X86ISelLowering.cpp revision 67609fd0eb05a49cc4636d507398034393dcf302
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60static cl::opt<bool> UseRegMask("x86-use-regmask",
61                                cl::desc("Use register masks for x86 calls"));
62
63// Forward declarations.
64static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
65                       SDValue V2);
66
67static SDValue Insert128BitVector(SDValue Result,
68                                  SDValue Vec,
69                                  SDValue Idx,
70                                  SelectionDAG &DAG,
71                                  DebugLoc dl);
72
73static SDValue Extract128BitVector(SDValue Vec,
74                                   SDValue Idx,
75                                   SelectionDAG &DAG,
76                                   DebugLoc dl);
77
78/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
79/// sets things up to match to an AVX VEXTRACTF128 instruction or a
80/// simple subregister reference.  Idx is an index in the 128 bits we
81/// want.  It need not be aligned to a 128-bit bounday.  That makes
82/// lowering EXTRACT_VECTOR_ELT operations easier.
83static SDValue Extract128BitVector(SDValue Vec,
84                                   SDValue Idx,
85                                   SelectionDAG &DAG,
86                                   DebugLoc dl) {
87  EVT VT = Vec.getValueType();
88  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
89  EVT ElVT = VT.getVectorElementType();
90  int Factor = VT.getSizeInBits()/128;
91  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
92                                  VT.getVectorNumElements()/Factor);
93
94  // Extract from UNDEF is UNDEF.
95  if (Vec.getOpcode() == ISD::UNDEF)
96    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
97
98  if (isa<ConstantSDNode>(Idx)) {
99    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
100
101    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
102    // we can match to VEXTRACTF128.
103    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
104
105    // This is the index of the first element of the 128-bit chunk
106    // we want.
107    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
108                                 * ElemsPerChunk);
109
110    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
111    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
112                                 VecIdx);
113
114    return Result;
115  }
116
117  return SDValue();
118}
119
120/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
121/// sets things up to match to an AVX VINSERTF128 instruction or a
122/// simple superregister reference.  Idx is an index in the 128 bits
123/// we want.  It need not be aligned to a 128-bit bounday.  That makes
124/// lowering INSERT_VECTOR_ELT operations easier.
125static SDValue Insert128BitVector(SDValue Result,
126                                  SDValue Vec,
127                                  SDValue Idx,
128                                  SelectionDAG &DAG,
129                                  DebugLoc dl) {
130  if (isa<ConstantSDNode>(Idx)) {
131    EVT VT = Vec.getValueType();
132    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
133
134    EVT ElVT = VT.getVectorElementType();
135    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
136    EVT ResultVT = Result.getValueType();
137
138    // Insert the relevant 128 bits.
139    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
140
141    // This is the index of the first element of the 128-bit chunk
142    // we want.
143    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
144                                 * ElemsPerChunk);
145
146    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
147    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
148                         VecIdx);
149    return Result;
150  }
151
152  return SDValue();
153}
154
155static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
156  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
157  bool is64Bit = Subtarget->is64Bit();
158
159  if (Subtarget->isTargetEnvMacho()) {
160    if (is64Bit)
161      return new X8664_MachoTargetObjectFile();
162    return new TargetLoweringObjectFileMachO();
163  }
164
165  if (Subtarget->isTargetELF())
166    return new TargetLoweringObjectFileELF();
167  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
168    return new TargetLoweringObjectFileCOFF();
169  llvm_unreachable("unknown subtarget type");
170}
171
172X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
173  : TargetLowering(TM, createTLOF(TM)) {
174  Subtarget = &TM.getSubtarget<X86Subtarget>();
175  X86ScalarSSEf64 = Subtarget->hasSSE2();
176  X86ScalarSSEf32 = Subtarget->hasSSE1();
177  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
178
179  RegInfo = TM.getRegisterInfo();
180  TD = getTargetData();
181
182  // Set up the TargetLowering object.
183  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
184
185  // X86 is weird, it always uses i8 for shift amounts and setcc results.
186  setBooleanContents(ZeroOrOneBooleanContent);
187  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
188  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
189
190  // For 64-bit since we have so many registers use the ILP scheduler, for
191  // 32-bit code use the register pressure specific scheduling.
192  if (Subtarget->is64Bit())
193    setSchedulingPreference(Sched::ILP);
194  else
195    setSchedulingPreference(Sched::RegPressure);
196  setStackPointerRegisterToSaveRestore(X86StackPtr);
197
198  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
199    // Setup Windows compiler runtime calls.
200    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
201    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
202    setLibcallName(RTLIB::SREM_I64, "_allrem");
203    setLibcallName(RTLIB::UREM_I64, "_aullrem");
204    setLibcallName(RTLIB::MUL_I64, "_allmul");
205    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
206    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
207    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
210    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
211    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
212    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
213    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
214  }
215
216  if (Subtarget->isTargetDarwin()) {
217    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
218    setUseUnderscoreSetJmp(false);
219    setUseUnderscoreLongJmp(false);
220  } else if (Subtarget->isTargetMingw()) {
221    // MS runtime is weird: it exports _setjmp, but longjmp!
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(false);
224  } else {
225    setUseUnderscoreSetJmp(true);
226    setUseUnderscoreLongJmp(true);
227  }
228
229  // Set up the register classes.
230  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
231  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
232  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
233  if (Subtarget->is64Bit())
234    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
235
236  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
237
238  // We don't accept any truncstore of integer registers.
239  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
240  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
241  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
242  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
243  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
244  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
245
246  // SETOEQ and SETUNE require checking two conditions.
247  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
250  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
251  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
252  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
253
254  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
255  // operation.
256  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
257  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
258  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
259
260  if (Subtarget->is64Bit()) {
261    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263  } else if (!TM.Options.UseSoftFloat) {
264    // We have an algorithm for SSE2->double, and we turn this into a
265    // 64-bit FILD followed by conditional FADD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
267    // We have an algorithm for SSE2, and we turn this into a 64-bit
268    // FILD for other targets.
269    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
270  }
271
272  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
273  // this operation.
274  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
275  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
276
277  if (!TM.Options.UseSoftFloat) {
278    // SSE has no i16 to fp conversion, only i32
279    if (X86ScalarSSEf32) {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
281      // f32 and f64 cases are Legal, f80 case is not
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    } else {
284      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
285      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
286    }
287  } else {
288    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
289    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
290  }
291
292  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
293  // are Legal, f80 is custom lowered.
294  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
295  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
296
297  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
298  // this operation.
299  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
300  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
301
302  if (X86ScalarSSEf32) {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
304    // f32 and f64 cases are Legal, f80 case is not
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  } else {
307    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
308    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
309  }
310
311  // Handle FP_TO_UINT by promoting the destination to a larger signed
312  // conversion.
313  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
314  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
315  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
316
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
319    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
320  } else if (!TM.Options.UseSoftFloat) {
321    // Since AVX is a superset of SSE3, only check for SSE here.
322    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
323      // Expand FP_TO_UINT into a select.
324      // FIXME: We would like to use a Custom expander here eventually to do
325      // the optimal thing for SSE vs. the default expansion in the legalizer.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
327    else
328      // With SSE3 we can use fisttpll to convert to a signed i64; without
329      // SSE, we're stuck with a fistpll.
330      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0, e = 4; i != e; ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460
461  // Darwin ABI issue.
462  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
463  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
464  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
465  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
466  if (Subtarget->is64Bit())
467    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
469  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
472    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
473    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
474    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
475    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
476  }
477  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
479  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
480  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
481  if (Subtarget->is64Bit()) {
482    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
483    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
484    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
485  }
486
487  if (Subtarget->hasSSE1())
488    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
489
490  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
491  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
492
493  // On X86 and X86-64, atomic operations are lowered to locked instructions.
494  // Locked instructions, in turn, have implicit fence semantics (all memory
495  // operations are flushed before issuing the locked instruction, and they
496  // are not buffered), so we can fold away the common pattern of
497  // fence-atomic-fence.
498  setShouldFoldAtomicFences(true);
499
500  // Expand certain atomics
501  for (unsigned i = 0, e = 4; i != e; ++i) {
502    MVT VT = IntVTs[i];
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
506  }
507
508  if (!Subtarget->is64Bit()) {
509    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
517  }
518
519  if (Subtarget->hasCmpxchg16b()) {
520    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
521  }
522
523  // FIXME - use subtarget debug flags
524  if (!Subtarget->isTargetDarwin() &&
525      !Subtarget->isTargetELF() &&
526      !Subtarget->isTargetCygMing()) {
527    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
528  }
529
530  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
531  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
532  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
533  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
534  if (Subtarget->is64Bit()) {
535    setExceptionPointerRegister(X86::RAX);
536    setExceptionSelectorRegister(X86::RDX);
537  } else {
538    setExceptionPointerRegister(X86::EAX);
539    setExceptionSelectorRegister(X86::EDX);
540  }
541  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
542  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
543
544  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
545  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
546
547  setOperationAction(ISD::TRAP, MVT::Other, Legal);
548
549  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
550  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
551  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
552  if (Subtarget->is64Bit()) {
553    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
554    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
555  } else {
556    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
557    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
558  }
559
560  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
561  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
562
563  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Custom);
566  else if (TM.Options.EnableSegmentedStacks)
567    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568                       MVT::i64 : MVT::i32, Custom);
569  else
570    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
571                       MVT::i64 : MVT::i32, Expand);
572
573  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
574    // f32 and f64 use SSE.
575    // Set up the FP register classes.
576    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
577    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
578
579    // Use ANDPD to simulate FABS.
580    setOperationAction(ISD::FABS , MVT::f64, Custom);
581    setOperationAction(ISD::FABS , MVT::f32, Custom);
582
583    // Use XORP to simulate FNEG.
584    setOperationAction(ISD::FNEG , MVT::f64, Custom);
585    setOperationAction(ISD::FNEG , MVT::f32, Custom);
586
587    // Use ANDPD and ORPD to simulate FCOPYSIGN.
588    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
589    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
590
591    // Lower this to FGETSIGNx86 plus an AND.
592    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
593    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
594
595    // We don't support sin/cos/fmod
596    setOperationAction(ISD::FSIN , MVT::f64, Expand);
597    setOperationAction(ISD::FCOS , MVT::f64, Expand);
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Expand FP immediates into loads from the stack, except for the special
602    // cases we handle.
603    addLegalFPImmediate(APFloat(+0.0)); // xorpd
604    addLegalFPImmediate(APFloat(+0.0f)); // xorps
605  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
606    // Use SSE for f32, x87 for f64.
607    // Set up the FP register classes.
608    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
609    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
610
611    // Use ANDPS to simulate FABS.
612    setOperationAction(ISD::FABS , MVT::f32, Custom);
613
614    // Use XORP to simulate FNEG.
615    setOperationAction(ISD::FNEG , MVT::f32, Custom);
616
617    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
618
619    // Use ANDPS and ORPS to simulate FCOPYSIGN.
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
622
623    // We don't support sin/cos/fmod
624    setOperationAction(ISD::FSIN , MVT::f32, Expand);
625    setOperationAction(ISD::FCOS , MVT::f32, Expand);
626
627    // Special cases we handle for FP constants.
628    addLegalFPImmediate(APFloat(+0.0f)); // xorps
629    addLegalFPImmediate(APFloat(+0.0)); // FLD0
630    addLegalFPImmediate(APFloat(+1.0)); // FLD1
631    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
633
634    if (!TM.Options.UnsafeFPMath) {
635      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
636      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
637    }
638  } else if (!TM.Options.UseSoftFloat) {
639    // f32 and f64 in x87.
640    // Set up the FP register classes.
641    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
642    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
643
644    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
645    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
646    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
647    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
648
649    if (!TM.Options.UnsafeFPMath) {
650      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
651      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
652    }
653    addLegalFPImmediate(APFloat(+0.0)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
657    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
658    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
659    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
660    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
661  }
662
663  // We don't support FMA.
664  setOperationAction(ISD::FMA, MVT::f64, Expand);
665  setOperationAction(ISD::FMA, MVT::f32, Expand);
666
667  // Long double always uses X87.
668  if (!TM.Options.UseSoftFloat) {
669    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
670    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
671    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
672    {
673      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
674      addLegalFPImmediate(TmpFlt);  // FLD0
675      TmpFlt.changeSign();
676      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
677
678      bool ignored;
679      APFloat TmpFlt2(+1.0);
680      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
681                      &ignored);
682      addLegalFPImmediate(TmpFlt2);  // FLD1
683      TmpFlt2.changeSign();
684      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
685    }
686
687    if (!TM.Options.UnsafeFPMath) {
688      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
689      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
690    }
691
692    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
693    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
694    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
695    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
696    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
697    setOperationAction(ISD::FMA, MVT::f80, Expand);
698  }
699
700  // Always use a library call for pow.
701  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
702  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
703  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
704
705  setOperationAction(ISD::FLOG, MVT::f80, Expand);
706  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
707  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
708  setOperationAction(ISD::FEXP, MVT::f80, Expand);
709  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
710
711  // First set operation action for all vector types to either promote
712  // (for widening) or expand (for scalarization). Then we will selectively
713  // turn on ones that can be effectively codegen'd.
714  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
715       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
716    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
731    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
733    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
734    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
768    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
773    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
774         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
775      setTruncStoreAction((MVT::SimpleValueType)VT,
776                          (MVT::SimpleValueType)InnerVT, Expand);
777    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
778    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
779    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
780  }
781
782  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
783  // with -msoft-float, disable use of MMX as well.
784  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
785    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
786    // No operations on x86mmx supported, everything uses intrinsics.
787  }
788
789  // MMX-sized vectors (other than x86mmx) are expected to be expanded
790  // into smaller operations.
791  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
792  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
793  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
794  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
795  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
796  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
797  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
798  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
799  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
800  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
801  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
802  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
803  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
804  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
805  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
806  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
807  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
808  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
809  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
810  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
811  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
812  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
813  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
814  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
815  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
816  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
817  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
818  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
819  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
820
821  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
822    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
823
824    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
826    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
827    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
828    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
829    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
830    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
831    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
832    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
833    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
834    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
836  }
837
838  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
839    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
840
841    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
842    // registers cannot be used even for integer operations.
843    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
844    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
845    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
846    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
847
848    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
849    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
850    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
851    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
852    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
853    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
854    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
855    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
856    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
857    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
858    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
859    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
860    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
861    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
862    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
863    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
864
865    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
866    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
867    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
868    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
869
870    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
871    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
872    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
873    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
874    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
875
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
877    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
878    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
879    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
880    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
881
882    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
883    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
884      EVT VT = (MVT::SimpleValueType)i;
885      // Do not attempt to custom lower non-power-of-2 vectors
886      if (!isPowerOf2_32(VT.getVectorNumElements()))
887        continue;
888      // Do not attempt to custom lower non-128-bit vectors
889      if (!VT.is128BitVector())
890        continue;
891      setOperationAction(ISD::BUILD_VECTOR,
892                         VT.getSimpleVT().SimpleTy, Custom);
893      setOperationAction(ISD::VECTOR_SHUFFLE,
894                         VT.getSimpleVT().SimpleTy, Custom);
895      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
896                         VT.getSimpleVT().SimpleTy, Custom);
897    }
898
899    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
900    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
901    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
902    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
903    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
904    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
905
906    if (Subtarget->is64Bit()) {
907      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
908      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
909    }
910
911    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
912    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
913      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
914      EVT VT = SVT;
915
916      // Do not attempt to promote non-128-bit vectors
917      if (!VT.is128BitVector())
918        continue;
919
920      setOperationAction(ISD::AND,    SVT, Promote);
921      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
922      setOperationAction(ISD::OR,     SVT, Promote);
923      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
924      setOperationAction(ISD::XOR,    SVT, Promote);
925      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
926      setOperationAction(ISD::LOAD,   SVT, Promote);
927      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
928      setOperationAction(ISD::SELECT, SVT, Promote);
929      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
930    }
931
932    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
933
934    // Custom lower v2i64 and v2f64 selects.
935    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
936    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
937    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
938    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
939
940    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
941    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
942  }
943
944  if (Subtarget->hasSSE41()) {
945    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
946    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
947    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
948    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
949    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
950    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
951    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
952    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
953    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
954    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
955
956    // FIXME: Do we need to handle scalar-to-vector here?
957    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
958
959    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
960    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
961    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
962    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
963    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
964
965    // i8 and i16 vectors are custom , because the source register and source
966    // source memory operand types are not the same width.  f32 vectors are
967    // custom since the immediate controlling the insert encodes additional
968    // information.
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
970    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
971    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
972    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
973
974    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
975    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
976    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
977    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
978
979    // FIXME: these should be Legal but thats only for the case where
980    // the index is constant.  For now custom expand to deal with that.
981    if (Subtarget->is64Bit()) {
982      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
983      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
984    }
985  }
986
987  if (Subtarget->hasSSE2()) {
988    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
990
991    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
992    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
993
994    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
995    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
996
997    if (Subtarget->hasAVX2()) {
998      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
999      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1000
1001      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1002      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1003
1004      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1005    } else {
1006      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1007      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1008
1009      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1010      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1011
1012      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1013    }
1014  }
1015
1016  if (Subtarget->hasSSE42())
1017    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1018
1019  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1020    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1021    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1022    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1023    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1024    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1025    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1026
1027    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1030
1031    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1033    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1034    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1035    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1036    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1037
1038    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1039    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1040    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1041    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1042    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1043    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1044
1045    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1046    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1047    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1048
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1051    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1052    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1053    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1054    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1055
1056    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1060    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1061
1062    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1063    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1064
1065    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1066    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1067    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1068    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1069
1070    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1071    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1072    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1073
1074    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1075    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1076    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1077    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1078
1079    if (Subtarget->hasAVX2()) {
1080      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1081      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1083      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1084
1085      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1086      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1087      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1088      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1089
1090      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1091      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1092      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1093      // Don't lower v32i8 because there is no 128-bit byte mul
1094
1095      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1096
1097      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1098      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1099
1100      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1101      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1102
1103      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1104    } else {
1105      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1108      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1109
1110      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1112      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1113      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1114
1115      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1116      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1117      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1118      // Don't lower v32i8 because there is no 128-bit byte mul
1119
1120      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1121      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1122
1123      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1124      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1125
1126      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1127    }
1128
1129    // Custom lower several nodes for 256-bit types.
1130    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1131                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1132      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1133      EVT VT = SVT;
1134
1135      // Extract subvector is special because the value type
1136      // (result) is 128-bit but the source is 256-bit wide.
1137      if (VT.is128BitVector())
1138        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1139
1140      // Do not attempt to custom lower other non-256-bit vectors
1141      if (!VT.is256BitVector())
1142        continue;
1143
1144      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1145      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1146      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1147      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1148      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1149      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1150    }
1151
1152    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1153    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1154      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1155      EVT VT = SVT;
1156
1157      // Do not attempt to promote non-256-bit vectors
1158      if (!VT.is256BitVector())
1159        continue;
1160
1161      setOperationAction(ISD::AND,    SVT, Promote);
1162      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1163      setOperationAction(ISD::OR,     SVT, Promote);
1164      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1165      setOperationAction(ISD::XOR,    SVT, Promote);
1166      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1167      setOperationAction(ISD::LOAD,   SVT, Promote);
1168      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1169      setOperationAction(ISD::SELECT, SVT, Promote);
1170      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1171    }
1172  }
1173
1174  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1175  // of this type with custom code.
1176  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1177         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1178    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1179                       Custom);
1180  }
1181
1182  // We want to custom lower some of our intrinsics.
1183  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1184
1185
1186  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1187  // handle type legalization for these operations here.
1188  //
1189  // FIXME: We really should do custom legalization for addition and
1190  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1191  // than generic legalization for 64-bit multiplication-with-overflow, though.
1192  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1193    // Add/Sub/Mul with overflow operations are custom lowered.
