X86ISelLowering.cpp revision 66ddd153f6c3481cc4e1a771526157f41a9832b5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  EVT VT = Vec.getValueType();
103  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
104
105  EVT ElVT = VT.getVectorElementType();
106  EVT ResultVT = Result.getValueType();
107
108  // Insert the relevant 128 bits.
109  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
110
111  // This is the index of the first element of the 128-bit chunk
112  // we want.
113  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
114                               * ElemsPerChunk);
115
116  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
117  Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
118                       VecIdx);
119  return Result;
120}
121
122/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
123/// instructions. This is used because creating CONCAT_VECTOR nodes of
124/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
125/// large BUILD_VECTORS.
126static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
127                                   unsigned NumElems, SelectionDAG &DAG,
128                                   DebugLoc dl) {
129  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
130  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
131}
132
133static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
134  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
135  bool is64Bit = Subtarget->is64Bit();
136
137  if (Subtarget->isTargetEnvMacho()) {
138    if (is64Bit)
139      return new X8664_MachoTargetObjectFile();
140    return new TargetLoweringObjectFileMachO();
141  }
142
143  if (Subtarget->isTargetELF())
144    return new TargetLoweringObjectFileELF();
145  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
146    return new TargetLoweringObjectFileCOFF();
147  llvm_unreachable("unknown subtarget type");
148}
149
150X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
151  : TargetLowering(TM, createTLOF(TM)) {
152  Subtarget = &TM.getSubtarget<X86Subtarget>();
153  X86ScalarSSEf64 = Subtarget->hasSSE2();
154  X86ScalarSSEf32 = Subtarget->hasSSE1();
155  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
156
157  RegInfo = TM.getRegisterInfo();
158  TD = getTargetData();
159
160  // Set up the TargetLowering object.
161  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
162
163  // X86 is weird, it always uses i8 for shift amounts and setcc results.
164  setBooleanContents(ZeroOrOneBooleanContent);
165  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
166  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
167
168  // For 64-bit since we have so many registers use the ILP scheduler, for
169  // 32-bit code use the register pressure specific scheduling.
170  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
171  if (Subtarget->is64Bit())
172    setSchedulingPreference(Sched::ILP);
173  else if (Subtarget->isAtom())
174    setSchedulingPreference(Sched::Hybrid);
175  else
176    setSchedulingPreference(Sched::RegPressure);
177  setStackPointerRegisterToSaveRestore(X86StackPtr);
178
179  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
180    // Setup Windows compiler runtime calls.
181    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
182    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
183    setLibcallName(RTLIB::SREM_I64, "_allrem");
184    setLibcallName(RTLIB::UREM_I64, "_aullrem");
185    setLibcallName(RTLIB::MUL_I64, "_allmul");
186    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
187    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
188    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
189    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
190    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
191
192    // The _ftol2 runtime function has an unusual calling conv, which
193    // is modeled by a special pseudo-instruction.
194    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
195    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
196    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
197    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
198  }
199
200  if (Subtarget->isTargetDarwin()) {
201    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
202    setUseUnderscoreSetJmp(false);
203    setUseUnderscoreLongJmp(false);
204  } else if (Subtarget->isTargetMingw()) {
205    // MS runtime is weird: it exports _setjmp, but longjmp!
206    setUseUnderscoreSetJmp(true);
207    setUseUnderscoreLongJmp(false);
208  } else {
209    setUseUnderscoreSetJmp(true);
210    setUseUnderscoreLongJmp(true);
211  }
212
213  // Set up the register classes.
214  addRegisterClass(MVT::i8, &X86::GR8RegClass);
215  addRegisterClass(MVT::i16, &X86::GR16RegClass);
216  addRegisterClass(MVT::i32, &X86::GR32RegClass);
217  if (Subtarget->is64Bit())
218    addRegisterClass(MVT::i64, &X86::GR64RegClass);
219
220  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
221
222  // We don't accept any truncstore of integer registers.
223  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
224  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
225  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
226  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
227  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
228  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
229
230  // SETOEQ and SETUNE require checking two conditions.
231  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
232  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
233  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
234  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
237
238  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
239  // operation.
240  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
241  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
242  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
243
244  if (Subtarget->is64Bit()) {
245    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
246    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
247  } else if (!TM.Options.UseSoftFloat) {
248    // We have an algorithm for SSE2->double, and we turn this into a
249    // 64-bit FILD followed by conditional FADD for other targets.
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251    // We have an algorithm for SSE2, and we turn this into a 64-bit
252    // FILD for other targets.
253    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
254  }
255
256  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
257  // this operation.
258  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
259  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
260
261  if (!TM.Options.UseSoftFloat) {
262    // SSE has no i16 to fp conversion, only i32
263    if (X86ScalarSSEf32) {
264      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
265      // f32 and f64 cases are Legal, f80 case is not
266      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
267    } else {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
270    }
271  } else {
272    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
273    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
274  }
275
276  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
277  // are Legal, f80 is custom lowered.
278  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
279  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
280
281  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
282  // this operation.
283  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
284  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
285
286  if (X86ScalarSSEf32) {
287    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
288    // f32 and f64 cases are Legal, f80 case is not
289    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
290  } else {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
293  }
294
295  // Handle FP_TO_UINT by promoting the destination to a larger signed
296  // conversion.
297  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
298  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
299  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
300
301  if (Subtarget->is64Bit()) {
302    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
303    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
304  } else if (!TM.Options.UseSoftFloat) {
305    // Since AVX is a superset of SSE3, only check for SSE here.
306    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
307      // Expand FP_TO_UINT into a select.
308      // FIXME: We would like to use a Custom expander here eventually to do
309      // the optimal thing for SSE vs. the default expansion in the legalizer.
310      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
311    else
312      // With SSE3 we can use fisttpll to convert to a signed i64; without
313      // SSE, we're stuck with a fistpll.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
315  }
316
317  if (isTargetFTOL()) {
318    // Use the _ftol2 runtime function, which has a pseudo-instruction
319    // to handle its weird calling convention.
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
321  }
322
323  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
324  if (!X86ScalarSSEf64) {
325    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
326    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
327    if (Subtarget->is64Bit()) {
328      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
329      // Without SSE, i64->f64 goes through memory.
330      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
331    }
332  }
333
334  // Scalar integer divide and remainder are lowered to use operations that
335  // produce two results, to match the available instructions. This exposes
336  // the two-result form to trivial CSE, which is able to combine x/y and x%y
337  // into a single instruction.
338  //
339  // Scalar integer multiply-high is also lowered to use two-result
340  // operations, to match the available instructions. However, plain multiply
341  // (low) operations are left as Legal, as there are single-result
342  // instructions for this in x86. Using the two-result multiply instructions
343  // when both high and low results are needed must be arranged by dagcombine.
344  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
345    MVT VT = IntVTs[i];
346    setOperationAction(ISD::MULHS, VT, Expand);
347    setOperationAction(ISD::MULHU, VT, Expand);
348    setOperationAction(ISD::SDIV, VT, Expand);
349    setOperationAction(ISD::UDIV, VT, Expand);
350    setOperationAction(ISD::SREM, VT, Expand);
351    setOperationAction(ISD::UREM, VT, Expand);
352
353    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
354    setOperationAction(ISD::ADDC, VT, Custom);
355    setOperationAction(ISD::ADDE, VT, Custom);
356    setOperationAction(ISD::SUBC, VT, Custom);
357    setOperationAction(ISD::SUBE, VT, Custom);
358  }
359
360  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
361  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
362  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
363  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
364  if (Subtarget->is64Bit())
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
368  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
369  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
372  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
373  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
374
375  // Promote the i8 variants and force them on up to i32 which has a shorter
376  // encoding.
377  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
379  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
380  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
383    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
384    if (Subtarget->is64Bit())
385      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
386  } else {
387    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
388    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasLZCNT()) {
394    // When promoting the i8 variants, force them to i32 for a shorter
395    // encoding.
396    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
399    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
404  } else {
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
407    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
411    if (Subtarget->is64Bit()) {
412      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
414    }
415  }
416
417  if (Subtarget->hasPOPCNT()) {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
419  } else {
420    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
423    if (Subtarget->is64Bit())
424      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
425  }
426
427  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
428  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
429
430  // These should be promoted to a larger select which is supported.
431  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
432  // X86 wants to expand cmov itself.
433  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
447    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
448  }
449  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
450
451  // Darwin ABI issue.
452  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
453  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
456  if (Subtarget->is64Bit())
457    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
458  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
459  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
460  if (Subtarget->is64Bit()) {
461    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
462    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
463    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
464    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
465    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
466  }
467  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
468  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
471  if (Subtarget->is64Bit()) {
472    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
475  }
476
477  if (Subtarget->hasSSE1())
478    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
479
480  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
481  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
482
483  // On X86 and X86-64, atomic operations are lowered to locked instructions.
484  // Locked instructions, in turn, have implicit fence semantics (all memory
485  // operations are flushed before issuing the locked instruction, and they
486  // are not buffered), so we can fold away the common pattern of
487  // fence-atomic-fence.
488  setShouldFoldAtomicFences(true);
489
490  // Expand certain atomics
491  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
492    MVT VT = IntVTs[i];
493    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
495    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
507  }
508
509  if (Subtarget->hasCmpxchg16b()) {
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
511  }
512
513  // FIXME - use subtarget debug flags
514  if (!Subtarget->isTargetDarwin() &&
515      !Subtarget->isTargetELF() &&
516      !Subtarget->isTargetCygMing()) {
517    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
518  }
519
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
524  if (Subtarget->is64Bit()) {
525    setExceptionPointerRegister(X86::RAX);
526    setExceptionSelectorRegister(X86::RDX);
527  } else {
528    setExceptionPointerRegister(X86::EAX);
529    setExceptionSelectorRegister(X86::EDX);
530  }
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
533
534  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
535  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552
553  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
555                       MVT::i64 : MVT::i32, Custom);
556  else if (TM.Options.EnableSegmentedStacks)
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Expand);
562
563  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
564    // f32 and f64 use SSE.
565    // Set up the FP register classes.
566    addRegisterClass(MVT::f32, &X86::FR32RegClass);
567    addRegisterClass(MVT::f64, &X86::FR64RegClass);
568
569    // Use ANDPD to simulate FABS.
570    setOperationAction(ISD::FABS , MVT::f64, Custom);
571    setOperationAction(ISD::FABS , MVT::f32, Custom);
572
573    // Use XORP to simulate FNEG.
574    setOperationAction(ISD::FNEG , MVT::f64, Custom);
575    setOperationAction(ISD::FNEG , MVT::f32, Custom);
576
577    // Use ANDPD and ORPD to simulate FCOPYSIGN.
578    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
579    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
580
581    // Lower this to FGETSIGNx86 plus an AND.
582    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
583    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
584
585    // We don't support sin/cos/fmod
586    setOperationAction(ISD::FSIN , MVT::f64, Expand);
587    setOperationAction(ISD::FCOS , MVT::f64, Expand);
588    setOperationAction(ISD::FSIN , MVT::f32, Expand);
589    setOperationAction(ISD::FCOS , MVT::f32, Expand);
590
591    // Expand FP immediates into loads from the stack, except for the special
592    // cases we handle.
593    addLegalFPImmediate(APFloat(+0.0)); // xorpd
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
596    // Use SSE for f32, x87 for f64.
597    // Set up the FP register classes.
598    addRegisterClass(MVT::f32, &X86::FR32RegClass);
599    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
600
601    // Use ANDPS to simulate FABS.
602    setOperationAction(ISD::FABS , MVT::f32, Custom);
603
604    // Use XORP to simulate FNEG.
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608
609    // Use ANDPS and ORPS to simulate FCOPYSIGN.
610    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
612
613    // We don't support sin/cos/fmod
614    setOperationAction(ISD::FSIN , MVT::f32, Expand);
615    setOperationAction(ISD::FCOS , MVT::f32, Expand);
616
617    // Special cases we handle for FP constants.
618    addLegalFPImmediate(APFloat(+0.0f)); // xorps
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623
624    if (!TM.Options.UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628  } else if (!TM.Options.UseSoftFloat) {
629    // f32 and f64 in x87.
630    // Set up the FP register classes.
631    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
632    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
633
634    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
635    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
638
639    if (!TM.Options.UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
642    }
643    addLegalFPImmediate(APFloat(+0.0)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
647    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
651  }
652
653  // We don't support FMA.
654  setOperationAction(ISD::FMA, MVT::f64, Expand);
655  setOperationAction(ISD::FMA, MVT::f32, Expand);
656
657  // Long double always uses X87.
658  if (!TM.Options.UseSoftFloat) {
659    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
660    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
662    {
663      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
664      addLegalFPImmediate(TmpFlt);  // FLD0
665      TmpFlt.changeSign();
666      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
667
668      bool ignored;
669      APFloat TmpFlt2(+1.0);
670      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
671                      &ignored);
672      addLegalFPImmediate(TmpFlt2);  // FLD1
673      TmpFlt2.changeSign();
674      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
675    }
676
677    if (!TM.Options.UnsafeFPMath) {
678      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
679      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
680    }
681
682    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
683    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
684    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
685    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
686    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
687    setOperationAction(ISD::FMA, MVT::f80, Expand);
688  }
689
690  // Always use a library call for pow.
691  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
693  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
694
695  setOperationAction(ISD::FLOG, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
697  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP, MVT::f80, Expand);
699  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
700
701  // First set operation action for all vector types to either promote
702  // (for widening) or expand (for scalarization). Then we will selectively
703  // turn on ones that can be effectively codegen'd.
704  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
705       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
706    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
758    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
763    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
764         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
765      setTruncStoreAction((MVT::SimpleValueType)VT,
766                          (MVT::SimpleValueType)InnerVT, Expand);
767    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
769    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
770  }
771
772  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
773  // with -msoft-float, disable use of MMX as well.
774  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
775    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
776    // No operations on x86mmx supported, everything uses intrinsics.
777  }
778
779  // MMX-sized vectors (other than x86mmx) are expected to be expanded
780  // into smaller operations.
781  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
782  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
784  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
785  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
787  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
788  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
789  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
790  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
791  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
792  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
793  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
794  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
795  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
796  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
801  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
803  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
810
811  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
812    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
813
814    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
819    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
820    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
822    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
826  }
827
828  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
829    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
830
831    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
832    // registers cannot be used even for integer operations.
833    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
834    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
835    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
836    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
837
838    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
839    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
841    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
842    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
843    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
846    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
854
855    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
858    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
859
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
861    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
865
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::VECTOR_SHUFFLE,
884                         VT.getSimpleVT().SimpleTy, Custom);
885      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
886                         VT.getSimpleVT().SimpleTy, Custom);
887    }
888
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
892    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
893    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
894    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
899    }
900
901    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
902    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
903      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
904      EVT VT = SVT;
905
906      // Do not attempt to promote non-128-bit vectors
907      if (!VT.is128BitVector())
908        continue;
909
910      setOperationAction(ISD::AND,    SVT, Promote);
911      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
912      setOperationAction(ISD::OR,     SVT, Promote);
913      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
914      setOperationAction(ISD::XOR,    SVT, Promote);
915      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
916      setOperationAction(ISD::LOAD,   SVT, Promote);
917      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
918      setOperationAction(ISD::SELECT, SVT, Promote);
919      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
920    }
921
922    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
923
924    // Custom lower v2i64 and v2f64 selects.
925    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
926    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
927    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
928    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
929
930    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
931    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
932  }
933
934  if (Subtarget->hasSSE41()) {
935    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
936    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
937    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
938    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
939    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
940    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
945
946    // FIXME: Do we need to handle scalar-to-vector here?
947    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
948
949    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
954
955    // i8 and i16 vectors are custom , because the source register and source
956    // source memory operand types are not the same width.  f32 vectors are
957    // custom since the immediate controlling the insert encodes additional
958    // information.
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
963
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
968
969    // FIXME: these should be Legal but thats only for the case where
970    // the index is constant.  For now custom expand to deal with that.
971    if (Subtarget->is64Bit()) {
972      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
973      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
974    }
975  }
976
977  if (Subtarget->hasSSE2()) {
978    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
979    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
980
981    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
986
987    if (Subtarget->hasAVX2()) {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
995    } else {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1003    }
1004  }
1005
1006  if (Subtarget->hasSSE42())
1007    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1008
1009  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1010    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1011    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1012    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1013    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1014    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1015    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1016
1017    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1019    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1020
1021    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1027
1028    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1034
1035    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1037    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1038
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasAVX2()) {
1070      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1081      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1083      // Don't lower v32i8 because there is no 128-bit byte mul
1084
1085      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1094    } else {
1095      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1108      // Don't lower v32i8 because there is no 128-bit byte mul
1109
1110      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1112
1113      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1117    }
1118
1119    // Custom lower several nodes for 256-bit types.
1120    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1121                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1122      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1123      EVT VT = SVT;
1124
1125      // Extract subvector is special because the value type
1126      // (result) is 128-bit but the source is 256-bit wide.
1127      if (VT.is128BitVector())
1128        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1129
1130      // Do not attempt to custom lower other non-256-bit vectors
1131      if (!VT.is256BitVector())
1132        continue;
1133
1134      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1135      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1136      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1137      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1138      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1139      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1140    }
1141
1142    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1143    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1144      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1145      EVT VT = SVT;
1146
1147      // Do not attempt to promote non-256-bit vectors
1148      if (!VT.is256BitVector())
1149        continue;
1150
1151      setOperationAction(ISD::AND,    SVT, Promote);
1152      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1153      setOperationAction(ISD::OR,     SVT, Promote);
1154      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1155      setOperationAction(ISD::XOR,    SVT, Promote);
1156      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::LOAD,   SVT, Promote);
1158      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1159      setOperationAction(ISD::SELECT, SVT, Promote);
1160      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1161    }
1162  }
1163
1164  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1165  // of this type with custom code.
1166  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1167         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1168    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1169                       Custom);
1170  }
1171
1172  // We want to custom lower some of our intrinsics.
1173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1174
1175
1176  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1177  // handle type legalization for these operations here.
1178  //
1179  // FIXME: We really should do custom legalization for addition and
1180  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1181  // than generic legalization for 64-bit multiplication-with-overflow, though.
1182  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1183    // Add/Sub/Mul with overflow operations are custom lowered.
1184    MVT VT = IntVTs[i];
1185    setOperationAction(ISD::SADDO, VT, Custom);
1186    setOperationAction(ISD::UADDO, VT, Custom);
1187    setOperationAction(ISD::SSUBO, VT, Custom);
1188    setOperationAction(ISD::USUBO, VT, Custom);
1189    setOperationAction(ISD::SMULO, VT, Custom);
1190    setOperationAction(ISD::UMULO, VT, Custom);
1191  }
1192
1193  // There are no 8-bit 3-address imul/mul instructions
1194  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1195  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1196
1197  if (!Subtarget->is64Bit()) {
1198    // These libcalls are not available in 32-bit.
1199    setLibcallName(RTLIB::SHL_I128, 0);
1200    setLibcallName(RTLIB::SRL_I128, 0);
1201    setLibcallName(RTLIB::SRA_I128, 0);
1202  }
1203
1204  // We have target-specific dag combine patterns for the following nodes:
1205  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1206  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1207  setTargetDAGCombine(ISD::VSELECT);
1208  setTargetDAGCombine(ISD::SELECT);
1209  setTargetDAGCombine(ISD::SHL);
1210  setTargetDAGCombine(ISD::SRA);
1211  setTargetDAGCombine(ISD::SRL);
1212  setTargetDAGCombine(ISD::OR);
1213  setTargetDAGCombine(ISD::AND);
1214  setTargetDAGCombine(ISD::ADD);
1215  setTargetDAGCombine(ISD::FADD);
1216  setTargetDAGCombine(ISD::FSUB);
1217  setTargetDAGCombine(ISD::SUB);
1218  setTargetDAGCombine(ISD::LOAD);
1219  setTargetDAGCombine(ISD::STORE);
1220  setTargetDAGCombine(ISD::ZERO_EXTEND);
1221  setTargetDAGCombine(ISD::ANY_EXTEND);
1222  setTargetDAGCombine(ISD::SIGN_EXTEND);
1223  setTargetDAGCombine(ISD::TRUNCATE);
1224  setTargetDAGCombine(ISD::UINT_TO_FP);
1225  setTargetDAGCombine(ISD::SINT_TO_FP);
1226  setTargetDAGCombine(ISD::SETCC);
1227  setTargetDAGCombine(ISD::FP_TO_SINT);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279}
1280
1281/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1282/// function arguments in the caller parameter area. For X86, aggregates
1283/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1284/// are at 4-byte boundaries.
1285unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1286  if (Subtarget->is64Bit()) {
1287    // Max of 8 and alignment of type.
1288    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1289    if (TyAlign > 8)
1290      return TyAlign;
1291    return 8;
1292  }
1293
1294  unsigned Align = 4;
1295  if (Subtarget->hasSSE1())
1296    getMaxByValAlign(Ty, Align);
1297  return Align;
1298}
1299
1300/// getOptimalMemOpType - Returns the target specific optimal type for load
1301/// and store operations as a result of memset, memcpy, and memmove
1302/// lowering. If DstAlign is zero that means it's safe to destination
1303/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1304/// means there isn't a need to check it against alignment requirement,
1305/// probably because the source does not need to be loaded. If
1306/// 'IsZeroVal' is true, that means it's safe to return a
1307/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1308/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1309/// constant so it does not need to be loaded.
1310/// It returns EVT::Other if the type should be determined using generic
1311/// target-independent logic.
1312EVT
1313X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1314                                       unsigned DstAlign, unsigned SrcAlign,
1315                                       bool IsZeroVal,
1316                                       bool MemcpyStrSrc,
1317                                       MachineFunction &MF) const {
1318  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1319  // linux.  This is because the stack realignment code can't handle certain
1320  // cases like PR2962.  This should be removed when PR2962 is fixed.
1321  const Function *F = MF.getFunction();
1322  if (IsZeroVal &&
1323      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1324    if (Size >= 16 &&
1325        (Subtarget->isUnalignedMemAccessFast() ||
1326         ((DstAlign == 0 || DstAlign >= 16) &&
1327          (SrcAlign == 0 || SrcAlign >= 16))) &&
1328        Subtarget->getStackAlignment() >= 16) {
1329      if (Subtarget->getStackAlignment() >= 32) {
1330        if (Subtarget->hasAVX2())
1331          return MVT::v8i32;
1332        if (Subtarget->hasAVX())
1333          return MVT::v8f32;
1334      }
1335      if (Subtarget->hasSSE2())
1336        return MVT::v4i32;
1337      if (Subtarget->hasSSE1())
1338        return MVT::v4f32;
1339    } else if (!MemcpyStrSrc && Size >= 8 &&
1340               !Subtarget->is64Bit() &&
1341               Subtarget->getStackAlignment() >= 8 &&
1342               Subtarget->hasSSE2()) {
1343      // Do not use f64 to lower memcpy if source is string constant. It's
1344      // better to use i32 to avoid the loads.
1345      return MVT::f64;
1346    }
1347  }
1348  if (Subtarget->is64Bit() && Size >= 8)
1349    return MVT::i64;
1350  return MVT::i32;
1351}
1352
1353/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1354/// current function.  The returned value is a member of the
1355/// MachineJumpTableInfo::JTEntryKind enum.
1356unsigned X86TargetLowering::getJumpTableEncoding() const {
1357  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1358  // symbol.
1359  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1360      Subtarget->isPICStyleGOT())
1361    return MachineJumpTableInfo::EK_Custom32;
1362
1363  // Otherwise, use the normal jump table encoding heuristics.
1364  return TargetLowering::getJumpTableEncoding();
1365}
1366
1367const MCExpr *
1368X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1369                                             const MachineBasicBlock *MBB,
1370                                             unsigned uid,MCContext &Ctx) const{
1371  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1372         Subtarget->isPICStyleGOT());
1373  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1374  // entries.
1375  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1376                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1377}
1378
1379/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1380/// jumptable.
1381SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1382                                                    SelectionDAG &DAG) const {
1383  if (!Subtarget->is64Bit())
1384    // This doesn't have DebugLoc associated with it, but is not really the
1385    // same as a Register.
1386    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1387  return Table;
1388}
1389
1390/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1391/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1392/// MCExpr.
1393const MCExpr *X86TargetLowering::
1394getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1395                             MCContext &Ctx) const {
1396  // X86-64 uses RIP relative addressing based on the jump table label.
1397  if (Subtarget->isPICStyleRIPRel())
1398    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1399
1400  // Otherwise, the reference is relative to the PIC base.
1401  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1402}
1403
1404// FIXME: Why this routine is here? Move to RegInfo!
1405std::pair<const TargetRegisterClass*, uint8_t>
1406X86TargetLowering::findRepresentativeClass(EVT VT) const{
1407  const TargetRegisterClass *RRC = 0;
1408  uint8_t Cost = 1;
1409  switch (VT.getSimpleVT().SimpleTy) {
1410  default:
1411    return TargetLowering::findRepresentativeClass(VT);
1412  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1413    RRC = Subtarget->is64Bit() ?
1414      (const TargetRegisterClass*)&X86::GR64RegClass :
1415      (const TargetRegisterClass*)&X86::GR32RegClass;
1416    break;
1417  case MVT::x86mmx:
1418    RRC = &X86::VR64RegClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = &X86::VR128RegClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460                                  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDValue TCChain = Chain;
1588  SDNode *Copy = *N->use_begin();
1589  if (Copy->getOpcode() == ISD::CopyToReg) {
1590    // If the copy has a glue operand, we conservatively assume it isn't safe to
1591    // perform a tail call.
1592    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593      return false;
1594    TCChain = Copy->getOperand(0);
1595  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596    return false;
1597
1598  bool HasRet = false;
1599  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1600       UI != UE; ++UI) {
1601    if (UI->getOpcode() != X86ISD::RET_FLAG)
1602      return false;
1603    HasRet = true;
1604  }
1605
1606  if (!HasRet)
1607    return false;
1608
1609  Chain = TCChain;
1610  return true;
1611}
1612
1613EVT
1614X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1615                                            ISD::NodeType ExtendKind) const {
1616  MVT ReturnMVT;
1617  // TODO: Is this also valid on 32-bit?
1618  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1619    ReturnMVT = MVT::i8;
1620  else
1621    ReturnMVT = MVT::i32;
1622
1623  EVT MinVT = getRegisterType(Context, ReturnMVT);
1624  return VT.bitsLT(MinVT) ? MinVT : VT;
1625}
1626
1627/// LowerCallResult - Lower the result values of a call into the
1628/// appropriate copies out of appropriate physical registers.
1629///
1630SDValue
1631X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1632                                   CallingConv::ID CallConv, bool isVarArg,
1633                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1634                                   DebugLoc dl, SelectionDAG &DAG,
1635                                   SmallVectorImpl<SDValue> &InVals) const {
1636
1637  // Assign locations to each value returned by this call.
1638  SmallVector<CCValAssign, 16> RVLocs;
1639  bool Is64Bit = Subtarget->is64Bit();
1640  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1641                 getTargetMachine(), RVLocs, *DAG.getContext());
1642  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1643
1644  // Copy all of the result registers out of their specified physreg.
1645  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1646    CCValAssign &VA = RVLocs[i];
1647    EVT CopyVT = VA.getValVT();
1648
1649    // If this is x86-64, and we disabled SSE, we can't return FP values
1650    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1651        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1652      report_fatal_error("SSE register return with SSE disabled");
1653    }
1654
1655    SDValue Val;
1656
1657    // If this is a call to a function that returns an fp value on the floating
1658    // point stack, we must guarantee the the value is popped from the stack, so
1659    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1660    // if the return value is not used. We use the FpPOP_RETVAL instruction
1661    // instead.
1662    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1663      // If we prefer to use the value in xmm registers, copy it out as f80 and
1664      // use a truncate to move it from fp stack reg to xmm reg.
1665      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1666      SDValue Ops[] = { Chain, InFlag };
1667      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1668                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1669      Val = Chain.getValue(0);
1670
1671      // Round the f80 to the right size, which also moves it to the appropriate
1672      // xmm register.
1673      if (CopyVT != VA.getValVT())
1674        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1675                          // This truncation won't change the value.
1676                          DAG.getIntPtrConstant(1));
1677    } else {
1678      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1679                                 CopyVT, InFlag).getValue(1);
1680      Val = Chain.getValue(0);
1681    }
1682    InFlag = Chain.getValue(2);
1683    InVals.push_back(Val);
1684  }
1685
1686  return Chain;
1687}
1688
1689
1690//===----------------------------------------------------------------------===//
1691//                C & StdCall & Fast Calling Convention implementation
1692//===----------------------------------------------------------------------===//
1693//  StdCall calling convention seems to be standard for many Windows' API
1694//  routines and around. It differs from C calling convention just a little:
1695//  callee should clean up the stack, not caller. Symbols should be also
1696//  decorated in some fancy way :) It doesn't support any vector arguments.
1697//  For info on fast calling convention see Fast Calling Convention (tail call)
1698//  implementation LowerX86_32FastCCCallTo.
1699
1700/// CallIsStructReturn - Determines whether a call uses struct return
1701/// semantics.
1702static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1703  if (Outs.empty())
1704    return false;
1705
1706  return Outs[0].Flags.isSRet();
1707}
1708
1709/// ArgsAreStructReturn - Determines whether a function uses struct
1710/// return semantics.
1711static bool
1712ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1713  if (Ins.empty())
1714    return false;
1715
1716  return Ins[0].Flags.isSRet();
1717}
1718
1719/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1720/// by "Src" to address "Dst" with size and alignment information specified by
1721/// the specific parameter attribute. The copy will be passed as a byval
1722/// function parameter.
1723static SDValue
1724CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1725                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1726                          DebugLoc dl) {
1727  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1728
1729  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1730                       /*isVolatile*/false, /*AlwaysInline=*/true,
1731                       MachinePointerInfo(), MachinePointerInfo());
1732}
1733
1734/// IsTailCallConvention - Return true if the calling convention is one that
1735/// supports tail call optimization.
1736static bool IsTailCallConvention(CallingConv::ID CC) {
1737  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1738}
1739
1740bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1741  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1742    return false;
1743
1744  CallSite CS(CI);
1745  CallingConv::ID CalleeCC = CS.getCallingConv();
1746  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1747    return false;
1748
1749  return true;
1750}
1751
1752/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1753/// a tailcall target by changing its ABI.
1754static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1755                                   bool GuaranteedTailCallOpt) {
1756  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1757}
1758
1759SDValue
1760X86TargetLowering::LowerMemArgument(SDValue Chain,
1761                                    CallingConv::ID CallConv,
1762                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1763                                    DebugLoc dl, SelectionDAG &DAG,
1764                                    const CCValAssign &VA,
1765                                    MachineFrameInfo *MFI,
1766                                    unsigned i) const {
1767  // Create the nodes corresponding to a load from this parameter slot.
1768  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1769  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1770                              getTargetMachine().Options.GuaranteedTailCallOpt);
1771  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1772  EVT ValVT;
1773
1774  // If value is passed by pointer we have address passed instead of the value
1775  // itself.
1776  if (VA.getLocInfo() == CCValAssign::Indirect)
1777    ValVT = VA.getLocVT();
1778  else
1779    ValVT = VA.getValVT();
1780
1781  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1782  // changed with more analysis.
1783  // In case of tail call optimization mark all arguments mutable. Since they
1784  // could be overwritten by lowering of arguments in case of a tail call.
1785  if (Flags.isByVal()) {
1786    unsigned Bytes = Flags.getByValSize();
1787    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1788    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1789    return DAG.getFrameIndex(FI, getPointerTy());
1790  } else {
1791    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1792                                    VA.getLocMemOffset(), isImmutable);
1793    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1794    return DAG.getLoad(ValVT, dl, Chain, FIN,
1795                       MachinePointerInfo::getFixedStack(FI),
1796                       false, false, false, 0);
1797  }
1798}
1799
1800SDValue
1801X86TargetLowering::LowerFormalArguments(SDValue Chain,
1802                                        CallingConv::ID CallConv,
1803                                        bool isVarArg,
1804                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                        DebugLoc dl,
1806                                        SelectionDAG &DAG,
1807                                        SmallVectorImpl<SDValue> &InVals)
1808                                          const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1811
1812  const Function* Fn = MF.getFunction();
1813  if (Fn->hasExternalLinkage() &&
1814      Subtarget->isTargetCygMing() &&
1815      Fn->getName() == "main")
1816    FuncInfo->setForceFramePointer(true);
1817
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  bool Is64Bit = Subtarget->is64Bit();
1820  bool IsWindows = Subtarget->isTargetWindows();
1821  bool IsWin64 = Subtarget->isTargetWin64();
1822
1823  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1824         "Var args not supported with calling convention fastcc or ghc");
1825
1826  // Assign locations to all of the incoming arguments.
1827  SmallVector<CCValAssign, 16> ArgLocs;
1828  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1829                 ArgLocs, *DAG.getContext());
1830
1831  // Allocate shadow area for Win64
1832  if (IsWin64) {
1833    CCInfo.AllocateStack(32, 8);
1834  }
1835
1836  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1837
1838  unsigned LastVal = ~0U;
1839  SDValue ArgValue;
1840  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1841    CCValAssign &VA = ArgLocs[i];
1842    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1843    // places.
1844    assert(VA.getValNo() != LastVal &&
1845           "Don't support value assigned to multiple locs yet");
1846    (void)LastVal;
1847    LastVal = VA.getValNo();
1848
1849    if (VA.isRegLoc()) {
1850      EVT RegVT = VA.getLocVT();
1851      const TargetRegisterClass *RC;
1852      if (RegVT == MVT::i32)
1853        RC = &X86::GR32RegClass;
1854      else if (Is64Bit && RegVT == MVT::i64)
1855        RC = &X86::GR64RegClass;
1856      else if (RegVT == MVT::f32)
1857        RC = &X86::FR32RegClass;
1858      else if (RegVT == MVT::f64)
1859        RC = &X86::FR64RegClass;
1860      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1861        RC = &X86::VR256RegClass;
1862      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1863        RC = &X86::VR128RegClass;
1864      else if (RegVT == MVT::x86mmx)
1865        RC = &X86::VR64RegClass;
1866      else
1867        llvm_unreachable("Unknown argument type!");
1868
1869      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1870      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1871
1872      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1873      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1874      // right size.
1875      if (VA.getLocInfo() == CCValAssign::SExt)
1876        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1877                               DAG.getValueType(VA.getValVT()));
1878      else if (VA.getLocInfo() == CCValAssign::ZExt)
1879        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::BCvt)
1882        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1883
1884      if (VA.isExtInLoc()) {
1885        // Handle MMX values passed in XMM regs.
1886        if (RegVT.isVector()) {
1887          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1888                                 ArgValue);
1889        } else
1890          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1891      }
1892    } else {
1893      assert(VA.isMemLoc());
1894      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1895    }
1896
1897    // If value is passed via pointer - do a load.
1898    if (VA.getLocInfo() == CCValAssign::Indirect)
1899      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1900                             MachinePointerInfo(), false, false, false, 0);
1901
1902    InVals.push_back(ArgValue);
1903  }
1904
1905  // The x86-64 ABI for returning structs by value requires that we copy
1906  // the sret argument into %rax for the return. Save the argument into
1907  // a virtual register so that we can access it from the return points.
1908  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1909    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1910    unsigned Reg = FuncInfo->getSRetReturnReg();
1911    if (!Reg) {
1912      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1913      FuncInfo->setSRetReturnReg(Reg);
1914    }
1915    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1916    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1917  }
1918
1919  unsigned StackSize = CCInfo.getNextStackOffset();
1920  // Align stack specially for tail calls.
1921  if (FuncIsMadeTailCallSafe(CallConv,
1922                             MF.getTarget().Options.GuaranteedTailCallOpt))
1923    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1924
1925  // If the function takes variable number of arguments, make a frame index for
1926  // the start of the first vararg value... for expansion of llvm.va_start.
1927  if (isVarArg) {
1928    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1929                    CallConv != CallingConv::X86_ThisCall)) {
1930      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1931    }
1932    if (Is64Bit) {
1933      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1934
1935      // FIXME: We should really autogenerate these arrays
1936      static const uint16_t GPR64ArgRegsWin64[] = {
1937        X86::RCX, X86::RDX, X86::R8,  X86::R9
1938      };
1939      static const uint16_t GPR64ArgRegs64Bit[] = {
1940        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1941      };
1942      static const uint16_t XMMArgRegs64Bit[] = {
1943        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945      };
1946      const uint16_t *GPR64ArgRegs;
1947      unsigned NumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        // The XMM registers which might contain var arg parameters are shadowed
1951        // in their paired GPR.  So we only need to save the GPR to their home
1952        // slots.
1953        TotalNumIntRegs = 4;
1954        GPR64ArgRegs = GPR64ArgRegsWin64;
1955      } else {
1956        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1957        GPR64ArgRegs = GPR64ArgRegs64Bit;
1958
1959        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1960                                                TotalNumXMMRegs);
1961      }
1962      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1963                                                       TotalNumIntRegs);
1964
1965      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1966      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1967             "SSE register cannot be used when SSE is disabled!");
1968      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1969               NoImplicitFloatOps) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1972          !Subtarget->hasSSE1())
1973        // Kernel mode asks for SSE to be disabled, so don't push them
1974        // on the stack.
1975        TotalNumXMMRegs = 0;
1976
1977      if (IsWin64) {
1978        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1979        // Get to the caller-allocated home save location.  Add 8 to account
1980        // for the return address.
1981        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1984        // Fixup to set vararg frame on shadow area (4 x i64).
1985        if (NumIntRegs < 4)
1986          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1987      } else {
1988        // For X86-64, if there are vararg parameters that are passed via
1989        // registers, then we must store them to their spots on the stack so
1990        // they may be loaded by deferencing the result of va_next.
1991        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1992        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1993        FuncInfo->setRegSaveFrameIndex(
1994          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1995                               false));
1996      }
1997
1998      // Store the integer parameter registers.
1999      SmallVector<SDValue, 8> MemOps;
2000      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2001                                        getPointerTy());
2002      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2003      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2004        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2005                                  DAG.getIntPtrConstant(Offset));
2006        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2007                                     &X86::GR64RegClass);
2008        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2009        SDValue Store =
2010          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                       MachinePointerInfo::getFixedStack(
2012                         FuncInfo->getRegSaveFrameIndex(), Offset),
2013                       false, false, 0);
2014        MemOps.push_back(Store);
2015        Offset += 8;
2016      }
2017
2018      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2019        // Now store the XMM (fp + vector) parameter registers.
2020        SmallVector<SDValue, 11> SaveXMMOps;
2021        SaveXMMOps.push_back(Chain);
2022
2023        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2024        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2025        SaveXMMOps.push_back(ALVal);
2026
2027        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2028                               FuncInfo->getRegSaveFrameIndex()));
2029        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2030                               FuncInfo->getVarArgsFPOffset()));
2031
2032        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2033          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2034                                       &X86::VR128RegClass);
2035          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2036          SaveXMMOps.push_back(Val);
2037        }
2038        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2039                                     MVT::Other,
2040                                     &SaveXMMOps[0], SaveXMMOps.size()));
2041      }
2042
2043      if (!MemOps.empty())
2044        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2045                            &MemOps[0], MemOps.size());
2046    }
2047  }
2048
2049  // Some CCs need callee pop.
2050  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2051                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2052    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2053  } else {
2054    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2055    // If this is an sret function, the return should pop the hidden pointer.
2056    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2057        ArgsAreStructReturn(Ins))
2058      FuncInfo->setBytesToPopOnReturn(4);
2059  }
2060
2061  if (!Is64Bit) {
2062    // RegSaveFrameIndex is X86-64 only.
2063    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2064    if (CallConv == CallingConv::X86_FastCall ||
2065        CallConv == CallingConv::X86_ThisCall)
2066      // fastcc functions can't have varargs.
2067      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2068  }
2069
2070  FuncInfo->setArgumentStackSize(StackSize);
2071
2072  return Chain;
2073}
2074
2075SDValue
2076X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2077                                    SDValue StackPtr, SDValue Arg,
2078                                    DebugLoc dl, SelectionDAG &DAG,
2079                                    const CCValAssign &VA,
2080                                    ISD::ArgFlagsTy Flags) const {
2081  unsigned LocMemOffset = VA.getLocMemOffset();
2082  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2083  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2084  if (Flags.isByVal())
2085    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2086
2087  return DAG.getStore(Chain, dl, Arg, PtrOff,
2088                      MachinePointerInfo::getStack(LocMemOffset),
2089                      false, false, 0);
2090}
2091
2092/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2093/// optimization is performed and it is required.
2094SDValue
2095X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2096                                           SDValue &OutRetAddr, SDValue Chain,
2097                                           bool IsTailCall, bool Is64Bit,
2098                                           int FPDiff, DebugLoc dl) const {
2099  // Adjust the Return address stack slot.
2100  EVT VT = getPointerTy();
2101  OutRetAddr = getReturnAddressFrameIndex(DAG);
2102
2103  // Load the "old" Return address.
2104  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2105                           false, false, false, 0);
2106  return SDValue(OutRetAddr.getNode(), 1);
2107}
2108
2109/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2110/// optimization is performed and it is required (FPDiff!=0).
2111static SDValue
2112EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2113                         SDValue Chain, SDValue RetAddrFrIdx,
2114                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2115  // Store the return address to the appropriate stack slot.
2116  if (!FPDiff) return Chain;
2117  // Calculate the new stack slot for the return address.
2118  int SlotSize = Is64Bit ? 8 : 4;
2119  int NewReturnAddrFI =
2120    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2121  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2122  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2123  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2124                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2125                       false, false, 0);
2126  return Chain;
2127}
2128
2129SDValue
2130X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2131                             CallingConv::ID CallConv, bool isVarArg,
2132                             bool doesNotRet, bool &isTailCall,
2133                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                             const SmallVectorImpl<SDValue> &OutVals,
2135                             const SmallVectorImpl<ISD::InputArg> &Ins,
2136                             DebugLoc dl, SelectionDAG &DAG,
2137                             SmallVectorImpl<SDValue> &InVals) const {
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  bool Is64Bit        = Subtarget->is64Bit();
2140  bool IsWin64        = Subtarget->isTargetWin64();
2141  bool IsWindows      = Subtarget->isTargetWindows();
2142  bool IsStructRet    = CallIsStructReturn(Outs);
2143  bool IsSibcall      = false;
2144
2145  if (MF.getTarget().Options.DisableTailCalls)
2146    isTailCall = false;
2147
2148  if (isTailCall) {
2149    // Check if it's really possible to do a tail call.
2150    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2151                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2152                                                   Outs, OutVals, Ins, DAG);
2153
2154    // Sibcalls are automatically detected tailcalls which do not require
2155    // ABI changes.
2156    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157      IsSibcall = true;
2158
2159    if (isTailCall)
2160      ++NumTailCalls;
2161  }
2162
2163  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2164         "Var args not supported with calling convention fastcc or ghc");
2165
2166  // Analyze operands of the call, assigning locations to each operand.
2167  SmallVector<CCValAssign, 16> ArgLocs;
2168  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2169                 ArgLocs, *DAG.getContext());
2170
2171  // Allocate shadow area for Win64
2172  if (IsWin64) {
2173    CCInfo.AllocateStack(32, 8);
2174  }
2175
2176  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2177
2178  // Get a count of how many bytes are to be pushed on the stack.
2179  unsigned NumBytes = CCInfo.getNextStackOffset();
2180  if (IsSibcall)
2181    // This is a sibcall. The memory operands are available in caller's
2182    // own caller's stack.
2183    NumBytes = 0;
2184  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2185           IsTailCallConvention(CallConv))
2186    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2187
2188  int FPDiff = 0;
2189  if (isTailCall && !IsSibcall) {
2190    // Lower arguments at fp - stackoffset + fpdiff.
2191    unsigned NumBytesCallerPushed =
2192      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2193    FPDiff = NumBytesCallerPushed - NumBytes;
2194
2195    // Set the delta of movement of the returnaddr stackslot.
2196    // But only set if delta is greater than previous delta.
2197    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2198      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2199  }
2200
2201  if (!IsSibcall)
2202    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2203
2204  SDValue RetAddrFrIdx;
2205  // Load return address for tail calls.
2206  if (isTailCall && FPDiff)
2207    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2208                                    Is64Bit, FPDiff, dl);
2209
2210  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2211  SmallVector<SDValue, 8> MemOpChains;
2212  SDValue StackPtr;
2213
2214  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2215  // of tail call optimization arguments are handle later.
2216  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2217    CCValAssign &VA = ArgLocs[i];
2218    EVT RegVT = VA.getLocVT();
2219    SDValue Arg = OutVals[i];
2220    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2221    bool isByVal = Flags.isByVal();
2222
2223    // Promote the value if needed.
2224    switch (VA.getLocInfo()) {
2225    default: llvm_unreachable("Unknown loc info!");
2226    case CCValAssign::Full: break;
2227    case CCValAssign::SExt:
2228      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::ZExt:
2231      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::AExt:
2234      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2235        // Special case: passing MMX values in XMM registers.
2236        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2237        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2238        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2239      } else
2240        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2241      break;
2242    case CCValAssign::BCvt:
2243      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::Indirect: {
2246      // Store the argument.
2247      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2248      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2249      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2250                           MachinePointerInfo::getFixedStack(FI),
2251                           false, false, 0);
2252      Arg = SpillSlot;
2253      break;
2254    }
2255    }
2256
2257    if (VA.isRegLoc()) {
2258      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2259      if (isVarArg && IsWin64) {
2260        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2261        // shadow reg if callee is a varargs function.
2262        unsigned ShadowReg = 0;
2263        switch (VA.getLocReg()) {
2264        case X86::XMM0: ShadowReg = X86::RCX; break;
2265        case X86::XMM1: ShadowReg = X86::RDX; break;
2266        case X86::XMM2: ShadowReg = X86::R8; break;
2267        case X86::XMM3: ShadowReg = X86::R9; break;
2268        }
2269        if (ShadowReg)
2270          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2271      }
2272    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2273      assert(VA.isMemLoc());
2274      if (StackPtr.getNode() == 0)
2275        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2276      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2277                                             dl, DAG, VA, Flags));
2278    }
2279  }
2280
2281  if (!MemOpChains.empty())
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2283                        &MemOpChains[0], MemOpChains.size());
2284
2285  // Build a sequence of copy-to-reg nodes chained together with token chain
2286  // and flag operands which copy the outgoing args into registers.
2287  SDValue InFlag;
2288  // Tail call byval lowering might overwrite argument registers so in case of
2289  // tail call optimization the copies to registers are lowered later.
2290  if (!isTailCall)
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296
2297  if (Subtarget->isPICStyleGOT()) {
2298    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2299    // GOT pointer.
2300    if (!isTailCall) {
2301      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2302                               DAG.getNode(X86ISD::GlobalBaseReg,
2303                                           DebugLoc(), getPointerTy()),
2304                               InFlag);
2305      InFlag = Chain.getValue(1);
2306    } else {
2307      // If we are tail calling and generating PIC/GOT style code load the
2308      // address of the callee into ECX. The value in ecx is used as target of
2309      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2310      // for tail calls on PIC/GOT architectures. Normally we would just put the
2311      // address of GOT into ebx and then call target@PLT. But for tail calls
2312      // ebx would be restored (since ebx is callee saved) before jumping to the
2313      // target@PLT.
2314
2315      // Note: The actual moving to ECX is done further down.
2316      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2317      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2318          !G->getGlobal()->hasProtectedVisibility())
2319        Callee = LowerGlobalAddress(Callee, DAG);
2320      else if (isa<ExternalSymbolSDNode>(Callee))
2321        Callee = LowerExternalSymbol(Callee, DAG);
2322    }
2323  }
2324
2325  if (Is64Bit && isVarArg && !IsWin64) {
2326    // From AMD64 ABI document:
2327    // For calls that may call functions that use varargs or stdargs
2328    // (prototype-less calls or calls to functions containing ellipsis (...) in
2329    // the declaration) %al is used as hidden argument to specify the number
2330    // of SSE registers used. The contents of %al do not need to match exactly
2331    // the number of registers, but must be an ubound on the number of SSE
2332    // registers used and is in the range 0 - 8 inclusive.
2333
2334    // Count the number of XMM registers allocated.
2335    static const uint16_t XMMArgRegs[] = {
2336      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2337      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2338    };
2339    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2340    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2341           && "SSE registers cannot be used when SSE is disabled");
2342
2343    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2344                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2345    InFlag = Chain.getValue(1);
2346  }
2347
2348
2349  // For tail calls lower the arguments to the 'real' stack slot.
2350  if (isTailCall) {
2351    // Force all the incoming stack arguments to be loaded from the stack
2352    // before any new outgoing arguments are stored to the stack, because the
2353    // outgoing stack slots may alias the incoming argument stack slots, and
2354    // the alias isn't otherwise explicit. This is slightly more conservative
2355    // than necessary, because it means that each store effectively depends
2356    // on every argument instead of just those arguments it would clobber.
2357    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2358
2359    SmallVector<SDValue, 8> MemOpChains2;
2360    SDValue FIN;
2361    int FI = 0;
2362    // Do not flag preceding copytoreg stuff together with the following stuff.
2363    InFlag = SDValue();
2364    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2365      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366        CCValAssign &VA = ArgLocs[i];
2367        if (VA.isRegLoc())
2368          continue;
2369        assert(VA.isMemLoc());
2370        SDValue Arg = OutVals[i];
2371        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2372        // Create frame index.
2373        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2374        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2375        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2376        FIN = DAG.getFrameIndex(FI, getPointerTy());
2377
2378        if (Flags.isByVal()) {
2379          // Copy relative to framepointer.
2380          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2381          if (StackPtr.getNode() == 0)
2382            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2383                                          getPointerTy());
2384          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2385
2386          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2387                                                           ArgChain,
2388                                                           Flags, DAG, dl));
2389        } else {
2390          // Store relative to framepointer.
2391          MemOpChains2.push_back(
2392            DAG.getStore(ArgChain, dl, Arg, FIN,
2393                         MachinePointerInfo::getFixedStack(FI),
2394                         false, false, 0));
2395        }
2396      }
2397    }
2398
2399    if (!MemOpChains2.empty())
2400      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2401                          &MemOpChains2[0], MemOpChains2.size());
2402
2403    // Copy arguments to their registers.
2404    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2405      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2406                               RegsToPass[i].second, InFlag);
2407      InFlag = Chain.getValue(1);
2408    }
2409    InFlag =SDValue();
2410
2411    // Store the return address to the appropriate stack slot.
2412    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2413                                     FPDiff, dl);
2414  }
2415
2416  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2417    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2418    // In the 64-bit large code model, we have to make all calls
2419    // through a register, since the call instruction's 32-bit
2420    // pc-relative offset may not be large enough to hold the whole
2421    // address.
2422  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2423    // If the callee is a GlobalAddress node (quite common, every direct call
2424    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2425    // it.
2426
2427    // We should use extra load for direct calls to dllimported functions in
2428    // non-JIT mode.
2429    const GlobalValue *GV = G->getGlobal();
2430    if (!GV->hasDLLImportLinkage()) {
2431      unsigned char OpFlags = 0;
2432      bool ExtraLoad = false;
2433      unsigned WrapperKind = ISD::DELETED_NODE;
2434
2435      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2436      // external symbols most go through the PLT in PIC mode.  If the symbol
2437      // has hidden or protected visibility, or if it is static or local, then
2438      // we don't need to use the PLT - we can directly call it.
2439      if (Subtarget->isTargetELF() &&
2440          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2441          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2442        OpFlags = X86II::MO_PLT;
2443      } else if (Subtarget->isPICStyleStubAny() &&
2444                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2445                 (!Subtarget->getTargetTriple().isMacOSX() ||
2446                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2447        // PC-relative references to external symbols should go through $stub,
2448        // unless we're building with the leopard linker or later, which
2449        // automatically synthesizes these stubs.
2450        OpFlags = X86II::MO_DARWIN_STUB;
2451      } else if (Subtarget->isPICStyleRIPRel() &&
2452                 isa<Function>(GV) &&
2453                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2454        // If the function is marked as non-lazy, generate an indirect call
2455        // which loads from the GOT directly. This avoids runtime overhead
2456        // at the cost of eager binding (and one extra byte of encoding).
2457        OpFlags = X86II::MO_GOTPCREL;
2458        WrapperKind = X86ISD::WrapperRIP;
2459        ExtraLoad = true;
2460      }
2461
2462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2463                                          G->getOffset(), OpFlags);
2464
2465      // Add a wrapper if needed.
2466      if (WrapperKind != ISD::DELETED_NODE)
2467        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2468      // Add extra indirection if needed.
2469      if (ExtraLoad)
2470        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2471                             MachinePointerInfo::getGOT(),
2472                             false, false, false, 0);
2473    }
2474  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    unsigned char OpFlags = 0;
2476
2477    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2478    // external symbols should go through the PLT.
2479    if (Subtarget->isTargetELF() &&
2480        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2481      OpFlags = X86II::MO_PLT;
2482    } else if (Subtarget->isPICStyleStubAny() &&
2483               (!Subtarget->getTargetTriple().isMacOSX() ||
2484                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2485      // PC-relative references to external symbols should go through $stub,
2486      // unless we're building with the leopard linker or later, which
2487      // automatically synthesizes these stubs.
2488      OpFlags = X86II::MO_DARWIN_STUB;
2489    }
2490
2491    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                         OpFlags);
2493  }
2494
2495  // Returns a chain & a flag for retval copy to use.
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497  SmallVector<SDValue, 8> Ops;
2498
2499  if (!IsSibcall && isTailCall) {
2500    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2501                           DAG.getIntPtrConstant(0, true), InFlag);
2502    InFlag = Chain.getValue(1);
2503  }
2504
2505  Ops.push_back(Chain);
2506  Ops.push_back(Callee);
2507
2508  if (isTailCall)
2509    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2510
2511  // Add argument registers to the end of the list so that they are known live
2512  // into the call.
2513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2515                                  RegsToPass[i].second.getValueType()));
2516
2517  // Add an implicit use GOT pointer in EBX.
2518  if (!isTailCall && Subtarget->isPICStyleGOT())
2519    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2520
2521  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2522  if (Is64Bit && isVarArg && !IsWin64)
2523    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2524
2525  // Add a register mask operand representing the call-preserved registers.
2526  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2527  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2528  assert(Mask && "Missing call preserved mask for calling convention");
2529  Ops.push_back(DAG.getRegisterMask(Mask));
2530
2531  if (InFlag.getNode())
2532    Ops.push_back(InFlag);
2533
2534  if (isTailCall) {
2535    // We used to do:
2536    //// If this is the first return lowered for this function, add the regs
2537    //// to the liveout set for the function.
2538    // This isn't right, although it's probably harmless on x86; liveouts
2539    // should be computed from returns not tail calls.  Consider a void
2540    // function making a tail call to a function returning int.
2541    return DAG.getNode(X86ISD::TC_RETURN, dl,
2542                       NodeTys, &Ops[0], Ops.size());
2543  }
2544
2545  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2546  InFlag = Chain.getValue(1);
2547
2548  // Create the CALLSEQ_END node.
2549  unsigned NumBytesForCalleeToPush;
2550  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2551                       getTargetMachine().Options.GuaranteedTailCallOpt))
2552    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2553  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2554           IsStructRet)
2555    // If this is a call to a struct-return function, the callee
2556    // pops the hidden struct pointer, so we have to push it back.
2557    // This is common for Darwin/X86, Linux & Mingw32 targets.
2558    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2559    NumBytesForCalleeToPush = 4;
2560  else
2561    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2562
2563  // Returns a flag for retval copy to use.
2564  if (!IsSibcall) {
2565    Chain = DAG.getCALLSEQ_END(Chain,
2566                               DAG.getIntPtrConstant(NumBytes, true),
2567                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2568                                                     true),
2569                               InFlag);
2570    InFlag = Chain.getValue(1);
2571  }
2572
2573  // Handle result values, copying them out of physregs into vregs that we
2574  // return.
2575  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2576                         Ins, dl, DAG, InVals);
2577}
2578
2579
2580//===----------------------------------------------------------------------===//
2581//                Fast Calling Convention (tail call) implementation
2582//===----------------------------------------------------------------------===//
2583
2584//  Like std call, callee cleans arguments, convention except that ECX is
2585//  reserved for storing the tail called function address. Only 2 registers are
2586//  free for argument passing (inreg). Tail call optimization is performed
2587//  provided:
2588//                * tailcallopt is enabled
2589//                * caller/callee are fastcc
2590//  On X86_64 architecture with GOT-style position independent code only local
2591//  (within module) calls are supported at the moment.
2592//  To keep the stack aligned according to platform abi the function
2593//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2594//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2595//  If a tail called function callee has more arguments than the caller the
2596//  caller needs to make sure that there is room to move the RETADDR to. This is
2597//  achieved by reserving an area the size of the argument delta right after the
2598//  original REtADDR, but before the saved framepointer or the spilled registers
2599//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2600//  stack layout:
2601//    arg1
2602//    arg2
2603//    RETADDR
2604//    [ new RETADDR
2605//      move area ]
2606//    (possible EBP)
2607//    ESI
2608//    EDI
2609//    local1 ..
2610
2611/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2612/// for a 16 byte align requirement.
2613unsigned
2614X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2615                                               SelectionDAG& DAG) const {
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  const TargetMachine &TM = MF.getTarget();
2618  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2619  unsigned StackAlignment = TFI.getStackAlignment();
2620  uint64_t AlignMask = StackAlignment - 1;
2621  int64_t Offset = StackSize;
2622  uint64_t SlotSize = TD->getPointerSize();
2623  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2624    // Number smaller than 12 so just add the difference.
2625    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2626  } else {
2627    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2628    Offset = ((~AlignMask) & Offset) + StackAlignment +
2629      (StackAlignment-SlotSize);
2630  }
2631  return Offset;
2632}
2633
2634/// MatchingStackOffset - Return true if the given stack call argument is
2635/// already available in the same position (relatively) of the caller's
2636/// incoming argument stack.
