X86ISelLowering.cpp revision 670e53977bf289009bb460538987542c9c46ac90
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "X86TargetObjectFile.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalAlias.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/VectorExtras.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Disable16Bit - 16-bit operations typically have a larger encoding than
51// corresponding 32-bit instructions, and 16-bit code is slow on some
52// processors. This is an experimental flag to disable 16-bit operations
53// (which forces them to be Legalized to 32-bit operations).
54static cl::opt<bool>
55Disable16Bit("disable-16bit", cl::Hidden,
56             cl::desc("Disable use of 16-bit instructions"));
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64  default: llvm_unreachable("unknown subtarget type");
65  case X86Subtarget::isDarwin:
66    if (TM.getSubtarget<X86Subtarget>().is64Bit())
67      return new X8664_MachoTargetObjectFile();
68    return new X8632_MachoTargetObjectFile();
69  case X86Subtarget::isELF:
70    return new TargetLoweringObjectFileELF();
71  case X86Subtarget::isMingw:
72  case X86Subtarget::isCygwin:
73  case X86Subtarget::isWindows:
74    return new TargetLoweringObjectFileCOFF();
75  }
76
77}
78
79X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
80  : TargetLowering(TM, createTLOF(TM)) {
81  Subtarget = &TM.getSubtarget<X86Subtarget>();
82  X86ScalarSSEf64 = Subtarget->hasSSE2();
83  X86ScalarSSEf32 = Subtarget->hasSSE1();
84  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
85
86  RegInfo = TM.getRegisterInfo();
87  TD = getTargetData();
88
89  // Set up the TargetLowering object.
90
91  // X86 is weird, it always uses i8 for shift amounts and setcc results.
92  setShiftAmountType(MVT::i8);
93  setBooleanContents(ZeroOrOneBooleanContent);
94  setSchedulingPreference(SchedulingForRegPressure);
95  setStackPointerRegisterToSaveRestore(X86StackPtr);
96
97  if (Subtarget->isTargetDarwin()) {
98    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
99    setUseUnderscoreSetJmp(false);
100    setUseUnderscoreLongJmp(false);
101  } else if (Subtarget->isTargetMingw()) {
102    // MS runtime is weird: it exports _setjmp, but longjmp!
103    setUseUnderscoreSetJmp(true);
104    setUseUnderscoreLongJmp(false);
105  } else {
106    setUseUnderscoreSetJmp(true);
107    setUseUnderscoreLongJmp(true);
108  }
109
110  // Set up the register classes.
111  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
112  if (!Disable16Bit)
113    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  if (!Disable16Bit)
123    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  if (!Disable16Bit)
126    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129
130  // SETOEQ and SETUNE require checking two conditions.
131  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
136  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137
138  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139  // operation.
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
143
144  if (Subtarget->is64Bit()) {
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147  } else if (!UseSoftFloat) {
148    if (X86ScalarSSEf64) {
149      // We have an impenetrably clever algorithm for ui64->double only.
150      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
151    }
152    // We have an algorithm for SSE2, and we turn this into a 64-bit
153    // FILD for other targets.
154    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
155  }
156
157  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
158  // this operation.
159  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
160  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
161
162  if (!UseSoftFloat) {
163    // SSE has no i16 to fp conversion, only i32
164    if (X86ScalarSSEf32) {
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
166      // f32 and f64 cases are Legal, f80 case is not
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    } else {
169      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
170      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
171    }
172  } else {
173    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
175  }
176
177  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
178  // are Legal, f80 is custom lowered.
179  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
180  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
181
182  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
183  // this operation.
184  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
185  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
186
187  if (X86ScalarSSEf32) {
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
189    // f32 and f64 cases are Legal, f80 case is not
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  } else {
192    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
193    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
194  }
195
196  // Handle FP_TO_UINT by promoting the destination to a larger signed
197  // conversion.
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
199  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
200  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
201
202  if (Subtarget->is64Bit()) {
203    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
204    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
205  } else if (!UseSoftFloat) {
206    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
207      // Expand FP_TO_UINT into a select.
208      // FIXME: We would like to use a Custom expander here eventually to do
209      // the optimal thing for SSE vs. the default expansion in the legalizer.
210      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
211    else
212      // With SSE3 we can use fisttpll to convert to a signed i64; without
213      // SSE, we're stuck with a fistpll.
214      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
215  }
216
217  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
218  if (!X86ScalarSSEf64) {
219    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
220    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
221  }
222
223  // Scalar integer divide and remainder are lowered to use operations that
224  // produce two results, to match the available instructions. This exposes
225  // the two-result form to trivial CSE, which is able to combine x/y and x%y
226  // into a single instruction.
227  //
228  // Scalar integer multiply-high is also lowered to use two-result
229  // operations, to match the available instructions. However, plain multiply
230  // (low) operations are left as Legal, as there are single-result
231  // instructions for this in x86. Using the two-result multiply instructions
232  // when both high and low results are needed must be arranged by dagcombine.
233  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
234  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
235  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
236  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
237  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
238  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
240  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
241  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
242  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
243  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
244  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
246  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
247  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
248  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
249  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
250  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
252  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
253  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
254  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
255  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
256  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
257
258  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
259  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
260  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
261  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
262  if (Subtarget->is64Bit())
263    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
264  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
267  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
268  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
269  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
270  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
271  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
272
273  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
274  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
275  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
276  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
277  if (Disable16Bit) {
278    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
279    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
280  } else {
281    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
282    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
283  }
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  if (Disable16Bit)
301    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
302  else
303    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
307  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
313  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
314  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
319    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
320  }
321  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
322
323  // Darwin ABI issue.
324  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
325  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
326  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
327  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
328  if (Subtarget->is64Bit())
329    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
330  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
331  if (Subtarget->is64Bit()) {
332    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
333    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
334    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
335    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
336  }
337  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
338  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
339  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
340  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
341  if (Subtarget->is64Bit()) {
342    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
343    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
344    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
345  }
346
347  if (Subtarget->hasSSE1())
348    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
349
350  if (!Subtarget->hasSSE2())
351    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
352
353  // Expand certain atomics
354  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
355  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
356  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
358
359  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
360  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
361  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
363
364  if (!Subtarget->is64Bit()) {
365    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
366    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
367    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
372  }
373
374  // Use the default ISD::DBG_STOPPOINT.
375  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
376  // FIXME - use subtarget debug flags
377  if (!Subtarget->isTargetDarwin() &&
378      !Subtarget->isTargetELF() &&
379      !Subtarget->isTargetCygMing()) {
380    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599  }
600
601  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
602  // with -msoft-float, disable use of MMX as well.
603  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
604    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
605    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
606    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
607    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
608    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
609
610    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
611    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
612    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
613    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
614
615    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
616    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
617    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
618    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
619
620    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
621    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
622
623    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
624    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
625    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
626    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
627    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
628    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
629    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
630
631    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
632    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
633    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
634    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
635    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
636    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
637    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
638
639    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
640    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
641    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
642    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
643    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
644    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
645    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
646
647    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
648    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
649    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
650    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
651    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
652    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
653    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
654    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
655    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
656
657    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
658    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
659    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
661    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
662
663    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
664    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
666    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
667
668    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
669    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
670    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
671    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
672
673    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
674
675    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
676    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
677    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
678    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
679    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
680    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
681    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
682    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
683    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
684  }
685
686  if (!UseSoftFloat && Subtarget->hasSSE1()) {
687    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
690    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
691    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
692    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
693    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
694    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
695    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
696    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
697    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
698    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
699    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
701  }
702
703  if (!UseSoftFloat && Subtarget->hasSSE2()) {
704    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
705
706    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
707    // registers cannot be used even for integer operations.
708    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
709    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
710    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
711    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
712
713    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
714    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
715    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
716    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
717    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
718    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
719    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
720    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
721    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
722    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
723    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
724    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
725    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
726    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
727    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
728    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
729
730    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
731    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
732    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
733    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
734
735    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
736    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
737    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
739    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
740
741    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
742    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
743      EVT VT = (MVT::SimpleValueType)i;
744      // Do not attempt to custom lower non-power-of-2 vectors
745      if (!isPowerOf2_32(VT.getVectorNumElements()))
746        continue;
747      // Do not attempt to custom lower non-128-bit vectors
748      if (!VT.is128BitVector())
749        continue;
750      setOperationAction(ISD::BUILD_VECTOR,
751                         VT.getSimpleVT().SimpleTy, Custom);
752      setOperationAction(ISD::VECTOR_SHUFFLE,
753                         VT.getSimpleVT().SimpleTy, Custom);
754      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
755                         VT.getSimpleVT().SimpleTy, Custom);
756    }
757
758    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
759    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
760    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
761    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
762    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
764
765    if (Subtarget->is64Bit()) {
766      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
767      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
768    }
769
770    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
771    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
772      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
773      EVT VT = SVT;
774
775      // Do not attempt to promote non-128-bit vectors
776      if (!VT.is128BitVector()) {
777        continue;
778      }
779      setOperationAction(ISD::AND,    SVT, Promote);
780      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
781      setOperationAction(ISD::OR,     SVT, Promote);
782      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
783      setOperationAction(ISD::XOR,    SVT, Promote);
784      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
785      setOperationAction(ISD::LOAD,   SVT, Promote);
786      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
787      setOperationAction(ISD::SELECT, SVT, Promote);
788      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
789    }
790
791    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
792
793    // Custom lower v2i64 and v2f64 selects.
794    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
795    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
796    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
797    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
798
799    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
800    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
801    if (!DisableMMX && Subtarget->hasMMX()) {
802      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
803      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
804    }
805  }
806
807  if (Subtarget->hasSSE41()) {
808    // FIXME: Do we need to handle scalar-to-vector here?
809    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
810
811    // i8 and i16 vectors are custom , because the source register and source
812    // source memory operand types are not the same width.  f32 vectors are
813    // custom since the immediate controlling the insert encodes additional
814    // information.
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
818    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
819
820    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824
825    if (Subtarget->is64Bit()) {
826      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
827      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
828    }
829  }
830
831  if (Subtarget->hasSSE42()) {
832    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
833  }
834
835  if (!UseSoftFloat && Subtarget->hasAVX()) {
836    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
837    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
838    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
839    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
840
841    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
842    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
843    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
844    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
845    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
851    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
852    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
853    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
854    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
855    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
856
857    // Operations to consider commented out -v16i16 v32i8
858    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
859    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
860    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
861    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
862    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
863    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
864    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
865    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
866    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
867    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
868    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
870    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
871    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
872
873    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
874    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
875    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
876    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
877
878    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
879    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
880    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
883
884    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
885    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
886    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
887    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
888    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
889    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
890
891#if 0
892    // Not sure we want to do this since there are no 256-bit integer
893    // operations in AVX
894
895    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
896    // This includes 256-bit vectors
897    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
898      EVT VT = (MVT::SimpleValueType)i;
899
900      // Do not attempt to custom lower non-power-of-2 vectors
901      if (!isPowerOf2_32(VT.getVectorNumElements()))
902        continue;
903
904      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
905      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
906      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
907    }
908
909    if (Subtarget->is64Bit()) {
910      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
911      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
912    }
913#endif
914
915#if 0
916    // Not sure we want to do this since there are no 256-bit integer
917    // operations in AVX
918
919    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
920    // Including 256-bit vectors
921    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
922      EVT VT = (MVT::SimpleValueType)i;
923
924      if (!VT.is256BitVector()) {
925        continue;
926      }
927      setOperationAction(ISD::AND,    VT, Promote);
928      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
929      setOperationAction(ISD::OR,     VT, Promote);
930      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
931      setOperationAction(ISD::XOR,    VT, Promote);
932      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
933      setOperationAction(ISD::LOAD,   VT, Promote);
934      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
935      setOperationAction(ISD::SELECT, VT, Promote);
936      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
937    }
938
939    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
940#endif
941  }
942
943  // We want to custom lower some of our intrinsics.
944  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
945
946  // Add/Sub/Mul with overflow operations are custom lowered.
947  setOperationAction(ISD::SADDO, MVT::i32, Custom);
948  setOperationAction(ISD::SADDO, MVT::i64, Custom);
949  setOperationAction(ISD::UADDO, MVT::i32, Custom);
950  setOperationAction(ISD::UADDO, MVT::i64, Custom);
951  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
952  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
953  setOperationAction(ISD::USUBO, MVT::i32, Custom);
954  setOperationAction(ISD::USUBO, MVT::i64, Custom);
955  setOperationAction(ISD::SMULO, MVT::i32, Custom);
956  setOperationAction(ISD::SMULO, MVT::i64, Custom);
957
958  if (!Subtarget->is64Bit()) {
959    // These libcalls are not available in 32-bit.
960    setLibcallName(RTLIB::SHL_I128, 0);
961    setLibcallName(RTLIB::SRL_I128, 0);
962    setLibcallName(RTLIB::SRA_I128, 0);
963  }
964
965  // We have target-specific dag combine patterns for the following nodes:
966  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
967  setTargetDAGCombine(ISD::BUILD_VECTOR);
968  setTargetDAGCombine(ISD::SELECT);
969  setTargetDAGCombine(ISD::SHL);
970  setTargetDAGCombine(ISD::SRA);
971  setTargetDAGCombine(ISD::SRL);
972  setTargetDAGCombine(ISD::STORE);
973  setTargetDAGCombine(ISD::MEMBARRIER);
974  if (Subtarget->is64Bit())
975    setTargetDAGCombine(ISD::MUL);
976
977  computeRegisterProperties();
978
979  // FIXME: These should be based on subtarget info. Plus, the values should
980  // be smaller when we are in optimizing for size mode.
981  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
982  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
983  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
984  setPrefLoopAlignment(16);
985  benefitFromCodePlacementOpt = true;
986}
987
988
989MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
990  return MVT::i8;
991}
992
993
994/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
995/// the desired ByVal argument alignment.
996static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
997  if (MaxAlign == 16)
998    return;
999  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1000    if (VTy->getBitWidth() == 128)
1001      MaxAlign = 16;
1002  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1003    unsigned EltAlign = 0;
1004    getMaxByValAlign(ATy->getElementType(), EltAlign);
1005    if (EltAlign > MaxAlign)
1006      MaxAlign = EltAlign;
1007  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1008    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1009      unsigned EltAlign = 0;
1010      getMaxByValAlign(STy->getElementType(i), EltAlign);
1011      if (EltAlign > MaxAlign)
1012        MaxAlign = EltAlign;
1013      if (MaxAlign == 16)
1014        break;
1015    }
1016  }
1017  return;
1018}
1019
1020/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1021/// function arguments in the caller parameter area. For X86, aggregates
1022/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1023/// are at 4-byte boundaries.
1024unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1025  if (Subtarget->is64Bit()) {
1026    // Max of 8 and alignment of type.
1027    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1028    if (TyAlign > 8)
1029      return TyAlign;
1030    return 8;
1031  }
1032
1033  unsigned Align = 4;
1034  if (Subtarget->hasSSE1())
1035    getMaxByValAlign(Ty, Align);
1036  return Align;
1037}
1038
1039/// getOptimalMemOpType - Returns the target specific optimal type for load
1040/// and store operations as a result of memset, memcpy, and memmove
1041/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1042/// determining it.
1043EVT
1044X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1045                                       bool isSrcConst, bool isSrcStr,
1046                                       SelectionDAG &DAG) const {
1047  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1048  // linux.  This is because the stack realignment code can't handle certain
1049  // cases like PR2962.  This should be removed when PR2962 is fixed.
1050  const Function *F = DAG.getMachineFunction().getFunction();
1051  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1052  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1053    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1054      return MVT::v4i32;
1055    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1056      return MVT::v4f32;
1057  }
1058  if (Subtarget->is64Bit() && Size >= 8)
1059    return MVT::i64;
1060  return MVT::i32;
1061}
1062
1063/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1064/// jumptable.
1065SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1066                                                      SelectionDAG &DAG) const {
1067  if (usesGlobalOffsetTable())
1068    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1069  if (!Subtarget->is64Bit())
1070    // This doesn't have DebugLoc associated with it, but is not really the
1071    // same as a Register.
1072    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1073                       getPointerTy());
1074  return Table;
1075}
1076
1077/// getFunctionAlignment - Return the Log2 alignment of this function.
1078unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1079  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083//               Return Value Calling Convention Implementation
1084//===----------------------------------------------------------------------===//
1085
1086#include "X86GenCallingConv.inc"
1087
1088SDValue
1089X86TargetLowering::LowerReturn(SDValue Chain,
1090                               CallingConv::ID CallConv, bool isVarArg,
1091                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1092                               DebugLoc dl, SelectionDAG &DAG) {
1093
1094  SmallVector<CCValAssign, 16> RVLocs;
1095  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1096                 RVLocs, *DAG.getContext());
1097  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1098
1099  // If this is the first return lowered for this function, add the regs to the
1100  // liveout set for the function.
1101  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1102    for (unsigned i = 0; i != RVLocs.size(); ++i)
1103      if (RVLocs[i].isRegLoc())
1104        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1105  }
1106
1107  SDValue Flag;
1108
1109  SmallVector<SDValue, 6> RetOps;
1110  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1111  // Operand #1 = Bytes To Pop
1112  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1113
1114  // Copy the result values into the output registers.
1115  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1116    CCValAssign &VA = RVLocs[i];
1117    assert(VA.isRegLoc() && "Can only return in registers!");
1118    SDValue ValToCopy = Outs[i].Val;
1119
1120    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1121    // the RET instruction and handled by the FP Stackifier.
1122    if (VA.getLocReg() == X86::ST0 ||
1123        VA.getLocReg() == X86::ST1) {
1124      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1125      // change the value to the FP stack register class.
1126      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1127        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1128      RetOps.push_back(ValToCopy);
1129      // Don't emit a copytoreg.
1130      continue;
1131    }
1132
1133    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1134    // which is returned in RAX / RDX.
1135    if (Subtarget->is64Bit()) {
1136      EVT ValVT = ValToCopy.getValueType();
1137      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1138        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1139        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1140          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1141      }
1142    }
1143
1144    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1145    Flag = Chain.getValue(1);
1146  }
1147
1148  // The x86-64 ABI for returning structs by value requires that we copy
1149  // the sret argument into %rax for the return. We saved the argument into
1150  // a virtual register in the entry block, so now we copy the value out
1151  // and into %rax.
1152  if (Subtarget->is64Bit() &&
1153      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1154    MachineFunction &MF = DAG.getMachineFunction();
1155    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1156    unsigned Reg = FuncInfo->getSRetReturnReg();
1157    if (!Reg) {
1158      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1159      FuncInfo->setSRetReturnReg(Reg);
1160    }
1161    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1162
1163    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1164    Flag = Chain.getValue(1);
1165  }
1166
1167  RetOps[0] = Chain;  // Update chain.
1168
1169  // Add the flag if we have it.
1170  if (Flag.getNode())
1171    RetOps.push_back(Flag);
1172
1173  return DAG.getNode(X86ISD::RET_FLAG, dl,
1174                     MVT::Other, &RetOps[0], RetOps.size());
1175}
1176
1177/// LowerCallResult - Lower the result values of a call into the
1178/// appropriate copies out of appropriate physical registers.
1179///
1180SDValue
1181X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1182                                   CallingConv::ID CallConv, bool isVarArg,
1183                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1184                                   DebugLoc dl, SelectionDAG &DAG,
1185                                   SmallVectorImpl<SDValue> &InVals) {
1186
1187  // Assign locations to each value returned by this call.
1188  SmallVector<CCValAssign, 16> RVLocs;
1189  bool Is64Bit = Subtarget->is64Bit();
1190  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1191                 RVLocs, *DAG.getContext());
1192  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1193
1194  // Copy all of the result registers out of their specified physreg.
1195  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1196    CCValAssign &VA = RVLocs[i];
1197    EVT CopyVT = VA.getValVT();
1198
1199    // If this is x86-64, and we disabled SSE, we can't return FP values
1200    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1201        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1202      llvm_report_error("SSE register return with SSE disabled");
1203    }
1204
1205    // If this is a call to a function that returns an fp value on the floating
1206    // point stack, but where we prefer to use the value in xmm registers, copy
1207    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1208    if ((VA.getLocReg() == X86::ST0 ||
1209         VA.getLocReg() == X86::ST1) &&
1210        isScalarFPTypeInSSEReg(VA.getValVT())) {
1211      CopyVT = MVT::f80;
1212    }
1213
1214    SDValue Val;
1215    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1216      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1217      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1218        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1219                                   MVT::v2i64, InFlag).getValue(1);
1220        Val = Chain.getValue(0);
1221        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1222                          Val, DAG.getConstant(0, MVT::i64));
1223      } else {
1224        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1225                                   MVT::i64, InFlag).getValue(1);
1226        Val = Chain.getValue(0);
1227      }
1228      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1229    } else {
1230      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1231                                 CopyVT, InFlag).getValue(1);
1232      Val = Chain.getValue(0);
1233    }
1234    InFlag = Chain.getValue(2);
1235
1236    if (CopyVT != VA.getValVT()) {
1237      // Round the F80 the right size, which also moves to the appropriate xmm
1238      // register.
1239      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1240                        // This truncation won't change the value.
1241                        DAG.getIntPtrConstant(1));
1242    }
1243
1244    InVals.push_back(Val);
1245  }
1246
1247  return Chain;
1248}
1249
1250
1251//===----------------------------------------------------------------------===//
1252//                C & StdCall & Fast Calling Convention implementation
1253//===----------------------------------------------------------------------===//
1254//  StdCall calling convention seems to be standard for many Windows' API
1255//  routines and around. It differs from C calling convention just a little:
1256//  callee should clean up the stack, not caller. Symbols should be also
1257//  decorated in some fancy way :) It doesn't support any vector arguments.
1258//  For info on fast calling convention see Fast Calling Convention (tail call)
1259//  implementation LowerX86_32FastCCCallTo.
1260
1261/// CallIsStructReturn - Determines whether a call uses struct return
1262/// semantics.
1263static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1264  if (Outs.empty())
1265    return false;
1266
1267  return Outs[0].Flags.isSRet();
1268}
1269
1270/// ArgsAreStructReturn - Determines whether a function uses struct
1271/// return semantics.
1272static bool
1273ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1274  if (Ins.empty())
1275    return false;
1276
1277  return Ins[0].Flags.isSRet();
1278}
1279
1280/// IsCalleePop - Determines whether the callee is required to pop its
1281/// own arguments. Callee pop is necessary to support tail calls.
1282bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1283  if (IsVarArg)
1284    return false;
1285
1286  switch (CallingConv) {
1287  default:
1288    return false;
1289  case CallingConv::X86_StdCall:
1290    return !Subtarget->is64Bit();
1291  case CallingConv::X86_FastCall:
1292    return !Subtarget->is64Bit();
1293  case CallingConv::Fast:
1294    return PerformTailCallOpt;
1295  }
1296}
1297
1298/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1299/// given CallingConvention value.
1300CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1301  if (Subtarget->is64Bit()) {
1302    if (Subtarget->isTargetWin64())
1303      return CC_X86_Win64_C;
1304    else
1305      return CC_X86_64_C;
1306  }
1307
1308  if (CC == CallingConv::X86_FastCall)
1309    return CC_X86_32_FastCall;
1310  else if (CC == CallingConv::Fast)
1311    return CC_X86_32_FastCC;
1312  else
1313    return CC_X86_32_C;
1314}
1315
1316/// NameDecorationForCallConv - Selects the appropriate decoration to
1317/// apply to a MachineFunction containing a given calling convention.
1318NameDecorationStyle
1319X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1320  if (CallConv == CallingConv::X86_FastCall)
1321    return FastCall;
1322  else if (CallConv == CallingConv::X86_StdCall)
1323    return StdCall;
1324  return None;
1325}
1326
1327
1328/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1329/// by "Src" to address "Dst" with size and alignment information specified by
1330/// the specific parameter attribute. The copy will be passed as a byval
1331/// function parameter.
1332static SDValue
1333CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1334                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1335                          DebugLoc dl) {
1336  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1337  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1338                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1339}
1340
1341SDValue
1342X86TargetLowering::LowerMemArgument(SDValue Chain,
1343                                    CallingConv::ID CallConv,
1344                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1345                                    DebugLoc dl, SelectionDAG &DAG,
1346                                    const CCValAssign &VA,
1347                                    MachineFrameInfo *MFI,
1348                                    unsigned i) {
1349
1350  // Create the nodes corresponding to a load from this parameter slot.
1351  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1352  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1353  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1354  EVT ValVT;
1355
1356  // If value is passed by pointer we have address passed instead of the value
1357  // itself.
1358  if (VA.getLocInfo() == CCValAssign::Indirect)
1359    ValVT = VA.getLocVT();
1360  else
1361    ValVT = VA.getValVT();
1362
1363  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1364  // changed with more analysis.
1365  // In case of tail call optimization mark all arguments mutable. Since they
1366  // could be overwritten by lowering of arguments in case of a tail call.
1367  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1368                                  VA.getLocMemOffset(), isImmutable);
1369  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1370  if (Flags.isByVal())
1371    return FIN;
1372  return DAG.getLoad(ValVT, dl, Chain, FIN,
1373                     PseudoSourceValue::getFixedStack(FI), 0);
1374}
1375
1376SDValue
1377X86TargetLowering::LowerFormalArguments(SDValue Chain,
1378                                        CallingConv::ID CallConv,
1379                                        bool isVarArg,
1380                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1381                                        DebugLoc dl,
1382                                        SelectionDAG &DAG,
1383                                        SmallVectorImpl<SDValue> &InVals) {
1384
1385  MachineFunction &MF = DAG.getMachineFunction();
1386  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1387
1388  const Function* Fn = MF.getFunction();
1389  if (Fn->hasExternalLinkage() &&
1390      Subtarget->isTargetCygMing() &&
1391      Fn->getName() == "main")
1392    FuncInfo->setForceFramePointer(true);
1393
1394  // Decorate the function name.
1395  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1396
1397  MachineFrameInfo *MFI = MF.getFrameInfo();
1398  bool Is64Bit = Subtarget->is64Bit();
1399  bool IsWin64 = Subtarget->isTargetWin64();
1400
1401  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1402         "Var args not supported with calling convention fastcc");
1403
1404  // Assign locations to all of the incoming arguments.
1405  SmallVector<CCValAssign, 16> ArgLocs;
1406  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1407                 ArgLocs, *DAG.getContext());
1408  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1409
1410  unsigned LastVal = ~0U;
1411  SDValue ArgValue;
1412  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1413    CCValAssign &VA = ArgLocs[i];
1414    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1415    // places.
1416    assert(VA.getValNo() != LastVal &&
1417           "Don't support value assigned to multiple locs yet");
1418    LastVal = VA.getValNo();
1419
1420    if (VA.isRegLoc()) {
1421      EVT RegVT = VA.getLocVT();
1422      TargetRegisterClass *RC = NULL;
1423      if (RegVT == MVT::i32)
1424        RC = X86::GR32RegisterClass;
1425      else if (Is64Bit && RegVT == MVT::i64)
1426        RC = X86::GR64RegisterClass;
1427      else if (RegVT == MVT::f32)
1428        RC = X86::FR32RegisterClass;
1429      else if (RegVT == MVT::f64)
1430        RC = X86::FR64RegisterClass;
1431      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1432        RC = X86::VR128RegisterClass;
1433      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1434        RC = X86::VR64RegisterClass;
1435      else
1436        llvm_unreachable("Unknown argument type!");
1437
1438      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1439      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1440
1441      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1442      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1443      // right size.
1444      if (VA.getLocInfo() == CCValAssign::SExt)
1445        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1446                               DAG.getValueType(VA.getValVT()));
1447      else if (VA.getLocInfo() == CCValAssign::ZExt)
1448        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1449                               DAG.getValueType(VA.getValVT()));
1450      else if (VA.getLocInfo() == CCValAssign::BCvt)
1451        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1452
1453      if (VA.isExtInLoc()) {
1454        // Handle MMX values passed in XMM regs.
1455        if (RegVT.isVector()) {
1456          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1457                                 ArgValue, DAG.getConstant(0, MVT::i64));
1458          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1459        } else
1460          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1461      }
1462    } else {
1463      assert(VA.isMemLoc());
1464      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1465    }
1466
1467    // If value is passed via pointer - do a load.
1468    if (VA.getLocInfo() == CCValAssign::Indirect)
1469      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1470
1471    InVals.push_back(ArgValue);
1472  }
1473
1474  // The x86-64 ABI for returning structs by value requires that we copy
1475  // the sret argument into %rax for the return. Save the argument into
1476  // a virtual register so that we can access it from the return points.
1477  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1478    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1479    unsigned Reg = FuncInfo->getSRetReturnReg();
1480    if (!Reg) {
1481      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1482      FuncInfo->setSRetReturnReg(Reg);
1483    }
1484    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1485    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1486  }
1487
1488  unsigned StackSize = CCInfo.getNextStackOffset();
1489  // align stack specially for tail calls
1490  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1491    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1492
1493  // If the function takes variable number of arguments, make a frame index for
1494  // the start of the first vararg value... for expansion of llvm.va_start.
1495  if (isVarArg) {
1496    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1497      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1498    }
1499    if (Is64Bit) {
1500      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1501
1502      // FIXME: We should really autogenerate these arrays
1503      static const unsigned GPR64ArgRegsWin64[] = {
1504        X86::RCX, X86::RDX, X86::R8,  X86::R9
1505      };
1506      static const unsigned XMMArgRegsWin64[] = {
1507        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1508      };
1509      static const unsigned GPR64ArgRegs64Bit[] = {
1510        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1511      };
1512      static const unsigned XMMArgRegs64Bit[] = {
1513        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1514        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1515      };
1516      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1517
1518      if (IsWin64) {
1519        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1520        GPR64ArgRegs = GPR64ArgRegsWin64;
1521        XMMArgRegs = XMMArgRegsWin64;
1522      } else {
1523        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1524        GPR64ArgRegs = GPR64ArgRegs64Bit;
1525        XMMArgRegs = XMMArgRegs64Bit;
1526      }
1527      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1528                                                       TotalNumIntRegs);
1529      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1530                                                       TotalNumXMMRegs);
1531
1532      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1533      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1534             "SSE register cannot be used when SSE is disabled!");
1535      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1536             "SSE register cannot be used when SSE is disabled!");
1537      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1538        // Kernel mode asks for SSE to be disabled, so don't push them
1539        // on the stack.
1540        TotalNumXMMRegs = 0;
1541
1542      // For X86-64, if there are vararg parameters that are passed via
1543      // registers, then we must store them to their spots on the stack so they
1544      // may be loaded by deferencing the result of va_next.
1545      VarArgsGPOffset = NumIntRegs * 8;
1546      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1547      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1548                                                 TotalNumXMMRegs * 16, 16);
1549
1550      // Store the integer parameter registers.
1551      SmallVector<SDValue, 8> MemOps;
1552      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1553      unsigned Offset = VarArgsGPOffset;
1554      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1555        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1556                                  DAG.getIntPtrConstant(Offset));
1557        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1558                                     X86::GR64RegisterClass);
1559        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1560        SDValue Store =
1561          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1562                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1563                       Offset);
1564        MemOps.push_back(Store);
1565        Offset += 8;
1566      }
1567
1568      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1569        // Now store the XMM (fp + vector) parameter registers.
1570        SmallVector<SDValue, 11> SaveXMMOps;
1571        SaveXMMOps.push_back(Chain);
1572
1573        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1574        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1575        SaveXMMOps.push_back(ALVal);
1576
1577        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1578        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1579
1580        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1581          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1582                                       X86::VR128RegisterClass);
1583          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1584          SaveXMMOps.push_back(Val);
1585        }
1586        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1587                                     MVT::Other,
1588                                     &SaveXMMOps[0], SaveXMMOps.size()));
1589      }
1590
1591      if (!MemOps.empty())
1592        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1593                            &MemOps[0], MemOps.size());
1594    }
1595  }
1596
1597  // Some CCs need callee pop.
1598  if (IsCalleePop(isVarArg, CallConv)) {
1599    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1600    BytesCallerReserves = 0;
1601  } else {
1602    BytesToPopOnReturn  = 0; // Callee pops nothing.
1603    // If this is an sret function, the return should pop the hidden pointer.
1604    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1605      BytesToPopOnReturn = 4;
1606    BytesCallerReserves = StackSize;
1607  }
1608
1609  if (!Is64Bit) {
1610    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1611    if (CallConv == CallingConv::X86_FastCall)
1612      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1613  }
1614
1615  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1616
1617  return Chain;
1618}
1619
1620SDValue
1621X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1622                                    SDValue StackPtr, SDValue Arg,
1623                                    DebugLoc dl, SelectionDAG &DAG,
1624                                    const CCValAssign &VA,
1625                                    ISD::ArgFlagsTy Flags) {
1626  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1627  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1628  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1629  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1630  if (Flags.isByVal()) {
1631    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1632  }
1633  return DAG.getStore(Chain, dl, Arg, PtrOff,
1634                      PseudoSourceValue::getStack(), LocMemOffset);
1635}
1636
1637/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1638/// optimization is performed and it is required.
1639SDValue
1640X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1641                                           SDValue &OutRetAddr,
1642                                           SDValue Chain,
1643                                           bool IsTailCall,
1644                                           bool Is64Bit,
1645                                           int FPDiff,
1646                                           DebugLoc dl) {
1647  if (!IsTailCall || FPDiff==0) return Chain;
1648
1649  // Adjust the Return address stack slot.
1650  EVT VT = getPointerTy();
1651  OutRetAddr = getReturnAddressFrameIndex(DAG);
1652
1653  // Load the "old" Return address.
1654  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1655  return SDValue(OutRetAddr.getNode(), 1);
1656}
1657
1658/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1659/// optimization is performed and it is required (FPDiff!=0).
1660static SDValue
1661EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1662                         SDValue Chain, SDValue RetAddrFrIdx,
1663                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1664  // Store the return address to the appropriate stack slot.
1665  if (!FPDiff) return Chain;
1666  // Calculate the new stack slot for the return address.
1667  int SlotSize = Is64Bit ? 8 : 4;
1668  int NewReturnAddrFI =
1669    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1670  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1671  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1672  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1673                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1674  return Chain;
1675}
1676
1677SDValue
1678X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1679                             CallingConv::ID CallConv, bool isVarArg,
1680                             bool isTailCall,
1681                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1682                             const SmallVectorImpl<ISD::InputArg> &Ins,
1683                             DebugLoc dl, SelectionDAG &DAG,
1684                             SmallVectorImpl<SDValue> &InVals) {
1685
1686  MachineFunction &MF = DAG.getMachineFunction();
1687  bool Is64Bit        = Subtarget->is64Bit();
1688  bool IsStructRet    = CallIsStructReturn(Outs);
1689
1690  assert((!isTailCall ||
1691          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1692         "IsEligibleForTailCallOptimization missed a case!");
1693  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1694         "Var args not supported with calling convention fastcc");
1695
1696  // Analyze operands of the call, assigning locations to each operand.