1194    MVT VT = IntVTs[i];
1195    setOperationAction(ISD::SADDO, VT, Custom);
1196    setOperationAction(ISD::UADDO, VT, Custom);
1197    setOperationAction(ISD::SSUBO, VT, Custom);
1198    setOperationAction(ISD::USUBO, VT, Custom);
1199    setOperationAction(ISD::SMULO, VT, Custom);
1200    setOperationAction(ISD::UMULO, VT, Custom);
1201  }
1202
1203  // There are no 8-bit 3-address imul/mul instructions
1204  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1205  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1206
1207  if (!Subtarget->is64Bit()) {
1208    // These libcalls are not available in 32-bit.
1209    setLibcallName(RTLIB::SHL_I128, 0);
1210    setLibcallName(RTLIB::SRL_I128, 0);
1211    setLibcallName(RTLIB::SRA_I128, 0);
1212  }
1213
1214  // We have target-specific dag combine patterns for the following nodes:
1215  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1216  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1217  setTargetDAGCombine(ISD::VSELECT);
1218  setTargetDAGCombine(ISD::SELECT);
1219  setTargetDAGCombine(ISD::SHL);
1220  setTargetDAGCombine(ISD::SRA);
1221  setTargetDAGCombine(ISD::SRL);
1222  setTargetDAGCombine(ISD::OR);
1223  setTargetDAGCombine(ISD::AND);
1224  setTargetDAGCombine(ISD::ADD);
1225  setTargetDAGCombine(ISD::FADD);
1226  setTargetDAGCombine(ISD::FSUB);
1227  setTargetDAGCombine(ISD::SUB);
1228  setTargetDAGCombine(ISD::LOAD);
1229  setTargetDAGCombine(ISD::STORE);
1230  setTargetDAGCombine(ISD::ZERO_EXTEND);
1231  setTargetDAGCombine(ISD::SINT_TO_FP);
1232  if (Subtarget->is64Bit())
1233    setTargetDAGCombine(ISD::MUL);
1234  if (Subtarget->hasBMI())
1235    setTargetDAGCombine(ISD::XOR);
1236
1237  computeRegisterProperties();
1238
1239  // On Darwin, -Os means optimize for size without hurting performance,
1240  // do not reduce the limit.
1241  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1242  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1243  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1244  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1245  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1246  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1247  setPrefLoopAlignment(4); // 2^4 bytes.
1248  benefitFromCodePlacementOpt = true;
1249
1250  setPrefFunctionAlignment(4); // 2^4 bytes.
1251}
1252
1253
1254EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1255  if (!VT.isVector()) return MVT::i8;
1256  return VT.changeVectorElementTypeToInteger();
1257}
1258
1259
1260/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1261/// the desired ByVal argument alignment.
1262static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1263  if (MaxAlign == 16)
1264    return;
1265  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1266    if (VTy->getBitWidth() == 128)
1267      MaxAlign = 16;
1268  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1269    unsigned EltAlign = 0;
1270    getMaxByValAlign(ATy->getElementType(), EltAlign);
1271    if (EltAlign > MaxAlign)
1272      MaxAlign = EltAlign;
1273  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1274    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1275      unsigned EltAlign = 0;
1276      getMaxByValAlign(STy->getElementType(i), EltAlign);
1277      if (EltAlign > MaxAlign)
1278        MaxAlign = EltAlign;
1279      if (MaxAlign == 16)
1280        break;
1281    }
1282  }
1283  return;
1284}
1285
1286/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1287/// function arguments in the caller parameter area. For X86, aggregates
1288/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1289/// are at 4-byte boundaries.
1290unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1291  if (Subtarget->is64Bit()) {
1292    // Max of 8 and alignment of type.
1293    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1294    if (TyAlign > 8)
1295      return TyAlign;
1296    return 8;
1297  }
1298
1299  unsigned Align = 4;
1300  if (Subtarget->hasSSE1())
1301    getMaxByValAlign(Ty, Align);
1302  return Align;
1303}
1304
1305/// getOptimalMemOpType - Returns the target specific optimal type for load
1306/// and store operations as a result of memset, memcpy, and memmove
1307/// lowering. If DstAlign is zero that means it's safe to destination
1308/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1309/// means there isn't a need to check it against alignment requirement,
1310/// probably because the source does not need to be loaded. If
1311/// 'IsZeroVal' is true, that means it's safe to return a
1312/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1313/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1314/// constant so it does not need to be loaded.
1315/// It returns EVT::Other if the type should be determined using generic
1316/// target-independent logic.
1317EVT
1318X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1319                                       unsigned DstAlign, unsigned SrcAlign,
1320                                       bool IsZeroVal,
1321                                       bool MemcpyStrSrc,
1322                                       MachineFunction &MF) const {
1323  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1324  // linux.  This is because the stack realignment code can't handle certain
1325  // cases like PR2962.  This should be removed when PR2962 is fixed.
1326  const Function *F = MF.getFunction();
1327  if (IsZeroVal &&
1328      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1329    if (Size >= 16 &&
1330        (Subtarget->isUnalignedMemAccessFast() ||
1331         ((DstAlign == 0 || DstAlign >= 16) &&
1332          (SrcAlign == 0 || SrcAlign >= 16))) &&
1333        Subtarget->getStackAlignment() >= 16) {
1334      if (Subtarget->getStackAlignment() >= 32) {
1335        if (Subtarget->hasAVX2())
1336          return MVT::v8i32;
1337        if (Subtarget->hasAVX())
1338          return MVT::v8f32;
1339      }
1340      if (Subtarget->hasSSE2())
1341        return MVT::v4i32;
1342      if (Subtarget->hasSSE1())
1343        return MVT::v4f32;
1344    } else if (!MemcpyStrSrc && Size >= 8 &&
1345               !Subtarget->is64Bit() &&
1346               Subtarget->getStackAlignment() >= 8 &&
1347               Subtarget->hasSSE2()) {
1348      // Do not use f64 to lower memcpy if source is string constant. It's
1349      // better to use i32 to avoid the loads.
1350      return MVT::f64;
1351    }
1352  }
1353  if (Subtarget->is64Bit() && Size >= 8)
1354    return MVT::i64;
1355  return MVT::i32;
1356}
1357
1358/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1359/// current function.  The returned value is a member of the
1360/// MachineJumpTableInfo::JTEntryKind enum.
1361unsigned X86TargetLowering::getJumpTableEncoding() const {
1362  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1363  // symbol.
1364  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1365      Subtarget->isPICStyleGOT())
1366    return MachineJumpTableInfo::EK_Custom32;
1367
1368  // Otherwise, use the normal jump table encoding heuristics.
1369  return TargetLowering::getJumpTableEncoding();
1370}
1371
1372const MCExpr *
1373X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1374                                             const MachineBasicBlock *MBB,
1375                                             unsigned uid,MCContext &Ctx) const{
1376  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1377         Subtarget->isPICStyleGOT());
1378  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1379  // entries.
1380  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1381                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1382}
1383
1384/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1385/// jumptable.
1386SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1387                                                    SelectionDAG &DAG) const {
1388  if (!Subtarget->is64Bit())
1389    // This doesn't have DebugLoc associated with it, but is not really the
1390    // same as a Register.
1391    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1392  return Table;
1393}
1394
1395/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1396/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1397/// MCExpr.
1398const MCExpr *X86TargetLowering::
1399getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1400                             MCContext &Ctx) const {
1401  // X86-64 uses RIP relative addressing based on the jump table label.
1402  if (Subtarget->isPICStyleRIPRel())
1403    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1404
1405  // Otherwise, the reference is relative to the PIC base.
1406  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1407}
1408
1409// FIXME: Why this routine is here? Move to RegInfo!
1410std::pair<const TargetRegisterClass*, uint8_t>
1411X86TargetLowering::findRepresentativeClass(EVT VT) const{
1412  const TargetRegisterClass *RRC = 0;
1413  uint8_t Cost = 1;
1414  switch (VT.getSimpleVT().SimpleTy) {
1415  default:
1416    return TargetLowering::findRepresentativeClass(VT);
1417  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1418    RRC = (Subtarget->is64Bit()
1419           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1420    break;
1421  case MVT::x86mmx:
1422    RRC = X86::VR64RegisterClass;
1423    break;
1424  case MVT::f32: case MVT::f64:
1425  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1426  case MVT::v4f32: case MVT::v2f64:
1427  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1428  case MVT::v4f64:
1429    RRC = X86::VR128RegisterClass;
1430    break;
1431  }
1432  return std::make_pair(RRC, Cost);
1433}
1434
1435bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1436                                               unsigned &Offset) const {
1437  if (!Subtarget->isTargetLinux())
1438    return false;
1439
1440  if (Subtarget->is64Bit()) {
1441    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1442    Offset = 0x28;
1443    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1444      AddressSpace = 256;
1445    else
1446      AddressSpace = 257;
1447  } else {
1448    // %gs:0x14 on i386
1449    Offset = 0x14;
1450    AddressSpace = 256;
1451  }
1452  return true;
1453}
1454
1455
1456//===----------------------------------------------------------------------===//
1457//               Return Value Calling Convention Implementation
1458//===----------------------------------------------------------------------===//
1459
1460#include "X86GenCallingConv.inc"
1461
1462bool
1463X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1464				  MachineFunction &MF, bool isVarArg,
1465                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1466                        LLVMContext &Context) const {
1467  SmallVector<CCValAssign, 16> RVLocs;
1468  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1469                 RVLocs, Context);
1470  return CCInfo.CheckReturn(Outs, RetCC_X86);
1471}
1472
1473SDValue
1474X86TargetLowering::LowerReturn(SDValue Chain,
1475                               CallingConv::ID CallConv, bool isVarArg,
1476                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1477                               const SmallVectorImpl<SDValue> &OutVals,
1478                               DebugLoc dl, SelectionDAG &DAG) const {
1479  MachineFunction &MF = DAG.getMachineFunction();
1480  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1481
1482  SmallVector<CCValAssign, 16> RVLocs;
1483  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1484                 RVLocs, *DAG.getContext());
1485  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1486
1487  // Add the regs to the liveout set for the function.
1488  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1489  for (unsigned i = 0; i != RVLocs.size(); ++i)
1490    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1491      MRI.addLiveOut(RVLocs[i].getLocReg());
1492
1493  SDValue Flag;
1494
1495  SmallVector<SDValue, 6> RetOps;
1496  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1497  // Operand #1 = Bytes To Pop
1498  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1499                   MVT::i16));
1500
1501  // Copy the result values into the output registers.
1502  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1503    CCValAssign &VA = RVLocs[i];
1504    assert(VA.isRegLoc() && "Can only return in registers!");
1505    SDValue ValToCopy = OutVals[i];
1506    EVT ValVT = ValToCopy.getValueType();
1507
1508    // If this is x86-64, and we disabled SSE, we can't return FP values,
1509    // or SSE or MMX vectors.
1510    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1511         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1512          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1513      report_fatal_error("SSE register return with SSE disabled");
1514    }
1515    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1516    // llvm-gcc has never done it right and no one has noticed, so this
1517    // should be OK for now.
1518    if (ValVT == MVT::f64 &&
1519        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1520      report_fatal_error("SSE2 register return with SSE2 disabled");
1521
1522    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1523    // the RET instruction and handled by the FP Stackifier.
1524    if (VA.getLocReg() == X86::ST0 ||
1525        VA.getLocReg() == X86::ST1) {
1526      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1527      // change the value to the FP stack register class.
1528      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1529        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1530      RetOps.push_back(ValToCopy);
1531      // Don't emit a copytoreg.
1532      continue;
1533    }
1534
1535    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1536    // which is returned in RAX / RDX.
1537    if (Subtarget->is64Bit()) {
1538      if (ValVT == MVT::x86mmx) {
1539        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1540          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1541          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1542                                  ValToCopy);
1543          // If we don't have SSE2 available, convert to v4f32 so the generated
1544          // register is legal.
1545          if (!Subtarget->hasSSE2())
1546            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1547        }
1548      }
1549    }
1550
1551    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1552    Flag = Chain.getValue(1);
1553  }
1554
1555  // The x86-64 ABI for returning structs by value requires that we copy
1556  // the sret argument into %rax for the return. We saved the argument into
1557  // a virtual register in the entry block, so now we copy the value out
1558  // and into %rax.
1559  if (Subtarget->is64Bit() &&
1560      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1561    MachineFunction &MF = DAG.getMachineFunction();
1562    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1563    unsigned Reg = FuncInfo->getSRetReturnReg();
1564    assert(Reg &&
1565           "SRetReturnReg should have been set in LowerFormalArguments().");
1566    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1567
1568    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1569    Flag = Chain.getValue(1);
1570
1571    // RAX now acts like a return value.
1572    MRI.addLiveOut(X86::RAX);
1573  }
1574
1575  RetOps[0] = Chain;  // Update chain.
1576
1577  // Add the flag if we have it.
1578  if (Flag.getNode())
1579    RetOps.push_back(Flag);
1580
1581  return DAG.getNode(X86ISD::RET_FLAG, dl,
1582                     MVT::Other, &RetOps[0], RetOps.size());
1583}
1584
1585bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1586  if (N->getNumValues() != 1)
1587    return false;
1588  if (!N->hasNUsesOfValue(1, 0))
1589    return false;
1590
1591  SDNode *Copy = *N->use_begin();
1592  if (Copy->getOpcode() != ISD::CopyToReg &&
1593      Copy->getOpcode() != ISD::FP_EXTEND)
1594    return false;
1595
1596  bool HasRet = false;
1597  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1598       UI != UE; ++UI) {
1599    if (UI->getOpcode() != X86ISD::RET_FLAG)
1600      return false;
1601    HasRet = true;
1602  }
1603
1604  return HasRet;
1605}
1606
1607EVT
1608X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609                                            ISD::NodeType ExtendKind) const {
1610  MVT ReturnMVT;
1611  // TODO: Is this also valid on 32-bit?
1612  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613    ReturnMVT = MVT::i8;
1614  else
1615    ReturnMVT = MVT::i32;
1616
1617  EVT MinVT = getRegisterType(Context, ReturnMVT);
1618  return VT.bitsLT(MinVT) ? MinVT : VT;
1619}
1620
1621/// LowerCallResult - Lower the result values of a call into the
1622/// appropriate copies out of appropriate physical registers.
1623///
1624SDValue
1625X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626                                   CallingConv::ID CallConv, bool isVarArg,
1627                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1628                                   DebugLoc dl, SelectionDAG &DAG,
1629                                   SmallVectorImpl<SDValue> &InVals) const {
1630
1631  // Assign locations to each value returned by this call.
1632  SmallVector<CCValAssign, 16> RVLocs;
1633  bool Is64Bit = Subtarget->is64Bit();
1634  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635		 getTargetMachine(), RVLocs, *DAG.getContext());
1636  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1637
1638  // Copy all of the result registers out of their specified physreg.
1639  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640    CCValAssign &VA = RVLocs[i];
1641    EVT CopyVT = VA.getValVT();
1642
1643    // If this is x86-64, and we disabled SSE, we can't return FP values
1644    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646      report_fatal_error("SSE register return with SSE disabled");
1647    }
1648
1649    SDValue Val;
1650
1651    // If this is a call to a function that returns an fp value on the floating
1652    // point stack, we must guarantee the the value is popped from the stack, so
1653    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654    // if the return value is not used. We use the FpPOP_RETVAL instruction
1655    // instead.
1656    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657      // If we prefer to use the value in xmm registers, copy it out as f80 and
1658      // use a truncate to move it from fp stack reg to xmm reg.
1659      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660      SDValue Ops[] = { Chain, InFlag };
1661      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1663      Val = Chain.getValue(0);
1664
1665      // Round the f80 to the right size, which also moves it to the appropriate
1666      // xmm register.
1667      if (CopyVT != VA.getValVT())
1668        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669                          // This truncation won't change the value.
1670                          DAG.getIntPtrConstant(1));
1671    } else {
1672      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673                                 CopyVT, InFlag).getValue(1);
1674      Val = Chain.getValue(0);
1675    }
1676    InFlag = Chain.getValue(2);
1677    InVals.push_back(Val);
1678  }
1679
1680  return Chain;
1681}
1682
1683
1684//===----------------------------------------------------------------------===//
1685//                C & StdCall & Fast Calling Convention implementation
1686//===----------------------------------------------------------------------===//
1687//  StdCall calling convention seems to be standard for many Windows' API
1688//  routines and around. It differs from C calling convention just a little:
1689//  callee should clean up the stack, not caller. Symbols should be also
1690//  decorated in some fancy way :) It doesn't support any vector arguments.
1691//  For info on fast calling convention see Fast Calling Convention (tail call)
1692//  implementation LowerX86_32FastCCCallTo.
1693
1694/// CallIsStructReturn - Determines whether a call uses struct return
1695/// semantics.
1696static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1697  if (Outs.empty())
1698    return false;
1699
1700  return Outs[0].Flags.isSRet();
1701}
1702
1703/// ArgsAreStructReturn - Determines whether a function uses struct
1704/// return semantics.
1705static bool
1706ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1707  if (Ins.empty())
1708    return false;
1709
1710  return Ins[0].Flags.isSRet();
1711}
1712
1713/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714/// by "Src" to address "Dst" with size and alignment information specified by
1715/// the specific parameter attribute. The copy will be passed as a byval
1716/// function parameter.
1717static SDValue
1718CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1720                          DebugLoc dl) {
1721  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1722
1723  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724                       /*isVolatile*/false, /*AlwaysInline=*/true,
1725                       MachinePointerInfo(), MachinePointerInfo());
1726}
1727
1728/// IsTailCallConvention - Return true if the calling convention is one that
1729/// supports tail call optimization.
1730static bool IsTailCallConvention(CallingConv::ID CC) {
1731  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1732}
1733
1734bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1736    return false;
1737
1738  CallSite CS(CI);
1739  CallingConv::ID CalleeCC = CS.getCallingConv();
1740  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1741    return false;
1742
1743  return true;
1744}
1745
1746/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747/// a tailcall target by changing its ABI.
1748static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749                                   bool GuaranteedTailCallOpt) {
1750  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1751}
1752
1753SDValue
1754X86TargetLowering::LowerMemArgument(SDValue Chain,
1755                                    CallingConv::ID CallConv,
1756                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1757                                    DebugLoc dl, SelectionDAG &DAG,
1758                                    const CCValAssign &VA,
1759                                    MachineFrameInfo *MFI,
1760                                    unsigned i) const {
1761  // Create the nodes corresponding to a load from this parameter slot.
1762  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764                              getTargetMachine().Options.GuaranteedTailCallOpt);
1765  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1766  EVT ValVT;
1767
1768  // If value is passed by pointer we have address passed instead of the value
1769  // itself.
1770  if (VA.getLocInfo() == CCValAssign::Indirect)
1771    ValVT = VA.getLocVT();
1772  else
1773    ValVT = VA.getValVT();
1774
1775  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776  // changed with more analysis.
1777  // In case of tail call optimization mark all arguments mutable. Since they
1778  // could be overwritten by lowering of arguments in case of a tail call.
1779  if (Flags.isByVal()) {
1780    unsigned Bytes = Flags.getByValSize();
1781    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783    return DAG.getFrameIndex(FI, getPointerTy());
1784  } else {
1785    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786                                    VA.getLocMemOffset(), isImmutable);
1787    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788    return DAG.getLoad(ValVT, dl, Chain, FIN,
1789                       MachinePointerInfo::getFixedStack(FI),
1790                       false, false, false, 0);
1791  }
1792}
1793
1794SDValue
1795X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796                                        CallingConv::ID CallConv,
1797                                        bool isVarArg,
1798                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1799                                        DebugLoc dl,
1800                                        SelectionDAG &DAG,
1801                                        SmallVectorImpl<SDValue> &InVals)
1802                                          const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  const Function* Fn = MF.getFunction();
1807  if (Fn->hasExternalLinkage() &&
1808      Subtarget->isTargetCygMing() &&
1809      Fn->getName() == "main")
1810    FuncInfo->setForceFramePointer(true);
1811
1812  MachineFrameInfo *MFI = MF.getFrameInfo();
1813  bool Is64Bit = Subtarget->is64Bit();
1814  bool IsWindows = Subtarget->isTargetWindows();
1815  bool IsWin64 = Subtarget->isTargetWin64();
1816
1817  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818         "Var args not supported with calling convention fastcc or ghc");
1819
1820  // Assign locations to all of the incoming arguments.
