())))
17936      return;
17937
17938    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
17939                                        GA->getValueType(0), Offset);
17940    break;
17941  }
17942  }
17943
17944  if (Result.getNode()) {
17945    Ops.push_back(Result);
17946    return;
17947  }
17948  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17949}
17950
17951std::pair<unsigned, const TargetRegisterClass*>
17952X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
17953                                                EVT VT) const {
17954  // First, see if this is a constraint that directly corresponds to an LLVM
17955  // register class.
17956  if (Constraint.size() == 1) {
17957    // GCC Constraint Letters
17958    switch (Constraint[0]) {
17959    default: break;
17960      // TODO: Slight differences here in allocation order and leaving
17961      // RIP in the class. Do they matter any more here than they do
17962      // in the normal allocation?
17963    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17964      if (Subtarget->is64Bit()) {
17965        if (VT == MVT::i32 || VT == MVT::f32)
17966          return std::make_pair(0U, &X86::GR32RegClass);
17967        if (VT == MVT::i16)
17968          return std::make_pair(0U, &X86::GR16RegClass);
17969        if (VT == MVT::i8 || VT == MVT::i1)
17970          return std::make_pair(0U, &X86::GR8RegClass);
17971        if (VT == MVT::i64 || VT == MVT::f64)
17972          return std::make_pair(0U, &X86::GR64RegClass);
17973        break;
17974      }
17975      // 32-bit fallthrough
17976    case 'Q':   // Q_REGS
17977      if (VT == MVT::i32 || VT == MVT::f32)
17978        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17979      if (VT == MVT::i16)
17980        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17981      if (VT == MVT::i8 || VT == MVT::i1)
17982        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17983      if (VT == MVT::i64)
17984        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17985      break;
17986    case 'r':   // GENERAL_REGS
17987    case 'l':   // INDEX_REGS
17988      if (VT == MVT::i8 || VT == MVT::i1)
17989        return std::make_pair(0U, &X86::GR8RegClass);
17990      if (VT == MVT::i16)
17991        return std::make_pair(0U, &X86::GR16RegClass);
17992      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17993        return std::make_pair(0U, &X86::GR32RegClass);
17994      return std::make_pair(0U, &X86::GR64RegClass);
17995    case 'R':   // LEGACY_REGS
17996      if (VT == MVT::i8 || VT == MVT::i1)
17997        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17998      if (VT == MVT::i16)
17999        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18000      if (VT == MVT::i32 || !Subtarget->is64Bit())
18001        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18002      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18003    case 'f':  // FP Stack registers.
18004      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18005      // value to the correct fpstack register class.
18006      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18007        return std::make_pair(0U, &X86::RFP32RegClass);
18008      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18009        return std::make_pair(0U, &X86::RFP64RegClass);
18010      return std::make_pair(0U, &X86::RFP80RegClass);
18011    case 'y':   // MMX_REGS if MMX allowed.
18012      if (!Subtarget->hasMMX()) break;
18013      return std::make_pair(0U, &X86::VR64RegClass);
18014    case 'Y':   // SSE_REGS if SSE2 allowed
18015      if (!Subtarget->hasSSE2()) break;
18016      // FALL THROUGH.
18017    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18018      if (!Subtarget->hasSSE1()) break;
18019
18020      switch (VT.getSimpleVT().SimpleTy) {
18021      default: break;
18022      // Scalar SSE types.
18023      case MVT::f32:
18024      case MVT::i32:
18025        return std::make_pair(0U, &X86::FR32RegClass);
18026      case MVT::f64:
18027      case MVT::i64:
18028        return std::make_pair(0U, &X86::FR64RegClass);
18029      // Vector types.
18030      case MVT::v16i8:
18031      case MVT::v8i16:
18032      case MVT::v4i32:
18033      case MVT::v2i64:
18034      case MVT::v4f32:
18035      case MVT::v2f64:
18036        return std::make_pair(0U, &X86::VR128RegClass);
18037      // AVX types.
18038      case MVT::v32i8:
18039      case MVT::v16i16:
18040      case MVT::v8i32:
18041      case MVT::v4i64:
18042      case MVT::v8f32:
18043      case MVT::v4f64:
18044        return std::make_pair(0U, &X86::VR256RegClass);
18045      }
18046      break;
18047    }
18048  }
18049
18050  // Use the default implementation in TargetLowering to convert the register
18051  // constraint into a member of a register class.
18052  std::pair<unsigned, const TargetRegisterClass*> Res;
18053  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18054
18055  // Not found as a standard register?