1697  SmallVector<CCValAssign, 16> ArgLocs;
1698  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1699                 ArgLocs, *DAG.getContext());
1700  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1701
1702  // Get a count of how many bytes are to be pushed on the stack.
1703  unsigned NumBytes = CCInfo.getNextStackOffset();
1704  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1705    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1706
1707  int FPDiff = 0;
1708  if (isTailCall) {
1709    // Lower arguments at fp - stackoffset + fpdiff.
1710    unsigned NumBytesCallerPushed =
1711      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1712    FPDiff = NumBytesCallerPushed - NumBytes;
1713
1714    // Set the delta of movement of the returnaddr stackslot.
1715    // But only set if delta is greater than previous delta.
1716    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1717      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1718  }
1719
1720  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1721
1722  SDValue RetAddrFrIdx;
1723  // Load return adress for tail calls.
1724  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1725                                  FPDiff, dl);
1726
1727  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1728  SmallVector<SDValue, 8> MemOpChains;
1729  SDValue StackPtr;
1730
1731  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1732  // of tail call optimization arguments are handle later.
1733  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1734    CCValAssign &VA = ArgLocs[i];
1735    EVT RegVT = VA.getLocVT();
1736    SDValue Arg = Outs[i].Val;
1737    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1738    bool isByVal = Flags.isByVal();
1739
1740    // Promote the value if needed.
1741    switch (VA.getLocInfo()) {
1742    default: llvm_unreachable("Unknown loc info!");
1743    case CCValAssign::Full: break;
1744    case CCValAssign::SExt:
1745      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1746      break;
1747    case CCValAssign::ZExt:
1748      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1749      break;
1750    case CCValAssign::AExt:
1751      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1752        // Special case: passing MMX values in XMM registers.
1753        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1754        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1755        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1756      } else
1757        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1758      break;
1759    case CCValAssign::BCvt:
1760      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1761      break;
1762    case CCValAssign::Indirect: {
1763      // Store the argument.
1764      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1765      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1766      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1767                           PseudoSourceValue::getFixedStack(FI), 0);
1768      Arg = SpillSlot;
1769      break;
1770    }
1771    }
1772
1773    if (VA.isRegLoc()) {
1774      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1775    } else {
1776      if (!isTailCall || (isTailCall && isByVal)) {
1777        assert(VA.isMemLoc());
1778        if (StackPtr.getNode() == 0)
1779          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1780
1781        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1782                                               dl, DAG, VA, Flags));
1783      }
1784    }
1785  }
1786
1787  if (!MemOpChains.empty())
1788    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1789                        &MemOpChains[0], MemOpChains.size());
1790
1791  // Build a sequence of copy-to-reg nodes chained together with token chain
1792  // and flag operands which copy the outgoing args into registers.
1793  SDValue InFlag;
1794  // Tail call byval lowering might overwrite argument registers so in case of
1795  // tail call optimization the copies to registers are lowered later.
1796  if (!isTailCall)
1797    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1798      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1799                               RegsToPass[i].second, InFlag);
1800      InFlag = Chain.getValue(1);
1801    }
1802
1803
1804  if (Subtarget->isPICStyleGOT()) {
1805    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1806    // GOT pointer.
1807    if (!isTailCall) {
1808      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1809                               DAG.getNode(X86ISD::GlobalBaseReg,
1810                                           DebugLoc::getUnknownLoc(),
1811                                           getPointerTy()),
1812                               InFlag);
1813      InFlag = Chain.getValue(1);
1814    } else {
1815      // If we are tail calling and generating PIC/GOT style code load the
1816      // address of the callee into ECX. The value in ecx is used as target of
1817      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1818      // for tail calls on PIC/GOT architectures. Normally we would just put the
1819      // address of GOT into ebx and then call target@PLT. But for tail calls
1820      // ebx would be restored (since ebx is callee saved) before jumping to the
1821      // target@PLT.
1822
1823      // Note: The actual moving to ECX is done further down.
1824      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1825      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1826          !G->getGlobal()->hasProtectedVisibility())
1827        Callee = LowerGlobalAddress(Callee, DAG);
1828      else if (isa<ExternalSymbolSDNode>(Callee))
1829        Callee = LowerExternalSymbol(Callee, DAG);
1830    }
1831  }
1832
1833  if (Is64Bit && isVarArg) {
1834    // From AMD64 ABI document:
1835    // For calls that may call functions that use varargs or stdargs
1836    // (prototype-less calls or calls to functions containing ellipsis (...) in
1837    // the declaration) %al is used as hidden argument to specify the number
1838    // of SSE registers used. The contents of %al do not need to match exactly
1839    // the number of registers, but must be an ubound on the number of SSE
1840    // registers used and is in the range 0 - 8 inclusive.
1841
1842    // FIXME: Verify this on Win64
1843    // Count the number of XMM registers allocated.
1844    static const unsigned XMMArgRegs[] = {
1845      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1846      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1847    };
1848    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1849    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1850           && "SSE registers cannot be used when SSE is disabled");
1851
1852    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1853                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1854    InFlag = Chain.getValue(1);
1855  }
1856
1857
1858  // For tail calls lower the arguments to the 'real' stack slot.
1859  if (isTailCall) {
1860    // Force all the incoming stack arguments to be loaded from the stack
1861    // before any new outgoing arguments are stored to the stack, because the
1862    // outgoing stack slots may alias the incoming argument stack slots, and
1863    // the alias isn't otherwise explicit. This is slightly more conservative
1864    // than necessary, because it means that each store effectively depends
1865    // on every argument instead of just those arguments it would clobber.
1866    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1867
1868    SmallVector<SDValue, 8> MemOpChains2;
1869    SDValue FIN;
1870    int FI = 0;
1871    // Do not flag preceeding copytoreg stuff together with the following stuff.
1872    InFlag = SDValue();
1873    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1874      CCValAssign &VA = ArgLocs[i];
1875      if (!VA.isRegLoc()) {
1876        assert(VA.isMemLoc());
1877        SDValue Arg = Outs[i].Val;
1878        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1879        // Create frame index.
1880        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1881        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1882        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1883        FIN = DAG.getFrameIndex(FI, getPointerTy());
1884
1885        if (Flags.isByVal()) {
1886          // Copy relative to framepointer.
1887          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1888          if (StackPtr.getNode() == 0)
1889            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1890                                          getPointerTy());
1891          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1892
1893          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1894                                                           ArgChain,
1895                                                           Flags, DAG, dl));
1896        } else {
1897          // Store relative to framepointer.
1898          MemOpChains2.push_back(
1899            DAG.getStore(ArgChain, dl, Arg, FIN,
1900                         PseudoSourceValue::getFixedStack(FI), 0));
1901        }
1902      }
1903    }
1904
1905    if (!MemOpChains2.empty())
1906      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1907                          &MemOpChains2[0], MemOpChains2.size());
1908
1909    // Copy arguments to their registers.
1910    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1911      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1912                               RegsToPass[i].second, InFlag);
1913      InFlag = Chain.getValue(1);
1914    }
1915    InFlag =SDValue();
1916
1917    // Store the return address to the appropriate stack slot.
1918    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1919                                     FPDiff, dl);
1920  }
1921
1922  // If the callee is a GlobalAddress node (quite common, every direct call is)
1923  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1924  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1925    // We should use extra load for direct calls to dllimported functions in
1926    // non-JIT mode.
1927    GlobalValue *GV = G->getGlobal();
1928    if (!GV->hasDLLImportLinkage()) {
1929      unsigned char OpFlags = 0;
1930
1931      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1932      // external symbols most go through the PLT in PIC mode.  If the symbol
1933      // has hidden or protected visibility, or if it is static or local, then
1934      // we don't need to use the PLT - we can directly call it.
1935      if (Subtarget->isTargetELF() &&
1936          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1937          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1938        OpFlags = X86II::MO_PLT;
1939      } else if (Subtarget->isPICStyleStubAny() &&
1940               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1941               Subtarget->getDarwinVers() < 9) {
1942        // PC-relative references to external symbols should go through $stub,
1943        // unless we're building with the leopard linker or later, which
1944        // automatically synthesizes these stubs.
1945        OpFlags = X86II::MO_DARWIN_STUB;
1946      }
1947
1948      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1949                                          G->getOffset(), OpFlags);
1950    }
1951  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1952    unsigned char OpFlags = 0;
1953
1954    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1955    // symbols should go through the PLT.
1956    if (Subtarget->isTargetELF() &&
1957        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1958      OpFlags = X86II::MO_PLT;
1959    } else if (Subtarget->isPICStyleStubAny() &&
1960             Subtarget->getDarwinVers() < 9) {
1961      // PC-relative references to external symbols should go through $stub,
1962      // unless we're building with the leopard linker or later, which
1963      // automatically synthesizes these stubs.
1964      OpFlags = X86II::MO_DARWIN_STUB;
1965    }
1966
1967    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1968                                         OpFlags);
1969  } else if (isTailCall) {
1970    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1971
1972    Chain = DAG.getCopyToReg(Chain,  dl,
1973                             DAG.getRegister(Opc, getPointerTy()),
1974                             Callee,InFlag);
1975    Callee = DAG.getRegister(Opc, getPointerTy());
1976    // Add register as live out.
1977    MF.getRegInfo().addLiveOut(Opc);
1978  }
1979
1980  // Returns a chain & a flag for retval copy to use.
1981  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1982  SmallVector<SDValue, 8> Ops;
1983
1984  if (isTailCall) {
1985    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1986                           DAG.getIntPtrConstant(0, true), InFlag);
1987    InFlag = Chain.getValue(1);
1988  }
1989
1990  Ops.push_back(Chain);
1991  Ops.push_back(Callee);
1992
1993  if (isTailCall)
1994    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1995
1996  // Add argument registers to the end of the list so that they are known live
1997  // into the call.
1998  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1999    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2000                                  RegsToPass[i].second.getValueType()));
2001
2002  // Add an implicit use GOT pointer in EBX.
2003  if (!isTailCall && Subtarget->isPICStyleGOT())
2004    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2005
2006  // Add an implicit use of AL for x86 vararg functions.
2007  if (Is64Bit && isVarArg)
2008    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2009
2010  if (InFlag.getNode())
2011    Ops.push_back(InFlag);
2012
2013  if (isTailCall) {
2014    // If this is the first return lowered for this function, add the regs
2015    // to the liveout set for the function.
2016    if (MF.getRegInfo().liveout_empty()) {
2017      SmallVector<CCValAssign, 16> RVLocs;
2018      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2019                     *DAG.getContext());
2020      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2021      for (unsigned i = 0; i != RVLocs.size(); ++i)
2022        if (RVLocs[i].isRegLoc())
2023          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2024    }
2025
2026    assert(((Callee.getOpcode() == ISD::Register &&
2027               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2028                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2029              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2030              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2031             "Expecting an global address, external symbol, or register");
2032
2033    return DAG.getNode(X86ISD::TC_RETURN, dl,
2034                       NodeTys, &Ops[0], Ops.size());
2035  }
2036
2037  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2038  InFlag = Chain.getValue(1);
2039
2040  // Create the CALLSEQ_END node.
2041  unsigned NumBytesForCalleeToPush;
2042  if (IsCalleePop(isVarArg, CallConv))
2043    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2044  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2045    // If this is is a call to a struct-return function, the callee
2046    // pops the hidden struct pointer, so we have to push it back.
2047    // This is common for Darwin/X86, Linux & Mingw32 targets.
2048    NumBytesForCalleeToPush = 4;
2049  else
2050    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2051
2052  // Returns a flag for retval copy to use.
2053  Chain = DAG.getCALLSEQ_END(Chain,
2054                             DAG.getIntPtrConstant(NumBytes, true),
2055                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2056                                                   true),
2057                             InFlag);
2058  InFlag = Chain.getValue(1);
2059
2060  // Handle result values, copying them out of physregs into vregs that we
2061  // return.
2062  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2063                         Ins, dl, DAG, InVals);
2064}
2065
2066
2067//===----------------------------------------------------------------------===//
2068//                Fast Calling Convention (tail call) implementation
2069//===----------------------------------------------------------------------===//
2070
2071//  Like std call, callee cleans arguments, convention except that ECX is
2072//  reserved for storing the tail called function address. Only 2 registers are
2073//  free for argument passing (inreg). Tail call optimization is performed
2074//  provided:
2075//                * tailcallopt is enabled
2076//                * caller/callee are fastcc
2077//  On X86_64 architecture with GOT-style position independent code only local
2078//  (within module) calls are supported at the moment.
2079//  To keep the stack aligned according to platform abi the function
2080//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2081//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2082//  If a tail called function callee has more arguments than the caller the
2083//  caller needs to make sure that there is room to move the RETADDR to. This is
2084//  achieved by reserving an area the size of the argument delta right after the
2085//  original REtADDR, but before the saved framepointer or the spilled registers
2086//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2087//  stack layout:
2088//    arg1
2089//    arg2
2090//    RETADDR
2091//    [ new RETADDR
2092//      move area ]
2093//    (possible EBP)
2094//    ESI
2095//    EDI
2096//    local1 ..
2097
2098/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2099/// for a 16 byte align requirement.
2100unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2101                                                        SelectionDAG& DAG) {
2102  MachineFunction &MF = DAG.getMachineFunction();
2103  const TargetMachine &TM = MF.getTarget();
2104  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2105  unsigned StackAlignment = TFI.getStackAlignment();
2106  uint64_t AlignMask = StackAlignment - 1;
2107  int64_t Offset = StackSize;
2108  uint64_t SlotSize = TD->getPointerSize();
2109  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2110    // Number smaller than 12 so just add the difference.
2111    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2112  } else {
2113    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2114    Offset = ((~AlignMask) & Offset) + StackAlignment +
2115      (StackAlignment-SlotSize);
2116  }
2117  return Offset;
2118}
2119
2120/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2121/// for tail call optimization. Targets which want to do tail call
2122/// optimization should implement this function.
2123bool
2124X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2125                                                     CallingConv::ID CalleeCC,
2126                                                     bool isVarArg,
2127                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2128                                                     SelectionDAG& DAG) const {
2129  MachineFunction &MF = DAG.getMachineFunction();
2130  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2131  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2132}
2133
2134FastISel *
2135X86TargetLowering::createFastISel(MachineFunction &mf,
2136                                  MachineModuleInfo *mmo,
2137                                  DwarfWriter *dw,
2138                                  DenseMap<const Value *, unsigned> &vm,
2139                                  DenseMap<const BasicBlock *,
2140                                           MachineBasicBlock *> &bm,
2141                                  DenseMap<const AllocaInst *, int> &am
2142#ifndef NDEBUG
2143                                  , SmallSet<Instruction*, 8> &cil
2144#endif
2145                                  ) {
2146  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2147#ifndef NDEBUG
2148                             , cil
2149#endif
2150                             );
2151}
2152
2153
2154//===----------------------------------------------------------------------===//
2155//                           Other Lowering Hooks
2156//===----------------------------------------------------------------------===//
2157
2158
2159SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2160  MachineFunction &MF = DAG.getMachineFunction();
2161  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2162  int ReturnAddrIndex = FuncInfo->getRAIndex();
2163
2164  if (ReturnAddrIndex == 0) {
2165    // Set up a frame object for the return address.
2166    uint64_t SlotSize = TD->getPointerSize();
2167    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2168    FuncInfo->setRAIndex(ReturnAddrIndex);
2169  }
2170
2171  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2172}
2173
2174
2175bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2176                                       bool hasSymbolicDisplacement) {
2177  // Offset should fit into 32 bit immediate field.
2178  if (!isInt32(Offset))
2179    return false;
2180
2181  // If we don't have a symbolic displacement - we don't have any extra
2182  // restrictions.
2183  if (!hasSymbolicDisplacement)
2184    return true;
2185
2186  // FIXME: Some tweaks might be needed for medium code model.
2187  if (M != CodeModel::Small && M != CodeModel::Kernel)
2188    return false;
2189
2190  // For small code model we assume that latest object is 16MB before end of 31
2191  // bits boundary. We may also accept pretty large negative constants knowing
2192  // that all objects are in the positive half of address space.
2193  if (M == CodeModel::Small && Offset < 16*1024*1024)
2194    return true;
2195
2196  // For kernel code model we know that all object resist in the negative half
2197  // of 32bits address space. We may not accept negative offsets, since they may
2198  // be just off and we may accept pretty large positive ones.
2199  if (M == CodeModel::Kernel && Offset > 0)
2200    return true;
2201
2202  return false;
2203}
2204
2205/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2206/// specific condition code, returning the condition code and the LHS/RHS of the
2207/// comparison to make.
2208static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2209                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2210  if (!isFP) {
2211    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2212      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2213        // X > -1   -> X == 0, jump !sign.
2214        RHS = DAG.getConstant(0, RHS.getValueType());
2215        return X86::COND_NS;
2216      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2217        // X < 0   -> X == 0, jump on sign.
2218        return X86::COND_S;
2219      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2220        // X < 1   -> X <= 0
2221        RHS = DAG.getConstant(0, RHS.getValueType());
2222        return X86::COND_LE;
2223      }
2224    }
2225
2226    switch (SetCCOpcode) {
2227    default: llvm_unreachable("Invalid integer condition!");
2228    case ISD::SETEQ:  return X86::COND_E;
2229    case ISD::SETGT:  return X86::COND_G;
2230    case ISD::SETGE:  return X86::COND_GE;
2231    case ISD::SETLT:  return X86::COND_L;
2232    case ISD::SETLE:  return X86::COND_LE;
2233    case ISD::SETNE:  return X86::COND_NE;
2234    case ISD::SETULT: return X86::COND_B;
2235    case ISD::SETUGT: return X86::COND_A;
2236    case ISD::SETULE: return X86::COND_BE;
2237    case ISD::SETUGE: return X86::COND_AE;
2238    }
2239  }
2240
2241  // First determine if it is required or is profitable to flip the operands.
2242
2243  // If LHS is a foldable load, but RHS is not, flip the condition.
2244  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2245      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2246    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2247    std::swap(LHS, RHS);
2248  }
2249
2250  switch (SetCCOpcode) {
2251  default: break;
2252  case ISD::SETOLT:
2253  case ISD::SETOLE:
2254  case ISD::SETUGT:
2255  case ISD::SETUGE:
2256    std::swap(LHS, RHS);
2257    break;
2258  }
2259
2260  // On a floating point condition, the flags are set as follows:
2261  // ZF  PF  CF   op
2262  //  0 | 0 | 0 | X > Y
2263  //  0 | 0 | 1 | X < Y
2264  //  1 | 0 | 0 | X == Y
2265  //  1 | 1 | 1 | unordered
2266  switch (SetCCOpcode) {
2267  default: llvm_unreachable("Condcode should be pre-legalized away");
2268  case ISD::SETUEQ:
2269  case ISD::SETEQ:   return X86::COND_E;
2270  case ISD::SETOLT:              // flipped
2271  case ISD::SETOGT:
2272  case ISD::SETGT:   return X86::COND_A;
2273  case ISD::SETOLE:              // flipped
2274  case ISD::SETOGE:
2275  case ISD::SETGE:   return X86::COND_AE;
2276  case ISD::SETUGT:              // flipped
2277  case ISD::SETULT:
2278  case ISD::SETLT:   return X86::COND_B;
2279  case ISD::SETUGE:              // flipped
2280  case ISD::SETULE:
2281  case ISD::SETLE:   return X86::COND_BE;
2282  case ISD::SETONE:
2283  case ISD::SETNE:   return X86::COND_NE;
2284  case ISD::SETUO:   return X86::COND_P;
2285  case ISD::SETO:    return X86::COND_NP;
2286  }
2287}
2288
2289/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2290/// code. Current x86 isa includes the following FP cmov instructions:
2291/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2292static bool hasFPCMov(unsigned X86CC) {
2293  switch (X86CC) {
2294  default:
2295    return false;
2296  case X86::COND_B:
2297  case X86::COND_BE:
2298  case X86::COND_E:
2299  case X86::COND_P:
2300  case X86::COND_A:
2301  case X86::COND_AE:
2302  case X86::COND_NE:
2303  case X86::COND_NP:
2304    return true;
2305  }
2306}
2307
2308/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2309/// the specified range (L, H].
2310static bool isUndefOrInRange(int Val, int Low, int Hi) {
2311  return (Val < 0) || (Val >= Low && Val < Hi);
2312}
2313
2314/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2315/// specified value.
2316static bool isUndefOrEqual(int Val, int CmpVal) {
2317  if (Val < 0 || Val == CmpVal)
2318    return true;
2319  return false;
2320}
2321
2322/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2323/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2324/// the second operand.
2325static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2326  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2327    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2328  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2329    return (Mask[0] < 2 && Mask[1] < 2);
2330  return false;
2331}
2332
2333bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2334  SmallVector<int, 8> M;
2335  N->getMask(M);
2336  return ::isPSHUFDMask(M, N->getValueType(0));
2337}
2338
2339/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2340/// is suitable for input to PSHUFHW.
2341static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2342  if (VT != MVT::v8i16)
2343    return false;
2344
2345  // Lower quadword copied in order or undef.
2346  for (int i = 0; i != 4; ++i)
2347    if (Mask[i] >= 0 && Mask[i] != i)
2348      return false;
2349
2350  // Upper quadword shuffled.
2351  for (int i = 4; i != 8; ++i)
2352    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2353      return false;
2354
2355  return true;
2356}
2357
2358bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2359  SmallVector<int, 8> M;
2360  N->getMask(M);
2361  return ::isPSHUFHWMask(M, N->getValueType(0));
2362}
2363
2364/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2365/// is suitable for input to PSHUFLW.
2366static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2367  if (VT != MVT::v8i16)
2368    return false;
2369
2370  // Upper quadword copied in order.
2371  for (int i = 4; i != 8; ++i)
2372    if (Mask[i] >= 0 && Mask[i] != i)
2373      return false;
2374
2375  // Lower quadword shuffled.
2376  for (int i = 0; i != 4; ++i)
2377    if (Mask[i] >= 4)
2378      return false;
2379
2380  return true;
2381}
2382
2383bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2384  SmallVector<int, 8> M;
2385  N->getMask(M);
2386  return ::isPSHUFLWMask(M, N->getValueType(0));
2387}
2388
2389/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2390/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2391static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2392  int NumElems = VT.getVectorNumElements();
2393  if (NumElems != 2 && NumElems != 4)
2394    return false;
2395
2396  int Half = NumElems / 2;
2397  for (int i = 0; i < Half; ++i)
2398    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2399      return false;
2400  for (int i = Half; i < NumElems; ++i)
2401    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2402      return false;
2403
2404  return true;
2405}
2406
2407bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2408  SmallVector<int, 8> M;
2409  N->getMask(M);
2410  return ::isSHUFPMask(M, N->getValueType(0));
2411}
2412
2413/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2414/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2415/// half elements to come from vector 1 (which would equal the dest.) and
2416/// the upper half to come from vector 2.
2417static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2418  int NumElems = VT.getVectorNumElements();
2419
2420  if (NumElems != 2 && NumElems != 4)
2421    return false;
2422
2423  int Half = NumElems / 2;
2424  for (int i = 0; i < Half; ++i)
2425    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2426      return false;
2427  for (int i = Half; i < NumElems; ++i)
2428    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2429      return false;
2430  return true;
2431}
2432
2433static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2434  SmallVector<int, 8> M;
2435  N->getMask(M);
2436  return isCommutedSHUFPMask(M, N->getValueType(0));
2437}
2438
2439/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2440/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2441bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2442  if (N->getValueType(0).getVectorNumElements() != 4)
2443    return false;
2444
2445  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2446  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2447         isUndefOrEqual(N->getMaskElt(1), 7) &&
2448         isUndefOrEqual(N->getMaskElt(2), 2) &&
2449         isUndefOrEqual(N->getMaskElt(3), 3);
2450}
2451
2452/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2453/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2454bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2455  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2456
2457  if (NumElems != 2 && NumElems != 4)
2458    return false;
2459
2460  for (unsigned i = 0; i < NumElems/2; ++i)
2461    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2462      return false;
2463
2464  for (unsigned i = NumElems/2; i < NumElems; ++i)
2465    if (!isUndefOrEqual(N->getMaskElt(i), i))
2466      return false;
2467
2468  return true;
2469}
2470
2471/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2472/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2473/// and MOVLHPS.
2474bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2475  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2476
2477  if (NumElems != 2 && NumElems != 4)
2478    return false;
2479
2480  for (unsigned i = 0; i < NumElems/2; ++i)
2481    if (!isUndefOrEqual(N->getMaskElt(i), i))
2482      return false;
2483
2484  for (unsigned i = 0; i < NumElems/2; ++i)
2485    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2486      return false;
2487
2488  return true;
2489}
2490
2491/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2492/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2493/// <2, 3, 2, 3>
2494bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2495  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2496
2497  if (NumElems != 4)
2498    return false;
2499
2500  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2501         isUndefOrEqual(N->getMaskElt(1), 3) &&
2502         isUndefOrEqual(N->getMaskElt(2), 2) &&
2503         isUndefOrEqual(N->getMaskElt(3), 3);
2504}
2505
2506/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2507/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2508static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2509                         bool V2IsSplat = false) {
2510  int NumElts = VT.getVectorNumElements();
2511  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2512    return false;
2513
2514  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2515    int BitI  = Mask[i];
2516    int BitI1 = Mask[i+1];
2517    if (!isUndefOrEqual(BitI, j))
2518      return false;
2519    if (V2IsSplat) {
2520      if (!isUndefOrEqual(BitI1, NumElts))
2521        return false;
2522    } else {
2523      if (!isUndefOrEqual(BitI1, j + NumElts))
2524        return false;
2525    }
2526  }
2527  return true;
2528}
2529
2530bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2531  SmallVector<int, 8> M;
2532  N->getMask(M);
2533  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2534}
2535
2536/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2537/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2538static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2539                         bool V2IsSplat = false) {
2540  int NumElts = VT.getVectorNumElements();
2541  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2542    return false;
2543
2544  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2545    int BitI  = Mask[i];
2546    int BitI1 = Mask[i+1];
2547    if (!isUndefOrEqual(BitI, j + NumElts/2))
2548      return false;
2549    if (V2IsSplat) {
2550      if (isUndefOrEqual(BitI1, NumElts))
2551        return false;
2552    } else {
2553      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2554        return false;
2555    }
2556  }
2557  return true;
2558}
2559
2560bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2561  SmallVector<int, 8> M;
2562  N->getMask(M);
2563  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2564}
2565
2566/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2567/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2568/// <0, 0, 1, 1>
2569static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2570  int NumElems = VT.getVectorNumElements();
2571  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2572    return false;
2573
2574  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2575    int BitI  = Mask[i];
2576    int BitI1 = Mask[i+1];
2577    if (!isUndefOrEqual(BitI, j))
2578      return false;
2579    if (!isUndefOrEqual(BitI1, j))
2580      return false;
2581  }
2582  return true;
2583}
2584
2585bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2586  SmallVector<int, 8> M;
2587  N->getMask(M);
2588  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2589}
2590
2591/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2592/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2593/// <2, 2, 3, 3>
2594static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2595  int NumElems = VT.getVectorNumElements();
2596  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2597    return false;
2598
2599  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2600    int BitI  = Mask[i];
2601    int BitI1 = Mask[i+1];
2602    if (!isUndefOrEqual(BitI, j))
2603      return false;
2604    if (!isUndefOrEqual(BitI1, j))
2605      return false;
2606  }
2607  return true;
2608}
2609
2610bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2611  SmallVector<int, 8> M;
2612  N->getMask(M);
2613  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2614}
2615
2616/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2617/// specifies a shuffle of elements that is suitable for input to MOVSS,
2618/// MOVSD, and MOVD, i.e. setting the lowest element.
2619static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2620  if (VT.getVectorElementType().getSizeInBits() < 32)
2621    return false;
2622
2623  int NumElts = VT.getVectorNumElements();
2624
2625  if (!isUndefOrEqual(Mask[0], NumElts))
2626    return false;
2627
2628  for (int i = 1; i < NumElts; ++i)
2629    if (!isUndefOrEqual(Mask[i], i))
2630      return false;
2631
2632  return true;
2633}
2634
2635bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2636  SmallVector<int, 8> M;
2637  N->getMask(M);
2638  return ::isMOVLMask(M, N->getValueType(0));
2639}
2640
2641/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2642/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2643/// element of vector 2 and the other elements to come from vector 1 in order.
2644static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2645                               bool V2IsSplat = false, bool V2IsUndef = false) {
2646  int NumOps = VT.getVectorNumElements();
2647  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2648    return false;
2649
2650  if (!isUndefOrEqual(Mask[0], 0))
2651    return false;
2652
2653  for (int i = 1; i < NumOps; ++i)
2654    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2655          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2656          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2657      return false;
2658
2659  return true;
2660}
2661
2662static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2663                           bool V2IsUndef = false) {
2664  SmallVector<int, 8> M;
2665  N->getMask(M);
2666  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2667}
2668
2669/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2670/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2671bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2672  if (N->getValueType(0).getVectorNumElements() != 4)
2673    return false;
2674
2675  // Expect 1, 1, 3, 3
2676  for (unsigned i = 0; i < 2; ++i) {
2677    int Elt = N->getMaskElt(i);
2678    if (Elt >= 0 && Elt != 1)
2679      return false;
2680  }
2681
2682  bool HasHi = false;
2683  for (unsigned i = 2; i < 4; ++i) {
2684    int Elt = N->getMaskElt(i);
2685    if (Elt >= 0 && Elt != 3)
2686      return false;
2687    if (Elt == 3)
2688      HasHi = true;
2689  }
2690  // Don't use movshdup if it can be done with a shufps.
2691  // FIXME: verify that matching u, u, 3, 3 is what we want.
2692  return HasHi;
2693}
2694
2695/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2696/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2697bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2698  if (N->getValueType(0).getVectorNumElements() != 4)
2699    return false;
2700
2701  // Expect 0, 0, 2, 2
2702  for (unsigned i = 0; i < 2; ++i)
2703    if (N->getMaskElt(i) > 0)
2704      return false;
2705
2706  bool HasHi = false;
2707  for (unsigned i = 2; i < 4; ++i) {
2708    int Elt = N->getMaskElt(i);
2709    if (Elt >= 0 && Elt != 2)
2710      return false;
2711    if (Elt == 2)
2712      HasHi = true;
2713  }
2714  // Don't use movsldup if it can be done with a shufps.
2715  return HasHi;
2716}
2717
2718/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2719/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2720bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2721  int e = N->getValueType(0).getVectorNumElements() / 2;
2722
2723  for (int i = 0; i < e; ++i)
2724    if (!isUndefOrEqual(N->getMaskElt(i), i))
2725      return false;
2726  for (int i = 0; i < e; ++i)
2727    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2728      return false;
2729  return true;
2730}
2731
2732/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2733/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2734/// instructions.
2735unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2736  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2737  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2738
2739  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2740  unsigned Mask = 0;
2741  for (int i = 0; i < NumOperands; ++i) {
2742    int Val = SVOp->getMaskElt(NumOperands-i-1);
2743    if (Val < 0) Val = 0;
2744    if (Val >= NumOperands) Val -= NumOperands;
2745    Mask |= Val;
2746    if (i != NumOperands - 1)
2747      Mask <<= Shift;
2748  }
2749  return Mask;
2750}
2751
2752/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2753/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2754/// instructions.
2755unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2756  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2757  unsigned Mask = 0;
2758  // 8 nodes, but we only care about the last 4.
2759  for (unsigned i = 7; i >= 4; --i) {
2760    int Val = SVOp->getMaskElt(i);
2761    if (Val >= 0)
2762      Mask |= (Val - 4);
2763    if (i != 4)
2764      Mask <<= 2;
2765  }
2766  return Mask;
2767}
2768
2769/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2770/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2771/// instructions.
2772unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2773  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2774  unsigned Mask = 0;
2775  // 8 nodes, but we only care about the first 4.
2776  for (int i = 3; i >= 0; --i) {
2777    int Val = SVOp->getMaskElt(i);
2778    if (Val >= 0)
2779      Mask |= Val;
2780    if (i != 0)
2781      Mask <<= 2;
2782  }
2783  return Mask;
2784}
2785
2786/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2787/// constant +0.0.
2788bool X86::isZeroNode(SDValue Elt) {
2789  return ((isa<ConstantSDNode>(Elt) &&
2790           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2791          (isa<ConstantFPSDNode>(Elt) &&
2792           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2793}
2794
2795/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2796/// their permute mask.
2797static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2798                                    SelectionDAG &DAG) {
2799  EVT VT = SVOp->getValueType(0);
2800  unsigned NumElems = VT.getVectorNumElements();
2801  SmallVector<int, 8> MaskVec;
2802
2803  for (unsigned i = 0; i != NumElems; ++i) {
2804    int idx = SVOp->getMaskElt(i);
2805    if (idx < 0)
2806      MaskVec.push_back(idx);
2807    else if (idx < (int)NumElems)
2808      MaskVec.push_back(idx + NumElems);
2809    else
2810      MaskVec.push_back(idx - NumElems);
2811  }
2812  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2813                              SVOp->getOperand(0), &MaskVec[0]);
2814}
2815
2816/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2817/// the two vector operands have swapped position.
2818static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2819  unsigned NumElems = VT.getVectorNumElements();
2820  for (unsigned i = 0; i != NumElems; ++i) {
2821    int idx = Mask[i];
2822    if (idx < 0)
2823      continue;
2824    else if (idx < (int)NumElems)
2825      Mask[i] = idx + NumElems;
2826    else
2827      Mask[i] = idx - NumElems;
2828  }
2829}
2830
2831/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2832/// match movhlps. The lower half elements should come from upper half of
2833/// V1 (and in order), and the upper half elements should come from the upper
2834/// half of V2 (and in order).
2835static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2836  if (Op->getValueType(0).getVectorNumElements() != 4)
2837    return false;
2838  for (unsigned i = 0, e = 2; i != e; ++i)
2839    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2840      return false;
2841  for (unsigned i = 2; i != 4; ++i)
2842    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2843      return false;
2844  return true;
2845}
2846
2847/// isScalarLoadToVector - Returns true if the node is a scalar load that
2848/// is promoted to a vector. It also returns the LoadSDNode by reference if
2849/// required.
2850static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2851  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2852    return false;
2853  N = N->getOperand(0).getNode();
2854  if (!ISD::isNON_EXTLoad(N))
2855    return false;
2856  if (LD)
2857    *LD = cast<LoadSDNode>(N);
2858  return true;
2859}
2860
2861/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2862/// match movlp{s|d}. The lower half elements should come from lower half of
2863/// V1 (and in order), and the upper half elements should come from the upper
2864/// half of V2 (and in order). And since V1 will become the source of the
2865/// MOVLP, it must be either a vector load or a scalar load to vector.
2866static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2867                               ShuffleVectorSDNode *Op) {
2868  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2869    return false;
2870  // Is V2 is a vector load, don't do this transformation. We will try to use
2871  // load folding shufps op.