1821  SmallVector<CCValAssign, 16> ArgLocs;
1822  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823                 ArgLocs, *DAG.getContext());
1824
1825  // Allocate shadow area for Win64
1826  if (IsWin64) {
1827    CCInfo.AllocateStack(32, 8);
1828  }
1829
1830  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1831
1832  unsigned LastVal = ~0U;
1833  SDValue ArgValue;
1834  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835    CCValAssign &VA = ArgLocs[i];
1836    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1837    // places.
1838    assert(VA.getValNo() != LastVal &&
1839           "Don't support value assigned to multiple locs yet");
1840    (void)LastVal;
1841    LastVal = VA.getValNo();
1842
1843    if (VA.isRegLoc()) {
1844      EVT RegVT = VA.getLocVT();
1845      TargetRegisterClass *RC = NULL;
1846      if (RegVT == MVT::i32)
1847        RC = X86::GR32RegisterClass;
1848      else if (Is64Bit && RegVT == MVT::i64)
1849        RC = X86::GR64RegisterClass;
1850      else if (RegVT == MVT::f32)
1851        RC = X86::FR32RegisterClass;
1852      else if (RegVT == MVT::f64)
1853        RC = X86::FR64RegisterClass;
1854      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855        RC = X86::VR256RegisterClass;
1856      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857        RC = X86::VR128RegisterClass;
1858      else if (RegVT == MVT::x86mmx)
1859        RC = X86::VR64RegisterClass;
1860      else
1861        llvm_unreachable("Unknown argument type!");
1862
1863      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1865
1866      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1868      // right size.
1869      if (VA.getLocInfo() == CCValAssign::SExt)
1870        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871                               DAG.getValueType(VA.getValVT()));
1872      else if (VA.getLocInfo() == CCValAssign::ZExt)
1873        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874                               DAG.getValueType(VA.getValVT()));
1875      else if (VA.getLocInfo() == CCValAssign::BCvt)
1876        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1877
1878      if (VA.isExtInLoc()) {
1879        // Handle MMX values passed in XMM regs.
1880        if (RegVT.isVector()) {
1881          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1882                                 ArgValue);
1883        } else
1884          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1885      }
1886    } else {
1887      assert(VA.isMemLoc());
1888      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1889    }
1890
1891    // If value is passed via pointer - do a load.
1892    if (VA.getLocInfo() == CCValAssign::Indirect)
1893      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894                             MachinePointerInfo(), false, false, false, 0);
1895
1896    InVals.push_back(ArgValue);
1897  }
1898
1899  // The x86-64 ABI for returning structs by value requires that we copy
1900  // the sret argument into %rax for the return. Save the argument into
1901  // a virtual register so that we can access it from the return points.
1902  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904    unsigned Reg = FuncInfo->getSRetReturnReg();
1905    if (!Reg) {
1906      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907      FuncInfo->setSRetReturnReg(Reg);
1908    }
1909    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1911  }
1912
1913  unsigned StackSize = CCInfo.getNextStackOffset();
1914  // Align stack specially for tail calls.
1915  if (FuncIsMadeTailCallSafe(CallConv,
1916                             MF.getTarget().Options.GuaranteedTailCallOpt))
1917    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1918
1919  // If the function takes variable number of arguments, make a frame index for
1920  // the start of the first vararg value... for expansion of llvm.va_start.
1921  if (isVarArg) {
1922    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923                    CallConv != CallingConv::X86_ThisCall)) {
1924      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1925    }
1926    if (Is64Bit) {
1927      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1928
1929      // FIXME: We should really autogenerate these arrays
1930      static const unsigned GPR64ArgRegsWin64[] = {
1931        X86::RCX, X86::RDX, X86::R8,  X86::R9
1932      };
1933      static const unsigned GPR64ArgRegs64Bit[] = {
1934        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1935      };
1936      static const unsigned XMMArgRegs64Bit[] = {
1937        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1939      };
1940      const unsigned *GPR64ArgRegs;
1941      unsigned NumXMMRegs = 0;
1942
1943      if (IsWin64) {
1944        // The XMM registers which might contain var arg parameters are shadowed
1945        // in their paired GPR.  So we only need to save the GPR to their home
1946        // slots.
1947        TotalNumIntRegs = 4;
1948        GPR64ArgRegs = GPR64ArgRegsWin64;
1949      } else {
1950        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951        GPR64ArgRegs = GPR64ArgRegs64Bit;
1952
1953        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1954                                                TotalNumXMMRegs);
1955      }
1956      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1957                                                       TotalNumIntRegs);
1958
1959      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961             "SSE register cannot be used when SSE is disabled!");
1962      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963               NoImplicitFloatOps) &&
1964             "SSE register cannot be used when SSE is disabled!");
1965      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966          !Subtarget->hasSSE1())
1967        // Kernel mode asks for SSE to be disabled, so don't push them
1968        // on the stack.
1969        TotalNumXMMRegs = 0;
1970
1971      if (IsWin64) {
1972        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973        // Get to the caller-allocated home save location.  Add 8 to account
1974        // for the return address.
1975        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976        FuncInfo->setRegSaveFrameIndex(
1977          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978        // Fixup to set vararg frame on shadow area (4 x i64).
1979        if (NumIntRegs < 4)
1980          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1981      } else {
1982        // For X86-64, if there are vararg parameters that are passed via
1983        // registers, then we must store them to their spots on the stack so
1984        // they may be loaded by deferencing the result of va_next.
1985        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987        FuncInfo->setRegSaveFrameIndex(
1988          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1989                               false));
1990      }
1991
1992      // Store the integer parameter registers.
1993      SmallVector<SDValue, 8> MemOps;
1994      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1995                                        getPointerTy());
1996      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999                                  DAG.getIntPtrConstant(Offset));
2000        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001                                     X86::GR64RegisterClass);
2002        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2003        SDValue Store =
2004          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005                       MachinePointerInfo::getFixedStack(
2006                         FuncInfo->getRegSaveFrameIndex(), Offset),
2007                       false, false, 0);
2008        MemOps.push_back(Store);
2009        Offset += 8;
2010      }
2011
2012      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013        // Now store the XMM (fp + vector) parameter registers.
2014        SmallVector<SDValue, 11> SaveXMMOps;
2015        SaveXMMOps.push_back(Chain);
2016
2017        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019        SaveXMMOps.push_back(ALVal);
2020
2021        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022                               FuncInfo->getRegSaveFrameIndex()));
2023        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024                               FuncInfo->getVarArgsFPOffset()));
2025
2026        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028                                       X86::VR128RegisterClass);
2029          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030          SaveXMMOps.push_back(Val);
2031        }
2032        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2033                                     MVT::Other,
2034                                     &SaveXMMOps[0], SaveXMMOps.size()));
2035      }
2036
2037      if (!MemOps.empty())
2038        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039                            &MemOps[0], MemOps.size());
2040    }
2041  }
2042
2043  // Some CCs need callee pop.
2044  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2047  } else {
2048    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049    // If this is an sret function, the return should pop the hidden pointer.
2050    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051        ArgsAreStructReturn(Ins))
2052      FuncInfo->setBytesToPopOnReturn(4);
2053  }
2054
2055  if (!Is64Bit) {
2056    // RegSaveFrameIndex is X86-64 only.
2057    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058    if (CallConv == CallingConv::X86_FastCall ||
2059        CallConv == CallingConv::X86_ThisCall)
2060      // fastcc functions can't have varargs.
2061      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2062  }
2063
2064  FuncInfo->setArgumentStackSize(StackSize);
2065
2066  return Chain;
2067}
2068
2069SDValue
2070X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071                                    SDValue StackPtr, SDValue Arg,
2072                                    DebugLoc dl, SelectionDAG &DAG,
2073                                    const CCValAssign &VA,
2074                                    ISD::ArgFlagsTy Flags) const {
2075  unsigned LocMemOffset = VA.getLocMemOffset();
2076  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078  if (Flags.isByVal())
2079    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2080
2081  return DAG.getStore(Chain, dl, Arg, PtrOff,
2082                      MachinePointerInfo::getStack(LocMemOffset),
2083                      false, false, 0);
2084}
2085
2086/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087/// optimization is performed and it is required.
2088SDValue
2089X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090                                           SDValue &OutRetAddr, SDValue Chain,
2091                                           bool IsTailCall, bool Is64Bit,
2092                                           int FPDiff, DebugLoc dl) const {
2093  // Adjust the Return address stack slot.
2094  EVT VT = getPointerTy();
2095  OutRetAddr = getReturnAddressFrameIndex(DAG);
2096
2097  // Load the "old" Return address.
2098  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099                           false, false, false, 0);
2100  return SDValue(OutRetAddr.getNode(), 1);
2101}
2102
2103/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104/// optimization is performed and it is required (FPDiff!=0).
2105static SDValue
2106EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107                         SDValue Chain, SDValue RetAddrFrIdx,
2108                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2109  // Store the return address to the appropriate stack slot.
2110  if (!FPDiff) return Chain;
2111  // Calculate the new stack slot for the return address.
2112  int SlotSize = Is64Bit ? 8 : 4;
2113  int NewReturnAddrFI =
2114    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2119                       false, false, 0);
2120  return Chain;
2121}
2122
2123SDValue
2124X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125                             CallingConv::ID CallConv, bool isVarArg,
2126                             bool &isTailCall,
2127                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2128                             const SmallVectorImpl<SDValue> &OutVals,
2129                             const SmallVectorImpl<ISD::InputArg> &Ins,
2130                             DebugLoc dl, SelectionDAG &DAG,
2131                             SmallVectorImpl<SDValue> &InVals) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  bool Is64Bit        = Subtarget->is64Bit();
2134  bool IsWin64        = Subtarget->isTargetWin64();
2135  bool IsWindows      = Subtarget->isTargetWindows();
2136  bool IsStructRet    = CallIsStructReturn(Outs);
2137  bool IsSibcall      = false;
2138
2139  if (MF.getTarget().Options.DisableTailCalls)
2140    isTailCall = false;
2141
2142  if (isTailCall) {
2143    // Check if it's really possible to do a tail call.
2144    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146                                                   Outs, OutVals, Ins, DAG);
2147
2148    // Sibcalls are automatically detected tailcalls which do not require
2149    // ABI changes.
2150    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2151      IsSibcall = true;
2152
2153    if (isTailCall)
2154      ++NumTailCalls;
2155  }
2156
2157  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158         "Var args not supported with calling convention fastcc or ghc");
2159
2160  // Analyze operands of the call, assigning locations to each operand.
2161  SmallVector<CCValAssign, 16> ArgLocs;
2162  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163                 ArgLocs, *DAG.getContext());
2164
2165  // Allocate shadow area for Win64
2166  if (IsWin64) {
2167    CCInfo.AllocateStack(32, 8);
2168  }
2169
2170  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2171
2172  // Get a count of how many bytes are to be pushed on the stack.
2173  unsigned NumBytes = CCInfo.getNextStackOffset();
2174  if (IsSibcall)
2175    // This is a sibcall. The memory operands are available in caller's
2176    // own caller's stack.
2177    NumBytes = 0;
2178  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179           IsTailCallConvention(CallConv))
2180    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2181
2182  int FPDiff = 0;
2183  if (isTailCall && !IsSibcall) {
2184    // Lower arguments at fp - stackoffset + fpdiff.
2185    unsigned NumBytesCallerPushed =
2186      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187    FPDiff = NumBytesCallerPushed - NumBytes;
2188
2189    // Set the delta of movement of the returnaddr stackslot.
2190    // But only set if delta is greater than previous delta.
2191    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2193  }
2194
2195  if (!IsSibcall)
2196    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2197
2198  SDValue RetAddrFrIdx;
2199  // Load return address for tail calls.
2200  if (isTailCall && FPDiff)
2201    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202                                    Is64Bit, FPDiff, dl);
2203
2204  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205  SmallVector<SDValue, 8> MemOpChains;
2206  SDValue StackPtr;
2207
2208  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2209  // of tail call optimization arguments are handle later.
2210  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211    CCValAssign &VA = ArgLocs[i];
2212    EVT RegVT = VA.getLocVT();
2213    SDValue Arg = OutVals[i];
2214    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215    bool isByVal = Flags.isByVal();
2216
2217    // Promote the value if needed.
2218    switch (VA.getLocInfo()) {
2219    default: llvm_unreachable("Unknown loc info!");
2220    case CCValAssign::Full: break;
2221    case CCValAssign::SExt:
2222      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2223      break;
2224    case CCValAssign::ZExt:
2225      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::AExt:
2228      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229        // Special case: passing MMX values in XMM registers.
2230        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2233      } else
2234        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::BCvt:
2237      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2238      break;
2239    case CCValAssign::Indirect: {
2240      // Store the argument.
2241      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244                           MachinePointerInfo::getFixedStack(FI),
2245                           false, false, 0);
2246      Arg = SpillSlot;
2247      break;
2248    }
2249    }
2250
2251    if (VA.isRegLoc()) {
2252      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253      if (isVarArg && IsWin64) {
2254        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255        // shadow reg if callee is a varargs function.
2256        unsigned ShadowReg = 0;
2257        switch (VA.getLocReg()) {
2258        case X86::XMM0: ShadowReg = X86::RCX; break;
2259        case X86::XMM1: ShadowReg = X86::RDX; break;
2260        case X86::XMM2: ShadowReg = X86::R8; break;
2261        case X86::XMM3: ShadowReg = X86::R9; break;
2262        }
2263        if (ShadowReg)
2264          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2265      }
2266    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267      assert(VA.isMemLoc());
2268      if (StackPtr.getNode() == 0)
2269        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271                                             dl, DAG, VA, Flags));
2272    }
2273  }
2274
2275  if (!MemOpChains.empty())
2276    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277                        &MemOpChains[0], MemOpChains.size());
2278
2279  // Build a sequence of copy-to-reg nodes chained together with token chain
2280  // and flag operands which copy the outgoing args into registers.
2281  SDValue InFlag;
2282  // Tail call byval lowering might overwrite argument registers so in case of
2283  // tail call optimization the copies to registers are lowered later.
2284  if (!isTailCall)
2285    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287                               RegsToPass[i].second, InFlag);
2288      InFlag = Chain.getValue(1);
2289    }
2290
2291  if (Subtarget->isPICStyleGOT()) {
2292    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2293    // GOT pointer.
2294    if (!isTailCall) {
2295      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296                               DAG.getNode(X86ISD::GlobalBaseReg,
2297                                           DebugLoc(), getPointerTy()),
2298                               InFlag);
2299      InFlag = Chain.getValue(1);
2300    } else {
2301      // If we are tail calling and generating PIC/GOT style code load the
2302      // address of the callee into ECX. The value in ecx is used as target of
2303      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304      // for tail calls on PIC/GOT architectures. Normally we would just put the
2305      // address of GOT into ebx and then call target@PLT. But for tail calls
2306      // ebx would be restored (since ebx is callee saved) before jumping to the
2307      // target@PLT.
2308
2309      // Note: The actual moving to ECX is done further down.
2310      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312          !G->getGlobal()->hasProtectedVisibility())
2313        Callee = LowerGlobalAddress(Callee, DAG);
2314      else if (isa<ExternalSymbolSDNode>(Callee))
2315        Callee = LowerExternalSymbol(Callee, DAG);
2316    }
2317  }
2318
2319  if (Is64Bit && isVarArg && !IsWin64) {
2320    // From AMD64 ABI document:
2321    // For calls that may call functions that use varargs or stdargs
2322    // (prototype-less calls or calls to functions containing ellipsis (...) in
2323    // the declaration) %al is used as hidden argument to specify the number
2324    // of SSE registers used. The contents of %al do not need to match exactly
2325    // the number of registers, but must be an ubound on the number of SSE
2326    // registers used and is in the range 0 - 8 inclusive.
2327
2328    // Count the number of XMM registers allocated.
2329    static const unsigned XMMArgRegs[] = {
2330      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2332    };
2333    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335           && "SSE registers cannot be used when SSE is disabled");
2336
2337    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339    InFlag = Chain.getValue(1);
2340  }
2341
2342
2343  // For tail calls lower the arguments to the 'real' stack slot.
2344  if (isTailCall) {
2345    // Force all the incoming stack arguments to be loaded from the stack
2346    // before any new outgoing arguments are stored to the stack, because the
2347    // outgoing stack slots may alias the incoming argument stack slots, and
2348    // the alias isn't otherwise explicit. This is slightly more conservative
2349    // than necessary, because it means that each store effectively depends
2350    // on every argument instead of just those arguments it would clobber.
2351    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2352
2353    SmallVector<SDValue, 8> MemOpChains2;
2354    SDValue FIN;
2355    int FI = 0;
2356    // Do not flag preceding copytoreg stuff together with the following stuff.
2357    InFlag = SDValue();
2358    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360        CCValAssign &VA = ArgLocs[i];
2361        if (VA.isRegLoc())
2362          continue;
2363        assert(VA.isMemLoc());
2364        SDValue Arg = OutVals[i];
2365        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366        // Create frame index.
2367        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370        FIN = DAG.getFrameIndex(FI, getPointerTy());
2371
2372        if (Flags.isByVal()) {
2373          // Copy relative to framepointer.
2374          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375          if (StackPtr.getNode() == 0)
2376            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2377                                          getPointerTy());
2378          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2379
2380          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2381                                                           ArgChain,
2382                                                           Flags, DAG, dl));
2383        } else {
2384          // Store relative to framepointer.
2385          MemOpChains2.push_back(
2386            DAG.getStore(ArgChain, dl, Arg, FIN,
2387                         MachinePointerInfo::getFixedStack(FI),
2388                         false, false, 0));
2389        }
2390      }
2391    }
2392
2393    if (!MemOpChains2.empty())
2394      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395                          &MemOpChains2[0], MemOpChains2.size());
2396
2397    // Copy arguments to their registers.
2398    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400                               RegsToPass[i].second, InFlag);
2401      InFlag = Chain.getValue(1);
2402    }
2403    InFlag =SDValue();
2404
2405    // Store the return address to the appropriate stack slot.
2406    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2407                                     FPDiff, dl);
2408  }
2409
2410  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412    // In the 64-bit large code model, we have to make all calls
2413    // through a register, since the call instruction's 32-bit
2414    // pc-relative offset may not be large enough to hold the whole
2415    // address.
2416  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417    // If the callee is a GlobalAddress node (quite common, every direct call
2418    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2419    // it.
2420
2421    // We should use extra load for direct calls to dllimported functions in
2422    // non-JIT mode.
2423    const GlobalValue *GV = G->getGlobal();
2424    if (!GV->hasDLLImportLinkage()) {
2425      unsigned char OpFlags = 0;
2426      bool ExtraLoad = false;
2427      unsigned WrapperKind = ISD::DELETED_NODE;
2428
2429      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430      // external symbols most go through the PLT in PIC mode.  If the symbol
2431      // has hidden or protected visibility, or if it is static or local, then
2432      // we don't need to use the PLT - we can directly call it.
2433      if (Subtarget->isTargetELF() &&
2434          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436        OpFlags = X86II::MO_PLT;
2437      } else if (Subtarget->isPICStyleStubAny() &&
2438                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439                 (!Subtarget->getTargetTriple().isMacOSX() ||
2440                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441        // PC-relative references to external symbols should go through $stub,
2442        // unless we're building with the leopard linker or later, which
2443        // automatically synthesizes these stubs.
2444        OpFlags = X86II::MO_DARWIN_STUB;
2445      } else if (Subtarget->isPICStyleRIPRel() &&
2446                 isa<Function>(GV) &&
2447                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448        // If the function is marked as non-lazy, generate an indirect call
2449        // which loads from the GOT directly. This avoids runtime overhead
2450        // at the cost of eager binding (and one extra byte of encoding).
2451        OpFlags = X86II::MO_GOTPCREL;
2452        WrapperKind = X86ISD::WrapperRIP;
2453        ExtraLoad = true;
2454      }
2455
2456      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457                                          G->getOffset(), OpFlags);
2458
2459      // Add a wrapper if needed.