2637static
2638bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2639                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2640                         const X86InstrInfo *TII) {
2641  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2642  int FI = INT_MAX;
2643  if (Arg.getOpcode() == ISD::CopyFromReg) {
2644    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2645    if (!TargetRegisterInfo::isVirtualRegister(VR))
2646      return false;
2647    MachineInstr *Def = MRI->getVRegDef(VR);
2648    if (!Def)
2649      return false;
2650    if (!Flags.isByVal()) {
2651      if (!TII->isLoadFromStackSlot(Def, FI))
2652        return false;
2653    } else {
2654      unsigned Opcode = Def->getOpcode();
2655      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2656          Def->getOperand(1).isFI()) {
2657        FI = Def->getOperand(1).getIndex();
2658        Bytes = Flags.getByValSize();
2659      } else
2660        return false;
2661    }
2662  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2663    if (Flags.isByVal())
2664      // ByVal argument is passed in as a pointer but it's now being
2665      // dereferenced. e.g.
2666      // define @foo(%struct.X* %A) {
2667      //   tail call @bar(%struct.X* byval %A)
2668      // }
2669      return false;
2670    SDValue Ptr = Ld->getBasePtr();
2671    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2672    if (!FINode)
2673      return false;
2674    FI = FINode->getIndex();
2675  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2676    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2677    FI = FINode->getIndex();
2678    Bytes = Flags.getByValSize();
2679  } else
2680    return false;
2681
2682  assert(FI != INT_MAX);
2683  if (!MFI->isFixedObjectIndex(FI))
2684    return false;
2685  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2686}
2687
2688/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2689/// for tail call optimization. Targets which want to do tail call
2690/// optimization should implement this function.
2691bool
2692X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2693                                                     CallingConv::ID CalleeCC,
2694                                                     bool isVarArg,
2695                                                     bool isCalleeStructRet,
2696                                                     bool isCallerStructRet,
2697                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                    const SmallVectorImpl<SDValue> &OutVals,
2699                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2700                                                     SelectionDAG& DAG) const {
2701  if (!IsTailCallConvention(CalleeCC) &&
2702      CalleeCC != CallingConv::C)
2703    return false;
2704
2705  // If -tailcallopt is specified, make fastcc functions tail-callable.
2706  const MachineFunction &MF = DAG.getMachineFunction();
2707  const Function *CallerF = DAG.getMachineFunction().getFunction();
2708  CallingConv::ID CallerCC = CallerF->getCallingConv();
2709  bool CCMatch = CallerCC == CalleeCC;
2710
2711  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2712    if (IsTailCallConvention(CalleeCC) && CCMatch)
2713      return true;
2714    return false;
2715  }
2716
2717  // Look for obvious safe cases to perform tail call optimization that do not
2718  // require ABI changes. This is what gcc calls sibcall.
2719
2720  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2721  // emit a special epilogue.
2722  if (RegInfo->needsStackRealignment(MF))
2723    return false;
2724
2725  // Also avoid sibcall optimization if either caller or callee uses struct
2726  // return semantics.
2727  if (isCalleeStructRet || isCallerStructRet)
2728    return false;
2729
2730  // An stdcall caller is expected to clean up its arguments; the callee
2731  // isn't going to do that.
2732  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2733    return false;
2734
2735  // Do not sibcall optimize vararg calls unless all arguments are passed via
2736  // registers.
2737  if (isVarArg && !Outs.empty()) {
2738
2739    // Optimizing for varargs on Win64 is unlikely to be safe without
2740    // additional testing.
2741    if (Subtarget->isTargetWin64())
2742      return false;
2743
2744    SmallVector<CCValAssign, 16> ArgLocs;
2745    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2746                   getTargetMachine(), ArgLocs, *DAG.getContext());
2747
2748    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2749    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2750      if (!ArgLocs[i].isRegLoc())
2751        return false;
2752  }
2753
2754  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2755  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2756  // this into a sibcall.
2757  bool Unused = false;
2758  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759    if (!Ins[i].Used) {
2760      Unused = true;
2761      break;
2762    }
2763  }
2764  if (Unused) {
2765    SmallVector<CCValAssign, 16> RVLocs;
2766    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2767                   getTargetMachine(), RVLocs, *DAG.getContext());
2768    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2769    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2770      CCValAssign &VA = RVLocs[i];
2771      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772        return false;
2773    }
2774  }
2775
2776  // If the calling conventions do not match, then we'd better make sure the
2777  // results are returned in the same way as what the caller expects.
2778  if (!CCMatch) {
2779    SmallVector<CCValAssign, 16> RVLocs1;
2780    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2781                    getTargetMachine(), RVLocs1, *DAG.getContext());
2782    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2783
2784    SmallVector<CCValAssign, 16> RVLocs2;
2785    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2786                    getTargetMachine(), RVLocs2, *DAG.getContext());
2787    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2788
2789    if (RVLocs1.size() != RVLocs2.size())
2790      return false;
2791    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2792      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2793        return false;
2794      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2795        return false;
2796      if (RVLocs1[i].isRegLoc()) {
2797        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2798          return false;
2799      } else {
2800        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2801          return false;
2802      }
2803    }
2804  }
2805
2806  // If the callee takes no arguments then go on to check the results of the
2807  // call.
2808  if (!Outs.empty()) {
2809    // Check if stack adjustment is needed. For now, do not do this if any
2810    // argument is passed on the stack.
2811    SmallVector<CCValAssign, 16> ArgLocs;
2812    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2813                   getTargetMachine(), ArgLocs, *DAG.getContext());
2814
2815    // Allocate shadow area for Win64
2816    if (Subtarget->isTargetWin64()) {
2817      CCInfo.AllocateStack(32, 8);
2818    }
2819
2820    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2821    if (CCInfo.getNextStackOffset()) {
2822      MachineFunction &MF = DAG.getMachineFunction();
2823      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2824        return false;
2825
2826      // Check if the arguments are already laid out in the right way as
2827      // the caller's fixed stack objects.
2828      MachineFrameInfo *MFI = MF.getFrameInfo();
2829      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2830      const X86InstrInfo *TII =
2831        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2832      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2833        CCValAssign &VA = ArgLocs[i];
2834        SDValue Arg = OutVals[i];
2835        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2836        if (VA.getLocInfo() == CCValAssign::Indirect)
2837          return false;
2838        if (!VA.isRegLoc()) {
2839          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840                                   MFI, MRI, TII))
2841            return false;
2842        }
2843      }
2844    }
2845
2846    // If the tailcall address may be in a register, then make sure it's
2847    // possible to register allocate for it. In 32-bit, the call address can
2848    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2849    // callee-saved registers are restored. These happen to be the same
2850    // registers used to pass 'inreg' arguments so watch out for those.
2851    if (!Subtarget->is64Bit() &&
2852        !isa<GlobalAddressSDNode>(Callee) &&
2853        !isa<ExternalSymbolSDNode>(Callee)) {
2854      unsigned NumInRegs = 0;
2855      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2856        CCValAssign &VA = ArgLocs[i];
2857        if (!VA.isRegLoc())
2858          continue;
2859        unsigned Reg = VA.getLocReg();
2860        switch (Reg) {
2861        default: break;
2862        case X86::EAX: case X86::EDX: case X86::ECX:
2863          if (++NumInRegs == 3)
2864            return false;
2865          break;
2866        }
2867      }
2868    }
2869  }
2870
2871  return true;
2872}
2873
2874FastISel *
2875X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2876  return X86::createFastISel(funcInfo);
2877}
2878
2879
2880//===----------------------------------------------------------------------===//
2881//                           Other Lowering Hooks
2882//===----------------------------------------------------------------------===//
2883
2884static bool MayFoldLoad(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2886}
2887
2888static bool MayFoldIntoStore(SDValue Op) {
2889  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2890}
2891
2892static bool isTargetShuffle(unsigned Opcode) {
2893  switch(Opcode) {
2894  default: return false;
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::SHUFP:
2899  case X86ISD::PALIGN:
2900  case X86ISD::MOVLHPS:
2901  case X86ISD::MOVLHPD:
2902  case X86ISD::MOVHLPS:
2903  case X86ISD::MOVLPS:
2904  case X86ISD::MOVLPD:
2905  case X86ISD::MOVSHDUP:
2906  case X86ISD::MOVSLDUP:
2907  case X86ISD::MOVDDUP:
2908  case X86ISD::MOVSS:
2909  case X86ISD::MOVSD:
2910  case X86ISD::UNPCKL:
2911  case X86ISD::UNPCKH:
2912  case X86ISD::VPERMILP:
2913  case X86ISD::VPERM2X128:
2914    return true;
2915  }
2916}
2917
2918static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2919                                    SDValue V1, SelectionDAG &DAG) {
2920  switch(Opc) {
2921  default: llvm_unreachable("Unknown x86 shuffle node");
2922  case X86ISD::MOVSHDUP:
2923  case X86ISD::MOVSLDUP:
2924  case X86ISD::MOVDDUP:
2925    return DAG.getNode(Opc, dl, VT, V1);
2926  }
2927}
2928
2929static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2930                                    SDValue V1, unsigned TargetMask,
2931                                    SelectionDAG &DAG) {
2932  switch(Opc) {
2933  default: llvm_unreachable("Unknown x86 shuffle node");
2934  case X86ISD::PSHUFD:
2935  case X86ISD::PSHUFHW:
2936  case X86ISD::PSHUFLW:
2937  case X86ISD::VPERMILP:
2938  case X86ISD::VPERMI:
2939    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2940  }
2941}
2942
2943static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2944                                    SDValue V1, SDValue V2, unsigned TargetMask,
2945                                    SelectionDAG &DAG) {
2946  switch(Opc) {
2947  default: llvm_unreachable("Unknown x86 shuffle node");
2948  case X86ISD::PALIGN:
2949  case X86ISD::SHUFP:
2950  case X86ISD::VPERM2X128:
2951    return DAG.getNode(Opc, dl, VT, V1, V2,
2952                       DAG.getConstant(TargetMask, MVT::i8));
2953  }
2954}
2955
2956static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2957                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2958  switch(Opc) {
2959  default: llvm_unreachable("Unknown x86 shuffle node");
2960  case X86ISD::MOVLHPS:
2961  case X86ISD::MOVLHPD:
2962  case X86ISD::MOVHLPS:
2963  case X86ISD::MOVLPS:
2964  case X86ISD::MOVLPD:
2965  case X86ISD::MOVSS:
2966  case X86ISD::MOVSD:
2967  case X86ISD::UNPCKL:
2968  case X86ISD::UNPCKH:
2969    return DAG.getNode(Opc, dl, VT, V1, V2);
2970  }
2971}
2972
2973SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2974  MachineFunction &MF = DAG.getMachineFunction();
2975  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2976  int ReturnAddrIndex = FuncInfo->getRAIndex();
2977
2978  if (ReturnAddrIndex == 0) {
2979    // Set up a frame object for the return address.
2980    uint64_t SlotSize = TD->getPointerSize();
2981    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2982                                                           false);
2983    FuncInfo->setRAIndex(ReturnAddrIndex);
2984  }
2985
2986  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2987}
2988
2989
2990bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2991                                       bool hasSymbolicDisplacement) {
2992  // Offset should fit into 32 bit immediate field.
2993  if (!isInt<32>(Offset))
2994    return false;
2995
2996  // If we don't have a symbolic displacement - we don't have any extra
2997  // restrictions.
2998  if (!hasSymbolicDisplacement)
2999    return true;
3000
3001  // FIXME: Some tweaks might be needed for medium code model.
3002  if (M != CodeModel::Small && M != CodeModel::Kernel)
3003    return false;
3004
3005  // For small code model we assume that latest object is 16MB before end of 31
3006  // bits boundary. We may also accept pretty large negative constants knowing
3007  // that all objects are in the positive half of address space.
3008  if (M == CodeModel::Small && Offset < 16*1024*1024)
3009    return true;
3010
3011  // For kernel code model we know that all object resist in the negative half
3012  // of 32bits address space. We may not accept negative offsets, since they may
3013  // be just off and we may accept pretty large positive ones.
3014  if (M == CodeModel::Kernel && Offset > 0)
3015    return true;
3016
3017  return false;
3018}
3019
3020/// isCalleePop - Determines whether the callee is required to pop its
3021/// own arguments. Callee pop is necessary to support tail calls.
3022bool X86::isCalleePop(CallingConv::ID CallingConv,
3023                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3024  if (IsVarArg)
3025    return false;
3026
3027  switch (CallingConv) {
3028  default:
3029    return false;
3030  case CallingConv::X86_StdCall:
3031    return !is64Bit;
3032  case CallingConv::X86_FastCall:
3033    return !is64Bit;
3034  case CallingConv::X86_ThisCall:
3035    return !is64Bit;
3036  case CallingConv::Fast:
3037    return TailCallOpt;
3038  case CallingConv::GHC:
3039    return TailCallOpt;
3040  }
3041}
3042
3043/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3044/// specific condition code, returning the condition code and the LHS/RHS of the
3045/// comparison to make.
3046static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3047                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3048  if (!isFP) {
3049    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3050      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3051        // X > -1   -> X == 0, jump !sign.
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_NS;
3054      }
3055      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3056        // X < 0   -> X == 0, jump on sign.
3057        return X86::COND_S;
3058      }
3059      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3060        // X < 1   -> X <= 0
3061        RHS = DAG.getConstant(0, RHS.getValueType());
3062        return X86::COND_LE;
3063      }
3064    }
3065
3066    switch (SetCCOpcode) {
3067    default: llvm_unreachable("Invalid integer condition!");
3068    case ISD::SETEQ:  return X86::COND_E;
3069    case ISD::SETGT:  return X86::COND_G;
3070    case ISD::SETGE:  return X86::COND_GE;
3071    case ISD::SETLT:  return X86::COND_L;
3072    case ISD::SETLE:  return X86::COND_LE;
3073    case ISD::SETNE:  return X86::COND_NE;
3074    case ISD::SETULT: return X86::COND_B;
3075    case ISD::SETUGT: return X86::COND_A;
3076    case ISD::SETULE: return X86::COND_BE;
3077    case ISD::SETUGE: return X86::COND_AE;
3078    }
3079  }
3080
3081  // First determine if it is required or is profitable to flip the operands.
3082
3083  // If LHS is a foldable load, but RHS is not, flip the condition.
3084  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3085      !ISD::isNON_EXTLoad(RHS.getNode())) {
3086    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3087    std::swap(LHS, RHS);
3088  }
3089
3090  switch (SetCCOpcode) {
3091  default: break;
3092  case ISD::SETOLT:
3093  case ISD::SETOLE:
3094  case ISD::SETUGT:
3095  case ISD::SETUGE:
3096    std::swap(LHS, RHS);
3097    break;
3098  }
3099
3100  // On a floating point condition, the flags are set as follows:
3101  // ZF  PF  CF   op
3102  //  0 | 0 | 0 | X > Y
3103  //  0 | 0 | 1 | X < Y
3104  //  1 | 0 | 0 | X == Y
3105  //  1 | 1 | 1 | unordered
3106  switch (SetCCOpcode) {
3107  default: llvm_unreachable("Condcode should be pre-legalized away");
3108  case ISD::SETUEQ:
3109  case ISD::SETEQ:   return X86::COND_E;
3110  case ISD::SETOLT:              // flipped
3111  case ISD::SETOGT:
3112  case ISD::SETGT:   return X86::COND_A;
3113  case ISD::SETOLE:              // flipped
3114  case ISD::SETOGE:
3115  case ISD::SETGE:   return X86::COND_AE;
3116  case ISD::SETUGT:              // flipped
3117  case ISD::SETULT:
3118  case ISD::SETLT:   return X86::COND_B;
3119  case ISD::SETUGE:              // flipped
3120  case ISD::SETULE:
3121  case ISD::SETLE:   return X86::COND_BE;
3122  case ISD::SETONE:
3123  case ISD::SETNE:   return X86::COND_NE;
3124  case ISD::SETUO:   return X86::COND_P;
3125  case ISD::SETO:    return X86::COND_NP;
3126  case ISD::SETOEQ:
3127  case ISD::SETUNE:  return X86::COND_INVALID;
3128  }
3129}
3130
3131/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3132/// code. Current x86 isa includes the following FP cmov instructions:
3133/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3134static bool hasFPCMov(unsigned X86CC) {
3135  switch (X86CC) {
3136  default:
3137    return false;
3138  case X86::COND_B:
3139  case X86::COND_BE:
3140  case X86::COND_E:
3141  case X86::COND_P:
3142  case X86::COND_A:
3143  case X86::COND_AE:
3144  case X86::COND_NE:
3145  case X86::COND_NP:
3146    return true;
3147  }
3148}
3149
3150/// isFPImmLegal - Returns true if the target can instruction select the
3151/// specified FP immediate natively. If false, the legalizer will
3152/// materialize the FP immediate as a load from a constant pool.
3153bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3154  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3155    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3156      return true;
3157  }
3158  return false;
3159}
3160
3161/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3162/// the specified range (L, H].
3163static bool isUndefOrInRange(int Val, int Low, int Hi) {
3164  return (Val < 0) || (Val >= Low && Val < Hi);
3165}
3166
3167/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3168/// specified value.
3169static bool isUndefOrEqual(int Val, int CmpVal) {
3170  if (Val < 0 || Val == CmpVal)
3171    return true;
3172  return false;
3173}
3174
3175/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3176/// from position Pos and ending in Pos+Size, falls within the specified
3177/// sequential range (L, L+Pos]. or is undef.
3178static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3179                                       int Pos, int Size, int Low) {
3180  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3181    if (!isUndefOrEqual(Mask[i], Low))
3182      return false;
3183  return true;
3184}
3185
3186/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3187/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3188/// the second operand.
3189static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3190  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3191    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3192  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3193    return (Mask[0] < 2 && Mask[1] < 2);
3194  return false;
3195}
3196
3197/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3198/// is suitable for input to PSHUFHW.
3199static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3200  if (VT != MVT::v8i16)
3201    return false;
3202
3203  // Lower quadword copied in order or undef.
3204  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3205    return false;
3206
3207  // Upper quadword shuffled.
3208  for (unsigned i = 4; i != 8; ++i)
3209    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3210      return false;
3211
3212  return true;
3213}
3214
3215/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3216/// is suitable for input to PSHUFLW.
3217static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3218  if (VT != MVT::v8i16)
3219    return false;
3220
3221  // Upper quadword copied in order.
3222  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3223    return false;
3224
3225  // Lower quadword shuffled.
3226  for (unsigned i = 0; i != 4; ++i)
3227    if (Mask[i] >= 4)
3228      return false;
3229
3230  return true;
3231}
3232
3233/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3234/// is suitable for input to PALIGNR.
3235static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3236                          const X86Subtarget *Subtarget) {
3237  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3238      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3239    return false;
3240
3241  unsigned NumElts = VT.getVectorNumElements();
3242  unsigned NumLanes = VT.getSizeInBits()/128;
3243  unsigned NumLaneElts = NumElts/NumLanes;
3244
3245  // Do not handle 64-bit element shuffles with palignr.
3246  if (NumLaneElts == 2)
3247    return false;
3248
3249  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3250    unsigned i;
3251    for (i = 0; i != NumLaneElts; ++i) {
3252      if (Mask[i+l] >= 0)
3253        break;
3254    }
3255
3256    // Lane is all undef, go to next lane
3257    if (i == NumLaneElts)
3258      continue;
3259
3260    int Start = Mask[i+l];
3261
3262    // Make sure its in this lane in one of the sources
3263    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3264        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3265      return false;
3266
3267    // If not lane 0, then we must match lane 0
3268    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3269      return false;
3270
3271    // Correct second source to be contiguous with first source
3272    if (Start >= (int)NumElts)
3273      Start -= NumElts - NumLaneElts;
3274
3275    // Make sure we're shifting in the right direction.
3276    if (Start <= (int)(i+l))
3277      return false;
3278
3279    Start -= i;
3280
3281    // Check the rest of the elements to see if they are consecutive.
3282    for (++i; i != NumLaneElts; ++i) {
3283      int Idx = Mask[i+l];
3284
3285      // Make sure its in this lane
3286      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3287          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3288        return false;
3289
3290      // If not lane 0, then we must match lane 0
3291      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3292        return false;
3293
3294      if (Idx >= (int)NumElts)
3295        Idx -= NumElts - NumLaneElts;
3296
3297      if (!isUndefOrEqual(Idx, Start+i))
3298        return false;
3299
3300    }
3301  }
3302
3303  return true;
3304}
3305
3306/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3307/// the two vector operands have swapped position.
3308static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3309                                     unsigned NumElems) {
3310  for (unsigned i = 0; i != NumElems; ++i) {
3311    int idx = Mask[i];
3312    if (idx < 0)
3313      continue;
3314    else if (idx < (int)NumElems)
3315      Mask[i] = idx + NumElems;
3316    else
3317      Mask[i] = idx - NumElems;
3318  }
3319}
3320
3321/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3322/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3323/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3324/// reverse of what x86 shuffles want.
3325static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3326                        bool Commuted = false) {
3327  if (!HasAVX && VT.getSizeInBits() == 256)
3328    return false;
3329
3330  unsigned NumElems = VT.getVectorNumElements();
3331  unsigned NumLanes = VT.getSizeInBits()/128;
3332  unsigned NumLaneElems = NumElems/NumLanes;
3333
3334  if (NumLaneElems != 2 && NumLaneElems != 4)
3335    return false;
3336
3337  // VSHUFPSY divides the resulting vector into 4 chunks.
3338  // The sources are also splitted into 4 chunks, and each destination
3339  // chunk must come from a different source chunk.
3340  //
3341  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3342  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3343  //
3344  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3345  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3346  //
3347  // VSHUFPDY divides the resulting vector into 4 chunks.
3348  // The sources are also splitted into 4 chunks, and each destination
3349  // chunk must come from a different source chunk.
3350  //
3351  //  SRC1 =>      X3       X2       X1       X0
3352  //  SRC2 =>      Y3       Y2       Y1       Y0
3353  //
3354  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3355  //
3356  unsigned HalfLaneElems = NumLaneElems/2;
3357  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3358    for (unsigned i = 0; i != NumLaneElems; ++i) {
3359      int Idx = Mask[i+l];
3360      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3361      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3362        return false;
3363      // For VSHUFPSY, the mask of the second half must be the same as the
3364      // first but with the appropriate offsets. This works in the same way as
3365      // VPERMILPS works with masks.
3366      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3367        continue;
3368      if (!isUndefOrEqual(Idx, Mask[i]+l))
3369        return false;
3370    }
3371  }
3372
3373  return true;
3374}
3375
3376/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3377/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3378static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3379  unsigned NumElems = VT.getVectorNumElements();
3380
3381  if (VT.getSizeInBits() != 128)
3382    return false;
3383
3384  if (NumElems != 4)
3385    return false;
3386
3387  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3388  return isUndefOrEqual(Mask[0], 6) &&
3389         isUndefOrEqual(Mask[1], 7) &&
3390         isUndefOrEqual(Mask[2], 2) &&
3391         isUndefOrEqual(Mask[3], 3);
3392}
3393
3394/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3395/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3396/// <2, 3, 2, 3>
3397static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3398  unsigned NumElems = VT.getVectorNumElements();
3399
3400  if (VT.getSizeInBits() != 128)
3401    return false;
3402
3403  if (NumElems != 4)
3404    return false;
3405
3406  return isUndefOrEqual(Mask[0], 2) &&
3407         isUndefOrEqual(Mask[1], 3) &&
3408         isUndefOrEqual(Mask[2], 2) &&
3409         isUndefOrEqual(Mask[3], 3);
3410}
3411
3412/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3413/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3414static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3415  if (VT.getSizeInBits() != 128)
3416    return false;
3417
3418  unsigned NumElems = VT.getVectorNumElements();
3419
3420  if (NumElems != 2 && NumElems != 4)
3421    return false;
3422
3423  for (unsigned i = 0; i != NumElems/2; ++i)
3424    if (!isUndefOrEqual(Mask[i], i + NumElems))
3425      return false;
3426
3427  for (unsigned i = NumElems/2; i != NumElems; ++i)
3428    if (!isUndefOrEqual(Mask[i], i))
3429      return false;
3430
3431  return true;
3432}
3433
3434/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3435/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3436static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3437  unsigned NumElems = VT.getVectorNumElements();
3438
3439  if ((NumElems != 2 && NumElems != 4)
3440      || VT.getSizeInBits() > 128)
3441    return false;
3442
3443  for (unsigned i = 0; i != NumElems/2; ++i)
3444    if (!isUndefOrEqual(Mask[i], i))
3445      return false;
3446
3447  for (unsigned i = 0; i != NumElems/2; ++i)
3448    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3449      return false;
3450
3451  return true;
3452}
3453
3454/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3455/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3456static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3457                         bool HasAVX2, bool V2IsSplat = false) {
3458  unsigned NumElts = VT.getVectorNumElements();
3459
3460  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3461         "Unsupported vector type for unpckh");
3462
3463  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3464      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3465    return false;
3466
3467  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3468  // independently on 128-bit lanes.
3469  unsigned NumLanes = VT.getSizeInBits()/128;
3470  unsigned NumLaneElts = NumElts/NumLanes;
3471
3472  for (unsigned l = 0; l != NumLanes; ++l) {
3473    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3474         i != (l+1)*NumLaneElts;
3475         i += 2, ++j) {
3476      int BitI  = Mask[i];
3477      int BitI1 = Mask[i+1];
3478      if (!isUndefOrEqual(BitI, j))
3479        return false;
3480      if (V2IsSplat) {
3481        if (!isUndefOrEqual(BitI1, NumElts))
3482          return false;
3483      } else {
3484        if (!isUndefOrEqual(BitI1, j + NumElts))
3485          return false;
3486      }
3487    }
3488  }
3489
3490  return true;
3491}
3492
3493/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3494/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3495static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3496                         bool HasAVX2, bool V2IsSplat = false) {
3497  unsigned NumElts = VT.getVectorNumElements();
3498
3499  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3500         "Unsupported vector type for unpckh");
3501
3502  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3503      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3504    return false;
3505
3506  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3507  // independently on 128-bit lanes.
3508  unsigned NumLanes = VT.getSizeInBits()/128;
3509  unsigned NumLaneElts = NumElts/NumLanes;
3510
3511  for (unsigned l = 0; l != NumLanes; ++l) {
3512    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3513         i != (l+1)*NumLaneElts; i += 2, ++j) {
3514      int BitI  = Mask[i];
3515      int BitI1 = Mask[i+1];
3516      if (!isUndefOrEqual(BitI, j))
3517        return false;
3518      if (V2IsSplat) {
3519        if (isUndefOrEqual(BitI1, NumElts))
3520          return false;
3521      } else {
3522        if (!isUndefOrEqual(BitI1, j+NumElts))
3523          return false;
3524      }
3525    }
3526  }
3527  return true;
3528}
3529
3530/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3531/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3532/// <0, 0, 1, 1>
3533static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3534                                  bool HasAVX2) {
3535  unsigned NumElts = VT.getVectorNumElements();
3536
3537  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3538         "Unsupported vector type for unpckh");
3539
3540  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3541      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3542    return false;
3543
3544  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3545  // FIXME: Need a better way to get rid of this, there's no latency difference
3546  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3547  // the former later. We should also remove the "_undef" special mask.
3548  if (NumElts == 4 && VT.getSizeInBits() == 256)
3549    return false;
3550
3551  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3552  // independently on 128-bit lanes.
3553  unsigned NumLanes = VT.getSizeInBits()/128;
3554  unsigned NumLaneElts = NumElts/NumLanes;
3555
3556  for (unsigned l = 0; l != NumLanes; ++l) {
3557    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3558         i != (l+1)*NumLaneElts;
3559         i += 2, ++j) {
3560      int BitI  = Mask[i];
3561      int BitI1 = Mask[i+1];
3562
3563      if (!isUndefOrEqual(BitI, j))
3564        return false;
3565      if (!isUndefOrEqual(BitI1, j))
3566        return false;
3567    }
3568  }
3569
3570  return true;
3571}
3572
3573/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3574/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3575/// <2, 2, 3, 3>
3576static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3577  unsigned NumElts = VT.getVectorNumElements();
3578
3579  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3580         "Unsupported vector type for unpckh");
3581
3582  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3583      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3584    return false;
3585
3586  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3587  // independently on 128-bit lanes.
3588  unsigned NumLanes = VT.getSizeInBits()/128;
3589  unsigned NumLaneElts = NumElts/NumLanes;
3590
3591  for (unsigned l = 0; l != NumLanes; ++l) {
3592    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3593         i != (l+1)*NumLaneElts; i += 2, ++j) {
3594      int BitI  = Mask[i];
3595      int BitI1 = Mask[i+1];
3596      if (!isUndefOrEqual(BitI, j))
3597        return false;
3598      if (!isUndefOrEqual(BitI1, j))
3599        return false;
3600    }
3601  }
3602  return true;
3603}
3604
3605/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3606/// specifies a shuffle of elements that is suitable for input to MOVSS,
3607/// MOVSD, and MOVD, i.e. setting the lowest element.
3608static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3609  if (VT.getVectorElementType().getSizeInBits() < 32)
3610    return false;
3611  if (VT.getSizeInBits() == 256)
3612    return false;
3613
3614  unsigned NumElts = VT.getVectorNumElements();
3615
3616  if (!isUndefOrEqual(Mask[0], NumElts))
3617    return false;
3618
3619  for (unsigned i = 1; i != NumElts; ++i)
3620    if (!isUndefOrEqual(Mask[i], i))
3621      return false;
3622
3623  return true;
3624}
3625
3626/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3627/// as permutations between 128-bit chunks or halves. As an example: this
3628/// shuffle bellow:
3629///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3630/// The first half comes from the second half of V1 and the second half from the
3631/// the second half of V2.
3632static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3633  if (!HasAVX || VT.getSizeInBits() != 256)
3634    return false;
3635
3636  // The shuffle result is divided into half A and half B. In total the two
3637  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3638  // B must come from C, D, E or F.
3639  unsigned HalfSize = VT.getVectorNumElements()/2;
3640  bool MatchA = false, MatchB = false;
3641
3642  // Check if A comes from one of C, D, E, F.
3643  for (unsigned Half = 0; Half != 4; ++Half) {
3644    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3645      MatchA = true;
3646      break;
3647    }
3648  }
3649
3650  // Check if B comes from one of C, D, E, F.
3651  for (unsigned Half = 0; Half != 4; ++Half) {
3652    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3653      MatchB = true;
3654      break;
3655    }
3656  }
3657
3658  return MatchA && MatchB;
3659}
3660
3661/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3662/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3663static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3664  EVT VT = SVOp->getValueType(0);
3665
3666  unsigned HalfSize = VT.getVectorNumElements()/2;
3667
3668  unsigned FstHalf = 0, SndHalf = 0;
3669  for (unsigned i = 0; i < HalfSize; ++i) {
3670    if (SVOp->getMaskElt(i) > 0) {
3671      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3672      break;
3673    }
3674  }
3675  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3676    if (SVOp->getMaskElt(i) > 0) {
3677      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3678      break;
3679    }
3680  }
3681
3682  return (FstHalf | (SndHalf << 4));
3683}
3684
3685/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3686/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3687/// Note that VPERMIL mask matching is different depending whether theunderlying
3688/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3689/// to the same elements of the low, but to the higher half of the source.
3690/// In VPERMILPD the two lanes could be shuffled independently of each other
3691/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3692static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3693  if (!HasAVX)
3694    return false;
3695
3696  unsigned NumElts = VT.getVectorNumElements();
3697  // Only match 256-bit with 32/64-bit types
3698  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3699    return false;
3700
3701  unsigned NumLanes = VT.getSizeInBits()/128;
3702  unsigned LaneSize = NumElts/NumLanes;
3703  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3704    for (unsigned i = 0; i != LaneSize; ++i) {
3705      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3706        return false;
3707      if (NumElts != 8 || l == 0)
3708        continue;
3709      // VPERMILPS handling
3710      if (Mask[i] < 0)
3711        continue;
3712      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3713        return false;
3714    }
3715  }
3716
3717  return true;
3718}
3719
3720/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3721/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3722/// element of vector 2 and the other elements to come from vector 1 in order.
3723static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3724                               bool V2IsSplat = false, bool V2IsUndef = false) {
3725  unsigned NumOps = VT.getVectorNumElements();
3726  if (VT.getSizeInBits() == 256)
3727    return false;
3728  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3729    return false;
3730
3731  if (!isUndefOrEqual(Mask[0], 0))
3732    return false;
3733
3734  for (unsigned i = 1; i != NumOps; ++i)
3735    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3736          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3737          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3738      return false;
3739
3740  return true;
3741}
3742
3743/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3744/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3745/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3746static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3747                           const X86Subtarget *Subtarget) {
3748  if (!Subtarget->hasSSE3())
3749    return false;
3750
3751  unsigned NumElems = VT.getVectorNumElements();
3752
3753  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3754      (VT.getSizeInBits() == 256 && NumElems != 8))
3755    return false;
3756
3757  // "i+1" is the value the indexed mask element must have
3758  for (unsigned i = 0; i != NumElems; i += 2)
3759    if (!isUndefOrEqual(Mask[i], i+1) ||
3760        !isUndefOrEqual(Mask[i+1], i+1))
3761      return false;
3762
3763  return true;
3764}
3765
3766/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3767/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3768/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3769static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3770                           const X86Subtarget *Subtarget) {
3771  if (!Subtarget->hasSSE3())
3772    return false;
3773
3774  unsigned NumElems = VT.getVectorNumElements();
3775
3776  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3777      (VT.getSizeInBits() == 256 && NumElems != 8))
3778    return false;
3779
3780  // "i" is the value the indexed mask element must have
3781  for (unsigned i = 0; i != NumElems; i += 2)
3782    if (!isUndefOrEqual(Mask[i], i) ||
3783        !isUndefOrEqual(Mask[i+1], i))
3784      return false;
3785
3786  return true;
3787}
3788
3789/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3790/// specifies a shuffle of elements that is suitable for input to 256-bit
3791/// version of MOVDDUP.
3792static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3793  unsigned NumElts = VT.getVectorNumElements();
3794
3795  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3796    return false;
3797
3798  for (unsigned i = 0; i != NumElts/2; ++i)
3799    if (!isUndefOrEqual(Mask[i], 0))
3800      return false;
3801  for (unsigned i = NumElts/2; i != NumElts; ++i)
3802    if (!isUndefOrEqual(Mask[i], NumElts/2))
3803      return false;
3804  return true;
3805}
3806
3807/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3808/// specifies a shuffle of elements that is suitable for input to 128-bit
3809/// version of MOVDDUP.
3810static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3811  if (VT.getSizeInBits() != 128)
3812    return false;
3813
3814  unsigned e = VT.getVectorNumElements() / 2;
3815  for (unsigned i = 0; i != e; ++i)
3816    if (!isUndefOrEqual(Mask[i], i))
3817      return false;
3818  for (unsigned i = 0; i != e; ++i)
3819    if (!isUndefOrEqual(Mask[e+i], i))
3820      return false;
3821  return true;
3822}
3823
3824/// isVEXTRACTF128Index - Return true if the specified
3825/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3826/// suitable for input to VEXTRACTF128.
3827bool X86::isVEXTRACTF128Index(SDNode *N) {
3828  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3829    return false;
3830
3831  // The index should be aligned on a 128-bit boundary.
3832  uint64_t Index =
3833    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3834
3835  unsigned VL = N->getValueType(0).getVectorNumElements();
3836  unsigned VBits = N->getValueType(0).getSizeInBits();
3837  unsigned ElSize = VBits / VL;
3838  bool Result = (Index * ElSize) % 128 == 0;
3839
3840  return Result;
3841}
3842
3843/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3844/// operand specifies a subvector insert that is suitable for input to
3845/// VINSERTF128.
3846bool X86::isVINSERTF128Index(SDNode *N) {
3847  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3848    return false;
3849
3850  // The index should be aligned on a 128-bit boundary.
3851  uint64_t Index =
3852    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3853
3854  unsigned VL = N->getValueType(0).getVectorNumElements();
3855  unsigned VBits = N->getValueType(0).getSizeInBits();
3856  unsigned ElSize = VBits / VL;
3857  bool Result = (Index * ElSize) % 128 == 0;
3858
3859  return Result;
3860}
3861
3862/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3863/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3864/// Handles 128-bit and 256-bit.
3865static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3866  EVT VT = N->getValueType(0);
3867
3868  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3869         "Unsupported vector type for PSHUF/SHUFP");
3870
3871  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3872  // independently on 128-bit lanes.
3873  unsigned NumElts = VT.getVectorNumElements();
3874  unsigned NumLanes = VT.getSizeInBits()/128;
3875  unsigned NumLaneElts = NumElts/NumLanes;
3876
3877  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3878         "Only supports 2 or 4 elements per lane");
3879
3880  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3881  unsigned Mask = 0;
3882  for (unsigned i = 0; i != NumElts; ++i) {
3883    int Elt = N->getMaskElt(i);
3884    if (Elt < 0) continue;
3885    Elt %= NumLaneElts;
3886    unsigned ShAmt = i << Shift;
3887    if (ShAmt >= 8) ShAmt -= 8;
3888    Mask |= Elt << ShAmt;
3889  }
3890
3891  return Mask;
3892}
3893
3894/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3895/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3896static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3897  unsigned Mask = 0;
3898  // 8 nodes, but we only care about the last 4.
3899  for (unsigned i = 7; i >= 4; --i) {
3900    int Val = N->getMaskElt(i);
3901    if (Val >= 0)
3902      Mask |= (Val - 4);
3903    if (i != 4)
3904      Mask <<= 2;
3905  }
3906  return Mask;
3907}
3908
3909/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3910/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3911static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3912  unsigned Mask = 0;
3913  // 8 nodes, but we only care about the first 4.
3914  for (int i = 3; i >= 0; --i) {
3915    int Val = N->getMaskElt(i);
3916    if (Val >= 0)
3917      Mask |= Val;
3918    if (i != 0)
3919      Mask <<= 2;
3920  }
3921  return Mask;
3922}
3923
3924/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3925/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3926static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3927  EVT VT = SVOp->getValueType(0);
3928  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3929
3930  unsigned NumElts = VT.getVectorNumElements();
3931  unsigned NumLanes = VT.getSizeInBits()/128;
3932  unsigned NumLaneElts = NumElts/NumLanes;
3933
3934  int Val = 0;
3935  unsigned i;
3936  for (i = 0; i != NumElts; ++i) {
3937    Val = SVOp->getMaskElt(i);
3938    if (Val >= 0)
3939      break;
3940  }
3941  if (Val >= (int)NumElts)
3942    Val -= NumElts - NumLaneElts;
3943
3944  assert(Val - i > 0 && "PALIGNR imm should be positive");
3945  return (Val - i) * EltSize;
3946}
3947
3948/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3949/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3950/// instructions.
3951unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3952  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3953    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3954
3955  uint64_t Index =
3956    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3957
3958  EVT VecVT = N->getOperand(0).getValueType();
3959  EVT ElVT = VecVT.getVectorElementType();
3960
3961  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3962  return Index / NumElemsPerChunk;
3963}
3964
3965/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3966/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3967/// instructions.
3968unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3969  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3970    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3971
3972  uint64_t Index =
3973    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3974
3975  EVT VecVT = N->getValueType(0);
3976  EVT ElVT = VecVT.getVectorElementType();
3977
3978  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3979  return Index / NumElemsPerChunk;
3980}
3981
3982/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
3983/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
3984/// Handles 256-bit.
3985static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
3986  EVT VT = N->getValueType(0);
3987
3988  unsigned NumElts = VT.getVectorNumElements();
3989
3990  assert((VT.is256BitVector() && NumElts == 4) &&
3991         "Unsupported vector type for VPERMQ/VPERMPD");
3992
3993  unsigned Mask = 0;
3994  for (unsigned i = 0; i != NumElts; ++i) {
3995    int Elt = N->getMaskElt(i);
3996    if (Elt < 0)
3997      continue;
3998    Mask |= Elt << (i*2);
3999  }
4000
4001  return Mask;
4002}
4003/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4004/// constant +0.0.
4005bool X86::isZeroNode(SDValue Elt) {
4006  return ((isa<ConstantSDNode>(Elt) &&
4007           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4008          (isa<ConstantFPSDNode>(Elt) &&
4009           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4010}
4011
4012/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4013/// their permute mask.
4014static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4015                                    SelectionDAG &DAG) {
4016  EVT VT = SVOp->getValueType(0);
4017  unsigned NumElems = VT.getVectorNumElements();
4018  SmallVector<int, 8> MaskVec;
4019
4020  for (unsigned i = 0; i != NumElems; ++i) {
4021    int idx = SVOp->getMaskElt(i);
4022    if (idx < 0)
4023      MaskVec.push_back(idx);
4024    else if (idx < (int)NumElems)
4025      MaskVec.push_back(idx + NumElems);
4026    else
4027      MaskVec.push_back(idx - NumElems);
4028  }
4029  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4030                              SVOp->getOperand(0), &MaskVec[0]);
4031}
4032
4033/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4034/// match movhlps. The lower half elements should come from upper half of
4035/// V1 (and in order), and the upper half elements should come from the upper
4036/// half of V2 (and in order).
4037static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4038  if (VT.getSizeInBits() != 128)
4039    return false;
4040  if (VT.getVectorNumElements() != 4)
4041    return false;
4042  for (unsigned i = 0, e = 2; i != e; ++i)
4043    if (!isUndefOrEqual(Mask[i], i+2))
4044      return false;
4045  for (unsigned i = 2; i != 4; ++i)
4046    if (!isUndefOrEqual(Mask[i], i+4))
4047      return false;
4048  return true;
4049}
4050
4051/// isScalarLoadToVector - Returns true if the node is a scalar load that
4052/// is promoted to a vector. It also returns the LoadSDNode by reference if
4053/// required.
4054static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4055  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4056    return false;
4057  N = N->getOperand(0).getNode();
4058  if (!ISD::isNON_EXTLoad(N))
4059    return false;
4060  if (LD)
4061    *LD = cast<LoadSDNode>(N);
4062  return true;
4063}
4064
4065// Test whether the given value is a vector value which will be legalized
4066// into a load.
4067static bool WillBeConstantPoolLoad(SDNode *N) {
4068  if (N->getOpcode() != ISD::BUILD_VECTOR)
4069    return false;
4070
4071  // Check for any non-constant elements.
4072  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4073    switch (N->getOperand(i).getNode()->getOpcode()) {
4074    case ISD::UNDEF:
4075    case ISD::ConstantFP:
4076    case ISD::Constant:
4077      break;
4078    default:
4079      return false;
4080    }
4081
4082  // Vectors of all-zeros and all-ones are materialized with special
4083  // instructions rather than being loaded.
4084  return !ISD::isBuildVectorAllZeros(N) &&
4085         !ISD::isBuildVectorAllOnes(N);
4086}
4087
4088/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4089/// match movlp{s|d}. The lower half elements should come from lower half of
4090/// V1 (and in order), and the upper half elements should come from the upper
4091/// half of V2 (and in order). And since V1 will become the source of the
4092/// MOVLP, it must be either a vector load or a scalar load to vector.
4093static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4094                               ArrayRef<int> Mask, EVT VT) {
4095  if (VT.getSizeInBits() != 128)
4096    return false;
4097
4098  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4099    return false;
4100  // Is V2 is a vector load, don't do this transformation. We will try to use
4101  // load folding shufps op.
4102  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4103    return false;
4104
4105  unsigned NumElems = VT.getVectorNumElements();
4106
4107  if (NumElems != 2 && NumElems != 4)
4108    return false;
4109  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4110    if (!isUndefOrEqual(Mask[i], i))
4111      return false;
4112  for (unsigned i = NumElems/2; i != NumElems; ++i)
4113    if (!isUndefOrEqual(Mask[i], i+NumElems))
4114      return false;
4115  return true;
4116}
4117
4118/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4119/// all the same.
4120static bool isSplatVector(SDNode *N) {
4121  if (N->getOpcode() != ISD::BUILD_VECTOR)
4122    return false;
4123
4124  SDValue SplatValue = N->getOperand(0);
4125  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4126    if (N->getOperand(i) != SplatValue)
4127      return false;
4128  return true;
4129}
4130
4131/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4132/// to an zero vector.
4133/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4134static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4135  SDValue V1 = N->getOperand(0);
4136  SDValue V2 = N->getOperand(1);
4137  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4138  for (unsigned i = 0; i != NumElems; ++i) {
4139    int Idx = N->getMaskElt(i);
4140    if (Idx >= (int)NumElems) {
4141      unsigned Opc = V2.getOpcode();
4142      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4143        continue;
4144      if (Opc != ISD::BUILD_VECTOR ||
4145          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4146        return false;
4147    } else if (Idx >= 0) {
4148      unsigned Opc = V1.getOpcode();
4149      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4150        continue;
4151      if (Opc != ISD::BUILD_VECTOR ||
4152          !X86::isZeroNode(V1.getOperand(Idx)))
4153        return false;
4154    }
4155  }
4156  return true;
4157}
4158
4159/// getZeroVector - Returns a vector of specified type with all zero elements.
4160///
4161static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4162                             SelectionDAG &DAG, DebugLoc dl) {
4163  assert(VT.isVector() && "Expected a vector type");
4164  unsigned Size = VT.getSizeInBits();
4165
4166  // Always build SSE zero vectors as <4 x i32> bitcasted
4167  // to their dest type. This ensures they get CSE'd.
4168  SDValue Vec;
4169  if (Size == 128) {  // SSE
4170    if (Subtarget->hasSSE2()) {  // SSE2
4171      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4172      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4173    } else { // SSE1
4174      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4175      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4176    }
4177  } else if (Size == 256) { // AVX
4178    if (Subtarget->hasAVX2()) { // AVX2
4179      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4180      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4181      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4182    } else {
4183      // 256-bit logic and arithmetic instructions in AVX are all
4184      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4185      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4186      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4187      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4188    }
4189  } else
4190    llvm_unreachable("Unexpected vector type");
4191
4192  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4193}
4194
4195/// getOnesVector - Returns a vector of specified type with all bits set.
4196/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4197/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4198/// Then bitcast to their original type, ensuring they get CSE'd.
4199static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4200                             DebugLoc dl) {
4201  assert(VT.isVector() && "Expected a vector type");
4202  unsigned Size = VT.getSizeInBits();
4203
4204  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4205  SDValue Vec;
4206  if (Size == 256) {
4207    if (HasAVX2) { // AVX2
4208      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4209      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4210    } else { // AVX
4211      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4212      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4213    }
4214  } else if (Size == 128) {
4215    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4216  } else
4217    llvm_unreachable("Unexpected vector type");
4218
4219  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4220}
4221
4222/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4223/// that point to V2 points to its first element.
4224static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4225  for (unsigned i = 0; i != NumElems; ++i) {
4226    if (Mask[i] > (int)NumElems) {
4227      Mask[i] = NumElems;
4228    }
4229  }
4230}
4231
4232/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4233/// operation of specified width.
4234static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4235                       SDValue V2) {
4236  unsigned NumElems = VT.getVectorNumElements();
4237  SmallVector<int, 8> Mask;
4238  Mask.push_back(NumElems);
4239  for (unsigned i = 1; i != NumElems; ++i)
4240    Mask.push_back(i);
4241  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4242}
4243
4244/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4245static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4246                          SDValue V2) {
4247  unsigned NumElems = VT.getVectorNumElements();
4248  SmallVector<int, 8> Mask;
4249  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4250    Mask.push_back(i);
4251    Mask.push_back(i + NumElems);
4252  }
4253  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4254}
4255
4256/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4257static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4258                          SDValue V2) {
4259  unsigned NumElems = VT.getVectorNumElements();
4260  unsigned Half = NumElems/2;
4261  SmallVector<int, 8> Mask;
4262  for (unsigned i = 0; i != Half; ++i) {
4263    Mask.push_back(i + Half);
4264    Mask.push_back(i + NumElems + Half);
4265  }
4266  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4267}
4268
4269// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4270// a generic shuffle instruction because the target has no such instructions.
4271// Generate shuffles which repeat i16 and i8 several times until they can be
4272// represented by v4f32 and then be manipulated by target suported shuffles.
4273static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4274  EVT VT = V.getValueType();
4275  int NumElems = VT.getVectorNumElements();
4276  DebugLoc dl = V.getDebugLoc();
4277
4278  while (NumElems > 4) {
4279    if (EltNo < NumElems/2) {
4280      V = getUnpackl(DAG, dl, VT, V, V);
4281    } else {
4282      V = getUnpackh(DAG, dl, VT, V, V);
4283      EltNo -= NumElems/2;
4284    }
4285    NumElems >>= 1;
4286  }
4287  return V;
4288}
4289
4290/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4291static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4292  EVT VT = V.getValueType();
4293  DebugLoc dl = V.getDebugLoc();
4294  unsigned Size = VT.getSizeInBits();
4295
4296  if (Size == 128) {
4297    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4298    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4299    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4300                             &SplatMask[0]);
4301  } else if (Size == 256) {
4302    // To use VPERMILPS to splat scalars, the second half of indicies must
4303    // refer to the higher part, which is a duplication of the lower one,
4304    // because VPERMILPS can only handle in-lane permutations.
4305    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4306                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4307
4308    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4309    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4310                             &SplatMask[0]);
4311  } else
4312    llvm_unreachable("Vector size not supported");
4313
4314  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4315}
4316
4317/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4318static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4319  EVT SrcVT = SV->getValueType(0);
4320  SDValue V1 = SV->getOperand(0);
4321  DebugLoc dl = SV->getDebugLoc();
4322
4323  int EltNo = SV->getSplatIndex();
4324  int NumElems = SrcVT.getVectorNumElements();
4325  unsigned Size = SrcVT.getSizeInBits();
4326
4327  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4328          "Unknown how to promote splat for type");
4329
4330  // Extract the 128-bit part containing the splat element and update
4331  // the splat element index when it refers to the higher register.
4332  if (Size == 256) {
4333    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4334    V1 = Extract128BitVector(V1, Idx, DAG, dl);
4335    if (Idx > 0)
4336      EltNo -= NumElems/2;
4337  }
4338
4339  // All i16 and i8 vector types can't be used directly by a generic shuffle
4340  // instruction because the target has no such instruction. Generate shuffles
4341  // which repeat i16 and i8 several times until they fit in i32, and then can
4342  // be manipulated by target suported shuffles.
4343  EVT EltVT = SrcVT.getVectorElementType();
4344  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4345    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4346
4347  // Recreate the 256-bit vector and place the same 128-bit vector
4348  // into the low and high part. This is necessary because we want
4349  // to use VPERM* to shuffle the vectors
4350  if (Size == 256) {
4351    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4352  }
4353
4354  return getLegalSplat(DAG, V1, EltNo);
4355}
4356
4357/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4358/// vector of zero or undef vector.  This produces a shuffle where the low
4359/// element of V2 is swizzled into the zero/undef vector, landing at element
4360/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4361static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4362                                           bool IsZero,
4363                                           const X86Subtarget *Subtarget,
4364                                           SelectionDAG &DAG) {
4365  EVT VT = V2.getValueType();
4366  SDValue V1 = IsZero
4367    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4368  unsigned NumElems = VT.getVectorNumElements();
4369  SmallVector<int, 16> MaskVec;
4370  for (unsigned i = 0; i != NumElems; ++i)
4371    // If this is the insertion idx, put the low elt of V2 here.
4372    MaskVec.push_back(i == Idx ? NumElems : i);
4373  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4374}
4375
4376/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4377/// target specific opcode. Returns true if the Mask could be calculated.
4378/// Sets IsUnary to true if only uses one source.
4379static bool getTargetShuffleMask(SDNode *N, EVT VT,
4380                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4381  unsigned NumElems = VT.getVectorNumElements();
4382  SDValue ImmN;
4383
4384  IsUnary = false;
4385  switch(N->getOpcode()) {
4386  case X86ISD::SHUFP:
4387    ImmN = N->getOperand(N->getNumOperands()-1);
4388    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4389    break;
4390  case X86ISD::UNPCKH:
4391    DecodeUNPCKHMask(VT, Mask);
4392    break;
4393  case X86ISD::UNPCKL:
4394    DecodeUNPCKLMask(VT, Mask);
4395    break;
4396  case X86ISD::MOVHLPS:
4397    DecodeMOVHLPSMask(NumElems, Mask);
4398    break;
4399  case X86ISD::MOVLHPS:
4400    DecodeMOVLHPSMask(NumElems, Mask);
4401    break;
4402  case X86ISD::PSHUFD:
4403  case X86ISD::VPERMILP:
4404    ImmN = N->getOperand(N->getNumOperands()-1);
4405    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4406    IsUnary = true;
4407    break;
4408  case X86ISD::PSHUFHW:
4409    ImmN = N->getOperand(N->getNumOperands()-1);
4410    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4411    IsUnary = true;
4412    break;
4413  case X86ISD::PSHUFLW:
4414    ImmN = N->getOperand(N->getNumOperands()-1);
4415    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4416    IsUnary = true;
4417    break;
4418  case X86ISD::MOVSS:
4419  case X86ISD::MOVSD: {
4420    // The index 0 always comes from the first element of the second source,
4421    // this is why MOVSS and MOVSD are used in the first place. The other
4422    // elements come from the other positions of the first source vector
4423    Mask.push_back(NumElems);
4424    for (unsigned i = 1; i != NumElems; ++i) {
4425      Mask.push_back(i);
4426    }
4427    break;
4428  }
4429  case X86ISD::VPERM2X128:
4430    ImmN = N->getOperand(N->getNumOperands()-1);
4431    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4432    if (Mask.empty()) return false;
4433    break;
4434  case X86ISD::MOVDDUP:
4435  case X86ISD::MOVLHPD:
4436  case X86ISD::MOVLPD:
4437  case X86ISD::MOVLPS:
4438  case X86ISD::MOVSHDUP:
4439  case X86ISD::MOVSLDUP:
4440  case X86ISD::PALIGN:
4441    // Not yet implemented
4442    return false;
4443  default: llvm_unreachable("unknown target shuffle node");
4444  }
4445
4446  return true;
4447}
4448
4449/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4450/// element of the result of the vector shuffle.
4451static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4452                                   unsigned Depth) {
4453  if (Depth == 6)
4454    return SDValue();  // Limit search depth.
4455
4456  SDValue V = SDValue(N, 0);
4457  EVT VT = V.getValueType();
4458  unsigned Opcode = V.getOpcode();
4459
4460  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4461  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4462    int Elt = SV->getMaskElt(Index);
4463
4464    if (Elt < 0)
4465      return DAG.getUNDEF(VT.getVectorElementType());
4466
4467    unsigned NumElems = VT.getVectorNumElements();
4468    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4469                                         : SV->getOperand(1);
4470    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4471  }
4472
4473  // Recurse into target specific vector shuffles to find scalars.
4474  if (isTargetShuffle(Opcode)) {
4475    unsigned NumElems = VT.getVectorNumElements();
4476    SmallVector<int, 16> ShuffleMask;
4477    SDValue ImmN;
4478    bool IsUnary;
4479
4480    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4481      return SDValue();
4482
4483    int Elt = ShuffleMask[Index];
4484    if (Elt < 0)
4485      return DAG.getUNDEF(VT.getVectorElementType());
4486
4487    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4488                                           : N->getOperand(1);
4489    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4490                               Depth+1);
4491  }
4492
4493  // Actual nodes that may contain scalar elements
4494  if (Opcode == ISD::BITCAST) {
4495    V = V.getOperand(0);
4496    EVT SrcVT = V.getValueType();
4497    unsigned NumElems = VT.getVectorNumElements();
4498
4499    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4500      return SDValue();
4501  }
4502
4503  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4504    return (Index == 0) ? V.getOperand(0)
4505                        : DAG.getUNDEF(VT.getVectorElementType());
4506
4507  if (V.getOpcode() == ISD::BUILD_VECTOR)
4508    return V.getOperand(Index);
4509
4510  return SDValue();
4511}
4512
4513/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4514/// shuffle operation which come from a consecutively from a zero. The
4515/// search can start in two different directions, from left or right.
4516static
4517unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4518                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4519  unsigned i;
4520  for (i = 0; i != NumElems; ++i) {
4521    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4522    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4523    if (!(Elt.getNode() &&
4524         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4525      break;
4526  }
4527
4528  return i;
4529}
4530
4531/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4532/// correspond consecutively to elements from one of the vector operands,
4533/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4534static
4535bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4536                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4537                              unsigned NumElems, unsigned &OpNum) {
4538  bool SeenV1 = false;
4539  bool SeenV2 = false;
4540
4541  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4542    int Idx = SVOp->getMaskElt(i);
4543    // Ignore undef indicies
4544    if (Idx < 0)
4545      continue;
4546
4547    if (Idx < (int)NumElems)
4548      SeenV1 = true;
4549    else
4550      SeenV2 = true;
4551
4552    // Only accept consecutive elements from the same vector
4553    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4554      return false;
4555  }
4556
4557  OpNum = SeenV1 ? 0 : 1;
4558  return true;
4559}
4560
4561/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4562/// logical left shift of a vector.
4563static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4564                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4565  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4566  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4567              false /* check zeros from right */, DAG);
4568  unsigned OpSrc;
4569
4570  if (!NumZeros)
4571    return false;
4572
4573  // Considering the elements in the mask that are not consecutive zeros,
4574  // check if they consecutively come from only one of the source vectors.
4575  //
4576  //               V1 = {X, A, B, C}     0
4577  //                         \  \  \    /
4578  //   vector_shuffle V1, V2 <1, 2, 3, X>
4579  //
4580  if (!isShuffleMaskConsecutive(SVOp,
4581            0,                   // Mask Start Index
4582            NumElems-NumZeros,   // Mask End Index(exclusive)
4583            NumZeros,            // Where to start looking in the src vector
4584            NumElems,            // Number of elements in vector
4585            OpSrc))              // Which source operand ?
4586    return false;
4587
4588  isLeft = false;
4589  ShAmt = NumZeros;
4590  ShVal = SVOp->getOperand(OpSrc);
4591  return true;
4592}
4593
4594/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4595/// logical left shift of a vector.
4596static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4597                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4598  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4599  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4600              true /* check zeros from left */, DAG);
4601  unsigned OpSrc;
4602
4603  if (!NumZeros)
4604    return false;
4605
4606  // Considering the elements in the mask that are not consecutive zeros,
4607  // check if they consecutively come from only one of the source vectors.