2872  if (ISD::isNON_EXTLoad(V2))
2873    return false;
2874
2875  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2876
2877  if (NumElems != 2 && NumElems != 4)
2878    return false;
2879  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2880    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2881      return false;
2882  for (unsigned i = NumElems/2; i != NumElems; ++i)
2883    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2884      return false;
2885  return true;
2886}
2887
2888/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2889/// all the same.
2890static bool isSplatVector(SDNode *N) {
2891  if (N->getOpcode() != ISD::BUILD_VECTOR)
2892    return false;
2893
2894  SDValue SplatValue = N->getOperand(0);
2895  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2896    if (N->getOperand(i) != SplatValue)
2897      return false;
2898  return true;
2899}
2900
2901/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2902/// to an zero vector.
2903/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2904static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2905  SDValue V1 = N->getOperand(0);
2906  SDValue V2 = N->getOperand(1);
2907  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2908  for (unsigned i = 0; i != NumElems; ++i) {
2909    int Idx = N->getMaskElt(i);
2910    if (Idx >= (int)NumElems) {
2911      unsigned Opc = V2.getOpcode();
2912      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2913        continue;
2914      if (Opc != ISD::BUILD_VECTOR ||
2915          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2916        return false;
2917    } else if (Idx >= 0) {
2918      unsigned Opc = V1.getOpcode();
2919      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2920        continue;
2921      if (Opc != ISD::BUILD_VECTOR ||
2922          !X86::isZeroNode(V1.getOperand(Idx)))
2923        return false;
2924    }
2925  }
2926  return true;
2927}
2928
2929/// getZeroVector - Returns a vector of specified type with all zero elements.
2930///
2931static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
2932                             DebugLoc dl) {
2933  assert(VT.isVector() && "Expected a vector type");
2934
2935  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2936  // type.  This ensures they get CSE'd.
2937  SDValue Vec;
2938  if (VT.getSizeInBits() == 64) { // MMX
2939    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2940    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2941  } else if (HasSSE2) {  // SSE2
2942    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2943    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2944  } else { // SSE1
2945    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2946    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2947  }
2948  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2949}
2950
2951/// getOnesVector - Returns a vector of specified type with all bits set.
2952///
2953static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2954  assert(VT.isVector() && "Expected a vector type");
2955
2956  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2957  // type.  This ensures they get CSE'd.
2958  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2959  SDValue Vec;
2960  if (VT.getSizeInBits() == 64)  // MMX
2961    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2962  else                                              // SSE
2963    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2964  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2965}
2966
2967
2968/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2969/// that point to V2 points to its first element.
2970static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2971  EVT VT = SVOp->getValueType(0);
2972  unsigned NumElems = VT.getVectorNumElements();
2973
2974  bool Changed = false;
2975  SmallVector<int, 8> MaskVec;
2976  SVOp->getMask(MaskVec);
2977
2978  for (unsigned i = 0; i != NumElems; ++i) {
2979    if (MaskVec[i] > (int)NumElems) {
2980      MaskVec[i] = NumElems;
2981      Changed = true;
2982    }
2983  }
2984  if (Changed)
2985    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2986                                SVOp->getOperand(1), &MaskVec[0]);
2987  return SDValue(SVOp, 0);
2988}
2989
2990/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2991/// operation of specified width.
2992static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2993                       SDValue V2) {
2994  unsigned NumElems = VT.getVectorNumElements();
2995  SmallVector<int, 8> Mask;
2996  Mask.push_back(NumElems);
2997  for (unsigned i = 1; i != NumElems; ++i)
2998    Mask.push_back(i);
2999  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3000}
3001
3002/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3003static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3004                          SDValue V2) {
3005  unsigned NumElems = VT.getVectorNumElements();
3006  SmallVector<int, 8> Mask;
3007  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3008    Mask.push_back(i);
3009    Mask.push_back(i + NumElems);
3010  }
3011  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3012}
3013
3014/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3015static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3016                          SDValue V2) {
3017  unsigned NumElems = VT.getVectorNumElements();
3018  unsigned Half = NumElems/2;
3019  SmallVector<int, 8> Mask;
3020  for (unsigned i = 0; i != Half; ++i) {
3021    Mask.push_back(i + Half);
3022    Mask.push_back(i + NumElems + Half);
3023  }
3024  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3025}
3026
3027/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3028static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3029                            bool HasSSE2) {
3030  if (SV->getValueType(0).getVectorNumElements() <= 4)
3031    return SDValue(SV, 0);
3032
3033  EVT PVT = MVT::v4f32;
3034  EVT VT = SV->getValueType(0);
3035  DebugLoc dl = SV->getDebugLoc();
3036  SDValue V1 = SV->getOperand(0);
3037  int NumElems = VT.getVectorNumElements();
3038  int EltNo = SV->getSplatIndex();
3039
3040  // unpack elements to the correct location
3041  while (NumElems > 4) {
3042    if (EltNo < NumElems/2) {
3043      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3044    } else {
3045      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3046      EltNo -= NumElems/2;
3047    }
3048    NumElems >>= 1;
3049  }
3050
3051  // Perform the splat.
3052  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3053  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3054  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3055  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3056}
3057
3058/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3059/// vector of zero or undef vector.  This produces a shuffle where the low
3060/// element of V2 is swizzled into the zero/undef vector, landing at element
3061/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3062static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3063                                             bool isZero, bool HasSSE2,
3064                                             SelectionDAG &DAG) {
3065  EVT VT = V2.getValueType();
3066  SDValue V1 = isZero
3067    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3068  unsigned NumElems = VT.getVectorNumElements();
3069  SmallVector<int, 16> MaskVec;
3070  for (unsigned i = 0; i != NumElems; ++i)
3071    // If this is the insertion idx, put the low elt of V2 here.
3072    MaskVec.push_back(i == Idx ? NumElems : i);
3073  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3074}
3075
3076/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3077/// a shuffle that is zero.
3078static
3079unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3080                                  bool Low, SelectionDAG &DAG) {
3081  unsigned NumZeros = 0;
3082  for (int i = 0; i < NumElems; ++i) {
3083    unsigned Index = Low ? i : NumElems-i-1;
3084    int Idx = SVOp->getMaskElt(Index);
3085    if (Idx < 0) {
3086      ++NumZeros;
3087      continue;
3088    }
3089    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3090    if (Elt.getNode() && X86::isZeroNode(Elt))
3091      ++NumZeros;
3092    else
3093      break;
3094  }
3095  return NumZeros;
3096}
3097
3098/// isVectorShift - Returns true if the shuffle can be implemented as a
3099/// logical left or right shift of a vector.
3100/// FIXME: split into pslldqi, psrldqi, palignr variants.
3101static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3102                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3103  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3104
3105  isLeft = true;
3106  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3107  if (!NumZeros) {
3108    isLeft = false;
3109    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3110    if (!NumZeros)
3111      return false;
3112  }
3113  bool SeenV1 = false;
3114  bool SeenV2 = false;
3115  for (int i = NumZeros; i < NumElems; ++i) {
3116    int Val = isLeft ? (i - NumZeros) : i;
3117    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3118    if (Idx < 0)
3119      continue;
3120    if (Idx < NumElems)
3121      SeenV1 = true;
3122    else {
3123      Idx -= NumElems;
3124      SeenV2 = true;
3125    }
3126    if (Idx != Val)
3127      return false;
3128  }
3129  if (SeenV1 && SeenV2)
3130    return false;
3131
3132  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3133  ShAmt = NumZeros;
3134  return true;
3135}
3136
3137
3138/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3139///
3140static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3141                                       unsigned NumNonZero, unsigned NumZero,
3142                                       SelectionDAG &DAG, TargetLowering &TLI) {
3143  if (NumNonZero > 8)
3144    return SDValue();
3145
3146  DebugLoc dl = Op.getDebugLoc();
3147  SDValue V(0, 0);
3148  bool First = true;
3149  for (unsigned i = 0; i < 16; ++i) {
3150    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3151    if (ThisIsNonZero && First) {
3152      if (NumZero)
3153        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3154      else
3155        V = DAG.getUNDEF(MVT::v8i16);
3156      First = false;
3157    }
3158
3159    if ((i & 1) != 0) {
3160      SDValue ThisElt(0, 0), LastElt(0, 0);
3161      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3162      if (LastIsNonZero) {
3163        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3164                              MVT::i16, Op.getOperand(i-1));
3165      }
3166      if (ThisIsNonZero) {
3167        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3168        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3169                              ThisElt, DAG.getConstant(8, MVT::i8));
3170        if (LastIsNonZero)
3171          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3172      } else
3173        ThisElt = LastElt;
3174
3175      if (ThisElt.getNode())
3176        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3177                        DAG.getIntPtrConstant(i/2));
3178    }
3179  }
3180
3181  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3182}
3183
3184/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3185///
3186static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3187                                       unsigned NumNonZero, unsigned NumZero,
3188                                       SelectionDAG &DAG, TargetLowering &TLI) {
3189  if (NumNonZero > 4)
3190    return SDValue();
3191
3192  DebugLoc dl = Op.getDebugLoc();
3193  SDValue V(0, 0);
3194  bool First = true;
3195  for (unsigned i = 0; i < 8; ++i) {
3196    bool isNonZero = (NonZeros & (1 << i)) != 0;
3197    if (isNonZero) {
3198      if (First) {
3199        if (NumZero)
3200          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3201        else
3202          V = DAG.getUNDEF(MVT::v8i16);
3203        First = false;
3204      }
3205      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3206                      MVT::v8i16, V, Op.getOperand(i),
3207                      DAG.getIntPtrConstant(i));
3208    }
3209  }
3210
3211  return V;
3212}
3213
3214/// getVShift - Return a vector logical shift node.
3215///
3216static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3217                         unsigned NumBits, SelectionDAG &DAG,
3218                         const TargetLowering &TLI, DebugLoc dl) {
3219  bool isMMX = VT.getSizeInBits() == 64;
3220  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3221  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3222  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3223  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3224                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3225                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3226}
3227
3228SDValue
3229X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3230  DebugLoc dl = Op.getDebugLoc();
3231  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3232  if (ISD::isBuildVectorAllZeros(Op.getNode())
3233      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3234    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3235    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3236    // eliminated on x86-32 hosts.
3237    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3238      return Op;
3239
3240    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3241      return getOnesVector(Op.getValueType(), DAG, dl);
3242    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3243  }
3244
3245  EVT VT = Op.getValueType();
3246  EVT ExtVT = VT.getVectorElementType();
3247  unsigned EVTBits = ExtVT.getSizeInBits();
3248
3249  unsigned NumElems = Op.getNumOperands();
3250  unsigned NumZero  = 0;
3251  unsigned NumNonZero = 0;
3252  unsigned NonZeros = 0;
3253  bool IsAllConstants = true;
3254  SmallSet<SDValue, 8> Values;
3255  for (unsigned i = 0; i < NumElems; ++i) {
3256    SDValue Elt = Op.getOperand(i);
3257    if (Elt.getOpcode() == ISD::UNDEF)
3258      continue;
3259    Values.insert(Elt);
3260    if (Elt.getOpcode() != ISD::Constant &&
3261        Elt.getOpcode() != ISD::ConstantFP)
3262      IsAllConstants = false;
3263    if (X86::isZeroNode(Elt))
3264      NumZero++;
3265    else {
3266      NonZeros |= (1 << i);
3267      NumNonZero++;
3268    }
3269  }
3270
3271  if (NumNonZero == 0) {
3272    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3273    return DAG.getUNDEF(VT);
3274  }
3275
3276  // Special case for single non-zero, non-undef, element.
3277  if (NumNonZero == 1) {
3278    unsigned Idx = CountTrailingZeros_32(NonZeros);
3279    SDValue Item = Op.getOperand(Idx);
3280
3281    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3282    // the value are obviously zero, truncate the value to i32 and do the
3283    // insertion that way.  Only do this if the value is non-constant or if the
3284    // value is a constant being inserted into element 0.  It is cheaper to do
3285    // a constant pool load than it is to do a movd + shuffle.
3286    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3287        (!IsAllConstants || Idx == 0)) {
3288      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3289        // Handle MMX and SSE both.
3290        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3291        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3292
3293        // Truncate the value (which may itself be a constant) to i32, and
3294        // convert it to a vector with movd (S2V+shuffle to zero extend).
3295        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3296        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3297        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3298                                           Subtarget->hasSSE2(), DAG);
3299
3300        // Now we have our 32-bit value zero extended in the low element of
3301        // a vector.  If Idx != 0, swizzle it into place.
3302        if (Idx != 0) {
3303          SmallVector<int, 4> Mask;
3304          Mask.push_back(Idx);
3305          for (unsigned i = 1; i != VecElts; ++i)
3306            Mask.push_back(i);
3307          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3308                                      DAG.getUNDEF(Item.getValueType()),
3309                                      &Mask[0]);
3310        }
3311        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3312      }
3313    }
3314
3315    // If we have a constant or non-constant insertion into the low element of
3316    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3317    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3318    // depending on what the source datatype is.
3319    if (Idx == 0) {
3320      if (NumZero == 0) {
3321        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3322      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3323          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3324        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3325        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3326        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3327                                           DAG);
3328      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3329        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3330        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3331        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3332        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3333                                           Subtarget->hasSSE2(), DAG);
3334        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3335      }
3336    }
3337
3338    // Is it a vector logical left shift?
3339    if (NumElems == 2 && Idx == 1 &&
3340        X86::isZeroNode(Op.getOperand(0)) &&
3341        !X86::isZeroNode(Op.getOperand(1))) {
3342      unsigned NumBits = VT.getSizeInBits();
3343      return getVShift(true, VT,
3344                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3345                                   VT, Op.getOperand(1)),
3346                       NumBits/2, DAG, *this, dl);
3347    }
3348
3349    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3350      return SDValue();
3351
3352    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3353    // is a non-constant being inserted into an element other than the low one,
3354    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3355    // movd/movss) to move this into the low element, then shuffle it into
3356    // place.
3357    if (EVTBits == 32) {
3358      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3359
3360      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3361      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3362                                         Subtarget->hasSSE2(), DAG);
3363      SmallVector<int, 8> MaskVec;
3364      for (unsigned i = 0; i < NumElems; i++)
3365        MaskVec.push_back(i == Idx ? 0 : 1);
3366      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3367    }
3368  }
3369
3370  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3371  if (Values.size() == 1)
3372    return SDValue();
3373
3374  // A vector full of immediates; various special cases are already
3375  // handled, so this is best done with a single constant-pool load.
3376  if (IsAllConstants)
3377    return SDValue();
3378
3379  // Let legalizer expand 2-wide build_vectors.
3380  if (EVTBits == 64) {
3381    if (NumNonZero == 1) {
3382      // One half is zero or undef.
3383      unsigned Idx = CountTrailingZeros_32(NonZeros);
3384      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3385                                 Op.getOperand(Idx));
3386      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3387                                         Subtarget->hasSSE2(), DAG);
3388    }
3389    return SDValue();
3390  }
3391
3392  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3393  if (EVTBits == 8 && NumElems == 16) {
3394    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3395                                        *this);
3396    if (V.getNode()) return V;
3397  }
3398
3399  if (EVTBits == 16 && NumElems == 8) {
3400    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3401                                        *this);
3402    if (V.getNode()) return V;
3403  }
3404
3405  // If element VT is == 32 bits, turn it into a number of shuffles.
3406  SmallVector<SDValue, 8> V;
3407  V.resize(NumElems);
3408  if (NumElems == 4 && NumZero > 0) {
3409    for (unsigned i = 0; i < 4; ++i) {
3410      bool isZero = !(NonZeros & (1 << i));
3411      if (isZero)
3412        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3413      else
3414        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3415    }
3416
3417    for (unsigned i = 0; i < 2; ++i) {
3418      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3419        default: break;
3420        case 0:
3421          V[i] = V[i*2];  // Must be a zero vector.
3422          break;
3423        case 1:
3424          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3425          break;
3426        case 2:
3427          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3428          break;
3429        case 3:
3430          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3431          break;
3432      }
3433    }
3434
3435    SmallVector<int, 8> MaskVec;
3436    bool Reverse = (NonZeros & 0x3) == 2;
3437    for (unsigned i = 0; i < 2; ++i)
3438      MaskVec.push_back(Reverse ? 1-i : i);
3439    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3440    for (unsigned i = 0; i < 2; ++i)
3441      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3442    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3443  }
3444
3445  if (Values.size() > 2) {
3446    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3447    // values to be inserted is equal to the number of elements, in which case
3448    // use the unpack code below in the hopes of matching the consecutive elts
3449    // load merge pattern for shuffles.
3450    // FIXME: We could probably just check that here directly.
3451    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3452        getSubtarget()->hasSSE41()) {
3453      V[0] = DAG.getUNDEF(VT);
3454      for (unsigned i = 0; i < NumElems; ++i)
3455        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3456          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3457                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3458      return V[0];
3459    }
3460    // Expand into a number of unpckl*.
3461    // e.g. for v4f32
3462    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3463    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3464    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3465    for (unsigned i = 0; i < NumElems; ++i)
3466      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3467    NumElems >>= 1;
3468    while (NumElems != 0) {
3469      for (unsigned i = 0; i < NumElems; ++i)
3470        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3471      NumElems >>= 1;
3472    }
3473    return V[0];
3474  }
3475
3476  return SDValue();
3477}
3478
3479// v8i16 shuffles - Prefer shuffles in the following order:
3480// 1. [all]   pshuflw, pshufhw, optional move
3481// 2. [ssse3] 1 x pshufb
3482// 3. [ssse3] 2 x pshufb + 1 x por
3483// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3484static
3485SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3486                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3487  SDValue V1 = SVOp->getOperand(0);
3488  SDValue V2 = SVOp->getOperand(1);
3489  DebugLoc dl = SVOp->getDebugLoc();
3490  SmallVector<int, 8> MaskVals;
3491
3492  // Determine if more than 1 of the words in each of the low and high quadwords
3493  // of the result come from the same quadword of one of the two inputs.  Undef
3494  // mask values count as coming from any quadword, for better codegen.
3495  SmallVector<unsigned, 4> LoQuad(4);
3496  SmallVector<unsigned, 4> HiQuad(4);
3497  BitVector InputQuads(4);
3498  for (unsigned i = 0; i < 8; ++i) {
3499    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3500    int EltIdx = SVOp->getMaskElt(i);
3501    MaskVals.push_back(EltIdx);
3502    if (EltIdx < 0) {
3503      ++Quad[0];
3504      ++Quad[1];
3505      ++Quad[2];
3506      ++Quad[3];
3507      continue;
3508    }
3509    ++Quad[EltIdx / 4];
3510    InputQuads.set(EltIdx / 4);
3511  }
3512
3513  int BestLoQuad = -1;
3514  unsigned MaxQuad = 1;
3515  for (unsigned i = 0; i < 4; ++i) {
3516    if (LoQuad[i] > MaxQuad) {
3517      BestLoQuad = i;
3518      MaxQuad = LoQuad[i];
3519    }
3520  }
3521
3522  int BestHiQuad = -1;
3523  MaxQuad = 1;
3524  for (unsigned i = 0; i < 4; ++i) {
3525    if (HiQuad[i] > MaxQuad) {
3526      BestHiQuad = i;
3527      MaxQuad = HiQuad[i];
3528    }
3529  }
3530
3531  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3532  // of the two input vectors, shuffle them into one input vector so only a
3533  // single pshufb instruction is necessary. If There are more than 2 input
3534  // quads, disable the next transformation since it does not help SSSE3.
3535  bool V1Used = InputQuads[0] || InputQuads[1];
3536  bool V2Used = InputQuads[2] || InputQuads[3];
3537  if (TLI.getSubtarget()->hasSSSE3()) {
3538    if (InputQuads.count() == 2 && V1Used && V2Used) {
3539      BestLoQuad = InputQuads.find_first();
3540      BestHiQuad = InputQuads.find_next(BestLoQuad);
3541    }
3542    if (InputQuads.count() > 2) {
3543      BestLoQuad = -1;
3544      BestHiQuad = -1;
3545    }
3546  }
3547
3548  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3549  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3550  // words from all 4 input quadwords.
3551  SDValue NewV;
3552  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3553    SmallVector<int, 8> MaskV;
3554    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3555    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3556    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3557                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3558                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3559    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3560
3561    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3562    // source words for the shuffle, to aid later transformations.
3563    bool AllWordsInNewV = true;
3564    bool InOrder[2] = { true, true };
3565    for (unsigned i = 0; i != 8; ++i) {
3566      int idx = MaskVals[i];
3567      if (idx != (int)i)
3568        InOrder[i/4] = false;
3569      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3570        continue;
3571      AllWordsInNewV = false;
3572      break;
3573    }
3574
3575    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3576    if (AllWordsInNewV) {
3577      for (int i = 0; i != 8; ++i) {
3578        int idx = MaskVals[i];
3579        if (idx < 0)
3580          continue;
3581        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3582        if ((idx != i) && idx < 4)
3583          pshufhw = false;
3584        if ((idx != i) && idx > 3)
3585          pshuflw = false;
3586      }
3587      V1 = NewV;
3588      V2Used = false;
3589      BestLoQuad = 0;
3590      BestHiQuad = 1;
3591    }
3592
3593    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3594    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3595    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3596      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3597                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3598    }
3599  }
3600
3601  // If we have SSSE3, and all words of the result are from 1 input vector,
3602  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3603  // is present, fall back to case 4.
3604  if (TLI.getSubtarget()->hasSSSE3()) {
3605    SmallVector<SDValue,16> pshufbMask;
3606
3607    // If we have elements from both input vectors, set the high bit of the
3608    // shuffle mask element to zero out elements that come from V2 in the V1
3609    // mask, and elements that come from V1 in the V2 mask, so that the two
3610    // results can be OR'd together.
3611    bool TwoInputs = V1Used && V2Used;
3612    for (unsigned i = 0; i != 8; ++i) {
3613      int EltIdx = MaskVals[i] * 2;
3614      if (TwoInputs && (EltIdx >= 16)) {
3615        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3616        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3617        continue;
3618      }
3619      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3620      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3621    }
3622    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3623    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3624                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3625                                 MVT::v16i8, &pshufbMask[0], 16));
3626    if (!TwoInputs)
3627      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3628
3629    // Calculate the shuffle mask for the second input, shuffle it, and
3630    // OR it with the first shuffled input.
3631    pshufbMask.clear();
3632    for (unsigned i = 0; i != 8; ++i) {
3633      int EltIdx = MaskVals[i] * 2;
3634      if (EltIdx < 16) {
3635        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3636        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3637        continue;
3638      }
3639      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3640      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3641    }
3642    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3643    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3644                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3645                                 MVT::v16i8, &pshufbMask[0], 16));
3646    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3647    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3648  }
3649
3650  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3651  // and update MaskVals with new element order.
3652  BitVector InOrder(8);
3653  if (BestLoQuad >= 0) {
3654    SmallVector<int, 8> MaskV;
3655    for (int i = 0; i != 4; ++i) {
3656      int idx = MaskVals[i];
3657      if (idx < 0) {
3658        MaskV.push_back(-1);
3659        InOrder.set(i);
3660      } else if ((idx / 4) == BestLoQuad) {
3661        MaskV.push_back(idx & 3);
3662        InOrder.set(i);
3663      } else {
3664        MaskV.push_back(-1);
3665      }
3666    }
3667    for (unsigned i = 4; i != 8; ++i)
3668      MaskV.push_back(i);
3669    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3670                                &MaskV[0]);
3671  }
3672
3673  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3674  // and update MaskVals with the new element order.
3675  if (BestHiQuad >= 0) {
3676    SmallVector<int, 8> MaskV;
3677    for (unsigned i = 0; i != 4; ++i)
3678      MaskV.push_back(i);
3679    for (unsigned i = 4; i != 8; ++i) {
3680      int idx = MaskVals[i];
3681      if (idx < 0) {
3682        MaskV.push_back(-1);
3683        InOrder.set(i);
3684      } else if ((idx / 4) == BestHiQuad) {
3685        MaskV.push_back((idx & 3) + 4);
3686        InOrder.set(i);
3687      } else {
3688        MaskV.push_back(-1);
3689      }
3690    }
3691    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3692                                &MaskV[0]);
3693  }
3694
3695  // In case BestHi & BestLo were both -1, which means each quadword has a word
3696  // from each of the four input quadwords, calculate the InOrder bitvector now
3697  // before falling through to the insert/extract cleanup.
3698  if (BestLoQuad == -1 && BestHiQuad == -1) {
3699    NewV = V1;
3700    for (int i = 0; i != 8; ++i)
3701      if (MaskVals[i] < 0 || MaskVals[i] == i)
3702        InOrder.set(i);
3703  }
3704
3705  // The other elements are put in the right place using pextrw and pinsrw.
3706  for (unsigned i = 0; i != 8; ++i) {
3707    if (InOrder[i])
3708      continue;
3709    int EltIdx = MaskVals[i];
3710    if (EltIdx < 0)
3711      continue;
3712    SDValue ExtOp = (EltIdx < 8)
3713    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3714                  DAG.getIntPtrConstant(EltIdx))
3715    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3716                  DAG.getIntPtrConstant(EltIdx - 8));
3717    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3718                       DAG.getIntPtrConstant(i));
3719  }
3720  return NewV;
3721}
3722
3723// v16i8 shuffles - Prefer shuffles in the following order:
3724// 1. [ssse3] 1 x pshufb
3725// 2. [ssse3] 2 x pshufb + 1 x por
3726// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3727static
3728SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3729                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3730  SDValue V1 = SVOp->getOperand(0);
3731  SDValue V2 = SVOp->getOperand(1);
3732  DebugLoc dl = SVOp->getDebugLoc();
3733  SmallVector<int, 16> MaskVals;
3734  SVOp->getMask(MaskVals);
3735
3736  // If we have SSSE3, case 1 is generated when all result bytes come from
3737  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3738  // present, fall back to case 3.
3739  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3740  bool V1Only = true;
3741  bool V2Only = true;
3742  for (unsigned i = 0; i < 16; ++i) {
3743    int EltIdx = MaskVals[i];
3744    if (EltIdx < 0)
3745      continue;
3746    if (EltIdx < 16)
3747      V2Only = false;
3748    else
3749      V1Only = false;
3750  }
3751
3752  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3753  if (TLI.getSubtarget()->hasSSSE3()) {
3754    SmallVector<SDValue,16> pshufbMask;
3755
3756    // If all result elements are from one input vector, then only translate
3757    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3758    //
3759    // Otherwise, we have elements from both input vectors, and must zero out
3760    // elements that come from V2 in the first mask, and V1 in the second mask
3761    // so that we can OR them together.
3762    bool TwoInputs = !(V1Only || V2Only);
3763    for (unsigned i = 0; i != 16; ++i) {
3764      int EltIdx = MaskVals[i];
3765      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3766        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3767        continue;
3768      }
3769      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3770    }
3771    // If all the elements are from V2, assign it to V1 and return after
3772    // building the first pshufb.
3773    if (V2Only)
3774      V1 = V2;
3775    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3776                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3777                                 MVT::v16i8, &pshufbMask[0], 16));
3778    if (!TwoInputs)
3779      return V1;
3780
3781    // Calculate the shuffle mask for the second input, shuffle it, and
3782    // OR it with the first shuffled input.
3783    pshufbMask.clear();
3784    for (unsigned i = 0; i != 16; ++i) {
3785      int EltIdx = MaskVals[i];
3786      if (EltIdx < 16) {
3787        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3788        continue;
3789      }
3790      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3791    }
3792    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3793                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3794                                 MVT::v16i8, &pshufbMask[0], 16));
3795    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3796  }
3797
3798  // No SSSE3 - Calculate in place words and then fix all out of place words
3799  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3800  // the 16 different words that comprise the two doublequadword input vectors.
3801  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3802  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3803  SDValue NewV = V2Only ? V2 : V1;
3804  for (int i = 0; i != 8; ++i) {
3805    int Elt0 = MaskVals[i*2];
3806    int Elt1 = MaskVals[i*2+1];
3807
3808    // This word of the result is all undef, skip it.
3809    if (Elt0 < 0 && Elt1 < 0)
3810      continue;
3811
3812    // This word of the result is already in the correct place, skip it.
3813    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3814      continue;
3815    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3816      continue;
3817
3818    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3819    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3820    SDValue InsElt;
3821
3822    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3823    // using a single extract together, load it and store it.
3824    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3825      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3826                           DAG.getIntPtrConstant(Elt1 / 2));
3827      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3828                        DAG.getIntPtrConstant(i));
3829      continue;
3830    }
3831
3832    // If Elt1 is defined, extract it from the appropriate source.  If the
3833    // source byte is not also odd, shift the extracted word left 8 bits
3834    // otherwise clear the bottom 8 bits if we need to do an or.
3835    if (Elt1 >= 0) {
3836      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3837                           DAG.getIntPtrConstant(Elt1 / 2));
3838      if ((Elt1 & 1) == 0)
3839        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3840                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3841      else if (Elt0 >= 0)
3842        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3843                             DAG.getConstant(0xFF00, MVT::i16));
3844    }
3845    // If Elt0 is defined, extract it from the appropriate source.  If the
3846    // source byte is not also even, shift the extracted word right 8 bits. If
3847    // Elt1 was also defined, OR the extracted values together before
3848    // inserting them in the result.
3849    if (Elt0 >= 0) {
3850      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3851                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3852      if ((Elt0 & 1) != 0)
3853        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3854                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3855      else if (Elt1 >= 0)
3856        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3857                             DAG.getConstant(0x00FF, MVT::i16));
3858      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3859                         : InsElt0;
3860    }
3861    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3862                       DAG.getIntPtrConstant(i));
3863  }
3864  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3865}
3866
3867/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3868/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3869/// done when every pair / quad of shuffle mask elements point to elements in
3870/// the right sequence. e.g.
3871/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3872static
3873SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3874                                 SelectionDAG &DAG,
3875                                 TargetLowering &TLI, DebugLoc dl) {
3876  EVT VT = SVOp->getValueType(0);
3877  SDValue V1 = SVOp->getOperand(0);
3878  SDValue V2 = SVOp->getOperand(1);
3879  unsigned NumElems = VT.getVectorNumElements();
3880  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3881  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3882  EVT MaskEltVT = MaskVT.getVectorElementType();
3883  EVT NewVT = MaskVT;
3884  switch (VT.getSimpleVT().SimpleTy) {
3885  default: assert(false && "Unexpected!");
3886  case MVT::v4f32: NewVT = MVT::v2f64; break;
3887  case MVT::v4i32: NewVT = MVT::v2i64; break;
3888  case MVT::v8i16: NewVT = MVT::v4i32; break;
3889  case MVT::v16i8: NewVT = MVT::v4i32; break;
3890  }
3891
3892  if (NewWidth == 2) {
3893    if (VT.isInteger())
3894      NewVT = MVT::v2i64;
3895    else
3896      NewVT = MVT::v2f64;
3897  }
3898  int Scale = NumElems / NewWidth;
3899  SmallVector<int, 8> MaskVec;
3900  for (unsigned i = 0; i < NumElems; i += Scale) {
3901    int StartIdx = -1;
3902    for (int j = 0; j < Scale; ++j) {
3903      int EltIdx = SVOp->getMaskElt(i+j);
3904      if (EltIdx < 0)
3905        continue;
3906      if (StartIdx == -1)
3907        StartIdx = EltIdx - (EltIdx % Scale);
3908      if (EltIdx != StartIdx + j)
3909        return SDValue();
3910    }
3911    if (StartIdx == -1)
3912      MaskVec.push_back(-1);
3913    else
3914      MaskVec.push_back(StartIdx / Scale);
3915  }
3916
3917  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3918  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3919  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3920}
3921
3922/// getVZextMovL - Return a zero-extending vector move low node.
3923///
3924static SDValue getVZextMovL(EVT VT, EVT OpVT,
3925                            SDValue SrcOp, SelectionDAG &DAG,
3926                            const X86Subtarget *Subtarget, DebugLoc dl) {
3927  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3928    LoadSDNode *LD = NULL;
3929    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3930      LD = dyn_cast<LoadSDNode>(SrcOp);
3931    if (!LD) {
3932      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3933      // instead.
3934      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3935      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
3936          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3937          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3938          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
3939        // PR2108
3940        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3941        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3942                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3943                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3944                                                   OpVT,
3945                                                   SrcOp.getOperand(0)
3946                                                          .getOperand(0))));
3947      }
3948    }
3949  }
3950
3951  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3952                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3953                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3954                                             OpVT, SrcOp)));
3955}
3956
3957/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3958/// shuffles.
3959static SDValue
3960LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3961  SDValue V1 = SVOp->getOperand(0);
3962  SDValue V2 = SVOp->getOperand(1);
3963  DebugLoc dl = SVOp->getDebugLoc();
3964  EVT VT = SVOp->getValueType(0);
3965
3966  SmallVector<std::pair<int, int>, 8> Locs;
3967  Locs.resize(4);
3968  SmallVector<int, 8> Mask1(4U, -1);
3969  SmallVector<int, 8> PermMask;
3970  SVOp->getMask(PermMask);
3971
3972  unsigned NumHi = 0;
3973  unsigned NumLo = 0;
3974  for (unsigned i = 0; i != 4; ++i) {
3975    int Idx = PermMask[i];
3976    if (Idx < 0) {
3977      Locs[i] = std::make_pair(-1, -1);
3978    } else {
3979      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3980      if (Idx < 4) {
3981        Locs[i] = std::make_pair(0, NumLo);
3982        Mask1[NumLo] = Idx;
3983        NumLo++;
3984      } else {
3985        Locs[i] = std::make_pair(1, NumHi);
3986        if (2+NumHi < 4)
3987          Mask1[2+NumHi] = Idx;
3988        NumHi++;
3989      }
3990    }
3991  }
3992
3993  if (NumLo <= 2 && NumHi <= 2) {
3994    // If no more than two elements come from either vector. This can be
3995    // implemented with two shuffles. First shuffle gather the elements.
3996    // The second shuffle, which takes the first shuffle as both of its
3997    // vector operands, put the elements into the right order.
3998    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3999
4000    SmallVector<int, 8> Mask2(4U, -1);
4001
4002    for (unsigned i = 0; i != 4; ++i) {
4003      if (Locs[i].first == -1)
4004        continue;
4005      else {
4006        unsigned Idx = (i < 2) ? 0 : 4;
4007        Idx += Locs[i].first * 2 + Locs[i].second;
4008        Mask2[i] = Idx;
4009      }
4010    }
4011
4012    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4013  } else if (NumLo == 3 || NumHi == 3) {
4014    // Otherwise, we must have three elements from one vector, call it X, and
4015    // one element from the other, call it Y.  First, use a shufps to build an
4016    // intermediate vector with the one element from Y and the element from X
4017    // that will be in the same half in the final destination (the indexes don't
4018    // matter). Then, use a shufps to build the final vector, taking the half
4019    // containing the element from Y from the intermediate, and the other half
4020    // from X.