2460      if (WrapperKind != ISD::DELETED_NODE)
2461        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462      // Add extra indirection if needed.
2463      if (ExtraLoad)
2464        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465                             MachinePointerInfo::getGOT(),
2466                             false, false, false, 0);
2467    }
2468  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    unsigned char OpFlags = 0;
2470
2471    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472    // external symbols should go through the PLT.
2473    if (Subtarget->isTargetELF() &&
2474        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475      OpFlags = X86II::MO_PLT;
2476    } else if (Subtarget->isPICStyleStubAny() &&
2477               (!Subtarget->getTargetTriple().isMacOSX() ||
2478                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479      // PC-relative references to external symbols should go through $stub,
2480      // unless we're building with the leopard linker or later, which
2481      // automatically synthesizes these stubs.
2482      OpFlags = X86II::MO_DARWIN_STUB;
2483    }
2484
2485    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                         OpFlags);
2487  }
2488
2489  // Returns a chain & a flag for retval copy to use.
2490  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491  SmallVector<SDValue, 8> Ops;
2492
2493  if (!IsSibcall && isTailCall) {
2494    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495                           DAG.getIntPtrConstant(0, true), InFlag);
2496    InFlag = Chain.getValue(1);
2497  }
2498
2499  Ops.push_back(Chain);
2500  Ops.push_back(Callee);
2501
2502  if (isTailCall)
2503    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2504
2505  // Add argument registers to the end of the list so that they are known live
2506  // into the call.
2507  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509                                  RegsToPass[i].second.getValueType()));
2510
2511  // Add an implicit use GOT pointer in EBX.
2512  if (!isTailCall && Subtarget->isPICStyleGOT())
2513    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2514
2515  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516  if (Is64Bit && isVarArg && !IsWin64)
2517    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2518
2519  // Experimental: Add a register mask operand representing the call-preserved
2520  // registers.
2521  if (UseRegMask) {
2522    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2523    const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2524    Ops.push_back(DAG.getRegisterMask(Mask));
2525  }
2526
2527  if (InFlag.getNode())
2528    Ops.push_back(InFlag);
2529
2530  if (isTailCall) {
2531    // We used to do:
2532    //// If this is the first return lowered for this function, add the regs
2533    //// to the liveout set for the function.
2534    // This isn't right, although it's probably harmless on x86; liveouts
2535    // should be computed from returns not tail calls.  Consider a void
2536    // function making a tail call to a function returning int.
2537    return DAG.getNode(X86ISD::TC_RETURN, dl,
2538                       NodeTys, &Ops[0], Ops.size());
2539  }
2540
2541  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2542  InFlag = Chain.getValue(1);
2543
2544  // Create the CALLSEQ_END node.
2545  unsigned NumBytesForCalleeToPush;
2546  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2547                       getTargetMachine().Options.GuaranteedTailCallOpt))
2548    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2549  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2550           IsStructRet)
2551    // If this is a call to a struct-return function, the callee
2552    // pops the hidden struct pointer, so we have to push it back.
2553    // This is common for Darwin/X86, Linux & Mingw32 targets.
2554    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2555    NumBytesForCalleeToPush = 4;
2556  else
2557    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2558
2559  // Returns a flag for retval copy to use.
2560  if (!IsSibcall) {
2561    Chain = DAG.getCALLSEQ_END(Chain,
2562                               DAG.getIntPtrConstant(NumBytes, true),
2563                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2564                                                     true),
2565                               InFlag);
2566    InFlag = Chain.getValue(1);
2567  }
2568
2569  // Handle result values, copying them out of physregs into vregs that we
2570  // return.
2571  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2572                         Ins, dl, DAG, InVals);
2573}
2574
2575
2576//===----------------------------------------------------------------------===//
2577//                Fast Calling Convention (tail call) implementation
2578//===----------------------------------------------------------------------===//
2579
2580//  Like std call, callee cleans arguments, convention except that ECX is
2581//  reserved for storing the tail called function address. Only 2 registers are
2582//  free for argument passing (inreg). Tail call optimization is performed
2583//  provided:
2584//                * tailcallopt is enabled
2585//                * caller/callee are fastcc
2586//  On X86_64 architecture with GOT-style position independent code only local
2587//  (within module) calls are supported at the moment.
2588//  To keep the stack aligned according to platform abi the function
2589//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2590//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2591//  If a tail called function callee has more arguments than the caller the
2592//  caller needs to make sure that there is room to move the RETADDR to. This is
2593//  achieved by reserving an area the size of the argument delta right after the
2594//  original REtADDR, but before the saved framepointer or the spilled registers
2595//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2596//  stack layout:
2597//    arg1
2598//    arg2
2599//    RETADDR
2600//    [ new RETADDR
2601//      move area ]
2602//    (possible EBP)
2603//    ESI
2604//    EDI
2605//    local1 ..
2606
2607/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2608/// for a 16 byte align requirement.
2609unsigned
2610X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2611                                               SelectionDAG& DAG) const {
2612  MachineFunction &MF = DAG.getMachineFunction();
2613  const TargetMachine &TM = MF.getTarget();
2614  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2615  unsigned StackAlignment = TFI.getStackAlignment();
2616  uint64_t AlignMask = StackAlignment - 1;
2617  int64_t Offset = StackSize;
2618  uint64_t SlotSize = TD->getPointerSize();
2619  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2620    // Number smaller than 12 so just add the difference.
2621    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2622  } else {
2623    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2624    Offset = ((~AlignMask) & Offset) + StackAlignment +
2625      (StackAlignment-SlotSize);
2626  }
2627  return Offset;
2628}
2629
2630/// MatchingStackOffset - Return true if the given stack call argument is
2631/// already available in the same position (relatively) of the caller's
2632/// incoming argument stack.
2633static
2634bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2635                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2636                         const X86InstrInfo *TII) {
2637  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2638  int FI = INT_MAX;
2639  if (Arg.getOpcode() == ISD::CopyFromReg) {
2640    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2641    if (!TargetRegisterInfo::isVirtualRegister(VR))
2642      return false;
2643    MachineInstr *Def = MRI->getVRegDef(VR);
2644    if (!Def)
2645      return false;
2646    if (!Flags.isByVal()) {
2647      if (!TII->isLoadFromStackSlot(Def, FI))
2648        return false;
2649    } else {
2650      unsigned Opcode = Def->getOpcode();
2651      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2652          Def->getOperand(1).isFI()) {
2653        FI = Def->getOperand(1).getIndex();
2654        Bytes = Flags.getByValSize();
2655      } else
2656        return false;
2657    }
2658  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2659    if (Flags.isByVal())
2660      // ByVal argument is passed in as a pointer but it's now being
2661      // dereferenced. e.g.
2662      // define @foo(%struct.X* %A) {
2663      //   tail call @bar(%struct.X* byval %A)
2664      // }
2665      return false;
2666    SDValue Ptr = Ld->getBasePtr();
2667    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2668    if (!FINode)
2669      return false;
2670    FI = FINode->getIndex();
2671  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2672    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2673    FI = FINode->getIndex();
2674    Bytes = Flags.getByValSize();
2675  } else
2676    return false;
2677
2678  assert(FI != INT_MAX);
2679  if (!MFI->isFixedObjectIndex(FI))
2680    return false;
2681  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2682}
2683
2684/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2685/// for tail call optimization. Targets which want to do tail call
2686/// optimization should implement this function.
2687bool
2688X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2689                                                     CallingConv::ID CalleeCC,
2690                                                     bool isVarArg,
2691                                                     bool isCalleeStructRet,
2692                                                     bool isCallerStructRet,
2693                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2694                                    const SmallVectorImpl<SDValue> &OutVals,
2695                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2696                                                     SelectionDAG& DAG) const {
2697  if (!IsTailCallConvention(CalleeCC) &&
2698      CalleeCC != CallingConv::C)
2699    return false;
2700
2701  // If -tailcallopt is specified, make fastcc functions tail-callable.
2702  const MachineFunction &MF = DAG.getMachineFunction();
2703  const Function *CallerF = DAG.getMachineFunction().getFunction();
2704  CallingConv::ID CallerCC = CallerF->getCallingConv();
2705  bool CCMatch = CallerCC == CalleeCC;
2706
2707  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2708    if (IsTailCallConvention(CalleeCC) && CCMatch)
2709      return true;
2710    return false;
2711  }
2712
2713  // Look for obvious safe cases to perform tail call optimization that do not
2714  // require ABI changes. This is what gcc calls sibcall.
2715
2716  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2717  // emit a special epilogue.
2718  if (RegInfo->needsStackRealignment(MF))
2719    return false;
2720
2721  // Also avoid sibcall optimization if either caller or callee uses struct
2722  // return semantics.
2723  if (isCalleeStructRet || isCallerStructRet)
2724    return false;
2725
2726  // An stdcall caller is expected to clean up its arguments; the callee
2727  // isn't going to do that.
2728  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2729    return false;
2730
2731  // Do not sibcall optimize vararg calls unless all arguments are passed via
2732  // registers.
2733  if (isVarArg && !Outs.empty()) {
2734
2735    // Optimizing for varargs on Win64 is unlikely to be safe without
2736    // additional testing.
2737    if (Subtarget->isTargetWin64())
2738      return false;
2739
2740    SmallVector<CCValAssign, 16> ArgLocs;
2741    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2742		   getTargetMachine(), ArgLocs, *DAG.getContext());
2743
2744    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2745    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2746      if (!ArgLocs[i].isRegLoc())
2747        return false;
2748  }
2749
2750  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2751  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2752  // this into a sibcall.
2753  bool Unused = false;
2754  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2755    if (!Ins[i].Used) {
2756      Unused = true;
2757      break;
2758    }
2759  }
2760  if (Unused) {
2761    SmallVector<CCValAssign, 16> RVLocs;
2762    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2763		   getTargetMachine(), RVLocs, *DAG.getContext());
2764    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2765    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2766      CCValAssign &VA = RVLocs[i];
2767      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2768        return false;
2769    }
2770  }
2771
2772  // If the calling conventions do not match, then we'd better make sure the
2773  // results are returned in the same way as what the caller expects.
2774  if (!CCMatch) {
2775    SmallVector<CCValAssign, 16> RVLocs1;
2776    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2777		    getTargetMachine(), RVLocs1, *DAG.getContext());
2778    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2779
2780    SmallVector<CCValAssign, 16> RVLocs2;
2781    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2782		    getTargetMachine(), RVLocs2, *DAG.getContext());
2783    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2784
2785    if (RVLocs1.size() != RVLocs2.size())
2786      return false;
2787    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2788      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2789        return false;
2790      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2791        return false;
2792      if (RVLocs1[i].isRegLoc()) {
2793        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2794          return false;
2795      } else {
2796        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2797          return false;
2798      }
2799    }
2800  }
2801
2802  // If the callee takes no arguments then go on to check the results of the
2803  // call.
2804  if (!Outs.empty()) {
2805    // Check if stack adjustment is needed. For now, do not do this if any
2806    // argument is passed on the stack.
2807    SmallVector<CCValAssign, 16> ArgLocs;
2808    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2809		   getTargetMachine(), ArgLocs, *DAG.getContext());
2810
2811    // Allocate shadow area for Win64
2812    if (Subtarget->isTargetWin64()) {
2813      CCInfo.AllocateStack(32, 8);
2814    }
2815
2816    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2817    if (CCInfo.getNextStackOffset()) {
2818      MachineFunction &MF = DAG.getMachineFunction();
2819      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2820        return false;
2821
2822      // Check if the arguments are already laid out in the right way as
2823      // the caller's fixed stack objects.
2824      MachineFrameInfo *MFI = MF.getFrameInfo();
2825      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2826      const X86InstrInfo *TII =
2827        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2828      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2829        CCValAssign &VA = ArgLocs[i];
2830        SDValue Arg = OutVals[i];
2831        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2832        if (VA.getLocInfo() == CCValAssign::Indirect)
2833          return false;
2834        if (!VA.isRegLoc()) {
2835          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2836                                   MFI, MRI, TII))
2837            return false;
2838        }
2839      }
2840    }
2841
2842    // If the tailcall address may be in a register, then make sure it's
2843    // possible to register allocate for it. In 32-bit, the call address can
2844    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2845    // callee-saved registers are restored. These happen to be the same
2846    // registers used to pass 'inreg' arguments so watch out for those.
2847    if (!Subtarget->is64Bit() &&
2848        !isa<GlobalAddressSDNode>(Callee) &&
2849        !isa<ExternalSymbolSDNode>(Callee)) {
2850      unsigned NumInRegs = 0;
2851      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2852        CCValAssign &VA = ArgLocs[i];
2853        if (!VA.isRegLoc())
2854          continue;
2855        unsigned Reg = VA.getLocReg();
2856        switch (Reg) {
2857        default: break;
2858        case X86::EAX: case X86::EDX: case X86::ECX:
2859          if (++NumInRegs == 3)
2860            return false;
2861          break;
2862        }
2863      }
2864    }
2865  }
2866
2867  return true;
2868}
2869
2870FastISel *
2871X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2872  return X86::createFastISel(funcInfo);
2873}
2874
2875
2876//===----------------------------------------------------------------------===//
2877//                           Other Lowering Hooks
2878//===----------------------------------------------------------------------===//
2879
2880static bool MayFoldLoad(SDValue Op) {
2881  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2882}
2883
2884static bool MayFoldIntoStore(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2886}
2887
2888static bool isTargetShuffle(unsigned Opcode) {
2889  switch(Opcode) {
2890  default: return false;
2891  case X86ISD::PSHUFD:
2892  case X86ISD::PSHUFHW:
2893  case X86ISD::PSHUFLW:
2894  case X86ISD::SHUFP:
2895  case X86ISD::PALIGN:
2896  case X86ISD::MOVLHPS:
2897  case X86ISD::MOVLHPD:
2898  case X86ISD::MOVHLPS:
2899  case X86ISD::MOVLPS:
2900  case X86ISD::MOVLPD:
2901  case X86ISD::MOVSHDUP:
2902  case X86ISD::MOVSLDUP:
2903  case X86ISD::MOVDDUP:
2904  case X86ISD::MOVSS:
2905  case X86ISD::MOVSD:
2906  case X86ISD::UNPCKL:
2907  case X86ISD::UNPCKH:
2908  case X86ISD::VPERMILP:
2909  case X86ISD::VPERM2X128:
2910    return true;
2911  }
2912}
2913
2914static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2915                                               SDValue V1, SelectionDAG &DAG) {
2916  switch(Opc) {
2917  default: llvm_unreachable("Unknown x86 shuffle node");
2918  case X86ISD::MOVSHDUP:
2919  case X86ISD::MOVSLDUP:
2920  case X86ISD::MOVDDUP:
2921    return DAG.getNode(Opc, dl, VT, V1);
2922  }
2923}
2924
2925static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2926                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2927  switch(Opc) {
2928  default: llvm_unreachable("Unknown x86 shuffle node");
2929  case X86ISD::PSHUFD:
2930  case X86ISD::PSHUFHW:
2931  case X86ISD::PSHUFLW:
2932  case X86ISD::VPERMILP:
2933    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2934  }
2935}
2936
2937static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2938               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2939  switch(Opc) {
2940  default: llvm_unreachable("Unknown x86 shuffle node");
2941  case X86ISD::PALIGN:
2942  case X86ISD::SHUFP:
2943  case X86ISD::VPERM2X128:
2944    return DAG.getNode(Opc, dl, VT, V1, V2,
2945                       DAG.getConstant(TargetMask, MVT::i8));
2946  }
2947}
2948
2949static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2951  switch(Opc) {
2952  default: llvm_unreachable("Unknown x86 shuffle node");
2953  case X86ISD::MOVLHPS:
2954  case X86ISD::MOVLHPD:
2955  case X86ISD::MOVHLPS:
2956  case X86ISD::MOVLPS:
2957  case X86ISD::MOVLPD:
2958  case X86ISD::MOVSS:
2959  case X86ISD::MOVSD:
2960  case X86ISD::UNPCKL:
2961  case X86ISD::UNPCKH:
2962    return DAG.getNode(Opc, dl, VT, V1, V2);
2963  }
2964}
2965
2966SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967  MachineFunction &MF = DAG.getMachineFunction();
2968  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969  int ReturnAddrIndex = FuncInfo->getRAIndex();
2970
2971  if (ReturnAddrIndex == 0) {
2972    // Set up a frame object for the return address.
2973    uint64_t SlotSize = TD->getPointerSize();
2974    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2975                                                           false);
2976    FuncInfo->setRAIndex(ReturnAddrIndex);
2977  }
2978
2979  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2980}
2981
2982
2983bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984                                       bool hasSymbolicDisplacement) {
2985  // Offset should fit into 32 bit immediate field.
2986  if (!isInt<32>(Offset))
2987    return false;
2988
2989  // If we don't have a symbolic displacement - we don't have any extra
2990  // restrictions.
2991  if (!hasSymbolicDisplacement)
2992    return true;
2993
2994  // FIXME: Some tweaks might be needed for medium code model.
2995  if (M != CodeModel::Small && M != CodeModel::Kernel)
2996    return false;
2997
2998  // For small code model we assume that latest object is 16MB before end of 31
2999  // bits boundary. We may also accept pretty large negative constants knowing
3000  // that all objects are in the positive half of address space.
3001  if (M == CodeModel::Small && Offset < 16*1024*1024)
3002    return true;
3003
3004  // For kernel code model we know that all object resist in the negative half
3005  // of 32bits address space. We may not accept negative offsets, since they may
3006  // be just off and we may accept pretty large positive ones.
3007  if (M == CodeModel::Kernel && Offset > 0)
3008    return true;
3009
3010  return false;
3011}
3012
3013/// isCalleePop - Determines whether the callee is required to pop its
3014/// own arguments. Callee pop is necessary to support tail calls.
3015bool X86::isCalleePop(CallingConv::ID CallingConv,
3016                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3017  if (IsVarArg)
3018    return false;
3019
3020  switch (CallingConv) {
3021  default:
3022    return false;
3023  case CallingConv::X86_StdCall:
3024    return !is64Bit;
3025  case CallingConv::X86_FastCall:
3026    return !is64Bit;
3027  case CallingConv::X86_ThisCall:
3028    return !is64Bit;
3029  case CallingConv::Fast:
3030    return TailCallOpt;
3031  case CallingConv::GHC:
3032    return TailCallOpt;
3033  }
3034}
3035
3036/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037/// specific condition code, returning the condition code and the LHS/RHS of the
3038/// comparison to make.
3039static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3041  if (!isFP) {
3042    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044        // X > -1   -> X == 0, jump !sign.
3045        RHS = DAG.getConstant(0, RHS.getValueType());
3046        return X86::COND_NS;
3047      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048        // X < 0   -> X == 0, jump on sign.
3049        return X86::COND_S;
3050      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3051        // X < 1   -> X <= 0
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_LE;
3054      }
3055    }
3056
3057    switch (SetCCOpcode) {
3058    default: llvm_unreachable("Invalid integer condition!");
3059    case ISD::SETEQ:  return X86::COND_E;
3060    case ISD::SETGT:  return X86::COND_G;
3061    case ISD::SETGE:  return X86::COND_GE;
3062    case ISD::SETLT:  return X86::COND_L;
3063    case ISD::SETLE:  return X86::COND_LE;
3064    case ISD::SETNE:  return X86::COND_NE;
3065    case ISD::SETULT: return X86::COND_B;
3066    case ISD::SETUGT: return X86::COND_A;
3067    case ISD::SETULE: return X86::COND_BE;
3068    case ISD::SETUGE: return X86::COND_AE;
3069    }
3070  }
3071
3072  // First determine if it is required or is profitable to flip the operands.
3073
3074  // If LHS is a foldable load, but RHS is not, flip the condition.