4608  //
4609  //                           0    { A, B, X, X } = V2
4610  //                          / \    /  /
4611  //   vector_shuffle V1, V2 <X, X, 4, 5>
4612  //
4613  if (!isShuffleMaskConsecutive(SVOp,
4614            NumZeros,     // Mask Start Index
4615            NumElems,     // Mask End Index(exclusive)
4616            0,            // Where to start looking in the src vector
4617            NumElems,     // Number of elements in vector
4618            OpSrc))       // Which source operand ?
4619    return false;
4620
4621  isLeft = true;
4622  ShAmt = NumZeros;
4623  ShVal = SVOp->getOperand(OpSrc);
4624  return true;
4625}
4626
4627/// isVectorShift - Returns true if the shuffle can be implemented as a
4628/// logical left or right shift of a vector.
4629static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4630                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4631  // Although the logic below support any bitwidth size, there are no
4632  // shift instructions which handle more than 128-bit vectors.
4633  if (SVOp->getValueType(0).getSizeInBits() > 128)
4634    return false;
4635
4636  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4637      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4638    return true;
4639
4640  return false;
4641}
4642
4643/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4644///
4645static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4646                                       unsigned NumNonZero, unsigned NumZero,
4647                                       SelectionDAG &DAG,
4648                                       const X86Subtarget* Subtarget,
4649                                       const TargetLowering &TLI) {
4650  if (NumNonZero > 8)
4651    return SDValue();
4652
4653  DebugLoc dl = Op.getDebugLoc();
4654  SDValue V(0, 0);
4655  bool First = true;
4656  for (unsigned i = 0; i < 16; ++i) {
4657    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4658    if (ThisIsNonZero && First) {
4659      if (NumZero)
4660        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4661      else
4662        V = DAG.getUNDEF(MVT::v8i16);
4663      First = false;
4664    }
4665
4666    if ((i & 1) != 0) {
4667      SDValue ThisElt(0, 0), LastElt(0, 0);
4668      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4669      if (LastIsNonZero) {
4670        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4671                              MVT::i16, Op.getOperand(i-1));
4672      }
4673      if (ThisIsNonZero) {
4674        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4675        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4676                              ThisElt, DAG.getConstant(8, MVT::i8));
4677        if (LastIsNonZero)
4678          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4679      } else
4680        ThisElt = LastElt;
4681
4682      if (ThisElt.getNode())
4683        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4684                        DAG.getIntPtrConstant(i/2));
4685    }
4686  }
4687
4688  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4689}
4690
4691/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4692///
4693static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4694                                     unsigned NumNonZero, unsigned NumZero,
4695                                     SelectionDAG &DAG,
4696                                     const X86Subtarget* Subtarget,
4697                                     const TargetLowering &TLI) {
4698  if (NumNonZero > 4)
4699    return SDValue();
4700
4701  DebugLoc dl = Op.getDebugLoc();
4702  SDValue V(0, 0);
4703  bool First = true;
4704  for (unsigned i = 0; i < 8; ++i) {
4705    bool isNonZero = (NonZeros & (1 << i)) != 0;
4706    if (isNonZero) {
4707      if (First) {
4708        if (NumZero)
4709          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4710        else
4711          V = DAG.getUNDEF(MVT::v8i16);
4712        First = false;
4713      }
4714      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4715                      MVT::v8i16, V, Op.getOperand(i),
4716                      DAG.getIntPtrConstant(i));
4717    }
4718  }
4719
4720  return V;
4721}
4722
4723/// getVShift - Return a vector logical shift node.
4724///
4725static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4726                         unsigned NumBits, SelectionDAG &DAG,
4727                         const TargetLowering &TLI, DebugLoc dl) {
4728  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4729  EVT ShVT = MVT::v2i64;
4730  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4731  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4732  return DAG.getNode(ISD::BITCAST, dl, VT,
4733                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4734                             DAG.getConstant(NumBits,
4735                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4736}
4737
4738SDValue
4739X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4740                                          SelectionDAG &DAG) const {
4741
4742  // Check if the scalar load can be widened into a vector load. And if
4743  // the address is "base + cst" see if the cst can be "absorbed" into
4744  // the shuffle mask.
4745  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4746    SDValue Ptr = LD->getBasePtr();
4747    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4748      return SDValue();
4749    EVT PVT = LD->getValueType(0);
4750    if (PVT != MVT::i32 && PVT != MVT::f32)
4751      return SDValue();
4752
4753    int FI = -1;
4754    int64_t Offset = 0;
4755    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4756      FI = FINode->getIndex();
4757      Offset = 0;
4758    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4759               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4760      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4761      Offset = Ptr.getConstantOperandVal(1);
4762      Ptr = Ptr.getOperand(0);
4763    } else {
4764      return SDValue();
4765    }
4766
4767    // FIXME: 256-bit vector instructions don't require a strict alignment,
4768    // improve this code to support it better.
4769    unsigned RequiredAlign = VT.getSizeInBits()/8;
4770    SDValue Chain = LD->getChain();
4771    // Make sure the stack object alignment is at least 16 or 32.
4772    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4773    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4774      if (MFI->isFixedObjectIndex(FI)) {
4775        // Can't change the alignment. FIXME: It's possible to compute
4776        // the exact stack offset and reference FI + adjust offset instead.
4777        // If someone *really* cares about this. That's the way to implement it.
4778        return SDValue();
4779      } else {
4780        MFI->setObjectAlignment(FI, RequiredAlign);
4781      }
4782    }
4783
4784    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4785    // Ptr + (Offset & ~15).
4786    if (Offset < 0)
4787      return SDValue();
4788    if ((Offset % RequiredAlign) & 3)
4789      return SDValue();
4790    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4791    if (StartOffset)
4792      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4793                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4794
4795    int EltNo = (Offset - StartOffset) >> 2;
4796    unsigned NumElems = VT.getVectorNumElements();
4797
4798    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4799    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4800                             LD->getPointerInfo().getWithOffset(StartOffset),
4801                             false, false, false, 0);
4802
4803    SmallVector<int, 8> Mask;
4804    for (unsigned i = 0; i != NumElems; ++i)
4805      Mask.push_back(EltNo);
4806
4807    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4808  }
4809
4810  return SDValue();
4811}
4812
4813/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4814/// vector of type 'VT', see if the elements can be replaced by a single large
4815/// load which has the same value as a build_vector whose operands are 'elts'.
4816///
4817/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4818///
4819/// FIXME: we'd also like to handle the case where the last elements are zero
4820/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4821/// There's even a handy isZeroNode for that purpose.
4822static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4823                                        DebugLoc &DL, SelectionDAG &DAG) {
4824  EVT EltVT = VT.getVectorElementType();
4825  unsigned NumElems = Elts.size();
4826
4827  LoadSDNode *LDBase = NULL;
4828  unsigned LastLoadedElt = -1U;
4829
4830  // For each element in the initializer, see if we've found a load or an undef.
4831  // If we don't find an initial load element, or later load elements are
4832  // non-consecutive, bail out.
4833  for (unsigned i = 0; i < NumElems; ++i) {
4834    SDValue Elt = Elts[i];
4835
4836    if (!Elt.getNode() ||
4837        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4838      return SDValue();
4839    if (!LDBase) {
4840      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4841        return SDValue();
4842      LDBase = cast<LoadSDNode>(Elt.getNode());
4843      LastLoadedElt = i;
4844      continue;
4845    }
4846    if (Elt.getOpcode() == ISD::UNDEF)
4847      continue;
4848
4849    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4850    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4851      return SDValue();
4852    LastLoadedElt = i;
4853  }
4854
4855  // If we have found an entire vector of loads and undefs, then return a large
4856  // load of the entire vector width starting at the base pointer.  If we found
4857  // consecutive loads for the low half, generate a vzext_load node.
4858  if (LastLoadedElt == NumElems - 1) {
4859    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4860      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4861                         LDBase->getPointerInfo(),
4862                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4863                         LDBase->isInvariant(), 0);
4864    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4865                       LDBase->getPointerInfo(),
4866                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4867                       LDBase->isInvariant(), LDBase->getAlignment());
4868  }
4869  if (NumElems == 4 && LastLoadedElt == 1 &&
4870      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4871    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4872    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4873    SDValue ResNode =
4874        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4875                                LDBase->getPointerInfo(),
4876                                LDBase->getAlignment(),
4877                                false/*isVolatile*/, true/*ReadMem*/,
4878                                false/*WriteMem*/);
4879    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4880  }
4881  return SDValue();
4882}
4883
4884/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4885/// to generate a splat value for the following cases:
4886/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4887/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4888/// a scalar load, or a constant.
4889/// The VBROADCAST node is returned when a pattern is found,
4890/// or SDValue() otherwise.
4891SDValue
4892X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4893  if (!Subtarget->hasAVX())
4894    return SDValue();
4895
4896  EVT VT = Op.getValueType();
4897  DebugLoc dl = Op.getDebugLoc();
4898
4899  SDValue Ld;
4900  bool ConstSplatVal;
4901
4902  switch (Op.getOpcode()) {
4903    default:
4904      // Unknown pattern found.
4905      return SDValue();
4906
4907    case ISD::BUILD_VECTOR: {
4908      // The BUILD_VECTOR node must be a splat.
4909      if (!isSplatVector(Op.getNode()))
4910        return SDValue();
4911
4912      Ld = Op.getOperand(0);
4913      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4914                     Ld.getOpcode() == ISD::ConstantFP);
4915
4916      // The suspected load node has several users. Make sure that all
4917      // of its users are from the BUILD_VECTOR node.
4918      // Constants may have multiple users.
4919      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4920        return SDValue();
4921      break;
4922    }
4923
4924    case ISD::VECTOR_SHUFFLE: {
4925      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4926
4927      // Shuffles must have a splat mask where the first element is
4928      // broadcasted.
4929      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4930        return SDValue();
4931
4932      SDValue Sc = Op.getOperand(0);
4933      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4934        return SDValue();
4935
4936      Ld = Sc.getOperand(0);
4937      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4938                       Ld.getOpcode() == ISD::ConstantFP);
4939
4940      // The scalar_to_vector node and the suspected
4941      // load node must have exactly one user.
4942      // Constants may have multiple users.
4943      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4944        return SDValue();
4945      break;
4946    }
4947  }
4948
4949  bool Is256 = VT.getSizeInBits() == 256;
4950  bool Is128 = VT.getSizeInBits() == 128;
4951
4952  // Handle the broadcasting a single constant scalar from the constant pool
4953  // into a vector. On Sandybridge it is still better to load a constant vector
4954  // from the constant pool and not to broadcast it from a scalar.
4955  if (ConstSplatVal && Subtarget->hasAVX2()) {
4956    EVT CVT = Ld.getValueType();
4957    assert(!CVT.isVector() && "Must not broadcast a vector type");
4958    unsigned ScalarSize = CVT.getSizeInBits();
4959
4960    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4961        (Is128 && (ScalarSize == 32))) {
4962
4963      const Constant *C = 0;
4964      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4965        C = CI->getConstantIntValue();
4966      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4967        C = CF->getConstantFPValue();
4968
4969      assert(C && "Invalid constant type");
4970
4971      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4972      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4973      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4974                         MachinePointerInfo::getConstantPool(),
4975                         false, false, false, Alignment);
4976
4977      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4978    }
4979  }
4980
4981  // The scalar source must be a normal load.
4982  if (!ISD::isNormalLoad(Ld.getNode()))
4983    return SDValue();
4984
4985  // Reject loads that have uses of the chain result
4986  if (Ld->hasAnyUseOfValue(1))
4987    return SDValue();
4988
4989  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4990
4991  // VBroadcast to YMM
4992  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4993    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4994
4995  // VBroadcast to XMM
4996  if (Is128 && (ScalarSize == 32))
4997    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4998
4999  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5000  // double since there is vbroadcastsd xmm
5001  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5002    // VBroadcast to YMM
5003    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5004      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5005
5006    // VBroadcast to XMM
5007    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5008      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5009  }
5010
5011  // Unsupported broadcast.
5012  return SDValue();
5013}
5014
5015SDValue
5016X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5017  DebugLoc dl = Op.getDebugLoc();
5018
5019  EVT VT = Op.getValueType();
5020  EVT ExtVT = VT.getVectorElementType();
5021  unsigned NumElems = Op.getNumOperands();
5022
5023  // Vectors containing all zeros can be matched by pxor and xorps later
5024  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5025    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5026    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5027    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5028      return Op;
5029
5030    return getZeroVector(VT, Subtarget, DAG, dl);
5031  }
5032
5033  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5034  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5035  // vpcmpeqd on 256-bit vectors.
5036  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5037    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5038      return Op;
5039
5040    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5041  }
5042
5043  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5044  if (Broadcast.getNode())
5045    return Broadcast;
5046
5047  unsigned EVTBits = ExtVT.getSizeInBits();
5048
5049  unsigned NumZero  = 0;
5050  unsigned NumNonZero = 0;
5051  unsigned NonZeros = 0;
5052  bool IsAllConstants = true;
5053  SmallSet<SDValue, 8> Values;
5054  for (unsigned i = 0; i < NumElems; ++i) {
5055    SDValue Elt = Op.getOperand(i);
5056    if (Elt.getOpcode() == ISD::UNDEF)
5057      continue;
5058    Values.insert(Elt);
5059    if (Elt.getOpcode() != ISD::Constant &&
5060        Elt.getOpcode() != ISD::ConstantFP)
5061      IsAllConstants = false;
5062    if (X86::isZeroNode(Elt))
5063      NumZero++;
5064    else {
5065      NonZeros |= (1 << i);
5066      NumNonZero++;
5067    }
5068  }
5069
5070  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5071  if (NumNonZero == 0)
5072    return DAG.getUNDEF(VT);
5073
5074  // Special case for single non-zero, non-undef, element.
5075  if (NumNonZero == 1) {
5076    unsigned Idx = CountTrailingZeros_32(NonZeros);
5077    SDValue Item = Op.getOperand(Idx);
5078
5079    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5080    // the value are obviously zero, truncate the value to i32 and do the
5081    // insertion that way.  Only do this if the value is non-constant or if the
5082    // value is a constant being inserted into element 0.  It is cheaper to do
5083    // a constant pool load than it is to do a movd + shuffle.
5084    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5085        (!IsAllConstants || Idx == 0)) {
5086      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5087        // Handle SSE only.
5088        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5089        EVT VecVT = MVT::v4i32;
5090        unsigned VecElts = 4;
5091
5092        // Truncate the value (which may itself be a constant) to i32, and
5093        // convert it to a vector with movd (S2V+shuffle to zero extend).
5094        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5095        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5096        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5097
5098        // Now we have our 32-bit value zero extended in the low element of
5099        // a vector.  If Idx != 0, swizzle it into place.
5100        if (Idx != 0) {
5101          SmallVector<int, 4> Mask;
5102          Mask.push_back(Idx);
5103          for (unsigned i = 1; i != VecElts; ++i)
5104            Mask.push_back(i);
5105          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5106                                      &Mask[0]);
5107        }
5108        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5109      }
5110    }
5111
5112    // If we have a constant or non-constant insertion into the low element of
5113    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5114    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5115    // depending on what the source datatype is.
5116    if (Idx == 0) {
5117      if (NumZero == 0)
5118        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5119
5120      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5121          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5122        if (VT.getSizeInBits() == 256) {
5123          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5124          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5125                             Item, DAG.getIntPtrConstant(0));
5126        }
5127        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5128        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5129        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5130        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5131      }
5132
5133      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5134        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5135        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5136        if (VT.getSizeInBits() == 256) {
5137          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5138          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5139        } else {
5140          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5141          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5142        }
5143        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5144      }
5145    }
5146
5147    // Is it a vector logical left shift?
5148    if (NumElems == 2 && Idx == 1 &&
5149        X86::isZeroNode(Op.getOperand(0)) &&
5150        !X86::isZeroNode(Op.getOperand(1))) {
5151      unsigned NumBits = VT.getSizeInBits();
5152      return getVShift(true, VT,
5153                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5154                                   VT, Op.getOperand(1)),
5155                       NumBits/2, DAG, *this, dl);
5156    }
5157
5158    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5159      return SDValue();
5160
5161    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5162    // is a non-constant being inserted into an element other than the low one,
5163    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5164    // movd/movss) to move this into the low element, then shuffle it into
5165    // place.
5166    if (EVTBits == 32) {
5167      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5168
5169      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5170      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5171      SmallVector<int, 8> MaskVec;
5172      for (unsigned i = 0; i < NumElems; i++)
5173        MaskVec.push_back(i == Idx ? 0 : 1);
5174      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5175    }
5176  }
5177
5178  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5179  if (Values.size() == 1) {
5180    if (EVTBits == 32) {
5181      // Instead of a shuffle like this:
5182      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5183      // Check if it's possible to issue this instead.
5184      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5185      unsigned Idx = CountTrailingZeros_32(NonZeros);
5186      SDValue Item = Op.getOperand(Idx);
5187      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5188        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5189    }
5190    return SDValue();
5191  }
5192
5193  // A vector full of immediates; various special cases are already
5194  // handled, so this is best done with a single constant-pool load.
5195  if (IsAllConstants)
5196    return SDValue();
5197
5198  // For AVX-length vectors, build the individual 128-bit pieces and use
5199  // shuffles to put them in place.
5200  if (VT.getSizeInBits() == 256) {
5201    SmallVector<SDValue, 32> V;
5202    for (unsigned i = 0; i != NumElems; ++i)
5203      V.push_back(Op.getOperand(i));
5204
5205    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5206
5207    // Build both the lower and upper subvector.
5208    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5209    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5210                                NumElems/2);
5211
5212    // Recreate the wider vector with the lower and upper part.
5213    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5214  }
5215
5216  // Let legalizer expand 2-wide build_vectors.
5217  if (EVTBits == 64) {
5218    if (NumNonZero == 1) {
5219      // One half is zero or undef.
5220      unsigned Idx = CountTrailingZeros_32(NonZeros);
5221      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5222                                 Op.getOperand(Idx));
5223      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5224    }
5225    return SDValue();
5226  }
5227
5228  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5229  if (EVTBits == 8 && NumElems == 16) {
5230    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5231                                        Subtarget, *this);
5232    if (V.getNode()) return V;
5233  }
5234
5235  if (EVTBits == 16 && NumElems == 8) {
5236    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5237                                      Subtarget, *this);
5238    if (V.getNode()) return V;
5239  }
5240
5241  // If element VT is == 32 bits, turn it into a number of shuffles.
5242  SmallVector<SDValue, 8> V(NumElems);
5243  if (NumElems == 4 && NumZero > 0) {
5244    for (unsigned i = 0; i < 4; ++i) {
5245      bool isZero = !(NonZeros & (1 << i));
5246      if (isZero)
5247        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5248      else
5249        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5250    }
5251
5252    for (unsigned i = 0; i < 2; ++i) {
5253      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5254        default: break;
5255        case 0:
5256          V[i] = V[i*2];  // Must be a zero vector.
5257          break;
5258        case 1:
5259          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5260          break;
5261        case 2:
5262          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5263          break;
5264        case 3:
5265          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5266          break;
5267      }
5268    }
5269
5270    bool Reverse1 = (NonZeros & 0x3) == 2;
5271    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5272    int MaskVec[] = {
5273      Reverse1 ? 1 : 0,
5274      Reverse1 ? 0 : 1,
5275      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5276      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5277    };
5278    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5279  }
5280
5281  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5282    // Check for a build vector of consecutive loads.
5283    for (unsigned i = 0; i < NumElems; ++i)
5284      V[i] = Op.getOperand(i);
5285
5286    // Check for elements which are consecutive loads.
5287    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5288    if (LD.getNode())
5289      return LD;
5290
5291    // For SSE 4.1, use insertps to put the high elements into the low element.
5292    if (getSubtarget()->hasSSE41()) {
5293      SDValue Result;
5294      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5295        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5296      else
5297        Result = DAG.getUNDEF(VT);
5298
5299      for (unsigned i = 1; i < NumElems; ++i) {
5300        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5301        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5302                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5303      }
5304      return Result;
5305    }
5306
5307    // Otherwise, expand into a number of unpckl*, start by extending each of
5308    // our (non-undef) elements to the full vector width with the element in the
5309    // bottom slot of the vector (which generates no code for SSE).
5310    for (unsigned i = 0; i < NumElems; ++i) {
5311      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5312        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5313      else
5314        V[i] = DAG.getUNDEF(VT);
5315    }
5316
5317    // Next, we iteratively mix elements, e.g. for v4f32:
5318    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5319    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5320    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5321    unsigned EltStride = NumElems >> 1;
5322    while (EltStride != 0) {
5323      for (unsigned i = 0; i < EltStride; ++i) {
5324        // If V[i+EltStride] is undef and this is the first round of mixing,
5325        // then it is safe to just drop this shuffle: V[i] is already in the
5326        // right place, the one element (since it's the first round) being
5327        // inserted as undef can be dropped.  This isn't safe for successive
5328        // rounds because they will permute elements within both vectors.
5329        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5330            EltStride == NumElems/2)
5331          continue;
5332
5333        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5334      }
5335      EltStride >>= 1;
5336    }
5337    return V[0];
5338  }
5339  return SDValue();
5340}
5341
5342// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5343// them in a MMX register.  This is better than doing a stack convert.
5344static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5345  DebugLoc dl = Op.getDebugLoc();
5346  EVT ResVT = Op.getValueType();
5347
5348  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5349         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5350  int Mask[2];
5351  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5352  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5353  InVec = Op.getOperand(1);
5354  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5355    unsigned NumElts = ResVT.getVectorNumElements();
5356    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5357    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5358                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5359  } else {
5360    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5361    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5362    Mask[0] = 0; Mask[1] = 2;
5363    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5364  }
5365  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5366}
5367
5368// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5369// to create 256-bit vectors from two other 128-bit ones.
5370static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5371  DebugLoc dl = Op.getDebugLoc();
5372  EVT ResVT = Op.getValueType();
5373
5374  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5375
5376  SDValue V1 = Op.getOperand(0);
5377  SDValue V2 = Op.getOperand(1);
5378  unsigned NumElems = ResVT.getVectorNumElements();
5379
5380  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5381}
5382
5383SDValue
5384X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5385  EVT ResVT = Op.getValueType();
5386
5387  assert(Op.getNumOperands() == 2);
5388  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5389         "Unsupported CONCAT_VECTORS for value type");
5390
5391  // We support concatenate two MMX registers and place them in a MMX register.
5392  // This is better than doing a stack convert.
5393  if (ResVT.is128BitVector())
5394    return LowerMMXCONCAT_VECTORS(Op, DAG);
5395
5396  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5397  // from two other 128-bit ones.
5398  return LowerAVXCONCAT_VECTORS(Op, DAG);
5399}
5400
5401// Try to lower a shuffle node into a simple blend instruction.
5402static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5403                                          const X86Subtarget *Subtarget,
5404                                          SelectionDAG &DAG) {
5405  SDValue V1 = SVOp->getOperand(0);
5406  SDValue V2 = SVOp->getOperand(1);
5407  DebugLoc dl = SVOp->getDebugLoc();
5408  MVT VT = SVOp->getValueType(0).getSimpleVT();
5409  unsigned NumElems = VT.getVectorNumElements();
5410
5411  if (!Subtarget->hasSSE41())
5412    return SDValue();
5413
5414  unsigned ISDNo = 0;
5415  MVT OpTy;
5416
5417  switch (VT.SimpleTy) {
5418  default: return SDValue();
5419  case MVT::v8i16:
5420    ISDNo = X86ISD::BLENDPW;
5421    OpTy = MVT::v8i16;
5422    break;
5423  case MVT::v4i32:
5424  case MVT::v4f32:
5425    ISDNo = X86ISD::BLENDPS;
5426    OpTy = MVT::v4f32;
5427    break;
5428  case MVT::v2i64:
5429  case MVT::v2f64:
5430    ISDNo = X86ISD::BLENDPD;
5431    OpTy = MVT::v2f64;
5432    break;
5433  case MVT::v8i32:
5434  case MVT::v8f32:
5435    if (!Subtarget->hasAVX())
5436      return SDValue();
5437    ISDNo = X86ISD::BLENDPS;
5438    OpTy = MVT::v8f32;
5439    break;
5440  case MVT::v4i64:
5441  case MVT::v4f64:
5442    if (!Subtarget->hasAVX())
5443      return SDValue();
5444    ISDNo = X86ISD::BLENDPD;
5445    OpTy = MVT::v4f64;
5446    break;
5447  }
5448  assert(ISDNo && "Invalid Op Number");
5449
5450  unsigned MaskVals = 0;
5451
5452  for (unsigned i = 0; i != NumElems; ++i) {
5453    int EltIdx = SVOp->getMaskElt(i);
5454    if (EltIdx == (int)i || EltIdx < 0)
5455      MaskVals |= (1<<i);
5456    else if (EltIdx == (int)(i + NumElems))
5457      continue; // Bit is set to zero;
5458    else
5459      return SDValue();
5460  }
5461
5462  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5463  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5464  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5465                             DAG.getConstant(MaskVals, MVT::i32));
5466  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5467}
5468
5469// v8i16 shuffles - Prefer shuffles in the following order:
5470// 1. [all]   pshuflw, pshufhw, optional move
5471// 2. [ssse3] 1 x pshufb
5472// 3. [ssse3] 2 x pshufb + 1 x por
5473// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5474SDValue
5475X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5476                                            SelectionDAG &DAG) const {
5477  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5478  SDValue V1 = SVOp->getOperand(0);
5479  SDValue V2 = SVOp->getOperand(1);
5480  DebugLoc dl = SVOp->getDebugLoc();
5481  SmallVector<int, 8> MaskVals;
5482
5483  // Determine if more than 1 of the words in each of the low and high quadwords
5484  // of the result come from the same quadword of one of the two inputs.  Undef
5485  // mask values count as coming from any quadword, for better codegen.
5486  unsigned LoQuad[] = { 0, 0, 0, 0 };
5487  unsigned HiQuad[] = { 0, 0, 0, 0 };
5488  std::bitset<4> InputQuads;
5489  for (unsigned i = 0; i < 8; ++i) {
5490    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5491    int EltIdx = SVOp->getMaskElt(i);
5492    MaskVals.push_back(EltIdx);
5493    if (EltIdx < 0) {
5494      ++Quad[0];
5495      ++Quad[1];
5496      ++Quad[2];
5497      ++Quad[3];
5498      continue;
5499    }
5500    ++Quad[EltIdx / 4];
5501    InputQuads.set(EltIdx / 4);
5502  }
5503
5504  int BestLoQuad = -1;
5505  unsigned MaxQuad = 1;
5506  for (unsigned i = 0; i < 4; ++i) {
5507    if (LoQuad[i] > MaxQuad) {
5508      BestLoQuad = i;
5509      MaxQuad = LoQuad[i];
5510    }
5511  }
5512
5513  int BestHiQuad = -1;
5514  MaxQuad = 1;
5515  for (unsigned i = 0; i < 4; ++i) {
5516    if (HiQuad[i] > MaxQuad) {
5517      BestHiQuad = i;
5518      MaxQuad = HiQuad[i];
5519    }
5520  }
5521
5522  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5523  // of the two input vectors, shuffle them into one input vector so only a
5524  // single pshufb instruction is necessary. If There are more than 2 input
5525  // quads, disable the next transformation since it does not help SSSE3.
5526  bool V1Used = InputQuads[0] || InputQuads[1];
5527  bool V2Used = InputQuads[2] || InputQuads[3];
5528  if (Subtarget->hasSSSE3()) {
5529    if (InputQuads.count() == 2 && V1Used && V2Used) {
5530      BestLoQuad = InputQuads[0] ? 0 : 1;
5531      BestHiQuad = InputQuads[2] ? 2 : 3;
5532    }
5533    if (InputQuads.count() > 2) {
5534      BestLoQuad = -1;
5535      BestHiQuad = -1;
5536    }
5537  }
5538
5539  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5540  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5541  // words from all 4 input quadwords.
5542  SDValue NewV;
5543  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5544    int MaskV[] = {
5545      BestLoQuad < 0 ? 0 : BestLoQuad,
5546      BestHiQuad < 0 ? 1 : BestHiQuad
5547    };
5548    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5549                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5550                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5551    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5552
5553    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5554    // source words for the shuffle, to aid later transformations.
5555    bool AllWordsInNewV = true;
5556    bool InOrder[2] = { true, true };
5557    for (unsigned i = 0; i != 8; ++i) {
5558      int idx = MaskVals[i];
5559      if (idx != (int)i)
5560        InOrder[i/4] = false;
5561      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5562        continue;
5563      AllWordsInNewV = false;
5564      break;
5565    }
5566
5567    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5568    if (AllWordsInNewV) {
5569      for (int i = 0; i != 8; ++i) {
5570        int idx = MaskVals[i];
5571        if (idx < 0)
5572          continue;
5573        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5574        if ((idx != i) && idx < 4)
5575          pshufhw = false;
5576        if ((idx != i) && idx > 3)
5577          pshuflw = false;
5578      }
5579      V1 = NewV;
5580      V2Used = false;
5581      BestLoQuad = 0;
5582      BestHiQuad = 1;
5583    }
5584
5585    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5586    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5587    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5588      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5589      unsigned TargetMask = 0;
5590      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5591                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5592      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5593      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5594                             getShufflePSHUFLWImmediate(SVOp);
5595      V1 = NewV.getOperand(0);
5596      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5597    }
5598  }
5599
5600  // If we have SSSE3, and all words of the result are from 1 input vector,
5601  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5602  // is present, fall back to case 4.
5603  if (Subtarget->hasSSSE3()) {
5604    SmallVector<SDValue,16> pshufbMask;
5605
5606    // If we have elements from both input vectors, set the high bit of the
5607    // shuffle mask element to zero out elements that come from V2 in the V1
5608    // mask, and elements that come from V1 in the V2 mask, so that the two
5609    // results can be OR'd together.
5610    bool TwoInputs = V1Used && V2Used;
5611    for (unsigned i = 0; i != 8; ++i) {
5612      int EltIdx = MaskVals[i] * 2;
5613      if (TwoInputs && (EltIdx >= 16)) {
5614        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5615        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5616        continue;
5617      }
5618      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5619      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5620    }
5621    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5622    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5623                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5624                                 MVT::v16i8, &pshufbMask[0], 16));
5625    if (!TwoInputs)
5626      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5627
5628    // Calculate the shuffle mask for the second input, shuffle it, and
5629    // OR it with the first shuffled input.
5630    pshufbMask.clear();
5631    for (unsigned i = 0; i != 8; ++i) {
5632      int EltIdx = MaskVals[i] * 2;
5633      if (EltIdx < 16) {
5634        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5635        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5636        continue;
5637      }
5638      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5639      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5640    }
5641    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5642    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5643                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5644                                 MVT::v16i8, &pshufbMask[0], 16));
5645    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5646    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5647  }
5648
5649  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5650  // and update MaskVals with new element order.
5651  std::bitset<8> InOrder;
5652  if (BestLoQuad >= 0) {
5653    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5654    for (int i = 0; i != 4; ++i) {
5655      int idx = MaskVals[i];
5656      if (idx < 0) {
5657        InOrder.set(i);
5658      } else if ((idx / 4) == BestLoQuad) {
5659        MaskV[i] = idx & 3;
5660        InOrder.set(i);
5661      }
5662    }
5663    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5664                                &MaskV[0]);
5665
5666    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5667      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5668      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5669                                  NewV.getOperand(0),
5670                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5671    }
5672  }
5673
5674  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5675  // and update MaskVals with the new element order.
5676  if (BestHiQuad >= 0) {
5677    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5678    for (unsigned i = 4; i != 8; ++i) {
5679      int idx = MaskVals[i];
5680      if (idx < 0) {
5681        InOrder.set(i);
5682      } else if ((idx / 4) == BestHiQuad) {
5683        MaskV[i] = (idx & 3) + 4;
5684        InOrder.set(i);
5685      }
5686    }
5687    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5688                                &MaskV[0]);
5689
5690    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5691      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5692      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5693                                  NewV.getOperand(0),
5694                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5695    }
5696  }
5697
5698  // In case BestHi & BestLo were both -1, which means each quadword has a word
5699  // from each of the four input quadwords, calculate the InOrder bitvector now
5700  // before falling through to the insert/extract cleanup.
5701  if (BestLoQuad == -1 && BestHiQuad == -1) {
5702    NewV = V1;
5703    for (int i = 0; i != 8; ++i)
5704      if (MaskVals[i] < 0 || MaskVals[i] == i)
5705        InOrder.set(i);
5706  }
5707
5708  // The other elements are put in the right place using pextrw and pinsrw.
5709  for (unsigned i = 0; i != 8; ++i) {
5710    if (InOrder[i])
5711      continue;
5712    int EltIdx = MaskVals[i];
5713    if (EltIdx < 0)
5714      continue;
5715    SDValue ExtOp = (EltIdx < 8)
5716    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5717                  DAG.getIntPtrConstant(EltIdx))
5718    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5719                  DAG.getIntPtrConstant(EltIdx - 8));
5720    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5721                       DAG.getIntPtrConstant(i));
5722  }
5723  return NewV;
5724}
5725
5726// v16i8 shuffles - Prefer shuffles in the following order:
5727// 1. [ssse3] 1 x pshufb
5728// 2. [ssse3] 2 x pshufb + 1 x por
5729// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5730static
5731SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5732                                 SelectionDAG &DAG,
5733                                 const X86TargetLowering &TLI) {
5734  SDValue V1 = SVOp->getOperand(0);
5735  SDValue V2 = SVOp->getOperand(1);
5736  DebugLoc dl = SVOp->getDebugLoc();
5737  ArrayRef<int> MaskVals = SVOp->getMask();
5738
5739  // If we have SSSE3, case 1 is generated when all result bytes come from
5740  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5741  // present, fall back to case 3.
5742  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5743  bool V1Only = true;
5744  bool V2Only = true;
5745  for (unsigned i = 0; i < 16; ++i) {
5746    int EltIdx = MaskVals[i];
5747    if (EltIdx < 0)
5748      continue;
5749    if (EltIdx < 16)
5750      V2Only = false;
5751    else
5752      V1Only = false;
5753  }
5754
5755  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5756  if (TLI.getSubtarget()->hasSSSE3()) {
5757    SmallVector<SDValue,16> pshufbMask;
5758
5759    // If all result elements are from one input vector, then only translate
5760    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5761    //
5762    // Otherwise, we have elements from both input vectors, and must zero out
5763    // elements that come from V2 in the first mask, and V1 in the second mask
5764    // so that we can OR them together.
5765    bool TwoInputs = !(V1Only || V2Only);
5766    for (unsigned i = 0; i != 16; ++i) {
5767      int EltIdx = MaskVals[i];
5768      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5769        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5770        continue;
5771      }
5772      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5773    }
5774    // If all the elements are from V2, assign it to V1 and return after
5775    // building the first pshufb.
5776    if (V2Only)
5777      V1 = V2;
5778    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5779                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5780                                 MVT::v16i8, &pshufbMask[0], 16));
5781    if (!TwoInputs)
5782      return V1;
5783
5784    // Calculate the shuffle mask for the second input, shuffle it, and
5785    // OR it with the first shuffled input.
5786    pshufbMask.clear();
5787    for (unsigned i = 0; i != 16; ++i) {
5788      int EltIdx = MaskVals[i];
5789      if (EltIdx < 16) {
5790        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5791        continue;
5792      }
5793      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5794    }
5795    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5796                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5797                                 MVT::v16i8, &pshufbMask[0], 16));
5798    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5799  }
5800
5801  // No SSSE3 - Calculate in place words and then fix all out of place words
5802  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5803  // the 16 different words that comprise the two doublequadword input vectors.
5804  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5805  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5806  SDValue NewV = V2Only ? V2 : V1;
5807  for (int i = 0; i != 8; ++i) {
5808    int Elt0 = MaskVals[i*2];
5809    int Elt1 = MaskVals[i*2+1];
5810
5811    // This word of the result is all undef, skip it.
5812    if (Elt0 < 0 && Elt1 < 0)
5813      continue;
5814
5815    // This word of the result is already in the correct place, skip it.
5816    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5817      continue;
5818    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5819      continue;
5820
5821    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5822    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5823    SDValue InsElt;
5824
5825    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5826    // using a single extract together, load it and store it.
5827    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5828      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5829                           DAG.getIntPtrConstant(Elt1 / 2));
5830      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5831                        DAG.getIntPtrConstant(i));
5832      continue;
5833    }
5834
5835    // If Elt1 is defined, extract it from the appropriate source.  If the
5836    // source byte is not also odd, shift the extracted word left 8 bits
5837    // otherwise clear the bottom 8 bits if we need to do an or.
5838    if (Elt1 >= 0) {
5839      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5840                           DAG.getIntPtrConstant(Elt1 / 2));
5841      if ((Elt1 & 1) == 0)
5842        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5843                             DAG.getConstant(8,
5844                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5845      else if (Elt0 >= 0)
5846        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5847                             DAG.getConstant(0xFF00, MVT::i16));
5848    }
5849    // If Elt0 is defined, extract it from the appropriate source.  If the
5850    // source byte is not also even, shift the extracted word right 8 bits. If
5851    // Elt1 was also defined, OR the extracted values together before
5852    // inserting them in the result.
5853    if (Elt0 >= 0) {
5854      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5855                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5856      if ((Elt0 & 1) != 0)
5857        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5858                              DAG.getConstant(8,
5859                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5860      else if (Elt1 >= 0)
5861        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5862                             DAG.getConstant(0x00FF, MVT::i16));
5863      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5864                         : InsElt0;
5865    }
5866    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5867                       DAG.getIntPtrConstant(i));
5868  }
5869  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5870}
5871
5872/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5873/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5874/// done when every pair / quad of shuffle mask elements point to elements in
5875/// the right sequence. e.g.
5876/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5877static
5878SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5879                                 SelectionDAG &DAG, DebugLoc dl) {
5880  EVT VT = SVOp->getValueType(0);
5881  SDValue V1 = SVOp->getOperand(0);
5882  SDValue V2 = SVOp->getOperand(1);
5883  unsigned NumElems = VT.getVectorNumElements();
5884  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5885  EVT NewVT;
5886  switch (VT.getSimpleVT().SimpleTy) {
5887  default: llvm_unreachable("Unexpected!");
5888  case MVT::v4f32: NewVT = MVT::v2f64; break;
5889  case MVT::v4i32: NewVT = MVT::v2i64; break;
5890  case MVT::v8i16: NewVT = MVT::v4i32; break;
5891  case MVT::v16i8: NewVT = MVT::v4i32; break;
5892  }
5893
5894  int Scale = NumElems / NewWidth;
5895  SmallVector<int, 8> MaskVec;
5896  for (unsigned i = 0; i < NumElems; i += Scale) {
5897    int StartIdx = -1;
5898    for (int j = 0; j < Scale; ++j) {
5899      int EltIdx = SVOp->getMaskElt(i+j);
5900      if (EltIdx < 0)
5901        continue;
5902      if (StartIdx == -1)
5903        StartIdx = EltIdx - (EltIdx % Scale);
5904      if (EltIdx != StartIdx + j)
5905        return SDValue();
5906    }
5907    if (StartIdx == -1)
5908      MaskVec.push_back(-1);
5909    else
5910      MaskVec.push_back(StartIdx / Scale);
5911  }
5912
5913  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5914  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5915  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5916}
5917
5918/// getVZextMovL - Return a zero-extending vector move low node.
5919///
5920static SDValue getVZextMovL(EVT VT, EVT OpVT,
5921                            SDValue SrcOp, SelectionDAG &DAG,
5922                            const X86Subtarget *Subtarget, DebugLoc dl) {
5923  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5924    LoadSDNode *LD = NULL;
5925    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5926      LD = dyn_cast<LoadSDNode>(SrcOp);
5927    if (!LD) {
5928      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5929      // instead.
5930      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5931      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5932          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5933          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5934          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5935        // PR2108
5936        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5937        return DAG.getNode(ISD::BITCAST, dl, VT,
5938                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5939                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5940                                                   OpVT,
5941                                                   SrcOp.getOperand(0)
5942                                                          .getOperand(0))));
5943      }
5944    }
5945  }
5946
5947  return DAG.getNode(ISD::BITCAST, dl, VT,
5948                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5949                                 DAG.getNode(ISD::BITCAST, dl,
5950                                             OpVT, SrcOp)));
5951}
5952
5953/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5954/// which could not be matched by any known target speficic shuffle
5955static SDValue
5956LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5957  EVT VT = SVOp->getValueType(0);
5958
5959  unsigned NumElems = VT.getVectorNumElements();
5960  unsigned NumLaneElems = NumElems / 2;
5961
5962  DebugLoc dl = SVOp->getDebugLoc();
5963  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5964  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5965  SDValue Shufs[2];
5966
5967  SmallVector<int, 16> Mask;
5968  for (unsigned l = 0; l < 2; ++l) {
5969    // Build a shuffle mask for the output, discovering on the fly which
5970    // input vectors to use as shuffle operands (recorded in InputUsed).
5971    // If building a suitable shuffle vector proves too hard, then bail
5972    // out with useBuildVector set.
5973    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5974    unsigned LaneStart = l * NumLaneElems;
5975    for (unsigned i = 0; i != NumLaneElems; ++i) {
5976      // The mask element.  This indexes into the input.
5977      int Idx = SVOp->getMaskElt(i+LaneStart);
5978      if (Idx < 0) {
5979        // the mask element does not index into any input vector.
5980        Mask.push_back(-1);
5981        continue;
5982      }
5983
5984      // The input vector this mask element indexes into.
5985      int Input = Idx / NumLaneElems;
5986
5987      // Turn the index into an offset from the start of the input vector.
5988      Idx -= Input * NumLaneElems;
5989
5990      // Find or create a shuffle vector operand to hold this input.
5991      unsigned OpNo;
5992      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
5993        if (InputUsed[OpNo] == Input)
5994          // This input vector is already an operand.
5995          break;
5996        if (InputUsed[OpNo] < 0) {
5997          // Create a new operand for this input vector.
5998          InputUsed[OpNo] = Input;
5999          break;
6000        }
6001      }
6002
6003      if (OpNo >= array_lengthof(InputUsed)) {
6004        // More than two input vectors used! Give up.
6005        return SDValue();
6006      }
6007
6008      // Add the mask index for the new shuffle vector.
6009      Mask.push_back(Idx + OpNo * NumLaneElems);
6010    }
6011
6012    if (InputUsed[0] < 0) {
6013      // No input vectors were used! The result is undefined.
6014      Shufs[l] = DAG.getUNDEF(NVT);
6015    } else {
6016      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6017                                        (InputUsed[0] % 2) * NumLaneElems,
6018                                        DAG, dl);
6019      // If only one input was used, use an undefined vector for the other.
6020      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6021        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6022                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6023      // At least one input vector was used. Create a new shuffle vector.
6024      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6025    }
6026
6027    Mask.clear();
6028  }
6029
6030  // Concatenate the result back
6031  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Shufs[0], Shufs[1]);
6032}
6033
6034/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6035/// 4 elements, and match them with several different shuffle types.
6036static SDValue
6037LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6038  SDValue V1 = SVOp->getOperand(0);
6039  SDValue V2 = SVOp->getOperand(1);
6040  DebugLoc dl = SVOp->getDebugLoc();
6041  EVT VT = SVOp->getValueType(0);
6042
6043  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6044
6045  std::pair<int, int> Locs[4];
6046  int Mask1[] = { -1, -1, -1, -1 };
6047  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6048
6049  unsigned NumHi = 0;
6050  unsigned NumLo = 0;
6051  for (unsigned i = 0; i != 4; ++i) {
6052    int Idx = PermMask[i];
6053    if (Idx < 0) {
6054      Locs[i] = std::make_pair(-1, -1);
6055    } else {
6056      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6057      if (Idx < 4) {
6058        Locs[i] = std::make_pair(0, NumLo);
6059        Mask1[NumLo] = Idx;
6060        NumLo++;
6061      } else {
6062        Locs[i] = std::make_pair(1, NumHi);
6063        if (2+NumHi < 4)
6064          Mask1[2+NumHi] = Idx;
6065        NumHi++;
6066      }
6067    }
6068  }
6069
6070  if (NumLo <= 2 && NumHi <= 2) {
6071    // If no more than two elements come from either vector. This can be
6072    // implemented with two shuffles. First shuffle gather the elements.
6073    // The second shuffle, which takes the first shuffle as both of its
6074    // vector operands, put the elements into the right order.
6075    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6076
6077    int Mask2[] = { -1, -1, -1, -1 };
6078
6079    for (unsigned i = 0; i != 4; ++i)
6080      if (Locs[i].first != -1) {
6081        unsigned Idx = (i < 2) ? 0 : 4;
6082        Idx += Locs[i].first * 2 + Locs[i].second;
6083        Mask2[i] = Idx;
6084      }
6085
6086    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6087  }
6088
6089  if (NumLo == 3 || NumHi == 3) {
6090    // Otherwise, we must have three elements from one vector, call it X, and
6091    // one element from the other, call it Y.  First, use a shufps to build an
6092    // intermediate vector with the one element from Y and the element from X
6093    // that will be in the same half in the final destination (the indexes don't
6094    // matter). Then, use a shufps to build the final vector, taking the half
6095    // containing the element from Y from the intermediate, and the other half
6096    // from X.
6097    if (NumHi == 3) {
6098      // Normalize it so the 3 elements come from V1.
6099      CommuteVectorShuffleMask(PermMask, 4);
6100      std::swap(V1, V2);
6101    }
6102
6103    // Find the element from V2.
6104    unsigned HiIndex;
6105    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6106      int Val = PermMask[HiIndex];
6107      if (Val < 0)
6108        continue;
6109      if (Val >= 4)
6110        break;
6111    }
6112
6113    Mask1[0] = PermMask[HiIndex];
6114    Mask1[1] = -1;
6115    Mask1[2] = PermMask[HiIndex^1];
6116    Mask1[3] = -1;
6117    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6118
6119    if (HiIndex >= 2) {
6120      Mask1[0] = PermMask[0];
6121      Mask1[1] = PermMask[1];
6122      Mask1[2] = HiIndex & 1 ? 6 : 4;
6123      Mask1[3] = HiIndex & 1 ? 4 : 6;
6124      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6125    }
6126
6127    Mask1[0] = HiIndex & 1 ? 2 : 0;
6128    Mask1[1] = HiIndex & 1 ? 0 : 2;
6129    Mask1[2] = PermMask[2];
6130    Mask1[3] = PermMask[3];
6131    if (Mask1[2] >= 0)
6132      Mask1[2] += 4;
6133    if (Mask1[3] >= 0)
6134      Mask1[3] += 4;
6135    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6136  }
6137
6138  // Break it into (shuffle shuffle_hi, shuffle_lo).
6139  int LoMask[] = { -1, -1, -1, -1 };
6140  int HiMask[] = { -1, -1, -1, -1 };
6141
6142  int *MaskPtr = LoMask;
6143  unsigned MaskIdx = 0;
6144  unsigned LoIdx = 0;
6145  unsigned HiIdx = 2;
6146  for (unsigned i = 0; i != 4; ++i) {
6147    if (i == 2) {
6148      MaskPtr = HiMask;
6149      MaskIdx = 1;
6150      LoIdx = 0;
6151      HiIdx = 2;
6152    }
6153    int Idx = PermMask[i];
6154    if (Idx < 0) {
6155      Locs[i] = std::make_pair(-1, -1);
6156    } else if (Idx < 4) {
6157      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6158      MaskPtr[LoIdx] = Idx;
6159      LoIdx++;
6160    } else {
6161      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6162      MaskPtr[HiIdx] = Idx;
6163      HiIdx++;
6164    }
6165  }
6166
6167  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6168  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6169  int MaskOps[] = { -1, -1, -1, -1 };
6170  for (unsigned i = 0; i != 4; ++i)
6171    if (Locs[i].first != -1)
6172      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6173  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6174}
6175
6176static bool MayFoldVectorLoad(SDValue V) {
6177  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6178    V = V.getOperand(0);
6179  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6180    V = V.getOperand(0);
6181  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6182      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6183    // BUILD_VECTOR (load), undef
6184    V = V.getOperand(0);
6185  if (MayFoldLoad(V))
6186    return true;
6187  return false;
6188}
6189
6190// FIXME: the version above should always be used. Since there's
6191// a bug where several vector shuffles can't be folded because the
6192// DAG is not updated during lowering and a node claims to have two
6193// uses while it only has one, use this version, and let isel match
6194// another instruction if the load really happens to have more than
6195// one use. Remove this version after this bug get fixed.
6196// rdar://8434668, PR8156
6197static bool RelaxedMayFoldVectorLoad(SDValue V) {
6198  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6199    V = V.getOperand(0);
6200  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6201    V = V.getOperand(0);
6202  if (ISD::isNormalLoad(V.getNode()))
6203    return true;
6204  return false;
6205}
6206
6207static
6208SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6209  EVT VT = Op.getValueType();
6210
6211  // Canonizalize to v2f64.
6212  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6213  return DAG.getNode(ISD::BITCAST, dl, VT,
6214                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6215                                          V1, DAG));
6216}
6217
6218static
6219SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6220                        bool HasSSE2) {
6221  SDValue V1 = Op.getOperand(0);
6222  SDValue V2 = Op.getOperand(1);
6223  EVT VT = Op.getValueType();
6224
6225  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6226
6227  if (HasSSE2 && VT == MVT::v2f64)
6228    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6229
6230  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6231  return DAG.getNode(ISD::BITCAST, dl, VT,
6232                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6233                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6234                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6235}
6236
6237static
6238SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6239  SDValue V1 = Op.getOperand(0);
6240  SDValue V2 = Op.getOperand(1);
6241  EVT VT = Op.getValueType();
6242
6243  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6244         "unsupported shuffle type");
6245
6246  if (V2.getOpcode() == ISD::UNDEF)
6247    V2 = V1;
6248
6249  // v4i32 or v4f32
6250  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6251}
6252
6253static
6254SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6255  SDValue V1 = Op.getOperand(0);
6256  SDValue V2 = Op.getOperand(1);
6257  EVT VT = Op.getValueType();
6258  unsigned NumElems = VT.getVectorNumElements();
6259
6260  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6261  // operand of these instructions is only memory, so check if there's a
6262  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6263  // same masks.
6264  bool CanFoldLoad = false;
6265
6266  // Trivial case, when V2 comes from a load.
6267  if (MayFoldVectorLoad(V2))
6268    CanFoldLoad = true;
6269
6270  // When V1 is a load, it can be folded later into a store in isel, example:
6271  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6272  //    turns into:
6273  //  (MOVLPSmr addr:$src1, VR128:$src2)
6274  // So, recognize this potential and also use MOVLPS or MOVLPD
6275  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6276    CanFoldLoad = true;
6277
6278  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6279  if (CanFoldLoad) {
6280    if (HasSSE2 && NumElems == 2)
6281      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6282
6283    if (NumElems == 4)
6284      // If we don't care about the second element, procede to use movss.
6285      if (SVOp->getMaskElt(1) != -1)
6286        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6287  }
6288
6289  // movl and movlp will both match v2i64, but v2i64 is never matched by
6290  // movl earlier because we make it strict to avoid messing with the movlp load
6291  // folding logic (see the code above getMOVLP call). Match it here then,
6292  // this is horrible, but will stay like this until we move all shuffle
6293  // matching to x86 specific nodes. Note that for the 1st condition all
6294  // types are matched with movsd.
6295  if (HasSSE2) {
6296    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6297    // as to remove this logic from here, as much as possible
6298    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6299      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6300    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6301  }
6302
6303  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6304
6305  // Invert the operand order and use SHUFPS to match it.
6306  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6307                              getShuffleSHUFImmediate(SVOp), DAG);
6308}
6309
6310SDValue
6311X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6312  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6313  EVT VT = Op.getValueType();
6314  DebugLoc dl = Op.getDebugLoc();
6315  SDValue V1 = Op.getOperand(0);
6316  SDValue V2 = Op.getOperand(1);
6317
6318  if (isZeroShuffle(SVOp))
6319    return getZeroVector(VT, Subtarget, DAG, dl);
6320
6321  // Handle splat operations
6322  if (SVOp->isSplat()) {
6323    unsigned NumElem = VT.getVectorNumElements();
6324    int Size = VT.getSizeInBits();
6325
6326    // Use vbroadcast whenever the splat comes from a foldable load
6327    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6328    if (Broadcast.getNode())
6329      return Broadcast;
6330
6331    // Handle splats by matching through known shuffle masks
6332    if ((Size == 128 && NumElem <= 4) ||
6333        (Size == 256 && NumElem < 8))
6334      return SDValue();
6335
6336    // All remaning splats are promoted to target supported vector shuffles.
6337    return PromoteSplat(SVOp, DAG);
6338  }
6339
6340  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6341  // do it!
6342  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6343    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6344    if (NewOp.getNode())
6345      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6346  } else if ((VT == MVT::v4i32 ||
6347             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6348    // FIXME: Figure out a cleaner way to do this.
6349    // Try to make use of movq to zero out the top part.
6350    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6351      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6352      if (NewOp.getNode()) {
6353        EVT NewVT = NewOp.getValueType();
6354        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6355                               NewVT, true, false))
6356          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6357                              DAG, Subtarget, dl);
6358      }
6359    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6360      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6361      if (NewOp.getNode()) {
6362        EVT NewVT = NewOp.getValueType();
6363        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6364          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6365                              DAG, Subtarget, dl);
6366      }
6367    }
6368  }
6369  return SDValue();
6370}
6371
6372SDValue
6373X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6374  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6375  SDValue V1 = Op.getOperand(0);
6376  SDValue V2 = Op.getOperand(1);
6377  EVT VT = Op.getValueType();
6378  DebugLoc dl = Op.getDebugLoc();
6379  unsigned NumElems = VT.getVectorNumElements();
6380  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6381  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6382  bool V1IsSplat = false;
6383  bool V2IsSplat = false;
6384  bool HasSSE2 = Subtarget->hasSSE2();
6385  bool HasAVX    = Subtarget->hasAVX();
6386  bool HasAVX2   = Subtarget->hasAVX2();
6387  MachineFunction &MF = DAG.getMachineFunction();
6388  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6389
6390  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6391
6392  if (V1IsUndef && V2IsUndef)
6393    return DAG.getUNDEF(VT);
6394
6395  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6396
6397  // Vector shuffle lowering takes 3 steps:
6398  //
6399  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6400  //    narrowing and commutation of operands should be handled.
6401  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6402  //    shuffle nodes.
6403  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6404  //    so the shuffle can be broken into other shuffles and the legalizer can
6405  //    try the lowering again.
6406  //
6407  // The general idea is that no vector_shuffle operation should be left to
6408  // be matched during isel, all of them must be converted to a target specific
6409  // node here.
6410
6411  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6412  // narrowing and commutation of operands should be handled. The actual code
6413  // doesn't include all of those, work in progress...
6414  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6415  if (NewOp.getNode())
6416    return NewOp;
6417
6418  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6419
6420  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6421  // unpckh_undef). Only use pshufd if speed is more important than size.
6422  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6423    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6424  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6425    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6426
6427  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6428      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6429    return getMOVDDup(Op, dl, V1, DAG);
6430
6431  if (isMOVHLPS_v_undef_Mask(M, VT))
6432    return getMOVHighToLow(Op, dl, DAG);
6433
6434  // Use to match splats
6435  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6436      (VT == MVT::v2f64 || VT == MVT::v2i64))
6437    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6438
6439  if (isPSHUFDMask(M, VT)) {
6440    // The actual implementation will match the mask in the if above and then
6441    // during isel it can match several different instructions, not only pshufd
6442    // as its name says, sad but true, emulate the behavior for now...
6443    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6444      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6445
6446    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6447
6448    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6449      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6450
6451    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6452      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6453
6454    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6455                                TargetMask, DAG);
6456  }
6457
6458  // Check if this can be converted into a logical shift.
6459  bool isLeft = false;
6460  unsigned ShAmt = 0;
6461  SDValue ShVal;
6462  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6463  if (isShift && ShVal.hasOneUse()) {
6464    // If the shifted value has multiple uses, it may be cheaper to use
6465    // v_set0 + movlhps or movhlps, etc.
6466    EVT EltVT = VT.getVectorElementType();
6467    ShAmt *= EltVT.getSizeInBits();
6468    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6469  }
6470
6471  if (isMOVLMask(M, VT)) {
6472    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6473      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6474    if (!isMOVLPMask(M, VT)) {
6475      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6476        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6477
6478      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6479        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6480    }
6481  }
6482
6483  // FIXME: fold these into legal mask.
6484  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6485    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6486
6487  if (isMOVHLPSMask(M, VT))
6488    return getMOVHighToLow(Op, dl, DAG);
6489
6490  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6491    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6492
6493  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6494    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6495
6496  if (isMOVLPMask(M, VT))
6497    return getMOVLP(Op, dl, DAG, HasSSE2);
6498
6499  if (ShouldXformToMOVHLPS(M, VT) ||
6500      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6501    return CommuteVectorShuffle(SVOp, DAG);
6502
6503  if (isShift) {
6504    // No better options. Use a vshldq / vsrldq.
6505    EVT EltVT = VT.getVectorElementType();
6506    ShAmt *= EltVT.getSizeInBits();
6507    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6508  }
6509
6510  bool Commuted = false;
6511  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6512  // 1,1,1,1 -> v8i16 though.
6513  V1IsSplat = isSplatVector(V1.getNode());
6514  V2IsSplat = isSplatVector(V2.getNode());
6515
6516  // Canonicalize the splat or undef, if present, to be on the RHS.
6517  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6518    CommuteVectorShuffleMask(M, NumElems);
6519    std::swap(V1, V2);
6520    std::swap(V1IsSplat, V2IsSplat);
6521    Commuted = true;
6522  }
6523
6524  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6525    // Shuffling low element of v1 into undef, just return v1.
6526    if (V2IsUndef)
6527      return V1;
6528    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6529    // the instruction selector will not match, so get a canonical MOVL with
6530    // swapped operands to undo the commute.
6531    return getMOVL(DAG, dl, VT, V2, V1);
6532  }
6533
6534  if (isUNPCKLMask(M, VT, HasAVX2))
6535    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6536
6537  if (isUNPCKHMask(M, VT, HasAVX2))
6538    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6539
6540  if (V2IsSplat) {
6541    // Normalize mask so all entries that point to V2 points to its first
6542    // element then try to match unpck{h|l} again. If match, return a
6543    // new vector_shuffle with the corrected mask.p
6544    SmallVector<int, 8> NewMask(M.begin(), M.end());
6545    NormalizeMask(NewMask, NumElems);
6546    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6547      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6548    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6549      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6550  }
6551
6552  if (Commuted) {
6553    // Commute is back and try unpck* again.