18056  if (Res.second == 0) {
18057    // Map st(0) -> st(7) -> ST0
18058    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18059        tolower(Constraint[1]) == 's' &&
18060        tolower(Constraint[2]) == 't' &&
18061        Constraint[3] == '(' &&
18062        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18063        Constraint[5] == ')' &&
18064        Constraint[6] == '}') {
18065
18066      Res.first = X86::ST0+Constraint[4]-'0';
18067      Res.second = &X86::RFP80RegClass;
18068      return Res;
18069    }
18070
18071    // GCC allows "st(0)" to be called just plain "st".
18072    if (StringRef("{st}").equals_lower(Constraint)) {
18073      Res.first = X86::ST0;
18074      Res.second = &X86::RFP80RegClass;
18075      return Res;
18076    }
18077
18078    // flags -> EFLAGS
18079    if (StringRef("{flags}").equals_lower(Constraint)) {
18080      Res.first = X86::EFLAGS;
18081      Res.second = &X86::CCRRegClass;
18082      return Res;
18083    }
18084
18085    // 'A' means EAX + EDX.
18086    if (Constraint == "A") {
18087      Res.first = X86::EAX;
18088      Res.second = &X86::GR32_ADRegClass;
18089      return Res;
18090    }
18091    return Res;
18092  }
18093
18094  // Otherwise, check to see if this is a register class of the wrong value
18095  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18096  // turn into {ax},{dx}.
18097  if (Res.second->hasType(VT))
18098    return Res;   // Correct type already, nothing to do.
18099
18100  // All of the single-register GCC register classes map their values onto
18101  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18102  // really want an 8-bit or 32-bit register, map to the appropriate register
18103  // class and return the appropriate register.
18104  if (Res.second == &X86::GR16RegClass) {
18105    if (VT == MVT::i8) {
18106      unsigned DestReg = 0;
18107      switch (Res.first) {
18108      default: break;
18109      case X86::AX: DestReg = X86::AL; break;
18110      case X86::DX: DestReg = X86::DL; break;
18111      case X86::CX: DestReg = X86::CL; break;
18112      case X86::BX: DestReg = X86::BL; break;
18113      }
18114      if (DestReg) {
18115        Res.first = DestReg;
18116        Res.second = &X86::GR8RegClass;
18117      }
18118    } else if (VT == MVT::i32) {
18119      unsigned DestReg = 0;
18120      switch (Res.first) {
18121      default: break;
18122      case X86::AX: DestReg = X86::EAX; break;
18123      case X86::DX: DestReg = X86::EDX; break;
18124      case X86::CX: DestReg = X86::ECX; break;
18125      case X86::BX: DestReg = X86::EBX; break;
18126      case X86::SI: DestReg = X86::ESI; break;
18127      case X86::DI: DestReg = X86::EDI; break;
18128      case X86::BP: DestReg = X86::EBP; break;
18129      case X86::SP: DestReg = X86::ESP; break;
18130      }
18131      if (DestReg) {
18132        Res.first = DestReg;
18133        Res.second = &X86::GR32RegClass;
18134      }
18135    } else if (VT == MVT::i64) {
18136      unsigned DestReg = 0;
18137      switch (Res.first) {
18138      default: break;
18139      case X86::AX: DestReg = X86::RAX; break;
18140      case X86::DX: DestReg = X86::RDX; break;
18141      case X86::CX: DestReg = X86::RCX; break;
18142      case X86::BX: DestReg = X86::RBX; break;
18143      case X86::SI: DestReg = X86::RSI; break;
18144      case X86::DI: DestReg = X86::RDI; break;
18145      case X86::BP: DestReg = X86::RBP; break;
18146      case X86::SP: DestReg = X86::RSP; break;
18147      }
18148      if (DestReg) {
18149        Res.first = DestReg;
18150        Res.second = &X86::GR64RegClass;
18151      }
18152    }
18153  } else if (Res.second == &X86::FR32RegClass ||
18154             Res.second == &X86::FR64RegClass ||
18155             Res.second == &X86::VR128RegClass) {
18156    // Handle references to XMM physical registers that got mapped into the
18157    // wrong class.  This can happen with constraints like {xmm0} where the
18158    // target independent register mapper will just pick the first match it can
18159    // find, ignoring the required type.
18160
18161    if (VT == MVT::f32 || VT == MVT::i32)
18162      Res.second = &X86::FR32RegClass;
18163    else if (VT == MVT::f64 || VT == MVT::i64)
18164      Res.second = &X86::FR64RegClass;
18165    else if (X86::VR128RegClass.hasType(VT))
18166      Res.second = &X86::VR128RegClass;
18167    else if (X86::VR256RegClass.hasType(VT))
18168      Res.second = &X86::VR256RegClass;
18169  }
18170
18171  return Res;
18172}
18173