3075  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076      !ISD::isNON_EXTLoad(RHS.getNode())) {
3077    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078    std::swap(LHS, RHS);
3079  }
3080
3081  switch (SetCCOpcode) {
3082  default: break;
3083  case ISD::SETOLT:
3084  case ISD::SETOLE:
3085  case ISD::SETUGT:
3086  case ISD::SETUGE:
3087    std::swap(LHS, RHS);
3088    break;
3089  }
3090
3091  // On a floating point condition, the flags are set as follows:
3092  // ZF  PF  CF   op
3093  //  0 | 0 | 0 | X > Y
3094  //  0 | 0 | 1 | X < Y
3095  //  1 | 0 | 0 | X == Y
3096  //  1 | 1 | 1 | unordered
3097  switch (SetCCOpcode) {
3098  default: llvm_unreachable("Condcode should be pre-legalized away");
3099  case ISD::SETUEQ:
3100  case ISD::SETEQ:   return X86::COND_E;
3101  case ISD::SETOLT:              // flipped
3102  case ISD::SETOGT:
3103  case ISD::SETGT:   return X86::COND_A;
3104  case ISD::SETOLE:              // flipped
3105  case ISD::SETOGE:
3106  case ISD::SETGE:   return X86::COND_AE;
3107  case ISD::SETUGT:              // flipped
3108  case ISD::SETULT:
3109  case ISD::SETLT:   return X86::COND_B;
3110  case ISD::SETUGE:              // flipped
3111  case ISD::SETULE:
3112  case ISD::SETLE:   return X86::COND_BE;
3113  case ISD::SETONE:
3114  case ISD::SETNE:   return X86::COND_NE;
3115  case ISD::SETUO:   return X86::COND_P;
3116  case ISD::SETO:    return X86::COND_NP;
3117  case ISD::SETOEQ:
3118  case ISD::SETUNE:  return X86::COND_INVALID;
3119  }
3120}
3121
3122/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123/// code. Current x86 isa includes the following FP cmov instructions:
3124/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125static bool hasFPCMov(unsigned X86CC) {
3126  switch (X86CC) {
3127  default:
3128    return false;
3129  case X86::COND_B:
3130  case X86::COND_BE:
3131  case X86::COND_E:
3132  case X86::COND_P:
3133  case X86::COND_A:
3134  case X86::COND_AE:
3135  case X86::COND_NE:
3136  case X86::COND_NP:
3137    return true;
3138  }
3139}
3140
3141/// isFPImmLegal - Returns true if the target can instruction select the
3142/// specified FP immediate natively. If false, the legalizer will
3143/// materialize the FP immediate as a load from a constant pool.
3144bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3147      return true;
3148  }
3149  return false;
3150}
3151
3152/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153/// the specified range (L, H].
3154static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155  return (Val < 0) || (Val >= Low && Val < Hi);
3156}
3157
3158/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159/// specified value.
3160static bool isUndefOrEqual(int Val, int CmpVal) {
3161  if (Val < 0 || Val == CmpVal)
3162    return true;
3163  return false;
3164}
3165
3166/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167/// from position Pos and ending in Pos+Size, falls within the specified
3168/// sequential range (L, L+Pos]. or is undef.
3169static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170                                       int Pos, int Size, int Low) {
3171  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172    if (!isUndefOrEqual(Mask[i], Low))
3173      return false;
3174  return true;
3175}
3176
3177/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3179/// the second operand.
3180static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184    return (Mask[0] < 2 && Mask[1] < 2);
3185  return false;
3186}
3187
3188bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3189  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3190}
3191
3192/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3193/// is suitable for input to PSHUFHW.
3194static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3195  if (VT != MVT::v8i16)
3196    return false;
3197
3198  // Lower quadword copied in order or undef.
3199  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3200    return false;
3201
3202  // Upper quadword shuffled.
3203  for (unsigned i = 4; i != 8; ++i)
3204    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3205      return false;
3206
3207  return true;
3208}
3209
3210bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3211  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3212}
3213
3214/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3215/// is suitable for input to PSHUFLW.
3216static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3217  if (VT != MVT::v8i16)
3218    return false;
3219
3220  // Upper quadword copied in order.
3221  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3222    return false;
3223
3224  // Lower quadword shuffled.
3225  for (unsigned i = 0; i != 4; ++i)
3226    if (Mask[i] >= 4)
3227      return false;
3228
3229  return true;
3230}
3231
3232bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3233  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3234}
3235
3236/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3237/// is suitable for input to PALIGNR.
3238static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3239                          const X86Subtarget *Subtarget) {
3240  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3241      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3242    return false;
3243
3244  unsigned NumElts = VT.getVectorNumElements();
3245  unsigned NumLanes = VT.getSizeInBits()/128;
3246  unsigned NumLaneElts = NumElts/NumLanes;
3247
3248  // Do not handle 64-bit element shuffles with palignr.
3249  if (NumLaneElts == 2)
3250    return false;
3251
3252  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3253    unsigned i;
3254    for (i = 0; i != NumLaneElts; ++i) {
3255      if (Mask[i+l] >= 0)
3256        break;
3257    }
3258
3259    // Lane is all undef, go to next lane
3260    if (i == NumLaneElts)
3261      continue;
3262
3263    int Start = Mask[i+l];
3264
3265    // Make sure its in this lane in one of the sources
3266    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3267        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3268      return false;
3269
3270    // If not lane 0, then we must match lane 0
3271    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3272      return false;
3273
3274    // Correct second source to be contiguous with first source
3275    if (Start >= (int)NumElts)
3276      Start -= NumElts - NumLaneElts;
3277
3278    // Make sure we're shifting in the right direction.
3279    if (Start <= (int)(i+l))
3280      return false;
3281
3282    Start -= i;
3283
3284    // Check the rest of the elements to see if they are consecutive.
3285    for (++i; i != NumLaneElts; ++i) {
3286      int Idx = Mask[i+l];
3287
3288      // Make sure its in this lane
3289      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3290          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3291        return false;
3292
3293      // If not lane 0, then we must match lane 0
3294      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3295        return false;
3296
3297      if (Idx >= (int)NumElts)
3298        Idx -= NumElts - NumLaneElts;
3299
3300      if (!isUndefOrEqual(Idx, Start+i))
3301        return false;
3302
3303    }
3304  }
3305
3306  return true;
3307}
3308
3309/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3310/// the two vector operands have swapped position.
3311static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3312                                     unsigned NumElems) {
3313  for (unsigned i = 0; i != NumElems; ++i) {
3314    int idx = Mask[i];
3315    if (idx < 0)
3316      continue;
3317    else if (idx < (int)NumElems)
3318      Mask[i] = idx + NumElems;
3319    else
3320      Mask[i] = idx - NumElems;
3321  }
3322}
3323
3324/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3325/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3326/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3327/// reverse of what x86 shuffles want.
3328static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3329                        bool Commuted = false) {
3330  if (!HasAVX && VT.getSizeInBits() == 256)
3331    return false;
3332
3333  unsigned NumElems = VT.getVectorNumElements();
3334  unsigned NumLanes = VT.getSizeInBits()/128;
3335  unsigned NumLaneElems = NumElems/NumLanes;
3336
3337  if (NumLaneElems != 2 && NumLaneElems != 4)
3338    return false;
3339
3340  // VSHUFPSY divides the resulting vector into 4 chunks.
3341  // The sources are also splitted into 4 chunks, and each destination
3342  // chunk must come from a different source chunk.
3343  //
3344  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3345  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3346  //
3347  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3348  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3349  //
3350  // VSHUFPDY divides the resulting vector into 4 chunks.
3351  // The sources are also splitted into 4 chunks, and each destination
3352  // chunk must come from a different source chunk.
3353  //
3354  //  SRC1 =>      X3       X2       X1       X0
3355  //  SRC2 =>      Y3       Y2       Y1       Y0
3356  //
3357  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3358  //
3359  unsigned HalfLaneElems = NumLaneElems/2;
3360  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3361    for (unsigned i = 0; i != NumLaneElems; ++i) {
3362      int Idx = Mask[i+l];
3363      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3364      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3365        return false;
3366      // For VSHUFPSY, the mask of the second half must be the same as the
3367      // first but with the appropriate offsets. This works in the same way as
3368      // VPERMILPS works with masks.
3369      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3370        continue;
3371      if (!isUndefOrEqual(Idx, Mask[i]+l))
3372        return false;
3373    }
3374  }
3375
3376  return true;
3377}
3378
3379bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3380  return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3381}
3382
3383/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3384/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3385bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3386  EVT VT = N->getValueType(0);
3387  unsigned NumElems = VT.getVectorNumElements();
3388
3389  if (VT.getSizeInBits() != 128)
3390    return false;
3391
3392  if (NumElems != 4)
3393    return false;
3394
3395  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3396  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3397         isUndefOrEqual(N->getMaskElt(1), 7) &&
3398         isUndefOrEqual(N->getMaskElt(2), 2) &&
3399         isUndefOrEqual(N->getMaskElt(3), 3);
3400}
3401
3402/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3403/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3404/// <2, 3, 2, 3>
3405bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3406  EVT VT = N->getValueType(0);
3407  unsigned NumElems = VT.getVectorNumElements();
3408
3409  if (VT.getSizeInBits() != 128)
3410    return false;
3411
3412  if (NumElems != 4)
3413    return false;
3414
3415  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3416         isUndefOrEqual(N->getMaskElt(1), 3) &&
3417         isUndefOrEqual(N->getMaskElt(2), 2) &&
3418         isUndefOrEqual(N->getMaskElt(3), 3);
3419}
3420
3421/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3422/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3423bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3424  EVT VT = N->getValueType(0);
3425
3426  if (VT.getSizeInBits() != 128)
3427    return false;
3428
3429  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3430
3431  if (NumElems != 2 && NumElems != 4)
3432    return false;
3433
3434  for (unsigned i = 0; i < NumElems/2; ++i)
3435    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3436      return false;
3437
3438  for (unsigned i = NumElems/2; i < NumElems; ++i)
3439    if (!isUndefOrEqual(N->getMaskElt(i), i))
3440      return false;
3441
3442  return true;
3443}
3444
3445/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3446/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3447bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3448  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3449
3450  if ((NumElems != 2 && NumElems != 4)
3451      || N->getValueType(0).getSizeInBits() > 128)
3452    return false;
3453
3454  for (unsigned i = 0; i < NumElems/2; ++i)
3455    if (!isUndefOrEqual(N->getMaskElt(i), i))
3456      return false;
3457
3458  for (unsigned i = 0; i < NumElems/2; ++i)
3459    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3460      return false;
3461
3462  return true;
3463}
3464
3465/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3466/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3467static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3468                         bool HasAVX2, bool V2IsSplat = false) {
3469  unsigned NumElts = VT.getVectorNumElements();
3470
3471  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3472         "Unsupported vector type for unpckh");
3473
3474  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3475      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3476    return false;
3477
3478  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3479  // independently on 128-bit lanes.
3480  unsigned NumLanes = VT.getSizeInBits()/128;
3481  unsigned NumLaneElts = NumElts/NumLanes;
3482
3483  for (unsigned l = 0; l != NumLanes; ++l) {
3484    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3485         i != (l+1)*NumLaneElts;
3486         i += 2, ++j) {
3487      int BitI  = Mask[i];
3488      int BitI1 = Mask[i+1];
3489      if (!isUndefOrEqual(BitI, j))
3490        return false;
3491      if (V2IsSplat) {
3492        if (!isUndefOrEqual(BitI1, NumElts))
3493          return false;
3494      } else {
3495        if (!isUndefOrEqual(BitI1, j + NumElts))
3496          return false;
3497      }
3498    }
3499  }
3500
3501  return true;
3502}
3503
3504bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3505  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3506}
3507
3508/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3509/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3510static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3511                         bool HasAVX2, bool V2IsSplat = false) {
3512  unsigned NumElts = VT.getVectorNumElements();
3513
3514  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3515         "Unsupported vector type for unpckh");
3516
3517  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3518      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3519    return false;
3520
3521  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3522  // independently on 128-bit lanes.
3523  unsigned NumLanes = VT.getSizeInBits()/128;
3524  unsigned NumLaneElts = NumElts/NumLanes;
3525
3526  for (unsigned l = 0; l != NumLanes; ++l) {
3527    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3528         i != (l+1)*NumLaneElts; i += 2, ++j) {
3529      int BitI  = Mask[i];
3530      int BitI1 = Mask[i+1];
3531      if (!isUndefOrEqual(BitI, j))
3532        return false;
3533      if (V2IsSplat) {
3534        if (isUndefOrEqual(BitI1, NumElts))
3535          return false;
3536      } else {
3537        if (!isUndefOrEqual(BitI1, j+NumElts))
3538          return false;
3539      }
3540    }
3541  }
3542  return true;
3543}
3544
3545bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3546  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3547}
3548
3549/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3550/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3551/// <0, 0, 1, 1>
3552static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3553                                  bool HasAVX2) {
3554  unsigned NumElts = VT.getVectorNumElements();
3555
3556  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3557         "Unsupported vector type for unpckh");
3558
3559  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3560      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3561    return false;
3562
3563  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3564  // FIXME: Need a better way to get rid of this, there's no latency difference
3565  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3566  // the former later. We should also remove the "_undef" special mask.
3567  if (NumElts == 4 && VT.getSizeInBits() == 256)
3568    return false;
3569
3570  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3571  // independently on 128-bit lanes.
3572  unsigned NumLanes = VT.getSizeInBits()/128;
3573  unsigned NumLaneElts = NumElts/NumLanes;
3574
3575  for (unsigned l = 0; l != NumLanes; ++l) {
3576    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3577         i != (l+1)*NumLaneElts;
3578         i += 2, ++j) {
3579      int BitI  = Mask[i];
3580      int BitI1 = Mask[i+1];
3581
3582      if (!isUndefOrEqual(BitI, j))
3583        return false;
3584      if (!isUndefOrEqual(BitI1, j))
3585        return false;
3586    }
3587  }
3588
3589  return true;
3590}
3591
3592bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3593  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3594}
3595
3596/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3597/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3598/// <2, 2, 3, 3>
3599static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3600  unsigned NumElts = VT.getVectorNumElements();
3601
3602  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3603         "Unsupported vector type for unpckh");
3604
3605  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3606      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3607    return false;
3608
3609  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3610  // independently on 128-bit lanes.
3611  unsigned NumLanes = VT.getSizeInBits()/128;
3612  unsigned NumLaneElts = NumElts/NumLanes;
3613
3614  for (unsigned l = 0; l != NumLanes; ++l) {
3615    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3616         i != (l+1)*NumLaneElts; i += 2, ++j) {
3617      int BitI  = Mask[i];
3618      int BitI1 = Mask[i+1];
3619      if (!isUndefOrEqual(BitI, j))
3620        return false;
3621      if (!isUndefOrEqual(BitI1, j))
3622        return false;
3623    }
3624  }
3625  return true;
3626}
3627
3628bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3629  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3630}
3631
3632/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3633/// specifies a shuffle of elements that is suitable for input to MOVSS,
3634/// MOVSD, and MOVD, i.e. setting the lowest element.
3635static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3636  if (VT.getVectorElementType().getSizeInBits() < 32)
3637    return false;
3638  if (VT.getSizeInBits() == 256)
3639    return false;
3640
3641  unsigned NumElts = VT.getVectorNumElements();
3642
3643  if (!isUndefOrEqual(Mask[0], NumElts))
3644    return false;
3645
3646  for (unsigned i = 1; i != NumElts; ++i)
3647    if (!isUndefOrEqual(Mask[i], i))
3648      return false;
3649
3650  return true;
3651}
3652
3653bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3654  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3655}
3656
3657/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3658/// as permutations between 128-bit chunks or halves. As an example: this
3659/// shuffle bellow:
3660///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3661/// The first half comes from the second half of V1 and the second half from the
3662/// the second half of V2.
3663static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3664  if (!HasAVX || VT.getSizeInBits() != 256)
3665    return false;
3666
3667  // The shuffle result is divided into half A and half B. In total the two
3668  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3669  // B must come from C, D, E or F.
3670  unsigned HalfSize = VT.getVectorNumElements()/2;
3671  bool MatchA = false, MatchB = false;
3672
3673  // Check if A comes from one of C, D, E, F.
3674  for (unsigned Half = 0; Half != 4; ++Half) {
3675    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3676      MatchA = true;
3677      break;
3678    }
3679  }
3680
3681  // Check if B comes from one of C, D, E, F.
3682  for (unsigned Half = 0; Half != 4; ++Half) {
3683    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3684      MatchB = true;
3685      break;
3686    }
3687  }
3688
3689  return MatchA && MatchB;
3690}
3691
3692/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3693/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3694static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3695  EVT VT = SVOp->getValueType(0);
3696
3697  unsigned HalfSize = VT.getVectorNumElements()/2;
3698
3699  unsigned FstHalf = 0, SndHalf = 0;
3700  for (unsigned i = 0; i < HalfSize; ++i) {
3701    if (SVOp->getMaskElt(i) > 0) {
3702      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3703      break;
3704    }
3705  }
3706  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3707    if (SVOp->getMaskElt(i) > 0) {
3708      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3709      break;
3710    }
3711  }
3712
3713  return (FstHalf | (SndHalf << 4));
3714}
3715
3716/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3717/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3718/// Note that VPERMIL mask matching is different depending whether theunderlying
3719/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3720/// to the same elements of the low, but to the higher half of the source.
3721/// In VPERMILPD the two lanes could be shuffled independently of each other
3722/// with the same restriction that lanes can't be crossed.
3723static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3724  if (!HasAVX)
3725    return false;
3726
3727  unsigned NumElts = VT.getVectorNumElements();
3728  // Only match 256-bit with 32/64-bit types
3729  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3730    return false;
3731
3732  unsigned NumLanes = VT.getSizeInBits()/128;
3733  unsigned LaneSize = NumElts/NumLanes;
3734  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3735    for (unsigned i = 0; i != LaneSize; ++i) {
3736      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3737        return false;
3738      if (NumElts != 8 || l == 0)
3739        continue;
3740      // VPERMILPS handling
3741      if (Mask[i] < 0)
3742        continue;
3743      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3744        return false;
3745    }
3746  }
3747
3748  return true;
3749}
3750
3751/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3752/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3753static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3754  EVT VT = SVOp->getValueType(0);
3755
3756  unsigned NumElts = VT.getVectorNumElements();
3757  unsigned NumLanes = VT.getSizeInBits()/128;
3758  unsigned LaneSize = NumElts/NumLanes;
3759
3760  // Although the mask is equal for both lanes do it twice to get the cases
3761  // where a mask will match because the same mask element is undef on the
3762  // first half but valid on the second. This would get pathological cases
3763  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3764  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3765  unsigned Mask = 0;
3766  for (unsigned i = 0; i != NumElts; ++i) {
3767    int MaskElt = SVOp->getMaskElt(i);
3768    if (MaskElt < 0)
3769      continue;
3770    MaskElt %= LaneSize;
3771    unsigned Shamt = i;
3772    // VPERMILPSY, the mask of the first half must be equal to the second one
3773    if (NumElts == 8) Shamt %= LaneSize;
3774    Mask |= MaskElt << (Shamt*Shift);
3775  }
3776
3777  return Mask;
3778}
3779
3780/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3781/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3782/// element of vector 2 and the other elements to come from vector 1 in order.
3783static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3784                               bool V2IsSplat = false, bool V2IsUndef = false) {
3785  unsigned NumOps = VT.getVectorNumElements();
3786  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3787    return false;
3788
3789  if (!isUndefOrEqual(Mask[0], 0))
3790    return false;
3791
3792  for (unsigned i = 1; i != NumOps; ++i)
3793    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3794          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3795          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3796      return false;
3797
3798  return true;
3799}
3800
3801static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3802                           bool V2IsUndef = false) {
3803  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3804                            V2IsSplat, V2IsUndef);
3805}
3806
3807/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3808/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3809/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3810bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3811                         const X86Subtarget *Subtarget) {
3812  if (!Subtarget->hasSSE3())
3813    return false;
3814
3815  // The second vector must be undef
3816  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3817    return false;
3818
3819  EVT VT = N->getValueType(0);
3820  unsigned NumElems = VT.getVectorNumElements();
3821
3822  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3823      (VT.getSizeInBits() == 256 && NumElems != 8))
3824    return false;
3825
3826  // "i+1" is the value the indexed mask element must have
3827  for (unsigned i = 0; i < NumElems; i += 2)
3828    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3829        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3836/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3837/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3838bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3839                         const X86Subtarget *Subtarget) {
3840  if (!Subtarget->hasSSE3())
3841    return false;
3842
3843  // The second vector must be undef
3844  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3845    return false;
3846
3847  EVT VT = N->getValueType(0);
3848  unsigned NumElems = VT.getVectorNumElements();
3849
3850  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3851      (VT.getSizeInBits() == 256 && NumElems != 8))
3852    return false;
3853
3854  // "i" is the value the indexed mask element must have
3855  for (unsigned i = 0; i != NumElems; i += 2)
3856    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3857        !isUndefOrEqual(N->getMaskElt(i+1), i))
3858      return false;
3859
3860  return true;
3861}
3862
3863/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3864/// specifies a shuffle of elements that is suitable for input to 256-bit
3865/// version of MOVDDUP.