6554    // FIXME: this seems wrong.
6555    CommuteVectorShuffleMask(M, NumElems);
6556    std::swap(V1, V2);
6557    std::swap(V1IsSplat, V2IsSplat);
6558    Commuted = false;
6559
6560    if (isUNPCKLMask(M, VT, HasAVX2))
6561      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6562
6563    if (isUNPCKHMask(M, VT, HasAVX2))
6564      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6565  }
6566
6567  // Normalize the node to match x86 shuffle ops if needed
6568  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6569    return CommuteVectorShuffle(SVOp, DAG);
6570
6571  // The checks below are all present in isShuffleMaskLegal, but they are
6572  // inlined here right now to enable us to directly emit target specific
6573  // nodes, and remove one by one until they don't return Op anymore.
6574
6575  if (isPALIGNRMask(M, VT, Subtarget))
6576    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6577                                getShufflePALIGNRImmediate(SVOp),
6578                                DAG);
6579
6580  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6581      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6582    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6583      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6584  }
6585
6586  if (isPSHUFHWMask(M, VT))
6587    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6588                                getShufflePSHUFHWImmediate(SVOp),
6589                                DAG);
6590
6591  if (isPSHUFLWMask(M, VT))
6592    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6593                                getShufflePSHUFLWImmediate(SVOp),
6594                                DAG);
6595
6596  if (isSHUFPMask(M, VT, HasAVX))
6597    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6598                                getShuffleSHUFImmediate(SVOp), DAG);
6599
6600  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6601    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6602  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6603    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6604
6605  //===--------------------------------------------------------------------===//
6606  // Generate target specific nodes for 128 or 256-bit shuffles only
6607  // supported in the AVX instruction set.
6608  //
6609
6610  // Handle VMOVDDUPY permutations
6611  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6612    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6613
6614  // Handle VPERMILPS/D* permutations
6615  if (isVPERMILPMask(M, VT, HasAVX)) {
6616    if (HasAVX2 && VT == MVT::v8i32)
6617      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6618                                  getShuffleSHUFImmediate(SVOp), DAG);
6619    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6620                                getShuffleSHUFImmediate(SVOp), DAG);
6621  }
6622
6623  // Handle VPERM2F128/VPERM2I128 permutations
6624  if (isVPERM2X128Mask(M, VT, HasAVX))
6625    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6626                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6627
6628  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6629  if (BlendOp.getNode())
6630    return BlendOp;
6631
6632  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6633    SmallVector<SDValue, 8> permclMask;
6634    for (unsigned i = 0; i != 8; ++i) {
6635      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6636    }
6637    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6638                               &permclMask[0], 8);
6639    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6640    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6641                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6642  }
6643
6644  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6645    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6646                                getShuffleCLImmediate(SVOp), DAG);
6647
6648
6649  //===--------------------------------------------------------------------===//
6650  // Since no target specific shuffle was selected for this generic one,
6651  // lower it into other known shuffles. FIXME: this isn't true yet, but
6652  // this is the plan.
6653  //
6654
6655  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6656  if (VT == MVT::v8i16) {
6657    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6658    if (NewOp.getNode())
6659      return NewOp;
6660  }
6661
6662  if (VT == MVT::v16i8) {
6663    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6664    if (NewOp.getNode())
6665      return NewOp;
6666  }
6667
6668  // Handle all 128-bit wide vectors with 4 elements, and match them with
6669  // several different shuffle types.
6670  if (NumElems == 4 && VT.getSizeInBits() == 128)
6671    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6672
6673  // Handle general 256-bit shuffles
6674  if (VT.is256BitVector())
6675    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6676
6677  return SDValue();
6678}
6679
6680SDValue
6681X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6682                                                SelectionDAG &DAG) const {
6683  EVT VT = Op.getValueType();
6684  DebugLoc dl = Op.getDebugLoc();
6685
6686  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6687    return SDValue();
6688
6689  if (VT.getSizeInBits() == 8) {
6690    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6691                                    Op.getOperand(0), Op.getOperand(1));
6692    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6693                                    DAG.getValueType(VT));
6694    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6695  }
6696
6697  if (VT.getSizeInBits() == 16) {
6698    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6699    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6700    if (Idx == 0)
6701      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6702                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6703                                     DAG.getNode(ISD::BITCAST, dl,
6704                                                 MVT::v4i32,
6705                                                 Op.getOperand(0)),
6706                                     Op.getOperand(1)));
6707    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6708                                    Op.getOperand(0), Op.getOperand(1));
6709    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6710                                    DAG.getValueType(VT));
6711    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6712  }
6713
6714  if (VT == MVT::f32) {
6715    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6716    // the result back to FR32 register. It's only worth matching if the
6717    // result has a single use which is a store or a bitcast to i32.  And in
6718    // the case of a store, it's not worth it if the index is a constant 0,
6719    // because a MOVSSmr can be used instead, which is smaller and faster.
6720    if (!Op.hasOneUse())
6721      return SDValue();
6722    SDNode *User = *Op.getNode()->use_begin();
6723    if ((User->getOpcode() != ISD::STORE ||
6724         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6725          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6726        (User->getOpcode() != ISD::BITCAST ||
6727         User->getValueType(0) != MVT::i32))
6728      return SDValue();
6729    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6730                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6731                                              Op.getOperand(0)),
6732                                              Op.getOperand(1));
6733    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6734  }
6735
6736  if (VT == MVT::i32 || VT == MVT::i64) {
6737    // ExtractPS/pextrq works with constant index.
6738    if (isa<ConstantSDNode>(Op.getOperand(1)))
6739      return Op;
6740  }
6741  return SDValue();
6742}
6743
6744
6745SDValue
6746X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6747                                           SelectionDAG &DAG) const {
6748  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6749    return SDValue();
6750
6751  SDValue Vec = Op.getOperand(0);
6752  EVT VecVT = Vec.getValueType();
6753
6754  // If this is a 256-bit vector result, first extract the 128-bit vector and
6755  // then extract the element from the 128-bit vector.
6756  if (VecVT.getSizeInBits() == 256) {
6757    DebugLoc dl = Op.getNode()->getDebugLoc();
6758    unsigned NumElems = VecVT.getVectorNumElements();
6759    SDValue Idx = Op.getOperand(1);
6760    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6761
6762    // Get the 128-bit vector.
6763    bool Upper = IdxVal >= NumElems/2;
6764    Vec = Extract128BitVector(Vec, Upper ? NumElems/2 : 0, DAG, dl);
6765
6766    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6767                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6768  }
6769
6770  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6771
6772  if (Subtarget->hasSSE41()) {
6773    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6774    if (Res.getNode())
6775      return Res;
6776  }
6777
6778  EVT VT = Op.getValueType();
6779  DebugLoc dl = Op.getDebugLoc();
6780  // TODO: handle v16i8.
6781  if (VT.getSizeInBits() == 16) {
6782    SDValue Vec = Op.getOperand(0);
6783    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6784    if (Idx == 0)
6785      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6786                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6787                                     DAG.getNode(ISD::BITCAST, dl,
6788                                                 MVT::v4i32, Vec),
6789                                     Op.getOperand(1)));
6790    // Transform it so it match pextrw which produces a 32-bit result.
6791    EVT EltVT = MVT::i32;
6792    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6793                                    Op.getOperand(0), Op.getOperand(1));
6794    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6795                                    DAG.getValueType(VT));
6796    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6797  }
6798
6799  if (VT.getSizeInBits() == 32) {
6800    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6801    if (Idx == 0)
6802      return Op;
6803
6804    // SHUFPS the element to the lowest double word, then movss.
6805    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6806    EVT VVT = Op.getOperand(0).getValueType();
6807    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6808                                       DAG.getUNDEF(VVT), Mask);
6809    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6810                       DAG.getIntPtrConstant(0));
6811  }
6812
6813  if (VT.getSizeInBits() == 64) {
6814    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6815    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6816    //        to match extract_elt for f64.
6817    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6818    if (Idx == 0)
6819      return Op;
6820
6821    // UNPCKHPD the element to the lowest double word, then movsd.
6822    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6823    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6824    int Mask[2] = { 1, -1 };
6825    EVT VVT = Op.getOperand(0).getValueType();
6826    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6827                                       DAG.getUNDEF(VVT), Mask);
6828    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6829                       DAG.getIntPtrConstant(0));
6830  }
6831
6832  return SDValue();
6833}
6834
6835SDValue
6836X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6837                                               SelectionDAG &DAG) const {
6838  EVT VT = Op.getValueType();
6839  EVT EltVT = VT.getVectorElementType();
6840  DebugLoc dl = Op.getDebugLoc();
6841
6842  SDValue N0 = Op.getOperand(0);
6843  SDValue N1 = Op.getOperand(1);
6844  SDValue N2 = Op.getOperand(2);
6845
6846  if (VT.getSizeInBits() == 256)
6847    return SDValue();
6848
6849  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6850      isa<ConstantSDNode>(N2)) {
6851    unsigned Opc;
6852    if (VT == MVT::v8i16)
6853      Opc = X86ISD::PINSRW;
6854    else if (VT == MVT::v16i8)
6855      Opc = X86ISD::PINSRB;
6856    else
6857      Opc = X86ISD::PINSRB;
6858
6859    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6860    // argument.
6861    if (N1.getValueType() != MVT::i32)
6862      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6863    if (N2.getValueType() != MVT::i32)
6864      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6865    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6866  }
6867
6868  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6869    // Bits [7:6] of the constant are the source select.  This will always be
6870    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6871    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6872    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6873    // Bits [5:4] of the constant are the destination select.  This is the
6874    //  value of the incoming immediate.
6875    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6876    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6877    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6878    // Create this as a scalar to vector..
6879    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6880    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6881  }
6882
6883  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
6884    // PINSR* works with constant index.
6885    return Op;
6886  }
6887  return SDValue();
6888}
6889
6890SDValue
6891X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6892  EVT VT = Op.getValueType();
6893  EVT EltVT = VT.getVectorElementType();
6894
6895  DebugLoc dl = Op.getDebugLoc();
6896  SDValue N0 = Op.getOperand(0);
6897  SDValue N1 = Op.getOperand(1);
6898  SDValue N2 = Op.getOperand(2);
6899
6900  // If this is a 256-bit vector result, first extract the 128-bit vector,
6901  // insert the element into the extracted half and then place it back.
6902  if (VT.getSizeInBits() == 256) {
6903    if (!isa<ConstantSDNode>(N2))
6904      return SDValue();
6905
6906    // Get the desired 128-bit vector half.
6907    unsigned NumElems = VT.getVectorNumElements();
6908    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6909    bool Upper = IdxVal >= NumElems/2;
6910    unsigned Ins128Idx = Upper ? NumElems/2 : 0;
6911    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6912
6913    // Insert the element into the desired half.
6914    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6915                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6916
6917    // Insert the changed part back to the 256-bit vector
6918    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6919  }
6920
6921  if (Subtarget->hasSSE41())
6922    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6923
6924  if (EltVT == MVT::i8)
6925    return SDValue();
6926
6927  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6928    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6929    // as its second argument.
6930    if (N1.getValueType() != MVT::i32)
6931      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6932    if (N2.getValueType() != MVT::i32)
6933      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6934    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6935  }
6936  return SDValue();
6937}
6938
6939SDValue
6940X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6941  LLVMContext *Context = DAG.getContext();
6942  DebugLoc dl = Op.getDebugLoc();
6943  EVT OpVT = Op.getValueType();
6944
6945  // If this is a 256-bit vector result, first insert into a 128-bit
6946  // vector and then insert into the 256-bit vector.
6947  if (OpVT.getSizeInBits() > 128) {
6948    // Insert into a 128-bit vector.
6949    EVT VT128 = EVT::getVectorVT(*Context,
6950                                 OpVT.getVectorElementType(),
6951                                 OpVT.getVectorNumElements() / 2);
6952
6953    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6954
6955    // Insert the 128-bit vector.
6956    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
6957  }
6958
6959  if (Op.getValueType() == MVT::v1i64 &&
6960      Op.getOperand(0).getValueType() == MVT::i64)
6961    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6962
6963  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6964  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6965         "Expected an SSE type!");
6966  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6967                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6968}
6969
6970// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6971// a simple subregister reference or explicit instructions to grab
6972// upper bits of a vector.
6973SDValue
6974X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6975  if (Subtarget->hasAVX()) {
6976    DebugLoc dl = Op.getNode()->getDebugLoc();
6977    SDValue Vec = Op.getNode()->getOperand(0);
6978    SDValue Idx = Op.getNode()->getOperand(1);
6979
6980    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
6981        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
6982        isa<ConstantSDNode>(Idx)) {
6983      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6984      return Extract128BitVector(Vec, IdxVal, DAG, dl);
6985    }
6986  }
6987  return SDValue();
6988}
6989
6990// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6991// simple superregister reference or explicit instructions to insert
6992// the upper bits of a vector.
6993SDValue
6994X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6995  if (Subtarget->hasAVX()) {
6996    DebugLoc dl = Op.getNode()->getDebugLoc();
6997    SDValue Vec = Op.getNode()->getOperand(0);
6998    SDValue SubVec = Op.getNode()->getOperand(1);
6999    SDValue Idx = Op.getNode()->getOperand(2);
7000
7001    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7002        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7003        isa<ConstantSDNode>(Idx)) {
7004      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7005      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7006    }
7007  }
7008  return SDValue();
7009}
7010
7011// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7012// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7013// one of the above mentioned nodes. It has to be wrapped because otherwise
7014// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7015// be used to form addressing mode. These wrapped nodes will be selected
7016// into MOV32ri.
7017SDValue
7018X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7019  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7020
7021  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7022  // global base reg.
7023  unsigned char OpFlag = 0;
7024  unsigned WrapperKind = X86ISD::Wrapper;
7025  CodeModel::Model M = getTargetMachine().getCodeModel();
7026
7027  if (Subtarget->isPICStyleRIPRel() &&
7028      (M == CodeModel::Small || M == CodeModel::Kernel))
7029    WrapperKind = X86ISD::WrapperRIP;
7030  else if (Subtarget->isPICStyleGOT())
7031    OpFlag = X86II::MO_GOTOFF;
7032  else if (Subtarget->isPICStyleStubPIC())
7033    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7034
7035  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7036                                             CP->getAlignment(),
7037                                             CP->getOffset(), OpFlag);
7038  DebugLoc DL = CP->getDebugLoc();
7039  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7040  // With PIC, the address is actually $g + Offset.
7041  if (OpFlag) {
7042    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7043                         DAG.getNode(X86ISD::GlobalBaseReg,
7044                                     DebugLoc(), getPointerTy()),
7045                         Result);
7046  }
7047
7048  return Result;
7049}
7050
7051SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7052  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7053
7054  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7055  // global base reg.
7056  unsigned char OpFlag = 0;
7057  unsigned WrapperKind = X86ISD::Wrapper;
7058  CodeModel::Model M = getTargetMachine().getCodeModel();
7059
7060  if (Subtarget->isPICStyleRIPRel() &&
7061      (M == CodeModel::Small || M == CodeModel::Kernel))
7062    WrapperKind = X86ISD::WrapperRIP;
7063  else if (Subtarget->isPICStyleGOT())
7064    OpFlag = X86II::MO_GOTOFF;
7065  else if (Subtarget->isPICStyleStubPIC())
7066    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7067
7068  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7069                                          OpFlag);
7070  DebugLoc DL = JT->getDebugLoc();
7071  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7072
7073  // With PIC, the address is actually $g + Offset.
7074  if (OpFlag)
7075    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7076                         DAG.getNode(X86ISD::GlobalBaseReg,
7077                                     DebugLoc(), getPointerTy()),
7078                         Result);
7079
7080  return Result;
7081}
7082
7083SDValue
7084X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7085  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7086
7087  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7088  // global base reg.
7089  unsigned char OpFlag = 0;
7090  unsigned WrapperKind = X86ISD::Wrapper;
7091  CodeModel::Model M = getTargetMachine().getCodeModel();
7092
7093  if (Subtarget->isPICStyleRIPRel() &&
7094      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7095    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7096      OpFlag = X86II::MO_GOTPCREL;
7097    WrapperKind = X86ISD::WrapperRIP;
7098  } else if (Subtarget->isPICStyleGOT()) {
7099    OpFlag = X86II::MO_GOT;
7100  } else if (Subtarget->isPICStyleStubPIC()) {
7101    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7102  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7103    OpFlag = X86II::MO_DARWIN_NONLAZY;
7104  }
7105
7106  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7107
7108  DebugLoc DL = Op.getDebugLoc();
7109  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7110
7111
7112  // With PIC, the address is actually $g + Offset.
7113  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7114      !Subtarget->is64Bit()) {
7115    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7116                         DAG.getNode(X86ISD::GlobalBaseReg,
7117                                     DebugLoc(), getPointerTy()),
7118                         Result);
7119  }
7120
7121  // For symbols that require a load from a stub to get the address, emit the
7122  // load.
7123  if (isGlobalStubReference(OpFlag))
7124    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7125                         MachinePointerInfo::getGOT(), false, false, false, 0);
7126
7127  return Result;
7128}
7129
7130SDValue
7131X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7132  // Create the TargetBlockAddressAddress node.
7133  unsigned char OpFlags =
7134    Subtarget->ClassifyBlockAddressReference();
7135  CodeModel::Model M = getTargetMachine().getCodeModel();
7136  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7137  DebugLoc dl = Op.getDebugLoc();
7138  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7139                                       /*isTarget=*/true, OpFlags);
7140
7141  if (Subtarget->isPICStyleRIPRel() &&
7142      (M == CodeModel::Small || M == CodeModel::Kernel))
7143    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7144  else
7145    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7146
7147  // With PIC, the address is actually $g + Offset.
7148  if (isGlobalRelativeToPICBase(OpFlags)) {
7149    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7150                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7151                         Result);
7152  }
7153
7154  return Result;
7155}
7156
7157SDValue
7158X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7159                                      int64_t Offset,
7160                                      SelectionDAG &DAG) const {
7161  // Create the TargetGlobalAddress node, folding in the constant
7162  // offset if it is legal.
7163  unsigned char OpFlags =
7164    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7165  CodeModel::Model M = getTargetMachine().getCodeModel();
7166  SDValue Result;
7167  if (OpFlags == X86II::MO_NO_FLAG &&
7168      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7169    // A direct static reference to a global.
7170    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7171    Offset = 0;
7172  } else {
7173    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7174  }
7175
7176  if (Subtarget->isPICStyleRIPRel() &&
7177      (M == CodeModel::Small || M == CodeModel::Kernel))
7178    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7179  else
7180    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7181
7182  // With PIC, the address is actually $g + Offset.
7183  if (isGlobalRelativeToPICBase(OpFlags)) {
7184    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7185                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7186                         Result);
7187  }
7188
7189  // For globals that require a load from a stub to get the address, emit the
7190  // load.
7191  if (isGlobalStubReference(OpFlags))
7192    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7193                         MachinePointerInfo::getGOT(), false, false, false, 0);
7194
7195  // If there was a non-zero offset that we didn't fold, create an explicit
7196  // addition for it.
7197  if (Offset != 0)
7198    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7199                         DAG.getConstant(Offset, getPointerTy()));
7200
7201  return Result;
7202}
7203
7204SDValue
7205X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7206  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7207  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7208  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7209}
7210
7211static SDValue
7212GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7213           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7214           unsigned char OperandFlags) {
7215  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7216  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7217  DebugLoc dl = GA->getDebugLoc();
7218  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7219                                           GA->getValueType(0),
7220                                           GA->getOffset(),
7221                                           OperandFlags);
7222  if (InFlag) {
7223    SDValue Ops[] = { Chain,  TGA, *InFlag };
7224    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7225  } else {
7226    SDValue Ops[]  = { Chain, TGA };
7227    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7228  }
7229
7230  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7231  MFI->setAdjustsStack(true);
7232
7233  SDValue Flag = Chain.getValue(1);
7234  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7235}
7236
7237// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7238static SDValue
7239LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7240                                const EVT PtrVT) {
7241  SDValue InFlag;
7242  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7243  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7244                                     DAG.getNode(X86ISD::GlobalBaseReg,
7245                                                 DebugLoc(), PtrVT), InFlag);
7246  InFlag = Chain.getValue(1);
7247
7248  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7249}
7250
7251// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7252static SDValue
7253LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7254                                const EVT PtrVT) {
7255  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7256                    X86::RAX, X86II::MO_TLSGD);
7257}
7258
7259// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7260// "local exec" model.
7261static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7262                                   const EVT PtrVT, TLSModel::Model model,
7263                                   bool is64Bit) {
7264  DebugLoc dl = GA->getDebugLoc();
7265
7266  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7267  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7268                                                         is64Bit ? 257 : 256));
7269
7270  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7271                                      DAG.getIntPtrConstant(0),
7272                                      MachinePointerInfo(Ptr),
7273                                      false, false, false, 0);
7274
7275  unsigned char OperandFlags = 0;
7276  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7277  // initialexec.
7278  unsigned WrapperKind = X86ISD::Wrapper;
7279  if (model == TLSModel::LocalExec) {
7280    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7281  } else if (is64Bit) {
7282    assert(model == TLSModel::InitialExec);
7283    OperandFlags = X86II::MO_GOTTPOFF;
7284    WrapperKind = X86ISD::WrapperRIP;
7285  } else {
7286    assert(model == TLSModel::InitialExec);
7287    OperandFlags = X86II::MO_INDNTPOFF;
7288  }
7289
7290  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7291  // exec)
7292  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7293                                           GA->getValueType(0),
7294                                           GA->getOffset(), OperandFlags);
7295  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7296
7297  if (model == TLSModel::InitialExec)
7298    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7299                         MachinePointerInfo::getGOT(), false, false, false, 0);
7300
7301  // The address of the thread local variable is the add of the thread
7302  // pointer with the offset of the variable.
7303  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7304}
7305
7306SDValue
7307X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7308
7309  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7310  const GlobalValue *GV = GA->getGlobal();
7311
7312  if (Subtarget->isTargetELF()) {
7313    // TODO: implement the "local dynamic" model
7314    // TODO: implement the "initial exec"model for pic executables
7315
7316    // If GV is an alias then use the aliasee for determining
7317    // thread-localness.
7318    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7319      GV = GA->resolveAliasedGlobal(false);
7320
7321    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7322
7323    switch (model) {
7324      case TLSModel::GeneralDynamic:
7325      case TLSModel::LocalDynamic: // not implemented
7326        if (Subtarget->is64Bit())
7327          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7328        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7329
7330      case TLSModel::InitialExec:
7331      case TLSModel::LocalExec:
7332        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7333                                   Subtarget->is64Bit());
7334    }
7335    llvm_unreachable("Unknown TLS model.");
7336  }
7337
7338  if (Subtarget->isTargetDarwin()) {
7339    // Darwin only has one model of TLS.  Lower to that.
7340    unsigned char OpFlag = 0;
7341    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7342                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7343
7344    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7345    // global base reg.
7346    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7347                  !Subtarget->is64Bit();
7348    if (PIC32)
7349      OpFlag = X86II::MO_TLVP_PIC_BASE;
7350    else
7351      OpFlag = X86II::MO_TLVP;
7352    DebugLoc DL = Op.getDebugLoc();
7353    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7354                                                GA->getValueType(0),
7355                                                GA->getOffset(), OpFlag);
7356    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7357
7358    // With PIC32, the address is actually $g + Offset.
7359    if (PIC32)
7360      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7361                           DAG.getNode(X86ISD::GlobalBaseReg,
7362                                       DebugLoc(), getPointerTy()),
7363                           Offset);
7364
7365    // Lowering the machine isd will make sure everything is in the right
7366    // location.
7367    SDValue Chain = DAG.getEntryNode();
7368    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7369    SDValue Args[] = { Chain, Offset };
7370    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7371
7372    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7373    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7374    MFI->setAdjustsStack(true);
7375
7376    // And our return value (tls address) is in the standard call return value
7377    // location.
7378    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7379    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7380                              Chain.getValue(1));
7381  }
7382
7383  if (Subtarget->isTargetWindows()) {
7384    // Just use the implicit TLS architecture
7385    // Need to generate someting similar to:
7386    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7387    //                                  ; from TEB
7388    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7389    //   mov     rcx, qword [rdx+rcx*8]
7390    //   mov     eax, .tls$:tlsvar
7391    //   [rax+rcx] contains the address
7392    // Windows 64bit: gs:0x58
7393    // Windows 32bit: fs:__tls_array
7394
7395    // If GV is an alias then use the aliasee for determining
7396    // thread-localness.
7397    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7398      GV = GA->resolveAliasedGlobal(false);
7399    DebugLoc dl = GA->getDebugLoc();
7400    SDValue Chain = DAG.getEntryNode();
7401
7402    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7403    // %gs:0x58 (64-bit).
7404    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7405                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7406                                                             256)
7407                                        : Type::getInt32PtrTy(*DAG.getContext(),
7408                                                              257));
7409
7410    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7411                                        Subtarget->is64Bit()
7412                                        ? DAG.getIntPtrConstant(0x58)
7413                                        : DAG.getExternalSymbol("_tls_array",
7414                                                                getPointerTy()),
7415                                        MachinePointerInfo(Ptr),
7416                                        false, false, false, 0);
7417
7418    // Load the _tls_index variable
7419    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7420    if (Subtarget->is64Bit())
7421      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7422                           IDX, MachinePointerInfo(), MVT::i32,
7423                           false, false, 0);
7424    else
7425      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7426                        false, false, false, 0);
7427
7428    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7429                                    getPointerTy());
7430    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7431
7432    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7433    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7434                      false, false, false, 0);
7435
7436    // Get the offset of start of .tls section
7437    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7438                                             GA->getValueType(0),
7439                                             GA->getOffset(), X86II::MO_SECREL);
7440    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7441
7442    // The address of the thread local variable is the add of the thread
7443    // pointer with the offset of the variable.
7444    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7445  }
7446
7447  llvm_unreachable("TLS not implemented for this target.");
7448}
7449
7450
7451/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7452/// and take a 2 x i32 value to shift plus a shift amount.
7453SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7454  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7455  EVT VT = Op.getValueType();
7456  unsigned VTBits = VT.getSizeInBits();
7457  DebugLoc dl = Op.getDebugLoc();
7458  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7459  SDValue ShOpLo = Op.getOperand(0);
7460  SDValue ShOpHi = Op.getOperand(1);
7461  SDValue ShAmt  = Op.getOperand(2);
7462  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7463                                     DAG.getConstant(VTBits - 1, MVT::i8))
7464                       : DAG.getConstant(0, VT);
7465
7466  SDValue Tmp2, Tmp3;
7467  if (Op.getOpcode() == ISD::SHL_PARTS) {
7468    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7469    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7470  } else {
7471    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7472    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7473  }
7474
7475  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7476                                DAG.getConstant(VTBits, MVT::i8));
7477  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7478                             AndNode, DAG.getConstant(0, MVT::i8));
7479
7480  SDValue Hi, Lo;
7481  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7482  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7483  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7484
7485  if (Op.getOpcode() == ISD::SHL_PARTS) {
7486    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7487    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7488  } else {
7489    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7490    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7491  }
7492
7493  SDValue Ops[2] = { Lo, Hi };
7494  return DAG.getMergeValues(Ops, 2, dl);
7495}
7496
7497SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7498                                           SelectionDAG &DAG) const {
7499  EVT SrcVT = Op.getOperand(0).getValueType();
7500
7501  if (SrcVT.isVector())
7502    return SDValue();
7503
7504  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7505         "Unknown SINT_TO_FP to lower!");
7506
7507  // These are really Legal; return the operand so the caller accepts it as
7508  // Legal.
7509  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7510    return Op;
7511  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7512      Subtarget->is64Bit()) {
7513    return Op;
7514  }
7515
7516  DebugLoc dl = Op.getDebugLoc();
7517  unsigned Size = SrcVT.getSizeInBits()/8;
7518  MachineFunction &MF = DAG.getMachineFunction();
7519  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7520  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7521  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7522                               StackSlot,
7523                               MachinePointerInfo::getFixedStack(SSFI),
7524                               false, false, 0);
7525  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7526}
7527
7528SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7529                                     SDValue StackSlot,
7530                                     SelectionDAG &DAG) const {
7531  // Build the FILD
7532  DebugLoc DL = Op.getDebugLoc();
7533  SDVTList Tys;
7534  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7535  if (useSSE)
7536    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7537  else
7538    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7539
7540  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7541
7542  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7543  MachineMemOperand *MMO;
7544  if (FI) {
7545    int SSFI = FI->getIndex();
7546    MMO =
7547      DAG.getMachineFunction()
7548      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7549                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7550  } else {
7551    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7552    StackSlot = StackSlot.getOperand(1);
7553  }
7554  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7555  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7556                                           X86ISD::FILD, DL,
7557                                           Tys, Ops, array_lengthof(Ops),
7558                                           SrcVT, MMO);
7559
7560  if (useSSE) {
7561    Chain = Result.getValue(1);
7562    SDValue InFlag = Result.getValue(2);
7563
7564    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7565    // shouldn't be necessary except that RFP cannot be live across
7566    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7567    MachineFunction &MF = DAG.getMachineFunction();
7568    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7569    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7570    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7571    Tys = DAG.getVTList(MVT::Other);
7572    SDValue Ops[] = {
7573      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7574    };
7575    MachineMemOperand *MMO =
7576      DAG.getMachineFunction()
7577      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7578                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7579
7580    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7581                                    Ops, array_lengthof(Ops),
7582                                    Op.getValueType(), MMO);
7583    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7584                         MachinePointerInfo::getFixedStack(SSFI),
7585                         false, false, false, 0);
7586  }
7587
7588  return Result;
7589}
7590
7591// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7592SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7593                                               SelectionDAG &DAG) const {
7594  // This algorithm is not obvious. Here it is what we're trying to output:
7595  /*
7596     movq       %rax,  %xmm0
7597     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7598     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7599     #ifdef __SSE3__
7600       haddpd   %xmm0, %xmm0
7601     #else
7602       pshufd   $0x4e, %xmm0, %xmm1
7603       addpd    %xmm1, %xmm0
7604     #endif
7605  */
7606
7607  DebugLoc dl = Op.getDebugLoc();
7608  LLVMContext *Context = DAG.getContext();
7609
7610  // Build some magic constants.
7611  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7612  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7613  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7614
7615  SmallVector<Constant*,2> CV1;
7616  CV1.push_back(
7617        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7618  CV1.push_back(
7619        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7620  Constant *C1 = ConstantVector::get(CV1);
7621  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7622
7623  // Load the 64-bit value into an XMM register.
7624  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7625                            Op.getOperand(0));
7626  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7627                              MachinePointerInfo::getConstantPool(),
7628                              false, false, false, 16);
7629  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7630                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7631                              CLod0);
7632
7633  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7634                              MachinePointerInfo::getConstantPool(),
7635                              false, false, false, 16);
7636  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7637  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7638  SDValue Result;
7639
7640  if (Subtarget->hasSSE3()) {
7641    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7642    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7643  } else {
7644    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7645    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7646                                           S2F, 0x4E, DAG);
7647    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7648                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7649                         Sub);
7650  }
7651
7652  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7653                     DAG.getIntPtrConstant(0));
7654}
7655
7656// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7657SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7658                                               SelectionDAG &DAG) const {
7659  DebugLoc dl = Op.getDebugLoc();
7660  // FP constant to bias correct the final result.
7661  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7662                                   MVT::f64);
7663
7664  // Load the 32-bit value into an XMM register.
7665  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7666                             Op.getOperand(0));
7667
7668  // Zero out the upper parts of the register.
7669  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7670
7671  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7672                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7673                     DAG.getIntPtrConstant(0));
7674
7675  // Or the load with the bias.
7676  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7677                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7678                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7679                                                   MVT::v2f64, Load)),
7680                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7681                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7682                                                   MVT::v2f64, Bias)));
7683  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7684                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7685                   DAG.getIntPtrConstant(0));
7686
7687  // Subtract the bias.
7688  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7689
7690  // Handle final rounding.
7691  EVT DestVT = Op.getValueType();
7692
7693  if (DestVT.bitsLT(MVT::f64))
7694    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7695                       DAG.getIntPtrConstant(0));
7696  if (DestVT.bitsGT(MVT::f64))
7697    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7698
7699  // Handle final rounding.
7700  return Sub;
7701}
7702
7703SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7704                                           SelectionDAG &DAG) const {
7705  SDValue N0 = Op.getOperand(0);
7706  DebugLoc dl = Op.getDebugLoc();
7707
7708  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7709  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7710  // the optimization here.
7711  if (DAG.SignBitIsZero(N0))
7712    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7713
7714  EVT SrcVT = N0.getValueType();
7715  EVT DstVT = Op.getValueType();
7716  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7717    return LowerUINT_TO_FP_i64(Op, DAG);
7718  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7719    return LowerUINT_TO_FP_i32(Op, DAG);
7720  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7721    return SDValue();
7722
7723  // Make a 64-bit buffer, and use it to build an FILD.
7724  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7725  if (SrcVT == MVT::i32) {
7726    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7727    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7728                                     getPointerTy(), StackSlot, WordOff);
7729    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7730                                  StackSlot, MachinePointerInfo(),
7731                                  false, false, 0);
7732    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7733                                  OffsetSlot, MachinePointerInfo(),
7734                                  false, false, 0);
7735    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7736    return Fild;
7737  }
7738
7739  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7740  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7741                               StackSlot, MachinePointerInfo(),
7742                               false, false, 0);
7743  // For i64 source, we need to add the appropriate power of 2 if the input
7744  // was negative.  This is the same as the optimization in
7745  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7746  // we must be careful to do the computation in x87 extended precision, not
7747  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7748  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7749  MachineMemOperand *MMO =
7750    DAG.getMachineFunction()
7751    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7752                          MachineMemOperand::MOLoad, 8, 8);
7753
7754  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7755  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7756  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7757                                         MVT::i64, MMO);
7758
7759  APInt FF(32, 0x5F800000ULL);
7760
7761  // Check whether the sign bit is set.
7762  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7763                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7764                                 ISD::SETLT);
7765
7766  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7767  SDValue FudgePtr = DAG.getConstantPool(
7768                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7769                                         getPointerTy());
7770
7771  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7772  SDValue Zero = DAG.getIntPtrConstant(0);
7773  SDValue Four = DAG.getIntPtrConstant(4);
7774  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7775                               Zero, Four);
7776  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7777
7778  // Load the value out, extending it from f32 to f80.
7779  // FIXME: Avoid the extend by constructing the right constant pool?
7780  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7781                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7782                                 MVT::f32, false, false, 4);
7783  // Extend everything to 80 bits to force it to be done on x87.
7784  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7785  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7786}
7787
7788std::pair<SDValue,SDValue> X86TargetLowering::
7789FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7790  DebugLoc DL = Op.getDebugLoc();
7791
7792  EVT DstTy = Op.getValueType();
7793
7794  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7795    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7796    DstTy = MVT::i64;
7797  }
7798
7799  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7800         DstTy.getSimpleVT() >= MVT::i16 &&
7801         "Unknown FP_TO_INT to lower!");
7802
7803  // These are really Legal.
7804  if (DstTy == MVT::i32 &&
7805      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7806    return std::make_pair(SDValue(), SDValue());
7807  if (Subtarget->is64Bit() &&
7808      DstTy == MVT::i64 &&
7809      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7810    return std::make_pair(SDValue(), SDValue());
7811
7812  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7813  // stack slot, or into the FTOL runtime function.
7814  MachineFunction &MF = DAG.getMachineFunction();
7815  unsigned MemSize = DstTy.getSizeInBits()/8;
7816  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7817  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7818
7819  unsigned Opc;
7820  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7821    Opc = X86ISD::WIN_FTOL;
7822  else
7823    switch (DstTy.getSimpleVT().SimpleTy) {
7824    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7825    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7826    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7827    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7828    }
7829
7830  SDValue Chain = DAG.getEntryNode();
7831  SDValue Value = Op.getOperand(0);
7832  EVT TheVT = Op.getOperand(0).getValueType();
7833  // FIXME This causes a redundant load/store if the SSE-class value is already
7834  // in memory, such as if it is on the callstack.
7835  if (isScalarFPTypeInSSEReg(TheVT)) {
7836    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7837    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7838                         MachinePointerInfo::getFixedStack(SSFI),
7839                         false, false, 0);
7840    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7841    SDValue Ops[] = {
7842      Chain, StackSlot, DAG.getValueType(TheVT)
7843    };
7844
7845    MachineMemOperand *MMO =
7846      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7847                              MachineMemOperand::MOLoad, MemSize, MemSize);
7848    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7849                                    DstTy, MMO);
7850    Chain = Value.getValue(1);
7851    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7852    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7853  }
7854
7855  MachineMemOperand *MMO =
7856    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7857                            MachineMemOperand::MOStore, MemSize, MemSize);
7858
7859  if (Opc != X86ISD::WIN_FTOL) {
7860    // Build the FP_TO_INT*_IN_MEM
7861    SDValue Ops[] = { Chain, Value, StackSlot };
7862    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7863                                           Ops, 3, DstTy, MMO);
7864    return std::make_pair(FIST, StackSlot);
7865  } else {
7866    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7867      DAG.getVTList(MVT::Other, MVT::Glue),
7868      Chain, Value);
7869    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7870      MVT::i32, ftol.getValue(1));
7871    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7872      MVT::i32, eax.getValue(2));
7873    SDValue Ops[] = { eax, edx };
7874    SDValue pair = IsReplace
7875      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7876      : DAG.getMergeValues(Ops, 2, DL);
7877    return std::make_pair(pair, SDValue());
7878  }
7879}
7880
7881SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7882                                           SelectionDAG &DAG) const {
7883  if (Op.getValueType().isVector())
7884    return SDValue();
7885
7886  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7887    /*IsSigned=*/ true, /*IsReplace=*/ false);
7888  SDValue FIST = Vals.first, StackSlot = Vals.second;
7889  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7890  if (FIST.getNode() == 0) return Op;
7891
7892  if (StackSlot.getNode())
7893    // Load the result.
7894    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7895                       FIST, StackSlot, MachinePointerInfo(),
7896                       false, false, false, 0);
7897
7898  // The node is the result.
7899  return FIST;
7900}
7901
7902SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7903                                           SelectionDAG &DAG) const {
7904  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7905    /*IsSigned=*/ false, /*IsReplace=*/ false);
7906  SDValue FIST = Vals.first, StackSlot = Vals.second;
7907  assert(FIST.getNode() && "Unexpected failure");
7908
7909  if (StackSlot.getNode())
7910    // Load the result.
7911    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7912                       FIST, StackSlot, MachinePointerInfo(),
7913                       false, false, false, 0);
7914
7915  // The node is the result.
7916  return FIST;
7917}
7918
7919SDValue X86TargetLowering::LowerFABS(SDValue Op,
7920                                     SelectionDAG &DAG) const {
7921  LLVMContext *Context = DAG.getContext();
7922  DebugLoc dl = Op.getDebugLoc();
7923  EVT VT = Op.getValueType();
7924  EVT EltVT = VT;
7925  if (VT.isVector())
7926    EltVT = VT.getVectorElementType();
7927  Constant *C;
7928  if (EltVT == MVT::f64) {
7929    C = ConstantVector::getSplat(2,
7930                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7931  } else {
7932    C = ConstantVector::getSplat(4,
7933               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7934  }
7935  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7936  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7937                             MachinePointerInfo::getConstantPool(),
7938                             false, false, false, 16);
7939  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7940}
7941
7942SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7943  LLVMContext *Context = DAG.getContext();
7944  DebugLoc dl = Op.getDebugLoc();
7945  EVT VT = Op.getValueType();
7946  EVT EltVT = VT;
7947  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7948  if (VT.isVector()) {
7949    EltVT = VT.getVectorElementType();
7950    NumElts = VT.getVectorNumElements();
7951  }
7952  Constant *C;
7953  if (EltVT == MVT::f64)
7954    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7955  else
7956    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7957  C = ConstantVector::getSplat(NumElts, C);
7958  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7959  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7960                             MachinePointerInfo::getConstantPool(),
7961                             false, false, false, 16);
7962  if (VT.isVector()) {
7963    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7964    return DAG.getNode(ISD::BITCAST, dl, VT,
7965                       DAG.getNode(ISD::XOR, dl, XORVT,
7966                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
7967                                               Op.getOperand(0)),
7968                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7969  }
7970
7971  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7972}
7973
7974SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7975  LLVMContext *Context = DAG.getContext();
7976  SDValue Op0 = Op.getOperand(0);
7977  SDValue Op1 = Op.getOperand(1);
7978  DebugLoc dl = Op.getDebugLoc();
7979  EVT VT = Op.getValueType();
7980  EVT SrcVT = Op1.getValueType();
7981
7982  // If second operand is smaller, extend it first.
7983  if (SrcVT.bitsLT(VT)) {
7984    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7985    SrcVT = VT;
7986  }
7987  // And if it is bigger, shrink it first.
7988  if (SrcVT.bitsGT(VT)) {
7989    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7990    SrcVT = VT;
7991  }
7992
7993  // At this point the operands and the result should have the same
7994  // type, and that won't be f80 since that is not custom lowered.
7995
7996  // First get the sign bit of second operand.
7997  SmallVector<Constant*,4> CV;
7998  if (SrcVT == MVT::f64) {
7999    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8000    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8001  } else {
8002    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8003    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8004    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8005    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8006  }
8007  Constant *C = ConstantVector::get(CV);
8008  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8009  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8010                              MachinePointerInfo::getConstantPool(),
8011                              false, false, false, 16);
8012  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8013
8014  // Shift sign bit right or left if the two operands have different types.
8015  if (SrcVT.bitsGT(VT)) {
8016    // Op0 is MVT::f32, Op1 is MVT::f64.
8017    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8018    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8019                          DAG.getConstant(32, MVT::i32));
8020    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8021    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8022                          DAG.getIntPtrConstant(0));
8023  }
8024
8025  // Clear first operand sign bit.
8026  CV.clear();
8027  if (VT == MVT::f64) {
8028    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8029    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8030  } else {
8031    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8032    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8033    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8034    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8035  }
8036  C = ConstantVector::get(CV);
8037  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8038  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8039                              MachinePointerInfo::getConstantPool(),
8040                              false, false, false, 16);
8041  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8042
8043  // Or the value with the sign bit.
8044  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8045}
8046
8047SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8048  SDValue N0 = Op.getOperand(0);
8049  DebugLoc dl = Op.getDebugLoc();
8050  EVT VT = Op.getValueType();
8051
8052  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8053  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8054                                  DAG.getConstant(1, VT));
8055  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8056}
8057
8058/// Emit nodes that will be selected as "test Op0,Op0", or something
8059/// equivalent.
8060SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8061                                    SelectionDAG &DAG) const {
8062  DebugLoc dl = Op.getDebugLoc();
8063
8064  // CF and OF aren't always set the way we want. Determine which
8065  // of these we need.
8066  bool NeedCF = false;
8067  bool NeedOF = false;
8068  switch (X86CC) {
8069  default: break;
8070  case X86::COND_A: case X86::COND_AE:
8071  case X86::COND_B: case X86::COND_BE:
8072    NeedCF = true;
8073    break;
8074  case X86::COND_G: case X86::COND_GE:
8075  case X86::COND_L: case X86::COND_LE:
8076  case X86::COND_O: case X86::COND_NO:
8077    NeedOF = true;
8078    break;
8079  }
8080
8081  // See if we can use the EFLAGS value from the operand instead of
8082  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8083  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8084  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8085    // Emit a CMP with 0, which is the TEST pattern.
8086    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8087                       DAG.getConstant(0, Op.getValueType()));
8088
8089  unsigned Opcode = 0;
8090  unsigned NumOperands = 0;
8091  switch (Op.getNode()->getOpcode()) {
8092  case ISD::ADD:
8093    // Due to an isel shortcoming, be conservative if this add is likely to be
8094    // selected as part of a load-modify-store instruction. When the root node
8095    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8096    // uses of other nodes in the match, such as the ADD in this case. This
8097    // leads to the ADD being left around and reselected, with the result being
8098    // two adds in the output.  Alas, even if none our users are stores, that
8099    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8100    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8101    // climbing the DAG back to the root, and it doesn't seem to be worth the
8102    // effort.
8103    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8104         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8105      if (UI->getOpcode() != ISD::CopyToReg &&
8106          UI->getOpcode() != ISD::SETCC &&
8107          UI->getOpcode() != ISD::STORE)
8108        goto default_case;
8109
8110    if (ConstantSDNode *C =
8111        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8112      // An add of one will be selected as an INC.
8113      if (C->getAPIntValue() == 1) {
8114        Opcode = X86ISD::INC;
8115        NumOperands = 1;
8116        break;
8117      }
8118
8119      // An add of negative one (subtract of one) will be selected as a DEC.
8120      if (C->getAPIntValue().isAllOnesValue()) {
8121        Opcode = X86ISD::DEC;
8122        NumOperands = 1;
8123        break;
8124      }
8125    }
8126
8127    // Otherwise use a regular EFLAGS-setting add.
8128    Opcode = X86ISD::ADD;
8129    NumOperands = 2;
8130    break;
8131  case ISD::AND: {
8132    // If the primary and result isn't used, don't bother using X86ISD::AND,
8133    // because a TEST instruction will be better.
8134    bool NonFlagUse = false;
8135    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8136           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8137      SDNode *User = *UI;
8138      unsigned UOpNo = UI.getOperandNo();
8139      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8140        // Look pass truncate.
8141        UOpNo = User->use_begin().getOperandNo();
8142        User = *User->use_begin();
8143      }
8144
8145      if (User->getOpcode() != ISD::BRCOND &&
8146          User->getOpcode() != ISD::SETCC &&
8147          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8148        NonFlagUse = true;
8149        break;
8150      }
8151    }
8152
8153    if (!NonFlagUse)
8154      break;
8155  }
8156    // FALL THROUGH
8157  case ISD::SUB:
8158  case ISD::OR:
8159  case ISD::XOR:
8160    // Due to the ISEL shortcoming noted above, be conservative if this op is
8161    // likely to be selected as part of a load-modify-store instruction.
8162    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8163           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8164      if (UI->getOpcode() == ISD::STORE)
8165        goto default_case;
8166
8167    // Otherwise use a regular EFLAGS-setting instruction.
8168    switch (Op.getNode()->getOpcode()) {
8169    default: llvm_unreachable("unexpected operator!");
8170    case ISD::SUB: Opcode = X86ISD::SUB; break;
8171    case ISD::OR:  Opcode = X86ISD::OR;  break;
8172    case ISD::XOR: Opcode = X86ISD::XOR; break;
8173    case ISD::AND: Opcode = X86ISD::AND; break;
8174    }
8175
8176    NumOperands = 2;
8177    break;
8178  case X86ISD::ADD:
8179  case X86ISD::SUB:
8180  case X86ISD::INC:
8181  case X86ISD::DEC:
8182  case X86ISD::OR:
8183  case X86ISD::XOR:
8184  case X86ISD::AND:
8185    return SDValue(Op.getNode(), 1);
8186  default:
8187  default_case:
8188    break;
8189  }
8190
8191  if (Opcode == 0)
8192    // Emit a CMP with 0, which is the TEST pattern.
8193    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8194                       DAG.getConstant(0, Op.getValueType()));
8195
8196  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8197  SmallVector<SDValue, 4> Ops;
8198  for (unsigned i = 0; i != NumOperands; ++i)
8199    Ops.push_back(Op.getOperand(i));
8200
8201  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8202  DAG.ReplaceAllUsesWith(Op, New);
8203  return SDValue(New.getNode(), 1);
8204}
8205
8206/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8207/// equivalent.
8208SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8209                                   SelectionDAG &DAG) const {
8210  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8211    if (C->getAPIntValue() == 0)
8212      return EmitTest(Op0, X86CC, DAG);
8213
8214  DebugLoc dl = Op0.getDebugLoc();
8215  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8216}
8217
8218/// Convert a comparison if required by the subtarget.
8219SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8220                                                 SelectionDAG &DAG) const {
8221  // If the subtarget does not support the FUCOMI instruction, floating-point
8222  // comparisons have to be converted.
8223  if (Subtarget->hasCMov() ||
8224      Cmp.getOpcode() != X86ISD::CMP ||
8225      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8226      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8227    return Cmp;
8228
8229  // The instruction selector will select an FUCOM instruction instead of
8230  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8231  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8232  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8233  DebugLoc dl = Cmp.getDebugLoc();
8234  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8235  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8236  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8237                            DAG.getConstant(8, MVT::i8));
8238  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8239  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8240}
8241
8242/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8243/// if it's possible.
8244SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8245                                     DebugLoc dl, SelectionDAG &DAG) const {
8246  SDValue Op0 = And.getOperand(0);
8247  SDValue Op1 = And.getOperand(1);
8248  if (Op0.getOpcode() == ISD::TRUNCATE)
8249    Op0 = Op0.getOperand(0);
8250  if (Op1.getOpcode() == ISD::TRUNCATE)
8251    Op1 = Op1.getOperand(0);
8252
8253  SDValue LHS, RHS;
8254  if (Op1.getOpcode() == ISD::SHL)
8255    std::swap(Op0, Op1);
8256  if (Op0.getOpcode() == ISD::SHL) {
8257    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8258      if (And00C->getZExtValue() == 1) {
8259        // If we looked past a truncate, check that it's only truncating away
8260        // known zeros.
8261        unsigned BitWidth = Op0.getValueSizeInBits();
8262        unsigned AndBitWidth = And.getValueSizeInBits();
8263        if (BitWidth > AndBitWidth) {
8264          APInt Zeros, Ones;
8265          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8266          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8267            return SDValue();
8268        }
8269        LHS = Op1;
8270        RHS = Op0.getOperand(1);
8271      }
8272  } else if (Op1.getOpcode() == ISD::Constant) {
8273    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8274    uint64_t AndRHSVal = AndRHS->getZExtValue();
8275    SDValue AndLHS = Op0;
8276
8277    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8278      LHS = AndLHS.getOperand(0);
8279      RHS = AndLHS.getOperand(1);
8280    }
8281
8282    // Use BT if the immediate can't be encoded in a TEST instruction.
8283    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8284      LHS = AndLHS;
8285      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8286    }
8287  }
8288
8289  if (LHS.getNode()) {
8290    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8291    // instruction.  Since the shift amount is in-range-or-undefined, we know
8292    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8293    // the encoding for the i16 version is larger than the i32 version.
8294    // Also promote i16 to i32 for performance / code size reason.
8295    if (LHS.getValueType() == MVT::i8 ||
8296        LHS.getValueType() == MVT::i16)
8297      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8298
8299    // If the operand types disagree, extend the shift amount to match.  Since
8300    // BT ignores high bits (like shifts) we can use anyextend.
8301    if (LHS.getValueType() != RHS.getValueType())
8302      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8303
8304    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8305    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8306    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8307                       DAG.getConstant(Cond, MVT::i8), BT);
8308  }
8309
8310  return SDValue();
8311}
8312
8313SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8314
8315  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8316
8317  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8318  SDValue Op0 = Op.getOperand(0);
8319  SDValue Op1 = Op.getOperand(1);
8320  DebugLoc dl = Op.getDebugLoc();
8321  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8322
8323  // Optimize to BT if possible.
8324  // Lower (X & (1 << N)) == 0 to BT(X, N).
8325  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8326  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8327  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8328      Op1.getOpcode() == ISD::Constant &&
8329      cast<ConstantSDNode>(Op1)->isNullValue() &&
8330      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8331    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8332    if (NewSetCC.getNode())
8333      return NewSetCC;
8334  }
8335
8336  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8337  // these.
8338  if (Op1.getOpcode() == ISD::Constant &&
8339      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8340       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8341      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8342
8343    // If the input is a setcc, then reuse the input setcc or use a new one with
8344    // the inverted condition.
8345    if (Op0.getOpcode() == X86ISD::SETCC) {
8346      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8347      bool Invert = (CC == ISD::SETNE) ^
8348        cast<ConstantSDNode>(Op1)->isNullValue();
8349      if (!Invert) return Op0;
8350
8351      CCode = X86::GetOppositeBranchCondition(CCode);
8352      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8353                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8354    }
8355  }
8356
8357  bool isFP = Op1.getValueType().isFloatingPoint();
8358  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8359  if (X86CC == X86::COND_INVALID)
8360    return SDValue();
8361
8362  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8363  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8364  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8365                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8366}
8367
8368// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8369// ones, and then concatenate the result back.
8370static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8371  EVT VT = Op.getValueType();
8372
8373  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8374         "Unsupported value type for operation");
8375
8376  unsigned NumElems = VT.getVectorNumElements();
8377  DebugLoc dl = Op.getDebugLoc();
8378  SDValue CC = Op.getOperand(2);
8379
8380  // Extract the LHS vectors
8381  SDValue LHS = Op.getOperand(0);
8382  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8383  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8384
8385  // Extract the RHS vectors
8386  SDValue RHS = Op.getOperand(1);
8387  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8388  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8389
8390  // Issue the operation on the smaller types and concatenate the result back
8391  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8392  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8393  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8394                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8395                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8396}
8397
8398
8399SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8400  SDValue Cond;
8401  SDValue Op0 = Op.getOperand(0);
8402  SDValue Op1 = Op.getOperand(1);
8403  SDValue CC = Op.getOperand(2);
8404  EVT VT = Op.getValueType();
8405  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8406  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8407  DebugLoc dl = Op.getDebugLoc();
8408
8409  if (isFP) {
8410    unsigned SSECC = 8;
8411    EVT EltVT = Op0.getValueType().getVectorElementType();
8412    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8413
8414    bool Swap = false;
8415
8416    // SSE Condition code mapping:
8417    //  0 - EQ
8418    //  1 - LT
8419    //  2 - LE
8420    //  3 - UNORD
8421    //  4 - NEQ
8422    //  5 - NLT
8423    //  6 - NLE
8424    //  7 - ORD
8425    switch (SetCCOpcode) {
8426    default: break;
8427    case ISD::SETOEQ:
8428    case ISD::SETEQ:  SSECC = 0; break;
8429    case ISD::SETOGT:
8430    case ISD::SETGT: Swap = true; // Fallthrough
8431    case ISD::SETLT:
8432    case ISD::SETOLT: SSECC = 1; break;
8433    case ISD::SETOGE:
8434    case ISD::SETGE: Swap = true; // Fallthrough
8435    case ISD::SETLE:
8436    case ISD::SETOLE: SSECC = 2; break;
8437    case ISD::SETUO:  SSECC = 3; break;
8438    case ISD::SETUNE:
8439    case ISD::SETNE:  SSECC = 4; break;
8440    case ISD::SETULE: Swap = true;
8441    case ISD::SETUGE: SSECC = 5; break;
8442    case ISD::SETULT: Swap = true;
8443    case ISD::SETUGT: SSECC = 6; break;
8444    case ISD::SETO:   SSECC = 7; break;
8445    }
8446    if (Swap)
8447      std::swap(Op0, Op1);
8448
8449    // In the two special cases we can't handle, emit two comparisons.
8450    if (SSECC == 8) {
8451      if (SetCCOpcode == ISD::SETUEQ) {
8452        SDValue UNORD, EQ;
8453        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8454                            DAG.getConstant(3, MVT::i8));
8455        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8456                         DAG.getConstant(0, MVT::i8));
8457        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8458      }
8459      if (SetCCOpcode == ISD::SETONE) {
8460        SDValue ORD, NEQ;
8461        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8462                          DAG.getConstant(7, MVT::i8));
8463        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8464                          DAG.getConstant(4, MVT::i8));
8465        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8466      }
8467      llvm_unreachable("Illegal FP comparison");
8468    }
8469    // Handle all other FP comparisons here.
8470    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8471                       DAG.getConstant(SSECC, MVT::i8));
8472  }
8473
8474  // Break 256-bit integer vector compare into smaller ones.
8475  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8476    return Lower256IntVSETCC(Op, DAG);
8477
8478  // We are handling one of the integer comparisons here.  Since SSE only has
8479  // GT and EQ comparisons for integer, swapping operands and multiple
8480  // operations may be required for some comparisons.
8481  unsigned Opc = 0;
8482  bool Swap = false, Invert = false, FlipSigns = false;
8483
8484  switch (SetCCOpcode) {
8485  default: break;
8486  case ISD::SETNE:  Invert = true;
8487  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8488  case ISD::SETLT:  Swap = true;
8489  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8490  case ISD::SETGE:  Swap = true;
8491  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8492  case ISD::SETULT: Swap = true;
8493  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8494  case ISD::SETUGE: Swap = true;
8495  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8496  }
8497  if (Swap)
8498    std::swap(Op0, Op1);
8499
8500  // Check that the operation in question is available (most are plain SSE2,
8501  // but PCMPGTQ and PCMPEQQ have different requirements).
8502  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8503    return SDValue();
8504  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8505    return SDValue();
8506
8507  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8508  // bits of the inputs before performing those operations.
8509  if (FlipSigns) {
8510    EVT EltVT = VT.getVectorElementType();
8511    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8512                                      EltVT);
8513    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8514    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8515                                    SignBits.size());
8516    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8517    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8518  }
8519
8520  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8521
8522  // If the logical-not of the result is required, perform that now.