4021    if (NumHi == 3) {
4022      // Normalize it so the 3 elements come from V1.
4023      CommuteVectorShuffleMask(PermMask, VT);
4024      std::swap(V1, V2);
4025    }
4026
4027    // Find the element from V2.
4028    unsigned HiIndex;
4029    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4030      int Val = PermMask[HiIndex];
4031      if (Val < 0)
4032        continue;
4033      if (Val >= 4)
4034        break;
4035    }
4036
4037    Mask1[0] = PermMask[HiIndex];
4038    Mask1[1] = -1;
4039    Mask1[2] = PermMask[HiIndex^1];
4040    Mask1[3] = -1;
4041    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4042
4043    if (HiIndex >= 2) {
4044      Mask1[0] = PermMask[0];
4045      Mask1[1] = PermMask[1];
4046      Mask1[2] = HiIndex & 1 ? 6 : 4;
4047      Mask1[3] = HiIndex & 1 ? 4 : 6;
4048      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4049    } else {
4050      Mask1[0] = HiIndex & 1 ? 2 : 0;
4051      Mask1[1] = HiIndex & 1 ? 0 : 2;
4052      Mask1[2] = PermMask[2];
4053      Mask1[3] = PermMask[3];
4054      if (Mask1[2] >= 0)
4055        Mask1[2] += 4;
4056      if (Mask1[3] >= 0)
4057        Mask1[3] += 4;
4058      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4059    }
4060  }
4061
4062  // Break it into (shuffle shuffle_hi, shuffle_lo).
4063  Locs.clear();
4064  SmallVector<int,8> LoMask(4U, -1);
4065  SmallVector<int,8> HiMask(4U, -1);
4066
4067  SmallVector<int,8> *MaskPtr = &LoMask;
4068  unsigned MaskIdx = 0;
4069  unsigned LoIdx = 0;
4070  unsigned HiIdx = 2;
4071  for (unsigned i = 0; i != 4; ++i) {
4072    if (i == 2) {
4073      MaskPtr = &HiMask;
4074      MaskIdx = 1;
4075      LoIdx = 0;
4076      HiIdx = 2;
4077    }
4078    int Idx = PermMask[i];
4079    if (Idx < 0) {
4080      Locs[i] = std::make_pair(-1, -1);
4081    } else if (Idx < 4) {
4082      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4083      (*MaskPtr)[LoIdx] = Idx;
4084      LoIdx++;
4085    } else {
4086      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4087      (*MaskPtr)[HiIdx] = Idx;
4088      HiIdx++;
4089    }
4090  }
4091
4092  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4093  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4094  SmallVector<int, 8> MaskOps;
4095  for (unsigned i = 0; i != 4; ++i) {
4096    if (Locs[i].first == -1) {
4097      MaskOps.push_back(-1);
4098    } else {
4099      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4100      MaskOps.push_back(Idx);
4101    }
4102  }
4103  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4104}
4105
4106SDValue
4107X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4108  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4109  SDValue V1 = Op.getOperand(0);
4110  SDValue V2 = Op.getOperand(1);
4111  EVT VT = Op.getValueType();
4112  DebugLoc dl = Op.getDebugLoc();
4113  unsigned NumElems = VT.getVectorNumElements();
4114  bool isMMX = VT.getSizeInBits() == 64;
4115  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4116  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4117  bool V1IsSplat = false;
4118  bool V2IsSplat = false;
4119
4120  if (isZeroShuffle(SVOp))
4121    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4122
4123  // Promote splats to v4f32.
4124  if (SVOp->isSplat()) {
4125    if (isMMX || NumElems < 4)
4126      return Op;
4127    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4128  }
4129
4130  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4131  // do it!
4132  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4133    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4134    if (NewOp.getNode())
4135      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4136                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4137  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4138    // FIXME: Figure out a cleaner way to do this.
4139    // Try to make use of movq to zero out the top part.
4140    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4141      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4142      if (NewOp.getNode()) {
4143        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4144          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4145                              DAG, Subtarget, dl);
4146      }
4147    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4148      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4149      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4150        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4151                            DAG, Subtarget, dl);
4152    }
4153  }
4154
4155  if (X86::isPSHUFDMask(SVOp))
4156    return Op;
4157
4158  // Check if this can be converted into a logical shift.
4159  bool isLeft = false;
4160  unsigned ShAmt = 0;
4161  SDValue ShVal;
4162  bool isShift = getSubtarget()->hasSSE2() &&
4163  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4164  if (isShift && ShVal.hasOneUse()) {
4165    // If the shifted value has multiple uses, it may be cheaper to use
4166    // v_set0 + movlhps or movhlps, etc.
4167    EVT EVT = VT.getVectorElementType();
4168    ShAmt *= EVT.getSizeInBits();
4169    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4170  }
4171
4172  if (X86::isMOVLMask(SVOp)) {
4173    if (V1IsUndef)
4174      return V2;
4175    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4176      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4177    if (!isMMX)
4178      return Op;
4179  }
4180
4181  // FIXME: fold these into legal mask.
4182  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4183                 X86::isMOVSLDUPMask(SVOp) ||
4184                 X86::isMOVHLPSMask(SVOp) ||
4185                 X86::isMOVHPMask(SVOp) ||
4186                 X86::isMOVLPMask(SVOp)))
4187    return Op;
4188
4189  if (ShouldXformToMOVHLPS(SVOp) ||
4190      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4191    return CommuteVectorShuffle(SVOp, DAG);
4192
4193  if (isShift) {
4194    // No better options. Use a vshl / vsrl.
4195    EVT EVT = VT.getVectorElementType();
4196    ShAmt *= EVT.getSizeInBits();
4197    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4198  }
4199
4200  bool Commuted = false;
4201  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4202  // 1,1,1,1 -> v8i16 though.
4203  V1IsSplat = isSplatVector(V1.getNode());
4204  V2IsSplat = isSplatVector(V2.getNode());
4205
4206  // Canonicalize the splat or undef, if present, to be on the RHS.
4207  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4208    Op = CommuteVectorShuffle(SVOp, DAG);
4209    SVOp = cast<ShuffleVectorSDNode>(Op);
4210    V1 = SVOp->getOperand(0);
4211    V2 = SVOp->getOperand(1);
4212    std::swap(V1IsSplat, V2IsSplat);
4213    std::swap(V1IsUndef, V2IsUndef);
4214    Commuted = true;
4215  }
4216
4217  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4218    // Shuffling low element of v1 into undef, just return v1.
4219    if (V2IsUndef)
4220      return V1;
4221    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4222    // the instruction selector will not match, so get a canonical MOVL with
4223    // swapped operands to undo the commute.
4224    return getMOVL(DAG, dl, VT, V2, V1);
4225  }
4226
4227  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4228      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4229      X86::isUNPCKLMask(SVOp) ||
4230      X86::isUNPCKHMask(SVOp))
4231    return Op;
4232
4233  if (V2IsSplat) {
4234    // Normalize mask so all entries that point to V2 points to its first
4235    // element then try to match unpck{h|l} again. If match, return a
4236    // new vector_shuffle with the corrected mask.
4237    SDValue NewMask = NormalizeMask(SVOp, DAG);
4238    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4239    if (NSVOp != SVOp) {
4240      if (X86::isUNPCKLMask(NSVOp, true)) {
4241        return NewMask;
4242      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4243        return NewMask;
4244      }
4245    }
4246  }
4247
4248  if (Commuted) {
4249    // Commute is back and try unpck* again.
4250    // FIXME: this seems wrong.
4251    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4252    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4253    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4254        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4255        X86::isUNPCKLMask(NewSVOp) ||
4256        X86::isUNPCKHMask(NewSVOp))
4257      return NewOp;
4258  }
4259
4260  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4261
4262  // Normalize the node to match x86 shuffle ops if needed
4263  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4264    return CommuteVectorShuffle(SVOp, DAG);
4265
4266  // Check for legal shuffle and return?
4267  SmallVector<int, 16> PermMask;
4268  SVOp->getMask(PermMask);
4269  if (isShuffleMaskLegal(PermMask, VT))
4270    return Op;
4271
4272  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4273  if (VT == MVT::v8i16) {
4274    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4275    if (NewOp.getNode())
4276      return NewOp;
4277  }
4278
4279  if (VT == MVT::v16i8) {
4280    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4281    if (NewOp.getNode())
4282      return NewOp;
4283  }
4284
4285  // Handle all 4 wide cases with a number of shuffles except for MMX.
4286  if (NumElems == 4 && !isMMX)
4287    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4288
4289  return SDValue();
4290}
4291
4292SDValue
4293X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4294                                                SelectionDAG &DAG) {
4295  EVT VT = Op.getValueType();
4296  DebugLoc dl = Op.getDebugLoc();
4297  if (VT.getSizeInBits() == 8) {
4298    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4299                                    Op.getOperand(0), Op.getOperand(1));
4300    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4301                                    DAG.getValueType(VT));
4302    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4303  } else if (VT.getSizeInBits() == 16) {
4304    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4305    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4306    if (Idx == 0)
4307      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4308                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4309                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4310                                                 MVT::v4i32,
4311                                                 Op.getOperand(0)),
4312                                     Op.getOperand(1)));
4313    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4314                                    Op.getOperand(0), Op.getOperand(1));
4315    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4316                                    DAG.getValueType(VT));
4317    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4318  } else if (VT == MVT::f32) {
4319    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4320    // the result back to FR32 register. It's only worth matching if the
4321    // result has a single use which is a store or a bitcast to i32.  And in
4322    // the case of a store, it's not worth it if the index is a constant 0,
4323    // because a MOVSSmr can be used instead, which is smaller and faster.
4324    if (!Op.hasOneUse())
4325      return SDValue();
4326    SDNode *User = *Op.getNode()->use_begin();
4327    if ((User->getOpcode() != ISD::STORE ||
4328         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4329          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4330        (User->getOpcode() != ISD::BIT_CONVERT ||
4331         User->getValueType(0) != MVT::i32))
4332      return SDValue();
4333    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4334                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4335                                              Op.getOperand(0)),
4336                                              Op.getOperand(1));
4337    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4338  } else if (VT == MVT::i32) {
4339    // ExtractPS works with constant index.
4340    if (isa<ConstantSDNode>(Op.getOperand(1)))
4341      return Op;
4342  }
4343  return SDValue();
4344}
4345
4346
4347SDValue
4348X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4349  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4350    return SDValue();
4351
4352  if (Subtarget->hasSSE41()) {
4353    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4354    if (Res.getNode())
4355      return Res;
4356  }
4357
4358  EVT VT = Op.getValueType();
4359  DebugLoc dl = Op.getDebugLoc();
4360  // TODO: handle v16i8.
4361  if (VT.getSizeInBits() == 16) {
4362    SDValue Vec = Op.getOperand(0);
4363    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4364    if (Idx == 0)
4365      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4366                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4367                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4368                                                 MVT::v4i32, Vec),
4369                                     Op.getOperand(1)));
4370    // Transform it so it match pextrw which produces a 32-bit result.
4371    EVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4372    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4373                                    Op.getOperand(0), Op.getOperand(1));
4374    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4375                                    DAG.getValueType(VT));
4376    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4377  } else if (VT.getSizeInBits() == 32) {
4378    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4379    if (Idx == 0)
4380      return Op;
4381
4382    // SHUFPS the element to the lowest double word, then movss.
4383    int Mask[4] = { Idx, -1, -1, -1 };
4384    EVT VVT = Op.getOperand(0).getValueType();
4385    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4386                                       DAG.getUNDEF(VVT), Mask);
4387    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4388                       DAG.getIntPtrConstant(0));
4389  } else if (VT.getSizeInBits() == 64) {
4390    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4391    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4392    //        to match extract_elt for f64.
4393    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4394    if (Idx == 0)
4395      return Op;
4396
4397    // UNPCKHPD the element to the lowest double word, then movsd.
4398    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4399    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4400    int Mask[2] = { 1, -1 };
4401    EVT VVT = Op.getOperand(0).getValueType();
4402    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4403                                       DAG.getUNDEF(VVT), Mask);
4404    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4405                       DAG.getIntPtrConstant(0));
4406  }
4407
4408  return SDValue();
4409}
4410
4411SDValue
4412X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4413  EVT VT = Op.getValueType();
4414  EVT EVT = VT.getVectorElementType();
4415  DebugLoc dl = Op.getDebugLoc();
4416
4417  SDValue N0 = Op.getOperand(0);
4418  SDValue N1 = Op.getOperand(1);
4419  SDValue N2 = Op.getOperand(2);
4420
4421  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4422      isa<ConstantSDNode>(N2)) {
4423    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4424                                              : X86ISD::PINSRW;
4425    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4426    // argument.
4427    if (N1.getValueType() != MVT::i32)
4428      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4429    if (N2.getValueType() != MVT::i32)
4430      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4431    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4432  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4433    // Bits [7:6] of the constant are the source select.  This will always be
4434    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4435    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4436    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4437    // Bits [5:4] of the constant are the destination select.  This is the
4438    //  value of the incoming immediate.
4439    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4440    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4441    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4442    // Create this as a scalar to vector..
4443    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4444    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4445  } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4446    // PINSR* works with constant index.
4447    return Op;
4448  }
4449  return SDValue();
4450}
4451
4452SDValue
4453X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4454  EVT VT = Op.getValueType();
4455  EVT EVT = VT.getVectorElementType();
4456
4457  if (Subtarget->hasSSE41())
4458    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4459
4460  if (EVT == MVT::i8)
4461    return SDValue();
4462
4463  DebugLoc dl = Op.getDebugLoc();
4464  SDValue N0 = Op.getOperand(0);
4465  SDValue N1 = Op.getOperand(1);
4466  SDValue N2 = Op.getOperand(2);
4467
4468  if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4469    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4470    // as its second argument.
4471    if (N1.getValueType() != MVT::i32)
4472      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4473    if (N2.getValueType() != MVT::i32)
4474      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4475    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4476  }
4477  return SDValue();
4478}
4479
4480SDValue
4481X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4482  DebugLoc dl = Op.getDebugLoc();
4483  if (Op.getValueType() == MVT::v2f32)
4484    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4485                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4486                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4487                                               Op.getOperand(0))));
4488
4489  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4490    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4491
4492  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4493  EVT VT = MVT::v2i32;
4494  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4495  default: break;
4496  case MVT::v16i8:
4497  case MVT::v8i16:
4498    VT = MVT::v4i32;
4499    break;
4500  }
4501  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4502                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4503}
4504
4505// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4506// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4507// one of the above mentioned nodes. It has to be wrapped because otherwise
4508// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4509// be used to form addressing mode. These wrapped nodes will be selected
4510// into MOV32ri.
4511SDValue
4512X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4513  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4514
4515  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4516  // global base reg.
4517  unsigned char OpFlag = 0;
4518  unsigned WrapperKind = X86ISD::Wrapper;
4519  CodeModel::Model M = getTargetMachine().getCodeModel();
4520
4521  if (Subtarget->isPICStyleRIPRel() &&
4522      (M == CodeModel::Small || M == CodeModel::Kernel))
4523    WrapperKind = X86ISD::WrapperRIP;
4524  else if (Subtarget->isPICStyleGOT())
4525    OpFlag = X86II::MO_GOTOFF;
4526  else if (Subtarget->isPICStyleStubPIC())
4527    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4528
4529  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4530                                             CP->getAlignment(),
4531                                             CP->getOffset(), OpFlag);
4532  DebugLoc DL = CP->getDebugLoc();
4533  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4534  // With PIC, the address is actually $g + Offset.
4535  if (OpFlag) {
4536    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4537                         DAG.getNode(X86ISD::GlobalBaseReg,
4538                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4539                         Result);
4540  }
4541
4542  return Result;
4543}
4544
4545SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4546  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4547
4548  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4549  // global base reg.
4550  unsigned char OpFlag = 0;
4551  unsigned WrapperKind = X86ISD::Wrapper;
4552  CodeModel::Model M = getTargetMachine().getCodeModel();
4553
4554  if (Subtarget->isPICStyleRIPRel() &&
4555      (M == CodeModel::Small || M == CodeModel::Kernel))
4556    WrapperKind = X86ISD::WrapperRIP;
4557  else if (Subtarget->isPICStyleGOT())
4558    OpFlag = X86II::MO_GOTOFF;
4559  else if (Subtarget->isPICStyleStubPIC())
4560    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4561
4562  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4563                                          OpFlag);
4564  DebugLoc DL = JT->getDebugLoc();
4565  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4566
4567  // With PIC, the address is actually $g + Offset.
4568  if (OpFlag) {
4569    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4570                         DAG.getNode(X86ISD::GlobalBaseReg,
4571                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4572                         Result);
4573  }
4574
4575  return Result;
4576}
4577
4578SDValue
4579X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4580  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4581
4582  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4583  // global base reg.
4584  unsigned char OpFlag = 0;
4585  unsigned WrapperKind = X86ISD::Wrapper;
4586  CodeModel::Model M = getTargetMachine().getCodeModel();
4587
4588  if (Subtarget->isPICStyleRIPRel() &&
4589      (M == CodeModel::Small || M == CodeModel::Kernel))
4590    WrapperKind = X86ISD::WrapperRIP;
4591  else if (Subtarget->isPICStyleGOT())
4592    OpFlag = X86II::MO_GOTOFF;
4593  else if (Subtarget->isPICStyleStubPIC())
4594    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4595
4596  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4597
4598  DebugLoc DL = Op.getDebugLoc();
4599  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4600
4601
4602  // With PIC, the address is actually $g + Offset.
4603  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4604      !Subtarget->is64Bit()) {
4605    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4606                         DAG.getNode(X86ISD::GlobalBaseReg,
4607                                     DebugLoc::getUnknownLoc(),
4608                                     getPointerTy()),
4609                         Result);
4610  }
4611
4612  return Result;
4613}
4614
4615SDValue
4616X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4617                                      int64_t Offset,
4618                                      SelectionDAG &DAG) const {
4619  // Create the TargetGlobalAddress node, folding in the constant
4620  // offset if it is legal.
4621  unsigned char OpFlags =
4622    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4623  CodeModel::Model M = getTargetMachine().getCodeModel();
4624  SDValue Result;
4625  if (OpFlags == X86II::MO_NO_FLAG &&
4626      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4627    // A direct static reference to a global.
4628    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4629    Offset = 0;
4630  } else {
4631    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4632  }
4633
4634  if (Subtarget->isPICStyleRIPRel() &&
4635      (M == CodeModel::Small || M == CodeModel::Kernel))
4636    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4637  else
4638    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4639
4640  // With PIC, the address is actually $g + Offset.
4641  if (isGlobalRelativeToPICBase(OpFlags)) {
4642    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4643                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4644                         Result);
4645  }
4646
4647  // For globals that require a load from a stub to get the address, emit the
4648  // load.
4649  if (isGlobalStubReference(OpFlags))
4650    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4651                         PseudoSourceValue::getGOT(), 0);
4652
4653  // If there was a non-zero offset that we didn't fold, create an explicit
4654  // addition for it.
4655  if (Offset != 0)
4656    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4657                         DAG.getConstant(Offset, getPointerTy()));
4658
4659  return Result;
4660}
4661
4662SDValue
4663X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4664  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4665  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4666  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4667}
4668
4669static SDValue
4670GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4671           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4672           unsigned char OperandFlags) {
4673  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4674  DebugLoc dl = GA->getDebugLoc();
4675  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4676                                           GA->getValueType(0),
4677                                           GA->getOffset(),
4678                                           OperandFlags);
4679  if (InFlag) {
4680    SDValue Ops[] = { Chain,  TGA, *InFlag };
4681    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4682  } else {
4683    SDValue Ops[]  = { Chain, TGA };
4684    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4685  }
4686  SDValue Flag = Chain.getValue(1);
4687  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4688}
4689
4690// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4691static SDValue
4692LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4693                                const EVT PtrVT) {
4694  SDValue InFlag;
4695  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4696  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4697                                     DAG.getNode(X86ISD::GlobalBaseReg,
4698                                                 DebugLoc::getUnknownLoc(),
4699                                                 PtrVT), InFlag);
4700  InFlag = Chain.getValue(1);
4701
4702  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4703}
4704
4705// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4706static SDValue
4707LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4708                                const EVT PtrVT) {
4709  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4710                    X86::RAX, X86II::MO_TLSGD);
4711}
4712
4713// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4714// "local exec" model.
4715static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4716                                   const EVT PtrVT, TLSModel::Model model,
4717                                   bool is64Bit) {
4718  DebugLoc dl = GA->getDebugLoc();
4719  // Get the Thread Pointer
4720  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4721                             DebugLoc::getUnknownLoc(), PtrVT,
4722                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4723                                             MVT::i32));
4724
4725  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4726                                      NULL, 0);
4727
4728  unsigned char OperandFlags = 0;
4729  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4730  // initialexec.
4731  unsigned WrapperKind = X86ISD::Wrapper;
4732  if (model == TLSModel::LocalExec) {
4733    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4734  } else if (is64Bit) {
4735    assert(model == TLSModel::InitialExec);
4736    OperandFlags = X86II::MO_GOTTPOFF;
4737    WrapperKind = X86ISD::WrapperRIP;
4738  } else {
4739    assert(model == TLSModel::InitialExec);
4740    OperandFlags = X86II::MO_INDNTPOFF;
4741  }
4742
4743  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4744  // exec)
4745  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4746                                           GA->getOffset(), OperandFlags);
4747  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4748
4749  if (model == TLSModel::InitialExec)
4750    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4751                         PseudoSourceValue::getGOT(), 0);
4752
4753  // The address of the thread local variable is the add of the thread
4754  // pointer with the offset of the variable.
4755  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4756}
4757
4758SDValue
4759X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4760  // TODO: implement the "local dynamic" model
4761  // TODO: implement the "initial exec"model for pic executables
4762  assert(Subtarget->isTargetELF() &&
4763         "TLS not implemented for non-ELF targets");
4764  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4765  const GlobalValue *GV = GA->getGlobal();
4766
4767  // If GV is an alias then use the aliasee for determining
4768  // thread-localness.
4769  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4770    GV = GA->resolveAliasedGlobal(false);
4771
4772  TLSModel::Model model = getTLSModel(GV,
4773                                      getTargetMachine().getRelocationModel());
4774
4775  switch (model) {
4776  case TLSModel::GeneralDynamic:
4777  case TLSModel::LocalDynamic: // not implemented
4778    if (Subtarget->is64Bit())
4779      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4780    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4781
4782  case TLSModel::InitialExec:
4783  case TLSModel::LocalExec:
4784    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4785                               Subtarget->is64Bit());
4786  }
4787
4788  llvm_unreachable("Unreachable");
4789  return SDValue();
4790}
4791
4792
4793/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4794/// take a 2 x i32 value to shift plus a shift amount.
4795SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4796  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4797  EVT VT = Op.getValueType();
4798  unsigned VTBits = VT.getSizeInBits();
4799  DebugLoc dl = Op.getDebugLoc();
4800  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4801  SDValue ShOpLo = Op.getOperand(0);
4802  SDValue ShOpHi = Op.getOperand(1);
4803  SDValue ShAmt  = Op.getOperand(2);
4804  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4805                                     DAG.getConstant(VTBits - 1, MVT::i8))
4806                       : DAG.getConstant(0, VT);
4807
4808  SDValue Tmp2, Tmp3;
4809  if (Op.getOpcode() == ISD::SHL_PARTS) {
4810    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4811    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4812  } else {
4813    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4814    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4815  }
4816
4817  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4818                                DAG.getConstant(VTBits, MVT::i8));
4819  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4820                             AndNode, DAG.getConstant(0, MVT::i8));
4821
4822  SDValue Hi, Lo;
4823  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4824  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4825  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4826
4827  if (Op.getOpcode() == ISD::SHL_PARTS) {
4828    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4829    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4830  } else {
4831    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4832    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4833  }
4834
4835  SDValue Ops[2] = { Lo, Hi };
4836  return DAG.getMergeValues(Ops, 2, dl);
4837}
4838
4839SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4840  EVT SrcVT = Op.getOperand(0).getValueType();
4841
4842  if (SrcVT.isVector()) {
4843    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4844      return Op;
4845    }
4846    return SDValue();
4847  }
4848
4849  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4850         "Unknown SINT_TO_FP to lower!");
4851
4852  // These are really Legal; return the operand so the caller accepts it as
4853  // Legal.
4854  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4855    return Op;
4856  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4857      Subtarget->is64Bit()) {
4858    return Op;
4859  }
4860
4861  DebugLoc dl = Op.getDebugLoc();
4862  unsigned Size = SrcVT.getSizeInBits()/8;
4863  MachineFunction &MF = DAG.getMachineFunction();
4864  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4865  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4866  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4867                               StackSlot,
4868                               PseudoSourceValue::getFixedStack(SSFI), 0);
4869  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4870}
4871
4872SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4873                                     SDValue StackSlot,
4874                                     SelectionDAG &DAG) {
4875  // Build the FILD
4876  DebugLoc dl = Op.getDebugLoc();
4877  SDVTList Tys;
4878  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4879  if (useSSE)
4880    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4881  else
4882    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4883  SmallVector<SDValue, 8> Ops;
4884  Ops.push_back(Chain);
4885  Ops.push_back(StackSlot);
4886  Ops.push_back(DAG.getValueType(SrcVT));
4887  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4888                                 Tys, &Ops[0], Ops.size());
4889
4890  if (useSSE) {
4891    Chain = Result.getValue(1);
4892    SDValue InFlag = Result.getValue(2);
4893
4894    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4895    // shouldn't be necessary except that RFP cannot be live across
4896    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4897    MachineFunction &MF = DAG.getMachineFunction();
4898    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4899    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4900    Tys = DAG.getVTList(MVT::Other);
4901    SmallVector<SDValue, 8> Ops;
4902    Ops.push_back(Chain);
4903    Ops.push_back(Result);
4904    Ops.push_back(StackSlot);
4905    Ops.push_back(DAG.getValueType(Op.getValueType()));
4906    Ops.push_back(InFlag);
4907    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4908    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4909                         PseudoSourceValue::getFixedStack(SSFI), 0);
4910  }
4911
4912  return Result;
4913}
4914
4915// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4916SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4917  // This algorithm is not obvious. Here it is in C code, more or less:
4918  /*
4919    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4920      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4921      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4922
4923      // Copy ints to xmm registers.
4924      __m128i xh = _mm_cvtsi32_si128( hi );
4925      __m128i xl = _mm_cvtsi32_si128( lo );
4926
4927      // Combine into low half of a single xmm register.
4928      __m128i x = _mm_unpacklo_epi32( xh, xl );
4929      __m128d d;
4930      double sd;
4931
4932      // Merge in appropriate exponents to give the integer bits the right
4933      // magnitude.
4934      x = _mm_unpacklo_epi32( x, exp );
4935
4936      // Subtract away the biases to deal with the IEEE-754 double precision
4937      // implicit 1.
4938      d = _mm_sub_pd( (__m128d) x, bias );
4939
4940      // All conversions up to here are exact. The correctly rounded result is
4941      // calculated using the current rounding mode using the following
4942      // horizontal add.
4943      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4944      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4945                                // store doesn't really need to be here (except
4946                                // maybe to zero the other double)
4947      return sd;
4948    }
4949  */
4950
4951  DebugLoc dl = Op.getDebugLoc();
4952  LLVMContext *Context = DAG.getContext();
4953
4954  // Build some magic constants.
4955  std::vector<Constant*> CV0;
4956  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
4957  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
4958  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4959  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4960  Constant *C0 = ConstantVector::get(CV0);
4961  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4962
4963  std::vector<Constant*> CV1;
4964  CV1.push_back(
4965    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
4966  CV1.push_back(
4967    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
4968  Constant *C1 = ConstantVector::get(CV1);
4969  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4970
4971  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4972                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4973                                        Op.getOperand(0),
4974                                        DAG.getIntPtrConstant(1)));
4975  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4976                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4977                                        Op.getOperand(0),
4978                                        DAG.getIntPtrConstant(0)));
4979  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4980  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4981                              PseudoSourceValue::getConstantPool(), 0,
4982                              false, 16);
4983  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4984  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4985  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4986                              PseudoSourceValue::getConstantPool(), 0,
4987                              false, 16);
4988  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4989
4990  // Add the halves; easiest way is to swap them into another reg first.
4991  int ShufMask[2] = { 1, -1 };
4992  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4993                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4994  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4995  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4996                     DAG.getIntPtrConstant(0));
4997}
4998
4999// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5000SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5001  DebugLoc dl = Op.getDebugLoc();
5002  // FP constant to bias correct the final result.
5003  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5004                                   MVT::f64);
5005
5006  // Load the 32-bit value into an XMM register.
5007  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5008                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5009                                         Op.getOperand(0),
5010                                         DAG.getIntPtrConstant(0)));
5011
5012  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5013                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5014                     DAG.getIntPtrConstant(0));
5015
5016  // Or the load with the bias.
5017  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5018                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5019                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5020                                                   MVT::v2f64, Load)),
5021                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5022                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5023                                                   MVT::v2f64, Bias)));
5024  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5025                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5026                   DAG.getIntPtrConstant(0));
5027
5028  // Subtract the bias.
5029  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5030
5031  // Handle final rounding.
5032  EVT DestVT = Op.getValueType();
5033
5034  if (DestVT.bitsLT(MVT::f64)) {
5035    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5036                       DAG.getIntPtrConstant(0));
5037  } else if (DestVT.bitsGT(MVT::f64)) {
5038    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5039  }
5040
5041  // Handle final rounding.
5042  return Sub;
5043}
5044
5045SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5046  SDValue N0 = Op.getOperand(0);
5047  DebugLoc dl = Op.getDebugLoc();
5048
5049  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5050  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5051  // the optimization here.
5052  if (DAG.SignBitIsZero(N0))
5053    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5054
5055  EVT SrcVT = N0.getValueType();
5056  if (SrcVT == MVT::i64) {
5057    // We only handle SSE2 f64 target here; caller can expand the rest.
5058    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5059      return SDValue();
5060
5061    return LowerUINT_TO_FP_i64(Op, DAG);
5062  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5063    return LowerUINT_TO_FP_i32(Op, DAG);
5064  }
5065
5066  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5067
5068  // Make a 64-bit buffer, and use it to build an FILD.
5069  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5070  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5071  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5072                                   getPointerTy(), StackSlot, WordOff);
5073  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5074                                StackSlot, NULL, 0);
5075  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5076                                OffsetSlot, NULL, 0);
5077  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5078}
5079
5080std::pair<SDValue,SDValue> X86TargetLowering::
5081FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5082  DebugLoc dl = Op.getDebugLoc();
5083
5084  EVT DstTy = Op.getValueType();
5085
5086  if (!IsSigned) {
5087    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5088    DstTy = MVT::i64;
5089  }
5090
5091  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5092         DstTy.getSimpleVT() >= MVT::i16 &&
5093         "Unknown FP_TO_SINT to lower!");
5094
5095  // These are really Legal.
5096  if (DstTy == MVT::i32 &&
5097      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5098    return std::make_pair(SDValue(), SDValue());
5099  if (Subtarget->is64Bit() &&
5100      DstTy == MVT::i64 &&
5101      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5102    return std::make_pair(SDValue(), SDValue());
5103
5104  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5105  // stack slot.
5106  MachineFunction &MF = DAG.getMachineFunction();
5107  unsigned MemSize = DstTy.getSizeInBits()/8;
5108  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5109  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5110
5111  unsigned Opc;
5112  switch (DstTy.getSimpleVT().SimpleTy) {
5113  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5114  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5115  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5116  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5117  }
5118
5119  SDValue Chain = DAG.getEntryNode();
5120  SDValue Value = Op.getOperand(0);
5121  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5122    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5123    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5124                         PseudoSourceValue::getFixedStack(SSFI), 0);
5125    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5126    SDValue Ops[] = {
5127      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5128    };
5129    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5130    Chain = Value.getValue(1);
5131    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5132    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5133  }
5134
5135  // Build the FP_TO_INT*_IN_MEM
5136  SDValue Ops[] = { Chain, Value, StackSlot };
5137  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5138
5139  return std::make_pair(FIST, StackSlot);
5140}
5141
5142SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5143  if (Op.getValueType().isVector()) {
5144    if (Op.getValueType() == MVT::v2i32 &&
5145        Op.getOperand(0).getValueType() == MVT::v2f64) {
5146      return Op;
5147    }
5148    return SDValue();
5149  }
5150
5151  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5152  SDValue FIST = Vals.first, StackSlot = Vals.second;
5153  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5154  if (FIST.getNode() == 0) return Op;
5155
5156  // Load the result.
5157  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5158                     FIST, StackSlot, NULL, 0);
5159}
5160
5161SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5162  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5163  SDValue FIST = Vals.first, StackSlot = Vals.second;
5164  assert(FIST.getNode() && "Unexpected failure");
5165
5166  // Load the result.
5167  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5168                     FIST, StackSlot, NULL, 0);
5169}
5170
5171SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5172  LLVMContext *Context = DAG.getContext();
5173  DebugLoc dl = Op.getDebugLoc();
5174  EVT VT = Op.getValueType();
5175  EVT EltVT = VT;
5176  if (VT.isVector())
5177    EltVT = VT.getVectorElementType();
5178  std::vector<Constant*> CV;
5179  if (EltVT == MVT::f64) {
5180    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5181    CV.push_back(C);
5182    CV.push_back(C);
5183  } else {
5184    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5185    CV.push_back(C);
5186    CV.push_back(C);
5187    CV.push_back(C);
5188    CV.push_back(C);
5189  }
5190  Constant *C = ConstantVector::get(CV);
5191  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5192  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5193                               PseudoSourceValue::getConstantPool(), 0,
5194                               false, 16);
5195  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5196}
5197
5198SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5199  LLVMContext *Context = DAG.getContext();
5200  DebugLoc dl = Op.getDebugLoc();
5201  EVT VT = Op.getValueType();
5202  EVT EltVT = VT;
5203  if (VT.isVector())
5204    EltVT = VT.getVectorElementType();
5205  std::vector<Constant*> CV;
5206  if (EltVT == MVT::f64) {
5207    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5208    CV.push_back(C);
5209    CV.push_back(C);
5210  } else {
5211    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5212    CV.push_back(C);
5213    CV.push_back(C);
5214    CV.push_back(C);
5215    CV.push_back(C);
5216  }
5217  Constant *C = ConstantVector::get(CV);
5218  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5219  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5220                               PseudoSourceValue::getConstantPool(), 0,
5221                               false, 16);
5222  if (VT.isVector()) {
5223    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5224                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5225                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5226                                Op.getOperand(0)),
5227                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5228  } else {
5229    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5230  }
5231}
5232
5233SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5234  LLVMContext *Context = DAG.getContext();
5235  SDValue Op0 = Op.getOperand(0);
5236  SDValue Op1 = Op.getOperand(1);
5237  DebugLoc dl = Op.getDebugLoc();
5238  EVT VT = Op.getValueType();
5239  EVT SrcVT = Op1.getValueType();
5240
5241  // If second operand is smaller, extend it first.