3866static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3867  unsigned NumElts = VT.getVectorNumElements();
3868
3869  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3870    return false;
3871
3872  for (unsigned i = 0; i != NumElts/2; ++i)
3873    if (!isUndefOrEqual(Mask[i], 0))
3874      return false;
3875  for (unsigned i = NumElts/2; i != NumElts; ++i)
3876    if (!isUndefOrEqual(Mask[i], NumElts/2))
3877      return false;
3878  return true;
3879}
3880
3881/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3882/// specifies a shuffle of elements that is suitable for input to 128-bit
3883/// version of MOVDDUP.
3884bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3885  EVT VT = N->getValueType(0);
3886
3887  if (VT.getSizeInBits() != 128)
3888    return false;
3889
3890  unsigned e = VT.getVectorNumElements() / 2;
3891  for (unsigned i = 0; i != e; ++i)
3892    if (!isUndefOrEqual(N->getMaskElt(i), i))
3893      return false;
3894  for (unsigned i = 0; i != e; ++i)
3895    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3896      return false;
3897  return true;
3898}
3899
3900/// isVEXTRACTF128Index - Return true if the specified
3901/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3902/// suitable for input to VEXTRACTF128.
3903bool X86::isVEXTRACTF128Index(SDNode *N) {
3904  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3905    return false;
3906
3907  // The index should be aligned on a 128-bit boundary.
3908  uint64_t Index =
3909    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3910
3911  unsigned VL = N->getValueType(0).getVectorNumElements();
3912  unsigned VBits = N->getValueType(0).getSizeInBits();
3913  unsigned ElSize = VBits / VL;
3914  bool Result = (Index * ElSize) % 128 == 0;
3915
3916  return Result;
3917}
3918
3919/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3920/// operand specifies a subvector insert that is suitable for input to
3921/// VINSERTF128.
3922bool X86::isVINSERTF128Index(SDNode *N) {
3923  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3924    return false;
3925
3926  // The index should be aligned on a 128-bit boundary.
3927  uint64_t Index =
3928    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3929
3930  unsigned VL = N->getValueType(0).getVectorNumElements();
3931  unsigned VBits = N->getValueType(0).getSizeInBits();
3932  unsigned ElSize = VBits / VL;
3933  bool Result = (Index * ElSize) % 128 == 0;
3934
3935  return Result;
3936}
3937
3938/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3939/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3940/// Handles 128-bit and 256-bit.
3941unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3942  EVT VT = N->getValueType(0);
3943
3944  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3945         "Unsupported vector type for PSHUF/SHUFP");
3946
3947  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3948  // independently on 128-bit lanes.
3949  unsigned NumElts = VT.getVectorNumElements();
3950  unsigned NumLanes = VT.getSizeInBits()/128;
3951  unsigned NumLaneElts = NumElts/NumLanes;
3952
3953  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3954         "Only supports 2 or 4 elements per lane");
3955
3956  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3957  unsigned Mask = 0;
3958  for (unsigned i = 0; i != NumElts; ++i) {
3959    int Elt = N->getMaskElt(i);
3960    if (Elt < 0) continue;
3961    Elt %= NumLaneElts;
3962    unsigned ShAmt = i << Shift;
3963    if (ShAmt >= 8) ShAmt -= 8;
3964    Mask |= Elt << ShAmt;
3965  }
3966
3967  return Mask;
3968}
3969
3970/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3971/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3972unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3973  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3974  unsigned Mask = 0;
3975  // 8 nodes, but we only care about the last 4.
3976  for (unsigned i = 7; i >= 4; --i) {
3977    int Val = SVOp->getMaskElt(i);
3978    if (Val >= 0)
3979      Mask |= (Val - 4);
3980    if (i != 4)
3981      Mask <<= 2;
3982  }
3983  return Mask;
3984}
3985
3986/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3987/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3988unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3989  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3990  unsigned Mask = 0;
3991  // 8 nodes, but we only care about the first 4.
3992  for (int i = 3; i >= 0; --i) {
3993    int Val = SVOp->getMaskElt(i);
3994    if (Val >= 0)
3995      Mask |= Val;
3996    if (i != 0)
3997      Mask <<= 2;
3998  }
3999  return Mask;
4000}
4001
4002/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4003/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4004static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4005  EVT VT = SVOp->getValueType(0);
4006  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4007
4008  unsigned NumElts = VT.getVectorNumElements();
4009  unsigned NumLanes = VT.getSizeInBits()/128;
4010  unsigned NumLaneElts = NumElts/NumLanes;
4011
4012  int Val = 0;
4013  unsigned i;
4014  for (i = 0; i != NumElts; ++i) {
4015    Val = SVOp->getMaskElt(i);
4016    if (Val >= 0)
4017      break;
4018  }
4019  if (Val >= (int)NumElts)
4020    Val -= NumElts - NumLaneElts;
4021
4022  assert(Val - i > 0 && "PALIGNR imm should be positive");
4023  return (Val - i) * EltSize;
4024}
4025
4026/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4027/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4028/// instructions.
4029unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4030  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4031    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4032
4033  uint64_t Index =
4034    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4035
4036  EVT VecVT = N->getOperand(0).getValueType();
4037  EVT ElVT = VecVT.getVectorElementType();
4038
4039  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4040  return Index / NumElemsPerChunk;
4041}
4042
4043/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4044/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4045/// instructions.
4046unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4047  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4048    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4049
4050  uint64_t Index =
4051    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4052
4053  EVT VecVT = N->getValueType(0);
4054  EVT ElVT = VecVT.getVectorElementType();
4055
4056  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057  return Index / NumElemsPerChunk;
4058}
4059
4060/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4061/// constant +0.0.
4062bool X86::isZeroNode(SDValue Elt) {
4063  return ((isa<ConstantSDNode>(Elt) &&
4064           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4065          (isa<ConstantFPSDNode>(Elt) &&
4066           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4067}
4068
4069/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4070/// their permute mask.
4071static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4072                                    SelectionDAG &DAG) {
4073  EVT VT = SVOp->getValueType(0);
4074  unsigned NumElems = VT.getVectorNumElements();
4075  SmallVector<int, 8> MaskVec;
4076
4077  for (unsigned i = 0; i != NumElems; ++i) {
4078    int idx = SVOp->getMaskElt(i);
4079    if (idx < 0)
4080      MaskVec.push_back(idx);
4081    else if (idx < (int)NumElems)
4082      MaskVec.push_back(idx + NumElems);
4083    else
4084      MaskVec.push_back(idx - NumElems);
4085  }
4086  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4087                              SVOp->getOperand(0), &MaskVec[0]);
4088}
4089
4090/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4091/// match movhlps. The lower half elements should come from upper half of
4092/// V1 (and in order), and the upper half elements should come from the upper
4093/// half of V2 (and in order).
4094static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4095  EVT VT = Op->getValueType(0);
4096  if (VT.getSizeInBits() != 128)
4097    return false;
4098  if (VT.getVectorNumElements() != 4)
4099    return false;
4100  for (unsigned i = 0, e = 2; i != e; ++i)
4101    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4102      return false;
4103  for (unsigned i = 2; i != 4; ++i)
4104    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4105      return false;
4106  return true;
4107}
4108
4109/// isScalarLoadToVector - Returns true if the node is a scalar load that
4110/// is promoted to a vector. It also returns the LoadSDNode by reference if
4111/// required.
4112static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4113  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4114    return false;
4115  N = N->getOperand(0).getNode();
4116  if (!ISD::isNON_EXTLoad(N))
4117    return false;
4118  if (LD)
4119    *LD = cast<LoadSDNode>(N);
4120  return true;
4121}
4122
4123// Test whether the given value is a vector value which will be legalized
4124// into a load.
4125static bool WillBeConstantPoolLoad(SDNode *N) {
4126  if (N->getOpcode() != ISD::BUILD_VECTOR)
4127    return false;
4128
4129  // Check for any non-constant elements.
4130  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4131    switch (N->getOperand(i).getNode()->getOpcode()) {
4132    case ISD::UNDEF:
4133    case ISD::ConstantFP:
4134    case ISD::Constant:
4135      break;
4136    default:
4137      return false;
4138    }
4139
4140  // Vectors of all-zeros and all-ones are materialized with special
4141  // instructions rather than being loaded.
4142  return !ISD::isBuildVectorAllZeros(N) &&
4143         !ISD::isBuildVectorAllOnes(N);
4144}
4145
4146/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4147/// match movlp{s|d}. The lower half elements should come from lower half of
4148/// V1 (and in order), and the upper half elements should come from the upper
4149/// half of V2 (and in order). And since V1 will become the source of the
4150/// MOVLP, it must be either a vector load or a scalar load to vector.
4151static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4152                               ShuffleVectorSDNode *Op) {
4153  EVT VT = Op->getValueType(0);
4154  if (VT.getSizeInBits() != 128)
4155    return false;
4156
4157  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4158    return false;
4159  // Is V2 is a vector load, don't do this transformation. We will try to use
4160  // load folding shufps op.
4161  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4162    return false;
4163
4164  unsigned NumElems = VT.getVectorNumElements();
4165
4166  if (NumElems != 2 && NumElems != 4)
4167    return false;
4168  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4169    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4170      return false;
4171  for (unsigned i = NumElems/2; i != NumElems; ++i)
4172    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4173      return false;
4174  return true;
4175}
4176
4177/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4178/// all the same.
4179static bool isSplatVector(SDNode *N) {
4180  if (N->getOpcode() != ISD::BUILD_VECTOR)
4181    return false;
4182
4183  SDValue SplatValue = N->getOperand(0);
4184  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4185    if (N->getOperand(i) != SplatValue)
4186      return false;
4187  return true;
4188}
4189
4190/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4191/// to an zero vector.
4192/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4193static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4194  SDValue V1 = N->getOperand(0);
4195  SDValue V2 = N->getOperand(1);
4196  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4197  for (unsigned i = 0; i != NumElems; ++i) {
4198    int Idx = N->getMaskElt(i);
4199    if (Idx >= (int)NumElems) {
4200      unsigned Opc = V2.getOpcode();
4201      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4202        continue;
4203      if (Opc != ISD::BUILD_VECTOR ||
4204          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4205        return false;
4206    } else if (Idx >= 0) {
4207      unsigned Opc = V1.getOpcode();
4208      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4209        continue;
4210      if (Opc != ISD::BUILD_VECTOR ||
4211          !X86::isZeroNode(V1.getOperand(Idx)))
4212        return false;
4213    }
4214  }
4215  return true;
4216}
4217
4218/// getZeroVector - Returns a vector of specified type with all zero elements.
4219///
4220static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4221                             SelectionDAG &DAG, DebugLoc dl) {
4222  assert(VT.isVector() && "Expected a vector type");
4223
4224  // Always build SSE zero vectors as <4 x i32> bitcasted
4225  // to their dest type. This ensures they get CSE'd.
4226  SDValue Vec;
4227  if (VT.getSizeInBits() == 128) {  // SSE
4228    if (HasSSE2) {  // SSE2
4229      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4230      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4231    } else { // SSE1
4232      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4233      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4234    }
4235  } else if (VT.getSizeInBits() == 256) { // AVX
4236    if (HasAVX2) { // AVX2
4237      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4238      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4239      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4240    } else {
4241      // 256-bit logic and arithmetic instructions in AVX are all
4242      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4243      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4244      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4245      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4246    }
4247  }
4248  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4249}
4250
4251/// getOnesVector - Returns a vector of specified type with all bits set.
4252/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4253/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4254/// Then bitcast to their original type, ensuring they get CSE'd.
4255static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4256                             DebugLoc dl) {
4257  assert(VT.isVector() && "Expected a vector type");
4258  assert((VT.is128BitVector() || VT.is256BitVector())
4259         && "Expected a 128-bit or 256-bit vector type");
4260
4261  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4262  SDValue Vec;
4263  if (VT.getSizeInBits() == 256) {
4264    if (HasAVX2) { // AVX2
4265      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4266      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4267    } else { // AVX
4268      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4269      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4270                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4271      Vec = Insert128BitVector(InsV, Vec,
4272                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4273    }
4274  } else {
4275    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4276  }
4277
4278  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4279}
4280
4281/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4282/// that point to V2 points to its first element.
4283static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4284  EVT VT = SVOp->getValueType(0);
4285  unsigned NumElems = VT.getVectorNumElements();
4286
4287  bool Changed = false;
4288  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4289
4290  for (unsigned i = 0; i != NumElems; ++i) {
4291    if (MaskVec[i] > (int)NumElems) {
4292      MaskVec[i] = NumElems;
4293      Changed = true;
4294    }
4295  }
4296  if (Changed)
4297    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4298                                SVOp->getOperand(1), &MaskVec[0]);
4299  return SDValue(SVOp, 0);
4300}
4301
4302/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4303/// operation of specified width.
4304static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4305                       SDValue V2) {
4306  unsigned NumElems = VT.getVectorNumElements();
4307  SmallVector<int, 8> Mask;
4308  Mask.push_back(NumElems);
4309  for (unsigned i = 1; i != NumElems; ++i)
4310    Mask.push_back(i);
4311  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4312}
4313
4314/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4315static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4316                          SDValue V2) {
4317  unsigned NumElems = VT.getVectorNumElements();
4318  SmallVector<int, 8> Mask;
4319  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4320    Mask.push_back(i);
4321    Mask.push_back(i + NumElems);
4322  }
4323  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4324}
4325
4326/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4327static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4328                          SDValue V2) {
4329  unsigned NumElems = VT.getVectorNumElements();
4330  unsigned Half = NumElems/2;
4331  SmallVector<int, 8> Mask;
4332  for (unsigned i = 0; i != Half; ++i) {
4333    Mask.push_back(i + Half);
4334    Mask.push_back(i + NumElems + Half);
4335  }
4336  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4337}
4338
4339// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4340// a generic shuffle instruction because the target has no such instructions.
4341// Generate shuffles which repeat i16 and i8 several times until they can be
4342// represented by v4f32 and then be manipulated by target suported shuffles.
4343static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4344  EVT VT = V.getValueType();
4345  int NumElems = VT.getVectorNumElements();
4346  DebugLoc dl = V.getDebugLoc();
4347
4348  while (NumElems > 4) {
4349    if (EltNo < NumElems/2) {
4350      V = getUnpackl(DAG, dl, VT, V, V);
4351    } else {
4352      V = getUnpackh(DAG, dl, VT, V, V);
4353      EltNo -= NumElems/2;
4354    }
4355    NumElems >>= 1;
4356  }
4357  return V;
4358}
4359
4360/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4361static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4362  EVT VT = V.getValueType();
4363  DebugLoc dl = V.getDebugLoc();
4364  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4365         && "Vector size not supported");
4366
4367  if (VT.getSizeInBits() == 128) {
4368    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4369    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4370    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4371                             &SplatMask[0]);
4372  } else {
4373    // To use VPERMILPS to splat scalars, the second half of indicies must
4374    // refer to the higher part, which is a duplication of the lower one,
4375    // because VPERMILPS can only handle in-lane permutations.
4376    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4377                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4378
4379    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4380    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4381                             &SplatMask[0]);
4382  }
4383
4384  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4385}
4386
4387/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4388static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4389  EVT SrcVT = SV->getValueType(0);
4390  SDValue V1 = SV->getOperand(0);
4391  DebugLoc dl = SV->getDebugLoc();
4392
4393  int EltNo = SV->getSplatIndex();
4394  int NumElems = SrcVT.getVectorNumElements();
4395  unsigned Size = SrcVT.getSizeInBits();
4396
4397  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4398          "Unknown how to promote splat for type");
4399
4400  // Extract the 128-bit part containing the splat element and update
4401  // the splat element index when it refers to the higher register.
4402  if (Size == 256) {
4403    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4404    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4405    if (Idx > 0)
4406      EltNo -= NumElems/2;
4407  }
4408
4409  // All i16 and i8 vector types can't be used directly by a generic shuffle
4410  // instruction because the target has no such instruction. Generate shuffles
4411  // which repeat i16 and i8 several times until they fit in i32, and then can
4412  // be manipulated by target suported shuffles.
4413  EVT EltVT = SrcVT.getVectorElementType();
4414  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4415    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4416
4417  // Recreate the 256-bit vector and place the same 128-bit vector
4418  // into the low and high part. This is necessary because we want
4419  // to use VPERM* to shuffle the vectors
4420  if (Size == 256) {
4421    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4422                         DAG.getConstant(0, MVT::i32), DAG, dl);
4423    V1 = Insert128BitVector(InsV, V1,
4424               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4425  }
4426
4427  return getLegalSplat(DAG, V1, EltNo);
4428}
4429
4430/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4431/// vector of zero or undef vector.  This produces a shuffle where the low
4432/// element of V2 is swizzled into the zero/undef vector, landing at element
4433/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4434static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4435                                           bool IsZero,
4436                                           const X86Subtarget *Subtarget,
4437                                           SelectionDAG &DAG) {
4438  EVT VT = V2.getValueType();
4439  SDValue V1 = IsZero
4440    ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4441                    V2.getDebugLoc()) : DAG.getUNDEF(VT);
4442  unsigned NumElems = VT.getVectorNumElements();
4443  SmallVector<int, 16> MaskVec;
4444  for (unsigned i = 0; i != NumElems; ++i)
4445    // If this is the insertion idx, put the low elt of V2 here.
4446    MaskVec.push_back(i == Idx ? NumElems : i);
4447  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4448}
4449
4450/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4451/// element of the result of the vector shuffle.
4452static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4453                                   unsigned Depth) {
4454  if (Depth == 6)
4455    return SDValue();  // Limit search depth.
4456
4457  SDValue V = SDValue(N, 0);
4458  EVT VT = V.getValueType();
4459  unsigned Opcode = V.getOpcode();
4460
4461  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4462  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4463    Index = SV->getMaskElt(Index);
4464
4465    if (Index < 0)
4466      return DAG.getUNDEF(VT.getVectorElementType());
4467
4468    int NumElems = VT.getVectorNumElements();
4469    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4470    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4471  }
4472
4473  // Recurse into target specific vector shuffles to find scalars.
4474  if (isTargetShuffle(Opcode)) {
4475    int NumElems = VT.getVectorNumElements();
4476    SmallVector<unsigned, 16> ShuffleMask;
4477    SDValue ImmN;
4478
4479    switch(Opcode) {
4480    case X86ISD::SHUFP:
4481      ImmN = N->getOperand(N->getNumOperands()-1);
4482      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4483                      ShuffleMask);
4484      break;
4485    case X86ISD::UNPCKH:
4486      DecodeUNPCKHMask(VT, ShuffleMask);
4487      break;
4488    case X86ISD::UNPCKL:
4489      DecodeUNPCKLMask(VT, ShuffleMask);
4490      break;
4491    case X86ISD::MOVHLPS:
4492      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4493      break;
4494    case X86ISD::MOVLHPS:
4495      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4496      break;
4497    case X86ISD::PSHUFD:
4498      ImmN = N->getOperand(N->getNumOperands()-1);
4499      DecodePSHUFMask(NumElems,
4500                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4501                      ShuffleMask);
4502      break;
4503    case X86ISD::PSHUFHW:
4504      ImmN = N->getOperand(N->getNumOperands()-1);
4505      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4506                        ShuffleMask);
4507      break;
4508    case X86ISD::PSHUFLW:
4509      ImmN = N->getOperand(N->getNumOperands()-1);
4510      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4511                        ShuffleMask);
4512      break;
4513    case X86ISD::MOVSS:
4514    case X86ISD::MOVSD: {
4515      // The index 0 always comes from the first element of the second source,
4516      // this is why MOVSS and MOVSD are used in the first place. The other
4517      // elements come from the other positions of the first source vector.