8523  if (Invert)
8524    Result = DAG.getNOT(dl, Result, VT);
8525
8526  return Result;
8527}
8528
8529// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8530static bool isX86LogicalCmp(SDValue Op) {
8531  unsigned Opc = Op.getNode()->getOpcode();
8532  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8533      Opc == X86ISD::SAHF)
8534    return true;
8535  if (Op.getResNo() == 1 &&
8536      (Opc == X86ISD::ADD ||
8537       Opc == X86ISD::SUB ||
8538       Opc == X86ISD::ADC ||
8539       Opc == X86ISD::SBB ||
8540       Opc == X86ISD::SMUL ||
8541       Opc == X86ISD::UMUL ||
8542       Opc == X86ISD::INC ||
8543       Opc == X86ISD::DEC ||
8544       Opc == X86ISD::OR ||
8545       Opc == X86ISD::XOR ||
8546       Opc == X86ISD::AND))
8547    return true;
8548
8549  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8550    return true;
8551
8552  return false;
8553}
8554
8555static bool isZero(SDValue V) {
8556  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8557  return C && C->isNullValue();
8558}
8559
8560static bool isAllOnes(SDValue V) {
8561  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8562  return C && C->isAllOnesValue();
8563}
8564
8565SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8566  bool addTest = true;
8567  SDValue Cond  = Op.getOperand(0);
8568  SDValue Op1 = Op.getOperand(1);
8569  SDValue Op2 = Op.getOperand(2);
8570  DebugLoc DL = Op.getDebugLoc();
8571  SDValue CC;
8572
8573  if (Cond.getOpcode() == ISD::SETCC) {
8574    SDValue NewCond = LowerSETCC(Cond, DAG);
8575    if (NewCond.getNode())
8576      Cond = NewCond;
8577  }
8578
8579  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8580  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8581  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8582  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8583  if (Cond.getOpcode() == X86ISD::SETCC &&
8584      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8585      isZero(Cond.getOperand(1).getOperand(1))) {
8586    SDValue Cmp = Cond.getOperand(1);
8587
8588    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8589
8590    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8591        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8592      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8593
8594      SDValue CmpOp0 = Cmp.getOperand(0);
8595      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8596                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8597      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8598
8599      SDValue Res =   // Res = 0 or -1.
8600        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8601                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8602
8603      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8604        Res = DAG.getNOT(DL, Res, Res.getValueType());
8605
8606      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8607      if (N2C == 0 || !N2C->isNullValue())
8608        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8609      return Res;
8610    }
8611  }
8612
8613  // Look past (and (setcc_carry (cmp ...)), 1).
8614  if (Cond.getOpcode() == ISD::AND &&
8615      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8616    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8617    if (C && C->getAPIntValue() == 1)
8618      Cond = Cond.getOperand(0);
8619  }
8620
8621  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8622  // setting operand in place of the X86ISD::SETCC.
8623  unsigned CondOpcode = Cond.getOpcode();
8624  if (CondOpcode == X86ISD::SETCC ||
8625      CondOpcode == X86ISD::SETCC_CARRY) {
8626    CC = Cond.getOperand(0);
8627
8628    SDValue Cmp = Cond.getOperand(1);
8629    unsigned Opc = Cmp.getOpcode();
8630    EVT VT = Op.getValueType();
8631
8632    bool IllegalFPCMov = false;
8633    if (VT.isFloatingPoint() && !VT.isVector() &&
8634        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8635      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8636
8637    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8638        Opc == X86ISD::BT) { // FIXME
8639      Cond = Cmp;
8640      addTest = false;
8641    }
8642  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8643             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8644             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8645              Cond.getOperand(0).getValueType() != MVT::i8)) {
8646    SDValue LHS = Cond.getOperand(0);
8647    SDValue RHS = Cond.getOperand(1);
8648    unsigned X86Opcode;
8649    unsigned X86Cond;
8650    SDVTList VTs;
8651    switch (CondOpcode) {
8652    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8653    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8654    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8655    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8656    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8657    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8658    default: llvm_unreachable("unexpected overflowing operator");
8659    }
8660    if (CondOpcode == ISD::UMULO)
8661      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8662                          MVT::i32);
8663    else
8664      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8665
8666    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8667
8668    if (CondOpcode == ISD::UMULO)
8669      Cond = X86Op.getValue(2);
8670    else
8671      Cond = X86Op.getValue(1);
8672
8673    CC = DAG.getConstant(X86Cond, MVT::i8);
8674    addTest = false;
8675  }
8676
8677  if (addTest) {
8678    // Look pass the truncate.
8679    if (Cond.getOpcode() == ISD::TRUNCATE)
8680      Cond = Cond.getOperand(0);
8681
8682    // We know the result of AND is compared against zero. Try to match
8683    // it to BT.
8684    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8685      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8686      if (NewSetCC.getNode()) {
8687        CC = NewSetCC.getOperand(0);
8688        Cond = NewSetCC.getOperand(1);
8689        addTest = false;
8690      }
8691    }
8692  }
8693
8694  if (addTest) {
8695    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8696    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8697  }
8698
8699  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8700  // a <  b ?  0 : -1 -> RES = setcc_carry
8701  // a >= b ? -1 :  0 -> RES = setcc_carry
8702  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8703  if (Cond.getOpcode() == X86ISD::CMP) {
8704    Cond = ConvertCmpIfNecessary(Cond, DAG);
8705    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8706
8707    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8708        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8709      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8710                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8711      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8712        return DAG.getNOT(DL, Res, Res.getValueType());
8713      return Res;
8714    }
8715  }
8716
8717  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8718  // condition is true.
8719  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8720  SDValue Ops[] = { Op2, Op1, CC, Cond };
8721  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8722}
8723
8724// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8725// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8726// from the AND / OR.
8727static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8728  Opc = Op.getOpcode();
8729  if (Opc != ISD::OR && Opc != ISD::AND)
8730    return false;
8731  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8732          Op.getOperand(0).hasOneUse() &&
8733          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8734          Op.getOperand(1).hasOneUse());
8735}
8736
8737// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8738// 1 and that the SETCC node has a single use.
8739static bool isXor1OfSetCC(SDValue Op) {
8740  if (Op.getOpcode() != ISD::XOR)
8741    return false;
8742  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8743  if (N1C && N1C->getAPIntValue() == 1) {
8744    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8745      Op.getOperand(0).hasOneUse();
8746  }
8747  return false;
8748}
8749
8750SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8751  bool addTest = true;
8752  SDValue Chain = Op.getOperand(0);
8753  SDValue Cond  = Op.getOperand(1);
8754  SDValue Dest  = Op.getOperand(2);
8755  DebugLoc dl = Op.getDebugLoc();
8756  SDValue CC;
8757  bool Inverted = false;
8758
8759  if (Cond.getOpcode() == ISD::SETCC) {
8760    // Check for setcc([su]{add,sub,mul}o == 0).
8761    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8762        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8763        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8764        Cond.getOperand(0).getResNo() == 1 &&
8765        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8766         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8767         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8768         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8769         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8770         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8771      Inverted = true;
8772      Cond = Cond.getOperand(0);
8773    } else {
8774      SDValue NewCond = LowerSETCC(Cond, DAG);
8775      if (NewCond.getNode())
8776        Cond = NewCond;
8777    }
8778  }
8779#if 0
8780  // FIXME: LowerXALUO doesn't handle these!!
8781  else if (Cond.getOpcode() == X86ISD::ADD  ||
8782           Cond.getOpcode() == X86ISD::SUB  ||
8783           Cond.getOpcode() == X86ISD::SMUL ||
8784           Cond.getOpcode() == X86ISD::UMUL)
8785    Cond = LowerXALUO(Cond, DAG);
8786#endif
8787
8788  // Look pass (and (setcc_carry (cmp ...)), 1).
8789  if (Cond.getOpcode() == ISD::AND &&
8790      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8791    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8792    if (C && C->getAPIntValue() == 1)
8793      Cond = Cond.getOperand(0);
8794  }
8795
8796  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8797  // setting operand in place of the X86ISD::SETCC.
8798  unsigned CondOpcode = Cond.getOpcode();
8799  if (CondOpcode == X86ISD::SETCC ||
8800      CondOpcode == X86ISD::SETCC_CARRY) {
8801    CC = Cond.getOperand(0);
8802
8803    SDValue Cmp = Cond.getOperand(1);
8804    unsigned Opc = Cmp.getOpcode();
8805    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8806    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8807      Cond = Cmp;
8808      addTest = false;
8809    } else {
8810      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8811      default: break;
8812      case X86::COND_O:
8813      case X86::COND_B:
8814        // These can only come from an arithmetic instruction with overflow,
8815        // e.g. SADDO, UADDO.
8816        Cond = Cond.getNode()->getOperand(1);
8817        addTest = false;
8818        break;
8819      }
8820    }
8821  }
8822  CondOpcode = Cond.getOpcode();
8823  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8824      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8825      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8826       Cond.getOperand(0).getValueType() != MVT::i8)) {
8827    SDValue LHS = Cond.getOperand(0);
8828    SDValue RHS = Cond.getOperand(1);
8829    unsigned X86Opcode;
8830    unsigned X86Cond;
8831    SDVTList VTs;
8832    switch (CondOpcode) {
8833    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8834    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8835    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8836    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8837    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8838    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8839    default: llvm_unreachable("unexpected overflowing operator");
8840    }
8841    if (Inverted)
8842      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8843    if (CondOpcode == ISD::UMULO)
8844      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8845                          MVT::i32);
8846    else
8847      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8848
8849    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8850
8851    if (CondOpcode == ISD::UMULO)
8852      Cond = X86Op.getValue(2);
8853    else
8854      Cond = X86Op.getValue(1);
8855
8856    CC = DAG.getConstant(X86Cond, MVT::i8);
8857    addTest = false;
8858  } else {
8859    unsigned CondOpc;
8860    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8861      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8862      if (CondOpc == ISD::OR) {
8863        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8864        // two branches instead of an explicit OR instruction with a
8865        // separate test.
8866        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8867            isX86LogicalCmp(Cmp)) {
8868          CC = Cond.getOperand(0).getOperand(0);
8869          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8870                              Chain, Dest, CC, Cmp);
8871          CC = Cond.getOperand(1).getOperand(0);
8872          Cond = Cmp;
8873          addTest = false;
8874        }
8875      } else { // ISD::AND
8876        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8877        // two branches instead of an explicit AND instruction with a
8878        // separate test. However, we only do this if this block doesn't
8879        // have a fall-through edge, because this requires an explicit
8880        // jmp when the condition is false.
8881        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8882            isX86LogicalCmp(Cmp) &&
8883            Op.getNode()->hasOneUse()) {
8884          X86::CondCode CCode =
8885            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8886          CCode = X86::GetOppositeBranchCondition(CCode);
8887          CC = DAG.getConstant(CCode, MVT::i8);
8888          SDNode *User = *Op.getNode()->use_begin();
8889          // Look for an unconditional branch following this conditional branch.
8890          // We need this because we need to reverse the successors in order
8891          // to implement FCMP_OEQ.
8892          if (User->getOpcode() == ISD::BR) {
8893            SDValue FalseBB = User->getOperand(1);
8894            SDNode *NewBR =
8895              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8896            assert(NewBR == User);
8897            (void)NewBR;
8898            Dest = FalseBB;
8899
8900            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8901                                Chain, Dest, CC, Cmp);
8902            X86::CondCode CCode =
8903              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8904            CCode = X86::GetOppositeBranchCondition(CCode);
8905            CC = DAG.getConstant(CCode, MVT::i8);
8906            Cond = Cmp;
8907            addTest = false;
8908          }
8909        }
8910      }
8911    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8912      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8913      // It should be transformed during dag combiner except when the condition
8914      // is set by a arithmetics with overflow node.
8915      X86::CondCode CCode =
8916        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8917      CCode = X86::GetOppositeBranchCondition(CCode);
8918      CC = DAG.getConstant(CCode, MVT::i8);
8919      Cond = Cond.getOperand(0).getOperand(1);
8920      addTest = false;
8921    } else if (Cond.getOpcode() == ISD::SETCC &&
8922               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8923      // For FCMP_OEQ, we can emit
8924      // two branches instead of an explicit AND instruction with a
8925      // separate test. However, we only do this if this block doesn't
8926      // have a fall-through edge, because this requires an explicit
8927      // jmp when the condition is false.
8928      if (Op.getNode()->hasOneUse()) {
8929        SDNode *User = *Op.getNode()->use_begin();
8930        // Look for an unconditional branch following this conditional branch.
8931        // We need this because we need to reverse the successors in order
8932        // to implement FCMP_OEQ.
8933        if (User->getOpcode() == ISD::BR) {
8934          SDValue FalseBB = User->getOperand(1);
8935          SDNode *NewBR =
8936            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8937          assert(NewBR == User);
8938          (void)NewBR;
8939          Dest = FalseBB;
8940
8941          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8942                                    Cond.getOperand(0), Cond.getOperand(1));
8943          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8944          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8945          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8946                              Chain, Dest, CC, Cmp);
8947          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8948          Cond = Cmp;
8949          addTest = false;
8950        }
8951      }
8952    } else if (Cond.getOpcode() == ISD::SETCC &&
8953               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8954      // For FCMP_UNE, we can emit
8955      // two branches instead of an explicit AND instruction with a
8956      // separate test. However, we only do this if this block doesn't
8957      // have a fall-through edge, because this requires an explicit
8958      // jmp when the condition is false.
8959      if (Op.getNode()->hasOneUse()) {
8960        SDNode *User = *Op.getNode()->use_begin();
8961        // Look for an unconditional branch following this conditional branch.
8962        // We need this because we need to reverse the successors in order
8963        // to implement FCMP_UNE.
8964        if (User->getOpcode() == ISD::BR) {
8965          SDValue FalseBB = User->getOperand(1);
8966          SDNode *NewBR =
8967            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8968          assert(NewBR == User);
8969          (void)NewBR;
8970
8971          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8972                                    Cond.getOperand(0), Cond.getOperand(1));
8973          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8974          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8975          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8976                              Chain, Dest, CC, Cmp);
8977          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8978          Cond = Cmp;
8979          addTest = false;
8980          Dest = FalseBB;
8981        }
8982      }
8983    }
8984  }
8985
8986  if (addTest) {
8987    // Look pass the truncate.
8988    if (Cond.getOpcode() == ISD::TRUNCATE)
8989      Cond = Cond.getOperand(0);
8990
8991    // We know the result of AND is compared against zero. Try to match
8992    // it to BT.
8993    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8994      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8995      if (NewSetCC.getNode()) {
8996        CC = NewSetCC.getOperand(0);
8997        Cond = NewSetCC.getOperand(1);
8998        addTest = false;
8999      }
9000    }
9001  }
9002
9003  if (addTest) {
9004    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9005    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9006  }
9007  Cond = ConvertCmpIfNecessary(Cond, DAG);
9008  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9009                     Chain, Dest, CC, Cond);
9010}
9011
9012
9013// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9014// Calls to _alloca is needed to probe the stack when allocating more than 4k
9015// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9016// that the guard pages used by the OS virtual memory manager are allocated in
9017// correct sequence.
9018SDValue
9019X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9020                                           SelectionDAG &DAG) const {
9021  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9022          getTargetMachine().Options.EnableSegmentedStacks) &&
9023         "This should be used only on Windows targets or when segmented stacks "
9024         "are being used");
9025  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9026  DebugLoc dl = Op.getDebugLoc();
9027
9028  // Get the inputs.
9029  SDValue Chain = Op.getOperand(0);
9030  SDValue Size  = Op.getOperand(1);
9031  // FIXME: Ensure alignment here
9032
9033  bool Is64Bit = Subtarget->is64Bit();
9034  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9035
9036  if (getTargetMachine().Options.EnableSegmentedStacks) {
9037    MachineFunction &MF = DAG.getMachineFunction();
9038    MachineRegisterInfo &MRI = MF.getRegInfo();
9039
9040    if (Is64Bit) {
9041      // The 64 bit implementation of segmented stacks needs to clobber both r10
9042      // r11. This makes it impossible to use it along with nested parameters.
9043      const Function *F = MF.getFunction();
9044
9045      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9046           I != E; I++)
9047        if (I->hasNestAttr())
9048          report_fatal_error("Cannot use segmented stacks with functions that "
9049                             "have nested arguments.");
9050    }
9051
9052    const TargetRegisterClass *AddrRegClass =
9053      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9054    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9055    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9056    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9057                                DAG.getRegister(Vreg, SPTy));
9058    SDValue Ops1[2] = { Value, Chain };
9059    return DAG.getMergeValues(Ops1, 2, dl);
9060  } else {
9061    SDValue Flag;
9062    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9063
9064    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9065    Flag = Chain.getValue(1);
9066    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9067
9068    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9069    Flag = Chain.getValue(1);
9070
9071    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9072
9073    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9074    return DAG.getMergeValues(Ops1, 2, dl);
9075  }
9076}
9077
9078SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9079  MachineFunction &MF = DAG.getMachineFunction();
9080  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9081
9082  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9083  DebugLoc DL = Op.getDebugLoc();
9084
9085  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9086    // vastart just stores the address of the VarArgsFrameIndex slot into the
9087    // memory location argument.
9088    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9089                                   getPointerTy());
9090    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9091                        MachinePointerInfo(SV), false, false, 0);
9092  }
9093
9094  // __va_list_tag:
9095  //   gp_offset         (0 - 6 * 8)
9096  //   fp_offset         (48 - 48 + 8 * 16)
9097  //   overflow_arg_area (point to parameters coming in memory).
9098  //   reg_save_area
9099  SmallVector<SDValue, 8> MemOps;
9100  SDValue FIN = Op.getOperand(1);
9101  // Store gp_offset
9102  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9103                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9104                                               MVT::i32),
9105                               FIN, MachinePointerInfo(SV), false, false, 0);
9106  MemOps.push_back(Store);
9107
9108  // Store fp_offset
9109  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9110                    FIN, DAG.getIntPtrConstant(4));
9111  Store = DAG.getStore(Op.getOperand(0), DL,
9112                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9113                                       MVT::i32),
9114                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9115  MemOps.push_back(Store);
9116
9117  // Store ptr to overflow_arg_area
9118  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9119                    FIN, DAG.getIntPtrConstant(4));
9120  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9121                                    getPointerTy());
9122  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9123                       MachinePointerInfo(SV, 8),
9124                       false, false, 0);
9125  MemOps.push_back(Store);
9126
9127  // Store ptr to reg_save_area.
9128  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9129                    FIN, DAG.getIntPtrConstant(8));
9130  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9131                                    getPointerTy());
9132  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9133                       MachinePointerInfo(SV, 16), false, false, 0);
9134  MemOps.push_back(Store);
9135  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9136                     &MemOps[0], MemOps.size());
9137}
9138
9139SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9140  assert(Subtarget->is64Bit() &&
9141         "LowerVAARG only handles 64-bit va_arg!");
9142  assert((Subtarget->isTargetLinux() ||
9143          Subtarget->isTargetDarwin()) &&
9144          "Unhandled target in LowerVAARG");
9145  assert(Op.getNode()->getNumOperands() == 4);
9146  SDValue Chain = Op.getOperand(0);
9147  SDValue SrcPtr = Op.getOperand(1);
9148  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9149  unsigned Align = Op.getConstantOperandVal(3);
9150  DebugLoc dl = Op.getDebugLoc();
9151
9152  EVT ArgVT = Op.getNode()->getValueType(0);
9153  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9154  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9155  uint8_t ArgMode;
9156
9157  // Decide which area this value should be read from.
9158  // TODO: Implement the AMD64 ABI in its entirety. This simple
9159  // selection mechanism works only for the basic types.
9160  if (ArgVT == MVT::f80) {
9161    llvm_unreachable("va_arg for f80 not yet implemented");
9162  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9163    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9164  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9165    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9166  } else {
9167    llvm_unreachable("Unhandled argument type in LowerVAARG");
9168  }
9169
9170  if (ArgMode == 2) {
9171    // Sanity Check: Make sure using fp_offset makes sense.
9172    assert(!getTargetMachine().Options.UseSoftFloat &&
9173           !(DAG.getMachineFunction()
9174                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9175           Subtarget->hasSSE1());
9176  }
9177
9178  // Insert VAARG_64 node into the DAG
9179  // VAARG_64 returns two values: Variable Argument Address, Chain
9180  SmallVector<SDValue, 11> InstOps;
9181  InstOps.push_back(Chain);
9182  InstOps.push_back(SrcPtr);
9183  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9184  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9185  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9186  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9187  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9188                                          VTs, &InstOps[0], InstOps.size(),
9189                                          MVT::i64,
9190                                          MachinePointerInfo(SV),
9191                                          /*Align=*/0,
9192                                          /*Volatile=*/false,
9193                                          /*ReadMem=*/true,
9194                                          /*WriteMem=*/true);
9195  Chain = VAARG.getValue(1);
9196
9197  // Load the next argument and return it
9198  return DAG.getLoad(ArgVT, dl,
9199                     Chain,
9200                     VAARG,
9201                     MachinePointerInfo(),
9202                     false, false, false, 0);
9203}
9204
9205SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9206  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9207  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9208  SDValue Chain = Op.getOperand(0);
9209  SDValue DstPtr = Op.getOperand(1);
9210  SDValue SrcPtr = Op.getOperand(2);
9211  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9212  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9213  DebugLoc DL = Op.getDebugLoc();
9214
9215  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9216                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9217                       false,
9218                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9219}
9220
9221// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9222// may or may not be a constant. Takes immediate version of shift as input.
9223static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9224                                   SDValue SrcOp, SDValue ShAmt,
9225                                   SelectionDAG &DAG) {
9226  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9227
9228  if (isa<ConstantSDNode>(ShAmt)) {
9229    switch (Opc) {
9230      default: llvm_unreachable("Unknown target vector shift node");
9231      case X86ISD::VSHLI:
9232      case X86ISD::VSRLI:
9233      case X86ISD::VSRAI:
9234        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9235    }
9236  }
9237
9238  // Change opcode to non-immediate version
9239  switch (Opc) {
9240    default: llvm_unreachable("Unknown target vector shift node");
9241    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9242    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9243    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9244  }
9245
9246  // Need to build a vector containing shift amount
9247  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9248  SDValue ShOps[4];
9249  ShOps[0] = ShAmt;
9250  ShOps[1] = DAG.getConstant(0, MVT::i32);
9251  ShOps[2] = DAG.getUNDEF(MVT::i32);
9252  ShOps[3] = DAG.getUNDEF(MVT::i32);
9253  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9254  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9255  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9256}
9257
9258SDValue
9259X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9260  DebugLoc dl = Op.getDebugLoc();
9261  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9262  switch (IntNo) {
9263  default: return SDValue();    // Don't custom lower most intrinsics.
9264  // Comparison intrinsics.
9265  case Intrinsic::x86_sse_comieq_ss:
9266  case Intrinsic::x86_sse_comilt_ss:
9267  case Intrinsic::x86_sse_comile_ss:
9268  case Intrinsic::x86_sse_comigt_ss:
9269  case Intrinsic::x86_sse_comige_ss:
9270  case Intrinsic::x86_sse_comineq_ss:
9271  case Intrinsic::x86_sse_ucomieq_ss:
9272  case Intrinsic::x86_sse_ucomilt_ss:
9273  case Intrinsic::x86_sse_ucomile_ss:
9274  case Intrinsic::x86_sse_ucomigt_ss:
9275  case Intrinsic::x86_sse_ucomige_ss:
9276  case Intrinsic::x86_sse_ucomineq_ss:
9277  case Intrinsic::x86_sse2_comieq_sd:
9278  case Intrinsic::x86_sse2_comilt_sd:
9279  case Intrinsic::x86_sse2_comile_sd:
9280  case Intrinsic::x86_sse2_comigt_sd:
9281  case Intrinsic::x86_sse2_comige_sd:
9282  case Intrinsic::x86_sse2_comineq_sd:
9283  case Intrinsic::x86_sse2_ucomieq_sd:
9284  case Intrinsic::x86_sse2_ucomilt_sd:
9285  case Intrinsic::x86_sse2_ucomile_sd:
9286  case Intrinsic::x86_sse2_ucomigt_sd:
9287  case Intrinsic::x86_sse2_ucomige_sd:
9288  case Intrinsic::x86_sse2_ucomineq_sd: {
9289    unsigned Opc = 0;
9290    ISD::CondCode CC = ISD::SETCC_INVALID;
9291    switch (IntNo) {
9292    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9293    case Intrinsic::x86_sse_comieq_ss:
9294    case Intrinsic::x86_sse2_comieq_sd:
9295      Opc = X86ISD::COMI;
9296      CC = ISD::SETEQ;
9297      break;
9298    case Intrinsic::x86_sse_comilt_ss:
9299    case Intrinsic::x86_sse2_comilt_sd:
9300      Opc = X86ISD::COMI;
9301      CC = ISD::SETLT;
9302      break;
9303    case Intrinsic::x86_sse_comile_ss:
9304    case Intrinsic::x86_sse2_comile_sd:
9305      Opc = X86ISD::COMI;
9306      CC = ISD::SETLE;
9307      break;
9308    case Intrinsic::x86_sse_comigt_ss:
9309    case Intrinsic::x86_sse2_comigt_sd:
9310      Opc = X86ISD::COMI;
9311      CC = ISD::SETGT;
9312      break;
9313    case Intrinsic::x86_sse_comige_ss:
9314    case Intrinsic::x86_sse2_comige_sd:
9315      Opc = X86ISD::COMI;
9316      CC = ISD::SETGE;
9317      break;
9318    case Intrinsic::x86_sse_comineq_ss:
9319    case Intrinsic::x86_sse2_comineq_sd:
9320      Opc = X86ISD::COMI;
9321      CC = ISD::SETNE;
9322      break;
9323    case Intrinsic::x86_sse_ucomieq_ss:
9324    case Intrinsic::x86_sse2_ucomieq_sd:
9325      Opc = X86ISD::UCOMI;
9326      CC = ISD::SETEQ;
9327      break;
9328    case Intrinsic::x86_sse_ucomilt_ss:
9329    case Intrinsic::x86_sse2_ucomilt_sd:
9330      Opc = X86ISD::UCOMI;
9331      CC = ISD::SETLT;
9332      break;
9333    case Intrinsic::x86_sse_ucomile_ss:
9334    case Intrinsic::x86_sse2_ucomile_sd:
9335      Opc = X86ISD::UCOMI;
9336      CC = ISD::SETLE;
9337      break;
9338    case Intrinsic::x86_sse_ucomigt_ss:
9339    case Intrinsic::x86_sse2_ucomigt_sd:
9340      Opc = X86ISD::UCOMI;
9341      CC = ISD::SETGT;
9342      break;
9343    case Intrinsic::x86_sse_ucomige_ss:
9344    case Intrinsic::x86_sse2_ucomige_sd:
9345      Opc = X86ISD::UCOMI;
9346      CC = ISD::SETGE;
9347      break;
9348    case Intrinsic::x86_sse_ucomineq_ss:
9349    case Intrinsic::x86_sse2_ucomineq_sd:
9350      Opc = X86ISD::UCOMI;
9351      CC = ISD::SETNE;
9352      break;
9353    }
9354
9355    SDValue LHS = Op.getOperand(1);
9356    SDValue RHS = Op.getOperand(2);
9357    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9358    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9359    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9360    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9361                                DAG.getConstant(X86CC, MVT::i8), Cond);
9362    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9363  }
9364  // XOP comparison intrinsics
9365  case Intrinsic::x86_xop_vpcomltb:
9366  case Intrinsic::x86_xop_vpcomltw:
9367  case Intrinsic::x86_xop_vpcomltd:
9368  case Intrinsic::x86_xop_vpcomltq:
9369  case Intrinsic::x86_xop_vpcomltub:
9370  case Intrinsic::x86_xop_vpcomltuw:
9371  case Intrinsic::x86_xop_vpcomltud:
9372  case Intrinsic::x86_xop_vpcomltuq:
9373  case Intrinsic::x86_xop_vpcomleb:
9374  case Intrinsic::x86_xop_vpcomlew:
9375  case Intrinsic::x86_xop_vpcomled:
9376  case Intrinsic::x86_xop_vpcomleq:
9377  case Intrinsic::x86_xop_vpcomleub:
9378  case Intrinsic::x86_xop_vpcomleuw:
9379  case Intrinsic::x86_xop_vpcomleud:
9380  case Intrinsic::x86_xop_vpcomleuq:
9381  case Intrinsic::x86_xop_vpcomgtb:
9382  case Intrinsic::x86_xop_vpcomgtw:
9383  case Intrinsic::x86_xop_vpcomgtd:
9384  case Intrinsic::x86_xop_vpcomgtq:
9385  case Intrinsic::x86_xop_vpcomgtub:
9386  case Intrinsic::x86_xop_vpcomgtuw:
9387  case Intrinsic::x86_xop_vpcomgtud:
9388  case Intrinsic::x86_xop_vpcomgtuq:
9389  case Intrinsic::x86_xop_vpcomgeb:
9390  case Intrinsic::x86_xop_vpcomgew:
9391  case Intrinsic::x86_xop_vpcomged:
9392  case Intrinsic::x86_xop_vpcomgeq:
9393  case Intrinsic::x86_xop_vpcomgeub:
9394  case Intrinsic::x86_xop_vpcomgeuw:
9395  case Intrinsic::x86_xop_vpcomgeud:
9396  case Intrinsic::x86_xop_vpcomgeuq:
9397  case Intrinsic::x86_xop_vpcomeqb:
9398  case Intrinsic::x86_xop_vpcomeqw:
9399  case Intrinsic::x86_xop_vpcomeqd:
9400  case Intrinsic::x86_xop_vpcomeqq:
9401  case Intrinsic::x86_xop_vpcomequb:
9402  case Intrinsic::x86_xop_vpcomequw:
9403  case Intrinsic::x86_xop_vpcomequd:
9404  case Intrinsic::x86_xop_vpcomequq:
9405  case Intrinsic::x86_xop_vpcomneb:
9406  case Intrinsic::x86_xop_vpcomnew:
9407  case Intrinsic::x86_xop_vpcomned:
9408  case Intrinsic::x86_xop_vpcomneq:
9409  case Intrinsic::x86_xop_vpcomneub:
9410  case Intrinsic::x86_xop_vpcomneuw:
9411  case Intrinsic::x86_xop_vpcomneud:
9412  case Intrinsic::x86_xop_vpcomneuq:
9413  case Intrinsic::x86_xop_vpcomfalseb:
9414  case Intrinsic::x86_xop_vpcomfalsew:
9415  case Intrinsic::x86_xop_vpcomfalsed:
9416  case Intrinsic::x86_xop_vpcomfalseq:
9417  case Intrinsic::x86_xop_vpcomfalseub:
9418  case Intrinsic::x86_xop_vpcomfalseuw:
9419  case Intrinsic::x86_xop_vpcomfalseud:
9420  case Intrinsic::x86_xop_vpcomfalseuq:
9421  case Intrinsic::x86_xop_vpcomtrueb:
9422  case Intrinsic::x86_xop_vpcomtruew:
9423  case Intrinsic::x86_xop_vpcomtrued:
9424  case Intrinsic::x86_xop_vpcomtrueq:
9425  case Intrinsic::x86_xop_vpcomtrueub:
9426  case Intrinsic::x86_xop_vpcomtrueuw:
9427  case Intrinsic::x86_xop_vpcomtrueud:
9428  case Intrinsic::x86_xop_vpcomtrueuq: {
9429    unsigned CC = 0;
9430    unsigned Opc = 0;
9431
9432    switch (IntNo) {
9433    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9434    case Intrinsic::x86_xop_vpcomltb:
9435    case Intrinsic::x86_xop_vpcomltw:
9436    case Intrinsic::x86_xop_vpcomltd:
9437    case Intrinsic::x86_xop_vpcomltq:
9438      CC = 0;
9439      Opc = X86ISD::VPCOM;
9440      break;
9441    case Intrinsic::x86_xop_vpcomltub:
9442    case Intrinsic::x86_xop_vpcomltuw:
9443    case Intrinsic::x86_xop_vpcomltud:
9444    case Intrinsic::x86_xop_vpcomltuq:
9445      CC = 0;
9446      Opc = X86ISD::VPCOMU;
9447      break;
9448    case Intrinsic::x86_xop_vpcomleb:
9449    case Intrinsic::x86_xop_vpcomlew:
9450    case Intrinsic::x86_xop_vpcomled:
9451    case Intrinsic::x86_xop_vpcomleq:
9452      CC = 1;
9453      Opc = X86ISD::VPCOM;
9454      break;
9455    case Intrinsic::x86_xop_vpcomleub:
9456    case Intrinsic::x86_xop_vpcomleuw:
9457    case Intrinsic::x86_xop_vpcomleud:
9458    case Intrinsic::x86_xop_vpcomleuq:
9459      CC = 1;
9460      Opc = X86ISD::VPCOMU;
9461      break;
9462    case Intrinsic::x86_xop_vpcomgtb:
9463    case Intrinsic::x86_xop_vpcomgtw:
9464    case Intrinsic::x86_xop_vpcomgtd:
9465    case Intrinsic::x86_xop_vpcomgtq:
9466      CC = 2;
9467      Opc = X86ISD::VPCOM;
9468      break;
9469    case Intrinsic::x86_xop_vpcomgtub:
9470    case Intrinsic::x86_xop_vpcomgtuw:
9471    case Intrinsic::x86_xop_vpcomgtud:
9472    case Intrinsic::x86_xop_vpcomgtuq:
9473      CC = 2;
9474      Opc = X86ISD::VPCOMU;
9475      break;
9476    case Intrinsic::x86_xop_vpcomgeb:
9477    case Intrinsic::x86_xop_vpcomgew:
9478    case Intrinsic::x86_xop_vpcomged:
9479    case Intrinsic::x86_xop_vpcomgeq:
9480      CC = 3;
9481      Opc = X86ISD::VPCOM;
9482      break;
9483    case Intrinsic::x86_xop_vpcomgeub:
9484    case Intrinsic::x86_xop_vpcomgeuw:
9485    case Intrinsic::x86_xop_vpcomgeud:
9486    case Intrinsic::x86_xop_vpcomgeuq:
9487      CC = 3;
9488      Opc = X86ISD::VPCOMU;
9489      break;
9490    case Intrinsic::x86_xop_vpcomeqb:
9491    case Intrinsic::x86_xop_vpcomeqw:
9492    case Intrinsic::x86_xop_vpcomeqd:
9493    case Intrinsic::x86_xop_vpcomeqq:
9494      CC = 4;
9495      Opc = X86ISD::VPCOM;
9496      break;
9497    case Intrinsic::x86_xop_vpcomequb:
9498    case Intrinsic::x86_xop_vpcomequw:
9499    case Intrinsic::x86_xop_vpcomequd:
9500    case Intrinsic::x86_xop_vpcomequq:
9501      CC = 4;
9502      Opc = X86ISD::VPCOMU;
9503      break;
9504    case Intrinsic::x86_xop_vpcomneb:
9505    case Intrinsic::x86_xop_vpcomnew:
9506    case Intrinsic::x86_xop_vpcomned:
9507    case Intrinsic::x86_xop_vpcomneq:
9508      CC = 5;
9509      Opc = X86ISD::VPCOM;
9510      break;
9511    case Intrinsic::x86_xop_vpcomneub:
9512    case Intrinsic::x86_xop_vpcomneuw:
9513    case Intrinsic::x86_xop_vpcomneud:
9514    case Intrinsic::x86_xop_vpcomneuq:
9515      CC = 5;
9516      Opc = X86ISD::VPCOMU;
9517      break;
9518    case Intrinsic::x86_xop_vpcomfalseb:
9519    case Intrinsic::x86_xop_vpcomfalsew:
9520    case Intrinsic::x86_xop_vpcomfalsed:
9521    case Intrinsic::x86_xop_vpcomfalseq:
9522      CC = 6;
9523      Opc = X86ISD::VPCOM;
9524      break;
9525    case Intrinsic::x86_xop_vpcomfalseub:
9526    case Intrinsic::x86_xop_vpcomfalseuw:
9527    case Intrinsic::x86_xop_vpcomfalseud:
9528    case Intrinsic::x86_xop_vpcomfalseuq:
9529      CC = 6;
9530      Opc = X86ISD::VPCOMU;
9531      break;
9532    case Intrinsic::x86_xop_vpcomtrueb:
9533    case Intrinsic::x86_xop_vpcomtruew:
9534    case Intrinsic::x86_xop_vpcomtrued:
9535    case Intrinsic::x86_xop_vpcomtrueq:
9536      CC = 7;
9537      Opc = X86ISD::VPCOM;
9538      break;
9539    case Intrinsic::x86_xop_vpcomtrueub:
9540    case Intrinsic::x86_xop_vpcomtrueuw:
9541    case Intrinsic::x86_xop_vpcomtrueud:
9542    case Intrinsic::x86_xop_vpcomtrueuq:
9543      CC = 7;
9544      Opc = X86ISD::VPCOMU;
9545      break;
9546    }
9547
9548    SDValue LHS = Op.getOperand(1);
9549    SDValue RHS = Op.getOperand(2);
9550    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9551                       DAG.getConstant(CC, MVT::i8));
9552  }
9553
9554  // Arithmetic intrinsics.
9555  case Intrinsic::x86_sse2_pmulu_dq:
9556  case Intrinsic::x86_avx2_pmulu_dq:
9557    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9558                       Op.getOperand(1), Op.getOperand(2));
9559  case Intrinsic::x86_sse3_hadd_ps:
9560  case Intrinsic::x86_sse3_hadd_pd:
9561  case Intrinsic::x86_avx_hadd_ps_256:
9562  case Intrinsic::x86_avx_hadd_pd_256:
9563    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9564                       Op.getOperand(1), Op.getOperand(2));
9565  case Intrinsic::x86_sse3_hsub_ps:
9566  case Intrinsic::x86_sse3_hsub_pd:
9567  case Intrinsic::x86_avx_hsub_ps_256:
9568  case Intrinsic::x86_avx_hsub_pd_256:
9569    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9570                       Op.getOperand(1), Op.getOperand(2));
9571  case Intrinsic::x86_ssse3_phadd_w_128:
9572  case Intrinsic::x86_ssse3_phadd_d_128:
9573  case Intrinsic::x86_avx2_phadd_w:
9574  case Intrinsic::x86_avx2_phadd_d:
9575    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9576                       Op.getOperand(1), Op.getOperand(2));
9577  case Intrinsic::x86_ssse3_phsub_w_128:
9578  case Intrinsic::x86_ssse3_phsub_d_128:
9579  case Intrinsic::x86_avx2_phsub_w:
9580  case Intrinsic::x86_avx2_phsub_d:
9581    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9582                       Op.getOperand(1), Op.getOperand(2));
9583  case Intrinsic::x86_avx2_psllv_d:
9584  case Intrinsic::x86_avx2_psllv_q:
9585  case Intrinsic::x86_avx2_psllv_d_256:
9586  case Intrinsic::x86_avx2_psllv_q_256:
9587    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9588                      Op.getOperand(1), Op.getOperand(2));
9589  case Intrinsic::x86_avx2_psrlv_d:
9590  case Intrinsic::x86_avx2_psrlv_q:
9591  case Intrinsic::x86_avx2_psrlv_d_256:
9592  case Intrinsic::x86_avx2_psrlv_q_256:
9593    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9594                      Op.getOperand(1), Op.getOperand(2));
9595  case Intrinsic::x86_avx2_psrav_d:
9596  case Intrinsic::x86_avx2_psrav_d_256:
9597    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9598                      Op.getOperand(1), Op.getOperand(2));
9599  case Intrinsic::x86_ssse3_pshuf_b_128:
9600  case Intrinsic::x86_avx2_pshuf_b:
9601    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9602                       Op.getOperand(1), Op.getOperand(2));
9603  case Intrinsic::x86_ssse3_psign_b_128:
9604  case Intrinsic::x86_ssse3_psign_w_128:
9605  case Intrinsic::x86_ssse3_psign_d_128:
9606  case Intrinsic::x86_avx2_psign_b:
9607  case Intrinsic::x86_avx2_psign_w:
9608  case Intrinsic::x86_avx2_psign_d:
9609    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9610                       Op.getOperand(1), Op.getOperand(2));
9611  case Intrinsic::x86_sse41_insertps:
9612    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9613                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9614  case Intrinsic::x86_avx_vperm2f128_ps_256:
9615  case Intrinsic::x86_avx_vperm2f128_pd_256:
9616  case Intrinsic::x86_avx_vperm2f128_si_256:
9617  case Intrinsic::x86_avx2_vperm2i128:
9618    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9619                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9620  case Intrinsic::x86_avx2_permd:
9621  case Intrinsic::x86_avx2_permps:
9622    // Operands intentionally swapped. Mask is last operand to intrinsic,
9623    // but second operand for node/intruction.
9624    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9625                       Op.getOperand(2), Op.getOperand(1));
9626
9627  // ptest and testp intrinsics. The intrinsic these come from are designed to
9628  // return an integer value, not just an instruction so lower it to the ptest
9629  // or testp pattern and a setcc for the result.
9630  case Intrinsic::x86_sse41_ptestz:
9631  case Intrinsic::x86_sse41_ptestc:
9632  case Intrinsic::x86_sse41_ptestnzc:
9633  case Intrinsic::x86_avx_ptestz_256:
9634  case Intrinsic::x86_avx_ptestc_256:
9635  case Intrinsic::x86_avx_ptestnzc_256:
9636  case Intrinsic::x86_avx_vtestz_ps:
9637  case Intrinsic::x86_avx_vtestc_ps:
9638  case Intrinsic::x86_avx_vtestnzc_ps:
9639  case Intrinsic::x86_avx_vtestz_pd:
9640  case Intrinsic::x86_avx_vtestc_pd:
9641  case Intrinsic::x86_avx_vtestnzc_pd:
9642  case Intrinsic::x86_avx_vtestz_ps_256:
9643  case Intrinsic::x86_avx_vtestc_ps_256:
9644  case Intrinsic::x86_avx_vtestnzc_ps_256:
9645  case Intrinsic::x86_avx_vtestz_pd_256:
9646  case Intrinsic::x86_avx_vtestc_pd_256:
9647  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9648    bool IsTestPacked = false;
9649    unsigned X86CC = 0;
9650    switch (IntNo) {
9651    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9652    case Intrinsic::x86_avx_vtestz_ps:
9653    case Intrinsic::x86_avx_vtestz_pd:
9654    case Intrinsic::x86_avx_vtestz_ps_256:
9655    case Intrinsic::x86_avx_vtestz_pd_256:
9656      IsTestPacked = true; // Fallthrough
9657    case Intrinsic::x86_sse41_ptestz:
9658    case Intrinsic::x86_avx_ptestz_256:
9659      // ZF = 1
9660      X86CC = X86::COND_E;
9661      break;
9662    case Intrinsic::x86_avx_vtestc_ps:
9663    case Intrinsic::x86_avx_vtestc_pd:
9664    case Intrinsic::x86_avx_vtestc_ps_256:
9665    case Intrinsic::x86_avx_vtestc_pd_256:
9666      IsTestPacked = true; // Fallthrough
9667    case Intrinsic::x86_sse41_ptestc:
9668    case Intrinsic::x86_avx_ptestc_256:
9669      // CF = 1
9670      X86CC = X86::COND_B;
9671      break;
9672    case Intrinsic::x86_avx_vtestnzc_ps:
9673    case Intrinsic::x86_avx_vtestnzc_pd:
9674    case Intrinsic::x86_avx_vtestnzc_ps_256:
9675    case Intrinsic::x86_avx_vtestnzc_pd_256:
9676      IsTestPacked = true; // Fallthrough
9677    case Intrinsic::x86_sse41_ptestnzc:
9678    case Intrinsic::x86_avx_ptestnzc_256:
9679      // ZF and CF = 0
9680      X86CC = X86::COND_A;
9681      break;
9682    }
9683
9684    SDValue LHS = Op.getOperand(1);
9685    SDValue RHS = Op.getOperand(2);
9686    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9687    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9688    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9689    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9690    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9691  }
9692
9693  // SSE/AVX shift intrinsics
9694  case Intrinsic::x86_sse2_psll_w:
9695  case Intrinsic::x86_sse2_psll_d:
9696  case Intrinsic::x86_sse2_psll_q:
9697  case Intrinsic::x86_avx2_psll_w:
9698  case Intrinsic::x86_avx2_psll_d:
9699  case Intrinsic::x86_avx2_psll_q:
9700    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9701                       Op.getOperand(1), Op.getOperand(2));
9702  case Intrinsic::x86_sse2_psrl_w:
9703  case Intrinsic::x86_sse2_psrl_d:
9704  case Intrinsic::x86_sse2_psrl_q:
9705  case Intrinsic::x86_avx2_psrl_w:
9706  case Intrinsic::x86_avx2_psrl_d:
9707  case Intrinsic::x86_avx2_psrl_q:
9708    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9709                       Op.getOperand(1), Op.getOperand(2));
9710  case Intrinsic::x86_sse2_psra_w:
9711  case Intrinsic::x86_sse2_psra_d:
9712  case Intrinsic::x86_avx2_psra_w:
9713  case Intrinsic::x86_avx2_psra_d:
9714    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9715                       Op.getOperand(1), Op.getOperand(2));
9716  case Intrinsic::x86_sse2_pslli_w:
9717  case Intrinsic::x86_sse2_pslli_d:
9718  case Intrinsic::x86_sse2_pslli_q:
9719  case Intrinsic::x86_avx2_pslli_w:
9720  case Intrinsic::x86_avx2_pslli_d:
9721  case Intrinsic::x86_avx2_pslli_q:
9722    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9723                               Op.getOperand(1), Op.getOperand(2), DAG);
9724  case Intrinsic::x86_sse2_psrli_w:
9725  case Intrinsic::x86_sse2_psrli_d:
9726  case Intrinsic::x86_sse2_psrli_q:
9727  case Intrinsic::x86_avx2_psrli_w:
9728  case Intrinsic::x86_avx2_psrli_d:
9729  case Intrinsic::x86_avx2_psrli_q:
9730    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9731                               Op.getOperand(1), Op.getOperand(2), DAG);
9732  case Intrinsic::x86_sse2_psrai_w:
9733  case Intrinsic::x86_sse2_psrai_d:
9734  case Intrinsic::x86_avx2_psrai_w:
9735  case Intrinsic::x86_avx2_psrai_d:
9736    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9737                               Op.getOperand(1), Op.getOperand(2), DAG);
9738  // Fix vector shift instructions where the last operand is a non-immediate
9739  // i32 value.
9740  case Intrinsic::x86_mmx_pslli_w:
9741  case Intrinsic::x86_mmx_pslli_d:
9742  case Intrinsic::x86_mmx_pslli_q:
9743  case Intrinsic::x86_mmx_psrli_w:
9744  case Intrinsic::x86_mmx_psrli_d:
9745  case Intrinsic::x86_mmx_psrli_q:
9746  case Intrinsic::x86_mmx_psrai_w:
9747  case Intrinsic::x86_mmx_psrai_d: {
9748    SDValue ShAmt = Op.getOperand(2);
9749    if (isa<ConstantSDNode>(ShAmt))
9750      return SDValue();
9751
9752    unsigned NewIntNo = 0;
9753    switch (IntNo) {
9754    case Intrinsic::x86_mmx_pslli_w:
9755      NewIntNo = Intrinsic::x86_mmx_psll_w;
9756      break;
9757    case Intrinsic::x86_mmx_pslli_d:
9758      NewIntNo = Intrinsic::x86_mmx_psll_d;
9759      break;
9760    case Intrinsic::x86_mmx_pslli_q:
9761      NewIntNo = Intrinsic::x86_mmx_psll_q;
9762      break;
9763    case Intrinsic::x86_mmx_psrli_w:
9764      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9765      break;
9766    case Intrinsic::x86_mmx_psrli_d:
9767      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9768      break;
9769    case Intrinsic::x86_mmx_psrli_q:
9770      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9771      break;
9772    case Intrinsic::x86_mmx_psrai_w:
9773      NewIntNo = Intrinsic::x86_mmx_psra_w;
9774      break;
9775    case Intrinsic::x86_mmx_psrai_d:
9776      NewIntNo = Intrinsic::x86_mmx_psra_d;
9777      break;
9778    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9779    }
9780
9781    // The vector shift intrinsics with scalars uses 32b shift amounts but
9782    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9783    // to be zero.
9784    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9785                         DAG.getConstant(0, MVT::i32));
9786// FIXME this must be lowered to get rid of the invalid type.
9787
9788    EVT VT = Op.getValueType();
9789    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9790    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9791                       DAG.getConstant(NewIntNo, MVT::i32),
9792                       Op.getOperand(1), ShAmt);
9793  }
9794  }
9795}
9796
9797SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9798                                           SelectionDAG &DAG) const {
9799  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9800  MFI->setReturnAddressIsTaken(true);
9801
9802  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9803  DebugLoc dl = Op.getDebugLoc();
9804
9805  if (Depth > 0) {
9806    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9807    SDValue Offset =
9808      DAG.getConstant(TD->getPointerSize(),
9809                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9810    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9811                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9812                                   FrameAddr, Offset),
9813                       MachinePointerInfo(), false, false, false, 0);
9814  }
9815
9816  // Just load the return address.
9817  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9818  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9819                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9820}
9821
9822SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9823  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9824  MFI->setFrameAddressIsTaken(true);
9825
9826  EVT VT = Op.getValueType();
9827  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9828  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9829  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9830  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9831  while (Depth--)
9832    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9833                            MachinePointerInfo(),
9834                            false, false, false, 0);
9835  return FrameAddr;
9836}
9837
9838SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9839                                                     SelectionDAG &DAG) const {
9840  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9841}
9842
9843SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9844  MachineFunction &MF = DAG.getMachineFunction();
9845  SDValue Chain     = Op.getOperand(0);
9846  SDValue Offset    = Op.getOperand(1);
9847  SDValue Handler   = Op.getOperand(2);
9848  DebugLoc dl       = Op.getDebugLoc();
9849
9850  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9851                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9852                                     getPointerTy());
9853  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9854
9855  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9856                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9857  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9858  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9859                       false, false, 0);
9860  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9861  MF.getRegInfo().addLiveOut(StoreAddrReg);
9862
9863  return DAG.getNode(X86ISD::EH_RETURN, dl,
9864                     MVT::Other,
9865                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9866}
9867
9868SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9869                                                  SelectionDAG &DAG) const {
9870  return Op.getOperand(0);
9871}
9872
9873SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9874                                                SelectionDAG &DAG) const {
9875  SDValue Root = Op.getOperand(0);
9876  SDValue Trmp = Op.getOperand(1); // trampoline
9877  SDValue FPtr = Op.getOperand(2); // nested function
9878  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9879  DebugLoc dl  = Op.getDebugLoc();
9880
9881  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9882
9883  if (Subtarget->is64Bit()) {
9884    SDValue OutChains[6];
9885
9886    // Large code-model.
9887    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9888    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9889
9890    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9891    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9892
9893    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9894
9895    // Load the pointer to the nested function into R11.
9896    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9897    SDValue Addr = Trmp;
9898    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9899                                Addr, MachinePointerInfo(TrmpAddr),
9900                                false, false, 0);
9901
9902    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9903                       DAG.getConstant(2, MVT::i64));
9904    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9905                                MachinePointerInfo(TrmpAddr, 2),
9906                                false, false, 2);
9907
9908    // Load the 'nest' parameter value into R10.
9909    // R10 is specified in X86CallingConv.td
9910    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9911    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9912                       DAG.getConstant(10, MVT::i64));
9913    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9914                                Addr, MachinePointerInfo(TrmpAddr, 10),
9915                                false, false, 0);
9916
9917    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9918                       DAG.getConstant(12, MVT::i64));
9919    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9920                                MachinePointerInfo(TrmpAddr, 12),
9921                                false, false, 2);
9922
9923    // Jump to the nested function.
9924    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9925    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9926                       DAG.getConstant(20, MVT::i64));
9927    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9928                                Addr, MachinePointerInfo(TrmpAddr, 20),
9929                                false, false, 0);
9930
9931    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9932    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9933                       DAG.getConstant(22, MVT::i64));
9934    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9935                                MachinePointerInfo(TrmpAddr, 22),
9936                                false, false, 0);
9937
9938    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9939  } else {
9940    const Function *Func =
9941      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9942    CallingConv::ID CC = Func->getCallingConv();
9943    unsigned NestReg;
9944
9945    switch (CC) {
9946    default:
9947      llvm_unreachable("Unsupported calling convention");
9948    case CallingConv::C:
9949    case CallingConv::X86_StdCall: {
9950      // Pass 'nest' parameter in ECX.
9951      // Must be kept in sync with X86CallingConv.td
9952      NestReg = X86::ECX;
9953
9954      // Check that ECX wasn't needed by an 'inreg' parameter.
9955      FunctionType *FTy = Func->getFunctionType();
9956      const AttrListPtr &Attrs = Func->getAttributes();
9957
9958      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9959        unsigned InRegCount = 0;
9960        unsigned Idx = 1;
9961
9962        for (FunctionType::param_iterator I = FTy->param_begin(),
9963             E = FTy->param_end(); I != E; ++I, ++Idx)
9964          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9965            // FIXME: should only count parameters that are lowered to integers.
9966            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9967
9968        if (InRegCount > 2) {
9969          report_fatal_error("Nest register in use - reduce number of inreg"
9970                             " parameters!");
9971        }
9972      }
9973      break;
9974    }
9975    case CallingConv::X86_FastCall:
9976    case CallingConv::X86_ThisCall:
9977    case CallingConv::Fast:
9978      // Pass 'nest' parameter in EAX.
9979      // Must be kept in sync with X86CallingConv.td
9980      NestReg = X86::EAX;
9981      break;
9982    }
9983
9984    SDValue OutChains[4];
9985    SDValue Addr, Disp;
9986
9987    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9988                       DAG.getConstant(10, MVT::i32));
9989    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9990
9991    // This is storing the opcode for MOV32ri.
9992    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9993    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9994    OutChains[0] = DAG.getStore(Root, dl,
9995                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9996                                Trmp, MachinePointerInfo(TrmpAddr),
9997                                false, false, 0);
9998
9999    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10000                       DAG.getConstant(1, MVT::i32));
10001    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10002                                MachinePointerInfo(TrmpAddr, 1),
10003                                false, false, 1);
10004
10005    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10006    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10007                       DAG.getConstant(5, MVT::i32));
10008    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10009                                MachinePointerInfo(TrmpAddr, 5),
10010                                false, false, 1);
10011
10012    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10013                       DAG.getConstant(6, MVT::i32));
10014    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10015                                MachinePointerInfo(TrmpAddr, 6),
10016                                false, false, 1);
10017
10018    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10019  }
10020}
10021
10022SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10023                                            SelectionDAG &DAG) const {
10024  /*
10025   The rounding mode is in bits 11:10 of FPSR, and has the following
10026   settings:
10027     00 Round to nearest
10028     01 Round to -inf
10029     10 Round to +inf
10030     11 Round to 0
10031
10032  FLT_ROUNDS, on the other hand, expects the following:
10033    -1 Undefined
10034     0 Round to 0
10035     1 Round to nearest
10036     2 Round to +inf
10037     3 Round to -inf
10038
10039  To perform the conversion, we do:
10040    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10041  */
10042
10043  MachineFunction &MF = DAG.getMachineFunction();
10044  const TargetMachine &TM = MF.getTarget();
10045  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10046  unsigned StackAlignment = TFI.getStackAlignment();
10047  EVT VT = Op.getValueType();
10048  DebugLoc DL = Op.getDebugLoc();
10049
10050  // Save FP Control Word to stack slot
10051  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10052  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10053
10054
10055  MachineMemOperand *MMO =
10056   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10057                           MachineMemOperand::MOStore, 2, 2);
10058
10059  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10060  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10061                                          DAG.getVTList(MVT::Other),
10062                                          Ops, 2, MVT::i16, MMO);
10063
10064  // Load FP Control Word from stack slot
10065  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10066                            MachinePointerInfo(), false, false, false, 0);
10067
10068  // Transform as necessary
10069  SDValue CWD1 =
10070    DAG.getNode(ISD::SRL, DL, MVT::i16,
10071                DAG.getNode(ISD::AND, DL, MVT::i16,
10072                            CWD, DAG.getConstant(0x800, MVT::i16)),
10073                DAG.getConstant(11, MVT::i8));
10074  SDValue CWD2 =
10075    DAG.getNode(ISD::SRL, DL, MVT::i16,
10076                DAG.getNode(ISD::AND, DL, MVT::i16,
10077                            CWD, DAG.getConstant(0x400, MVT::i16)),
10078                DAG.getConstant(9, MVT::i8));
10079
10080  SDValue RetVal =
10081    DAG.getNode(ISD::AND, DL, MVT::i16,
10082                DAG.getNode(ISD::ADD, DL, MVT::i16,
10083                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10084                            DAG.getConstant(1, MVT::i16)),
10085                DAG.getConstant(3, MVT::i16));
10086
10087
10088  return DAG.getNode((VT.getSizeInBits() < 16 ?
10089                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10090}
10091
10092SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10093  EVT VT = Op.getValueType();
10094  EVT OpVT = VT;
10095  unsigned NumBits = VT.getSizeInBits();
10096  DebugLoc dl = Op.getDebugLoc();
10097
10098  Op = Op.getOperand(0);
10099  if (VT == MVT::i8) {
10100    // Zero extend to i32 since there is not an i8 bsr.
10101    OpVT = MVT::i32;
10102    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10103  }
10104
10105  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10106  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10107  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10108
10109  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10110  SDValue Ops[] = {
10111    Op,
10112    DAG.getConstant(NumBits+NumBits-1, OpVT),
10113    DAG.getConstant(X86::COND_E, MVT::i8),
10114    Op.getValue(1)
10115  };
10116  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10117
10118  // Finally xor with NumBits-1.
10119  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10120
10121  if (VT == MVT::i8)
10122    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10123  return Op;
10124}
10125
10126SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10127                                                SelectionDAG &DAG) const {
10128  EVT VT = Op.getValueType();
10129  EVT OpVT = VT;
10130  unsigned NumBits = VT.getSizeInBits();
10131  DebugLoc dl = Op.getDebugLoc();
10132
10133  Op = Op.getOperand(0);
10134  if (VT == MVT::i8) {
10135    // Zero extend to i32 since there is not an i8 bsr.
10136    OpVT = MVT::i32;
10137    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10138  }
10139
10140  // Issue a bsr (scan bits in reverse).
10141  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10142  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10143
10144  // And xor with NumBits-1.
10145  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10146
10147  if (VT == MVT::i8)
10148    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10149  return Op;
10150}
10151
10152SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10153  EVT VT = Op.getValueType();
10154  unsigned NumBits = VT.getSizeInBits();
10155  DebugLoc dl = Op.getDebugLoc();
10156  Op = Op.getOperand(0);
10157
10158  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10159  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10160  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10161
10162  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10163  SDValue Ops[] = {
10164    Op,
10165    DAG.getConstant(NumBits, VT),
10166    DAG.getConstant(X86::COND_E, MVT::i8),
10167    Op.getValue(1)
10168  };
10169  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10170}
10171
10172// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10173// ones, and then concatenate the result back.