5242  if (SrcVT.bitsLT(VT)) {
5243    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5244    SrcVT = VT;
5245  }
5246  // And if it is bigger, shrink it first.
5247  if (SrcVT.bitsGT(VT)) {
5248    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5249    SrcVT = VT;
5250  }
5251
5252  // At this point the operands and the result should have the same
5253  // type, and that won't be f80 since that is not custom lowered.
5254
5255  // First get the sign bit of second operand.
5256  std::vector<Constant*> CV;
5257  if (SrcVT == MVT::f64) {
5258    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5259    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5260  } else {
5261    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5262    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5263    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5264    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5265  }
5266  Constant *C = ConstantVector::get(CV);
5267  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5268  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5269                                PseudoSourceValue::getConstantPool(), 0,
5270                                false, 16);
5271  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5272
5273  // Shift sign bit right or left if the two operands have different types.
5274  if (SrcVT.bitsGT(VT)) {
5275    // Op0 is MVT::f32, Op1 is MVT::f64.
5276    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5277    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5278                          DAG.getConstant(32, MVT::i32));
5279    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5280    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5281                          DAG.getIntPtrConstant(0));
5282  }
5283
5284  // Clear first operand sign bit.
5285  CV.clear();
5286  if (VT == MVT::f64) {
5287    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5288    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5289  } else {
5290    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5291    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5292    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5293    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5294  }
5295  C = ConstantVector::get(CV);
5296  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5297  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5298                                PseudoSourceValue::getConstantPool(), 0,
5299                                false, 16);
5300  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5301
5302  // Or the value with the sign bit.
5303  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5304}
5305
5306/// Emit nodes that will be selected as "test Op0,Op0", or something
5307/// equivalent.
5308SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5309                                    SelectionDAG &DAG) {
5310  DebugLoc dl = Op.getDebugLoc();
5311
5312  // CF and OF aren't always set the way we want. Determine which
5313  // of these we need.
5314  bool NeedCF = false;
5315  bool NeedOF = false;
5316  switch (X86CC) {
5317  case X86::COND_A: case X86::COND_AE:
5318  case X86::COND_B: case X86::COND_BE:
5319    NeedCF = true;
5320    break;
5321  case X86::COND_G: case X86::COND_GE:
5322  case X86::COND_L: case X86::COND_LE:
5323  case X86::COND_O: case X86::COND_NO:
5324    NeedOF = true;
5325    break;
5326  default: break;
5327  }
5328
5329  // See if we can use the EFLAGS value from the operand instead of
5330  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5331  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5332  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5333    unsigned Opcode = 0;
5334    unsigned NumOperands = 0;
5335    switch (Op.getNode()->getOpcode()) {
5336    case ISD::ADD:
5337      // Due to an isel shortcoming, be conservative if this add is likely to
5338      // be selected as part of a load-modify-store instruction. When the root
5339      // node in a match is a store, isel doesn't know how to remap non-chain
5340      // non-flag uses of other nodes in the match, such as the ADD in this
5341      // case. This leads to the ADD being left around and reselected, with
5342      // the result being two adds in the output.
5343      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5344           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5345        if (UI->getOpcode() == ISD::STORE)
5346          goto default_case;
5347      if (ConstantSDNode *C =
5348            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5349        // An add of one will be selected as an INC.
5350        if (C->getAPIntValue() == 1) {
5351          Opcode = X86ISD::INC;
5352          NumOperands = 1;
5353          break;
5354        }
5355        // An add of negative one (subtract of one) will be selected as a DEC.
5356        if (C->getAPIntValue().isAllOnesValue()) {
5357          Opcode = X86ISD::DEC;
5358          NumOperands = 1;
5359          break;
5360        }
5361      }
5362      // Otherwise use a regular EFLAGS-setting add.
5363      Opcode = X86ISD::ADD;
5364      NumOperands = 2;
5365      break;
5366    case ISD::AND: {
5367      // If the primary and result isn't used, don't bother using X86ISD::AND,
5368      // because a TEST instruction will be better.
5369      bool NonFlagUse = false;
5370      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5371           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5372        if (UI->getOpcode() != ISD::BRCOND &&
5373            UI->getOpcode() != ISD::SELECT &&
5374            UI->getOpcode() != ISD::SETCC) {
5375          NonFlagUse = true;
5376          break;
5377        }
5378      if (!NonFlagUse)
5379        break;
5380    }
5381    // FALL THROUGH
5382    case ISD::SUB:
5383    case ISD::OR:
5384    case ISD::XOR:
5385      // Due to the ISEL shortcoming noted above, be conservative if this op is
5386      // likely to be selected as part of a load-modify-store instruction.
5387      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5388           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5389        if (UI->getOpcode() == ISD::STORE)
5390          goto default_case;
5391      // Otherwise use a regular EFLAGS-setting instruction.
5392      switch (Op.getNode()->getOpcode()) {
5393      case ISD::SUB: Opcode = X86ISD::SUB; break;
5394      case ISD::OR:  Opcode = X86ISD::OR;  break;
5395      case ISD::XOR: Opcode = X86ISD::XOR; break;
5396      case ISD::AND: Opcode = X86ISD::AND; break;
5397      default: llvm_unreachable("unexpected operator!");
5398      }
5399      NumOperands = 2;
5400      break;
5401    case X86ISD::ADD:
5402    case X86ISD::SUB:
5403    case X86ISD::INC:
5404    case X86ISD::DEC:
5405    case X86ISD::OR:
5406    case X86ISD::XOR:
5407    case X86ISD::AND:
5408      return SDValue(Op.getNode(), 1);
5409    default:
5410    default_case:
5411      break;
5412    }
5413    if (Opcode != 0) {
5414      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5415      SmallVector<SDValue, 4> Ops;
5416      for (unsigned i = 0; i != NumOperands; ++i)
5417        Ops.push_back(Op.getOperand(i));
5418      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5419      DAG.ReplaceAllUsesWith(Op, New);
5420      return SDValue(New.getNode(), 1);
5421    }
5422  }
5423
5424  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5425  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5426                     DAG.getConstant(0, Op.getValueType()));
5427}
5428
5429/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5430/// equivalent.
5431SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5432                                   SelectionDAG &DAG) {
5433  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5434    if (C->getAPIntValue() == 0)
5435      return EmitTest(Op0, X86CC, DAG);
5436
5437  DebugLoc dl = Op0.getDebugLoc();
5438  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5439}
5440
5441SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5442  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5443  SDValue Op0 = Op.getOperand(0);
5444  SDValue Op1 = Op.getOperand(1);
5445  DebugLoc dl = Op.getDebugLoc();
5446  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5447
5448  // Lower (X & (1 << N)) == 0 to BT(X, N).
5449  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5450  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5451  if (Op0.getOpcode() == ISD::AND &&
5452      Op0.hasOneUse() &&
5453      Op1.getOpcode() == ISD::Constant &&
5454      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5455      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5456    SDValue LHS, RHS;
5457    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5458      if (ConstantSDNode *Op010C =
5459            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5460        if (Op010C->getZExtValue() == 1) {
5461          LHS = Op0.getOperand(0);
5462          RHS = Op0.getOperand(1).getOperand(1);
5463        }
5464    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5465      if (ConstantSDNode *Op000C =
5466            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5467        if (Op000C->getZExtValue() == 1) {
5468          LHS = Op0.getOperand(1);
5469          RHS = Op0.getOperand(0).getOperand(1);
5470        }
5471    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5472      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5473      SDValue AndLHS = Op0.getOperand(0);
5474      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5475        LHS = AndLHS.getOperand(0);
5476        RHS = AndLHS.getOperand(1);
5477      }
5478    }
5479
5480    if (LHS.getNode()) {
5481      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5482      // instruction.  Since the shift amount is in-range-or-undefined, we know
5483      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5484      // the encoding for the i16 version is larger than the i32 version.
5485      if (LHS.getValueType() == MVT::i8)
5486        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5487
5488      // If the operand types disagree, extend the shift amount to match.  Since
5489      // BT ignores high bits (like shifts) we can use anyextend.
5490      if (LHS.getValueType() != RHS.getValueType())
5491        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5492
5493      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5494      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5495      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5496                         DAG.getConstant(Cond, MVT::i8), BT);
5497    }
5498  }
5499
5500  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5501  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5502
5503  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5504  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5505                     DAG.getConstant(X86CC, MVT::i8), Cond);
5506}
5507
5508SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5509  SDValue Cond;
5510  SDValue Op0 = Op.getOperand(0);
5511  SDValue Op1 = Op.getOperand(1);
5512  SDValue CC = Op.getOperand(2);
5513  EVT VT = Op.getValueType();
5514  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5515  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5516  DebugLoc dl = Op.getDebugLoc();
5517
5518  if (isFP) {
5519    unsigned SSECC = 8;
5520    EVT VT0 = Op0.getValueType();
5521    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5522    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5523    bool Swap = false;
5524
5525    switch (SetCCOpcode) {
5526    default: break;
5527    case ISD::SETOEQ:
5528    case ISD::SETEQ:  SSECC = 0; break;
5529    case ISD::SETOGT:
5530    case ISD::SETGT: Swap = true; // Fallthrough
5531    case ISD::SETLT:
5532    case ISD::SETOLT: SSECC = 1; break;
5533    case ISD::SETOGE:
5534    case ISD::SETGE: Swap = true; // Fallthrough
5535    case ISD::SETLE:
5536    case ISD::SETOLE: SSECC = 2; break;
5537    case ISD::SETUO:  SSECC = 3; break;
5538    case ISD::SETUNE:
5539    case ISD::SETNE:  SSECC = 4; break;
5540    case ISD::SETULE: Swap = true;
5541    case ISD::SETUGE: SSECC = 5; break;
5542    case ISD::SETULT: Swap = true;
5543    case ISD::SETUGT: SSECC = 6; break;
5544    case ISD::SETO:   SSECC = 7; break;
5545    }
5546    if (Swap)
5547      std::swap(Op0, Op1);
5548
5549    // In the two special cases we can't handle, emit two comparisons.
5550    if (SSECC == 8) {
5551      if (SetCCOpcode == ISD::SETUEQ) {
5552        SDValue UNORD, EQ;
5553        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5554        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5555        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5556      }
5557      else if (SetCCOpcode == ISD::SETONE) {
5558        SDValue ORD, NEQ;
5559        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5560        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5561        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5562      }
5563      llvm_unreachable("Illegal FP comparison");
5564    }
5565    // Handle all other FP comparisons here.
5566    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5567  }
5568
5569  // We are handling one of the integer comparisons here.  Since SSE only has
5570  // GT and EQ comparisons for integer, swapping operands and multiple
5571  // operations may be required for some comparisons.
5572  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5573  bool Swap = false, Invert = false, FlipSigns = false;
5574
5575  switch (VT.getSimpleVT().SimpleTy) {
5576  default: break;
5577  case MVT::v8i8:
5578  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5579  case MVT::v4i16:
5580  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5581  case MVT::v2i32:
5582  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5583  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5584  }
5585
5586  switch (SetCCOpcode) {
5587  default: break;
5588  case ISD::SETNE:  Invert = true;
5589  case ISD::SETEQ:  Opc = EQOpc; break;
5590  case ISD::SETLT:  Swap = true;
5591  case ISD::SETGT:  Opc = GTOpc; break;
5592  case ISD::SETGE:  Swap = true;
5593  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5594  case ISD::SETULT: Swap = true;
5595  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5596  case ISD::SETUGE: Swap = true;
5597  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5598  }
5599  if (Swap)
5600    std::swap(Op0, Op1);
5601
5602  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5603  // bits of the inputs before performing those operations.
5604  if (FlipSigns) {
5605    EVT EltVT = VT.getVectorElementType();
5606    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5607                                      EltVT);
5608    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5609    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5610                                    SignBits.size());
5611    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5612    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5613  }
5614
5615  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5616
5617  // If the logical-not of the result is required, perform that now.
5618  if (Invert)
5619    Result = DAG.getNOT(dl, Result, VT);
5620
5621  return Result;
5622}
5623
5624// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5625static bool isX86LogicalCmp(SDValue Op) {
5626  unsigned Opc = Op.getNode()->getOpcode();
5627  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5628    return true;
5629  if (Op.getResNo() == 1 &&
5630      (Opc == X86ISD::ADD ||
5631       Opc == X86ISD::SUB ||
5632       Opc == X86ISD::SMUL ||
5633       Opc == X86ISD::UMUL ||
5634       Opc == X86ISD::INC ||
5635       Opc == X86ISD::DEC ||
5636       Opc == X86ISD::OR ||
5637       Opc == X86ISD::XOR ||
5638       Opc == X86ISD::AND))
5639    return true;
5640
5641  return false;
5642}
5643
5644SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5645  bool addTest = true;
5646  SDValue Cond  = Op.getOperand(0);
5647  DebugLoc dl = Op.getDebugLoc();
5648  SDValue CC;
5649
5650  if (Cond.getOpcode() == ISD::SETCC)
5651    Cond = LowerSETCC(Cond, DAG);
5652
5653  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5654  // setting operand in place of the X86ISD::SETCC.
5655  if (Cond.getOpcode() == X86ISD::SETCC) {
5656    CC = Cond.getOperand(0);
5657
5658    SDValue Cmp = Cond.getOperand(1);
5659    unsigned Opc = Cmp.getOpcode();
5660    EVT VT = Op.getValueType();
5661
5662    bool IllegalFPCMov = false;
5663    if (VT.isFloatingPoint() && !VT.isVector() &&
5664        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5665      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5666
5667    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5668        Opc == X86ISD::BT) { // FIXME
5669      Cond = Cmp;
5670      addTest = false;
5671    }
5672  }
5673
5674  if (addTest) {
5675    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5676    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5677  }
5678
5679  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5680  SmallVector<SDValue, 4> Ops;
5681  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5682  // condition is true.
5683  Ops.push_back(Op.getOperand(2));
5684  Ops.push_back(Op.getOperand(1));
5685  Ops.push_back(CC);
5686  Ops.push_back(Cond);
5687  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5688}
5689
5690// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5691// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5692// from the AND / OR.
5693static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5694  Opc = Op.getOpcode();
5695  if (Opc != ISD::OR && Opc != ISD::AND)
5696    return false;
5697  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5698          Op.getOperand(0).hasOneUse() &&
5699          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5700          Op.getOperand(1).hasOneUse());
5701}
5702
5703// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5704// 1 and that the SETCC node has a single use.
5705static bool isXor1OfSetCC(SDValue Op) {
5706  if (Op.getOpcode() != ISD::XOR)
5707    return false;
5708  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5709  if (N1C && N1C->getAPIntValue() == 1) {
5710    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5711      Op.getOperand(0).hasOneUse();
5712  }
5713  return false;
5714}
5715
5716SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5717  bool addTest = true;
5718  SDValue Chain = Op.getOperand(0);
5719  SDValue Cond  = Op.getOperand(1);
5720  SDValue Dest  = Op.getOperand(2);
5721  DebugLoc dl = Op.getDebugLoc();
5722  SDValue CC;
5723
5724  if (Cond.getOpcode() == ISD::SETCC)
5725    Cond = LowerSETCC(Cond, DAG);
5726#if 0
5727  // FIXME: LowerXALUO doesn't handle these!!
5728  else if (Cond.getOpcode() == X86ISD::ADD  ||
5729           Cond.getOpcode() == X86ISD::SUB  ||
5730           Cond.getOpcode() == X86ISD::SMUL ||
5731           Cond.getOpcode() == X86ISD::UMUL)
5732    Cond = LowerXALUO(Cond, DAG);
5733#endif
5734
5735  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5736  // setting operand in place of the X86ISD::SETCC.
5737  if (Cond.getOpcode() == X86ISD::SETCC) {
5738    CC = Cond.getOperand(0);
5739
5740    SDValue Cmp = Cond.getOperand(1);
5741    unsigned Opc = Cmp.getOpcode();
5742    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5743    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5744      Cond = Cmp;
5745      addTest = false;
5746    } else {
5747      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5748      default: break;
5749      case X86::COND_O:
5750      case X86::COND_B:
5751        // These can only come from an arithmetic instruction with overflow,
5752        // e.g. SADDO, UADDO.
5753        Cond = Cond.getNode()->getOperand(1);
5754        addTest = false;
5755        break;
5756      }
5757    }
5758  } else {
5759    unsigned CondOpc;
5760    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5761      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5762      if (CondOpc == ISD::OR) {
5763        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5764        // two branches instead of an explicit OR instruction with a
5765        // separate test.
5766        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5767            isX86LogicalCmp(Cmp)) {
5768          CC = Cond.getOperand(0).getOperand(0);
5769          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5770                              Chain, Dest, CC, Cmp);
5771          CC = Cond.getOperand(1).getOperand(0);
5772          Cond = Cmp;
5773          addTest = false;
5774        }
5775      } else { // ISD::AND
5776        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5777        // two branches instead of an explicit AND instruction with a
5778        // separate test. However, we only do this if this block doesn't
5779        // have a fall-through edge, because this requires an explicit
5780        // jmp when the condition is false.
5781        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5782            isX86LogicalCmp(Cmp) &&
5783            Op.getNode()->hasOneUse()) {
5784          X86::CondCode CCode =
5785            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5786          CCode = X86::GetOppositeBranchCondition(CCode);
5787          CC = DAG.getConstant(CCode, MVT::i8);
5788          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5789          // Look for an unconditional branch following this conditional branch.
5790          // We need this because we need to reverse the successors in order
5791          // to implement FCMP_OEQ.
5792          if (User.getOpcode() == ISD::BR) {
5793            SDValue FalseBB = User.getOperand(1);
5794            SDValue NewBR =
5795              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5796            assert(NewBR == User);
5797            Dest = FalseBB;
5798
5799            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5800                                Chain, Dest, CC, Cmp);
5801            X86::CondCode CCode =
5802              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5803            CCode = X86::GetOppositeBranchCondition(CCode);
5804            CC = DAG.getConstant(CCode, MVT::i8);
5805            Cond = Cmp;
5806            addTest = false;
5807          }
5808        }
5809      }
5810    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5811      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5812      // It should be transformed during dag combiner except when the condition
5813      // is set by a arithmetics with overflow node.
5814      X86::CondCode CCode =
5815        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5816      CCode = X86::GetOppositeBranchCondition(CCode);
5817      CC = DAG.getConstant(CCode, MVT::i8);
5818      Cond = Cond.getOperand(0).getOperand(1);
5819      addTest = false;
5820    }
5821  }
5822
5823  if (addTest) {
5824    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5825    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5826  }
5827  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5828                     Chain, Dest, CC, Cond);
5829}
5830
5831
5832// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5833// Calls to _alloca is needed to probe the stack when allocating more than 4k
5834// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5835// that the guard pages used by the OS virtual memory manager are allocated in
5836// correct sequence.
5837SDValue
5838X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5839                                           SelectionDAG &DAG) {
5840  assert(Subtarget->isTargetCygMing() &&
5841         "This should be used only on Cygwin/Mingw targets");
5842  DebugLoc dl = Op.getDebugLoc();
5843
5844  // Get the inputs.
5845  SDValue Chain = Op.getOperand(0);
5846  SDValue Size  = Op.getOperand(1);
5847  // FIXME: Ensure alignment here
5848
5849  SDValue Flag;
5850
5851  EVT IntPtr = getPointerTy();
5852  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5853
5854  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5855
5856  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5857  Flag = Chain.getValue(1);
5858
5859  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5860  SDValue Ops[] = { Chain,
5861                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5862                      DAG.getRegister(X86::EAX, IntPtr),
5863                      DAG.getRegister(X86StackPtr, SPTy),
5864                      Flag };
5865  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5866  Flag = Chain.getValue(1);
5867
5868  Chain = DAG.getCALLSEQ_END(Chain,
5869                             DAG.getIntPtrConstant(0, true),
5870                             DAG.getIntPtrConstant(0, true),
5871                             Flag);
5872
5873  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5874
5875  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5876  return DAG.getMergeValues(Ops1, 2, dl);
5877}
5878
5879SDValue
5880X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5881                                           SDValue Chain,
5882                                           SDValue Dst, SDValue Src,
5883                                           SDValue Size, unsigned Align,
5884                                           const Value *DstSV,
5885                                           uint64_t DstSVOff) {
5886  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5887
5888  // If not DWORD aligned or size is more than the threshold, call the library.
5889  // The libc version is likely to be faster for these cases. It can use the
5890  // address value and run time information about the CPU.
5891  if ((Align & 3) != 0 ||
5892      !ConstantSize ||
5893      ConstantSize->getZExtValue() >
5894        getSubtarget()->getMaxInlineSizeThreshold()) {
5895    SDValue InFlag(0, 0);
5896
5897    // Check to see if there is a specialized entry-point for memory zeroing.
5898    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5899
5900    if (const char *bzeroEntry =  V &&
5901        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5902      EVT IntPtr = getPointerTy();
5903      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
5904      TargetLowering::ArgListTy Args;
5905      TargetLowering::ArgListEntry Entry;
5906      Entry.Node = Dst;
5907      Entry.Ty = IntPtrTy;
5908      Args.push_back(Entry);
5909      Entry.Node = Size;
5910      Args.push_back(Entry);
5911      std::pair<SDValue,SDValue> CallResult =
5912        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
5913                    false, false, false, false,
5914                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
5915                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5916      return CallResult.second;
5917    }
5918
5919    // Otherwise have the target-independent code call memset.
5920    return SDValue();
5921  }
5922
5923  uint64_t SizeVal = ConstantSize->getZExtValue();
5924  SDValue InFlag(0, 0);
5925  EVT AVT;
5926  SDValue Count;
5927  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5928  unsigned BytesLeft = 0;
5929  bool TwoRepStos = false;
5930  if (ValC) {
5931    unsigned ValReg;
5932    uint64_t Val = ValC->getZExtValue() & 255;
5933
5934    // If the value is a constant, then we can potentially use larger sets.
5935    switch (Align & 3) {
5936    case 2:   // WORD aligned
5937      AVT = MVT::i16;
5938      ValReg = X86::AX;
5939      Val = (Val << 8) | Val;
5940      break;
5941    case 0:  // DWORD aligned
5942      AVT = MVT::i32;
5943      ValReg = X86::EAX;
5944      Val = (Val << 8)  | Val;
5945      Val = (Val << 16) | Val;
5946      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5947        AVT = MVT::i64;
5948        ValReg = X86::RAX;
5949        Val = (Val << 32) | Val;
5950      }
5951      break;
5952    default:  // Byte aligned
5953      AVT = MVT::i8;
5954      ValReg = X86::AL;
5955      Count = DAG.getIntPtrConstant(SizeVal);
5956      break;
5957    }
5958
5959    if (AVT.bitsGT(MVT::i8)) {
5960      unsigned UBytes = AVT.getSizeInBits() / 8;
5961      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5962      BytesLeft = SizeVal % UBytes;
5963    }
5964
5965    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5966                              InFlag);
5967    InFlag = Chain.getValue(1);
5968  } else {
5969    AVT = MVT::i8;
5970    Count  = DAG.getIntPtrConstant(SizeVal);
5971    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5972    InFlag = Chain.getValue(1);
5973  }
5974
5975  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5976                                                              X86::ECX,
5977                            Count, InFlag);
5978  InFlag = Chain.getValue(1);
5979  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5980                                                              X86::EDI,
5981                            Dst, InFlag);
5982  InFlag = Chain.getValue(1);
5983
5984  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5985  SmallVector<SDValue, 8> Ops;
5986  Ops.push_back(Chain);
5987  Ops.push_back(DAG.getValueType(AVT));
5988  Ops.push_back(InFlag);
5989  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5990
5991  if (TwoRepStos) {
5992    InFlag = Chain.getValue(1);
5993    Count  = Size;
5994    EVT CVT = Count.getValueType();
5995    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5996                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5997    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5998                                                             X86::ECX,
5999                              Left, InFlag);
6000    InFlag = Chain.getValue(1);
6001    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6002    Ops.clear();
6003    Ops.push_back(Chain);
6004    Ops.push_back(DAG.getValueType(MVT::i8));
6005    Ops.push_back(InFlag);
6006    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6007  } else if (BytesLeft) {
6008    // Handle the last 1 - 7 bytes.
6009    unsigned Offset = SizeVal - BytesLeft;
6010    EVT AddrVT = Dst.getValueType();
6011    EVT SizeVT = Size.getValueType();
6012
6013    Chain = DAG.getMemset(Chain, dl,
6014                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6015                                      DAG.getConstant(Offset, AddrVT)),
6016                          Src,
6017                          DAG.getConstant(BytesLeft, SizeVT),
6018                          Align, DstSV, DstSVOff + Offset);
6019  }
6020
6021  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6022  return Chain;
6023}
6024
6025SDValue
6026X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6027                                      SDValue Chain, SDValue Dst, SDValue Src,
6028                                      SDValue Size, unsigned Align,
6029                                      bool AlwaysInline,
6030                                      const Value *DstSV, uint64_t DstSVOff,
6031                                      const Value *SrcSV, uint64_t SrcSVOff) {
6032  // This requires the copy size to be a constant, preferrably
6033  // within a subtarget-specific limit.
6034  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6035  if (!ConstantSize)
6036    return SDValue();
6037  uint64_t SizeVal = ConstantSize->getZExtValue();
6038  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6039    return SDValue();
6040
6041  /// If not DWORD aligned, call the library.
6042  if ((Align & 3) != 0)
6043    return SDValue();
6044
6045  // DWORD aligned
6046  EVT AVT = MVT::i32;
6047  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6048    AVT = MVT::i64;
6049
6050  unsigned UBytes = AVT.getSizeInBits() / 8;
6051  unsigned CountVal = SizeVal / UBytes;
6052  SDValue Count = DAG.getIntPtrConstant(CountVal);
6053  unsigned BytesLeft = SizeVal % UBytes;
6054
6055  SDValue InFlag(0, 0);
6056  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6057                                                              X86::ECX,
6058                            Count, InFlag);
6059  InFlag = Chain.getValue(1);
6060  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6061                                                             X86::EDI,
6062                            Dst, InFlag);
6063  InFlag = Chain.getValue(1);
6064  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6065                                                              X86::ESI,
6066                            Src, InFlag);
6067  InFlag = Chain.getValue(1);
6068
6069  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6070  SmallVector<SDValue, 8> Ops;
6071  Ops.push_back(Chain);
6072  Ops.push_back(DAG.getValueType(AVT));
6073  Ops.push_back(InFlag);
6074  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6075
6076  SmallVector<SDValue, 4> Results;
6077  Results.push_back(RepMovs);
6078  if (BytesLeft) {
6079    // Handle the last 1 - 7 bytes.
6080    unsigned Offset = SizeVal - BytesLeft;
6081    EVT DstVT = Dst.getValueType();
6082    EVT SrcVT = Src.getValueType();
6083    EVT SizeVT = Size.getValueType();
6084    Results.push_back(DAG.getMemcpy(Chain, dl,
6085                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6086                                                DAG.getConstant(Offset, DstVT)),
6087                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6088                                                DAG.getConstant(Offset, SrcVT)),
6089                                    DAG.getConstant(BytesLeft, SizeVT),
6090                                    Align, AlwaysInline,
6091                                    DstSV, DstSVOff + Offset,
6092                                    SrcSV, SrcSVOff + Offset));
6093  }
6094
6095  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6096                     &Results[0], Results.size());
6097}
6098
6099SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6100  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6101  DebugLoc dl = Op.getDebugLoc();
6102
6103  if (!Subtarget->is64Bit()) {
6104    // vastart just stores the address of the VarArgsFrameIndex slot into the
6105    // memory location argument.
6106    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6107    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6108  }
6109
6110  // __va_list_tag:
6111  //   gp_offset         (0 - 6 * 8)
6112  //   fp_offset         (48 - 48 + 8 * 16)
6113  //   overflow_arg_area (point to parameters coming in memory).
6114  //   reg_save_area
6115  SmallVector<SDValue, 8> MemOps;
6116  SDValue FIN = Op.getOperand(1);
6117  // Store gp_offset
6118  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6119                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6120                                 FIN, SV, 0);
6121  MemOps.push_back(Store);
6122
6123  // Store fp_offset
6124  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6125                    FIN, DAG.getIntPtrConstant(4));
6126  Store = DAG.getStore(Op.getOperand(0), dl,
6127                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6128                       FIN, SV, 0);
6129  MemOps.push_back(Store);
6130
6131  // Store ptr to overflow_arg_area
6132  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6133                    FIN, DAG.getIntPtrConstant(4));
6134  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6135  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6136  MemOps.push_back(Store);
6137
6138  // Store ptr to reg_save_area.
6139  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6140                    FIN, DAG.getIntPtrConstant(8));
6141  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6142  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6143  MemOps.push_back(Store);
6144  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6145                     &MemOps[0], MemOps.size());
6146}
6147
6148SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6149  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6150  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6151  SDValue Chain = Op.getOperand(0);
6152  SDValue SrcPtr = Op.getOperand(1);
6153  SDValue SrcSV = Op.getOperand(2);
6154
6155  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6156  return SDValue();
6157}
6158
6159SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6160  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6161  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6162  SDValue Chain = Op.getOperand(0);
6163  SDValue DstPtr = Op.getOperand(1);
6164  SDValue SrcPtr = Op.getOperand(2);
6165  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6166  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6167  DebugLoc dl = Op.getDebugLoc();
6168
6169  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6170                       DAG.getIntPtrConstant(24), 8, false,
6171                       DstSV, 0, SrcSV, 0);
6172}
6173
6174SDValue
6175X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6176  DebugLoc dl = Op.getDebugLoc();
6177  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6178  switch (IntNo) {
6179  default: return SDValue();    // Don't custom lower most intrinsics.
6180  // Comparison intrinsics.
6181  case Intrinsic::x86_sse_comieq_ss:
6182  case Intrinsic::x86_sse_comilt_ss:
6183  case Intrinsic::x86_sse_comile_ss:
6184  case Intrinsic::x86_sse_comigt_ss:
6185  case Intrinsic::x86_sse_comige_ss:
6186  case Intrinsic::x86_sse_comineq_ss:
6187  case Intrinsic::x86_sse_ucomieq_ss:
6188  case Intrinsic::x86_sse_ucomilt_ss:
6189  case Intrinsic::x86_sse_ucomile_ss:
6190  case Intrinsic::x86_sse_ucomigt_ss:
6191  case Intrinsic::x86_sse_ucomige_ss:
6192  case Intrinsic::x86_sse_ucomineq_ss:
6193  case Intrinsic::x86_sse2_comieq_sd:
6194  case Intrinsic::x86_sse2_comilt_sd:
6195  case Intrinsic::x86_sse2_comile_sd:
6196  case Intrinsic::x86_sse2_comigt_sd:
6197  case Intrinsic::x86_sse2_comige_sd:
6198  case Intrinsic::x86_sse2_comineq_sd:
6199  case Intrinsic::x86_sse2_ucomieq_sd:
6200  case Intrinsic::x86_sse2_ucomilt_sd:
6201  case Intrinsic::x86_sse2_ucomile_sd:
6202  case Intrinsic::x86_sse2_ucomigt_sd:
6203  case Intrinsic::x86_sse2_ucomige_sd:
6204  case Intrinsic::x86_sse2_ucomineq_sd: {
6205    unsigned Opc = 0;
6206    ISD::CondCode CC = ISD::SETCC_INVALID;
6207    switch (IntNo) {
6208    default: break;
6209    case Intrinsic::x86_sse_comieq_ss:
6210    case Intrinsic::x86_sse2_comieq_sd:
6211      Opc = X86ISD::COMI;
6212      CC = ISD::SETEQ;
6213      break;
6214    case Intrinsic::x86_sse_comilt_ss:
6215    case Intrinsic::x86_sse2_comilt_sd:
6216      Opc = X86ISD::COMI;
6217      CC = ISD::SETLT;
6218      break;
6219    case Intrinsic::x86_sse_comile_ss:
6220    case Intrinsic::x86_sse2_comile_sd:
6221      Opc = X86ISD::COMI;
6222      CC = ISD::SETLE;
6223      break;
6224    case Intrinsic::x86_sse_comigt_ss:
6225    case Intrinsic::x86_sse2_comigt_sd:
6226      Opc = X86ISD::COMI;
6227      CC = ISD::SETGT;
6228      break;
6229    case Intrinsic::x86_sse_comige_ss:
6230    case Intrinsic::x86_sse2_comige_sd:
6231      Opc = X86ISD::COMI;
6232      CC = ISD::SETGE;
6233      break;
6234    case Intrinsic::x86_sse_comineq_ss:
6235    case Intrinsic::x86_sse2_comineq_sd:
6236      Opc = X86ISD::COMI;
6237      CC = ISD::SETNE;
6238      break;
6239    case Intrinsic::x86_sse_ucomieq_ss:
6240    case Intrinsic::x86_sse2_ucomieq_sd:
6241      Opc = X86ISD::UCOMI;
6242      CC = ISD::SETEQ;
6243      break;
6244    case Intrinsic::x86_sse_ucomilt_ss:
6245    case Intrinsic::x86_sse2_ucomilt_sd:
6246      Opc = X86ISD::UCOMI;
6247      CC = ISD::SETLT;
6248      break;
6249    case Intrinsic::x86_sse_ucomile_ss:
6250    case Intrinsic::x86_sse2_ucomile_sd:
6251      Opc = X86ISD::UCOMI;
6252      CC = ISD::SETLE;
6253      break;
6254    case Intrinsic::x86_sse_ucomigt_ss:
6255    case Intrinsic::x86_sse2_ucomigt_sd:
6256      Opc = X86ISD::UCOMI;
6257      CC = ISD::SETGT;
6258      break;
6259    case Intrinsic::x86_sse_ucomige_ss:
6260    case Intrinsic::x86_sse2_ucomige_sd:
6261      Opc = X86ISD::UCOMI;
6262      CC = ISD::SETGE;
6263      break;
6264    case Intrinsic::x86_sse_ucomineq_ss:
6265    case Intrinsic::x86_sse2_ucomineq_sd:
6266      Opc = X86ISD::UCOMI;
6267      CC = ISD::SETNE;
6268      break;
6269    }
6270
6271    SDValue LHS = Op.getOperand(1);
6272    SDValue RHS = Op.getOperand(2);
6273    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6274    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6275    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6276                                DAG.getConstant(X86CC, MVT::i8), Cond);
6277    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6278  }
6279  // ptest intrinsics. The intrinsic these come from are designed to return
6280  // an integer value, not just an instruction so lower it to the ptest
6281  // pattern and a setcc for the result.