4518      unsigned OpNum = (Index == 0) ? 1 : 0;
4519      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4520                                 Depth+1);
4521    }
4522    case X86ISD::VPERMILP:
4523      ImmN = N->getOperand(N->getNumOperands()-1);
4524      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4525                        ShuffleMask);
4526      break;
4527    case X86ISD::VPERM2X128:
4528      ImmN = N->getOperand(N->getNumOperands()-1);
4529      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4530                           ShuffleMask);
4531      break;
4532    case X86ISD::MOVDDUP:
4533    case X86ISD::MOVLHPD:
4534    case X86ISD::MOVLPD:
4535    case X86ISD::MOVLPS:
4536    case X86ISD::MOVSHDUP:
4537    case X86ISD::MOVSLDUP:
4538    case X86ISD::PALIGN:
4539      return SDValue(); // Not yet implemented.
4540    default:
4541      assert(0 && "unknown target shuffle node");
4542      return SDValue();
4543    }
4544
4545    Index = ShuffleMask[Index];
4546    if (Index < 0)
4547      return DAG.getUNDEF(VT.getVectorElementType());
4548
4549    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4550    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4551                               Depth+1);
4552  }
4553
4554  // Actual nodes that may contain scalar elements
4555  if (Opcode == ISD::BITCAST) {
4556    V = V.getOperand(0);
4557    EVT SrcVT = V.getValueType();
4558    unsigned NumElems = VT.getVectorNumElements();
4559
4560    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4561      return SDValue();
4562  }
4563
4564  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4565    return (Index == 0) ? V.getOperand(0)
4566                          : DAG.getUNDEF(VT.getVectorElementType());
4567
4568  if (V.getOpcode() == ISD::BUILD_VECTOR)
4569    return V.getOperand(Index);
4570
4571  return SDValue();
4572}
4573
4574/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4575/// shuffle operation which come from a consecutively from a zero. The
4576/// search can start in two different directions, from left or right.
4577static
4578unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4579                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4580  int i = 0;
4581
4582  while (i < NumElems) {
4583    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4584    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4585    if (!(Elt.getNode() &&
4586         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4587      break;
4588    ++i;
4589  }
4590
4591  return i;
4592}
4593
4594/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4595/// MaskE correspond consecutively to elements from one of the vector operands,
4596/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4597static
4598bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4599                              int OpIdx, int NumElems, unsigned &OpNum) {
4600  bool SeenV1 = false;
4601  bool SeenV2 = false;
4602
4603  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4604    int Idx = SVOp->getMaskElt(i);
4605    // Ignore undef indicies
4606    if (Idx < 0)
4607      continue;
4608
4609    if (Idx < NumElems)
4610      SeenV1 = true;
4611    else
4612      SeenV2 = true;
4613
4614    // Only accept consecutive elements from the same vector
4615    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4616      return false;
4617  }
4618
4619  OpNum = SeenV1 ? 0 : 1;
4620  return true;
4621}
4622
4623/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4624/// logical left shift of a vector.
4625static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4626                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4627  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4628  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4629              false /* check zeros from right */, DAG);
4630  unsigned OpSrc;
4631
4632  if (!NumZeros)
4633    return false;
4634
4635  // Considering the elements in the mask that are not consecutive zeros,
4636  // check if they consecutively come from only one of the source vectors.
4637  //
4638  //               V1 = {X, A, B, C}     0
4639  //                         \  \  \    /
4640  //   vector_shuffle V1, V2 <1, 2, 3, X>
4641  //
4642  if (!isShuffleMaskConsecutive(SVOp,
4643            0,                   // Mask Start Index
4644            NumElems-NumZeros-1, // Mask End Index
4645            NumZeros,            // Where to start looking in the src vector
4646            NumElems,            // Number of elements in vector
4647            OpSrc))              // Which source operand ?
4648    return false;
4649
4650  isLeft = false;
4651  ShAmt = NumZeros;
4652  ShVal = SVOp->getOperand(OpSrc);
4653  return true;
4654}
4655
4656/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4657/// logical left shift of a vector.
4658static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4659                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4660  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4661  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4662              true /* check zeros from left */, DAG);
4663  unsigned OpSrc;
4664
4665  if (!NumZeros)
4666    return false;
4667
4668  // Considering the elements in the mask that are not consecutive zeros,
4669  // check if they consecutively come from only one of the source vectors.
4670  //
4671  //                           0    { A, B, X, X } = V2
4672  //                          / \    /  /
4673  //   vector_shuffle V1, V2 <X, X, 4, 5>
4674  //
4675  if (!isShuffleMaskConsecutive(SVOp,
4676            NumZeros,     // Mask Start Index
4677            NumElems-1,   // Mask End Index
4678            0,            // Where to start looking in the src vector
4679            NumElems,     // Number of elements in vector
4680            OpSrc))       // Which source operand ?
4681    return false;
4682
4683  isLeft = true;
4684  ShAmt = NumZeros;
4685  ShVal = SVOp->getOperand(OpSrc);
4686  return true;
4687}
4688
4689/// isVectorShift - Returns true if the shuffle can be implemented as a
4690/// logical left or right shift of a vector.
4691static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4692                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4693  // Although the logic below support any bitwidth size, there are no
4694  // shift instructions which handle more than 128-bit vectors.
4695  if (SVOp->getValueType(0).getSizeInBits() > 128)
4696    return false;
4697
4698  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4699      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4700    return true;
4701
4702  return false;
4703}
4704
4705/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4706///
4707static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4708                                       unsigned NumNonZero, unsigned NumZero,
4709                                       SelectionDAG &DAG,
4710                                       const TargetLowering &TLI) {
4711  if (NumNonZero > 8)
4712    return SDValue();
4713
4714  DebugLoc dl = Op.getDebugLoc();
4715  SDValue V(0, 0);
4716  bool First = true;
4717  for (unsigned i = 0; i < 16; ++i) {
4718    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4719    if (ThisIsNonZero && First) {
4720      if (NumZero)
4721        V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4722                          DAG, dl);
4723      else
4724        V = DAG.getUNDEF(MVT::v8i16);
4725      First = false;
4726    }
4727
4728    if ((i & 1) != 0) {
4729      SDValue ThisElt(0, 0), LastElt(0, 0);
4730      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4731      if (LastIsNonZero) {
4732        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4733                              MVT::i16, Op.getOperand(i-1));
4734      }
4735      if (ThisIsNonZero) {
4736        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4737        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4738                              ThisElt, DAG.getConstant(8, MVT::i8));
4739        if (LastIsNonZero)
4740          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4741      } else
4742        ThisElt = LastElt;
4743
4744      if (ThisElt.getNode())
4745        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4746                        DAG.getIntPtrConstant(i/2));
4747    }
4748  }
4749
4750  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4751}
4752
4753/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4754///
4755static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4756                                     unsigned NumNonZero, unsigned NumZero,
4757                                     SelectionDAG &DAG,
4758                                     const TargetLowering &TLI) {
4759  if (NumNonZero > 4)
4760    return SDValue();
4761
4762  DebugLoc dl = Op.getDebugLoc();
4763  SDValue V(0, 0);
4764  bool First = true;
4765  for (unsigned i = 0; i < 8; ++i) {
4766    bool isNonZero = (NonZeros & (1 << i)) != 0;
4767    if (isNonZero) {
4768      if (First) {
4769        if (NumZero)
4770          V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4771                            DAG, dl);
4772        else
4773          V = DAG.getUNDEF(MVT::v8i16);
4774        First = false;
4775      }
4776      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4777                      MVT::v8i16, V, Op.getOperand(i),
4778                      DAG.getIntPtrConstant(i));
4779    }
4780  }
4781
4782  return V;
4783}
4784
4785/// getVShift - Return a vector logical shift node.
4786///
4787static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4788                         unsigned NumBits, SelectionDAG &DAG,
4789                         const TargetLowering &TLI, DebugLoc dl) {
4790  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4791  EVT ShVT = MVT::v2i64;
4792  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4793  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4794  return DAG.getNode(ISD::BITCAST, dl, VT,
4795                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4796                             DAG.getConstant(NumBits,
4797                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4798}
4799
4800SDValue
4801X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4802                                          SelectionDAG &DAG) const {
4803
4804  // Check if the scalar load can be widened into a vector load. And if
4805  // the address is "base + cst" see if the cst can be "absorbed" into
4806  // the shuffle mask.
4807  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4808    SDValue Ptr = LD->getBasePtr();
4809    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4810      return SDValue();
4811    EVT PVT = LD->getValueType(0);
4812    if (PVT != MVT::i32 && PVT != MVT::f32)
4813      return SDValue();
4814
4815    int FI = -1;
4816    int64_t Offset = 0;
4817    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4818      FI = FINode->getIndex();
4819      Offset = 0;
4820    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4821               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4822      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4823      Offset = Ptr.getConstantOperandVal(1);
4824      Ptr = Ptr.getOperand(0);
4825    } else {
4826      return SDValue();
4827    }
4828
4829    // FIXME: 256-bit vector instructions don't require a strict alignment,
4830    // improve this code to support it better.
4831    unsigned RequiredAlign = VT.getSizeInBits()/8;
4832    SDValue Chain = LD->getChain();
4833    // Make sure the stack object alignment is at least 16 or 32.
4834    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4835    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4836      if (MFI->isFixedObjectIndex(FI)) {
4837        // Can't change the alignment. FIXME: It's possible to compute
4838        // the exact stack offset and reference FI + adjust offset instead.
4839        // If someone *really* cares about this. That's the way to implement it.
4840        return SDValue();
4841      } else {
4842        MFI->setObjectAlignment(FI, RequiredAlign);
4843      }
4844    }
4845
4846    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4847    // Ptr + (Offset & ~15).
4848    if (Offset < 0)
4849      return SDValue();
4850    if ((Offset % RequiredAlign) & 3)
4851      return SDValue();
4852    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4853    if (StartOffset)
4854      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4855                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4856
4857    int EltNo = (Offset - StartOffset) >> 2;
4858    int NumElems = VT.getVectorNumElements();
4859
4860    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4861    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4862    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4863                             LD->getPointerInfo().getWithOffset(StartOffset),
4864                             false, false, false, 0);
4865
4866    // Canonicalize it to a v4i32 or v8i32 shuffle.
4867    SmallVector<int, 8> Mask;
4868    for (int i = 0; i < NumElems; ++i)
4869      Mask.push_back(EltNo);
4870
4871    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4872    return DAG.getNode(ISD::BITCAST, dl, NVT,
4873                       DAG.getVectorShuffle(CanonVT, dl, V1,
4874                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4875  }
4876
4877  return SDValue();
4878}
4879
4880/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4881/// vector of type 'VT', see if the elements can be replaced by a single large
4882/// load which has the same value as a build_vector whose operands are 'elts'.
4883///
4884/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4885///
4886/// FIXME: we'd also like to handle the case where the last elements are zero
4887/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4888/// There's even a handy isZeroNode for that purpose.
4889static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4890                                        DebugLoc &DL, SelectionDAG &DAG) {
4891  EVT EltVT = VT.getVectorElementType();
4892  unsigned NumElems = Elts.size();
4893
4894  LoadSDNode *LDBase = NULL;
4895  unsigned LastLoadedElt = -1U;
4896
4897  // For each element in the initializer, see if we've found a load or an undef.
4898  // If we don't find an initial load element, or later load elements are
4899  // non-consecutive, bail out.
4900  for (unsigned i = 0; i < NumElems; ++i) {
4901    SDValue Elt = Elts[i];
4902
4903    if (!Elt.getNode() ||
4904        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4905      return SDValue();
4906    if (!LDBase) {
4907      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4908        return SDValue();
4909      LDBase = cast<LoadSDNode>(Elt.getNode());
4910      LastLoadedElt = i;
4911      continue;
4912    }
4913    if (Elt.getOpcode() == ISD::UNDEF)
4914      continue;
4915
4916    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4917    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4918      return SDValue();
4919    LastLoadedElt = i;
4920  }
4921
4922  // If we have found an entire vector of loads and undefs, then return a large
4923  // load of the entire vector width starting at the base pointer.  If we found
4924  // consecutive loads for the low half, generate a vzext_load node.
4925  if (LastLoadedElt == NumElems - 1) {
4926    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4927      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4928                         LDBase->getPointerInfo(),
4929                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4930                         LDBase->isInvariant(), 0);
4931    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4932                       LDBase->getPointerInfo(),
4933                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4934                       LDBase->isInvariant(), LDBase->getAlignment());
4935  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4936             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4937    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4938    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4939    SDValue ResNode =
4940        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4941                                LDBase->getPointerInfo(),
4942                                LDBase->getAlignment(),
4943                                false/*isVolatile*/, true/*ReadMem*/,
4944                                false/*WriteMem*/);
4945    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4946  }
4947  return SDValue();
4948}
4949
4950/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4951/// a vbroadcast node. We support two patterns:
4952/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4953/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4954/// a scalar load.
4955/// The scalar load node is returned when a pattern is found,
4956/// or SDValue() otherwise.
4957static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4958  if (!Subtarget->hasAVX())
4959    return SDValue();
4960
4961  EVT VT = Op.getValueType();
4962  SDValue V = Op;
4963
4964  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4965    V = V.getOperand(0);
4966
4967  //A suspected load to be broadcasted.
4968  SDValue Ld;
4969
4970  switch (V.getOpcode()) {
4971    default:
4972      // Unknown pattern found.
4973      return SDValue();
4974
4975    case ISD::BUILD_VECTOR: {
4976      // The BUILD_VECTOR node must be a splat.
4977      if (!isSplatVector(V.getNode()))
4978        return SDValue();
4979
4980      Ld = V.getOperand(0);
4981
4982      // The suspected load node has several users. Make sure that all
4983      // of its users are from the BUILD_VECTOR node.
4984      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4985        return SDValue();
4986      break;
4987    }
4988
4989    case ISD::VECTOR_SHUFFLE: {
4990      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4991
4992      // Shuffles must have a splat mask where the first element is
4993      // broadcasted.
4994      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4995        return SDValue();
4996
4997      SDValue Sc = Op.getOperand(0);
4998      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4999        return SDValue();
5000
5001      Ld = Sc.getOperand(0);
5002
5003      // The scalar_to_vector node and the suspected
5004      // load node must have exactly one user.
5005      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5006        return SDValue();
5007      break;
5008    }
5009  }
5010
5011  // The scalar source must be a normal load.
5012  if (!ISD::isNormalLoad(Ld.getNode()))
5013    return SDValue();
5014
5015  bool Is256 = VT.getSizeInBits() == 256;
5016  bool Is128 = VT.getSizeInBits() == 128;
5017  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5018
5019  // VBroadcast to YMM
5020  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5021    return Ld;
5022
5023  // VBroadcast to XMM
5024  if (Is128 && (ScalarSize == 32))
5025    return Ld;
5026
5027  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5028  // double since there is vbroadcastsd xmm
5029  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5030    // VBroadcast to YMM
5031    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5032      return Ld;
5033
5034    // VBroadcast to XMM
5035    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5036      return Ld;
5037  }
5038
5039  // Unsupported broadcast.
5040  return SDValue();
5041}
5042
5043SDValue
5044X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5045  DebugLoc dl = Op.getDebugLoc();
5046
5047  EVT VT = Op.getValueType();
5048  EVT ExtVT = VT.getVectorElementType();
5049  unsigned NumElems = Op.getNumOperands();
5050
5051  // Vectors containing all zeros can be matched by pxor and xorps later
5052  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5053    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5054    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5055    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5056      return Op;
5057
5058    return getZeroVector(VT, Subtarget->hasSSE2(),
5059                         Subtarget->hasAVX2(), DAG, dl);
5060  }
5061
5062  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5063  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5064  // vpcmpeqd on 256-bit vectors.
5065  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5066    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5067      return Op;
5068
5069    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5070  }
5071
5072  SDValue LD = isVectorBroadcast(Op, Subtarget);
5073  if (LD.getNode())
5074    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5075
5076  unsigned EVTBits = ExtVT.getSizeInBits();
5077
5078  unsigned NumZero  = 0;
5079  unsigned NumNonZero = 0;
5080  unsigned NonZeros = 0;
5081  bool IsAllConstants = true;
5082  SmallSet<SDValue, 8> Values;
5083  for (unsigned i = 0; i < NumElems; ++i) {
5084    SDValue Elt = Op.getOperand(i);
5085    if (Elt.getOpcode() == ISD::UNDEF)
5086      continue;
5087    Values.insert(Elt);
5088    if (Elt.getOpcode() != ISD::Constant &&
5089        Elt.getOpcode() != ISD::ConstantFP)
5090      IsAllConstants = false;
5091    if (X86::isZeroNode(Elt))
5092      NumZero++;
5093    else {
5094      NonZeros |= (1 << i);
5095      NumNonZero++;
5096    }
5097  }
5098
5099  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5100  if (NumNonZero == 0)
5101    return DAG.getUNDEF(VT);
5102
5103  // Special case for single non-zero, non-undef, element.
5104  if (NumNonZero == 1) {
5105    unsigned Idx = CountTrailingZeros_32(NonZeros);
5106    SDValue Item = Op.getOperand(Idx);
5107
5108    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5109    // the value are obviously zero, truncate the value to i32 and do the
5110    // insertion that way.  Only do this if the value is non-constant or if the
5111    // value is a constant being inserted into element 0.  It is cheaper to do
5112    // a constant pool load than it is to do a movd + shuffle.
5113    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5114        (!IsAllConstants || Idx == 0)) {
5115      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5116        // Handle SSE only.
5117        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5118        EVT VecVT = MVT::v4i32;
5119        unsigned VecElts = 4;
5120
5121        // Truncate the value (which may itself be a constant) to i32, and
5122        // convert it to a vector with movd (S2V+shuffle to zero extend).
5123        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5124        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5125        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5126
5127        // Now we have our 32-bit value zero extended in the low element of
5128        // a vector.  If Idx != 0, swizzle it into place.
5129        if (Idx != 0) {
5130          SmallVector<int, 4> Mask;
5131          Mask.push_back(Idx);
5132          for (unsigned i = 1; i != VecElts; ++i)
5133            Mask.push_back(i);
5134          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5135                                      DAG.getUNDEF(Item.getValueType()),
5136                                      &Mask[0]);
5137        }
5138        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5139      }
5140    }
5141
5142    // If we have a constant or non-constant insertion into the low element of
5143    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5144    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5145    // depending on what the source datatype is.
5146    if (Idx == 0) {
5147      if (NumZero == 0)
5148        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5149
5150      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5151          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5152        if (VT.getSizeInBits() == 256) {
5153          SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5154                                          Subtarget->hasAVX2(), DAG, dl);
5155          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5156                             Item, DAG.getIntPtrConstant(0));
5157        }
5158        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5159        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5160        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5161        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5162      }
5163
5164      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5165        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5166        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5167        if (VT.getSizeInBits() == 256) {
5168          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5169                                          Subtarget->hasAVX2(), DAG, dl);
5170          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5171                                    DAG, dl);
5172        } else {
5173          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5174          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5175        }
5176        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5177      }
5178    }
5179
5180    // Is it a vector logical left shift?
5181    if (NumElems == 2 && Idx == 1 &&
5182        X86::isZeroNode(Op.getOperand(0)) &&
5183        !X86::isZeroNode(Op.getOperand(1))) {
5184      unsigned NumBits = VT.getSizeInBits();
5185      return getVShift(true, VT,
5186                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5187                                   VT, Op.getOperand(1)),
5188                       NumBits/2, DAG, *this, dl);
5189    }
5190
5191    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5192      return SDValue();
5193
5194    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5195    // is a non-constant being inserted into an element other than the low one,
5196    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5197    // movd/movss) to move this into the low element, then shuffle it into
5198    // place.