10174static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10175  EVT VT = Op.getValueType();
10176
10177  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10178         "Unsupported value type for operation");
10179
10180  unsigned NumElems = VT.getVectorNumElements();
10181  DebugLoc dl = Op.getDebugLoc();
10182
10183  // Extract the LHS vectors
10184  SDValue LHS = Op.getOperand(0);
10185  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10186  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10187
10188  // Extract the RHS vectors
10189  SDValue RHS = Op.getOperand(1);
10190  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10191  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10192
10193  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10194  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10195
10196  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10197                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10198                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10199}
10200
10201SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10202  assert(Op.getValueType().getSizeInBits() == 256 &&
10203         Op.getValueType().isInteger() &&
10204         "Only handle AVX 256-bit vector integer operation");
10205  return Lower256IntArith(Op, DAG);
10206}
10207
10208SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10209  assert(Op.getValueType().getSizeInBits() == 256 &&
10210         Op.getValueType().isInteger() &&
10211         "Only handle AVX 256-bit vector integer operation");
10212  return Lower256IntArith(Op, DAG);
10213}
10214
10215SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10216  EVT VT = Op.getValueType();
10217
10218  // Decompose 256-bit ops into smaller 128-bit ops.
10219  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10220    return Lower256IntArith(Op, DAG);
10221
10222  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10223         "Only know how to lower V2I64/V4I64 multiply");
10224
10225  DebugLoc dl = Op.getDebugLoc();
10226
10227  //  Ahi = psrlqi(a, 32);
10228  //  Bhi = psrlqi(b, 32);
10229  //
10230  //  AloBlo = pmuludq(a, b);
10231  //  AloBhi = pmuludq(a, Bhi);
10232  //  AhiBlo = pmuludq(Ahi, b);
10233
10234  //  AloBhi = psllqi(AloBhi, 32);
10235  //  AhiBlo = psllqi(AhiBlo, 32);
10236  //  return AloBlo + AloBhi + AhiBlo;
10237
10238  SDValue A = Op.getOperand(0);
10239  SDValue B = Op.getOperand(1);
10240
10241  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10242
10243  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10244  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10245
10246  // Bit cast to 32-bit vectors for MULUDQ
10247  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10248  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10249  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10250  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10251  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10252
10253  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10254  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10255  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10256
10257  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10258  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10259
10260  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10261  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10262}
10263
10264SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10265
10266  EVT VT = Op.getValueType();
10267  DebugLoc dl = Op.getDebugLoc();
10268  SDValue R = Op.getOperand(0);
10269  SDValue Amt = Op.getOperand(1);
10270  LLVMContext *Context = DAG.getContext();
10271
10272  if (!Subtarget->hasSSE2())
10273    return SDValue();
10274
10275  // Optimize shl/srl/sra with constant shift amount.
10276  if (isSplatVector(Amt.getNode())) {
10277    SDValue SclrAmt = Amt->getOperand(0);
10278    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10279      uint64_t ShiftAmt = C->getZExtValue();
10280
10281      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10282          (Subtarget->hasAVX2() &&
10283           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10284        if (Op.getOpcode() == ISD::SHL)
10285          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10286                             DAG.getConstant(ShiftAmt, MVT::i32));
10287        if (Op.getOpcode() == ISD::SRL)
10288          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10289                             DAG.getConstant(ShiftAmt, MVT::i32));
10290        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10291          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10292                             DAG.getConstant(ShiftAmt, MVT::i32));
10293      }
10294
10295      if (VT == MVT::v16i8) {
10296        if (Op.getOpcode() == ISD::SHL) {
10297          // Make a large shift.
10298          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10299                                    DAG.getConstant(ShiftAmt, MVT::i32));
10300          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10301          // Zero out the rightmost bits.
10302          SmallVector<SDValue, 16> V(16,
10303                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10304                                                     MVT::i8));
10305          return DAG.getNode(ISD::AND, dl, VT, SHL,
10306                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10307        }
10308        if (Op.getOpcode() == ISD::SRL) {
10309          // Make a large shift.
10310          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10311                                    DAG.getConstant(ShiftAmt, MVT::i32));
10312          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10313          // Zero out the leftmost bits.
10314          SmallVector<SDValue, 16> V(16,
10315                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10316                                                     MVT::i8));
10317          return DAG.getNode(ISD::AND, dl, VT, SRL,
10318                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10319        }
10320        if (Op.getOpcode() == ISD::SRA) {
10321          if (ShiftAmt == 7) {
10322            // R s>> 7  ===  R s< 0
10323            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10324            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10325          }
10326
10327          // R s>> a === ((R u>> a) ^ m) - m
10328          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10329          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10330                                                         MVT::i8));
10331          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10332          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10333          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10334          return Res;
10335        }
10336        llvm_unreachable("Unknown shift opcode.");
10337      }
10338
10339      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10340        if (Op.getOpcode() == ISD::SHL) {
10341          // Make a large shift.
10342          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10343                                    DAG.getConstant(ShiftAmt, MVT::i32));
10344          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10345          // Zero out the rightmost bits.
10346          SmallVector<SDValue, 32> V(32,
10347                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10348                                                     MVT::i8));
10349          return DAG.getNode(ISD::AND, dl, VT, SHL,
10350                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10351        }
10352        if (Op.getOpcode() == ISD::SRL) {
10353          // Make a large shift.
10354          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10355                                    DAG.getConstant(ShiftAmt, MVT::i32));
10356          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10357          // Zero out the leftmost bits.
10358          SmallVector<SDValue, 32> V(32,
10359                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10360                                                     MVT::i8));
10361          return DAG.getNode(ISD::AND, dl, VT, SRL,
10362                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10363        }
10364        if (Op.getOpcode() == ISD::SRA) {
10365          if (ShiftAmt == 7) {
10366            // R s>> 7  ===  R s< 0
10367            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10368            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10369          }
10370
10371          // R s>> a === ((R u>> a) ^ m) - m
10372          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10373          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10374                                                         MVT::i8));
10375          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10376          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10377          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10378          return Res;
10379        }
10380        llvm_unreachable("Unknown shift opcode.");
10381      }
10382    }
10383  }
10384
10385  // Lower SHL with variable shift amount.
10386  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10387    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10388                     DAG.getConstant(23, MVT::i32));
10389
10390    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10391    Constant *C = ConstantDataVector::get(*Context, CV);
10392    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10393    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10394                                 MachinePointerInfo::getConstantPool(),
10395                                 false, false, false, 16);
10396
10397    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10398    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10399    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10400    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10401  }
10402  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10403    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10404
10405    // a = a << 5;
10406    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10407                     DAG.getConstant(5, MVT::i32));
10408    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10409
10410    // Turn 'a' into a mask suitable for VSELECT
10411    SDValue VSelM = DAG.getConstant(0x80, VT);
10412    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10413    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10414
10415    SDValue CM1 = DAG.getConstant(0x0f, VT);
10416    SDValue CM2 = DAG.getConstant(0x3f, VT);
10417
10418    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10419    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10420    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10421                            DAG.getConstant(4, MVT::i32), DAG);
10422    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10423    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10424
10425    // a += a
10426    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10427    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10428    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10429
10430    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10431    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10432    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10433                            DAG.getConstant(2, MVT::i32), DAG);
10434    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10435    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10436
10437    // a += a
10438    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10439    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10440    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10441
10442    // return VSELECT(r, r+r, a);
10443    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10444                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10445    return R;
10446  }
10447
10448  // Decompose 256-bit shifts into smaller 128-bit shifts.
10449  if (VT.getSizeInBits() == 256) {
10450    unsigned NumElems = VT.getVectorNumElements();
10451    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10452    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10453
10454    // Extract the two vectors
10455    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10456    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10457
10458    // Recreate the shift amount vectors
10459    SDValue Amt1, Amt2;
10460    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10461      // Constant shift amount
10462      SmallVector<SDValue, 4> Amt1Csts;
10463      SmallVector<SDValue, 4> Amt2Csts;
10464      for (unsigned i = 0; i != NumElems/2; ++i)
10465        Amt1Csts.push_back(Amt->getOperand(i));
10466      for (unsigned i = NumElems/2; i != NumElems; ++i)
10467        Amt2Csts.push_back(Amt->getOperand(i));
10468
10469      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10470                                 &Amt1Csts[0], NumElems/2);
10471      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10472                                 &Amt2Csts[0], NumElems/2);
10473    } else {
10474      // Variable shift amount
10475      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10476      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10477    }
10478
10479    // Issue new vector shifts for the smaller types
10480    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10481    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10482
10483    // Concatenate the result back
10484    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10485  }
10486
10487  return SDValue();
10488}
10489
10490SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10491  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10492  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10493  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10494  // has only one use.
10495  SDNode *N = Op.getNode();
10496  SDValue LHS = N->getOperand(0);
10497  SDValue RHS = N->getOperand(1);
10498  unsigned BaseOp = 0;
10499  unsigned Cond = 0;
10500  DebugLoc DL = Op.getDebugLoc();
10501  switch (Op.getOpcode()) {
10502  default: llvm_unreachable("Unknown ovf instruction!");
10503  case ISD::SADDO:
10504    // A subtract of one will be selected as a INC. Note that INC doesn't
10505    // set CF, so we can't do this for UADDO.
10506    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10507      if (C->isOne()) {
10508        BaseOp = X86ISD::INC;
10509        Cond = X86::COND_O;
10510        break;
10511      }
10512    BaseOp = X86ISD::ADD;
10513    Cond = X86::COND_O;
10514    break;
10515  case ISD::UADDO:
10516    BaseOp = X86ISD::ADD;
10517    Cond = X86::COND_B;
10518    break;
10519  case ISD::SSUBO:
10520    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10521    // set CF, so we can't do this for USUBO.
10522    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10523      if (C->isOne()) {
10524        BaseOp = X86ISD::DEC;
10525        Cond = X86::COND_O;
10526        break;
10527      }
10528    BaseOp = X86ISD::SUB;
10529    Cond = X86::COND_O;
10530    break;
10531  case ISD::USUBO:
10532    BaseOp = X86ISD::SUB;
10533    Cond = X86::COND_B;
10534    break;
10535  case ISD::SMULO:
10536    BaseOp = X86ISD::SMUL;
10537    Cond = X86::COND_O;
10538    break;
10539  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10540    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10541                                 MVT::i32);
10542    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10543
10544    SDValue SetCC =
10545      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10546                  DAG.getConstant(X86::COND_O, MVT::i32),
10547                  SDValue(Sum.getNode(), 2));
10548
10549    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10550  }
10551  }
10552
10553  // Also sets EFLAGS.
10554  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10555  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10556
10557  SDValue SetCC =
10558    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10559                DAG.getConstant(Cond, MVT::i32),
10560                SDValue(Sum.getNode(), 1));
10561
10562  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10563}
10564
10565SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10566                                                  SelectionDAG &DAG) const {
10567  DebugLoc dl = Op.getDebugLoc();
10568  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10569  EVT VT = Op.getValueType();
10570
10571  if (!Subtarget->hasSSE2() || !VT.isVector())
10572    return SDValue();
10573
10574  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10575                      ExtraVT.getScalarType().getSizeInBits();
10576  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10577
10578  switch (VT.getSimpleVT().SimpleTy) {
10579    default: return SDValue();
10580    case MVT::v8i32:
10581    case MVT::v16i16:
10582      if (!Subtarget->hasAVX())
10583        return SDValue();
10584      if (!Subtarget->hasAVX2()) {
10585        // needs to be split
10586        unsigned NumElems = VT.getVectorNumElements();
10587
10588        // Extract the LHS vectors
10589        SDValue LHS = Op.getOperand(0);
10590        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10591        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10592
10593        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10594        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10595
10596        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10597        int ExtraNumElems = ExtraVT.getVectorNumElements();
10598        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10599                                   ExtraNumElems/2);
10600        SDValue Extra = DAG.getValueType(ExtraVT);
10601
10602        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10603        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10604
10605        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10606      }
10607      // fall through
10608    case MVT::v4i32:
10609    case MVT::v8i16: {
10610      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10611                                         Op.getOperand(0), ShAmt, DAG);
10612      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10613    }
10614  }
10615}
10616
10617
10618SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10619  DebugLoc dl = Op.getDebugLoc();
10620
10621  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10622  // There isn't any reason to disable it if the target processor supports it.
10623  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10624    SDValue Chain = Op.getOperand(0);
10625    SDValue Zero = DAG.getConstant(0, MVT::i32);
10626    SDValue Ops[] = {
10627      DAG.getRegister(X86::ESP, MVT::i32), // Base
10628      DAG.getTargetConstant(1, MVT::i8),   // Scale
10629      DAG.getRegister(0, MVT::i32),        // Index
10630      DAG.getTargetConstant(0, MVT::i32),  // Disp
10631      DAG.getRegister(0, MVT::i32),        // Segment.
10632      Zero,
10633      Chain
10634    };
10635    SDNode *Res =
10636      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10637                          array_lengthof(Ops));
10638    return SDValue(Res, 0);
10639  }
10640
10641  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10642  if (!isDev)
10643    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10644
10645  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10646  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10647  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10648  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10649
10650  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10651  if (!Op1 && !Op2 && !Op3 && Op4)
10652    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10653
10654  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10655  if (Op1 && !Op2 && !Op3 && !Op4)
10656    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10657
10658  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10659  //           (MFENCE)>;
10660  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10661}
10662
10663SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10664                                             SelectionDAG &DAG) const {
10665  DebugLoc dl = Op.getDebugLoc();
10666  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10667    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10668  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10669    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10670
10671  // The only fence that needs an instruction is a sequentially-consistent
10672  // cross-thread fence.
10673  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10674    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10675    // no-sse2). There isn't any reason to disable it if the target processor
10676    // supports it.
10677    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10678      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10679
10680    SDValue Chain = Op.getOperand(0);
10681    SDValue Zero = DAG.getConstant(0, MVT::i32);
10682    SDValue Ops[] = {
10683      DAG.getRegister(X86::ESP, MVT::i32), // Base
10684      DAG.getTargetConstant(1, MVT::i8),   // Scale
10685      DAG.getRegister(0, MVT::i32),        // Index
10686      DAG.getTargetConstant(0, MVT::i32),  // Disp
10687      DAG.getRegister(0, MVT::i32),        // Segment.
10688      Zero,
10689      Chain
10690    };
10691    SDNode *Res =
10692      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10693                         array_lengthof(Ops));
10694    return SDValue(Res, 0);
10695  }
10696
10697  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10698  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10699}
10700
10701
10702SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10703  EVT T = Op.getValueType();
10704  DebugLoc DL = Op.getDebugLoc();
10705  unsigned Reg = 0;
10706  unsigned size = 0;
10707  switch(T.getSimpleVT().SimpleTy) {
10708  default: llvm_unreachable("Invalid value type!");
10709  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10710  case MVT::i16: Reg = X86::AX;  size = 2; break;
10711  case MVT::i32: Reg = X86::EAX; size = 4; break;
10712  case MVT::i64:
10713    assert(Subtarget->is64Bit() && "Node not type legal!");
10714    Reg = X86::RAX; size = 8;
10715    break;
10716  }
10717  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10718                                    Op.getOperand(2), SDValue());
10719  SDValue Ops[] = { cpIn.getValue(0),
10720                    Op.getOperand(1),
10721                    Op.getOperand(3),
10722                    DAG.getTargetConstant(size, MVT::i8),
10723                    cpIn.getValue(1) };
10724  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10725  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10726  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10727                                           Ops, 5, T, MMO);
10728  SDValue cpOut =
10729    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10730  return cpOut;
10731}
10732
10733SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10734                                                 SelectionDAG &DAG) const {
10735  assert(Subtarget->is64Bit() && "Result not type legalized?");
10736  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10737  SDValue TheChain = Op.getOperand(0);
10738  DebugLoc dl = Op.getDebugLoc();
10739  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10740  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10741  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10742                                   rax.getValue(2));
10743  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10744                            DAG.getConstant(32, MVT::i8));
10745  SDValue Ops[] = {
10746    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10747    rdx.getValue(1)
10748  };
10749  return DAG.getMergeValues(Ops, 2, dl);
10750}
10751
10752SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10753                                            SelectionDAG &DAG) const {
10754  EVT SrcVT = Op.getOperand(0).getValueType();
10755  EVT DstVT = Op.getValueType();
10756  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10757         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10758  assert((DstVT == MVT::i64 ||
10759          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10760         "Unexpected custom BITCAST");
10761  // i64 <=> MMX conversions are Legal.
10762  if (SrcVT==MVT::i64 && DstVT.isVector())
10763    return Op;
10764  if (DstVT==MVT::i64 && SrcVT.isVector())
10765    return Op;
10766  // MMX <=> MMX conversions are Legal.
10767  if (SrcVT.isVector() && DstVT.isVector())
10768    return Op;
10769  // All other conversions need to be expanded.
10770  return SDValue();
10771}
10772
10773SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10774  SDNode *Node = Op.getNode();
10775  DebugLoc dl = Node->getDebugLoc();
10776  EVT T = Node->getValueType(0);
10777  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10778                              DAG.getConstant(0, T), Node->getOperand(2));
10779  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10780                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10781                       Node->getOperand(0),
10782                       Node->getOperand(1), negOp,
10783                       cast<AtomicSDNode>(Node)->getSrcValue(),
10784                       cast<AtomicSDNode>(Node)->getAlignment(),
10785                       cast<AtomicSDNode>(Node)->getOrdering(),
10786                       cast<AtomicSDNode>(Node)->getSynchScope());
10787}
10788
10789static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10790  SDNode *Node = Op.getNode();
10791  DebugLoc dl = Node->getDebugLoc();
10792  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10793
10794  // Convert seq_cst store -> xchg
10795  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10796  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10797  //        (The only way to get a 16-byte store is cmpxchg16b)
10798  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10799  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10800      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10801    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10802                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10803                                 Node->getOperand(0),
10804                                 Node->getOperand(1), Node->getOperand(2),
10805                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10806                                 cast<AtomicSDNode>(Node)->getOrdering(),
10807                                 cast<AtomicSDNode>(Node)->getSynchScope());
10808    return Swap.getValue(1);
10809  }
10810  // Other atomic stores have a simple pattern.
10811  return Op;
10812}
10813
10814static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10815  EVT VT = Op.getNode()->getValueType(0);
10816
10817  // Let legalize expand this if it isn't a legal type yet.
10818  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10819    return SDValue();
10820
10821  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10822
10823  unsigned Opc;
10824  bool ExtraOp = false;
10825  switch (Op.getOpcode()) {
10826  default: llvm_unreachable("Invalid code");
10827  case ISD::ADDC: Opc = X86ISD::ADD; break;
10828  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10829  case ISD::SUBC: Opc = X86ISD::SUB; break;
10830  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10831  }
10832
10833  if (!ExtraOp)
10834    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10835                       Op.getOperand(1));
10836  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10837                     Op.getOperand(1), Op.getOperand(2));
10838}
10839
10840/// LowerOperation - Provide custom lowering hooks for some operations.
10841///
10842SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10843  switch (Op.getOpcode()) {
10844  default: llvm_unreachable("Should not custom lower this!");
10845  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10846  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10847  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10848  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10849  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10850  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10851  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10852  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10853  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10854  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10855  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10856  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10857  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10858  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10859  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10860  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10861  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10862  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10863  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10864  case ISD::SHL_PARTS:
10865  case ISD::SRA_PARTS:
10866  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10867  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10868  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10869  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10870  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10871  case ISD::FABS:               return LowerFABS(Op, DAG);
10872  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10873  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10874  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10875  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10876  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10877  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10878  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10879  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10880  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10881  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10882  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10883  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10884  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10885  case ISD::FRAME_TO_ARGS_OFFSET:
10886                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10887  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10888  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10889  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10890  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10891  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10892  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10893  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10894  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10895  case ISD::MUL:                return LowerMUL(Op, DAG);
10896  case ISD::SRA:
10897  case ISD::SRL:
10898  case ISD::SHL:                return LowerShift(Op, DAG);
10899  case ISD::SADDO:
10900  case ISD::UADDO:
10901  case ISD::SSUBO:
10902  case ISD::USUBO:
10903  case ISD::SMULO:
10904  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10905  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10906  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10907  case ISD::ADDC:
10908  case ISD::ADDE:
10909  case ISD::SUBC:
10910  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10911  case ISD::ADD:                return LowerADD(Op, DAG);
10912  case ISD::SUB:                return LowerSUB(Op, DAG);
10913  }
10914}
10915
10916static void ReplaceATOMIC_LOAD(SDNode *Node,
10917                                  SmallVectorImpl<SDValue> &Results,
10918                                  SelectionDAG &DAG) {
10919  DebugLoc dl = Node->getDebugLoc();
10920  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10921
10922  // Convert wide load -> cmpxchg8b/cmpxchg16b
10923  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10924  //        (The only way to get a 16-byte load is cmpxchg16b)
10925  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10926  SDValue Zero = DAG.getConstant(0, VT);
10927  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10928                               Node->getOperand(0),
10929                               Node->getOperand(1), Zero, Zero,
10930                               cast<AtomicSDNode>(Node)->getMemOperand(),
10931                               cast<AtomicSDNode>(Node)->getOrdering(),
10932                               cast<AtomicSDNode>(Node)->getSynchScope());
10933  Results.push_back(Swap.getValue(0));
10934  Results.push_back(Swap.getValue(1));
10935}
10936
10937void X86TargetLowering::
10938ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10939                        SelectionDAG &DAG, unsigned NewOp) const {
10940  DebugLoc dl = Node->getDebugLoc();
10941  assert (Node->getValueType(0) == MVT::i64 &&
10942          "Only know how to expand i64 atomics");
10943
10944  SDValue Chain = Node->getOperand(0);
10945  SDValue In1 = Node->getOperand(1);
10946  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10947                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10948  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10949                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10950  SDValue Ops[] = { Chain, In1, In2L, In2H };
10951  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10952  SDValue Result =
10953    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10954                            cast<MemSDNode>(Node)->getMemOperand());
10955  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10956  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10957  Results.push_back(Result.getValue(2));
10958}
10959
10960/// ReplaceNodeResults - Replace a node with an illegal result type
10961/// with a new node built out of custom code.
10962void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10963                                           SmallVectorImpl<SDValue>&Results,
10964                                           SelectionDAG &DAG) const {
10965  DebugLoc dl = N->getDebugLoc();
10966  switch (N->getOpcode()) {
10967  default:
10968    llvm_unreachable("Do not know how to custom type legalize this operation!");
10969  case ISD::SIGN_EXTEND_INREG:
10970  case ISD::ADDC:
10971  case ISD::ADDE:
10972  case ISD::SUBC:
10973  case ISD::SUBE:
10974    // We don't want to expand or promote these.
10975    return;
10976  case ISD::FP_TO_SINT:
10977  case ISD::FP_TO_UINT: {
10978    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10979
10980    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10981      return;
10982
10983    std::pair<SDValue,SDValue> Vals =
10984        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10985    SDValue FIST = Vals.first, StackSlot = Vals.second;
10986    if (FIST.getNode() != 0) {
10987      EVT VT = N->getValueType(0);
10988      // Return a load from the stack slot.
10989      if (StackSlot.getNode() != 0)
10990        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10991                                      MachinePointerInfo(),
10992                                      false, false, false, 0));
10993      else
10994        Results.push_back(FIST);
10995    }
10996    return;
10997  }
10998  case ISD::READCYCLECOUNTER: {
10999    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11000    SDValue TheChain = N->getOperand(0);
11001    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11002    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11003                                     rd.getValue(1));
11004    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11005                                     eax.getValue(2));
11006    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11007    SDValue Ops[] = { eax, edx };
11008    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11009    Results.push_back(edx.getValue(1));
11010    return;
11011  }
11012  case ISD::ATOMIC_CMP_SWAP: {
11013    EVT T = N->getValueType(0);
11014    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11015    bool Regs64bit = T == MVT::i128;
11016    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11017    SDValue cpInL, cpInH;
11018    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11019                        DAG.getConstant(0, HalfT));
11020    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11021                        DAG.getConstant(1, HalfT));
11022    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11023                             Regs64bit ? X86::RAX : X86::EAX,
11024                             cpInL, SDValue());
11025    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11026                             Regs64bit ? X86::RDX : X86::EDX,
11027                             cpInH, cpInL.getValue(1));
11028    SDValue swapInL, swapInH;
11029    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11030                          DAG.getConstant(0, HalfT));
11031    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11032                          DAG.getConstant(1, HalfT));
11033    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11034                               Regs64bit ? X86::RBX : X86::EBX,
11035                               swapInL, cpInH.getValue(1));
11036    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11037                               Regs64bit ? X86::RCX : X86::ECX,
11038                               swapInH, swapInL.getValue(1));
11039    SDValue Ops[] = { swapInH.getValue(0),
11040                      N->getOperand(1),
11041                      swapInH.getValue(1) };
11042    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11043    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11044    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11045                                  X86ISD::LCMPXCHG8_DAG;
11046    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11047                                             Ops, 3, T, MMO);
11048    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11049                                        Regs64bit ? X86::RAX : X86::EAX,
11050                                        HalfT, Result.getValue(1));
11051    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11052                                        Regs64bit ? X86::RDX : X86::EDX,
11053                                        HalfT, cpOutL.getValue(2));
11054    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11055    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11056    Results.push_back(cpOutH.getValue(1));
11057    return;
11058  }
11059  case ISD::ATOMIC_LOAD_ADD:
11060    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11061    return;
11062  case ISD::ATOMIC_LOAD_AND:
11063    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11064    return;
11065  case ISD::ATOMIC_LOAD_NAND:
11066    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11067    return;
11068  case ISD::ATOMIC_LOAD_OR:
11069    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11070    return;
11071  case ISD::ATOMIC_LOAD_SUB:
11072    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11073    return;
11074  case ISD::ATOMIC_LOAD_XOR:
11075    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11076    return;
11077  case ISD::ATOMIC_SWAP:
11078    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11079    return;
11080  case ISD::ATOMIC_LOAD:
11081    ReplaceATOMIC_LOAD(N, Results, DAG);
11082  }
11083}
11084
11085const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11086  switch (Opcode) {
11087  default: return NULL;
11088  case X86ISD::BSF:                return "X86ISD::BSF";
11089  case X86ISD::BSR:                return "X86ISD::BSR";
11090  case X86ISD::SHLD:               return "X86ISD::SHLD";
11091  case X86ISD::SHRD:               return "X86ISD::SHRD";
11092  case X86ISD::FAND:               return "X86ISD::FAND";
11093  case X86ISD::FOR:                return "X86ISD::FOR";
11094  case X86ISD::FXOR:               return "X86ISD::FXOR";
11095  case X86ISD::FSRL:               return "X86ISD::FSRL";
11096  case X86ISD::FILD:               return "X86ISD::FILD";
11097  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11098  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11099  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11100  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11101  case X86ISD::FLD:                return "X86ISD::FLD";
11102  case X86ISD::FST:                return "X86ISD::FST";
11103  case X86ISD::CALL:               return "X86ISD::CALL";
11104  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11105  case X86ISD::BT:                 return "X86ISD::BT";
11106  case X86ISD::CMP:                return "X86ISD::CMP";
11107  case X86ISD::COMI:               return "X86ISD::COMI";
11108  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11109  case X86ISD::SETCC:              return "X86ISD::SETCC";
11110  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11111  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11112  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11113  case X86ISD::CMOV:               return "X86ISD::CMOV";
11114  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11115  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11116  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11117  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11118  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11119  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11120  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11121  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11122  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11123  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11124  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11125  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11126  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11127  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11128  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11129  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11130  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11131  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11132  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11133  case X86ISD::HADD:               return "X86ISD::HADD";
11134  case X86ISD::HSUB:               return "X86ISD::HSUB";
11135  case X86ISD::FHADD:              return "X86ISD::FHADD";
11136  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11137  case X86ISD::FMAX:               return "X86ISD::FMAX";
11138  case X86ISD::FMIN:               return "X86ISD::FMIN";
11139  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11140  case X86ISD::FRCP:               return "X86ISD::FRCP";
11141  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11142  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11143  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11144  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11145  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11146  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11147  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11148  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11149  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11150  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11151  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11152  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11153  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11154  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11155  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11156  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11157  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11158  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11159  case X86ISD::VSHL:               return "X86ISD::VSHL";
11160  case X86ISD::VSRL:               return "X86ISD::VSRL";
11161  case X86ISD::VSRA:               return "X86ISD::VSRA";
11162  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11163  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11164  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11165  case X86ISD::CMPP:               return "X86ISD::CMPP";
11166  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11167  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11168  case X86ISD::ADD:                return "X86ISD::ADD";
11169  case X86ISD::SUB:                return "X86ISD::SUB";
11170  case X86ISD::ADC:                return "X86ISD::ADC";
11171  case X86ISD::SBB:                return "X86ISD::SBB";
11172  case X86ISD::SMUL:               return "X86ISD::SMUL";
11173  case X86ISD::UMUL:               return "X86ISD::UMUL";
11174  case X86ISD::INC:                return "X86ISD::INC";
11175  case X86ISD::DEC:                return "X86ISD::DEC";
11176  case X86ISD::OR:                 return "X86ISD::OR";
11177  case X86ISD::XOR:                return "X86ISD::XOR";
11178  case X86ISD::AND:                return "X86ISD::AND";
11179  case X86ISD::ANDN:               return "X86ISD::ANDN";
11180  case X86ISD::BLSI:               return "X86ISD::BLSI";
11181  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11182  case X86ISD::BLSR:               return "X86ISD::BLSR";
11183  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11184  case X86ISD::PTEST:              return "X86ISD::PTEST";
11185  case X86ISD::TESTP:              return "X86ISD::TESTP";
11186  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11187  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11188  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11189  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11190  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11191  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11192  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11193  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11194  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11195  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11196  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11197  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11198  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11199  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11200  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11201  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11202  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11203  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11204  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11205  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11206  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11207  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11208  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11209  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11210  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11211  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11212  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11213  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11214  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11215  case X86ISD::SAHF:               return "X86ISD::SAHF";
11216  }
11217}
11218
11219// isLegalAddressingMode - Return true if the addressing mode represented
11220// by AM is legal for this target, for a load/store of the specified type.
11221bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11222                                              Type *Ty) const {
11223  // X86 supports extremely general addressing modes.
11224  CodeModel::Model M = getTargetMachine().getCodeModel();
11225  Reloc::Model R = getTargetMachine().getRelocationModel();
11226
11227  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11228  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11229    return false;
11230
11231  if (AM.BaseGV) {
11232    unsigned GVFlags =
11233      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11234
11235    // If a reference to this global requires an extra load, we can't fold it.
11236    if (isGlobalStubReference(GVFlags))
11237      return false;
11238
11239    // If BaseGV requires a register for the PIC base, we cannot also have a
11240    // BaseReg specified.
11241    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11242      return false;
11243
11244    // If lower 4G is not available, then we must use rip-relative addressing.
11245    if ((M != CodeModel::Small || R != Reloc::Static) &&
11246        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11247      return false;
11248  }
11249
11250  switch (AM.Scale) {
11251  case 0:
11252  case 1:
11253  case 2:
11254  case 4:
11255  case 8:
11256    // These scales always work.
11257    break;
11258  case 3:
11259  case 5:
11260  case 9:
11261    // These scales are formed with basereg+scalereg.  Only accept if there is
11262    // no basereg yet.
11263    if (AM.HasBaseReg)
11264      return false;
11265    break;
11266  default:  // Other stuff never works.
11267    return false;
11268  }
11269
11270  return true;
11271}
11272
11273
11274bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11275  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11276    return false;
11277  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11278  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11279  if (NumBits1 <= NumBits2)
11280    return false;
11281  return true;
11282}
11283
11284bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11285  if (!VT1.isInteger() || !VT2.isInteger())
11286    return false;
11287  unsigned NumBits1 = VT1.getSizeInBits();
11288  unsigned NumBits2 = VT2.getSizeInBits();
11289  if (NumBits1 <= NumBits2)
11290    return false;
11291  return true;
11292}
11293
11294bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11295  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11296  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11297}
11298
11299bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11300  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11301  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11302}
11303
11304bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11305  // i16 instructions are longer (0x66 prefix) and potentially slower.
11306  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11307}
11308
11309/// isShuffleMaskLegal - Targets can use this to indicate that they only
11310/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11311/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11312/// are assumed to be legal.
11313bool
11314X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11315                                      EVT VT) const {
11316  // Very little shuffling can be done for 64-bit vectors right now.
11317  if (VT.getSizeInBits() == 64)
11318    return false;
11319
11320  // FIXME: pshufb, blends, shifts.
11321  return (VT.getVectorNumElements() == 2 ||
11322          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11323          isMOVLMask(M, VT) ||
11324          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11325          isPSHUFDMask(M, VT) ||
11326          isPSHUFHWMask(M, VT) ||
11327          isPSHUFLWMask(M, VT) ||
11328          isPALIGNRMask(M, VT, Subtarget) ||
11329          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11330          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11331          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11332          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11333}
11334
11335bool
11336X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11337                                          EVT VT) const {
11338  unsigned NumElts = VT.getVectorNumElements();
11339  // FIXME: This collection of masks seems suspect.
11340  if (NumElts == 2)
11341    return true;
11342  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11343    return (isMOVLMask(Mask, VT)  ||
11344            isCommutedMOVLMask(Mask, VT, true) ||
11345            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11346            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11347  }
11348  return false;
11349}
11350
11351//===----------------------------------------------------------------------===//
11352//                           X86 Scheduler Hooks
11353//===----------------------------------------------------------------------===//
11354
11355// private utility function
11356MachineBasicBlock *
11357X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11358                                                       MachineBasicBlock *MBB,
11359                                                       unsigned regOpc,
11360                                                       unsigned immOpc,
11361                                                       unsigned LoadOpc,
11362                                                       unsigned CXchgOpc,
11363                                                       unsigned notOpc,
11364                                                       unsigned EAXreg,
11365                                                 const TargetRegisterClass *RC,
11366                                                       bool Invert) const {
11367  // For the atomic bitwise operator, we generate
11368  //   thisMBB:
11369  //   newMBB:
11370  //     ld  t1 = [bitinstr.addr]
11371  //     op  t2 = t1, [bitinstr.val]
11372  //     not t3 = t2  (if Invert)
11373  //     mov EAX = t1
11374  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11375  //     bz  newMBB
11376  //     fallthrough -->nextMBB
11377  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11378  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11379  MachineFunction::iterator MBBIter = MBB;
11380  ++MBBIter;
11381
11382  /// First build the CFG
11383  MachineFunction *F = MBB->getParent();
11384  MachineBasicBlock *thisMBB = MBB;
11385  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11386  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11387  F->insert(MBBIter, newMBB);
11388  F->insert(MBBIter, nextMBB);
11389
11390  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11391  nextMBB->splice(nextMBB->begin(), thisMBB,
11392                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11393                  thisMBB->end());
11394  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11395
11396  // Update thisMBB to fall through to newMBB
11397  thisMBB->addSuccessor(newMBB);
11398
11399  // newMBB jumps to itself and fall through to nextMBB
11400  newMBB->addSuccessor(nextMBB);
11401  newMBB->addSuccessor(newMBB);
11402
11403  // Insert instructions into newMBB based on incoming instruction
11404  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11405         "unexpected number of operands");
11406  DebugLoc dl = bInstr->getDebugLoc();
11407  MachineOperand& destOper = bInstr->getOperand(0);
11408  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11409  int numArgs = bInstr->getNumOperands() - 1;
11410  for (int i=0; i < numArgs; ++i)
11411    argOpers[i] = &bInstr->getOperand(i+1);
11412
11413  // x86 address has 4 operands: base, index, scale, and displacement
11414  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11415  int valArgIndx = lastAddrIndx + 1;
11416
11417  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11418  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11419  for (int i=0; i <= lastAddrIndx; ++i)
11420    (*MIB).addOperand(*argOpers[i]);
11421
11422  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11423  assert((argOpers[valArgIndx]->isReg() ||
11424          argOpers[valArgIndx]->isImm()) &&
11425         "invalid operand");
11426  if (argOpers[valArgIndx]->isReg())
11427    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11428  else
11429    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11430  MIB.addReg(t1);
11431  (*MIB).addOperand(*argOpers[valArgIndx]);
11432
11433  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11434  if (Invert) {
11435    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11436  }
11437  else
11438    t3 = t2;
11439
11440  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11441  MIB.addReg(t1);
11442
11443  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11444  for (int i=0; i <= lastAddrIndx; ++i)
11445    (*MIB).addOperand(*argOpers[i]);
11446  MIB.addReg(t3);
11447  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11448  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11449                    bInstr->memoperands_end());
11450
11451  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11452  MIB.addReg(EAXreg);
11453
11454  // insert branch
11455  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11456
11457  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11458  return nextMBB;
11459}
11460
11461// private utility function:  64 bit atomics on 32 bit host.
11462MachineBasicBlock *
11463X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11464                                                       MachineBasicBlock *MBB,
11465                                                       unsigned regOpcL,
11466                                                       unsigned regOpcH,
11467                                                       unsigned immOpcL,
11468                                                       unsigned immOpcH,
11469                                                       bool Invert) const {
11470  // For the atomic bitwise operator, we generate
11471  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11472  //     ld t1,t2 = [bitinstr.addr]
11473  //   newMBB:
11474  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11475  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11476  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11477  //     neg t7, t8 < t5, t6  (if Invert)
11478  //     mov ECX, EBX <- t5, t6
11479  //     mov EAX, EDX <- t1, t2
11480  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11481  //     mov t3, t4 <- EAX, EDX
11482  //     bz  newMBB
11483  //     result in out1, out2
11484  //     fallthrough -->nextMBB
11485
11486  const TargetRegisterClass *RC = &X86::GR32RegClass;
11487  const unsigned LoadOpc = X86::MOV32rm;
11488  const unsigned NotOpc = X86::NOT32r;
11489  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11490  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11491  MachineFunction::iterator MBBIter = MBB;
11492  ++MBBIter;
11493
11494  /// First build the CFG
11495  MachineFunction *F = MBB->getParent();
11496  MachineBasicBlock *thisMBB = MBB;
11497  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11498  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11499  F->insert(MBBIter, newMBB);
11500  F->insert(MBBIter, nextMBB);
11501
11502  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11503  nextMBB->splice(nextMBB->begin(), thisMBB,
11504                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11505                  thisMBB->end());
11506  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11507
11508  // Update thisMBB to fall through to newMBB
11509  thisMBB->addSuccessor(newMBB);
11510
11511  // newMBB jumps to itself and fall through to nextMBB
11512  newMBB->addSuccessor(nextMBB);
11513  newMBB->addSuccessor(newMBB);
11514
11515  DebugLoc dl = bInstr->getDebugLoc();
11516  // Insert instructions into newMBB based on incoming instruction
11517  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11518  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11519         "unexpected number of operands");
11520  MachineOperand& dest1Oper = bInstr->getOperand(0);
11521  MachineOperand& dest2Oper = bInstr->getOperand(1);
11522  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11523  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11524    argOpers[i] = &bInstr->getOperand(i+2);
11525
11526    // We use some of the operands multiple times, so conservatively just
11527    // clear any kill flags that might be present.
11528    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11529      argOpers[i]->setIsKill(false);
11530  }
11531
11532  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11533  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11534
11535  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11536  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11537  for (int i=0; i <= lastAddrIndx; ++i)
11538    (*MIB).addOperand(*argOpers[i]);
11539  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11540  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11541  // add 4 to displacement.
11542  for (int i=0; i <= lastAddrIndx-2; ++i)
11543    (*MIB).addOperand(*argOpers[i]);
11544  MachineOperand newOp3 = *(argOpers[3]);
11545  if (newOp3.isImm())
11546    newOp3.setImm(newOp3.getImm()+4);
11547  else
11548    newOp3.setOffset(newOp3.getOffset()+4);
11549  (*MIB).addOperand(newOp3);
11550  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11551
11552  // t3/4 are defined later, at the bottom of the loop
11553  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11554  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11555  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11556    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11557  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11558    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11559
11560  // The subsequent operations should be using the destination registers of
11561  // the PHI instructions.
11562  t1 = dest1Oper.getReg();
11563  t2 = dest2Oper.getReg();
11564
11565  int valArgIndx = lastAddrIndx + 1;
11566  assert((argOpers[valArgIndx]->isReg() ||
11567          argOpers[valArgIndx]->isImm()) &&
11568         "invalid operand");
11569  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11570  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11571  if (argOpers[valArgIndx]->isReg())
11572    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11573  else
11574    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11575  if (regOpcL != X86::MOV32rr)
11576    MIB.addReg(t1);
11577  (*MIB).addOperand(*argOpers[valArgIndx]);
11578  assert(argOpers[valArgIndx + 1]->isReg() ==
11579         argOpers[valArgIndx]->isReg());
11580  assert(argOpers[valArgIndx + 1]->isImm() ==
11581         argOpers[valArgIndx]->isImm());
11582  if (argOpers[valArgIndx + 1]->isReg())
11583    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11584  else
11585    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11586  if (regOpcH != X86::MOV32rr)
11587    MIB.addReg(t2);
11588  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11589
11590  unsigned t7, t8;
11591  if (Invert) {
11592    t7 = F->getRegInfo().createVirtualRegister(RC);
11593    t8 = F->getRegInfo().createVirtualRegister(RC);
11594    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11595    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11596  } else {
11597    t7 = t5;
11598    t8 = t6;
11599  }
11600
11601  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11602  MIB.addReg(t1);
11603  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11604  MIB.addReg(t2);
11605
11606  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11607  MIB.addReg(t7);
11608  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11609  MIB.addReg(t8);
11610
11611  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11612  for (int i=0; i <= lastAddrIndx; ++i)
11613    (*MIB).addOperand(*argOpers[i]);
11614
11615  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11616  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11617                    bInstr->memoperands_end());
11618
11619  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11620  MIB.addReg(X86::EAX);
11621  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11622  MIB.addReg(X86::EDX);
11623
11624  // insert branch
11625  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11626
11627  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11628  return nextMBB;
11629}
11630
11631// private utility function
11632MachineBasicBlock *
11633X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11634                                                      MachineBasicBlock *MBB,
11635                                                      unsigned cmovOpc) const {
11636  // For the atomic min/max operator, we generate
11637  //   thisMBB:
11638  //   newMBB:
11639  //     ld t1 = [min/max.addr]
11640  //     mov t2 = [min/max.val]
11641  //     cmp  t1, t2
11642  //     cmov[cond] t2 = t1
11643  //     mov EAX = t1
11644  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11645  //     bz   newMBB
11646  //     fallthrough -->nextMBB
11647  //
11648  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11649  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11650  MachineFunction::iterator MBBIter = MBB;
11651  ++MBBIter;
11652
11653  /// First build the CFG
11654  MachineFunction *F = MBB->getParent();
11655  MachineBasicBlock *thisMBB = MBB;
11656  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11657  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11658  F->insert(MBBIter, newMBB);
11659  F->insert(MBBIter, nextMBB);
11660
11661  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11662  nextMBB->splice(nextMBB->begin(), thisMBB,
11663                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11664                  thisMBB->end());
11665  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11666
11667  // Update thisMBB to fall through to newMBB
11668  thisMBB->addSuccessor(newMBB);
11669
11670  // newMBB jumps to newMBB and fall through to nextMBB
11671  newMBB->addSuccessor(nextMBB);
11672  newMBB->addSuccessor(newMBB);
11673
11674  DebugLoc dl = mInstr->getDebugLoc();
11675  // Insert instructions into newMBB based on incoming instruction
11676  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11677         "unexpected number of operands");
11678  MachineOperand& destOper = mInstr->getOperand(0);
11679  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11680  int numArgs = mInstr->getNumOperands() - 1;
11681  for (int i=0; i < numArgs; ++i)
11682    argOpers[i] = &mInstr->getOperand(i+1);
11683
11684  // x86 address has 4 operands: base, index, scale, and displacement
11685  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11686  int valArgIndx = lastAddrIndx + 1;
11687
11688  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11689  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11690  for (int i=0; i <= lastAddrIndx; ++i)
11691    (*MIB).addOperand(*argOpers[i]);
11692
11693  // We only support register and immediate values
11694  assert((argOpers[valArgIndx]->isReg() ||
11695          argOpers[valArgIndx]->isImm()) &&
11696         "invalid operand");
11697
11698  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11699  if (argOpers[valArgIndx]->isReg())
11700    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11701  else
11702    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11703  (*MIB).addOperand(*argOpers[valArgIndx]);
11704
11705  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11706  MIB.addReg(t1);
11707
11708  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11709  MIB.addReg(t1);
11710  MIB.addReg(t2);
11711
11712  // Generate movc
11713  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11714  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11715  MIB.addReg(t2);
11716  MIB.addReg(t1);
11717
11718  // Cmp and exchange if none has modified the memory location
11719  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11720  for (int i=0; i <= lastAddrIndx; ++i)
11721    (*MIB).addOperand(*argOpers[i]);
11722  MIB.addReg(t3);
11723  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11724  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11725                    mInstr->memoperands_end());
11726
11727  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11728  MIB.addReg(X86::EAX);
11729
11730  // insert branch
11731  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11732
11733  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11734  return nextMBB;
11735}
11736
11737// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11738// or XMM0_V32I8 in AVX all of this code can be replaced with that
11739// in the .td file.
11740MachineBasicBlock *
11741X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11742                            unsigned numArgs, bool memArg) const {
11743  assert(Subtarget->hasSSE42() &&
11744         "Target must have SSE4.2 or AVX features enabled");
11745
11746  DebugLoc dl = MI->getDebugLoc();
11747  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11748  unsigned Opc;
11749  if (!Subtarget->hasAVX()) {
11750    if (memArg)
11751      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11752    else
11753      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11754  } else {
11755    if (memArg)
11756      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11757    else
11758      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11759  }
11760
11761  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11762  for (unsigned i = 0; i < numArgs; ++i) {
11763    MachineOperand &Op = MI->getOperand(i+1);
11764    if (!(Op.isReg() && Op.isImplicit()))
11765      MIB.addOperand(Op);
11766  }
11767  BuildMI(*BB, MI, dl,
11768    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11769             MI->getOperand(0).getReg())
11770    .addReg(X86::XMM0);
11771
11772  MI->eraseFromParent();
11773  return BB;
11774}
11775
11776MachineBasicBlock *
11777X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11778  DebugLoc dl = MI->getDebugLoc();
11779  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11780
11781  // Address into RAX/EAX, other two args into ECX, EDX.
11782  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11783  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11784  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11785  for (int i = 0; i < X86::AddrNumOperands; ++i)
11786    MIB.addOperand(MI->getOperand(i));
11787
11788  unsigned ValOps = X86::AddrNumOperands;
11789  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11790    .addReg(MI->getOperand(ValOps).getReg());
11791  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11792    .addReg(MI->getOperand(ValOps+1).getReg());
11793
11794  // The instruction doesn't actually take any operands though.
11795  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11796
11797  MI->eraseFromParent(); // The pseudo is gone now.
11798  return BB;
11799}
11800
11801MachineBasicBlock *
11802X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11803  DebugLoc dl = MI->getDebugLoc();
11804  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11805
11806  // First arg in ECX, the second in EAX.
11807  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11808    .addReg(MI->getOperand(0).getReg());
11809  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11810    .addReg(MI->getOperand(1).getReg());
11811
11812  // The instruction doesn't actually take any operands though.
11813  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11814
11815  MI->eraseFromParent(); // The pseudo is gone now.
11816  return BB;
11817}
11818
11819MachineBasicBlock *
11820X86TargetLowering::EmitVAARG64WithCustomInserter(
11821                   MachineInstr *MI,
11822                   MachineBasicBlock *MBB) const {
11823  // Emit va_arg instruction on X86-64.
11824
11825  // Operands to this pseudo-instruction:
11826  // 0  ) Output        : destination address (reg)
11827  // 1-5) Input         : va_list address (addr, i64mem)
11828  // 6  ) ArgSize       : Size (in bytes) of vararg type
11829  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11830  // 8  ) Align         : Alignment of type
11831  // 9  ) EFLAGS (implicit-def)
11832
11833  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11834  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11835
11836  unsigned DestReg = MI->getOperand(0).getReg();
11837  MachineOperand &Base = MI->getOperand(1);
11838  MachineOperand &Scale = MI->getOperand(2);
11839  MachineOperand &Index = MI->getOperand(3);
11840  MachineOperand &Disp = MI->getOperand(4);
11841  MachineOperand &Segment = MI->getOperand(5);
11842  unsigned ArgSize = MI->getOperand(6).getImm();
11843  unsigned ArgMode = MI->getOperand(7).getImm();
11844  unsigned Align = MI->getOperand(8).getImm();
11845
11846  // Memory Reference
11847  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11848  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11849  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11850
11851  // Machine Information
11852  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11853  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11854  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11855  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11856  DebugLoc DL = MI->getDebugLoc();
11857
11858  // struct va_list {
11859  //   i32   gp_offset
11860  //   i32   fp_offset
11861  //   i64   overflow_area (address)
11862  //   i64   reg_save_area (address)
11863  // }
11864  // sizeof(va_list) = 24
11865  // alignment(va_list) = 8
11866
11867  unsigned TotalNumIntRegs = 6;
11868  unsigned TotalNumXMMRegs = 8;
11869  bool UseGPOffset = (ArgMode == 1);
11870  bool UseFPOffset = (ArgMode == 2);
11871  unsigned MaxOffset = TotalNumIntRegs * 8 +
11872                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11873
11874  /* Align ArgSize to a multiple of 8 */
11875  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11876  bool NeedsAlign = (Align > 8);
11877
11878  MachineBasicBlock *thisMBB = MBB;
11879  MachineBasicBlock *overflowMBB;
11880  MachineBasicBlock *offsetMBB;
11881  MachineBasicBlock *endMBB;
11882
11883  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11884  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11885  unsigned OffsetReg = 0;
11886
11887  if (!UseGPOffset && !UseFPOffset) {
11888    // If we only pull from the overflow region, we don't create a branch.
11889    // We don't need to alter control flow.
11890    OffsetDestReg = 0; // unused
11891    OverflowDestReg = DestReg;
11892
11893    offsetMBB = NULL;
11894    overflowMBB = thisMBB;
11895    endMBB = thisMBB;
11896  } else {
11897    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11898    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11899    // If not, pull from overflow_area. (branch to overflowMBB)
11900    //
11901    //       thisMBB
11902    //         |     .
11903    //         |        .
11904    //     offsetMBB   overflowMBB
11905    //         |        .
11906    //         |     .
11907    //        endMBB
11908
11909    // Registers for the PHI in endMBB
11910    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11911    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11912
11913    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11914    MachineFunction *MF = MBB->getParent();
11915    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11916    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11917    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11918
11919    MachineFunction::iterator MBBIter = MBB;
11920    ++MBBIter;
11921
11922    // Insert the new basic blocks
11923    MF->insert(MBBIter, offsetMBB);
11924    MF->insert(MBBIter, overflowMBB);
11925    MF->insert(MBBIter, endMBB);
11926
11927    // Transfer the remainder of MBB and its successor edges to endMBB.
11928    endMBB->splice(endMBB->begin(), thisMBB,
11929                    llvm::next(MachineBasicBlock::iterator(MI)),
11930                    thisMBB->end());
11931    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11932
11933    // Make offsetMBB and overflowMBB successors of thisMBB
11934    thisMBB->addSuccessor(offsetMBB);
11935    thisMBB->addSuccessor(overflowMBB);
11936
11937    // endMBB is a successor of both offsetMBB and overflowMBB
11938    offsetMBB->addSuccessor(endMBB);
11939    overflowMBB->addSuccessor(endMBB);
11940
11941    // Load the offset value into a register
11942    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11943    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11944      .addOperand(Base)
11945      .addOperand(Scale)
11946      .addOperand(Index)
11947      .addDisp(Disp, UseFPOffset ? 4 : 0)
11948      .addOperand(Segment)
11949      .setMemRefs(MMOBegin, MMOEnd);
11950
11951    // Check if there is enough room left to pull this argument.
11952    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11953      .addReg(OffsetReg)
11954      .addImm(MaxOffset + 8 - ArgSizeA8);
11955
11956    // Branch to "overflowMBB" if offset >= max
11957    // Fall through to "offsetMBB" otherwise
11958    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11959      .addMBB(overflowMBB);
11960  }
11961
11962  // In offsetMBB, emit code to use the reg_save_area.
11963  if (offsetMBB) {
11964    assert(OffsetReg != 0);
11965
11966    // Read the reg_save_area address.
11967    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11968    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11969      .addOperand(Base)
11970      .addOperand(Scale)
11971      .addOperand(Index)
11972      .addDisp(Disp, 16)
11973      .addOperand(Segment)
11974      .setMemRefs(MMOBegin, MMOEnd);
11975
11976    // Zero-extend the offset
11977    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11978      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11979        .addImm(0)
11980        .addReg(OffsetReg)
11981        .addImm(X86::sub_32bit);
11982
11983    // Add the offset to the reg_save_area to get the final address.
11984    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11985      .addReg(OffsetReg64)
11986      .addReg(RegSaveReg);
11987
11988    // Compute the offset for the next argument
11989    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11990    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11991      .addReg(OffsetReg)
11992      .addImm(UseFPOffset ? 16 : 8);
11993
11994    // Store it back into the va_list.
11995    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11996      .addOperand(Base)
11997      .addOperand(Scale)
11998      .addOperand(Index)
11999      .addDisp(Disp, UseFPOffset ? 4 : 0)
12000      .addOperand(Segment)
12001      .addReg(NextOffsetReg)
12002      .setMemRefs(MMOBegin, MMOEnd);
12003
12004    // Jump to endMBB
12005    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12006      .addMBB(endMBB);
12007  }
12008
12009  //
12010  // Emit code to use overflow area
12011  //
12012
12013  // Load the overflow_area address into a register.
12014  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12015  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12016    .addOperand(Base)
12017    .addOperand(Scale)
12018    .addOperand(Index)
12019    .addDisp(Disp, 8)
12020    .addOperand(Segment)
12021    .setMemRefs(MMOBegin, MMOEnd);
12022
12023  // If we need to align it, do so. Otherwise, just copy the address
12024  // to OverflowDestReg.
12025  if (NeedsAlign) {
12026    // Align the overflow address
12027    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12028    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12029
12030    // aligned_addr = (addr + (align-1)) & ~(align-1)
12031    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12032      .addReg(OverflowAddrReg)
12033      .addImm(Align-1);
12034
12035    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12036      .addReg(TmpReg)
12037      .addImm(~(uint64_t)(Align-1));
12038  } else {
12039    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12040      .addReg(OverflowAddrReg);
12041  }
12042
12043  // Compute the next overflow address after this argument.
12044  // (the overflow address should be kept 8-byte aligned)
12045  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12046  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12047    .addReg(OverflowDestReg)
12048    .addImm(ArgSizeA8);
12049
12050  // Store the new overflow address.
12051  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12052    .addOperand(Base)
12053    .addOperand(Scale)
12054    .addOperand(Index)
12055    .addDisp(Disp, 8)
12056    .addOperand(Segment)
12057    .addReg(NextAddrReg)
12058    .setMemRefs(MMOBegin, MMOEnd);
12059
12060  // If we branched, emit the PHI to the front of endMBB.
12061  if (offsetMBB) {
12062    BuildMI(*endMBB, endMBB->begin(), DL,
12063            TII->get(X86::PHI), DestReg)
12064      .addReg(OffsetDestReg).addMBB(offsetMBB)
12065      .addReg(OverflowDestReg).addMBB(overflowMBB);
12066  }
12067
12068  // Erase the pseudo instruction
12069  MI->eraseFromParent();
12070
12071  return endMBB;
12072}
12073
12074MachineBasicBlock *
12075X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12076                                                 MachineInstr *MI,
12077                                                 MachineBasicBlock *MBB) const {
12078  // Emit code to save XMM registers to the stack. The ABI says that the
12079  // number of registers to save is given in %al, so it's theoretically
12080  // possible to do an indirect jump trick to avoid saving all of them,
12081  // however this code takes a simpler approach and just executes all
12082  // of the stores if %al is non-zero. It's less code, and it's probably
12083  // easier on the hardware branch predictor, and stores aren't all that
12084  // expensive anyway.
12085
12086  // Create the new basic blocks. One block contains all the XMM stores,
12087  // and one block is the final destination regardless of whether any
12088  // stores were performed.
12089  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12090  MachineFunction *F = MBB->getParent();
12091  MachineFunction::iterator MBBIter = MBB;
12092  ++MBBIter;
12093  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12094  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12095  F->insert(MBBIter, XMMSaveMBB);
12096  F->insert(MBBIter, EndMBB);
12097
12098  // Transfer the remainder of MBB and its successor edges to EndMBB.
12099  EndMBB->splice(EndMBB->begin(), MBB,
12100                 llvm::next(MachineBasicBlock::iterator(MI)),
12101                 MBB->end());
12102  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12103
12104  // The original block will now fall through to the XMM save block.
12105  MBB->addSuccessor(XMMSaveMBB);
12106  // The XMMSaveMBB will fall through to the end block.
12107  XMMSaveMBB->addSuccessor(EndMBB);
12108
12109  // Now add the instructions.
12110  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12111  DebugLoc DL = MI->getDebugLoc();
12112
12113  unsigned CountReg = MI->getOperand(0).getReg();
12114  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12115  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12116
12117  if (!Subtarget->isTargetWin64()) {
12118    // If %al is 0, branch around the XMM save block.
12119    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12120    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12121    MBB->addSuccessor(EndMBB);
12122  }
12123
12124  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12125  // In the XMM save block, save all the XMM argument registers.
12126  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12127    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12128    MachineMemOperand *MMO =
12129      F->getMachineMemOperand(
12130          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12131        MachineMemOperand::MOStore,
12132        /*Size=*/16, /*Align=*/16);
12133    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12134      .addFrameIndex(RegSaveFrameIndex)
12135      .addImm(/*Scale=*/1)
12136      .addReg(/*IndexReg=*/0)
12137      .addImm(/*Disp=*/Offset)
12138      .addReg(/*Segment=*/0)
12139      .addReg(MI->getOperand(i).getReg())
12140      .addMemOperand(MMO);
12141  }
12142
12143  MI->eraseFromParent();   // The pseudo instruction is gone now.
12144
12145  return EndMBB;
12146}
12147
12148// The EFLAGS operand of SelectItr might be missing a kill marker
12149// because there were multiple uses of EFLAGS, and ISel didn't know
12150// which to mark. Figure out whether SelectItr should have had a
12151// kill marker, and set it if it should. Returns the correct kill
12152// marker value.