6282  case Intrinsic::x86_sse41_ptestz:
6283  case Intrinsic::x86_sse41_ptestc:
6284  case Intrinsic::x86_sse41_ptestnzc:{
6285    unsigned X86CC = 0;
6286    switch (IntNo) {
6287    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6288    case Intrinsic::x86_sse41_ptestz:
6289      // ZF = 1
6290      X86CC = X86::COND_E;
6291      break;
6292    case Intrinsic::x86_sse41_ptestc:
6293      // CF = 1
6294      X86CC = X86::COND_B;
6295      break;
6296    case Intrinsic::x86_sse41_ptestnzc:
6297      // ZF and CF = 0
6298      X86CC = X86::COND_A;
6299      break;
6300    }
6301
6302    SDValue LHS = Op.getOperand(1);
6303    SDValue RHS = Op.getOperand(2);
6304    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6305    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6306    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6307    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6308  }
6309
6310  // Fix vector shift instructions where the last operand is a non-immediate
6311  // i32 value.
6312  case Intrinsic::x86_sse2_pslli_w:
6313  case Intrinsic::x86_sse2_pslli_d:
6314  case Intrinsic::x86_sse2_pslli_q:
6315  case Intrinsic::x86_sse2_psrli_w:
6316  case Intrinsic::x86_sse2_psrli_d:
6317  case Intrinsic::x86_sse2_psrli_q:
6318  case Intrinsic::x86_sse2_psrai_w:
6319  case Intrinsic::x86_sse2_psrai_d:
6320  case Intrinsic::x86_mmx_pslli_w:
6321  case Intrinsic::x86_mmx_pslli_d:
6322  case Intrinsic::x86_mmx_pslli_q:
6323  case Intrinsic::x86_mmx_psrli_w:
6324  case Intrinsic::x86_mmx_psrli_d:
6325  case Intrinsic::x86_mmx_psrli_q:
6326  case Intrinsic::x86_mmx_psrai_w:
6327  case Intrinsic::x86_mmx_psrai_d: {
6328    SDValue ShAmt = Op.getOperand(2);
6329    if (isa<ConstantSDNode>(ShAmt))
6330      return SDValue();
6331
6332    unsigned NewIntNo = 0;
6333    EVT ShAmtVT = MVT::v4i32;
6334    switch (IntNo) {
6335    case Intrinsic::x86_sse2_pslli_w:
6336      NewIntNo = Intrinsic::x86_sse2_psll_w;
6337      break;
6338    case Intrinsic::x86_sse2_pslli_d:
6339      NewIntNo = Intrinsic::x86_sse2_psll_d;
6340      break;
6341    case Intrinsic::x86_sse2_pslli_q:
6342      NewIntNo = Intrinsic::x86_sse2_psll_q;
6343      break;
6344    case Intrinsic::x86_sse2_psrli_w:
6345      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6346      break;
6347    case Intrinsic::x86_sse2_psrli_d:
6348      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6349      break;
6350    case Intrinsic::x86_sse2_psrli_q:
6351      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6352      break;
6353    case Intrinsic::x86_sse2_psrai_w:
6354      NewIntNo = Intrinsic::x86_sse2_psra_w;
6355      break;
6356    case Intrinsic::x86_sse2_psrai_d:
6357      NewIntNo = Intrinsic::x86_sse2_psra_d;
6358      break;
6359    default: {
6360      ShAmtVT = MVT::v2i32;
6361      switch (IntNo) {
6362      case Intrinsic::x86_mmx_pslli_w:
6363        NewIntNo = Intrinsic::x86_mmx_psll_w;
6364        break;
6365      case Intrinsic::x86_mmx_pslli_d:
6366        NewIntNo = Intrinsic::x86_mmx_psll_d;
6367        break;
6368      case Intrinsic::x86_mmx_pslli_q:
6369        NewIntNo = Intrinsic::x86_mmx_psll_q;
6370        break;
6371      case Intrinsic::x86_mmx_psrli_w:
6372        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6373        break;
6374      case Intrinsic::x86_mmx_psrli_d:
6375        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6376        break;
6377      case Intrinsic::x86_mmx_psrli_q:
6378        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6379        break;
6380      case Intrinsic::x86_mmx_psrai_w:
6381        NewIntNo = Intrinsic::x86_mmx_psra_w;
6382        break;
6383      case Intrinsic::x86_mmx_psrai_d:
6384        NewIntNo = Intrinsic::x86_mmx_psra_d;
6385        break;
6386      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6387      }
6388      break;
6389    }
6390    }
6391
6392    // The vector shift intrinsics with scalars uses 32b shift amounts but
6393    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6394    // to be zero.
6395    SDValue ShOps[4];
6396    ShOps[0] = ShAmt;
6397    ShOps[1] = DAG.getConstant(0, MVT::i32);
6398    if (ShAmtVT == MVT::v4i32) {
6399      ShOps[2] = DAG.getUNDEF(MVT::i32);
6400      ShOps[3] = DAG.getUNDEF(MVT::i32);
6401      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6402    } else {
6403      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6404    }
6405
6406    EVT VT = Op.getValueType();
6407    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6408    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6409                       DAG.getConstant(NewIntNo, MVT::i32),
6410                       Op.getOperand(1), ShAmt);
6411  }
6412  }
6413}
6414
6415SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6416  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6417  DebugLoc dl = Op.getDebugLoc();
6418
6419  if (Depth > 0) {
6420    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6421    SDValue Offset =
6422      DAG.getConstant(TD->getPointerSize(),
6423                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6424    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6425                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6426                                   FrameAddr, Offset),
6427                       NULL, 0);
6428  }
6429
6430  // Just load the return address.
6431  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6432  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6433                     RetAddrFI, NULL, 0);
6434}
6435
6436SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6437  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6438  MFI->setFrameAddressIsTaken(true);
6439  EVT VT = Op.getValueType();
6440  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6441  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6442  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6443  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6444  while (Depth--)
6445    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6446  return FrameAddr;
6447}
6448
6449SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6450                                                     SelectionDAG &DAG) {
6451  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6452}
6453
6454SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6455{
6456  MachineFunction &MF = DAG.getMachineFunction();
6457  SDValue Chain     = Op.getOperand(0);
6458  SDValue Offset    = Op.getOperand(1);
6459  SDValue Handler   = Op.getOperand(2);
6460  DebugLoc dl       = Op.getDebugLoc();
6461
6462  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6463                                  getPointerTy());
6464  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6465
6466  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6467                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6468  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6469  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6470  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6471  MF.getRegInfo().addLiveOut(StoreAddrReg);
6472
6473  return DAG.getNode(X86ISD::EH_RETURN, dl,
6474                     MVT::Other,
6475                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6476}
6477
6478SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6479                                             SelectionDAG &DAG) {
6480  SDValue Root = Op.getOperand(0);
6481  SDValue Trmp = Op.getOperand(1); // trampoline
6482  SDValue FPtr = Op.getOperand(2); // nested function
6483  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6484  DebugLoc dl  = Op.getDebugLoc();
6485
6486  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6487
6488  const X86InstrInfo *TII =
6489    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6490
6491  if (Subtarget->is64Bit()) {
6492    SDValue OutChains[6];
6493
6494    // Large code-model.
6495
6496    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6497    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6498
6499    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6500    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6501
6502    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6503
6504    // Load the pointer to the nested function into R11.
6505    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6506    SDValue Addr = Trmp;
6507    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6508                                Addr, TrmpAddr, 0);
6509
6510    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6511                       DAG.getConstant(2, MVT::i64));
6512    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6513
6514    // Load the 'nest' parameter value into R10.
6515    // R10 is specified in X86CallingConv.td
6516    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6517    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6518                       DAG.getConstant(10, MVT::i64));
6519    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6520                                Addr, TrmpAddr, 10);
6521
6522    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6523                       DAG.getConstant(12, MVT::i64));
6524    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6525
6526    // Jump to the nested function.
6527    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6528    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6529                       DAG.getConstant(20, MVT::i64));
6530    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6531                                Addr, TrmpAddr, 20);
6532
6533    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6534    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6535                       DAG.getConstant(22, MVT::i64));
6536    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6537                                TrmpAddr, 22);
6538
6539    SDValue Ops[] =
6540      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6541    return DAG.getMergeValues(Ops, 2, dl);
6542  } else {
6543    const Function *Func =
6544      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6545    CallingConv::ID CC = Func->getCallingConv();
6546    unsigned NestReg;
6547
6548    switch (CC) {
6549    default:
6550      llvm_unreachable("Unsupported calling convention");
6551    case CallingConv::C:
6552    case CallingConv::X86_StdCall: {
6553      // Pass 'nest' parameter in ECX.
6554      // Must be kept in sync with X86CallingConv.td
6555      NestReg = X86::ECX;
6556
6557      // Check that ECX wasn't needed by an 'inreg' parameter.
6558      const FunctionType *FTy = Func->getFunctionType();
6559      const AttrListPtr &Attrs = Func->getAttributes();
6560
6561      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6562        unsigned InRegCount = 0;
6563        unsigned Idx = 1;
6564
6565        for (FunctionType::param_iterator I = FTy->param_begin(),
6566             E = FTy->param_end(); I != E; ++I, ++Idx)
6567          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6568            // FIXME: should only count parameters that are lowered to integers.
6569            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6570
6571        if (InRegCount > 2) {
6572          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6573        }
6574      }
6575      break;
6576    }
6577    case CallingConv::X86_FastCall:
6578    case CallingConv::Fast:
6579      // Pass 'nest' parameter in EAX.
6580      // Must be kept in sync with X86CallingConv.td
6581      NestReg = X86::EAX;
6582      break;
6583    }
6584
6585    SDValue OutChains[4];
6586    SDValue Addr, Disp;
6587
6588    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6589                       DAG.getConstant(10, MVT::i32));
6590    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6591
6592    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6593    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6594    OutChains[0] = DAG.getStore(Root, dl,
6595                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6596                                Trmp, TrmpAddr, 0);
6597
6598    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6599                       DAG.getConstant(1, MVT::i32));
6600    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6601
6602    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6603    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6604                       DAG.getConstant(5, MVT::i32));
6605    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6606                                TrmpAddr, 5, false, 1);
6607
6608    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6609                       DAG.getConstant(6, MVT::i32));
6610    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6611
6612    SDValue Ops[] =
6613      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6614    return DAG.getMergeValues(Ops, 2, dl);
6615  }
6616}
6617
6618SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6619  /*
6620   The rounding mode is in bits 11:10 of FPSR, and has the following
6621   settings:
6622     00 Round to nearest
6623     01 Round to -inf
6624     10 Round to +inf
6625     11 Round to 0
6626
6627  FLT_ROUNDS, on the other hand, expects the following:
6628    -1 Undefined
6629     0 Round to 0
6630     1 Round to nearest
6631     2 Round to +inf
6632     3 Round to -inf
6633
6634  To perform the conversion, we do:
6635    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6636  */
6637
6638  MachineFunction &MF = DAG.getMachineFunction();
6639  const TargetMachine &TM = MF.getTarget();
6640  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6641  unsigned StackAlignment = TFI.getStackAlignment();
6642  EVT VT = Op.getValueType();
6643  DebugLoc dl = Op.getDebugLoc();
6644
6645  // Save FP Control Word to stack slot
6646  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6647  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6648
6649  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6650                              DAG.getEntryNode(), StackSlot);
6651
6652  // Load FP Control Word from stack slot
6653  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6654
6655  // Transform as necessary
6656  SDValue CWD1 =
6657    DAG.getNode(ISD::SRL, dl, MVT::i16,
6658                DAG.getNode(ISD::AND, dl, MVT::i16,
6659                            CWD, DAG.getConstant(0x800, MVT::i16)),
6660                DAG.getConstant(11, MVT::i8));
6661  SDValue CWD2 =
6662    DAG.getNode(ISD::SRL, dl, MVT::i16,
6663                DAG.getNode(ISD::AND, dl, MVT::i16,
6664                            CWD, DAG.getConstant(0x400, MVT::i16)),
6665                DAG.getConstant(9, MVT::i8));
6666
6667  SDValue RetVal =
6668    DAG.getNode(ISD::AND, dl, MVT::i16,
6669                DAG.getNode(ISD::ADD, dl, MVT::i16,
6670                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6671                            DAG.getConstant(1, MVT::i16)),
6672                DAG.getConstant(3, MVT::i16));
6673
6674
6675  return DAG.getNode((VT.getSizeInBits() < 16 ?
6676                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6677}
6678
6679SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6680  EVT VT = Op.getValueType();
6681  EVT OpVT = VT;
6682  unsigned NumBits = VT.getSizeInBits();
6683  DebugLoc dl = Op.getDebugLoc();
6684
6685  Op = Op.getOperand(0);
6686  if (VT == MVT::i8) {
6687    // Zero extend to i32 since there is not an i8 bsr.
6688    OpVT = MVT::i32;
6689    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6690  }
6691
6692  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6693  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6694  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6695
6696  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6697  SmallVector<SDValue, 4> Ops;
6698  Ops.push_back(Op);
6699  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6700  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6701  Ops.push_back(Op.getValue(1));
6702  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6703
6704  // Finally xor with NumBits-1.
6705  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6706
6707  if (VT == MVT::i8)
6708    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6709  return Op;
6710}
6711
6712SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6713  EVT VT = Op.getValueType();
6714  EVT OpVT = VT;
6715  unsigned NumBits = VT.getSizeInBits();
6716  DebugLoc dl = Op.getDebugLoc();
6717
6718  Op = Op.getOperand(0);
6719  if (VT == MVT::i8) {
6720    OpVT = MVT::i32;
6721    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6722  }
6723
6724  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6725  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6726  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6727
6728  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6729  SmallVector<SDValue, 4> Ops;
6730  Ops.push_back(Op);
6731  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6732  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6733  Ops.push_back(Op.getValue(1));
6734  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6735
6736  if (VT == MVT::i8)
6737    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6738  return Op;
6739}
6740
6741SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6742  EVT VT = Op.getValueType();
6743  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6744  DebugLoc dl = Op.getDebugLoc();
6745
6746  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6747  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6748  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6749  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6750  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6751  //
6752  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6753  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6754  //  return AloBlo + AloBhi + AhiBlo;
6755
6756  SDValue A = Op.getOperand(0);
6757  SDValue B = Op.getOperand(1);
6758
6759  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6760                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6761                       A, DAG.getConstant(32, MVT::i32));
6762  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6763                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6764                       B, DAG.getConstant(32, MVT::i32));
6765  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6766                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6767                       A, B);
6768  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6769                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6770                       A, Bhi);
6771  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6772                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6773                       Ahi, B);
6774  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6775                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6776                       AloBhi, DAG.getConstant(32, MVT::i32));
6777  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6778                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6779                       AhiBlo, DAG.getConstant(32, MVT::i32));
6780  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6781  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6782  return Res;
6783}
6784
6785
6786SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6787  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6788  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6789  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6790  // has only one use.
6791  SDNode *N = Op.getNode();
6792  SDValue LHS = N->getOperand(0);
6793  SDValue RHS = N->getOperand(1);
6794  unsigned BaseOp = 0;
6795  unsigned Cond = 0;
6796  DebugLoc dl = Op.getDebugLoc();
6797
6798  switch (Op.getOpcode()) {
6799  default: llvm_unreachable("Unknown ovf instruction!");
6800  case ISD::SADDO:
6801    // A subtract of one will be selected as a INC. Note that INC doesn't
6802    // set CF, so we can't do this for UADDO.
6803    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6804      if (C->getAPIntValue() == 1) {
6805        BaseOp = X86ISD::INC;
6806        Cond = X86::COND_O;
6807        break;
6808      }
6809    BaseOp = X86ISD::ADD;
6810    Cond = X86::COND_O;
6811    break;
6812  case ISD::UADDO:
6813    BaseOp = X86ISD::ADD;
6814    Cond = X86::COND_B;
6815    break;
6816  case ISD::SSUBO:
6817    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6818    // set CF, so we can't do this for USUBO.
6819    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6820      if (C->getAPIntValue() == 1) {
6821        BaseOp = X86ISD::DEC;
6822        Cond = X86::COND_O;
6823        break;
6824      }
6825    BaseOp = X86ISD::SUB;
6826    Cond = X86::COND_O;
6827    break;
6828  case ISD::USUBO:
6829    BaseOp = X86ISD::SUB;
6830    Cond = X86::COND_B;
6831    break;
6832  case ISD::SMULO:
6833    BaseOp = X86ISD::SMUL;
6834    Cond = X86::COND_O;
6835    break;
6836  case ISD::UMULO:
6837    BaseOp = X86ISD::UMUL;
6838    Cond = X86::COND_B;
6839    break;
6840  }
6841
6842  // Also sets EFLAGS.
6843  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6844  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6845
6846  SDValue SetCC =
6847    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6848                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6849
6850  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6851  return Sum;
6852}
6853
6854SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6855  EVT T = Op.getValueType();
6856  DebugLoc dl = Op.getDebugLoc();
6857  unsigned Reg = 0;
6858  unsigned size = 0;
6859  switch(T.getSimpleVT().SimpleTy) {
6860  default:
6861    assert(false && "Invalid value type!");
6862  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6863  case MVT::i16: Reg = X86::AX;  size = 2; break;
6864  case MVT::i32: Reg = X86::EAX; size = 4; break;
6865  case MVT::i64:
6866    assert(Subtarget->is64Bit() && "Node not type legal!");
6867    Reg = X86::RAX; size = 8;
6868    break;
6869  }
6870  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6871                                    Op.getOperand(2), SDValue());
6872  SDValue Ops[] = { cpIn.getValue(0),
6873                    Op.getOperand(1),
6874                    Op.getOperand(3),
6875                    DAG.getTargetConstant(size, MVT::i8),
6876                    cpIn.getValue(1) };
6877  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6878  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6879  SDValue cpOut =
6880    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6881  return cpOut;
6882}
6883
6884SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6885                                                 SelectionDAG &DAG) {
6886  assert(Subtarget->is64Bit() && "Result not type legalized?");
6887  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6888  SDValue TheChain = Op.getOperand(0);
6889  DebugLoc dl = Op.getDebugLoc();
6890  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6891  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6892  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6893                                   rax.getValue(2));
6894  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6895                            DAG.getConstant(32, MVT::i8));
6896  SDValue Ops[] = {
6897    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6898    rdx.getValue(1)
6899  };
6900  return DAG.getMergeValues(Ops, 2, dl);
6901}
6902
6903SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6904  SDNode *Node = Op.getNode();
6905  DebugLoc dl = Node->getDebugLoc();
6906  EVT T = Node->getValueType(0);
6907  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6908                              DAG.getConstant(0, T), Node->getOperand(2));
6909  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6910                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6911                       Node->getOperand(0),
6912                       Node->getOperand(1), negOp,
6913                       cast<AtomicSDNode>(Node)->getSrcValue(),
6914                       cast<AtomicSDNode>(Node)->getAlignment());
6915}
6916
6917/// LowerOperation - Provide custom lowering hooks for some operations.
6918///
6919SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6920  switch (Op.getOpcode()) {
6921  default: llvm_unreachable("Should not custom lower this!");
6922  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6923  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6924  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6925  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6926  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6927  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6928  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6929  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6930  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6931  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6932  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6933  case ISD::SHL_PARTS:
6934  case ISD::SRA_PARTS:
6935  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6936  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6937  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6938  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6939  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6940  case ISD::FABS:               return LowerFABS(Op, DAG);
6941  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6942  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6943  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6944  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6945  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6946  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6947  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6948  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6949  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6950  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6951  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6952  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6953  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6954  case ISD::FRAME_TO_ARGS_OFFSET:
6955                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6956  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6957  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6958  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6959  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6960  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6961  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6962  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6963  case ISD::SADDO:
6964  case ISD::UADDO:
6965  case ISD::SSUBO:
6966  case ISD::USUBO:
6967  case ISD::SMULO:
6968  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6969  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6970  }
6971}
6972
6973void X86TargetLowering::
6974ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6975                        SelectionDAG &DAG, unsigned NewOp) {
6976  EVT T = Node->getValueType(0);
6977  DebugLoc dl = Node->getDebugLoc();
6978  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6979
6980  SDValue Chain = Node->getOperand(0);
6981  SDValue In1 = Node->getOperand(1);
6982  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6983                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6984  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6985                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6986  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6987  // have a MemOperand.  Pass the info through as a normal operand.
6988  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6989  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6990  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6991  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6992  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6993  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6994  Results.push_back(Result.getValue(2));
6995}
6996
6997/// ReplaceNodeResults - Replace a node with an illegal result type
6998/// with a new node built out of custom code.
6999void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7000                                           SmallVectorImpl<SDValue>&Results,
7001                                           SelectionDAG &DAG) {
7002  DebugLoc dl = N->getDebugLoc();
7003  switch (N->getOpcode()) {
7004  default:
7005    assert(false && "Do not know how to custom type legalize this operation!");
7006    return;
7007  case ISD::FP_TO_SINT: {
7008    std::pair<SDValue,SDValue> Vals =
7009        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7010    SDValue FIST = Vals.first, StackSlot = Vals.second;
7011    if (FIST.getNode() != 0) {
7012      EVT VT = N->getValueType(0);
7013      // Return a load from the stack slot.
7014      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7015    }
7016    return;
7017  }
7018  case ISD::READCYCLECOUNTER: {
7019    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7020    SDValue TheChain = N->getOperand(0);
7021    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7022    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7023                                     rd.getValue(1));
7024    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7025                                     eax.getValue(2));
7026    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7027    SDValue Ops[] = { eax, edx };
7028    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7029    Results.push_back(edx.getValue(1));
7030    return;
7031  }
7032  case ISD::ATOMIC_CMP_SWAP: {
7033    EVT T = N->getValueType(0);
7034    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7035    SDValue cpInL, cpInH;
7036    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7037                        DAG.getConstant(0, MVT::i32));
7038    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7039                        DAG.getConstant(1, MVT::i32));
7040    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7041    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7042                             cpInL.getValue(1));
7043    SDValue swapInL, swapInH;
7044    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7045                          DAG.getConstant(0, MVT::i32));
7046    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7047                          DAG.getConstant(1, MVT::i32));
7048    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7049                               cpInH.getValue(1));
7050    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7051                               swapInL.getValue(1));
7052    SDValue Ops[] = { swapInH.getValue(0),
7053                      N->getOperand(1),
7054                      swapInH.getValue(1) };
7055    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7056    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7057    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7058                                        MVT::i32, Result.getValue(1));
7059    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7060                                        MVT::i32, cpOutL.getValue(2));
7061    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7062    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7063    Results.push_back(cpOutH.getValue(1));
7064    return;
7065  }
7066  case ISD::ATOMIC_LOAD_ADD:
7067    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7068    return;
7069  case ISD::ATOMIC_LOAD_AND:
7070    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7071    return;
7072  case ISD::ATOMIC_LOAD_NAND:
7073    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7074    return;
7075  case ISD::ATOMIC_LOAD_OR:
7076    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7077    return;
7078  case ISD::ATOMIC_LOAD_SUB:
7079    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7080    return;
7081  case ISD::ATOMIC_LOAD_XOR:
7082    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7083    return;
7084  case ISD::ATOMIC_SWAP:
7085    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7086    return;
7087  }
7088}
7089
7090const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7091  switch (Opcode) {
7092  default: return NULL;
7093  case X86ISD::BSF:                return "X86ISD::BSF";
7094  case X86ISD::BSR:                return "X86ISD::BSR";
7095  case X86ISD::SHLD:               return "X86ISD::SHLD";
7096  case X86ISD::SHRD:               return "X86ISD::SHRD";
7097  case X86ISD::FAND:               return "X86ISD::FAND";
7098  case X86ISD::FOR:                return "X86ISD::FOR";
7099  case X86ISD::FXOR:               return "X86ISD::FXOR";
7100  case X86ISD::FSRL:               return "X86ISD::FSRL";
7101  case X86ISD::FILD:               return "X86ISD::FILD";
7102  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7103  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7104  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7105  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7106  case X86ISD::FLD:                return "X86ISD::FLD";
7107  case X86ISD::FST:                return "X86ISD::FST";
7108  case X86ISD::CALL:               return "X86ISD::CALL";
7109  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7110  case X86ISD::BT:                 return "X86ISD::BT";
7111  case X86ISD::CMP:                return "X86ISD::CMP";
7112  case X86ISD::COMI:               return "X86ISD::COMI";
7113  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7114  case X86ISD::SETCC:              return "X86ISD::SETCC";
7115  case X86ISD::CMOV:               return "X86ISD::CMOV";
7116  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7117  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7118  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7119  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7120  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7121  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7122  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7123  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7124  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7125  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7126  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7127  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7128  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7129  case X86ISD::FMAX:               return "X86ISD::FMAX";
7130  case X86ISD::FMIN:               return "X86ISD::FMIN";
7131  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7132  case X86ISD::FRCP:               return "X86ISD::FRCP";
7133  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7134  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7135  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7136  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7137  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7138  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7139  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7140  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7141  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7142  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7143  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7144  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7145  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7146  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7147  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7148  case X86ISD::VSHL:               return "X86ISD::VSHL";
7149  case X86ISD::VSRL:               return "X86ISD::VSRL";
7150  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7151  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7152  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7153  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7154  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7155  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7156  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7157  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7158  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7159  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7160  case X86ISD::ADD:                return "X86ISD::ADD";
7161  case X86ISD::SUB:                return "X86ISD::SUB";
7162  case X86ISD::SMUL:               return "X86ISD::SMUL";
7163  case X86ISD::UMUL:               return "X86ISD::UMUL";
7164  case X86ISD::INC:                return "X86ISD::INC";
7165  case X86ISD::DEC:                return "X86ISD::DEC";
7166  case X86ISD::OR:                 return "X86ISD::OR";
7167  case X86ISD::XOR:                return "X86ISD::XOR";
7168  case X86ISD::AND:                return "X86ISD::AND";
7169  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7170  case X86ISD::PTEST:              return "X86ISD::PTEST";
7171  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7172  }
7173}
7174
7175// isLegalAddressingMode - Return true if the addressing mode represented
7176// by AM is legal for this target, for a load/store of the specified type.
7177bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7178                                              const Type *Ty) const {
7179  // X86 supports extremely general addressing modes.
7180  CodeModel::Model M = getTargetMachine().getCodeModel();
7181
7182  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7183  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7184    return false;
7185
7186  if (AM.BaseGV) {
7187    unsigned GVFlags =
7188      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7189
7190    // If a reference to this global requires an extra load, we can't fold it.
7191    if (isGlobalStubReference(GVFlags))
7192      return false;
7193
7194    // If BaseGV requires a register for the PIC base, we cannot also have a
7195    // BaseReg specified.
7196    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7197      return false;
7198
7199    // If lower 4G is not available, then we must use rip-relative addressing.
7200    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7201      return false;
7202  }
7203
7204  switch (AM.Scale) {
7205  case 0:
7206  case 1:
7207  case 2:
7208  case 4:
7209  case 8:
7210    // These scales always work.
7211    break;
7212  case 3:
7213  case 5:
7214  case 9:
7215    // These scales are formed with basereg+scalereg.  Only accept if there is
7216    // no basereg yet.
7217    if (AM.HasBaseReg)
7218      return false;
7219    break;
7220  default:  // Other stuff never works.
7221    return false;
7222  }
7223
7224  return true;
7225}
7226
7227
7228bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7229  if (!Ty1->isInteger() || !Ty2->isInteger())
7230    return false;
7231  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7232  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7233  if (NumBits1 <= NumBits2)
7234    return false;
7235  return Subtarget->is64Bit() || NumBits1 < 64;
7236}
7237
7238bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7239  if (!VT1.isInteger() || !VT2.isInteger())
7240    return false;
7241  unsigned NumBits1 = VT1.getSizeInBits();
7242  unsigned NumBits2 = VT2.getSizeInBits();
7243  if (NumBits1 <= NumBits2)
7244    return false;
7245  return Subtarget->is64Bit() || NumBits1 < 64;
7246}
7247
7248bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7249  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7250  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7251         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7252}
7253
7254bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7255  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7256  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7257}
7258
7259bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7260  // i16 instructions are longer (0x66 prefix) and potentially slower.
7261  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7262}
7263
7264/// isShuffleMaskLegal - Targets can use this to indicate that they only
7265/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7266/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7267/// are assumed to be legal.
7268bool
7269X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7270                                      EVT VT) const {
7271  // Only do shuffles on 128-bit vector types for now.
7272  if (VT.getSizeInBits() == 64)
7273    return false;
7274
7275  // FIXME: pshufb, blends, palignr, shifts.
7276  return (VT.getVectorNumElements() == 2 ||
7277          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7278          isMOVLMask(M, VT) ||
7279          isSHUFPMask(M, VT) ||
7280          isPSHUFDMask(M, VT) ||
7281          isPSHUFHWMask(M, VT) ||
7282          isPSHUFLWMask(M, VT) ||
7283          isUNPCKLMask(M, VT) ||
7284          isUNPCKHMask(M, VT) ||
7285          isUNPCKL_v_undef_Mask(M, VT) ||
7286          isUNPCKH_v_undef_Mask(M, VT));
7287}
7288
7289bool
7290X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7291                                          EVT VT) const {
7292  unsigned NumElts = VT.getVectorNumElements();
7293  // FIXME: This collection of masks seems suspect.
7294  if (NumElts == 2)
7295    return true;
7296  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7297    return (isMOVLMask(Mask, VT)  ||
7298            isCommutedMOVLMask(Mask, VT, true) ||
7299            isSHUFPMask(Mask, VT) ||
7300            isCommutedSHUFPMask(Mask, VT));
7301  }
7302  return false;
7303}
7304
7305//===----------------------------------------------------------------------===//
7306//                           X86 Scheduler Hooks
7307//===----------------------------------------------------------------------===//
7308
7309// private utility function
7310MachineBasicBlock *
7311X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7312                                                       MachineBasicBlock *MBB,
7313                                                       unsigned regOpc,
7314                                                       unsigned immOpc,
7315                                                       unsigned LoadOpc,
7316                                                       unsigned CXchgOpc,
7317                                                       unsigned copyOpc,
7318                                                       unsigned notOpc,
7319                                                       unsigned EAXreg,
7320                                                       TargetRegisterClass *RC,
7321                                                       bool invSrc) const {
7322  // For the atomic bitwise operator, we generate
7323  //   thisMBB:
7324  //   newMBB:
7325  //     ld  t1 = [bitinstr.addr]
7326  //     op  t2 = t1, [bitinstr.val]
7327  //     mov EAX = t1
7328  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7329  //     bz  newMBB
7330  //     fallthrough -->nextMBB
7331  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7332  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7333  MachineFunction::iterator MBBIter = MBB;
7334  ++MBBIter;
7335
7336  /// First build the CFG
7337  MachineFunction *F = MBB->getParent();
7338  MachineBasicBlock *thisMBB = MBB;
7339  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7340  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7341  F->insert(MBBIter, newMBB);
7342  F->insert(MBBIter, nextMBB);
7343
7344  // Move all successors to thisMBB to nextMBB
7345  nextMBB->transferSuccessors(thisMBB);
7346
7347  // Update thisMBB to fall through to newMBB
7348  thisMBB->addSuccessor(newMBB);
7349
7350  // newMBB jumps to itself and fall through to nextMBB
7351  newMBB->addSuccessor(nextMBB);
7352  newMBB->addSuccessor(newMBB);
7353
7354  // Insert instructions into newMBB based on incoming instruction
7355  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7356         "unexpected number of operands");
7357  DebugLoc dl = bInstr->getDebugLoc();
7358  MachineOperand& destOper = bInstr->getOperand(0);
7359  MachineOperand* argOpers[2 + X86AddrNumOperands];
7360  int numArgs = bInstr->getNumOperands() - 1;
7361  for (int i=0; i < numArgs; ++i)
7362    argOpers[i] = &bInstr->getOperand(i+1);
7363
7364  // x86 address has 4 operands: base, index, scale, and displacement
7365  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7366  int valArgIndx = lastAddrIndx + 1;
7367
7368  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7369  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7370  for (int i=0; i <= lastAddrIndx; ++i)
7371    (*MIB).addOperand(*argOpers[i]);
7372
7373  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7374  if (invSrc) {
7375    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7376  }
7377  else
7378    tt = t1;
7379
7380  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7381  assert((argOpers[valArgIndx]->isReg() ||
7382          argOpers[valArgIndx]->isImm()) &&
7383         "invalid operand");
7384  if (argOpers[valArgIndx]->isReg())
7385    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7386  else
7387    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7388  MIB.addReg(tt);
7389  (*MIB).addOperand(*argOpers[valArgIndx]);
7390
7391  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7392  MIB.addReg(t1);
7393
7394  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7395  for (int i=0; i <= lastAddrIndx; ++i)
7396    (*MIB).addOperand(*argOpers[i]);
7397  MIB.addReg(t2);
7398  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7399  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7400
7401  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7402  MIB.addReg(EAXreg);
7403
7404  // insert branch
7405  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7406
7407  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7408  return nextMBB;
7409}
7410
7411// private utility function:  64 bit atomics on 32 bit host.
7412MachineBasicBlock *
7413X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7414                                                       MachineBasicBlock *MBB,
7415                                                       unsigned regOpcL,
7416                                                       unsigned regOpcH,
7417                                                       unsigned immOpcL,
7418                                                       unsigned immOpcH,
7419                                                       bool invSrc) const {
7420  // For the atomic bitwise operator, we generate
7421  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7422  //     ld t1,t2 = [bitinstr.addr]
7423  //   newMBB:
7424  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7425  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7426  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7427  //     mov ECX, EBX <- t5, t6
7428  //     mov EAX, EDX <- t1, t2
7429  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7430  //     mov t3, t4 <- EAX, EDX
7431  //     bz  newMBB
7432  //     result in out1, out2
7433  //     fallthrough -->nextMBB
7434
7435  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7436  const unsigned LoadOpc = X86::MOV32rm;
7437  const unsigned copyOpc = X86::MOV32rr;
7438  const unsigned NotOpc = X86::NOT32r;
7439  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7440  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7441  MachineFunction::iterator MBBIter = MBB;
7442  ++MBBIter;
7443
7444  /// First build the CFG
7445  MachineFunction *F = MBB->getParent();
7446  MachineBasicBlock *thisMBB = MBB;
7447  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7448  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7449  F->insert(MBBIter, newMBB);
7450  F->insert(MBBIter, nextMBB);
7451
7452  // Move all successors to thisMBB to nextMBB
7453  nextMBB->transferSuccessors(thisMBB);
7454
7455  // Update thisMBB to fall through to newMBB
7456  thisMBB->addSuccessor(newMBB);
7457
7458  // newMBB jumps to itself and fall through to nextMBB
7459  newMBB->addSuccessor(nextMBB);
7460  newMBB->addSuccessor(newMBB);
7461
7462  DebugLoc dl = bInstr->getDebugLoc();
7463  // Insert instructions into newMBB based on incoming instruction
7464  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7465  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7466         "unexpected number of operands");
7467  MachineOperand& dest1Oper = bInstr->getOperand(0);
7468  MachineOperand& dest2Oper = bInstr->getOperand(1);
7469  MachineOperand* argOpers[2 + X86AddrNumOperands];
7470  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7471    argOpers[i] = &bInstr->getOperand(i+2);
7472
7473  // x86 address has 4 operands: base, index, scale, and displacement
7474  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7475
7476  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7477  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7478  for (int i=0; i <= lastAddrIndx; ++i)
7479    (*MIB).addOperand(*argOpers[i]);
7480  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7481  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7482  // add 4 to displacement.