12153static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12154                                     MachineBasicBlock* BB,
12155                                     const TargetRegisterInfo* TRI) {
12156  // Scan forward through BB for a use/def of EFLAGS.
12157  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12158  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12159    const MachineInstr& mi = *miI;
12160    if (mi.readsRegister(X86::EFLAGS))
12161      return false;
12162    if (mi.definesRegister(X86::EFLAGS))
12163      break; // Should have kill-flag - update below.
12164  }
12165
12166  // If we hit the end of the block, check whether EFLAGS is live into a
12167  // successor.
12168  if (miI == BB->end()) {
12169    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12170                                          sEnd = BB->succ_end();
12171         sItr != sEnd; ++sItr) {
12172      MachineBasicBlock* succ = *sItr;
12173      if (succ->isLiveIn(X86::EFLAGS))
12174        return false;
12175    }
12176  }
12177
12178  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12179  // out. SelectMI should have a kill flag on EFLAGS.
12180  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12181  return true;
12182}
12183
12184MachineBasicBlock *
12185X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12186                                     MachineBasicBlock *BB) const {
12187  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12188  DebugLoc DL = MI->getDebugLoc();
12189
12190  // To "insert" a SELECT_CC instruction, we actually have to insert the
12191  // diamond control-flow pattern.  The incoming instruction knows the
12192  // destination vreg to set, the condition code register to branch on, the
12193  // true/false values to select between, and a branch opcode to use.
12194  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12195  MachineFunction::iterator It = BB;
12196  ++It;
12197
12198  //  thisMBB:
12199  //  ...
12200  //   TrueVal = ...
12201  //   cmpTY ccX, r1, r2
12202  //   bCC copy1MBB
12203  //   fallthrough --> copy0MBB
12204  MachineBasicBlock *thisMBB = BB;
12205  MachineFunction *F = BB->getParent();
12206  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12207  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12208  F->insert(It, copy0MBB);
12209  F->insert(It, sinkMBB);
12210
12211  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12212  // live into the sink and copy blocks.
12213  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12214  if (!MI->killsRegister(X86::EFLAGS) &&
12215      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12216    copy0MBB->addLiveIn(X86::EFLAGS);
12217    sinkMBB->addLiveIn(X86::EFLAGS);
12218  }
12219
12220  // Transfer the remainder of BB and its successor edges to sinkMBB.
12221  sinkMBB->splice(sinkMBB->begin(), BB,
12222                  llvm::next(MachineBasicBlock::iterator(MI)),
12223                  BB->end());
12224  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12225
12226  // Add the true and fallthrough blocks as its successors.
12227  BB->addSuccessor(copy0MBB);
12228  BB->addSuccessor(sinkMBB);
12229
12230  // Create the conditional branch instruction.
12231  unsigned Opc =
12232    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12233  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12234
12235  //  copy0MBB:
12236  //   %FalseValue = ...
12237  //   # fallthrough to sinkMBB
12238  copy0MBB->addSuccessor(sinkMBB);
12239
12240  //  sinkMBB:
12241  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12242  //  ...
12243  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12244          TII->get(X86::PHI), MI->getOperand(0).getReg())
12245    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12246    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12247
12248  MI->eraseFromParent();   // The pseudo instruction is gone now.
12249  return sinkMBB;
12250}
12251
12252MachineBasicBlock *
12253X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12254                                        bool Is64Bit) const {
12255  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12256  DebugLoc DL = MI->getDebugLoc();
12257  MachineFunction *MF = BB->getParent();
12258  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12259
12260  assert(getTargetMachine().Options.EnableSegmentedStacks);
12261
12262  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12263  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12264
12265  // BB:
12266  //  ... [Till the alloca]
12267  // If stacklet is not large enough, jump to mallocMBB
12268  //
12269  // bumpMBB:
12270  //  Allocate by subtracting from RSP
12271  //  Jump to continueMBB
12272  //
12273  // mallocMBB:
12274  //  Allocate by call to runtime
12275  //
12276  // continueMBB:
12277  //  ...
12278  //  [rest of original BB]
12279  //
12280
12281  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12282  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12283  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12284
12285  MachineRegisterInfo &MRI = MF->getRegInfo();
12286  const TargetRegisterClass *AddrRegClass =
12287    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12288
12289  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12290    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12291    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12292    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12293    sizeVReg = MI->getOperand(1).getReg(),
12294    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12295
12296  MachineFunction::iterator MBBIter = BB;
12297  ++MBBIter;
12298
12299  MF->insert(MBBIter, bumpMBB);
12300  MF->insert(MBBIter, mallocMBB);
12301  MF->insert(MBBIter, continueMBB);
12302
12303  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12304                      (MachineBasicBlock::iterator(MI)), BB->end());
12305  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12306
12307  // Add code to the main basic block to check if the stack limit has been hit,
12308  // and if so, jump to mallocMBB otherwise to bumpMBB.
12309  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12310  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12311    .addReg(tmpSPVReg).addReg(sizeVReg);
12312  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12313    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12314    .addReg(SPLimitVReg);
12315  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12316
12317  // bumpMBB simply decreases the stack pointer, since we know the current
12318  // stacklet has enough space.
12319  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12320    .addReg(SPLimitVReg);
12321  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12322    .addReg(SPLimitVReg);
12323  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12324
12325  // Calls into a routine in libgcc to allocate more space from the heap.
12326  const uint32_t *RegMask =
12327    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12328  if (Is64Bit) {
12329    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12330      .addReg(sizeVReg);
12331    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12332      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12333      .addRegMask(RegMask)
12334      .addReg(X86::RAX, RegState::ImplicitDefine);
12335  } else {
12336    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12337      .addImm(12);
12338    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12339    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12340      .addExternalSymbol("__morestack_allocate_stack_space")
12341      .addRegMask(RegMask)
12342      .addReg(X86::EAX, RegState::ImplicitDefine);
12343  }
12344
12345  if (!Is64Bit)
12346    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12347      .addImm(16);
12348
12349  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12350    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12351  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12352
12353  // Set up the CFG correctly.
12354  BB->addSuccessor(bumpMBB);
12355  BB->addSuccessor(mallocMBB);
12356  mallocMBB->addSuccessor(continueMBB);
12357  bumpMBB->addSuccessor(continueMBB);
12358
12359  // Take care of the PHI nodes.
12360  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12361          MI->getOperand(0).getReg())
12362    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12363    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12364
12365  // Delete the original pseudo instruction.
12366  MI->eraseFromParent();
12367
12368  // And we're done.
12369  return continueMBB;
12370}
12371
12372MachineBasicBlock *
12373X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12374                                          MachineBasicBlock *BB) const {
12375  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12376  DebugLoc DL = MI->getDebugLoc();
12377
12378  assert(!Subtarget->isTargetEnvMacho());
12379
12380  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12381  // non-trivial part is impdef of ESP.
12382
12383  if (Subtarget->isTargetWin64()) {
12384    if (Subtarget->isTargetCygMing()) {
12385      // ___chkstk(Mingw64):
12386      // Clobbers R10, R11, RAX and EFLAGS.
12387      // Updates RSP.
12388      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12389        .addExternalSymbol("___chkstk")
12390        .addReg(X86::RAX, RegState::Implicit)
12391        .addReg(X86::RSP, RegState::Implicit)
12392        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12393        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12394        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12395    } else {
12396      // __chkstk(MSVCRT): does not update stack pointer.
12397      // Clobbers R10, R11 and EFLAGS.
12398      // FIXME: RAX(allocated size) might be reused and not killed.
12399      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12400        .addExternalSymbol("__chkstk")
12401        .addReg(X86::RAX, RegState::Implicit)
12402        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12403      // RAX has the offset to subtracted from RSP.
12404      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12405        .addReg(X86::RSP)
12406        .addReg(X86::RAX);
12407    }
12408  } else {
12409    const char *StackProbeSymbol =
12410      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12411
12412    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12413      .addExternalSymbol(StackProbeSymbol)
12414      .addReg(X86::EAX, RegState::Implicit)
12415      .addReg(X86::ESP, RegState::Implicit)
12416      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12417      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12418      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12419  }
12420
12421  MI->eraseFromParent();   // The pseudo instruction is gone now.
12422  return BB;
12423}
12424
12425MachineBasicBlock *
12426X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12427                                      MachineBasicBlock *BB) const {
12428  // This is pretty easy.  We're taking the value that we received from
12429  // our load from the relocation, sticking it in either RDI (x86-64)
12430  // or EAX and doing an indirect call.  The return value will then
12431  // be in the normal return register.
12432  const X86InstrInfo *TII
12433    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12434  DebugLoc DL = MI->getDebugLoc();
12435  MachineFunction *F = BB->getParent();
12436
12437  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12438  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12439
12440  // Get a register mask for the lowered call.
12441  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12442  // proper register mask.
12443  const uint32_t *RegMask =
12444    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12445  if (Subtarget->is64Bit()) {
12446    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12447                                      TII->get(X86::MOV64rm), X86::RDI)
12448    .addReg(X86::RIP)
12449    .addImm(0).addReg(0)
12450    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12451                      MI->getOperand(3).getTargetFlags())
12452    .addReg(0);
12453    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12454    addDirectMem(MIB, X86::RDI);
12455    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12456  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12457    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12458                                      TII->get(X86::MOV32rm), X86::EAX)
12459    .addReg(0)
12460    .addImm(0).addReg(0)
12461    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12462                      MI->getOperand(3).getTargetFlags())
12463    .addReg(0);
12464    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12465    addDirectMem(MIB, X86::EAX);
12466    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12467  } else {
12468    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12469                                      TII->get(X86::MOV32rm), X86::EAX)
12470    .addReg(TII->getGlobalBaseReg(F))
12471    .addImm(0).addReg(0)
12472    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12473                      MI->getOperand(3).getTargetFlags())
12474    .addReg(0);
12475    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12476    addDirectMem(MIB, X86::EAX);
12477    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12478  }
12479
12480  MI->eraseFromParent(); // The pseudo instruction is gone now.
12481  return BB;
12482}
12483
12484MachineBasicBlock *
12485X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12486                                               MachineBasicBlock *BB) const {
12487  switch (MI->getOpcode()) {
12488  default: llvm_unreachable("Unexpected instr type to insert");
12489  case X86::TAILJMPd64:
12490  case X86::TAILJMPr64:
12491  case X86::TAILJMPm64:
12492    llvm_unreachable("TAILJMP64 would not be touched here.");
12493  case X86::TCRETURNdi64:
12494  case X86::TCRETURNri64:
12495  case X86::TCRETURNmi64:
12496    return BB;
12497  case X86::WIN_ALLOCA:
12498    return EmitLoweredWinAlloca(MI, BB);
12499  case X86::SEG_ALLOCA_32:
12500    return EmitLoweredSegAlloca(MI, BB, false);
12501  case X86::SEG_ALLOCA_64:
12502    return EmitLoweredSegAlloca(MI, BB, true);
12503  case X86::TLSCall_32:
12504  case X86::TLSCall_64:
12505    return EmitLoweredTLSCall(MI, BB);
12506  case X86::CMOV_GR8:
12507  case X86::CMOV_FR32:
12508  case X86::CMOV_FR64:
12509  case X86::CMOV_V4F32:
12510  case X86::CMOV_V2F64:
12511  case X86::CMOV_V2I64:
12512  case X86::CMOV_V8F32:
12513  case X86::CMOV_V4F64:
12514  case X86::CMOV_V4I64:
12515  case X86::CMOV_GR16:
12516  case X86::CMOV_GR32:
12517  case X86::CMOV_RFP32:
12518  case X86::CMOV_RFP64:
12519  case X86::CMOV_RFP80:
12520    return EmitLoweredSelect(MI, BB);
12521
12522  case X86::FP32_TO_INT16_IN_MEM:
12523  case X86::FP32_TO_INT32_IN_MEM:
12524  case X86::FP32_TO_INT64_IN_MEM:
12525  case X86::FP64_TO_INT16_IN_MEM:
12526  case X86::FP64_TO_INT32_IN_MEM:
12527  case X86::FP64_TO_INT64_IN_MEM:
12528  case X86::FP80_TO_INT16_IN_MEM:
12529  case X86::FP80_TO_INT32_IN_MEM:
12530  case X86::FP80_TO_INT64_IN_MEM: {
12531    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12532    DebugLoc DL = MI->getDebugLoc();
12533
12534    // Change the floating point control register to use "round towards zero"
12535    // mode when truncating to an integer value.
12536    MachineFunction *F = BB->getParent();
12537    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12538    addFrameReference(BuildMI(*BB, MI, DL,
12539                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12540
12541    // Load the old value of the high byte of the control word...
12542    unsigned OldCW =
12543      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12544    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12545                      CWFrameIdx);
12546
12547    // Set the high part to be round to zero...
12548    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12549      .addImm(0xC7F);
12550
12551    // Reload the modified control word now...
12552    addFrameReference(BuildMI(*BB, MI, DL,
12553                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12554
12555    // Restore the memory image of control word to original value
12556    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12557      .addReg(OldCW);
12558
12559    // Get the X86 opcode to use.
12560    unsigned Opc;
12561    switch (MI->getOpcode()) {
12562    default: llvm_unreachable("illegal opcode!");
12563    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12564    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12565    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12566    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12567    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12568    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12569    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12570    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12571    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12572    }
12573
12574    X86AddressMode AM;
12575    MachineOperand &Op = MI->getOperand(0);
12576    if (Op.isReg()) {
12577      AM.BaseType = X86AddressMode::RegBase;
12578      AM.Base.Reg = Op.getReg();
12579    } else {
12580      AM.BaseType = X86AddressMode::FrameIndexBase;
12581      AM.Base.FrameIndex = Op.getIndex();
12582    }
12583    Op = MI->getOperand(1);
12584    if (Op.isImm())
12585      AM.Scale = Op.getImm();
12586    Op = MI->getOperand(2);
12587    if (Op.isImm())
12588      AM.IndexReg = Op.getImm();
12589    Op = MI->getOperand(3);
12590    if (Op.isGlobal()) {
12591      AM.GV = Op.getGlobal();
12592    } else {
12593      AM.Disp = Op.getImm();
12594    }
12595    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12596                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12597
12598    // Reload the original control word now.
12599    addFrameReference(BuildMI(*BB, MI, DL,
12600                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12601
12602    MI->eraseFromParent();   // The pseudo instruction is gone now.
12603    return BB;
12604  }
12605    // String/text processing lowering.
12606  case X86::PCMPISTRM128REG:
12607  case X86::VPCMPISTRM128REG:
12608    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12609  case X86::PCMPISTRM128MEM:
12610  case X86::VPCMPISTRM128MEM:
12611    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12612  case X86::PCMPESTRM128REG:
12613  case X86::VPCMPESTRM128REG:
12614    return EmitPCMP(MI, BB, 5, false /* in mem */);
12615  case X86::PCMPESTRM128MEM:
12616  case X86::VPCMPESTRM128MEM:
12617    return EmitPCMP(MI, BB, 5, true /* in mem */);
12618
12619    // Thread synchronization.
12620  case X86::MONITOR:
12621    return EmitMonitor(MI, BB);
12622  case X86::MWAIT:
12623    return EmitMwait(MI, BB);
12624
12625    // Atomic Lowering.
12626  case X86::ATOMAND32:
12627    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12628                                               X86::AND32ri, X86::MOV32rm,
12629                                               X86::LCMPXCHG32,
12630                                               X86::NOT32r, X86::EAX,
12631                                               &X86::GR32RegClass);
12632  case X86::ATOMOR32:
12633    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12634                                               X86::OR32ri, X86::MOV32rm,
12635                                               X86::LCMPXCHG32,
12636                                               X86::NOT32r, X86::EAX,
12637                                               &X86::GR32RegClass);
12638  case X86::ATOMXOR32:
12639    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12640                                               X86::XOR32ri, X86::MOV32rm,
12641                                               X86::LCMPXCHG32,
12642                                               X86::NOT32r, X86::EAX,
12643                                               &X86::GR32RegClass);
12644  case X86::ATOMNAND32:
12645    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12646                                               X86::AND32ri, X86::MOV32rm,
12647                                               X86::LCMPXCHG32,
12648                                               X86::NOT32r, X86::EAX,
12649                                               &X86::GR32RegClass, true);
12650  case X86::ATOMMIN32:
12651    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12652  case X86::ATOMMAX32:
12653    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12654  case X86::ATOMUMIN32:
12655    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12656  case X86::ATOMUMAX32:
12657    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12658
12659  case X86::ATOMAND16:
12660    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12661                                               X86::AND16ri, X86::MOV16rm,
12662                                               X86::LCMPXCHG16,
12663                                               X86::NOT16r, X86::AX,
12664                                               &X86::GR16RegClass);
12665  case X86::ATOMOR16:
12666    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12667                                               X86::OR16ri, X86::MOV16rm,
12668                                               X86::LCMPXCHG16,
12669                                               X86::NOT16r, X86::AX,
12670                                               &X86::GR16RegClass);
12671  case X86::ATOMXOR16:
12672    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12673                                               X86::XOR16ri, X86::MOV16rm,
12674                                               X86::LCMPXCHG16,
12675                                               X86::NOT16r, X86::AX,
12676                                               &X86::GR16RegClass);
12677  case X86::ATOMNAND16:
12678    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12679                                               X86::AND16ri, X86::MOV16rm,
12680                                               X86::LCMPXCHG16,
12681                                               X86::NOT16r, X86::AX,
12682                                               &X86::GR16RegClass, true);
12683  case X86::ATOMMIN16:
12684    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12685  case X86::ATOMMAX16:
12686    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12687  case X86::ATOMUMIN16:
12688    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12689  case X86::ATOMUMAX16:
12690    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12691
12692  case X86::ATOMAND8:
12693    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12694                                               X86::AND8ri, X86::MOV8rm,
12695                                               X86::LCMPXCHG8,
12696                                               X86::NOT8r, X86::AL,
12697                                               &X86::GR8RegClass);
12698  case X86::ATOMOR8:
12699    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12700                                               X86::OR8ri, X86::MOV8rm,
12701                                               X86::LCMPXCHG8,
12702                                               X86::NOT8r, X86::AL,
12703                                               &X86::GR8RegClass);
12704  case X86::ATOMXOR8:
12705    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12706                                               X86::XOR8ri, X86::MOV8rm,
12707                                               X86::LCMPXCHG8,
12708                                               X86::NOT8r, X86::AL,
12709                                               &X86::GR8RegClass);
12710  case X86::ATOMNAND8:
12711    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12712                                               X86::AND8ri, X86::MOV8rm,
12713                                               X86::LCMPXCHG8,
12714                                               X86::NOT8r, X86::AL,
12715                                               &X86::GR8RegClass, true);
12716  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12717  // This group is for 64-bit host.
12718  case X86::ATOMAND64:
12719    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12720                                               X86::AND64ri32, X86::MOV64rm,
12721                                               X86::LCMPXCHG64,
12722                                               X86::NOT64r, X86::RAX,
12723                                               &X86::GR64RegClass);
12724  case X86::ATOMOR64:
12725    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12726                                               X86::OR64ri32, X86::MOV64rm,
12727                                               X86::LCMPXCHG64,
12728                                               X86::NOT64r, X86::RAX,
12729                                               &X86::GR64RegClass);
12730  case X86::ATOMXOR64:
12731    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12732                                               X86::XOR64ri32, X86::MOV64rm,
12733                                               X86::LCMPXCHG64,
12734                                               X86::NOT64r, X86::RAX,
12735                                               &X86::GR64RegClass);
12736  case X86::ATOMNAND64:
12737    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12738                                               X86::AND64ri32, X86::MOV64rm,
12739                                               X86::LCMPXCHG64,
12740                                               X86::NOT64r, X86::RAX,
12741                                               &X86::GR64RegClass, true);
12742  case X86::ATOMMIN64:
12743    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12744  case X86::ATOMMAX64:
12745    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12746  case X86::ATOMUMIN64:
12747    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12748  case X86::ATOMUMAX64:
12749    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12750
12751  // This group does 64-bit operations on a 32-bit host.
12752  case X86::ATOMAND6432:
12753    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12754                                               X86::AND32rr, X86::AND32rr,
12755                                               X86::AND32ri, X86::AND32ri,
12756                                               false);
12757  case X86::ATOMOR6432:
12758    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12759                                               X86::OR32rr, X86::OR32rr,
12760                                               X86::OR32ri, X86::OR32ri,
12761                                               false);
12762  case X86::ATOMXOR6432:
12763    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12764                                               X86::XOR32rr, X86::XOR32rr,
12765                                               X86::XOR32ri, X86::XOR32ri,
12766                                               false);
12767  case X86::ATOMNAND6432:
12768    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12769                                               X86::AND32rr, X86::AND32rr,
12770                                               X86::AND32ri, X86::AND32ri,
12771                                               true);
12772  case X86::ATOMADD6432:
12773    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12774                                               X86::ADD32rr, X86::ADC32rr,
12775                                               X86::ADD32ri, X86::ADC32ri,
12776                                               false);
12777  case X86::ATOMSUB6432:
12778    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12779                                               X86::SUB32rr, X86::SBB32rr,
12780                                               X86::SUB32ri, X86::SBB32ri,
12781                                               false);
12782  case X86::ATOMSWAP6432:
12783    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12784                                               X86::MOV32rr, X86::MOV32rr,
12785                                               X86::MOV32ri, X86::MOV32ri,
12786                                               false);
12787  case X86::VASTART_SAVE_XMM_REGS:
12788    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12789
12790  case X86::VAARG_64:
12791    return EmitVAARG64WithCustomInserter(MI, BB);
12792  }
12793}
12794
12795//===----------------------------------------------------------------------===//
12796//                           X86 Optimization Hooks
12797//===----------------------------------------------------------------------===//
12798
12799void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12800                                                       APInt &KnownZero,
12801                                                       APInt &KnownOne,
12802                                                       const SelectionDAG &DAG,
12803                                                       unsigned Depth) const {
12804  unsigned BitWidth = KnownZero.getBitWidth();
12805  unsigned Opc = Op.getOpcode();
12806  assert((Opc >= ISD::BUILTIN_OP_END ||
12807          Opc == ISD::INTRINSIC_WO_CHAIN ||
12808          Opc == ISD::INTRINSIC_W_CHAIN ||
12809          Opc == ISD::INTRINSIC_VOID) &&
12810         "Should use MaskedValueIsZero if you don't know whether Op"
12811         " is a target node!");
12812
12813  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12814  switch (Opc) {
12815  default: break;
12816  case X86ISD::ADD:
12817  case X86ISD::SUB:
12818  case X86ISD::ADC:
12819  case X86ISD::SBB:
12820  case X86ISD::SMUL:
12821  case X86ISD::UMUL:
12822  case X86ISD::INC:
12823  case X86ISD::DEC:
12824  case X86ISD::OR:
12825  case X86ISD::XOR:
12826  case X86ISD::AND:
12827    // These nodes' second result is a boolean.
12828    if (Op.getResNo() == 0)
12829      break;
12830    // Fallthrough
12831  case X86ISD::SETCC:
12832    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12833    break;
12834  case ISD::INTRINSIC_WO_CHAIN: {
12835    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12836    unsigned NumLoBits = 0;
12837    switch (IntId) {
12838    default: break;
12839    case Intrinsic::x86_sse_movmsk_ps:
12840    case Intrinsic::x86_avx_movmsk_ps_256:
12841    case Intrinsic::x86_sse2_movmsk_pd:
12842    case Intrinsic::x86_avx_movmsk_pd_256:
12843    case Intrinsic::x86_mmx_pmovmskb:
12844    case Intrinsic::x86_sse2_pmovmskb_128:
12845    case Intrinsic::x86_avx2_pmovmskb: {
12846      // High bits of movmskp{s|d}, pmovmskb are known zero.
12847      switch (IntId) {
12848        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12849        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12850        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12851        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12852        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12853        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12854        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12855        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12856      }
12857      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12858      break;
12859    }
12860    }
12861    break;
12862  }
12863  }
12864}
12865
12866unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12867                                                         unsigned Depth) const {
12868  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12869  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12870    return Op.getValueType().getScalarType().getSizeInBits();
12871
12872  // Fallback case.
12873  return 1;
12874}
12875
12876/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12877/// node is a GlobalAddress + offset.
12878bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12879                                       const GlobalValue* &GA,
12880                                       int64_t &Offset) const {
12881  if (N->getOpcode() == X86ISD::Wrapper) {
12882    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12883      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12884      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12885      return true;
12886    }
12887  }
12888  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12889}
12890
12891/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12892/// same as extracting the high 128-bit part of 256-bit vector and then
12893/// inserting the result into the low part of a new 256-bit vector
12894static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12895  EVT VT = SVOp->getValueType(0);
12896  unsigned NumElems = VT.getVectorNumElements();
12897
12898  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12899  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
12900    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12901        SVOp->getMaskElt(j) >= 0)
12902      return false;
12903
12904  return true;
12905}
12906
12907/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12908/// same as extracting the low 128-bit part of 256-bit vector and then
12909/// inserting the result into the high part of a new 256-bit vector
12910static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12911  EVT VT = SVOp->getValueType(0);
12912  unsigned NumElems = VT.getVectorNumElements();
12913
12914  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12915  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
12916    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12917        SVOp->getMaskElt(j) >= 0)
12918      return false;
12919
12920  return true;
12921}
12922
12923/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12924static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12925                                        TargetLowering::DAGCombinerInfo &DCI,
12926                                        const X86Subtarget* Subtarget) {
12927  DebugLoc dl = N->getDebugLoc();
12928  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12929  SDValue V1 = SVOp->getOperand(0);
12930  SDValue V2 = SVOp->getOperand(1);
12931  EVT VT = SVOp->getValueType(0);
12932  unsigned NumElems = VT.getVectorNumElements();
12933
12934  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12935      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12936    //
12937    //                   0,0,0,...
12938    //                      |
12939    //    V      UNDEF    BUILD_VECTOR    UNDEF
12940    //     \      /           \           /
12941    //  CONCAT_VECTOR         CONCAT_VECTOR
12942    //         \                  /
12943    //          \                /
12944    //          RESULT: V + zero extended
12945    //
12946    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12947        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12948        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12949      return SDValue();
12950
12951    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12952      return SDValue();
12953
12954    // To match the shuffle mask, the first half of the mask should
12955    // be exactly the first vector, and all the rest a splat with the
12956    // first element of the second one.
12957    for (unsigned i = 0; i != NumElems/2; ++i)
12958      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12959          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12960        return SDValue();
12961
12962    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12963    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12964      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12965      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12966      SDValue ResNode =
12967        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12968                                Ld->getMemoryVT(),
12969                                Ld->getPointerInfo(),
12970                                Ld->getAlignment(),
12971                                false/*isVolatile*/, true/*ReadMem*/,
12972                                false/*WriteMem*/);
12973      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12974    }
12975
12976    // Emit a zeroed vector and insert the desired subvector on its
12977    // first half.
12978    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12979    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
12980    return DCI.CombineTo(N, InsV);
12981  }
12982
12983  //===--------------------------------------------------------------------===//
12984  // Combine some shuffles into subvector extracts and inserts:
12985  //
12986
12987  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12988  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12989    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
12990    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
12991    return DCI.CombineTo(N, InsV);
12992  }
12993
12994  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12995  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12996    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
12997    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
12998    return DCI.CombineTo(N, InsV);
12999  }
13000
13001  return SDValue();
13002}
13003
13004/// PerformShuffleCombine - Performs several different shuffle combines.
13005static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13006                                     TargetLowering::DAGCombinerInfo &DCI,
13007                                     const X86Subtarget *Subtarget) {
13008  DebugLoc dl = N->getDebugLoc();
13009  EVT VT = N->getValueType(0);
13010
13011  // Don't create instructions with illegal types after legalize types has run.
13012  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13013  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13014    return SDValue();
13015
13016  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13017  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13018      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13019    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13020
13021  // Only handle 128 wide vector from here on.
13022  if (VT.getSizeInBits() != 128)
13023    return SDValue();
13024
13025  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13026  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13027  // consecutive, non-overlapping, and in the right order.
13028  SmallVector<SDValue, 16> Elts;
13029  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13030    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13031
13032  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13033}
13034
13035
13036/// DCI, PerformTruncateCombine - Converts truncate operation to
13037/// a sequence of vector shuffle operations.
13038/// It is possible when we truncate 256-bit vector to 128-bit vector
13039
13040SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13041                                                  DAGCombinerInfo &DCI) const {
13042  if (!DCI.isBeforeLegalizeOps())
13043    return SDValue();
13044
13045  if (!Subtarget->hasAVX())
13046    return SDValue();
13047
13048  EVT VT = N->getValueType(0);
13049  SDValue Op = N->getOperand(0);
13050  EVT OpVT = Op.getValueType();
13051  DebugLoc dl = N->getDebugLoc();
13052
13053  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13054
13055    if (Subtarget->hasAVX2()) {
13056      // AVX2: v4i64 -> v4i32
13057
13058      // VPERMD
13059      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13060
13061      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13062      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13063                                ShufMask);
13064
13065      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13066                         DAG.getIntPtrConstant(0));
13067    }
13068
13069    // AVX: v4i64 -> v4i32
13070    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13071                               DAG.getIntPtrConstant(0));
13072
13073    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13074                               DAG.getIntPtrConstant(2));
13075
13076    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13077    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13078
13079    // PSHUFD
13080    static const int ShufMask1[] = {0, 2, 0, 0};
13081
13082    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13083    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13084
13085    // MOVLHPS
13086    static const int ShufMask2[] = {0, 1, 4, 5};
13087
13088    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13089  }
13090
13091  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13092
13093    if (Subtarget->hasAVX2()) {
13094      // AVX2: v8i32 -> v8i16
13095
13096      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13097
13098      // PSHUFB
13099      SmallVector<SDValue,32> pshufbMask;
13100      for (unsigned i = 0; i < 2; ++i) {
13101        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13102        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13103        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13104        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13105        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13106        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13107        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13108        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13109        for (unsigned j = 0; j < 8; ++j)
13110          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13111      }
13112      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13113                               &pshufbMask[0], 32);
13114      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13115
13116      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13117
13118      static const int ShufMask[] = {0,  2,  -1,  -1};
13119      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13120                                &ShufMask[0]);
13121
13122      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13123                       DAG.getIntPtrConstant(0));
13124
13125      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13126    }
13127
13128    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13129                               DAG.getIntPtrConstant(0));
13130
13131    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13132                               DAG.getIntPtrConstant(4));
13133
13134    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13135    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13136
13137    // PSHUFB
13138    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13139                                   -1, -1, -1, -1, -1, -1, -1, -1};
13140
13141    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13142                                ShufMask1);
13143    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13144                                ShufMask1);
13145
13146    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13147    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13148
13149    // MOVLHPS
13150    static const int ShufMask2[] = {0, 1, 4, 5};
13151
13152    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13153    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13154  }
13155
13156  return SDValue();
13157}
13158
13159/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13160/// specific shuffle of a load can be folded into a single element load.
13161/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13162/// shuffles have been customed lowered so we need to handle those here.
13163static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13164                                         TargetLowering::DAGCombinerInfo &DCI) {
13165  if (DCI.isBeforeLegalizeOps())
13166    return SDValue();
13167
13168  SDValue InVec = N->getOperand(0);
13169  SDValue EltNo = N->getOperand(1);
13170
13171  if (!isa<ConstantSDNode>(EltNo))
13172    return SDValue();
13173
13174  EVT VT = InVec.getValueType();
13175
13176  bool HasShuffleIntoBitcast = false;
13177  if (InVec.getOpcode() == ISD::BITCAST) {
13178    // Don't duplicate a load with other uses.
13179    if (!InVec.hasOneUse())
13180      return SDValue();
13181    EVT BCVT = InVec.getOperand(0).getValueType();
13182    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13183      return SDValue();
13184    InVec = InVec.getOperand(0);
13185    HasShuffleIntoBitcast = true;
13186  }
13187
13188  if (!isTargetShuffle(InVec.getOpcode()))
13189    return SDValue();
13190
13191  // Don't duplicate a load with other uses.
13192  if (!InVec.hasOneUse())
13193    return SDValue();
13194
13195  SmallVector<int, 16> ShuffleMask;
13196  bool UnaryShuffle;
13197  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13198    return SDValue();
13199
13200  // Select the input vector, guarding against out of range extract vector.
13201  unsigned NumElems = VT.getVectorNumElements();
13202  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13203  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13204  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13205                                         : InVec.getOperand(1);
13206
13207  // If inputs to shuffle are the same for both ops, then allow 2 uses
13208  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13209
13210  if (LdNode.getOpcode() == ISD::BITCAST) {
13211    // Don't duplicate a load with other uses.
13212    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13213      return SDValue();
13214
13215    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13216    LdNode = LdNode.getOperand(0);
13217  }
13218
13219  if (!ISD::isNormalLoad(LdNode.getNode()))
13220    return SDValue();
13221
13222  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13223
13224  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13225    return SDValue();
13226
13227  if (HasShuffleIntoBitcast) {
13228    // If there's a bitcast before the shuffle, check if the load type and
13229    // alignment is valid.
13230    unsigned Align = LN0->getAlignment();
13231    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13232    unsigned NewAlign = TLI.getTargetData()->
13233      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13234
13235    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13236      return SDValue();
13237  }
13238
13239  // All checks match so transform back to vector_shuffle so that DAG combiner
13240  // can finish the job
13241  DebugLoc dl = N->getDebugLoc();
13242
13243  // Create shuffle node taking into account the case that its a unary shuffle
13244  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13245  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13246                                 InVec.getOperand(0), Shuffle,
13247                                 &ShuffleMask[0]);
13248  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13249  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13250                     EltNo);
13251}
13252
13253/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13254/// generation and convert it from being a bunch of shuffles and extracts
13255/// to a simple store and scalar loads to extract the elements.
13256static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13257                                         TargetLowering::DAGCombinerInfo &DCI) {
13258  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13259  if (NewOp.getNode())
13260    return NewOp;
13261
13262  SDValue InputVector = N->getOperand(0);
13263
13264  // Only operate on vectors of 4 elements, where the alternative shuffling
13265  // gets to be more expensive.
13266  if (InputVector.getValueType() != MVT::v4i32)
13267    return SDValue();
13268
13269  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13270  // single use which is a sign-extend or zero-extend, and all elements are
13271  // used.
13272  SmallVector<SDNode *, 4> Uses;
13273  unsigned ExtractedElements = 0;
13274  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13275       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13276    if (UI.getUse().getResNo() != InputVector.getResNo())
13277      return SDValue();
13278
13279    SDNode *Extract = *UI;
13280    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13281      return SDValue();
13282
13283    if (Extract->getValueType(0) != MVT::i32)
13284      return SDValue();
13285    if (!Extract->hasOneUse())
13286      return SDValue();
13287    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13288        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13289      return SDValue();
13290    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13291      return SDValue();
13292
13293    // Record which element was extracted.
13294    ExtractedElements |=
13295      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13296
13297    Uses.push_back(Extract);
13298  }
13299
13300  // If not all the elements were used, this may not be worthwhile.
13301  if (ExtractedElements != 15)
13302    return SDValue();
13303
13304  // Ok, we've now decided to do the transformation.
13305  DebugLoc dl = InputVector.getDebugLoc();
13306
13307  // Store the value to a temporary stack slot.
13308  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13309  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13310                            MachinePointerInfo(), false, false, 0);
13311
13312  // Replace each use (extract) with a load of the appropriate element.
13313  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13314       UE = Uses.end(); UI != UE; ++UI) {
13315    SDNode *Extract = *UI;
13316
13317    // cOMpute the element's address.
13318    SDValue Idx = Extract->getOperand(1);
13319    unsigned EltSize =
13320        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13321    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13322    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13323    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13324
13325    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13326                                     StackPtr, OffsetVal);
13327
13328    // Load the scalar.
13329    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13330                                     ScalarAddr, MachinePointerInfo(),
13331                                     false, false, false, 0);
13332
13333    // Replace the exact with the load.
13334    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13335  }
13336
13337  // The replacement was made in place; don't return anything.
13338  return SDValue();
13339}
13340
13341/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13342/// nodes.
13343static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13344                                    TargetLowering::DAGCombinerInfo &DCI,
13345                                    const X86Subtarget *Subtarget) {
13346
13347
13348  DebugLoc DL = N->getDebugLoc();
13349  SDValue Cond = N->getOperand(0);
13350  // Get the LHS/RHS of the select.
13351  SDValue LHS = N->getOperand(1);
13352  SDValue RHS = N->getOperand(2);
13353  EVT VT = LHS.getValueType();
13354
13355  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13356  // instructions match the semantics of the common C idiom x<y?x:y but not
13357  // x<=y?x:y, because of how they handle negative zero (which can be
13358  // ignored in unsafe-math mode).
13359  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13360      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13361      (Subtarget->hasSSE2() ||
13362       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13363    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13364
13365    unsigned Opcode = 0;
13366    // Check for x CC y ? x : y.
13367    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13368        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13369      switch (CC) {
13370      default: break;
13371      case ISD::SETULT:
13372        // Converting this to a min would handle NaNs incorrectly, and swapping
13373        // the operands would cause it to handle comparisons between positive
13374        // and negative zero incorrectly.
13375        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13376          if (!DAG.getTarget().Options.UnsafeFPMath &&
13377              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13378            break;
13379          std::swap(LHS, RHS);
13380        }
13381        Opcode = X86ISD::FMIN;
13382        break;
13383      case ISD::SETOLE:
13384        // Converting this to a min would handle comparisons between positive
13385        // and negative zero incorrectly.
13386        if (!DAG.getTarget().Options.UnsafeFPMath &&
13387            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13388          break;
13389        Opcode = X86ISD::FMIN;
13390        break;
13391      case ISD::SETULE:
13392        // Converting this to a min would handle both negative zeros and NaNs
13393        // incorrectly, but we can swap the operands to fix both.
13394        std::swap(LHS, RHS);
13395      case ISD::SETOLT:
13396      case ISD::SETLT:
13397      case ISD::SETLE:
13398        Opcode = X86ISD::FMIN;
13399        break;
13400
13401      case ISD::SETOGE:
13402        // Converting this to a max would handle comparisons between positive
13403        // and negative zero incorrectly.
13404        if (!DAG.getTarget().Options.UnsafeFPMath &&
13405            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13406          break;
13407        Opcode = X86ISD::FMAX;
13408        break;
13409      case ISD::SETUGT:
13410        // Converting this to a max would handle NaNs incorrectly, and swapping
13411        // the operands would cause it to handle comparisons between positive
13412        // and negative zero incorrectly.
13413        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13414          if (!DAG.getTarget().Options.UnsafeFPMath &&
13415              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13416            break;
13417          std::swap(LHS, RHS);
13418        }
13419        Opcode = X86ISD::FMAX;
13420        break;
13421      case ISD::SETUGE:
13422        // Converting this to a max would handle both negative zeros and NaNs
13423        // incorrectly, but we can swap the operands to fix both.
13424        std::swap(LHS, RHS);
13425      case ISD::SETOGT:
13426      case ISD::SETGT:
13427      case ISD::SETGE:
13428        Opcode = X86ISD::FMAX;
13429        break;
13430      }
13431    // Check for x CC y ? y : x -- a min/max with reversed arms.
13432    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13433               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13434      switch (CC) {
13435      default: break;
13436      case ISD::SETOGE:
13437        // Converting this to a min would handle comparisons between positive
13438        // and negative zero incorrectly, and swapping the operands would
13439        // cause it to handle NaNs incorrectly.
13440        if (!DAG.getTarget().Options.UnsafeFPMath &&
13441            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13442          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13443            break;
13444          std::swap(LHS, RHS);
13445        }
13446        Opcode = X86ISD::FMIN;
13447        break;
13448      case ISD::SETUGT:
13449        // Converting this to a min would handle NaNs incorrectly.
13450        if (!DAG.getTarget().Options.UnsafeFPMath &&
13451            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13452          break;
13453        Opcode = X86ISD::FMIN;
13454        break;
13455      case ISD::SETUGE:
13456        // Converting this to a min would handle both negative zeros and NaNs
13457        // incorrectly, but we can swap the operands to fix both.
13458        std::swap(LHS, RHS);
13459      case ISD::SETOGT:
13460      case ISD::SETGT:
13461      case ISD::SETGE:
13462        Opcode = X86ISD::FMIN;
13463        break;
13464
13465      case ISD::SETULT:
13466        // Converting this to a max would handle NaNs incorrectly.
13467        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13468          break;
13469        Opcode = X86ISD::FMAX;
13470        break;
13471      case ISD::SETOLE:
13472        // Converting this to a max would handle comparisons between positive
13473        // and negative zero incorrectly, and swapping the operands would
13474        // cause it to handle NaNs incorrectly.
13475        if (!DAG.getTarget().Options.UnsafeFPMath &&
13476            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13477          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13478            break;
13479          std::swap(LHS, RHS);
13480        }
13481        Opcode = X86ISD::FMAX;
13482        break;
13483      case ISD::SETULE:
13484        // Converting this to a max would handle both negative zeros and NaNs
13485        // incorrectly, but we can swap the operands to fix both.
13486        std::swap(LHS, RHS);
13487      case ISD::SETOLT:
13488      case ISD::SETLT:
13489      case ISD::SETLE:
13490        Opcode = X86ISD::FMAX;
13491        break;
13492      }
13493    }
13494
13495    if (Opcode)
13496      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13497  }
13498
13499  // If this is a select between two integer constants, try to do some
13500  // optimizations.
13501  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13502    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13503      // Don't do this for crazy integer types.
13504      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13505        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13506        // so that TrueC (the true value) is larger than FalseC.
13507        bool NeedsCondInvert = false;
13508
13509        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13510            // Efficiently invertible.
13511            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13512             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13513              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13514          NeedsCondInvert = true;
13515          std::swap(TrueC, FalseC);
13516        }
13517
13518        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13519        if (FalseC->getAPIntValue() == 0 &&
13520            TrueC->getAPIntValue().isPowerOf2()) {
13521          if (NeedsCondInvert) // Invert the condition if needed.
13522            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13523                               DAG.getConstant(1, Cond.getValueType()));
13524
13525          // Zero extend the condition if needed.
13526          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13527
13528          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13529          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13530                             DAG.getConstant(ShAmt, MVT::i8));
13531        }
13532
13533        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13534        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13535          if (NeedsCondInvert) // Invert the condition if needed.
13536            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13537                               DAG.getConstant(1, Cond.getValueType()));
13538
13539          // Zero extend the condition if needed.
13540          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13541                             FalseC->getValueType(0), Cond);
13542          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13543                             SDValue(FalseC, 0));
13544        }
13545
13546        // Optimize cases that will turn into an LEA instruction.  This requires
13547        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13548        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13549          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13550          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13551
13552          bool isFastMultiplier = false;
13553          if (Diff < 10) {
13554            switch ((unsigned char)Diff) {
13555              default: break;
13556              case 1:  // result = add base, cond
13557              case 2:  // result = lea base(    , cond*2)
13558              case 3:  // result = lea base(cond, cond*2)
13559              case 4:  // result = lea base(    , cond*4)
13560              case 5:  // result = lea base(cond, cond*4)
13561              case 8:  // result = lea base(    , cond*8)
13562              case 9:  // result = lea base(cond, cond*8)
13563                isFastMultiplier = true;
13564                break;
13565            }
13566          }
13567
13568          if (isFastMultiplier) {
13569            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13570            if (NeedsCondInvert) // Invert the condition if needed.
13571              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13572                                 DAG.getConstant(1, Cond.getValueType()));
13573
13574            // Zero extend the condition if needed.
13575            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13576                               Cond);
13577            // Scale the condition by the difference.
13578            if (Diff != 1)
13579              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13580                                 DAG.getConstant(Diff, Cond.getValueType()));
13581
13582            // Add the base if non-zero.
13583            if (FalseC->getAPIntValue() != 0)
13584              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13585                                 SDValue(FalseC, 0));
13586            return Cond;
13587          }
13588        }
13589      }
13590  }
13591
13592  // Canonicalize max and min:
13593  // (x > y) ? x : y -> (x >= y) ? x : y
13594  // (x < y) ? x : y -> (x <= y) ? x : y
13595  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13596  // the need for an extra compare
13597  // against zero. e.g.
13598  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13599  // subl   %esi, %edi
13600  // testl  %edi, %edi
13601  // movl   $0, %eax
13602  // cmovgl %edi, %eax
13603  // =>
13604  // xorl   %eax, %eax
13605  // subl   %esi, $edi
13606  // cmovsl %eax, %edi
13607  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13608      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13609      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13610    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13611    switch (CC) {
13612    default: break;
13613    case ISD::SETLT:
13614    case ISD::SETGT: {
13615      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13616      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13617                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13618      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13619    }
13620    }
13621  }
13622
13623  // If we know that this node is legal then we know that it is going to be
13624  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13625  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13626  // to simplify previous instructions.
13627  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13628  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13629      !DCI.isBeforeLegalize() &&
13630      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13631    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13632    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13633    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13634
13635    APInt KnownZero, KnownOne;
13636    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13637                                          DCI.isBeforeLegalizeOps());
13638    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13639        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13640      DCI.CommitTargetLoweringOpt(TLO);
13641  }
13642
13643  return SDValue();
13644}
13645
13646/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13647static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13648                                  TargetLowering::DAGCombinerInfo &DCI) {
13649  DebugLoc DL = N->getDebugLoc();
13650
13651  // If the flag operand isn't dead, don't touch this CMOV.
13652  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13653    return SDValue();
13654
13655  SDValue FalseOp = N->getOperand(0);
13656  SDValue TrueOp = N->getOperand(1);
13657  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13658  SDValue Cond = N->getOperand(3);
13659  if (CC == X86::COND_E || CC == X86::COND_NE) {
13660    switch (Cond.getOpcode()) {
13661    default: break;
13662    case X86ISD::BSR:
13663    case X86ISD::BSF:
13664      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13665      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13666        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13667    }
13668  }
13669
13670  // If this is a select between two integer constants, try to do some
13671  // optimizations.  Note that the operands are ordered the opposite of SELECT
13672  // operands.
13673  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13674    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13675      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13676      // larger than FalseC (the false value).
13677      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13678        CC = X86::GetOppositeBranchCondition(CC);
13679        std::swap(TrueC, FalseC);
13680      }
13681
13682      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13683      // This is efficient for any integer data type (including i8/i16) and
13684      // shift amount.
13685      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13686        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13687                           DAG.getConstant(CC, MVT::i8), Cond);
13688
13689        // Zero extend the condition if needed.
13690        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13691
13692        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13693        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13694                           DAG.getConstant(ShAmt, MVT::i8));
13695        if (N->getNumValues() == 2)  // Dead flag value?
13696          return DCI.CombineTo(N, Cond, SDValue());
13697        return Cond;
13698      }
13699
13700      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13701      // for any integer data type, including i8/i16.
13702      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13703        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13704                           DAG.getConstant(CC, MVT::i8), Cond);
13705
13706        // Zero extend the condition if needed.
13707        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13708                           FalseC->getValueType(0), Cond);
13709        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13710                           SDValue(FalseC, 0));
13711
13712        if (N->getNumValues() == 2)  // Dead flag value?
13713          return DCI.CombineTo(N, Cond, SDValue());
13714        return Cond;
13715      }
13716
13717      // Optimize cases that will turn into an LEA instruction.  This requires
13718      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13719      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13720        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13721        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13722
13723        bool isFastMultiplier = false;
13724        if (Diff < 10) {
13725          switch ((unsigned char)Diff) {
13726          default: break;
13727          case 1:  // result = add base, cond
13728          case 2:  // result = lea base(    , cond*2)
13729          case 3:  // result = lea base(cond, cond*2)
13730          case 4:  // result = lea base(    , cond*4)
13731          case 5:  // result = lea base(cond, cond*4)
13732          case 8:  // result = lea base(    , cond*8)
13733          case 9:  // result = lea base(cond, cond*8)
13734            isFastMultiplier = true;
13735            break;
13736          }
13737        }
13738
13739        if (isFastMultiplier) {
13740          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13741          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13742                             DAG.getConstant(CC, MVT::i8), Cond);
13743          // Zero extend the condition if needed.
13744          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13745                             Cond);
13746          // Scale the condition by the difference.
13747          if (Diff != 1)
13748            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13749                               DAG.getConstant(Diff, Cond.getValueType()));
13750
13751          // Add the base if non-zero.
13752          if (FalseC->getAPIntValue() != 0)
13753            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13754                               SDValue(FalseC, 0));
13755          if (N->getNumValues() == 2)  // Dead flag value?
13756            return DCI.CombineTo(N, Cond, SDValue());
13757          return Cond;
13758        }
13759      }
13760    }
13761  }
13762  return SDValue();
13763}
13764
13765
13766/// PerformMulCombine - Optimize a single multiply with constant into two
13767/// in order to implement it with two cheaper instructions, e.g.
13768/// LEA + SHL, LEA + LEA.
13769static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13770                                 TargetLowering::DAGCombinerInfo &DCI) {
13771  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13772    return SDValue();
13773
13774  EVT VT = N->getValueType(0);
13775  if (VT != MVT::i64)
13776    return SDValue();
13777
13778  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13779  if (!C)
13780    return SDValue();
13781  uint64_t MulAmt = C->getZExtValue();
13782  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13783    return SDValue();
13784
13785  uint64_t MulAmt1 = 0;
13786  uint64_t MulAmt2 = 0;
13787  if ((MulAmt % 9) == 0) {
13788    MulAmt1 = 9;
13789    MulAmt2 = MulAmt / 9;
13790  } else if ((MulAmt % 5) == 0) {
13791    MulAmt1 = 5;
13792    MulAmt2 = MulAmt / 5;
13793  } else if ((MulAmt % 3) == 0) {
13794    MulAmt1 = 3;
13795    MulAmt2 = MulAmt / 3;
13796  }
13797  if (MulAmt2 &&
13798      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13799    DebugLoc DL = N->getDebugLoc();
13800
13801    if (isPowerOf2_64(MulAmt2) &&
13802        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13803      // If second multiplifer is pow2, issue it first. We want the multiply by
13804      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13805      // is an add.
13806      std::swap(MulAmt1, MulAmt2);
13807
13808    SDValue NewMul;
13809    if (isPowerOf2_64(MulAmt1))
13810      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13811                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13812    else
13813      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13814                           DAG.getConstant(MulAmt1, VT));
13815
13816    if (isPowerOf2_64(MulAmt2))
13817      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13818                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13819    else
13820      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13821                           DAG.getConstant(MulAmt2, VT));
13822
13823    // Do not add new nodes to DAG combiner worklist.
13824    DCI.CombineTo(N, NewMul, false);
13825  }
13826  return SDValue();
13827}
13828
13829static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13830  SDValue N0 = N->getOperand(0);
13831  SDValue N1 = N->getOperand(1);
13832  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13833  EVT VT = N0.getValueType();
13834
13835  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13836  // since the result of setcc_c is all zero's or all ones.
13837  if (VT.isInteger() && !VT.isVector() &&
13838      N1C && N0.getOpcode() == ISD::AND &&
13839      N0.getOperand(1).getOpcode() == ISD::Constant) {
13840    SDValue N00 = N0.getOperand(0);
13841    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13842        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13843          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13844         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13845      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13846      APInt ShAmt = N1C->getAPIntValue();
13847      Mask = Mask.shl(ShAmt);
13848      if (Mask != 0)
13849        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13850                           N00, DAG.getConstant(Mask, VT));
13851    }
13852  }
13853
13854
13855  // Hardware support for vector shifts is sparse which makes us scalarize the
13856  // vector operations in many cases. Also, on sandybridge ADD is faster than
13857  // shl.
13858  // (shl V, 1) -> add V,V
13859  if (isSplatVector(N1.getNode())) {
13860    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13861    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13862    // We shift all of the values by one. In many cases we do not have
13863    // hardware support for this operation. This is better expressed as an ADD
13864    // of two values.
13865    if (N1C && (1 == N1C->getZExtValue())) {
13866      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13867    }
13868  }
13869
13870  return SDValue();
13871}
13872
13873/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13874///                       when possible.
13875static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13876                                   TargetLowering::DAGCombinerInfo &DCI,
13877                                   const X86Subtarget *Subtarget) {
13878  EVT VT = N->getValueType(0);
13879  if (N->getOpcode() == ISD::SHL) {
13880    SDValue V = PerformSHLCombine(N, DAG);
13881    if (V.getNode()) return V;
13882  }
13883
13884  // On X86 with SSE2 support, we can transform this to a vector shift if
13885  // all elements are shifted by the same amount.  We can't do this in legalize
13886  // because the a constant vector is typically transformed to a constant pool
13887  // so we have no knowledge of the shift amount.
13888  if (!Subtarget->hasSSE2())
13889    return SDValue();
13890
13891  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13892      (!Subtarget->hasAVX2() ||
13893       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13894    return SDValue();
13895
13896  SDValue ShAmtOp = N->getOperand(1);
13897  EVT EltVT = VT.getVectorElementType();
13898  DebugLoc DL = N->getDebugLoc();
13899  SDValue BaseShAmt = SDValue();
13900  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13901    unsigned NumElts = VT.getVectorNumElements();
13902    unsigned i = 0;
13903    for (; i != NumElts; ++i) {
13904      SDValue Arg = ShAmtOp.getOperand(i);
13905      if (Arg.getOpcode() == ISD::UNDEF) continue;
13906      BaseShAmt = Arg;
13907      break;
13908    }
13909    // Handle the case where the build_vector is all undef
13910    // FIXME: Should DAG allow this?
13911    if (i == NumElts)
13912      return SDValue();
13913
13914    for (; i != NumElts; ++i) {
13915      SDValue Arg = ShAmtOp.getOperand(i);
13916      if (Arg.getOpcode() == ISD::UNDEF) continue;
13917      if (Arg != BaseShAmt) {
13918        return SDValue();
13919      }
13920    }
13921  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13922             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13923    SDValue InVec = ShAmtOp.getOperand(0);
13924    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13925      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13926      unsigned i = 0;
13927      for (; i != NumElts; ++i) {
13928        SDValue Arg = InVec.getOperand(i);
13929        if (Arg.getOpcode() == ISD::UNDEF) continue;
13930        BaseShAmt = Arg;
13931        break;
13932      }
13933    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13934       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13935         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13936         if (C->getZExtValue() == SplatIdx)
13937           BaseShAmt = InVec.getOperand(1);
13938       }
13939    }
13940    if (BaseShAmt.getNode() == 0) {
13941      // Don't create instructions with illegal types after legalize
13942      // types has run.
13943      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13944          !DCI.isBeforeLegalize())
13945        return SDValue();
13946
13947      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13948                              DAG.getIntPtrConstant(0));
13949    }
13950  } else
13951    return SDValue();
13952
13953  // The shift amount is an i32.
13954  if (EltVT.bitsGT(MVT::i32))
13955    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13956  else if (EltVT.bitsLT(MVT::i32))
13957    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13958
13959  // The shift amount is identical so we can do a vector shift.
13960  SDValue  ValOp = N->getOperand(0);
13961  switch (N->getOpcode()) {
13962  default:
13963    llvm_unreachable("Unknown shift opcode!");
13964  case ISD::SHL:
13965    switch (VT.getSimpleVT().SimpleTy) {
13966    default: return SDValue();
13967    case MVT::v2i64:
13968    case MVT::v4i32:
13969    case MVT::v8i16:
13970    case MVT::v4i64:
13971    case MVT::v8i32:
13972    case MVT::v16i16:
13973      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13974    }
13975  case ISD::SRA:
13976    switch (VT.getSimpleVT().SimpleTy) {
13977    default: return SDValue();
13978    case MVT::v4i32:
13979    case MVT::v8i16:
13980    case MVT::v8i32:
13981    case MVT::v16i16:
13982      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13983    }
13984  case ISD::SRL:
13985    switch (VT.getSimpleVT().SimpleTy) {
13986    default: return SDValue();
13987    case MVT::v2i64:
13988    case MVT::v4i32:
13989    case MVT::v8i16:
13990    case MVT::v4i64:
13991    case MVT::v8i32:
13992    case MVT::v16i16:
13993      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13994    }
13995  }
13996}
13997
13998
13999// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14000// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14001// and friends.  Likewise for OR -> CMPNEQSS.
14002static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14003                            TargetLowering::DAGCombinerInfo &DCI,
14004                            const X86Subtarget *Subtarget) {
14005  unsigned opcode;
14006
14007  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14008  // we're requiring SSE2 for both.
14009  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14010    SDValue N0 = N->getOperand(0);
14011    SDValue N1 = N->getOperand(1);
14012    SDValue CMP0 = N0->getOperand(1);
14013    SDValue CMP1 = N1->getOperand(1);
14014    DebugLoc DL = N->getDebugLoc();
14015
14016    // The SETCCs should both refer to the same CMP.
14017    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14018      return SDValue();
14019
14020    SDValue CMP00 = CMP0->getOperand(0);
14021    SDValue CMP01 = CMP0->getOperand(1);
14022    EVT     VT    = CMP00.getValueType();
14023
14024    if (VT == MVT::f32 || VT == MVT::f64) {
14025      bool ExpectingFlags = false;
14026      // Check for any users that want flags:
14027      for (SDNode::use_iterator UI = N->use_begin(),
14028             UE = N->use_end();
14029           !ExpectingFlags && UI != UE; ++UI)
14030        switch (UI->getOpcode()) {
14031        default:
14032        case ISD::BR_CC:
14033        case ISD::BRCOND:
14034        case ISD::SELECT:
14035          ExpectingFlags = true;
14036          break;
14037        case ISD::CopyToReg:
14038        case ISD::SIGN_EXTEND:
14039        case ISD::ZERO_EXTEND:
14040        case ISD::ANY_EXTEND:
14041          break;
14042        }
14043
14044      if (!ExpectingFlags) {
14045        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14046        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14047
14048        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14049          X86::CondCode tmp = cc0;
14050          cc0 = cc1;
14051          cc1 = tmp;
14052        }
14053
14054        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14055            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14056          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14057          X86ISD::NodeType NTOperator = is64BitFP ?
14058            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14059          // FIXME: need symbolic constants for these magic numbers.
14060          // See X86ATTInstPrinter.cpp:printSSECC().
14061          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14062          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14063                                              DAG.getConstant(x86cc, MVT::i8));
14064          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14065                                              OnesOrZeroesF);
14066          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14067                                      DAG.getConstant(1, MVT::i32));
14068          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14069          return OneBitOfTruth;
14070        }
14071      }
14072    }
14073  }
14074  return SDValue();
14075}
14076
14077/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14078/// so it can be folded inside ANDNP.