7483  for (int i=0; i <= lastAddrIndx-2; ++i)
7484    (*MIB).addOperand(*argOpers[i]);
7485  MachineOperand newOp3 = *(argOpers[3]);
7486  if (newOp3.isImm())
7487    newOp3.setImm(newOp3.getImm()+4);
7488  else
7489    newOp3.setOffset(newOp3.getOffset()+4);
7490  (*MIB).addOperand(newOp3);
7491  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7492
7493  // t3/4 are defined later, at the bottom of the loop
7494  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7495  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7496  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7497    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7498  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7499    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7500
7501  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7502  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7503  if (invSrc) {
7504    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7505    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7506  } else {
7507    tt1 = t1;
7508    tt2 = t2;
7509  }
7510
7511  int valArgIndx = lastAddrIndx + 1;
7512  assert((argOpers[valArgIndx]->isReg() ||
7513          argOpers[valArgIndx]->isImm()) &&
7514         "invalid operand");
7515  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7516  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7517  if (argOpers[valArgIndx]->isReg())
7518    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7519  else
7520    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7521  if (regOpcL != X86::MOV32rr)
7522    MIB.addReg(tt1);
7523  (*MIB).addOperand(*argOpers[valArgIndx]);
7524  assert(argOpers[valArgIndx + 1]->isReg() ==
7525         argOpers[valArgIndx]->isReg());
7526  assert(argOpers[valArgIndx + 1]->isImm() ==
7527         argOpers[valArgIndx]->isImm());
7528  if (argOpers[valArgIndx + 1]->isReg())
7529    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7530  else
7531    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7532  if (regOpcH != X86::MOV32rr)
7533    MIB.addReg(tt2);
7534  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7535
7536  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7537  MIB.addReg(t1);
7538  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7539  MIB.addReg(t2);
7540
7541  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7542  MIB.addReg(t5);
7543  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7544  MIB.addReg(t6);
7545
7546  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7547  for (int i=0; i <= lastAddrIndx; ++i)
7548    (*MIB).addOperand(*argOpers[i]);
7549
7550  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7551  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7552
7553  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7554  MIB.addReg(X86::EAX);
7555  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7556  MIB.addReg(X86::EDX);
7557
7558  // insert branch
7559  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7560
7561  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7562  return nextMBB;
7563}
7564
7565// private utility function
7566MachineBasicBlock *
7567X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7568                                                      MachineBasicBlock *MBB,
7569                                                      unsigned cmovOpc) const {
7570  // For the atomic min/max operator, we generate
7571  //   thisMBB:
7572  //   newMBB:
7573  //     ld t1 = [min/max.addr]
7574  //     mov t2 = [min/max.val]
7575  //     cmp  t1, t2
7576  //     cmov[cond] t2 = t1
7577  //     mov EAX = t1
7578  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7579  //     bz   newMBB
7580  //     fallthrough -->nextMBB
7581  //
7582  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7583  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7584  MachineFunction::iterator MBBIter = MBB;
7585  ++MBBIter;
7586
7587  /// First build the CFG
7588  MachineFunction *F = MBB->getParent();
7589  MachineBasicBlock *thisMBB = MBB;
7590  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7591  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7592  F->insert(MBBIter, newMBB);
7593  F->insert(MBBIter, nextMBB);
7594
7595  // Move all successors of thisMBB to nextMBB
7596  nextMBB->transferSuccessors(thisMBB);
7597
7598  // Update thisMBB to fall through to newMBB
7599  thisMBB->addSuccessor(newMBB);
7600
7601  // newMBB jumps to newMBB and fall through to nextMBB
7602  newMBB->addSuccessor(nextMBB);
7603  newMBB->addSuccessor(newMBB);
7604
7605  DebugLoc dl = mInstr->getDebugLoc();
7606  // Insert instructions into newMBB based on incoming instruction
7607  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7608         "unexpected number of operands");
7609  MachineOperand& destOper = mInstr->getOperand(0);
7610  MachineOperand* argOpers[2 + X86AddrNumOperands];
7611  int numArgs = mInstr->getNumOperands() - 1;
7612  for (int i=0; i < numArgs; ++i)
7613    argOpers[i] = &mInstr->getOperand(i+1);
7614
7615  // x86 address has 4 operands: base, index, scale, and displacement
7616  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7617  int valArgIndx = lastAddrIndx + 1;
7618
7619  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7620  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7621  for (int i=0; i <= lastAddrIndx; ++i)
7622    (*MIB).addOperand(*argOpers[i]);
7623
7624  // We only support register and immediate values
7625  assert((argOpers[valArgIndx]->isReg() ||
7626          argOpers[valArgIndx]->isImm()) &&
7627         "invalid operand");
7628
7629  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7630  if (argOpers[valArgIndx]->isReg())
7631    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7632  else
7633    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7634  (*MIB).addOperand(*argOpers[valArgIndx]);
7635
7636  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7637  MIB.addReg(t1);
7638
7639  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7640  MIB.addReg(t1);
7641  MIB.addReg(t2);
7642
7643  // Generate movc
7644  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7645  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7646  MIB.addReg(t2);
7647  MIB.addReg(t1);
7648
7649  // Cmp and exchange if none has modified the memory location
7650  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7651  for (int i=0; i <= lastAddrIndx; ++i)
7652    (*MIB).addOperand(*argOpers[i]);
7653  MIB.addReg(t3);
7654  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7655  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7656
7657  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7658  MIB.addReg(X86::EAX);
7659
7660  // insert branch
7661  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7662
7663  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7664  return nextMBB;
7665}
7666
7667// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7668// all of this code can be replaced with that in the .td file.
7669MachineBasicBlock *
7670X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7671                            unsigned numArgs, bool memArg) const {
7672
7673  MachineFunction *F = BB->getParent();
7674  DebugLoc dl = MI->getDebugLoc();
7675  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7676
7677  unsigned Opc;
7678  if (memArg)
7679    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
7680  else
7681    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
7682
7683  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7684
7685  for (unsigned i = 0; i < numArgs; ++i) {
7686    MachineOperand &Op = MI->getOperand(i+1);
7687
7688    if (!(Op.isReg() && Op.isImplicit()))
7689      MIB.addOperand(Op);
7690  }
7691
7692  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7693    .addReg(X86::XMM0);
7694
7695  F->DeleteMachineInstr(MI);
7696
7697  return BB;
7698}
7699
7700MachineBasicBlock *
7701X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7702                                                 MachineInstr *MI,
7703                                                 MachineBasicBlock *MBB) const {
7704  // Emit code to save XMM registers to the stack. The ABI says that the
7705  // number of registers to save is given in %al, so it's theoretically
7706  // possible to do an indirect jump trick to avoid saving all of them,
7707  // however this code takes a simpler approach and just executes all
7708  // of the stores if %al is non-zero. It's less code, and it's probably
7709  // easier on the hardware branch predictor, and stores aren't all that
7710  // expensive anyway.
7711
7712  // Create the new basic blocks. One block contains all the XMM stores,
7713  // and one block is the final destination regardless of whether any
7714  // stores were performed.
7715  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7716  MachineFunction *F = MBB->getParent();
7717  MachineFunction::iterator MBBIter = MBB;
7718  ++MBBIter;
7719  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7720  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7721  F->insert(MBBIter, XMMSaveMBB);
7722  F->insert(MBBIter, EndMBB);
7723
7724  // Set up the CFG.
7725  // Move any original successors of MBB to the end block.
7726  EndMBB->transferSuccessors(MBB);
7727  // The original block will now fall through to the XMM save block.
7728  MBB->addSuccessor(XMMSaveMBB);
7729  // The XMMSaveMBB will fall through to the end block.
7730  XMMSaveMBB->addSuccessor(EndMBB);
7731
7732  // Now add the instructions.
7733  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7734  DebugLoc DL = MI->getDebugLoc();
7735
7736  unsigned CountReg = MI->getOperand(0).getReg();
7737  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7738  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7739
7740  if (!Subtarget->isTargetWin64()) {
7741    // If %al is 0, branch around the XMM save block.
7742    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7743    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7744    MBB->addSuccessor(EndMBB);
7745  }
7746
7747  // In the XMM save block, save all the XMM argument registers.
7748  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7749    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7750    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7751      .addFrameIndex(RegSaveFrameIndex)
7752      .addImm(/*Scale=*/1)
7753      .addReg(/*IndexReg=*/0)
7754      .addImm(/*Disp=*/Offset)
7755      .addReg(/*Segment=*/0)
7756      .addReg(MI->getOperand(i).getReg())
7757      .addMemOperand(MachineMemOperand(
7758                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7759                       MachineMemOperand::MOStore, Offset,
7760                       /*Size=*/16, /*Align=*/16));
7761  }
7762
7763  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7764
7765  return EndMBB;
7766}
7767
7768MachineBasicBlock *
7769X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7770                                     MachineBasicBlock *BB,
7771                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7772  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7773  DebugLoc DL = MI->getDebugLoc();
7774
7775  // To "insert" a SELECT_CC instruction, we actually have to insert the
7776  // diamond control-flow pattern.  The incoming instruction knows the
7777  // destination vreg to set, the condition code register to branch on, the
7778  // true/false values to select between, and a branch opcode to use.
7779  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7780  MachineFunction::iterator It = BB;
7781  ++It;
7782
7783  //  thisMBB:
7784  //  ...
7785  //   TrueVal = ...
7786  //   cmpTY ccX, r1, r2
7787  //   bCC copy1MBB
7788  //   fallthrough --> copy0MBB
7789  MachineBasicBlock *thisMBB = BB;
7790  MachineFunction *F = BB->getParent();
7791  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7792  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7793  unsigned Opc =
7794    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7795  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7796  F->insert(It, copy0MBB);
7797  F->insert(It, sinkMBB);
7798  // Update machine-CFG edges by first adding all successors of the current
7799  // block to the new block which will contain the Phi node for the select.
7800  // Also inform sdisel of the edge changes.
7801  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
7802         E = BB->succ_end(); I != E; ++I) {
7803    EM->insert(std::make_pair(*I, sinkMBB));
7804    sinkMBB->addSuccessor(*I);
7805  }
7806  // Next, remove all successors of the current block, and add the true
7807  // and fallthrough blocks as its successors.
7808  while (!BB->succ_empty())
7809    BB->removeSuccessor(BB->succ_begin());
7810  // Add the true and fallthrough blocks as its successors.
7811  BB->addSuccessor(copy0MBB);
7812  BB->addSuccessor(sinkMBB);
7813
7814  //  copy0MBB:
7815  //   %FalseValue = ...
7816  //   # fallthrough to sinkMBB
7817  BB = copy0MBB;
7818
7819  // Update machine-CFG edges
7820  BB->addSuccessor(sinkMBB);
7821
7822  //  sinkMBB:
7823  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7824  //  ...
7825  BB = sinkMBB;
7826  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7827    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7828    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7829
7830  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7831  return BB;
7832}
7833
7834
7835MachineBasicBlock *
7836X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7837                                               MachineBasicBlock *BB,
7838                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7839  switch (MI->getOpcode()) {
7840  default: assert(false && "Unexpected instr type to insert");
7841  case X86::CMOV_GR8:
7842  case X86::CMOV_V1I64:
7843  case X86::CMOV_FR32:
7844  case X86::CMOV_FR64:
7845  case X86::CMOV_V4F32:
7846  case X86::CMOV_V2F64:
7847  case X86::CMOV_V2I64:
7848    return EmitLoweredSelect(MI, BB, EM);
7849
7850  case X86::FP32_TO_INT16_IN_MEM:
7851  case X86::FP32_TO_INT32_IN_MEM:
7852  case X86::FP32_TO_INT64_IN_MEM:
7853  case X86::FP64_TO_INT16_IN_MEM:
7854  case X86::FP64_TO_INT32_IN_MEM:
7855  case X86::FP64_TO_INT64_IN_MEM:
7856  case X86::FP80_TO_INT16_IN_MEM:
7857  case X86::FP80_TO_INT32_IN_MEM:
7858  case X86::FP80_TO_INT64_IN_MEM: {
7859    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7860    DebugLoc DL = MI->getDebugLoc();
7861
7862    // Change the floating point control register to use "round towards zero"
7863    // mode when truncating to an integer value.
7864    MachineFunction *F = BB->getParent();
7865    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7866    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7867
7868    // Load the old value of the high byte of the control word...
7869    unsigned OldCW =
7870      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7871    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
7872                      CWFrameIdx);
7873
7874    // Set the high part to be round to zero...
7875    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
7876      .addImm(0xC7F);
7877
7878    // Reload the modified control word now...
7879    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7880
7881    // Restore the memory image of control word to original value
7882    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
7883      .addReg(OldCW);
7884
7885    // Get the X86 opcode to use.
7886    unsigned Opc;
7887    switch (MI->getOpcode()) {
7888    default: llvm_unreachable("illegal opcode!");
7889    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7890    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7891    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7892    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7893    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7894    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7895    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7896    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7897    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7898    }
7899
7900    X86AddressMode AM;
7901    MachineOperand &Op = MI->getOperand(0);
7902    if (Op.isReg()) {
7903      AM.BaseType = X86AddressMode::RegBase;
7904      AM.Base.Reg = Op.getReg();
7905    } else {
7906      AM.BaseType = X86AddressMode::FrameIndexBase;
7907      AM.Base.FrameIndex = Op.getIndex();
7908    }
7909    Op = MI->getOperand(1);
7910    if (Op.isImm())
7911      AM.Scale = Op.getImm();
7912    Op = MI->getOperand(2);
7913    if (Op.isImm())
7914      AM.IndexReg = Op.getImm();
7915    Op = MI->getOperand(3);
7916    if (Op.isGlobal()) {
7917      AM.GV = Op.getGlobal();
7918    } else {
7919      AM.Disp = Op.getImm();
7920    }
7921    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
7922                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7923
7924    // Reload the original control word now.
7925    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7926
7927    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7928    return BB;
7929  }
7930    // String/text processing lowering.
7931  case X86::PCMPISTRM128REG:
7932    return EmitPCMP(MI, BB, 3, false /* in-mem */);
7933  case X86::PCMPISTRM128MEM:
7934    return EmitPCMP(MI, BB, 3, true /* in-mem */);
7935  case X86::PCMPESTRM128REG:
7936    return EmitPCMP(MI, BB, 5, false /* in mem */);
7937  case X86::PCMPESTRM128MEM:
7938    return EmitPCMP(MI, BB, 5, true /* in mem */);
7939
7940    // Atomic Lowering.
7941  case X86::ATOMAND32:
7942    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7943                                               X86::AND32ri, X86::MOV32rm,
7944                                               X86::LCMPXCHG32, X86::MOV32rr,
7945                                               X86::NOT32r, X86::EAX,
7946                                               X86::GR32RegisterClass);
7947  case X86::ATOMOR32:
7948    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7949                                               X86::OR32ri, X86::MOV32rm,
7950                                               X86::LCMPXCHG32, X86::MOV32rr,
7951                                               X86::NOT32r, X86::EAX,
7952                                               X86::GR32RegisterClass);
7953  case X86::ATOMXOR32:
7954    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7955                                               X86::XOR32ri, X86::MOV32rm,
7956                                               X86::LCMPXCHG32, X86::MOV32rr,
7957                                               X86::NOT32r, X86::EAX,
7958                                               X86::GR32RegisterClass);
7959  case X86::ATOMNAND32:
7960    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7961                                               X86::AND32ri, X86::MOV32rm,
7962                                               X86::LCMPXCHG32, X86::MOV32rr,
7963                                               X86::NOT32r, X86::EAX,
7964                                               X86::GR32RegisterClass, true);
7965  case X86::ATOMMIN32:
7966    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7967  case X86::ATOMMAX32:
7968    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7969  case X86::ATOMUMIN32:
7970    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7971  case X86::ATOMUMAX32:
7972    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7973
7974  case X86::ATOMAND16:
7975    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7976                                               X86::AND16ri, X86::MOV16rm,
7977                                               X86::LCMPXCHG16, X86::MOV16rr,
7978                                               X86::NOT16r, X86::AX,
7979                                               X86::GR16RegisterClass);
7980  case X86::ATOMOR16:
7981    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7982                                               X86::OR16ri, X86::MOV16rm,
7983                                               X86::LCMPXCHG16, X86::MOV16rr,
7984                                               X86::NOT16r, X86::AX,
7985                                               X86::GR16RegisterClass);
7986  case X86::ATOMXOR16:
7987    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7988                                               X86::XOR16ri, X86::MOV16rm,
7989                                               X86::LCMPXCHG16, X86::MOV16rr,
7990                                               X86::NOT16r, X86::AX,
7991                                               X86::GR16RegisterClass);
7992  case X86::ATOMNAND16:
7993    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7994                                               X86::AND16ri, X86::MOV16rm,
7995                                               X86::LCMPXCHG16, X86::MOV16rr,
7996                                               X86::NOT16r, X86::AX,
7997                                               X86::GR16RegisterClass, true);
7998  case X86::ATOMMIN16:
7999    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8000  case X86::ATOMMAX16:
8001    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8002  case X86::ATOMUMIN16:
8003    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8004  case X86::ATOMUMAX16:
8005    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8006
8007  case X86::ATOMAND8:
8008    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8009                                               X86::AND8ri, X86::MOV8rm,
8010                                               X86::LCMPXCHG8, X86::MOV8rr,
8011                                               X86::NOT8r, X86::AL,
8012                                               X86::GR8RegisterClass);
8013  case X86::ATOMOR8:
8014    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8015                                               X86::OR8ri, X86::MOV8rm,
8016                                               X86::LCMPXCHG8, X86::MOV8rr,
8017                                               X86::NOT8r, X86::AL,
8018                                               X86::GR8RegisterClass);
8019  case X86::ATOMXOR8:
8020    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8021                                               X86::XOR8ri, X86::MOV8rm,
8022                                               X86::LCMPXCHG8, X86::MOV8rr,
8023                                               X86::NOT8r, X86::AL,
8024                                               X86::GR8RegisterClass);
8025  case X86::ATOMNAND8:
8026    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8027                                               X86::AND8ri, X86::MOV8rm,
8028                                               X86::LCMPXCHG8, X86::MOV8rr,
8029                                               X86::NOT8r, X86::AL,
8030                                               X86::GR8RegisterClass, true);
8031  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8032  // This group is for 64-bit host.
8033  case X86::ATOMAND64:
8034    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8035                                               X86::AND64ri32, X86::MOV64rm,
8036                                               X86::LCMPXCHG64, X86::MOV64rr,
8037                                               X86::NOT64r, X86::RAX,
8038                                               X86::GR64RegisterClass);
8039  case X86::ATOMOR64:
8040    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8041                                               X86::OR64ri32, X86::MOV64rm,
8042                                               X86::LCMPXCHG64, X86::MOV64rr,
8043                                               X86::NOT64r, X86::RAX,
8044                                               X86::GR64RegisterClass);
8045  case X86::ATOMXOR64:
8046    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8047                                               X86::XOR64ri32, X86::MOV64rm,
8048                                               X86::LCMPXCHG64, X86::MOV64rr,
8049                                               X86::NOT64r, X86::RAX,
8050                                               X86::GR64RegisterClass);
8051  case X86::ATOMNAND64:
8052    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8053                                               X86::AND64ri32, X86::MOV64rm,
8054                                               X86::LCMPXCHG64, X86::MOV64rr,
8055                                               X86::NOT64r, X86::RAX,
8056                                               X86::GR64RegisterClass, true);
8057  case X86::ATOMMIN64:
8058    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8059  case X86::ATOMMAX64:
8060    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8061  case X86::ATOMUMIN64:
8062    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8063  case X86::ATOMUMAX64:
8064    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8065
8066  // This group does 64-bit operations on a 32-bit host.
8067  case X86::ATOMAND6432:
8068    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8069                                               X86::AND32rr, X86::AND32rr,
8070                                               X86::AND32ri, X86::AND32ri,
8071                                               false);
8072  case X86::ATOMOR6432:
8073    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8074                                               X86::OR32rr, X86::OR32rr,
8075                                               X86::OR32ri, X86::OR32ri,
8076                                               false);
8077  case X86::ATOMXOR6432:
8078    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8079                                               X86::XOR32rr, X86::XOR32rr,
8080                                               X86::XOR32ri, X86::XOR32ri,
8081                                               false);
8082  case X86::ATOMNAND6432:
8083    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8084                                               X86::AND32rr, X86::AND32rr,
8085                                               X86::AND32ri, X86::AND32ri,
8086                                               true);
8087  case X86::ATOMADD6432:
8088    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8089                                               X86::ADD32rr, X86::ADC32rr,
8090                                               X86::ADD32ri, X86::ADC32ri,
8091                                               false);
8092  case X86::ATOMSUB6432:
8093    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8094                                               X86::SUB32rr, X86::SBB32rr,
8095                                               X86::SUB32ri, X86::SBB32ri,
8096                                               false);
8097  case X86::ATOMSWAP6432:
8098    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8099                                               X86::MOV32rr, X86::MOV32rr,
8100                                               X86::MOV32ri, X86::MOV32ri,
8101                                               false);
8102  case X86::VASTART_SAVE_XMM_REGS:
8103    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8104  }
8105}
8106
8107//===----------------------------------------------------------------------===//
8108//                           X86 Optimization Hooks
8109//===----------------------------------------------------------------------===//
8110
8111void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8112                                                       const APInt &Mask,
8113                                                       APInt &KnownZero,
8114                                                       APInt &KnownOne,
8115                                                       const SelectionDAG &DAG,
8116                                                       unsigned Depth) const {
8117  unsigned Opc = Op.getOpcode();
8118  assert((Opc >= ISD::BUILTIN_OP_END ||
8119          Opc == ISD::INTRINSIC_WO_CHAIN ||
8120          Opc == ISD::INTRINSIC_W_CHAIN ||
8121          Opc == ISD::INTRINSIC_VOID) &&
8122         "Should use MaskedValueIsZero if you don't know whether Op"
8123         " is a target node!");
8124
8125  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8126  switch (Opc) {
8127  default: break;
8128  case X86ISD::ADD:
8129  case X86ISD::SUB:
8130  case X86ISD::SMUL:
8131  case X86ISD::UMUL:
8132  case X86ISD::INC:
8133  case X86ISD::DEC:
8134  case X86ISD::OR:
8135  case X86ISD::XOR:
8136  case X86ISD::AND:
8137    // These nodes' second result is a boolean.
8138    if (Op.getResNo() == 0)
8139      break;
8140    // Fallthrough
8141  case X86ISD::SETCC:
8142    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8143                                       Mask.getBitWidth() - 1);
8144    break;
8145  }
8146}
8147
8148/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8149/// node is a GlobalAddress + offset.
8150bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8151                                       GlobalValue* &GA, int64_t &Offset) const{
8152  if (N->getOpcode() == X86ISD::Wrapper) {
8153    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8154      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8155      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8156      return true;
8157    }
8158  }
8159  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8160}
8161
8162static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8163                               const TargetLowering &TLI) {
8164  GlobalValue *GV;
8165  int64_t Offset = 0;
8166  if (TLI.isGAPlusOffset(Base, GV, Offset))
8167    return (GV->getAlignment() >= N && (Offset % N) == 0);
8168  // DAG combine handles the stack object case.
8169  return false;
8170}
8171
8172static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8173                                     EVT EVT, LoadSDNode *&LDBase,
8174                                     unsigned &LastLoadedElt,
8175                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8176                                     const TargetLowering &TLI) {
8177  LDBase = NULL;
8178  LastLoadedElt = -1U;
8179  for (unsigned i = 0; i < NumElems; ++i) {
8180    if (N->getMaskElt(i) < 0) {
8181      if (!LDBase)
8182        return false;
8183      continue;
8184    }
8185
8186    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8187    if (!Elt.getNode() ||
8188        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8189      return false;
8190    if (!LDBase) {
8191      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8192        return false;
8193      LDBase = cast<LoadSDNode>(Elt.getNode());
8194      LastLoadedElt = i;
8195      continue;
8196    }
8197    if (Elt.getOpcode() == ISD::UNDEF)
8198      continue;
8199
8200    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8201    if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
8202      return false;
8203    LastLoadedElt = i;
8204  }
8205  return true;
8206}
8207
8208/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8209/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8210/// if the load addresses are consecutive, non-overlapping, and in the right
8211/// order.  In the case of v2i64, it will see if it can rewrite the
8212/// shuffle to be an appropriate build vector so it can take advantage of
8213// performBuildVectorCombine.
8214static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8215                                     const TargetLowering &TLI) {
8216  DebugLoc dl = N->getDebugLoc();
8217  EVT VT = N->getValueType(0);
8218  EVT EVT = VT.getVectorElementType();
8219  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8220  unsigned NumElems = VT.getVectorNumElements();
8221
8222  if (VT.getSizeInBits() != 128)
8223    return SDValue();
8224
8225  // Try to combine a vector_shuffle into a 128-bit load.
8226  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8227  LoadSDNode *LD = NULL;
8228  unsigned LastLoadedElt;
8229  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
8230                                MFI, TLI))
8231    return SDValue();
8232
8233  if (LastLoadedElt == NumElems - 1) {
8234    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8235      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8236                         LD->getSrcValue(), LD->getSrcValueOffset(),
8237                         LD->isVolatile());
8238    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8239                       LD->getSrcValue(), LD->getSrcValueOffset(),
8240                       LD->isVolatile(), LD->getAlignment());
8241  } else if (NumElems == 4 && LastLoadedElt == 1) {
8242    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8243    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8244    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8245    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8246  }
8247  return SDValue();
8248}
8249
8250/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8251static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8252                                    const X86Subtarget *Subtarget) {
8253  DebugLoc DL = N->getDebugLoc();
8254  SDValue Cond = N->getOperand(0);
8255  // Get the LHS/RHS of the select.
8256  SDValue LHS = N->getOperand(1);
8257  SDValue RHS = N->getOperand(2);
8258
8259  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8260  // instructions have the peculiarity that if either operand is a NaN,
8261  // they chose what we call the RHS operand (and as such are not symmetric).
8262  // It happens that this matches the semantics of the common C idiom
8263  // x<y?x:y and related forms, so we can recognize these cases.
8264  if (Subtarget->hasSSE2() &&
8265      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8266      Cond.getOpcode() == ISD::SETCC) {
8267    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8268
8269    unsigned Opcode = 0;
8270    // Check for x CC y ? x : y.
8271    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8272      switch (CC) {
8273      default: break;
8274      case ISD::SETULT:
8275        // This can be a min if we can prove that at least one of the operands
8276        // is not a nan.
8277        if (!FiniteOnlyFPMath()) {
8278          if (DAG.isKnownNeverNaN(RHS)) {
8279            // Put the potential NaN in the RHS so that SSE will preserve it.
8280            std::swap(LHS, RHS);
8281          } else if (!DAG.isKnownNeverNaN(LHS))
8282            break;
8283        }
8284        Opcode = X86ISD::FMIN;
8285        break;
8286      case ISD::SETOLE:
8287        // This can be a min if we can prove that at least one of the operands
8288        // is not a nan.
8289        if (!FiniteOnlyFPMath()) {
8290          if (DAG.isKnownNeverNaN(LHS)) {
8291            // Put the potential NaN in the RHS so that SSE will preserve it.
8292            std::swap(LHS, RHS);
8293          } else if (!DAG.isKnownNeverNaN(RHS))
8294            break;
8295        }
8296        Opcode = X86ISD::FMIN;
8297        break;
8298      case ISD::SETULE:
8299        // This can be a min, but if either operand is a NaN we need it to
8300        // preserve the original LHS.
8301        std::swap(LHS, RHS);
8302      case ISD::SETOLT:
8303      case ISD::SETLT:
8304      case ISD::SETLE:
8305        Opcode = X86ISD::FMIN;
8306        break;
8307
8308      case ISD::SETOGE:
8309        // This can be a max if we can prove that at least one of the operands
8310        // is not a nan.
8311        if (!FiniteOnlyFPMath()) {
8312          if (DAG.isKnownNeverNaN(LHS)) {
8313            // Put the potential NaN in the RHS so that SSE will preserve it.
8314            std::swap(LHS, RHS);
8315          } else if (!DAG.isKnownNeverNaN(RHS))
8316            break;
8317        }
8318        Opcode = X86ISD::FMAX;
8319        break;
8320      case ISD::SETUGT:
8321        // This can be a max if we can prove that at least one of the operands
8322        // is not a nan.
8323        if (!FiniteOnlyFPMath()) {
8324          if (DAG.isKnownNeverNaN(RHS)) {
8325            // Put the potential NaN in the RHS so that SSE will preserve it.
8326            std::swap(LHS, RHS);
8327          } else if (!DAG.isKnownNeverNaN(LHS))
8328            break;
8329        }
8330        Opcode = X86ISD::FMAX;
8331        break;
8332      case ISD::SETUGE:
8333        // This can be a max, but if either operand is a NaN we need it to
8334        // preserve the original LHS.
8335        std::swap(LHS, RHS);
8336      case ISD::SETOGT:
8337      case ISD::SETGT:
8338      case ISD::SETGE:
8339        Opcode = X86ISD::FMAX;
8340        break;
8341      }
8342    // Check for x CC y ? y : x -- a min/max with reversed arms.
8343    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8344      switch (CC) {
8345      default: break;
8346      case ISD::SETOGE:
8347        // This can be a min if we can prove that at least one of the operands
8348        // is not a nan.
8349        if (!FiniteOnlyFPMath()) {
8350          if (DAG.isKnownNeverNaN(RHS)) {
8351            // Put the potential NaN in the RHS so that SSE will preserve it.
8352            std::swap(LHS, RHS);
8353          } else if (!DAG.isKnownNeverNaN(LHS))
8354            break;
8355        }
8356        Opcode = X86ISD::FMIN;
8357        break;
8358      case ISD::SETUGT:
8359        // This can be a min if we can prove that at least one of the operands
8360        // is not a nan.
8361        if (!FiniteOnlyFPMath()) {
8362          if (DAG.isKnownNeverNaN(LHS)) {
8363            // Put the potential NaN in the RHS so that SSE will preserve it.
8364            std::swap(LHS, RHS);
8365          } else if (!DAG.isKnownNeverNaN(RHS))
8366            break;
8367        }
8368        Opcode = X86ISD::FMIN;
8369        break;
8370      case ISD::SETUGE:
8371        // This can be a min, but if either operand is a NaN we need it to
8372        // preserve the original LHS.
8373        std::swap(LHS, RHS);
8374      case ISD::SETOGT:
8375      case ISD::SETGT:
8376      case ISD::SETGE:
8377        Opcode = X86ISD::FMIN;
8378        break;
8379
8380      case ISD::SETULT:
8381        // This can be a max if we can prove that at least one of the operands
8382        // is not a nan.
8383        if (!FiniteOnlyFPMath()) {
8384          if (DAG.isKnownNeverNaN(LHS)) {
8385            // Put the potential NaN in the RHS so that SSE will preserve it.
8386            std::swap(LHS, RHS);
8387          } else if (!DAG.isKnownNeverNaN(RHS))
8388            break;
8389        }
8390        Opcode = X86ISD::FMAX;
8391        break;
8392      case ISD::SETOLE:
8393        // This can be a max if we can prove that at least one of the operands
8394        // is not a nan.
8395        if (!FiniteOnlyFPMath()) {
8396          if (DAG.isKnownNeverNaN(RHS)) {
8397            // Put the potential NaN in the RHS so that SSE will preserve it.
8398            std::swap(LHS, RHS);
8399          } else if (!DAG.isKnownNeverNaN(LHS))
8400            break;
8401        }
8402        Opcode = X86ISD::FMAX;
8403        break;
8404      case ISD::SETULE:
8405        // This can be a max, but if either operand is a NaN we need it to
8406        // preserve the original LHS.
8407        std::swap(LHS, RHS);
8408      case ISD::SETOLT:
8409      case ISD::SETLT:
8410      case ISD::SETLE:
8411        Opcode = X86ISD::FMAX;
8412        break;
8413      }
8414    }
8415
8416    if (Opcode)
8417      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8418  }
8419
8420  // If this is a select between two integer constants, try to do some
8421  // optimizations.
8422  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8423    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8424      // Don't do this for crazy integer types.
8425      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8426        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8427        // so that TrueC (the true value) is larger than FalseC.
8428        bool NeedsCondInvert = false;
8429
8430        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8431            // Efficiently invertible.
8432            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8433             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8434              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8435          NeedsCondInvert = true;
8436          std::swap(TrueC, FalseC);
8437        }
8438
8439        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8440        if (FalseC->getAPIntValue() == 0 &&
8441            TrueC->getAPIntValue().isPowerOf2()) {
8442          if (NeedsCondInvert) // Invert the condition if needed.
8443            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8444                               DAG.getConstant(1, Cond.getValueType()));
8445
8446          // Zero extend the condition if needed.
8447          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8448
8449          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8450          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8451                             DAG.getConstant(ShAmt, MVT::i8));
8452        }
8453
8454        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8455        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8456          if (NeedsCondInvert) // Invert the condition if needed.
8457            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8458                               DAG.getConstant(1, Cond.getValueType()));
8459
8460          // Zero extend the condition if needed.
8461          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8462                             FalseC->getValueType(0), Cond);
8463          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8464                             SDValue(FalseC, 0));
8465        }
8466
8467        // Optimize cases that will turn into an LEA instruction.  This requires
8468        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8469        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8470          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8471          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8472
8473          bool isFastMultiplier = false;
8474          if (Diff < 10) {
8475            switch ((unsigned char)Diff) {
8476              default: break;
8477              case 1:  // result = add base, cond
8478              case 2:  // result = lea base(    , cond*2)
8479              case 3:  // result = lea base(cond, cond*2)
8480              case 4:  // result = lea base(    , cond*4)
8481              case 5:  // result = lea base(cond, cond*4)
8482              case 8:  // result = lea base(    , cond*8)
8483              case 9:  // result = lea base(cond, cond*8)
8484                isFastMultiplier = true;
8485                break;
8486            }
8487          }
8488
8489          if (isFastMultiplier) {
8490            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8491            if (NeedsCondInvert) // Invert the condition if needed.
8492              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8493                                 DAG.getConstant(1, Cond.getValueType()));
8494
8495            // Zero extend the condition if needed.
8496            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8497                               Cond);
8498            // Scale the condition by the difference.
8499            if (Diff != 1)
8500              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8501                                 DAG.getConstant(Diff, Cond.getValueType()));
8502
8503            // Add the base if non-zero.
8504            if (FalseC->getAPIntValue() != 0)
8505              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8506                                 SDValue(FalseC, 0));
8507            return Cond;
8508          }
8509        }
8510      }
8511  }
8512
8513  return SDValue();
8514}
8515
8516/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8517static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8518                                  TargetLowering::DAGCombinerInfo &DCI) {
8519  DebugLoc DL = N->getDebugLoc();
8520
8521  // If the flag operand isn't dead, don't touch this CMOV.