14079static bool CanFoldXORWithAllOnes(const SDNode *N) {
14080  EVT VT = N->getValueType(0);
14081
14082  // Match direct AllOnes for 128 and 256-bit vectors
14083  if (ISD::isBuildVectorAllOnes(N))
14084    return true;
14085
14086  // Look through a bit convert.
14087  if (N->getOpcode() == ISD::BITCAST)
14088    N = N->getOperand(0).getNode();
14089
14090  // Sometimes the operand may come from a insert_subvector building a 256-bit
14091  // allones vector
14092  if (VT.getSizeInBits() == 256 &&
14093      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14094    SDValue V1 = N->getOperand(0);
14095    SDValue V2 = N->getOperand(1);
14096
14097    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14098        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14099        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14100        ISD::isBuildVectorAllOnes(V2.getNode()))
14101      return true;
14102  }
14103
14104  return false;
14105}
14106
14107static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14108                                 TargetLowering::DAGCombinerInfo &DCI,
14109                                 const X86Subtarget *Subtarget) {
14110  if (DCI.isBeforeLegalizeOps())
14111    return SDValue();
14112
14113  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14114  if (R.getNode())
14115    return R;
14116
14117  EVT VT = N->getValueType(0);
14118
14119  // Create ANDN, BLSI, and BLSR instructions
14120  // BLSI is X & (-X)
14121  // BLSR is X & (X-1)
14122  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14123    SDValue N0 = N->getOperand(0);
14124    SDValue N1 = N->getOperand(1);
14125    DebugLoc DL = N->getDebugLoc();
14126
14127    // Check LHS for not
14128    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14129      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14130    // Check RHS for not
14131    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14132      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14133
14134    // Check LHS for neg
14135    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14136        isZero(N0.getOperand(0)))
14137      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14138
14139    // Check RHS for neg
14140    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14141        isZero(N1.getOperand(0)))
14142      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14143
14144    // Check LHS for X-1
14145    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14146        isAllOnes(N0.getOperand(1)))
14147      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14148
14149    // Check RHS for X-1
14150    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14151        isAllOnes(N1.getOperand(1)))
14152      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14153
14154    return SDValue();
14155  }
14156
14157  // Want to form ANDNP nodes:
14158  // 1) In the hopes of then easily combining them with OR and AND nodes
14159  //    to form PBLEND/PSIGN.
14160  // 2) To match ANDN packed intrinsics
14161  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14162    return SDValue();
14163
14164  SDValue N0 = N->getOperand(0);
14165  SDValue N1 = N->getOperand(1);
14166  DebugLoc DL = N->getDebugLoc();
14167
14168  // Check LHS for vnot
14169  if (N0.getOpcode() == ISD::XOR &&
14170      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14171      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14172    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14173
14174  // Check RHS for vnot
14175  if (N1.getOpcode() == ISD::XOR &&
14176      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14177      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14178    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14179
14180  return SDValue();
14181}
14182
14183static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14184                                TargetLowering::DAGCombinerInfo &DCI,
14185                                const X86Subtarget *Subtarget) {
14186  if (DCI.isBeforeLegalizeOps())
14187    return SDValue();
14188
14189  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14190  if (R.getNode())
14191    return R;
14192
14193  EVT VT = N->getValueType(0);
14194
14195  SDValue N0 = N->getOperand(0);
14196  SDValue N1 = N->getOperand(1);
14197
14198  // look for psign/blend
14199  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14200    if (!Subtarget->hasSSSE3() ||
14201        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14202      return SDValue();
14203
14204    // Canonicalize pandn to RHS
14205    if (N0.getOpcode() == X86ISD::ANDNP)
14206      std::swap(N0, N1);
14207    // or (and (m, y), (pandn m, x))
14208    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14209      SDValue Mask = N1.getOperand(0);
14210      SDValue X    = N1.getOperand(1);
14211      SDValue Y;
14212      if (N0.getOperand(0) == Mask)
14213        Y = N0.getOperand(1);
14214      if (N0.getOperand(1) == Mask)
14215        Y = N0.getOperand(0);
14216
14217      // Check to see if the mask appeared in both the AND and ANDNP and
14218      if (!Y.getNode())
14219        return SDValue();
14220
14221      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14222      // Look through mask bitcast.
14223      if (Mask.getOpcode() == ISD::BITCAST)
14224        Mask = Mask.getOperand(0);
14225      if (X.getOpcode() == ISD::BITCAST)
14226        X = X.getOperand(0);
14227      if (Y.getOpcode() == ISD::BITCAST)
14228        Y = Y.getOperand(0);
14229
14230      EVT MaskVT = Mask.getValueType();
14231
14232      // Validate that the Mask operand is a vector sra node.
14233      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14234      // there is no psrai.b
14235      if (Mask.getOpcode() != X86ISD::VSRAI)
14236        return SDValue();
14237
14238      // Check that the SRA is all signbits.
14239      SDValue SraC = Mask.getOperand(1);
14240      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14241      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14242      if ((SraAmt + 1) != EltBits)
14243        return SDValue();
14244
14245      DebugLoc DL = N->getDebugLoc();
14246
14247      // Now we know we at least have a plendvb with the mask val.  See if
14248      // we can form a psignb/w/d.
14249      // psign = x.type == y.type == mask.type && y = sub(0, x);
14250      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14251          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14252          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14253        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14254               "Unsupported VT for PSIGN");
14255        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14256        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14257      }
14258      // PBLENDVB only available on SSE 4.1
14259      if (!Subtarget->hasSSE41())
14260        return SDValue();
14261
14262      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14263
14264      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14265      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14266      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14267      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14268      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14269    }
14270  }
14271
14272  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14273    return SDValue();
14274
14275  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14276  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14277    std::swap(N0, N1);
14278  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14279    return SDValue();
14280  if (!N0.hasOneUse() || !N1.hasOneUse())
14281    return SDValue();
14282
14283  SDValue ShAmt0 = N0.getOperand(1);
14284  if (ShAmt0.getValueType() != MVT::i8)
14285    return SDValue();
14286  SDValue ShAmt1 = N1.getOperand(1);
14287  if (ShAmt1.getValueType() != MVT::i8)
14288    return SDValue();
14289  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14290    ShAmt0 = ShAmt0.getOperand(0);
14291  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14292    ShAmt1 = ShAmt1.getOperand(0);
14293
14294  DebugLoc DL = N->getDebugLoc();
14295  unsigned Opc = X86ISD::SHLD;
14296  SDValue Op0 = N0.getOperand(0);
14297  SDValue Op1 = N1.getOperand(0);
14298  if (ShAmt0.getOpcode() == ISD::SUB) {
14299    Opc = X86ISD::SHRD;
14300    std::swap(Op0, Op1);
14301    std::swap(ShAmt0, ShAmt1);
14302  }
14303
14304  unsigned Bits = VT.getSizeInBits();
14305  if (ShAmt1.getOpcode() == ISD::SUB) {
14306    SDValue Sum = ShAmt1.getOperand(0);
14307    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14308      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14309      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14310        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14311      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14312        return DAG.getNode(Opc, DL, VT,
14313                           Op0, Op1,
14314                           DAG.getNode(ISD::TRUNCATE, DL,
14315                                       MVT::i8, ShAmt0));
14316    }
14317  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14318    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14319    if (ShAmt0C &&
14320        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14321      return DAG.getNode(Opc, DL, VT,
14322                         N0.getOperand(0), N1.getOperand(0),
14323                         DAG.getNode(ISD::TRUNCATE, DL,
14324                                       MVT::i8, ShAmt0));
14325  }
14326
14327  return SDValue();
14328}
14329
14330// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14331static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14332                                 TargetLowering::DAGCombinerInfo &DCI,
14333                                 const X86Subtarget *Subtarget) {
14334  if (DCI.isBeforeLegalizeOps())
14335    return SDValue();
14336
14337  EVT VT = N->getValueType(0);
14338
14339  if (VT != MVT::i32 && VT != MVT::i64)
14340    return SDValue();
14341
14342  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14343
14344  // Create BLSMSK instructions by finding X ^ (X-1)
14345  SDValue N0 = N->getOperand(0);
14346  SDValue N1 = N->getOperand(1);
14347  DebugLoc DL = N->getDebugLoc();
14348
14349  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14350      isAllOnes(N0.getOperand(1)))
14351    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14352
14353  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14354      isAllOnes(N1.getOperand(1)))
14355    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14356
14357  return SDValue();
14358}
14359
14360/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14361static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14362                                   const X86Subtarget *Subtarget) {
14363  LoadSDNode *Ld = cast<LoadSDNode>(N);
14364  EVT RegVT = Ld->getValueType(0);
14365  EVT MemVT = Ld->getMemoryVT();
14366  DebugLoc dl = Ld->getDebugLoc();
14367  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14368
14369  ISD::LoadExtType Ext = Ld->getExtensionType();
14370
14371  // If this is a vector EXT Load then attempt to optimize it using a
14372  // shuffle. We need SSE4 for the shuffles.
14373  // TODO: It is possible to support ZExt by zeroing the undef values
14374  // during the shuffle phase or after the shuffle.
14375  if (RegVT.isVector() && RegVT.isInteger() &&
14376      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14377    assert(MemVT != RegVT && "Cannot extend to the same type");
14378    assert(MemVT.isVector() && "Must load a vector from memory");
14379
14380    unsigned NumElems = RegVT.getVectorNumElements();
14381    unsigned RegSz = RegVT.getSizeInBits();
14382    unsigned MemSz = MemVT.getSizeInBits();
14383    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14384    // All sizes must be a power of two
14385    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14386
14387    // Attempt to load the original value using a single load op.
14388    // Find a scalar type which is equal to the loaded word size.
14389    MVT SclrLoadTy = MVT::i8;
14390    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14391         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14392      MVT Tp = (MVT::SimpleValueType)tp;
14393      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14394        SclrLoadTy = Tp;
14395        break;
14396      }
14397    }
14398
14399    // Proceed if a load word is found.
14400    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14401
14402    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14403      RegSz/SclrLoadTy.getSizeInBits());
14404
14405    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14406                                  RegSz/MemVT.getScalarType().getSizeInBits());
14407    // Can't shuffle using an illegal type.
14408    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14409
14410    // Perform a single load.
14411    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14412                                  Ld->getBasePtr(),
14413                                  Ld->getPointerInfo(), Ld->isVolatile(),
14414                                  Ld->isNonTemporal(), Ld->isInvariant(),
14415                                  Ld->getAlignment());
14416
14417    // Insert the word loaded into a vector.
14418    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14419      LoadUnitVecVT, ScalarLoad);
14420
14421    // Bitcast the loaded value to a vector of the original element type, in
14422    // the size of the target vector type.
14423    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14424                                    ScalarInVector);
14425    unsigned SizeRatio = RegSz/MemSz;
14426
14427    // Redistribute the loaded elements into the different locations.
14428    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14429    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14430
14431    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14432                                         DAG.getUNDEF(WideVecVT),
14433                                         &ShuffleVec[0]);
14434
14435    // Bitcast to the requested type.
14436    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14437    // Replace the original load with the new sequence
14438    // and return the new chain.
14439    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14440    return SDValue(ScalarLoad.getNode(), 1);
14441  }
14442
14443  return SDValue();
14444}
14445
14446/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14447static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14448                                   const X86Subtarget *Subtarget) {
14449  StoreSDNode *St = cast<StoreSDNode>(N);
14450  EVT VT = St->getValue().getValueType();
14451  EVT StVT = St->getMemoryVT();
14452  DebugLoc dl = St->getDebugLoc();
14453  SDValue StoredVal = St->getOperand(1);
14454  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14455
14456  // If we are saving a concatenation of two XMM registers, perform two stores.
14457  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14458  // 128-bit ones. If in the future the cost becomes only one memory access the
14459  // first version would be better.
14460  if (VT.getSizeInBits() == 256 &&
14461      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14462      StoredVal.getNumOperands() == 2) {
14463
14464    SDValue Value0 = StoredVal.getOperand(0);
14465    SDValue Value1 = StoredVal.getOperand(1);
14466
14467    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14468    SDValue Ptr0 = St->getBasePtr();
14469    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14470
14471    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14472                                St->getPointerInfo(), St->isVolatile(),
14473                                St->isNonTemporal(), St->getAlignment());
14474    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14475                                St->getPointerInfo(), St->isVolatile(),
14476                                St->isNonTemporal(), St->getAlignment());
14477    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14478  }
14479
14480  // Optimize trunc store (of multiple scalars) to shuffle and store.
14481  // First, pack all of the elements in one place. Next, store to memory
14482  // in fewer chunks.
14483  if (St->isTruncatingStore() && VT.isVector()) {
14484    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14485    unsigned NumElems = VT.getVectorNumElements();
14486    assert(StVT != VT && "Cannot truncate to the same type");
14487    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14488    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14489
14490    // From, To sizes and ElemCount must be pow of two
14491    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14492    // We are going to use the original vector elt for storing.
14493    // Accumulated smaller vector elements must be a multiple of the store size.
14494    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14495
14496    unsigned SizeRatio  = FromSz / ToSz;
14497
14498    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14499
14500    // Create a type on which we perform the shuffle
14501    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14502            StVT.getScalarType(), NumElems*SizeRatio);
14503
14504    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14505
14506    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14507    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14508    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14509
14510    // Can't shuffle using an illegal type
14511    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14512
14513    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14514                                         DAG.getUNDEF(WideVecVT),
14515                                         &ShuffleVec[0]);
14516    // At this point all of the data is stored at the bottom of the
14517    // register. We now need to save it to mem.
14518
14519    // Find the largest store unit
14520    MVT StoreType = MVT::i8;
14521    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14522         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14523      MVT Tp = (MVT::SimpleValueType)tp;
14524      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14525        StoreType = Tp;
14526    }
14527
14528    // Bitcast the original vector into a vector of store-size units
14529    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14530            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14531    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14532    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14533    SmallVector<SDValue, 8> Chains;
14534    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14535                                        TLI.getPointerTy());
14536    SDValue Ptr = St->getBasePtr();
14537
14538    // Perform one or more big stores into memory.
14539    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14540      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14541                                   StoreType, ShuffWide,
14542                                   DAG.getIntPtrConstant(i));
14543      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14544                                St->getPointerInfo(), St->isVolatile(),
14545                                St->isNonTemporal(), St->getAlignment());
14546      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14547      Chains.push_back(Ch);
14548    }
14549
14550    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14551                               Chains.size());
14552  }
14553
14554
14555  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14556  // the FP state in cases where an emms may be missing.
14557  // A preferable solution to the general problem is to figure out the right
14558  // places to insert EMMS.  This qualifies as a quick hack.
14559
14560  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14561  if (VT.getSizeInBits() != 64)
14562    return SDValue();
14563
14564  const Function *F = DAG.getMachineFunction().getFunction();
14565  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14566  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14567                     && Subtarget->hasSSE2();
14568  if ((VT.isVector() ||
14569       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14570      isa<LoadSDNode>(St->getValue()) &&
14571      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14572      St->getChain().hasOneUse() && !St->isVolatile()) {
14573    SDNode* LdVal = St->getValue().getNode();
14574    LoadSDNode *Ld = 0;
14575    int TokenFactorIndex = -1;
14576    SmallVector<SDValue, 8> Ops;
14577    SDNode* ChainVal = St->getChain().getNode();
14578    // Must be a store of a load.  We currently handle two cases:  the load
14579    // is a direct child, and it's under an intervening TokenFactor.  It is
14580    // possible to dig deeper under nested TokenFactors.
14581    if (ChainVal == LdVal)
14582      Ld = cast<LoadSDNode>(St->getChain());
14583    else if (St->getValue().hasOneUse() &&
14584             ChainVal->getOpcode() == ISD::TokenFactor) {
14585      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14586        if (ChainVal->getOperand(i).getNode() == LdVal) {
14587          TokenFactorIndex = i;
14588          Ld = cast<LoadSDNode>(St->getValue());
14589        } else
14590          Ops.push_back(ChainVal->getOperand(i));
14591      }
14592    }
14593
14594    if (!Ld || !ISD::isNormalLoad(Ld))
14595      return SDValue();
14596
14597    // If this is not the MMX case, i.e. we are just turning i64 load/store
14598    // into f64 load/store, avoid the transformation if there are multiple
14599    // uses of the loaded value.
14600    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14601      return SDValue();
14602
14603    DebugLoc LdDL = Ld->getDebugLoc();
14604    DebugLoc StDL = N->getDebugLoc();
14605    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14606    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14607    // pair instead.
14608    if (Subtarget->is64Bit() || F64IsLegal) {
14609      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14610      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14611                                  Ld->getPointerInfo(), Ld->isVolatile(),
14612                                  Ld->isNonTemporal(), Ld->isInvariant(),
14613                                  Ld->getAlignment());
14614      SDValue NewChain = NewLd.getValue(1);
14615      if (TokenFactorIndex != -1) {
14616        Ops.push_back(NewChain);
14617        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14618                               Ops.size());
14619      }
14620      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14621                          St->getPointerInfo(),
14622                          St->isVolatile(), St->isNonTemporal(),
14623                          St->getAlignment());
14624    }
14625
14626    // Otherwise, lower to two pairs of 32-bit loads / stores.
14627    SDValue LoAddr = Ld->getBasePtr();
14628    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14629                                 DAG.getConstant(4, MVT::i32));
14630
14631    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14632                               Ld->getPointerInfo(),
14633                               Ld->isVolatile(), Ld->isNonTemporal(),
14634                               Ld->isInvariant(), Ld->getAlignment());
14635    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14636                               Ld->getPointerInfo().getWithOffset(4),
14637                               Ld->isVolatile(), Ld->isNonTemporal(),
14638                               Ld->isInvariant(),
14639                               MinAlign(Ld->getAlignment(), 4));
14640
14641    SDValue NewChain = LoLd.getValue(1);
14642    if (TokenFactorIndex != -1) {
14643      Ops.push_back(LoLd);
14644      Ops.push_back(HiLd);
14645      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14646                             Ops.size());
14647    }
14648
14649    LoAddr = St->getBasePtr();
14650    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14651                         DAG.getConstant(4, MVT::i32));
14652
14653    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14654                                St->getPointerInfo(),
14655                                St->isVolatile(), St->isNonTemporal(),
14656                                St->getAlignment());
14657    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14658                                St->getPointerInfo().getWithOffset(4),
14659                                St->isVolatile(),
14660                                St->isNonTemporal(),
14661                                MinAlign(St->getAlignment(), 4));
14662    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14663  }
14664  return SDValue();
14665}
14666
14667/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14668/// and return the operands for the horizontal operation in LHS and RHS.  A
14669/// horizontal operation performs the binary operation on successive elements
14670/// of its first operand, then on successive elements of its second operand,
14671/// returning the resulting values in a vector.  For example, if
14672///   A = < float a0, float a1, float a2, float a3 >
14673/// and
14674///   B = < float b0, float b1, float b2, float b3 >
14675/// then the result of doing a horizontal operation on A and B is
14676///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14677/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14678/// A horizontal-op B, for some already available A and B, and if so then LHS is
14679/// set to A, RHS to B, and the routine returns 'true'.
14680/// Note that the binary operation should have the property that if one of the
14681/// operands is UNDEF then the result is UNDEF.
14682static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14683  // Look for the following pattern: if
14684  //   A = < float a0, float a1, float a2, float a3 >
14685  //   B = < float b0, float b1, float b2, float b3 >
14686  // and
14687  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14688  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14689  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14690  // which is A horizontal-op B.
14691
14692  // At least one of the operands should be a vector shuffle.
14693  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14694      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14695    return false;
14696
14697  EVT VT = LHS.getValueType();
14698
14699  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14700         "Unsupported vector type for horizontal add/sub");
14701
14702  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14703  // operate independently on 128-bit lanes.
14704  unsigned NumElts = VT.getVectorNumElements();
14705  unsigned NumLanes = VT.getSizeInBits()/128;
14706  unsigned NumLaneElts = NumElts / NumLanes;
14707  assert((NumLaneElts % 2 == 0) &&
14708         "Vector type should have an even number of elements in each lane");
14709  unsigned HalfLaneElts = NumLaneElts/2;
14710
14711  // View LHS in the form
14712  //   LHS = VECTOR_SHUFFLE A, B, LMask
14713  // If LHS is not a shuffle then pretend it is the shuffle
14714  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14715  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14716  // type VT.
14717  SDValue A, B;
14718  SmallVector<int, 16> LMask(NumElts);
14719  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14720    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14721      A = LHS.getOperand(0);
14722    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14723      B = LHS.getOperand(1);
14724    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14725    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14726  } else {
14727    if (LHS.getOpcode() != ISD::UNDEF)
14728      A = LHS;
14729    for (unsigned i = 0; i != NumElts; ++i)
14730      LMask[i] = i;
14731  }
14732
14733  // Likewise, view RHS in the form
14734  //   RHS = VECTOR_SHUFFLE C, D, RMask
14735  SDValue C, D;
14736  SmallVector<int, 16> RMask(NumElts);
14737  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14738    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14739      C = RHS.getOperand(0);
14740    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14741      D = RHS.getOperand(1);
14742    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14743    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14744  } else {
14745    if (RHS.getOpcode() != ISD::UNDEF)
14746      C = RHS;
14747    for (unsigned i = 0; i != NumElts; ++i)
14748      RMask[i] = i;
14749  }
14750
14751  // Check that the shuffles are both shuffling the same vectors.
14752  if (!(A == C && B == D) && !(A == D && B == C))
14753    return false;
14754
14755  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14756  if (!A.getNode() && !B.getNode())
14757    return false;
14758
14759  // If A and B occur in reverse order in RHS, then "swap" them (which means
14760  // rewriting the mask).
14761  if (A != C)
14762    CommuteVectorShuffleMask(RMask, NumElts);
14763
14764  // At this point LHS and RHS are equivalent to
14765  //   LHS = VECTOR_SHUFFLE A, B, LMask
14766  //   RHS = VECTOR_SHUFFLE A, B, RMask
14767  // Check that the masks correspond to performing a horizontal operation.
14768  for (unsigned i = 0; i != NumElts; ++i) {
14769    int LIdx = LMask[i], RIdx = RMask[i];
14770
14771    // Ignore any UNDEF components.
14772    if (LIdx < 0 || RIdx < 0 ||
14773        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14774        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14775      continue;
14776
14777    // Check that successive elements are being operated on.  If not, this is
14778    // not a horizontal operation.
14779    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14780    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14781    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14782    if (!(LIdx == Index && RIdx == Index + 1) &&
14783        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14784      return false;
14785  }
14786
14787  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14788  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14789  return true;
14790}
14791
14792/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14793static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14794                                  const X86Subtarget *Subtarget) {
14795  EVT VT = N->getValueType(0);
14796  SDValue LHS = N->getOperand(0);
14797  SDValue RHS = N->getOperand(1);
14798
14799  // Try to synthesize horizontal adds from adds of shuffles.
14800  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14801       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14802      isHorizontalBinOp(LHS, RHS, true))
14803    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14804  return SDValue();
14805}
14806
14807/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14808static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14809                                  const X86Subtarget *Subtarget) {
14810  EVT VT = N->getValueType(0);
14811  SDValue LHS = N->getOperand(0);
14812  SDValue RHS = N->getOperand(1);
14813
14814  // Try to synthesize horizontal subs from subs of shuffles.
14815  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14816       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14817      isHorizontalBinOp(LHS, RHS, false))
14818    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14819  return SDValue();
14820}
14821
14822/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14823/// X86ISD::FXOR nodes.
14824static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14825  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14826  // F[X]OR(0.0, x) -> x
14827  // F[X]OR(x, 0.0) -> x
14828  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14829    if (C->getValueAPF().isPosZero())
14830      return N->getOperand(1);
14831  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14832    if (C->getValueAPF().isPosZero())
14833      return N->getOperand(0);
14834  return SDValue();
14835}
14836
14837/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14838static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14839  // FAND(0.0, x) -> 0.0
14840  // FAND(x, 0.0) -> 0.0
14841  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14842    if (C->getValueAPF().isPosZero())
14843      return N->getOperand(0);
14844  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14845    if (C->getValueAPF().isPosZero())
14846      return N->getOperand(1);
14847  return SDValue();
14848}
14849
14850static SDValue PerformBTCombine(SDNode *N,
14851                                SelectionDAG &DAG,
14852                                TargetLowering::DAGCombinerInfo &DCI) {
14853  // BT ignores high bits in the bit index operand.
14854  SDValue Op1 = N->getOperand(1);
14855  if (Op1.hasOneUse()) {
14856    unsigned BitWidth = Op1.getValueSizeInBits();
14857    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14858    APInt KnownZero, KnownOne;
14859    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14860                                          !DCI.isBeforeLegalizeOps());
14861    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14862    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14863        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14864      DCI.CommitTargetLoweringOpt(TLO);
14865  }
14866  return SDValue();
14867}
14868
14869static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14870  SDValue Op = N->getOperand(0);
14871  if (Op.getOpcode() == ISD::BITCAST)
14872    Op = Op.getOperand(0);
14873  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14874  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14875      VT.getVectorElementType().getSizeInBits() ==
14876      OpVT.getVectorElementType().getSizeInBits()) {
14877    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14878  }
14879  return SDValue();
14880}
14881
14882static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14883                                  TargetLowering::DAGCombinerInfo &DCI,
14884                                  const X86Subtarget *Subtarget) {
14885  if (!DCI.isBeforeLegalizeOps())
14886    return SDValue();
14887
14888  if (!Subtarget->hasAVX())
14889    return SDValue();
14890
14891  EVT VT = N->getValueType(0);
14892  SDValue Op = N->getOperand(0);
14893  EVT OpVT = Op.getValueType();
14894  DebugLoc dl = N->getDebugLoc();
14895
14896  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14897      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14898
14899    if (Subtarget->hasAVX2())
14900      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
14901
14902    // Optimize vectors in AVX mode
14903    // Sign extend  v8i16 to v8i32 and
14904    //              v4i32 to v4i64
14905    //
14906    // Divide input vector into two parts
14907    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14908    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14909    // concat the vectors to original VT
14910
14911    unsigned NumElems = OpVT.getVectorNumElements();
14912    SmallVector<int,8> ShufMask1(NumElems, -1);
14913    for (unsigned i = 0; i != NumElems/2; ++i)
14914      ShufMask1[i] = i;
14915
14916    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14917                                        &ShufMask1[0]);
14918
14919    SmallVector<int,8> ShufMask2(NumElems, -1);
14920    for (unsigned i = 0; i != NumElems/2; ++i)
14921      ShufMask2[i] = i + NumElems/2;
14922
14923    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14924                                        &ShufMask2[0]);
14925
14926    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14927                                  VT.getVectorNumElements()/2);
14928
14929    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14930    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14931
14932    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14933  }
14934  return SDValue();
14935}
14936
14937static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14938                                  TargetLowering::DAGCombinerInfo &DCI,
14939                                  const X86Subtarget *Subtarget) {
14940  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14941  //           (and (i32 x86isd::setcc_carry), 1)
14942  // This eliminates the zext. This transformation is necessary because
14943  // ISD::SETCC is always legalized to i8.
14944  DebugLoc dl = N->getDebugLoc();
14945  SDValue N0 = N->getOperand(0);
14946  EVT VT = N->getValueType(0);
14947  EVT OpVT = N0.getValueType();
14948
14949  if (N0.getOpcode() == ISD::AND &&
14950      N0.hasOneUse() &&
14951      N0.getOperand(0).hasOneUse()) {
14952    SDValue N00 = N0.getOperand(0);
14953    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14954      return SDValue();
14955    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14956    if (!C || C->getZExtValue() != 1)
14957      return SDValue();
14958    return DAG.getNode(ISD::AND, dl, VT,
14959                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14960                                   N00.getOperand(0), N00.getOperand(1)),
14961                       DAG.getConstant(1, VT));
14962  }
14963
14964  // Optimize vectors in AVX mode:
14965  //
14966  //   v8i16 -> v8i32
14967  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14968  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14969  //   Concat upper and lower parts.
14970  //
14971  //   v4i32 -> v4i64
14972  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14973  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14974  //   Concat upper and lower parts.
14975  //
14976  if (!DCI.isBeforeLegalizeOps())
14977    return SDValue();
14978
14979  if (!Subtarget->hasAVX())
14980    return SDValue();
14981
14982  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
14983      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14984
14985    if (Subtarget->hasAVX2())
14986      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
14987
14988    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14989    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
14990    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
14991
14992    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14993                               VT.getVectorNumElements()/2);
14994
14995    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14996    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14997
14998    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14999  }
15000
15001  return SDValue();
15002}
15003
15004// Optimize x == -y --> x+y == 0
15005//          x != -y --> x+y != 0
15006static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15007  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15008  SDValue LHS = N->getOperand(0);
15009  SDValue RHS = N->getOperand(1);
15010
15011  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15012    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15013      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15014        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15015                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15016        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15017                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15018      }
15019  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15020    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15021      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15022        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15023                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15024        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15025                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15026      }
15027  return SDValue();
15028}
15029
15030// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15031static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15032  unsigned X86CC = N->getConstantOperandVal(0);
15033  SDValue EFLAG = N->getOperand(1);
15034  DebugLoc DL = N->getDebugLoc();
15035
15036  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15037  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15038  // cases.
15039  if (X86CC == X86::COND_B)
15040    return DAG.getNode(ISD::AND, DL, MVT::i8,
15041                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15042                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15043                       DAG.getConstant(1, MVT::i8));
15044
15045  return SDValue();
15046}
15047
15048static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15049  SDValue Op0 = N->getOperand(0);
15050  EVT InVT = Op0->getValueType(0);
15051
15052  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15053  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15054    DebugLoc dl = N->getDebugLoc();
15055    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15056    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15057    // Notice that we use SINT_TO_FP because we know that the high bits
15058    // are zero and SINT_TO_FP is better supported by the hardware.
15059    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15060  }
15061
15062  return SDValue();
15063}
15064
15065static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15066                                        const X86TargetLowering *XTLI) {
15067  SDValue Op0 = N->getOperand(0);
15068  EVT InVT = Op0->getValueType(0);
15069
15070  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15071  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15072    DebugLoc dl = N->getDebugLoc();
15073    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15074    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15075    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15076  }
15077
15078  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15079  // a 32-bit target where SSE doesn't support i64->FP operations.
15080  if (Op0.getOpcode() == ISD::LOAD) {
15081    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15082    EVT VT = Ld->getValueType(0);
15083    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15084        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15085        !XTLI->getSubtarget()->is64Bit() &&
15086        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15087      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15088                                          Ld->getChain(), Op0, DAG);
15089      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15090      return FILDChain;
15091    }
15092  }
15093  return SDValue();
15094}
15095
15096static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15097  EVT VT = N->getValueType(0);
15098
15099  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15100  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15101    DebugLoc dl = N->getDebugLoc();
15102    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15103    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15104    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15105  }
15106
15107  return SDValue();
15108}
15109
15110// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15111static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15112                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15113  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15114  // the result is either zero or one (depending on the input carry bit).
15115  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15116  if (X86::isZeroNode(N->getOperand(0)) &&
15117      X86::isZeroNode(N->getOperand(1)) &&
15118      // We don't have a good way to replace an EFLAGS use, so only do this when
15119      // dead right now.
15120      SDValue(N, 1).use_empty()) {
15121    DebugLoc DL = N->getDebugLoc();
15122    EVT VT = N->getValueType(0);
15123    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15124    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15125                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15126                                           DAG.getConstant(X86::COND_B,MVT::i8),
15127                                           N->getOperand(2)),
15128                               DAG.getConstant(1, VT));
15129    return DCI.CombineTo(N, Res1, CarryOut);
15130  }
15131
15132  return SDValue();
15133}
15134
15135// fold (add Y, (sete  X, 0)) -> adc  0, Y
15136//      (add Y, (setne X, 0)) -> sbb -1, Y
15137//      (sub (sete  X, 0), Y) -> sbb  0, Y
15138//      (sub (setne X, 0), Y) -> adc -1, Y
15139static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15140  DebugLoc DL = N->getDebugLoc();
15141
15142  // Look through ZExts.
15143  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15144  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15145    return SDValue();
15146
15147  SDValue SetCC = Ext.getOperand(0);
15148  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15149    return SDValue();
15150
15151  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15152  if (CC != X86::COND_E && CC != X86::COND_NE)
15153    return SDValue();
15154
15155  SDValue Cmp = SetCC.getOperand(1);
15156  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15157      !X86::isZeroNode(Cmp.getOperand(1)) ||
15158      !Cmp.getOperand(0).getValueType().isInteger())
15159    return SDValue();
15160
15161  SDValue CmpOp0 = Cmp.getOperand(0);
15162  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15163                               DAG.getConstant(1, CmpOp0.getValueType()));
15164
15165  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15166  if (CC == X86::COND_NE)
15167    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15168                       DL, OtherVal.getValueType(), OtherVal,
15169                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15170  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15171                     DL, OtherVal.getValueType(), OtherVal,
15172                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15173}
15174
15175/// PerformADDCombine - Do target-specific dag combines on integer adds.
15176static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15177                                 const X86Subtarget *Subtarget) {
15178  EVT VT = N->getValueType(0);
15179  SDValue Op0 = N->getOperand(0);
15180  SDValue Op1 = N->getOperand(1);
15181
15182  // Try to synthesize horizontal adds from adds of shuffles.
15183  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15184       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15185      isHorizontalBinOp(Op0, Op1, true))
15186    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15187
15188  return OptimizeConditionalInDecrement(N, DAG);
15189}
15190
15191static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15192                                 const X86Subtarget *Subtarget) {
15193  SDValue Op0 = N->getOperand(0);
15194  SDValue Op1 = N->getOperand(1);
15195
15196  // X86 can't encode an immediate LHS of a sub. See if we can push the
15197  // negation into a preceding instruction.
15198  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15199    // If the RHS of the sub is a XOR with one use and a constant, invert the
15200    // immediate. Then add one to the LHS of the sub so we can turn
15201    // X-Y -> X+~Y+1, saving one register.
15202    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15203        isa<ConstantSDNode>(Op1.getOperand(1))) {
15204      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15205      EVT VT = Op0.getValueType();
15206      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15207                                   Op1.getOperand(0),
15208                                   DAG.getConstant(~XorC, VT));
15209      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15210                         DAG.getConstant(C->getAPIntValue()+1, VT));
15211    }
15212  }
15213
15214  // Try to synthesize horizontal adds from adds of shuffles.
15215  EVT VT = N->getValueType(0);
15216  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15217       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15218      isHorizontalBinOp(Op0, Op1, true))
15219    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15220
15221  return OptimizeConditionalInDecrement(N, DAG);
15222}
15223
15224SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15225                                             DAGCombinerInfo &DCI) const {
15226  SelectionDAG &DAG = DCI.DAG;
15227  switch (N->getOpcode()) {
15228  default: break;
15229  case ISD::EXTRACT_VECTOR_ELT:
15230    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15231  case ISD::VSELECT:
15232  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15233  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15234  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15235  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15236  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15237  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15238  case ISD::SHL:
15239  case ISD::SRA:
15240  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15241  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15242  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15243  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15244  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15245  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15246  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15247  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15248  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15249  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15250  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15251  case X86ISD::FXOR:
15252  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15253  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15254  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15255  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15256  case ISD::ANY_EXTEND:
15257  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15258  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15259  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15260  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15261  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15262  case X86ISD::SHUFP:       // Handle all target specific shuffles
15263  case X86ISD::PALIGN:
15264  case X86ISD::UNPCKH:
15265  case X86ISD::UNPCKL:
15266  case X86ISD::MOVHLPS:
15267  case X86ISD::MOVLHPS:
15268  case X86ISD::PSHUFD:
15269  case X86ISD::PSHUFHW:
15270  case X86ISD::PSHUFLW:
15271  case X86ISD::MOVSS:
15272  case X86ISD::MOVSD:
15273  case X86ISD::VPERMILP:
15274  case X86ISD::VPERM2X128:
15275  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15276  }
15277
15278  return SDValue();
15279}
15280
15281/// isTypeDesirableForOp - Return true if the target has native support for
15282/// the specified value type and it is 'desirable' to use the type for the
15283/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15284/// instruction encodings are longer and some i16 instructions are slow.
15285bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15286  if (!isTypeLegal(VT))
15287    return false;
15288  if (VT != MVT::i16)
15289    return true;
15290
15291  switch (Opc) {
15292  default:
15293    return true;
15294  case ISD::LOAD:
15295  case ISD::SIGN_EXTEND:
15296  case ISD::ZERO_EXTEND:
15297  case ISD::ANY_EXTEND:
15298  case ISD::SHL:
15299  case ISD::SRL:
15300  case ISD::SUB:
15301  case ISD::ADD:
15302  case ISD::MUL:
15303  case ISD::AND:
15304  case ISD::OR:
15305  case ISD::XOR:
15306    return false;
15307  }
15308}
15309
15310/// IsDesirableToPromoteOp - This method query the target whether it is
15311/// beneficial for dag combiner to promote the specified node. If true, it
15312/// should return the desired promotion type by reference.
15313bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15314  EVT VT = Op.getValueType();
15315  if (VT != MVT::i16)
15316    return false;
15317
15318  bool Promote = false;
15319  bool Commute = false;
15320  switch (Op.getOpcode()) {
15321  default: break;
15322  case ISD::LOAD: {
15323    LoadSDNode *LD = cast<LoadSDNode>(Op);
15324    // If the non-extending load has a single use and it's not live out, then it
15325    // might be folded.
15326    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15327                                                     Op.hasOneUse()*/) {
15328      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15329             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15330        // The only case where we'd want to promote LOAD (rather then it being
15331        // promoted as an operand is when it's only use is liveout.
15332        if (UI->getOpcode() != ISD::CopyToReg)
15333          return false;
15334      }
15335    }
15336    Promote = true;
15337    break;
15338  }
15339  case ISD::SIGN_EXTEND:
15340  case ISD::ZERO_EXTEND:
15341  case ISD::ANY_EXTEND:
15342    Promote = true;
15343    break;
15344  case ISD::SHL:
15345  case ISD::SRL: {
15346    SDValue N0 = Op.getOperand(0);
15347    // Look out for (store (shl (load), x)).
15348    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15349      return false;
15350    Promote = true;
15351    break;
15352  }
15353  case ISD::ADD:
15354  case ISD::MUL:
15355  case ISD::AND:
15356  case ISD::OR:
15357  case ISD::XOR:
15358    Commute = true;
15359    // fallthrough
15360  case ISD::SUB: {
15361    SDValue N0 = Op.getOperand(0);
15362    SDValue N1 = Op.getOperand(1);
15363    if (!Commute && MayFoldLoad(N1))
15364      return false;
15365    // Avoid disabling potential load folding opportunities.
15366    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15367      return false;
15368    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15369      return false;
15370    Promote = true;
15371  }
15372  }
15373
15374  PVT = MVT::i32;
15375  return Promote;
15376}
15377
15378//===----------------------------------------------------------------------===//
15379//                           X86 Inline Assembly Support
15380//===----------------------------------------------------------------------===//
15381
15382namespace {
15383  // Helper to match a string separated by whitespace.
15384  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15385    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15386
15387    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15388      StringRef piece(*args[i]);
15389      if (!s.startswith(piece)) // Check if the piece matches.
15390        return false;
15391
15392      s = s.substr(piece.size());
15393      StringRef::size_type pos = s.find_first_not_of(" \t");
15394      if (pos == 0) // We matched a prefix.
15395        return false;
15396
15397      s = s.substr(pos);
15398    }
15399
15400    return s.empty();
15401  }
15402  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15403}
15404
15405bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15406  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15407
15408  std::string AsmStr = IA->getAsmString();
15409
15410  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15411  if (!Ty || Ty->getBitWidth() % 16 != 0)
15412    return false;
15413
15414  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15415  SmallVector<StringRef, 4> AsmPieces;
15416  SplitString(AsmStr, AsmPieces, ";\n");
15417
15418  switch (AsmPieces.size()) {
15419  default: return false;
15420  case 1:
15421    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15422    // we will turn this bswap into something that will be lowered to logical
15423    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15424    // lower so don't worry about this.
15425    // bswap $0
15426    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15427        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15428        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15429        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15430        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15431        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15432      // No need to check constraints, nothing other than the equivalent of
15433      // "=r,0" would be valid here.
15434      return IntrinsicLowering::LowerToByteSwap(CI);
15435    }
15436
15437    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15438    if (CI->getType()->isIntegerTy(16) &&
15439        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15440        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15441         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15442      AsmPieces.clear();
15443      const std::string &ConstraintsStr = IA->getConstraintString();
15444      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15445      std::sort(AsmPieces.begin(), AsmPieces.end());
15446      if (AsmPieces.size() == 4 &&
15447          AsmPieces[0] == "~{cc}" &&
15448          AsmPieces[1] == "~{dirflag}" &&
15449          AsmPieces[2] == "~{flags}" &&
15450          AsmPieces[3] == "~{fpsr}")
15451      return IntrinsicLowering::LowerToByteSwap(CI);
15452    }
15453    break;
15454  case 3:
15455    if (CI->getType()->isIntegerTy(32) &&
15456        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15457        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15458        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15459        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15460      AsmPieces.clear();
15461      const std::string &ConstraintsStr = IA->getConstraintString();
15462      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15463      std::sort(AsmPieces.begin(), AsmPieces.end());
15464      if (AsmPieces.size() == 4 &&
15465          AsmPieces[0] == "~{cc}" &&
15466          AsmPieces[1] == "~{dirflag}" &&
15467          AsmPieces[2] == "~{flags}" &&
15468          AsmPieces[3] == "~{fpsr}")
15469        return IntrinsicLowering::LowerToByteSwap(CI);
15470    }
15471
15472    if (CI->getType()->isIntegerTy(64)) {
15473      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15474      if (Constraints.size() >= 2 &&
15475          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15476          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15477        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15478        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15479            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15480            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15481          return IntrinsicLowering::LowerToByteSwap(CI);
15482      }
15483    }
15484    break;
15485  }
15486  return false;
15487}
15488
15489
15490
15491/// getConstraintType - Given a constraint letter, return the type of
15492/// constraint it is for this target.
15493X86TargetLowering::ConstraintType
15494X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15495  if (Constraint.size() == 1) {
15496    switch (Constraint[0]) {
15497    case 'R':
15498    case 'q':
15499    case 'Q':
15500    case 'f':
15501    case 't':
15502    case 'u':
15503    case 'y':
15504    case 'x':
15505    case 'Y':
15506    case 'l':
15507      return C_RegisterClass;
15508    case 'a':
15509    case 'b':
15510    case 'c':
15511    case 'd':
15512    case 'S':
15513    case 'D':
15514    case 'A':
15515      return C_Register;
15516    case 'I':
15517    case 'J':
15518    case 'K':
15519    case 'L':
15520    case 'M':
15521    case 'N':
15522    case 'G':
15523    case 'C':
15524    case 'e':
15525    case 'Z':
15526      return C_Other;
15527    default:
15528      break;
15529    }
15530  }
15531  return TargetLowering::getConstraintType(Constraint);
15532}
15533
15534/// Examine constraint type and operand type and determine a weight value.
15535/// This object must already have been set up with the operand type
15536/// and the current alternative constraint selected.
15537TargetLowering::ConstraintWeight
15538  X86TargetLowering::getSingleConstraintMatchWeight(
15539    AsmOperandInfo &info, const char *constraint) const {
15540  ConstraintWeight weight = CW_Invalid;
15541  Value *CallOperandVal = info.CallOperandVal;
15542    // If we don't have a value, we can't do a match,
15543    // but allow it at the lowest weight.
15544  if (CallOperandVal == NULL)
15545    return CW_Default;
15546  Type *type = CallOperandVal->getType();
15547  // Look at the constraint type.
15548  switch (*constraint) {
15549  default:
15550    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15551  case 'R':
15552  case 'q':
15553  case 'Q':
15554  case 'a':
15555  case 'b':
15556  case 'c':
15557  case 'd':
15558  case 'S':
15559  case 'D':
15560  case 'A':
15561    if (CallOperandVal->getType()->isIntegerTy())
15562      weight = CW_SpecificReg;
15563    break;
15564  case 'f':
15565  case 't':
15566  case 'u':
15567      if (type->isFloatingPointTy())
15568        weight = CW_SpecificReg;
15569      break;
15570  case 'y':
15571      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15572        weight = CW_SpecificReg;
15573      break;
15574  case 'x':
15575  case 'Y':
15576    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15577        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15578      weight = CW_Register;
15579    break;
15580  case 'I':
15581    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15582      if (C->getZExtValue() <= 31)
15583        weight = CW_Constant;
15584    }
15585    break;
15586  case 'J':
15587    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15588      if (C->getZExtValue() <= 63)
15589        weight = CW_Constant;
15590    }
15591    break;
15592  case 'K':
15593    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15594      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15595        weight = CW_Constant;
15596    }
15597    break;
15598  case 'L':
15599    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15600      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15601        weight = CW_Constant;
15602    }
15603    break;
15604  case 'M':
15605    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15606      if (C->getZExtValue() <= 3)
15607        weight = CW_Constant;
15608    }
15609    break;
15610  case 'N':
15611    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15612      if (C->getZExtValue() <= 0xff)
15613        weight = CW_Constant;
15614    }
15615    break;
15616  case 'G':
15617  case 'C':
15618    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15619      weight = CW_Constant;
15620    }
15621    break;
15622  case 'e':
15623    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15624      if ((C->getSExtValue() >= -0x80000000LL) &&
15625          (C->getSExtValue() <= 0x7fffffffLL))
15626        weight = CW_Constant;
15627    }
15628    break;
15629  case 'Z':
15630    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15631      if (C->getZExtValue() <= 0xffffffff)
15632        weight = CW_Constant;
15633    }
15634    break;
15635  }
15636  return weight;
15637}
15638
15639/// LowerXConstraint - try to replace an X constraint, which matches anything,
15640/// with another that has more specific requirements based on the type of the
15641/// corresponding operand.
15642const char *X86TargetLowering::
15643LowerXConstraint(EVT ConstraintVT) const {
15644  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15645  // 'f' like normal targets.
15646  if (ConstraintVT.isFloatingPoint()) {
15647    if (Subtarget->hasSSE2())
15648      return "Y";
15649    if (Subtarget->hasSSE1())
15650      return "x";
15651  }
15652
15653  return TargetLowering::LowerXConstraint(ConstraintVT);
15654}
15655
15656/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15657/// vector.  If it is invalid, don't add anything to Ops.
15658void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15659                                                     std::string &Constraint,
15660                                                     std::vector<SDValue>&Ops,
15661                                                     SelectionDAG &DAG) const {
15662  SDValue Result(0, 0);
15663
15664  // Only support length 1 constraints for now.
15665  if (Constraint.length() > 1) return;
15666
15667  char ConstraintLetter = Constraint[0];
15668  switch (ConstraintLetter) {
15669  default: break;
15670  case 'I':
15671    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15672      if (C->getZExtValue() <= 31) {
15673        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15674        break;
15675      }
15676    }
15677    return;
15678  case 'J':
15679    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15680      if (C->getZExtValue() <= 63) {
15681        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15682        break;
15683      }
15684    }
15685    return;
15686  case 'K':
15687    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15688      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15689        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15690        break;
15691      }
15692    }
15693    return;
15694  case 'N':
15695    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15696      if (C->getZExtValue() <= 255) {
15697        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15698        break;
15699      }
15700    }
15701    return;
15702  case 'e': {
15703    // 32-bit signed value
15704    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15705      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15706                                           C->getSExtValue())) {
15707        // Widen to 64 bits here to get it sign extended.
15708        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15709        break;
15710      }
15711    // FIXME gcc accepts some relocatable values here too, but only in certain
15712    // memory models; it's complicated.
15713    }
15714    return;
15715  }
15716  case 'Z': {
15717    // 32-bit unsigned value
15718    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15719      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15720                                           C->getZExtValue())) {
15721        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15722        break;
15723      }
15724    }
15725    // FIXME gcc accepts some relocatable values here too, but only in certain
15726    // memory models; it's complicated.
15727    return;
15728  }
15729  case 'i': {
15730    // Literal immediates are always ok.
15731    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15732      // Widen to 64 bits here to get it sign extended.
15733      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15734      break;
15735    }
15736
15737    // In any sort of PIC mode addresses need to be computed at runtime by
15738    // adding in a register or some sort of table lookup.  These can't
15739    // be used as immediates.
15740    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15741      return;
15742
15743    // If we are in non-pic codegen mode, we allow the address of a global (with
15744    // an optional displacement) to be used with 'i'.
15745    GlobalAddressSDNode *GA = 0;
15746    int64_t Offset = 0;
15747
15748    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15749    while (1) {
15750      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15751        Offset += GA->getOffset();
15752        break;
15753      } else if (Op.getOpcode() == ISD::ADD) {
15754        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15755          Offset += C->getZExtValue();
15756          Op = Op.getOperand(0);
15757          continue;
15758        }
15759      } else if (Op.getOpcode() == ISD::SUB) {
15760        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15761          Offset += -C->getZExtValue();
15762          Op = Op.getOperand(0);
15763          continue;
15764        }
15765      }
15766
15767      // Otherwise, this isn't something we can handle, reject it.
15768      return;
15769    }
15770
15771    const GlobalValue *GV = GA->getGlobal();
15772    // If we require an extra load to get this address, as in PIC mode, we
15773    // can't accept it.
15774    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15775                                                        getTargetMachine())))
15776      return;
15777
15778    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15779                                        GA->getValueType(0), Offset);
15780    break;
15781  }
15782  }
15783
15784  if (Result.getNode()) {
15785    Ops.push_back(Result);
15786    return;
15787  }
15788  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15789}
15790
15791std::pair<unsigned, const TargetRegisterClass*>
15792X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15793                                                EVT VT) const {
15794  // First, see if this is a constraint that directly corresponds to an LLVM
15795  // register class.
15796  if (Constraint.size() == 1) {
15797    // GCC Constraint Letters
15798    switch (Constraint[0]) {
15799    default: break;
15800      // TODO: Slight differences here in allocation order and leaving
15801      // RIP in the class. Do they matter any more here than they do
15802      // in the normal allocation?
15803    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15804      if (Subtarget->is64Bit()) {
15805        if (VT == MVT::i32 || VT == MVT::f32)
15806          return std::make_pair(0U, &X86::GR32RegClass);
15807        if (VT == MVT::i16)
15808          return std::make_pair(0U, &X86::GR16RegClass);
15809        if (VT == MVT::i8 || VT == MVT::i1)
15810          return std::make_pair(0U, &X86::GR8RegClass);
15811        if (VT == MVT::i64 || VT == MVT::f64)
15812          return std::make_pair(0U, &X86::GR64RegClass);
15813        break;
15814      }
15815      // 32-bit fallthrough
15816    case 'Q':   // Q_REGS
15817      if (VT == MVT::i32 || VT == MVT::f32)
15818        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
15819      if (VT == MVT::i16)
15820        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
15821      if (VT == MVT::i8 || VT == MVT::i1)
15822        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
15823      if (VT == MVT::i64)
15824        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
15825      break;
15826    case 'r':   // GENERAL_REGS
15827    case 'l':   // INDEX_REGS
15828      if (VT == MVT::i8 || VT == MVT::i1)
15829        return std::make_pair(0U, &X86::GR8RegClass);
15830      if (VT == MVT::i16)
15831        return std::make_pair(0U, &X86::GR16RegClass);
15832      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15833        return std::make_pair(0U, &X86::GR32RegClass);
15834      return std::make_pair(0U, &X86::GR64RegClass);
15835    case 'R':   // LEGACY_REGS
15836      if (VT == MVT::i8 || VT == MVT::i1)
15837        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
15838      if (VT == MVT::i16)
15839        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
15840      if (VT == MVT::i32 || !Subtarget->is64Bit())
15841        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
15842      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
15843    case 'f':  // FP Stack registers.
15844      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15845      // value to the correct fpstack register class.
15846      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15847        return std::make_pair(0U, &X86::RFP32RegClass);
15848      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15849        return std::make_pair(0U, &X86::RFP64RegClass);
15850      return std::make_pair(0U, &X86::RFP80RegClass);
15851    case 'y':   // MMX_REGS if MMX allowed.
15852      if (!Subtarget->hasMMX()) break;
15853      return std::make_pair(0U, &X86::VR64RegClass);
15854    case 'Y':   // SSE_REGS if SSE2 allowed
15855      if (!Subtarget->hasSSE2()) break;
15856      // FALL THROUGH.
15857    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15858      if (!Subtarget->hasSSE1()) break;
15859
15860      switch (VT.getSimpleVT().SimpleTy) {
15861      default: break;
15862      // Scalar SSE types.
15863      case MVT::f32:
15864      case MVT::i32:
15865        return std::make_pair(0U, &X86::FR32RegClass);
15866      case MVT::f64:
15867      case MVT::i64:
15868        return std::make_pair(0U, &X86::FR64RegClass);
15869      // Vector types.
15870      case MVT::v16i8:
15871      case MVT::v8i16:
15872      case MVT::v4i32:
15873      case MVT::v2i64:
15874      case MVT::v4f32:
15875      case MVT::v2f64:
15876        return std::make_pair(0U, &X86::VR128RegClass);
15877      // AVX types.
15878      case MVT::v32i8:
15879      case MVT::v16i16:
15880      case MVT::v8i32:
15881      case MVT::v4i64:
15882      case MVT::v8f32:
15883      case MVT::v4f64:
15884        return std::make_pair(0U, &X86::VR256RegClass);
15885      }
15886      break;
15887    }
15888  }
15889
15890  // Use the default implementation in TargetLowering to convert the register
15891  // constraint into a member of a register class.
15892  std::pair<unsigned, const TargetRegisterClass*> Res;
15893  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15894
15895  // Not found as a standard register?
15896  if (Res.second == 0) {
15897    // Map st(0) -> st(7) -> ST0
15898    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15899        tolower(Constraint[1]) == 's' &&
15900        tolower(Constraint[2]) == 't' &&
15901        Constraint[3] == '(' &&
15902        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15903        Constraint[5] == ')' &&
15904        Constraint[6] == '}') {
15905
15906      Res.first = X86::ST0+Constraint[4]-'0';
15907      Res.second = &X86::RFP80RegClass;
15908      return Res;
15909    }
15910
15911    // GCC allows "st(0)" to be called just plain "st".
15912    if (StringRef("{st}").equals_lower(Constraint)) {
15913      Res.first = X86::ST0;
15914      Res.second = &X86::RFP80RegClass;
15915      return Res;
15916    }
15917
15918    // flags -> EFLAGS
15919    if (StringRef("{flags}").equals_lower(Constraint)) {
15920      Res.first = X86::EFLAGS;
15921      Res.second = &X86::CCRRegClass;
15922      return Res;
15923    }
15924
15925    // 'A' means EAX + EDX.
15926    if (Constraint == "A") {
15927      Res.first = X86::EAX;
15928      Res.second = &X86::GR32_ADRegClass;
15929      return Res;
15930    }
15931    return Res;
15932  }
15933
15934  // Otherwise, check to see if this is a register class of the wrong value
15935  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15936  // turn into {ax},{dx}.
15937  if (Res.second->hasType(VT))
15938    return Res;   // Correct type already, nothing to do.
15939
15940  // All of the single-register GCC register classes map their values onto
15941  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15942  // really want an 8-bit or 32-bit register, map to the appropriate register
15943  // class and return the appropriate register.
15944  if (Res.second == &X86::GR16RegClass) {
15945    if (VT == MVT::i8) {
15946      unsigned DestReg = 0;
15947      switch (Res.first) {
15948      default: break;
15949      case X86::AX: DestReg = X86::AL; break;
15950      case X86::DX: DestReg = X86::DL; break;
15951      case X86::CX: DestReg = X86::CL; break;
15952      case X86::BX: DestReg = X86::BL; break;
15953      }
15954      if (DestReg) {
15955        Res.first = DestReg;
15956        Res.second = &X86::GR8RegClass;
15957      }
15958    } else if (VT == MVT::i32) {
15959      unsigned DestReg = 0;
15960      switch (Res.first) {
15961      default: break;
15962      case X86::AX: DestReg = X86::EAX; break;
15963      case X86::DX: DestReg = X86::EDX; break;
15964      case X86::CX: DestReg = X86::ECX; break;
15965      case X86::BX: DestReg = X86::EBX; break;
15966      case X86::SI: DestReg = X86::ESI; break;
15967      case X86::DI: DestReg = X86::EDI; break;
15968      case X86::BP: DestReg = X86::EBP; break;
15969      case X86::SP: DestReg = X86::ESP; break;
15970      }
15971      if (DestReg) {
15972        Res.first = DestReg;
15973        Res.second = &X86::GR32RegClass;
15974      }
15975    } else if (VT == MVT::i64) {
15976      unsigned DestReg = 0;
15977      switch (Res.first) {
15978      default: break;
15979      case X86::AX: DestReg = X86::RAX; break;
15980      case X86::DX: DestReg = X86::RDX; break;
15981      case X86::CX: DestReg = X86::RCX; break;
15982      case X86::BX: DestReg = X86::RBX; break;
15983      case X86::SI: DestReg = X86::RSI; break;
15984      case X86::DI: DestReg = X86::RDI; break;
15985      case X86::BP: DestReg = X86::RBP; break;
15986      case X86::SP: DestReg = X86::RSP; break;
15987      }
15988      if (DestReg) {
15989        Res.first = DestReg;
15990        Res.second = &X86::GR64RegClass;
15991      }
15992    }
15993  } else if (Res.second == &X86::FR32RegClass ||
15994             Res.second == &X86::FR64RegClass ||
15995             Res.second == &X86::VR128RegClass) {
15996    // Handle references to XMM physical registers that got mapped into the
15997    // wrong class.  This can happen with constraints like {xmm0} where the
15998    // target independent register mapper will just pick the first match it can
15999    // find, ignoring the required type.
16000    if (VT == MVT::f32)
16001      Res.second = &X86::FR32RegClass;
16002    else if (VT == MVT::f64)
16003      Res.second = &X86::FR64RegClass;
16004    else if (X86::VR128RegClass.hasType(VT))
16005      Res.second = &X86::VR128RegClass;
16006  }
16007
16008  return Res;
16009}
16010