8522  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8523    return SDValue();
8524
8525  // If this is a select between two integer constants, try to do some
8526  // optimizations.  Note that the operands are ordered the opposite of SELECT
8527  // operands.
8528  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8529    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8530      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8531      // larger than FalseC (the false value).
8532      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8533
8534      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8535        CC = X86::GetOppositeBranchCondition(CC);
8536        std::swap(TrueC, FalseC);
8537      }
8538
8539      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8540      // This is efficient for any integer data type (including i8/i16) and
8541      // shift amount.
8542      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8543        SDValue Cond = N->getOperand(3);
8544        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8545                           DAG.getConstant(CC, MVT::i8), Cond);
8546
8547        // Zero extend the condition if needed.
8548        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8549
8550        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8551        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8552                           DAG.getConstant(ShAmt, MVT::i8));
8553        if (N->getNumValues() == 2)  // Dead flag value?
8554          return DCI.CombineTo(N, Cond, SDValue());
8555        return Cond;
8556      }
8557
8558      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8559      // for any integer data type, including i8/i16.
8560      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8561        SDValue Cond = N->getOperand(3);
8562        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8563                           DAG.getConstant(CC, MVT::i8), Cond);
8564
8565        // Zero extend the condition if needed.
8566        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8567                           FalseC->getValueType(0), Cond);
8568        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8569                           SDValue(FalseC, 0));
8570
8571        if (N->getNumValues() == 2)  // Dead flag value?
8572          return DCI.CombineTo(N, Cond, SDValue());
8573        return Cond;
8574      }
8575
8576      // Optimize cases that will turn into an LEA instruction.  This requires
8577      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8578      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8579        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8580        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8581
8582        bool isFastMultiplier = false;
8583        if (Diff < 10) {
8584          switch ((unsigned char)Diff) {
8585          default: break;
8586          case 1:  // result = add base, cond
8587          case 2:  // result = lea base(    , cond*2)
8588          case 3:  // result = lea base(cond, cond*2)
8589          case 4:  // result = lea base(    , cond*4)
8590          case 5:  // result = lea base(cond, cond*4)
8591          case 8:  // result = lea base(    , cond*8)
8592          case 9:  // result = lea base(cond, cond*8)
8593            isFastMultiplier = true;
8594            break;
8595          }
8596        }
8597
8598        if (isFastMultiplier) {
8599          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8600          SDValue Cond = N->getOperand(3);
8601          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8602                             DAG.getConstant(CC, MVT::i8), Cond);
8603          // Zero extend the condition if needed.
8604          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8605                             Cond);
8606          // Scale the condition by the difference.
8607          if (Diff != 1)
8608            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8609                               DAG.getConstant(Diff, Cond.getValueType()));
8610
8611          // Add the base if non-zero.
8612          if (FalseC->getAPIntValue() != 0)
8613            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8614                               SDValue(FalseC, 0));
8615          if (N->getNumValues() == 2)  // Dead flag value?
8616            return DCI.CombineTo(N, Cond, SDValue());
8617          return Cond;
8618        }
8619      }
8620    }
8621  }
8622  return SDValue();
8623}
8624
8625
8626/// PerformMulCombine - Optimize a single multiply with constant into two
8627/// in order to implement it with two cheaper instructions, e.g.
8628/// LEA + SHL, LEA + LEA.
8629static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8630                                 TargetLowering::DAGCombinerInfo &DCI) {
8631  if (DAG.getMachineFunction().
8632      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8633    return SDValue();
8634
8635  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8636    return SDValue();
8637
8638  EVT VT = N->getValueType(0);
8639  if (VT != MVT::i64)
8640    return SDValue();
8641
8642  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8643  if (!C)
8644    return SDValue();
8645  uint64_t MulAmt = C->getZExtValue();
8646  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8647    return SDValue();
8648
8649  uint64_t MulAmt1 = 0;
8650  uint64_t MulAmt2 = 0;
8651  if ((MulAmt % 9) == 0) {
8652    MulAmt1 = 9;
8653    MulAmt2 = MulAmt / 9;
8654  } else if ((MulAmt % 5) == 0) {
8655    MulAmt1 = 5;
8656    MulAmt2 = MulAmt / 5;
8657  } else if ((MulAmt % 3) == 0) {
8658    MulAmt1 = 3;
8659    MulAmt2 = MulAmt / 3;
8660  }
8661  if (MulAmt2 &&
8662      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8663    DebugLoc DL = N->getDebugLoc();
8664
8665    if (isPowerOf2_64(MulAmt2) &&
8666        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8667      // If second multiplifer is pow2, issue it first. We want the multiply by
8668      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8669      // is an add.
8670      std::swap(MulAmt1, MulAmt2);
8671
8672    SDValue NewMul;
8673    if (isPowerOf2_64(MulAmt1))
8674      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8675                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8676    else
8677      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8678                           DAG.getConstant(MulAmt1, VT));
8679
8680    if (isPowerOf2_64(MulAmt2))
8681      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8682                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8683    else
8684      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8685                           DAG.getConstant(MulAmt2, VT));
8686
8687    // Do not add new nodes to DAG combiner worklist.
8688    DCI.CombineTo(N, NewMul, false);
8689  }
8690  return SDValue();
8691}
8692
8693
8694/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8695///                       when possible.
8696static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8697                                   const X86Subtarget *Subtarget) {
8698  // On X86 with SSE2 support, we can transform this to a vector shift if
8699  // all elements are shifted by the same amount.  We can't do this in legalize
8700  // because the a constant vector is typically transformed to a constant pool
8701  // so we have no knowledge of the shift amount.
8702  if (!Subtarget->hasSSE2())
8703    return SDValue();
8704
8705  EVT VT = N->getValueType(0);
8706  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8707    return SDValue();
8708
8709  SDValue ShAmtOp = N->getOperand(1);
8710  EVT EltVT = VT.getVectorElementType();
8711  DebugLoc DL = N->getDebugLoc();
8712  SDValue BaseShAmt = SDValue();
8713  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8714    unsigned NumElts = VT.getVectorNumElements();
8715    unsigned i = 0;
8716    for (; i != NumElts; ++i) {
8717      SDValue Arg = ShAmtOp.getOperand(i);
8718      if (Arg.getOpcode() == ISD::UNDEF) continue;
8719      BaseShAmt = Arg;
8720      break;
8721    }
8722    for (; i != NumElts; ++i) {
8723      SDValue Arg = ShAmtOp.getOperand(i);
8724      if (Arg.getOpcode() == ISD::UNDEF) continue;
8725      if (Arg != BaseShAmt) {
8726        return SDValue();
8727      }
8728    }
8729  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8730             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8731    SDValue InVec = ShAmtOp.getOperand(0);
8732    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8733      unsigned NumElts = InVec.getValueType().getVectorNumElements();
8734      unsigned i = 0;
8735      for (; i != NumElts; ++i) {
8736        SDValue Arg = InVec.getOperand(i);
8737        if (Arg.getOpcode() == ISD::UNDEF) continue;
8738        BaseShAmt = Arg;
8739        break;
8740      }
8741    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8742       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8743         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8744         if (C->getZExtValue() == SplatIdx)
8745           BaseShAmt = InVec.getOperand(1);
8746       }
8747    }
8748    if (BaseShAmt.getNode() == 0)
8749      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8750                              DAG.getIntPtrConstant(0));
8751  } else
8752    return SDValue();
8753
8754  // The shift amount is an i32.
8755  if (EltVT.bitsGT(MVT::i32))
8756    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8757  else if (EltVT.bitsLT(MVT::i32))
8758    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8759
8760  // The shift amount is identical so we can do a vector shift.
8761  SDValue  ValOp = N->getOperand(0);
8762  switch (N->getOpcode()) {
8763  default:
8764    llvm_unreachable("Unknown shift opcode!");
8765    break;
8766  case ISD::SHL:
8767    if (VT == MVT::v2i64)
8768      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8769                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8770                         ValOp, BaseShAmt);
8771    if (VT == MVT::v4i32)
8772      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8773                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8774                         ValOp, BaseShAmt);
8775    if (VT == MVT::v8i16)
8776      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8777                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8778                         ValOp, BaseShAmt);
8779    break;
8780  case ISD::SRA:
8781    if (VT == MVT::v4i32)
8782      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8783                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8784                         ValOp, BaseShAmt);
8785    if (VT == MVT::v8i16)
8786      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8787                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8788                         ValOp, BaseShAmt);
8789    break;
8790  case ISD::SRL:
8791    if (VT == MVT::v2i64)
8792      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8793                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8794                         ValOp, BaseShAmt);
8795    if (VT == MVT::v4i32)
8796      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8797                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8798                         ValOp, BaseShAmt);
8799    if (VT ==  MVT::v8i16)
8800      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8801                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8802                         ValOp, BaseShAmt);
8803    break;
8804  }
8805  return SDValue();
8806}
8807
8808/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8809static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8810                                   const X86Subtarget *Subtarget) {
8811  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8812  // the FP state in cases where an emms may be missing.
8813  // A preferable solution to the general problem is to figure out the right
8814  // places to insert EMMS.  This qualifies as a quick hack.
8815
8816  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8817  StoreSDNode *St = cast<StoreSDNode>(N);
8818  EVT VT = St->getValue().getValueType();
8819  if (VT.getSizeInBits() != 64)
8820    return SDValue();
8821
8822  const Function *F = DAG.getMachineFunction().getFunction();
8823  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8824  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8825    && Subtarget->hasSSE2();
8826  if ((VT.isVector() ||
8827       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8828      isa<LoadSDNode>(St->getValue()) &&
8829      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8830      St->getChain().hasOneUse() && !St->isVolatile()) {
8831    SDNode* LdVal = St->getValue().getNode();
8832    LoadSDNode *Ld = 0;
8833    int TokenFactorIndex = -1;
8834    SmallVector<SDValue, 8> Ops;
8835    SDNode* ChainVal = St->getChain().getNode();
8836    // Must be a store of a load.  We currently handle two cases:  the load
8837    // is a direct child, and it's under an intervening TokenFactor.  It is
8838    // possible to dig deeper under nested TokenFactors.
8839    if (ChainVal == LdVal)
8840      Ld = cast<LoadSDNode>(St->getChain());
8841    else if (St->getValue().hasOneUse() &&
8842             ChainVal->getOpcode() == ISD::TokenFactor) {
8843      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8844        if (ChainVal->getOperand(i).getNode() == LdVal) {
8845          TokenFactorIndex = i;
8846          Ld = cast<LoadSDNode>(St->getValue());
8847        } else
8848          Ops.push_back(ChainVal->getOperand(i));
8849      }
8850    }
8851
8852    if (!Ld || !ISD::isNormalLoad(Ld))
8853      return SDValue();
8854
8855    // If this is not the MMX case, i.e. we are just turning i64 load/store
8856    // into f64 load/store, avoid the transformation if there are multiple
8857    // uses of the loaded value.
8858    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8859      return SDValue();
8860
8861    DebugLoc LdDL = Ld->getDebugLoc();
8862    DebugLoc StDL = N->getDebugLoc();
8863    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8864    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8865    // pair instead.
8866    if (Subtarget->is64Bit() || F64IsLegal) {
8867      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8868      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8869                                  Ld->getBasePtr(), Ld->getSrcValue(),
8870                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8871                                  Ld->getAlignment());
8872      SDValue NewChain = NewLd.getValue(1);
8873      if (TokenFactorIndex != -1) {
8874        Ops.push_back(NewChain);
8875        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8876                               Ops.size());
8877      }
8878      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8879                          St->getSrcValue(), St->getSrcValueOffset(),
8880                          St->isVolatile(), St->getAlignment());
8881    }
8882
8883    // Otherwise, lower to two pairs of 32-bit loads / stores.
8884    SDValue LoAddr = Ld->getBasePtr();
8885    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8886                                 DAG.getConstant(4, MVT::i32));
8887
8888    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8889                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8890                               Ld->isVolatile(), Ld->getAlignment());
8891    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8892                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8893                               Ld->isVolatile(),
8894                               MinAlign(Ld->getAlignment(), 4));
8895
8896    SDValue NewChain = LoLd.getValue(1);
8897    if (TokenFactorIndex != -1) {
8898      Ops.push_back(LoLd);
8899      Ops.push_back(HiLd);
8900      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8901                             Ops.size());
8902    }
8903
8904    LoAddr = St->getBasePtr();
8905    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8906                         DAG.getConstant(4, MVT::i32));
8907
8908    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8909                                St->getSrcValue(), St->getSrcValueOffset(),
8910                                St->isVolatile(), St->getAlignment());
8911    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8912                                St->getSrcValue(),
8913                                St->getSrcValueOffset() + 4,
8914                                St->isVolatile(),
8915                                MinAlign(St->getAlignment(), 4));
8916    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8917  }
8918  return SDValue();
8919}
8920
8921/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8922/// X86ISD::FXOR nodes.
8923static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8924  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8925  // F[X]OR(0.0, x) -> x
8926  // F[X]OR(x, 0.0) -> x
8927  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8928    if (C->getValueAPF().isPosZero())
8929      return N->getOperand(1);
8930  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8931    if (C->getValueAPF().isPosZero())
8932      return N->getOperand(0);
8933  return SDValue();
8934}
8935
8936/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8937static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8938  // FAND(0.0, x) -> 0.0
8939  // FAND(x, 0.0) -> 0.0
8940  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8941    if (C->getValueAPF().isPosZero())
8942      return N->getOperand(0);
8943  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8944    if (C->getValueAPF().isPosZero())
8945      return N->getOperand(1);
8946  return SDValue();
8947}
8948
8949static SDValue PerformBTCombine(SDNode *N,
8950                                SelectionDAG &DAG,
8951                                TargetLowering::DAGCombinerInfo &DCI) {
8952  // BT ignores high bits in the bit index operand.
8953  SDValue Op1 = N->getOperand(1);
8954  if (Op1.hasOneUse()) {
8955    unsigned BitWidth = Op1.getValueSizeInBits();
8956    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8957    APInt KnownZero, KnownOne;
8958    TargetLowering::TargetLoweringOpt TLO(DAG);
8959    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8960    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8961        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8962      DCI.CommitTargetLoweringOpt(TLO);
8963  }
8964  return SDValue();
8965}
8966
8967static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8968  SDValue Op = N->getOperand(0);
8969  if (Op.getOpcode() == ISD::BIT_CONVERT)
8970    Op = Op.getOperand(0);
8971  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
8972  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8973      VT.getVectorElementType().getSizeInBits() ==
8974      OpVT.getVectorElementType().getSizeInBits()) {
8975    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8976  }
8977  return SDValue();
8978}
8979
8980// On X86 and X86-64, atomic operations are lowered to locked instructions.
8981// Locked instructions, in turn, have implicit fence semantics (all memory
8982// operations are flushed before issuing the locked instruction, and the
8983// are not buffered), so we can fold away the common pattern of
8984// fence-atomic-fence.
8985static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8986  SDValue atomic = N->getOperand(0);
8987  switch (atomic.getOpcode()) {
8988    case ISD::ATOMIC_CMP_SWAP:
8989    case ISD::ATOMIC_SWAP:
8990    case ISD::ATOMIC_LOAD_ADD:
8991    case ISD::ATOMIC_LOAD_SUB:
8992    case ISD::ATOMIC_LOAD_AND:
8993    case ISD::ATOMIC_LOAD_OR:
8994    case ISD::ATOMIC_LOAD_XOR:
8995    case ISD::ATOMIC_LOAD_NAND:
8996    case ISD::ATOMIC_LOAD_MIN:
8997    case ISD::ATOMIC_LOAD_MAX:
8998    case ISD::ATOMIC_LOAD_UMIN:
8999    case ISD::ATOMIC_LOAD_UMAX:
9000      break;
9001    default:
9002      return SDValue();
9003  }
9004
9005  SDValue fence = atomic.getOperand(0);
9006  if (fence.getOpcode() != ISD::MEMBARRIER)
9007    return SDValue();
9008
9009  switch (atomic.getOpcode()) {
9010    case ISD::ATOMIC_CMP_SWAP:
9011      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9012                                    atomic.getOperand(1), atomic.getOperand(2),
9013                                    atomic.getOperand(3));
9014    case ISD::ATOMIC_SWAP:
9015    case ISD::ATOMIC_LOAD_ADD:
9016    case ISD::ATOMIC_LOAD_SUB:
9017    case ISD::ATOMIC_LOAD_AND:
9018    case ISD::ATOMIC_LOAD_OR:
9019    case ISD::ATOMIC_LOAD_XOR:
9020    case ISD::ATOMIC_LOAD_NAND:
9021    case ISD::ATOMIC_LOAD_MIN:
9022    case ISD::ATOMIC_LOAD_MAX:
9023    case ISD::ATOMIC_LOAD_UMIN:
9024    case ISD::ATOMIC_LOAD_UMAX:
9025      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9026                                    atomic.getOperand(1), atomic.getOperand(2));
9027    default:
9028      return SDValue();
9029  }
9030}
9031
9032SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9033                                             DAGCombinerInfo &DCI) const {
9034  SelectionDAG &DAG = DCI.DAG;
9035  switch (N->getOpcode()) {
9036  default: break;
9037  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9038  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9039  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9040  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9041  case ISD::SHL:
9042  case ISD::SRA:
9043  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9044  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9045  case X86ISD::FXOR:
9046  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9047  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9048  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9049  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9050  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9051  }
9052
9053  return SDValue();
9054}
9055
9056//===----------------------------------------------------------------------===//
9057//                           X86 Inline Assembly Support
9058//===----------------------------------------------------------------------===//
9059
9060static bool LowerToBSwap(CallInst *CI) {
9061  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9062  // we will turn this bswap into something that will be lowered to logical ops
9063  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9064  // so don't worry about this.
9065
9066  // Verify this is a simple bswap.
9067  if (CI->getNumOperands() != 2 ||
9068      CI->getType() != CI->getOperand(1)->getType() ||
9069      !CI->getType()->isInteger())
9070    return false;
9071
9072  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9073  if (!Ty || Ty->getBitWidth() % 16 != 0)
9074    return false;
9075
9076  // Okay, we can do this xform, do so now.
9077  const Type *Tys[] = { Ty };
9078  Module *M = CI->getParent()->getParent()->getParent();
9079  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9080
9081  Value *Op = CI->getOperand(1);
9082  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9083
9084  CI->replaceAllUsesWith(Op);
9085  CI->eraseFromParent();
9086  return true;
9087}
9088
9089bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9090  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9091  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9092
9093  std::string AsmStr = IA->getAsmString();
9094
9095  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9096  std::vector<std::string> AsmPieces;
9097  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9098
9099  switch (AsmPieces.size()) {
9100  default: return false;
9101  case 1:
9102    AsmStr = AsmPieces[0];
9103    AsmPieces.clear();
9104    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9105
9106    // bswap $0
9107    if (AsmPieces.size() == 2 &&
9108        (AsmPieces[0] == "bswap" ||
9109         AsmPieces[0] == "bswapq" ||
9110         AsmPieces[0] == "bswapl") &&
9111        (AsmPieces[1] == "$0" ||
9112         AsmPieces[1] == "${0:q}")) {
9113      // No need to check constraints, nothing other than the equivalent of
9114      // "=r,0" would be valid here.
9115      return LowerToBSwap(CI);
9116    }
9117    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9118    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
9119        AsmPieces.size() == 3 &&
9120        AsmPieces[0] == "rorw" &&
9121        AsmPieces[1] == "$$8," &&
9122        AsmPieces[2] == "${0:w}" &&
9123        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9124      return LowerToBSwap(CI);
9125    }
9126    break;
9127  case 3:
9128    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9129        Constraints.size() >= 2 &&
9130        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9131        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9132      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9133      std::vector<std::string> Words;
9134      SplitString(AsmPieces[0], Words, " \t");
9135      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9136        Words.clear();
9137        SplitString(AsmPieces[1], Words, " \t");
9138        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9139          Words.clear();
9140          SplitString(AsmPieces[2], Words, " \t,");
9141          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9142              Words[2] == "%edx") {
9143            return LowerToBSwap(CI);
9144          }
9145        }
9146      }
9147    }
9148    break;
9149  }
9150  return false;
9151}
9152
9153
9154
9155/// getConstraintType - Given a constraint letter, return the type of
9156/// constraint it is for this target.
9157X86TargetLowering::ConstraintType
9158X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9159  if (Constraint.size() == 1) {
9160    switch (Constraint[0]) {
9161    case 'A':
9162      return C_Register;
9163    case 'f':
9164    case 'r':
9165    case 'R':
9166    case 'l':
9167    case 'q':
9168    case 'Q':
9169    case 'x':
9170    case 'y':
9171    case 'Y':
9172      return C_RegisterClass;
9173    case 'e':
9174    case 'Z':
9175      return C_Other;
9176    default:
9177      break;
9178    }
9179  }
9180  return TargetLowering::getConstraintType(Constraint);
9181}
9182
9183/// LowerXConstraint - try to replace an X constraint, which matches anything,
9184/// with another that has more specific requirements based on the type of the
9185/// corresponding operand.
9186const char *X86TargetLowering::
9187LowerXConstraint(EVT ConstraintVT) const {
9188  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9189  // 'f' like normal targets.
9190  if (ConstraintVT.isFloatingPoint()) {
9191    if (Subtarget->hasSSE2())
9192      return "Y";
9193    if (Subtarget->hasSSE1())
9194      return "x";
9195  }
9196
9197  return TargetLowering::LowerXConstraint(ConstraintVT);
9198}
9199
9200/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9201/// vector.  If it is invalid, don't add anything to Ops.
9202void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9203                                                     char Constraint,
9204                                                     bool hasMemory,
9205                                                     std::vector<SDValue>&Ops,
9206                                                     SelectionDAG &DAG) const {
9207  SDValue Result(0, 0);
9208
9209  switch (Constraint) {
9210  default: break;
9211  case 'I':
9212    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9213      if (C->getZExtValue() <= 31) {
9214        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9215        break;
9216      }
9217    }
9218    return;
9219  case 'J':
9220    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9221      if (C->getZExtValue() <= 63) {
9222        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9223        break;
9224      }
9225    }
9226    return;
9227  case 'K':
9228    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9229      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9230        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9231        break;
9232      }
9233    }
9234    return;
9235  case 'N':
9236    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9237      if (C->getZExtValue() <= 255) {
9238        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9239        break;
9240      }
9241    }
9242    return;
9243  case 'e': {
9244    // 32-bit signed value
9245    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9246      const ConstantInt *CI = C->getConstantIntValue();
9247      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9248                                  C->getSExtValue())) {
9249        // Widen to 64 bits here to get it sign extended.
9250        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9251        break;
9252      }
9253    // FIXME gcc accepts some relocatable values here too, but only in certain
9254    // memory models; it's complicated.
9255    }
9256    return;
9257  }
9258  case 'Z': {
9259    // 32-bit unsigned value
9260    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9261      const ConstantInt *CI = C->getConstantIntValue();
9262      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9263                                  C->getZExtValue())) {
9264        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9265        break;
9266      }
9267    }
9268    // FIXME gcc accepts some relocatable values here too, but only in certain
9269    // memory models; it's complicated.
9270    return;
9271  }
9272  case 'i': {
9273    // Literal immediates are always ok.
9274    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9275      // Widen to 64 bits here to get it sign extended.
9276      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9277      break;
9278    }
9279
9280    // If we are in non-pic codegen mode, we allow the address of a global (with
9281    // an optional displacement) to be used with 'i'.
9282    GlobalAddressSDNode *GA = 0;
9283    int64_t Offset = 0;
9284
9285    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9286    while (1) {
9287      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9288        Offset += GA->getOffset();
9289        break;
9290      } else if (Op.getOpcode() == ISD::ADD) {
9291        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9292          Offset += C->getZExtValue();
9293          Op = Op.getOperand(0);
9294          continue;
9295        }
9296      } else if (Op.getOpcode() == ISD::SUB) {
9297        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9298          Offset += -C->getZExtValue();
9299          Op = Op.getOperand(0);
9300          continue;
9301        }
9302      }
9303
9304      // Otherwise, this isn't something we can handle, reject it.
9305      return;
9306    }
9307
9308    GlobalValue *GV = GA->getGlobal();
9309    // If we require an extra load to get this address, as in PIC mode, we
9310    // can't accept it.
9311    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9312                                                        getTargetMachine())))
9313      return;
9314
9315    if (hasMemory)
9316      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9317    else
9318      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9319    Result = Op;
9320    break;
9321  }
9322  }
9323
9324  if (Result.getNode()) {
9325    Ops.push_back(Result);
9326    return;
9327  }
9328  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9329                                                      Ops, DAG);
9330}
9331
9332std::vector<unsigned> X86TargetLowering::
9333getRegClassForInlineAsmConstraint(const std::string &Constraint,
9334                                  EVT VT) const {
9335  if (Constraint.size() == 1) {
9336    // FIXME: not handling fp-stack yet!
9337    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9338    default: break;  // Unknown constraint letter
9339    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9340      if (Subtarget->is64Bit()) {
9341        if (VT == MVT::i32)
9342          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9343                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9344                                       X86::R10D,X86::R11D,X86::R12D,
9345                                       X86::R13D,X86::R14D,X86::R15D,
9346                                       X86::EBP, X86::ESP, 0);
9347        else if (VT == MVT::i16)
9348          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9349                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9350                                       X86::R10W,X86::R11W,X86::R12W,
9351                                       X86::R13W,X86::R14W,X86::R15W,
9352                                       X86::BP,  X86::SP, 0);
9353        else if (VT == MVT::i8)
9354          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9355                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9356                                       X86::R10B,X86::R11B,X86::R12B,
9357                                       X86::R13B,X86::R14B,X86::R15B,
9358                                       X86::BPL, X86::SPL, 0);
9359
9360        else if (VT == MVT::i64)
9361          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9362                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9363                                       X86::R10, X86::R11, X86::R12,
9364                                       X86::R13, X86::R14, X86::R15,
9365                                       X86::RBP, X86::RSP, 0);
9366
9367        break;
9368      }
9369      // 32-bit fallthrough
9370    case 'Q':   // Q_REGS
9371      if (VT == MVT::i32)
9372        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9373      else if (VT == MVT::i16)
9374        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9375      else if (VT == MVT::i8)
9376        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9377      else if (VT == MVT::i64)
9378        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9379      break;
9380    }
9381  }
9382
9383  return std::vector<unsigned>();
9384}
9385
9386std::pair<unsigned, const TargetRegisterClass*>
9387X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9388                                                EVT VT) const {
9389  // First, see if this is a constraint that directly corresponds to an LLVM
9390  // register class.
9391  if (Constraint.size() == 1) {
9392    // GCC Constraint Letters
9393    switch (Constraint[0]) {
9394    default: break;
9395    case 'r':   // GENERAL_REGS
9396    case 'R':   // LEGACY_REGS
9397    case 'l':   // INDEX_REGS
9398      if (VT == MVT::i8)
9399        return std::make_pair(0U, X86::GR8RegisterClass);
9400      if (VT == MVT::i16)
9401        return std::make_pair(0U, X86::GR16RegisterClass);
9402      if (VT == MVT::i32 || !Subtarget->is64Bit())
9403        return std::make_pair(0U, X86::GR32RegisterClass);
9404      return std::make_pair(0U, X86::GR64RegisterClass);
9405    case 'f':  // FP Stack registers.
9406      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9407      // value to the correct fpstack register class.
9408      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9409        return std::make_pair(0U, X86::RFP32RegisterClass);
9410      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9411        return std::make_pair(0U, X86::RFP64RegisterClass);
9412      return std::make_pair(0U, X86::RFP80RegisterClass);
9413    case 'y':   // MMX_REGS if MMX allowed.
9414      if (!Subtarget->hasMMX()) break;
9415      return std::make_pair(0U, X86::VR64RegisterClass);
9416    case 'Y':   // SSE_REGS if SSE2 allowed
9417      if (!Subtarget->hasSSE2()) break;
9418      // FALL THROUGH.
9419    case 'x':   // SSE_REGS if SSE1 allowed
9420      if (!Subtarget->hasSSE1()) break;
9421
9422      switch (VT.getSimpleVT().SimpleTy) {
9423      default: break;
9424      // Scalar SSE types.
9425      case MVT::f32:
9426      case MVT::i32:
9427        return std::make_pair(0U, X86::FR32RegisterClass);
9428      case MVT::f64:
9429      case MVT::i64:
9430        return std::make_pair(0U, X86::FR64RegisterClass);
9431      // Vector types.
9432      case MVT::v16i8:
9433      case MVT::v8i16:
9434      case MVT::v4i32:
9435      case MVT::v2i64:
9436      case MVT::v4f32:
9437      case MVT::v2f64:
9438        return std::make_pair(0U, X86::VR128RegisterClass);
9439      }
9440      break;
9441    }
9442  }
9443
9444  // Use the default implementation in TargetLowering to convert the register
9445  // constraint into a member of a register class.
9446  std::pair<unsigned, const TargetRegisterClass*> Res;
9447  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9448
9449  // Not found as a standard register?
9450  if (Res.second == 0) {
9451    // Map st(0) -> st(7) -> ST0
9452    if (Constraint.size() == 7 && Constraint[0] == '{' &&
9453        tolower(Constraint[1]) == 's' &&
9454        tolower(Constraint[2]) == 't' &&
9455        Constraint[3] == '(' &&
9456        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9457        Constraint[5] == ')' &&
9458        Constraint[6] == '}') {
9459
9460      Res.first = X86::ST0+Constraint[4]-'0';
9461      Res.second = X86::RFP80RegisterClass;
9462      return Res;
9463    }
9464
9465    // GCC allows "st(0)" to be called just plain "st".
9466    if (StringsEqualNoCase("{st}", Constraint)) {
9467      Res.first = X86::ST0;
9468      Res.second = X86::RFP80RegisterClass;
9469      return Res;
9470    }
9471
9472    // flags -> EFLAGS
9473    if (StringsEqualNoCase("{flags}", Constraint)) {
9474      Res.first = X86::EFLAGS;
9475      Res.second = X86::CCRRegisterClass;
9476      return Res;
9477    }
9478
9479    // 'A' means EAX + EDX.
9480    if (Constraint == "A") {
9481      Res.first = X86::EAX;
9482      Res.second = X86::GR32_ADRegisterClass;
9483      return Res;
9484    }
9485    return Res;
9486  }
9487
9488  // Otherwise, check to see if this is a register class of the wrong value
9489  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9490  // turn into {ax},{dx}.
9491  if (Res.second->hasType(VT))
9492    return Res;   // Correct type already, nothing to do.
9493
9494  // All of the single-register GCC register classes map their values onto
9495  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9496  // really want an 8-bit or 32-bit register, map to the appropriate register
9497  // class and return the appropriate register.
9498  if (Res.second == X86::GR16RegisterClass) {
9499    if (VT == MVT::i8) {
9500      unsigned DestReg = 0;
9501      switch (Res.first) {
9502      default: break;
9503      case X86::AX: DestReg = X86::AL; break;
9504      case X86::DX: DestReg = X86::DL; break;
9505      case X86::CX: DestReg = X86::CL; break;
9506      case X86::BX: DestReg = X86::BL; break;
9507      }
9508      if (DestReg) {
9509        Res.first = DestReg;
9510        Res.second = X86::GR8RegisterClass;
9511      }
9512    } else if (VT == MVT::i32) {
9513      unsigned DestReg = 0;
9514      switch (Res.first) {
9515      default: break;
9516      case X86::AX: DestReg = X86::EAX; break;
9517      case X86::DX: DestReg = X86::EDX; break;
9518      case X86::CX: DestReg = X86::ECX; break;
9519      case X86::BX: DestReg = X86::EBX; break;
9520      case X86::SI: DestReg = X86::ESI; break;
9521      case X86::DI: DestReg = X86::EDI; break;
9522      case X86::BP: DestReg = X86::EBP; break;
9523      case X86::SP: DestReg = X86::ESP; break;
9524      }
9525      if (DestReg) {
9526        Res.first = DestReg;
9527        Res.second = X86::GR32RegisterClass;
9528      }
9529    } else if (VT == MVT::i64) {
9530      unsigned DestReg = 0;
9531      switch (Res.first) {
9532      default: break;
9533      case X86::AX: DestReg = X86::RAX; break;
9534      case X86::DX: DestReg = X86::RDX; break;
9535      case X86::CX: DestReg = X86::RCX; break;
9536      case X86::BX: DestReg = X86::RBX; break;
9537      case X86::SI: DestReg = X86::RSI; break;
9538      case X86::DI: DestReg = X86::RDI; break;
9539      case X86::BP: DestReg = X86::RBP; break;
9540      case X86::SP: DestReg = X86::RSP; break;
9541      }
9542      if (DestReg) {
9543        Res.first = DestReg;
9544        Res.second = X86::GR64RegisterClass;
9545      }
9546    }
9547  } else if (Res.second == X86::FR32RegisterClass ||
9548             Res.second == X86::FR64RegisterClass ||
9549             Res.second == X86::VR128RegisterClass) {
9550    // Handle references to XMM physical registers that got mapped into the
9551    // wrong class.  This can happen with constraints like {xmm0} where the
9552    // target independent register mapper will just pick the first match it can
9553    // find, ignoring the required type.
9554    if (VT == MVT::f32)
9555      Res.second = X86::FR32RegisterClass;
9556    else if (VT == MVT::f64)
9557      Res.second = X86::FR64RegisterClass;
9558    else if (X86::VR128RegisterClass->hasType(VT))
9559      Res.second = X86::VR128RegisterClass;
9560  }
9561
9562  return Res;
9563}
9564
9565//===----------------------------------------------------------------------===//
9566//                           X86 Widen vector type
9567//===----------------------------------------------------------------------===//
9568
9569/// getWidenVectorType: given a vector type, returns the type to widen
9570/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9571/// If there is no vector type that we want to widen to, returns MVT::Other
9572/// When and where to widen is target dependent based on the cost of
9573/// scalarizing vs using the wider vector type.
9574
9575EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9576  assert(VT.isVector());
9577  if (isTypeLegal(VT))
9578    return VT;
9579
9580  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9581  //       type based on element type.  This would speed up our search (though
9582  //       it may not be worth it since the size of the list is relatively
9583  //       small).
9584  EVT EltVT = VT.getVectorElementType();
9585  unsigned NElts = VT.getVectorNumElements();
9586
9587  // On X86, it make sense to widen any vector wider than 1
9588  if (NElts <= 1)
9589    return MVT::Other;
9590
9591  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9592       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9593    EVT SVT = (MVT::SimpleValueType)nVT;
9594
9595    if (isTypeLegal(SVT) &&
9596        SVT.getVectorElementType() == EltVT &&
9597        SVT.getVectorNumElements() > NElts)
9598      return SVT;
9599  }
9600  return MVT::Other;
9601}
9602