5199    if (EVTBits == 32) {
5200      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5201
5202      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5203      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5204      SmallVector<int, 8> MaskVec;
5205      for (unsigned i = 0; i < NumElems; i++)
5206        MaskVec.push_back(i == Idx ? 0 : 1);
5207      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5208    }
5209  }
5210
5211  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5212  if (Values.size() == 1) {
5213    if (EVTBits == 32) {
5214      // Instead of a shuffle like this:
5215      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5216      // Check if it's possible to issue this instead.
5217      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5218      unsigned Idx = CountTrailingZeros_32(NonZeros);
5219      SDValue Item = Op.getOperand(Idx);
5220      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5221        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5222    }
5223    return SDValue();
5224  }
5225
5226  // A vector full of immediates; various special cases are already
5227  // handled, so this is best done with a single constant-pool load.
5228  if (IsAllConstants)
5229    return SDValue();
5230
5231  // For AVX-length vectors, build the individual 128-bit pieces and use
5232  // shuffles to put them in place.
5233  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5234    SmallVector<SDValue, 32> V;
5235    for (unsigned i = 0; i < NumElems; ++i)
5236      V.push_back(Op.getOperand(i));
5237
5238    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5239
5240    // Build both the lower and upper subvector.
5241    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5242    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5243                                NumElems/2);
5244
5245    // Recreate the wider vector with the lower and upper part.
5246    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5247                                DAG.getConstant(0, MVT::i32), DAG, dl);
5248    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5249                              DAG, dl);
5250  }
5251
5252  // Let legalizer expand 2-wide build_vectors.
5253  if (EVTBits == 64) {
5254    if (NumNonZero == 1) {
5255      // One half is zero or undef.
5256      unsigned Idx = CountTrailingZeros_32(NonZeros);
5257      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5258                                 Op.getOperand(Idx));
5259      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5260    }
5261    return SDValue();
5262  }
5263
5264  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5265  if (EVTBits == 8 && NumElems == 16) {
5266    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5267                                        *this);
5268    if (V.getNode()) return V;
5269  }
5270
5271  if (EVTBits == 16 && NumElems == 8) {
5272    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5273                                      *this);
5274    if (V.getNode()) return V;
5275  }
5276
5277  // If element VT is == 32 bits, turn it into a number of shuffles.
5278  SmallVector<SDValue, 8> V;
5279  V.resize(NumElems);
5280  if (NumElems == 4 && NumZero > 0) {
5281    for (unsigned i = 0; i < 4; ++i) {
5282      bool isZero = !(NonZeros & (1 << i));
5283      if (isZero)
5284        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5285                             DAG, dl);
5286      else
5287        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5288    }
5289
5290    for (unsigned i = 0; i < 2; ++i) {
5291      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5292        default: break;
5293        case 0:
5294          V[i] = V[i*2];  // Must be a zero vector.
5295          break;
5296        case 1:
5297          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5298          break;
5299        case 2:
5300          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5301          break;
5302        case 3:
5303          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5304          break;
5305      }
5306    }
5307
5308    SmallVector<int, 8> MaskVec;
5309    bool Reverse = (NonZeros & 0x3) == 2;
5310    for (unsigned i = 0; i < 2; ++i)
5311      MaskVec.push_back(Reverse ? 1-i : i);
5312    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5313    for (unsigned i = 0; i < 2; ++i)
5314      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5315    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5316  }
5317
5318  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5319    // Check for a build vector of consecutive loads.
5320    for (unsigned i = 0; i < NumElems; ++i)
5321      V[i] = Op.getOperand(i);
5322
5323    // Check for elements which are consecutive loads.
5324    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5325    if (LD.getNode())
5326      return LD;
5327
5328    // For SSE 4.1, use insertps to put the high elements into the low element.
5329    if (getSubtarget()->hasSSE41()) {
5330      SDValue Result;
5331      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5332        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5333      else
5334        Result = DAG.getUNDEF(VT);
5335
5336      for (unsigned i = 1; i < NumElems; ++i) {
5337        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5338        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5339                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5340      }
5341      return Result;
5342    }
5343
5344    // Otherwise, expand into a number of unpckl*, start by extending each of
5345    // our (non-undef) elements to the full vector width with the element in the
5346    // bottom slot of the vector (which generates no code for SSE).
5347    for (unsigned i = 0; i < NumElems; ++i) {
5348      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5349        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5350      else
5351        V[i] = DAG.getUNDEF(VT);
5352    }
5353
5354    // Next, we iteratively mix elements, e.g. for v4f32:
5355    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5356    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5357    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5358    unsigned EltStride = NumElems >> 1;
5359    while (EltStride != 0) {
5360      for (unsigned i = 0; i < EltStride; ++i) {
5361        // If V[i+EltStride] is undef and this is the first round of mixing,
5362        // then it is safe to just drop this shuffle: V[i] is already in the
5363        // right place, the one element (since it's the first round) being
5364        // inserted as undef can be dropped.  This isn't safe for successive
5365        // rounds because they will permute elements within both vectors.
5366        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5367            EltStride == NumElems/2)
5368          continue;
5369
5370        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5371      }
5372      EltStride >>= 1;
5373    }
5374    return V[0];
5375  }
5376  return SDValue();
5377}
5378
5379// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5380// them in a MMX register.  This is better than doing a stack convert.
5381static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5382  DebugLoc dl = Op.getDebugLoc();
5383  EVT ResVT = Op.getValueType();
5384
5385  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5386         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5387  int Mask[2];
5388  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5389  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5390  InVec = Op.getOperand(1);
5391  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5392    unsigned NumElts = ResVT.getVectorNumElements();
5393    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5394    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5395                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5396  } else {
5397    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5398    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5399    Mask[0] = 0; Mask[1] = 2;
5400    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5401  }
5402  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5403}
5404
5405// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5406// to create 256-bit vectors from two other 128-bit ones.
5407static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5408  DebugLoc dl = Op.getDebugLoc();
5409  EVT ResVT = Op.getValueType();
5410
5411  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5412
5413  SDValue V1 = Op.getOperand(0);
5414  SDValue V2 = Op.getOperand(1);
5415  unsigned NumElems = ResVT.getVectorNumElements();
5416
5417  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5418                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5419  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5420                            DAG, dl);
5421}
5422
5423SDValue
5424X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5425  EVT ResVT = Op.getValueType();
5426
5427  assert(Op.getNumOperands() == 2);
5428  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5429         "Unsupported CONCAT_VECTORS for value type");
5430
5431  // We support concatenate two MMX registers and place them in a MMX register.
5432  // This is better than doing a stack convert.
5433  if (ResVT.is128BitVector())
5434    return LowerMMXCONCAT_VECTORS(Op, DAG);
5435
5436  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5437  // from two other 128-bit ones.
5438  return LowerAVXCONCAT_VECTORS(Op, DAG);
5439}
5440
5441// v8i16 shuffles - Prefer shuffles in the following order:
5442// 1. [all]   pshuflw, pshufhw, optional move
5443// 2. [ssse3] 1 x pshufb
5444// 3. [ssse3] 2 x pshufb + 1 x por
5445// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5446SDValue
5447X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5448                                            SelectionDAG &DAG) const {
5449  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5450  SDValue V1 = SVOp->getOperand(0);
5451  SDValue V2 = SVOp->getOperand(1);
5452  DebugLoc dl = SVOp->getDebugLoc();
5453  SmallVector<int, 8> MaskVals;
5454
5455  // Determine if more than 1 of the words in each of the low and high quadwords
5456  // of the result come from the same quadword of one of the two inputs.  Undef
5457  // mask values count as coming from any quadword, for better codegen.
5458  unsigned LoQuad[] = { 0, 0, 0, 0 };
5459  unsigned HiQuad[] = { 0, 0, 0, 0 };
5460  BitVector InputQuads(4);
5461  for (unsigned i = 0; i < 8; ++i) {
5462    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5463    int EltIdx = SVOp->getMaskElt(i);
5464    MaskVals.push_back(EltIdx);
5465    if (EltIdx < 0) {
5466      ++Quad[0];
5467      ++Quad[1];
5468      ++Quad[2];
5469      ++Quad[3];
5470      continue;
5471    }
5472    ++Quad[EltIdx / 4];
5473    InputQuads.set(EltIdx / 4);
5474  }
5475
5476  int BestLoQuad = -1;
5477  unsigned MaxQuad = 1;
5478  for (unsigned i = 0; i < 4; ++i) {
5479    if (LoQuad[i] > MaxQuad) {
5480      BestLoQuad = i;
5481      MaxQuad = LoQuad[i];
5482    }
5483  }
5484
5485  int BestHiQuad = -1;
5486  MaxQuad = 1;
5487  for (unsigned i = 0; i < 4; ++i) {
5488    if (HiQuad[i] > MaxQuad) {
5489      BestHiQuad = i;
5490      MaxQuad = HiQuad[i];
5491    }
5492  }
5493
5494  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5495  // of the two input vectors, shuffle them into one input vector so only a
5496  // single pshufb instruction is necessary. If There are more than 2 input
5497  // quads, disable the next transformation since it does not help SSSE3.
5498  bool V1Used = InputQuads[0] || InputQuads[1];
5499  bool V2Used = InputQuads[2] || InputQuads[3];
5500  if (Subtarget->hasSSSE3()) {
5501    if (InputQuads.count() == 2 && V1Used && V2Used) {
5502      BestLoQuad = InputQuads.find_first();
5503      BestHiQuad = InputQuads.find_next(BestLoQuad);
5504    }
5505    if (InputQuads.count() > 2) {
5506      BestLoQuad = -1;
5507      BestHiQuad = -1;
5508    }
5509  }
5510
5511  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5512  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5513  // words from all 4 input quadwords.
5514  SDValue NewV;
5515  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5516    SmallVector<int, 8> MaskV;
5517    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5518    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5519    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5520                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5521                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5522    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5523
5524    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5525    // source words for the shuffle, to aid later transformations.
5526    bool AllWordsInNewV = true;
5527    bool InOrder[2] = { true, true };
5528    for (unsigned i = 0; i != 8; ++i) {
5529      int idx = MaskVals[i];
5530      if (idx != (int)i)
5531        InOrder[i/4] = false;
5532      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5533        continue;
5534      AllWordsInNewV = false;
5535      break;
5536    }
5537
5538    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5539    if (AllWordsInNewV) {
5540      for (int i = 0; i != 8; ++i) {
5541        int idx = MaskVals[i];
5542        if (idx < 0)
5543          continue;
5544        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5545        if ((idx != i) && idx < 4)
5546          pshufhw = false;
5547        if ((idx != i) && idx > 3)
5548          pshuflw = false;
5549      }
5550      V1 = NewV;
5551      V2Used = false;
5552      BestLoQuad = 0;
5553      BestHiQuad = 1;
5554    }
5555
5556    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5557    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5558    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5559      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5560      unsigned TargetMask = 0;
5561      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5562                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5563      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5564                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5565      V1 = NewV.getOperand(0);
5566      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5567    }
5568  }
5569
5570  // If we have SSSE3, and all words of the result are from 1 input vector,
5571  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5572  // is present, fall back to case 4.
5573  if (Subtarget->hasSSSE3()) {
5574    SmallVector<SDValue,16> pshufbMask;
5575
5576    // If we have elements from both input vectors, set the high bit of the
5577    // shuffle mask element to zero out elements that come from V2 in the V1
5578    // mask, and elements that come from V1 in the V2 mask, so that the two
5579    // results can be OR'd together.
5580    bool TwoInputs = V1Used && V2Used;
5581    for (unsigned i = 0; i != 8; ++i) {
5582      int EltIdx = MaskVals[i] * 2;
5583      if (TwoInputs && (EltIdx >= 16)) {
5584        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5585        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5586        continue;
5587      }
5588      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5589      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5590    }
5591    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5592    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5593                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5594                                 MVT::v16i8, &pshufbMask[0], 16));
5595    if (!TwoInputs)
5596      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5597
5598    // Calculate the shuffle mask for the second input, shuffle it, and
5599    // OR it with the first shuffled input.
5600    pshufbMask.clear();
5601    for (unsigned i = 0; i != 8; ++i) {
5602      int EltIdx = MaskVals[i] * 2;
5603      if (EltIdx < 16) {
5604        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5605        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5606        continue;
5607      }
5608      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5609      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5610    }
5611    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5612    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5613                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5614                                 MVT::v16i8, &pshufbMask[0], 16));
5615    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5616    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5617  }
5618
5619  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5620  // and update MaskVals with new element order.
5621  BitVector InOrder(8);
5622  if (BestLoQuad >= 0) {
5623    SmallVector<int, 8> MaskV;
5624    for (int i = 0; i != 4; ++i) {
5625      int idx = MaskVals[i];
5626      if (idx < 0) {
5627        MaskV.push_back(-1);
5628        InOrder.set(i);
5629      } else if ((idx / 4) == BestLoQuad) {
5630        MaskV.push_back(idx & 3);
5631        InOrder.set(i);
5632      } else {
5633        MaskV.push_back(-1);
5634      }
5635    }
5636    for (unsigned i = 4; i != 8; ++i)
5637      MaskV.push_back(i);
5638    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5639                                &MaskV[0]);
5640
5641    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5642      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5643                               NewV.getOperand(0),
5644                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5645                               DAG);
5646  }
5647
5648  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5649  // and update MaskVals with the new element order.
5650  if (BestHiQuad >= 0) {
5651    SmallVector<int, 8> MaskV;
5652    for (unsigned i = 0; i != 4; ++i)
5653      MaskV.push_back(i);
5654    for (unsigned i = 4; i != 8; ++i) {
5655      int idx = MaskVals[i];
5656      if (idx < 0) {
5657        MaskV.push_back(-1);
5658        InOrder.set(i);
5659      } else if ((idx / 4) == BestHiQuad) {
5660        MaskV.push_back((idx & 3) + 4);
5661        InOrder.set(i);
5662      } else {
5663        MaskV.push_back(-1);
5664      }
5665    }
5666    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5667                                &MaskV[0]);
5668
5669    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5670      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5671                              NewV.getOperand(0),
5672                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5673                              DAG);
5674  }
5675
5676  // In case BestHi & BestLo were both -1, which means each quadword has a word
5677  // from each of the four input quadwords, calculate the InOrder bitvector now
5678  // before falling through to the insert/extract cleanup.
5679  if (BestLoQuad == -1 && BestHiQuad == -1) {
5680    NewV = V1;
5681    for (int i = 0; i != 8; ++i)
5682      if (MaskVals[i] < 0 || MaskVals[i] == i)
5683        InOrder.set(i);
5684  }
5685
5686  // The other elements are put in the right place using pextrw and pinsrw.
5687  for (unsigned i = 0; i != 8; ++i) {
5688    if (InOrder[i])
5689      continue;
5690    int EltIdx = MaskVals[i];
5691    if (EltIdx < 0)
5692      continue;
5693    SDValue ExtOp = (EltIdx < 8)
5694    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5695                  DAG.getIntPtrConstant(EltIdx))
5696    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5697                  DAG.getIntPtrConstant(EltIdx - 8));
5698    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5699                       DAG.getIntPtrConstant(i));
5700  }
5701  return NewV;
5702}
5703
5704// v16i8 shuffles - Prefer shuffles in the following order:
5705// 1. [ssse3] 1 x pshufb
5706// 2. [ssse3] 2 x pshufb + 1 x por
5707// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5708static
5709SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5710                                 SelectionDAG &DAG,
5711                                 const X86TargetLowering &TLI) {
5712  SDValue V1 = SVOp->getOperand(0);
5713  SDValue V2 = SVOp->getOperand(1);
5714  DebugLoc dl = SVOp->getDebugLoc();
5715  ArrayRef<int> MaskVals = SVOp->getMask();
5716
5717  // If we have SSSE3, case 1 is generated when all result bytes come from
5718  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5719  // present, fall back to case 3.
5720  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5721  bool V1Only = true;
5722  bool V2Only = true;
5723  for (unsigned i = 0; i < 16; ++i) {
5724    int EltIdx = MaskVals[i];
5725    if (EltIdx < 0)
5726      continue;
5727    if (EltIdx < 16)
5728      V2Only = false;
5729    else
5730      V1Only = false;
5731  }
5732
5733  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5734  if (TLI.getSubtarget()->hasSSSE3()) {
5735    SmallVector<SDValue,16> pshufbMask;
5736
5737    // If all result elements are from one input vector, then only translate
5738    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5739    //
5740    // Otherwise, we have elements from both input vectors, and must zero out
5741    // elements that come from V2 in the first mask, and V1 in the second mask
5742    // so that we can OR them together.
5743    bool TwoInputs = !(V1Only || V2Only);
5744    for (unsigned i = 0; i != 16; ++i) {
5745      int EltIdx = MaskVals[i];
5746      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5747        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5748        continue;
5749      }
5750      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5751    }
5752    // If all the elements are from V2, assign it to V1 and return after
5753    // building the first pshufb.
5754    if (V2Only)
5755      V1 = V2;
5756    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5757                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5758                                 MVT::v16i8, &pshufbMask[0], 16));
5759    if (!TwoInputs)
5760      return V1;
5761
5762    // Calculate the shuffle mask for the second input, shuffle it, and
5763    // OR it with the first shuffled input.
5764    pshufbMask.clear();
5765    for (unsigned i = 0; i != 16; ++i) {
5766      int EltIdx = MaskVals[i];
5767      if (EltIdx < 16) {
5768        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5769        continue;
5770      }
5771      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5772    }
5773    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5774                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5775                                 MVT::v16i8, &pshufbMask[0], 16));
5776    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5777  }
5778
5779  // No SSSE3 - Calculate in place words and then fix all out of place words
5780  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5781  // the 16 different words that comprise the two doublequadword input vectors.
5782  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5783  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5784  SDValue NewV = V2Only ? V2 : V1;
5785  for (int i = 0; i != 8; ++i) {
5786    int Elt0 = MaskVals[i*2];
5787    int Elt1 = MaskVals[i*2+1];
5788
5789    // This word of the result is all undef, skip it.
5790    if (Elt0 < 0 && Elt1 < 0)
5791      continue;
5792
5793    // This word of the result is already in the correct place, skip it.
5794    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5795      continue;
5796    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5797      continue;
5798
5799    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5800    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5801    SDValue InsElt;
5802
5803    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5804    // using a single extract together, load it and store it.
5805    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5806      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5807                           DAG.getIntPtrConstant(Elt1 / 2));
5808      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5809                        DAG.getIntPtrConstant(i));
5810      continue;
5811    }
5812
5813    // If Elt1 is defined, extract it from the appropriate source.  If the
5814    // source byte is not also odd, shift the extracted word left 8 bits
5815    // otherwise clear the bottom 8 bits if we need to do an or.
5816    if (Elt1 >= 0) {
5817      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5818                           DAG.getIntPtrConstant(Elt1 / 2));
5819      if ((Elt1 & 1) == 0)
5820        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5821                             DAG.getConstant(8,
5822                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5823      else if (Elt0 >= 0)
5824        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5825                             DAG.getConstant(0xFF00, MVT::i16));
5826    }
5827    // If Elt0 is defined, extract it from the appropriate source.  If the
5828    // source byte is not also even, shift the extracted word right 8 bits. If
5829    // Elt1 was also defined, OR the extracted values together before
5830    // inserting them in the result.
5831    if (Elt0 >= 0) {
5832      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5833                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5834      if ((Elt0 & 1) != 0)
5835        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5836                              DAG.getConstant(8,
5837                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5838      else if (Elt1 >= 0)
5839        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5840                             DAG.getConstant(0x00FF, MVT::i16));
5841      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5842                         : InsElt0;
5843    }
5844    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5845                       DAG.getIntPtrConstant(i));
5846  }
5847  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5848}
5849
5850/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5851/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5852/// done when every pair / quad of shuffle mask elements point to elements in
5853/// the right sequence. e.g.
5854/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5855static
5856SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5857                                 SelectionDAG &DAG, DebugLoc dl) {
5858  EVT VT = SVOp->getValueType(0);
5859  SDValue V1 = SVOp->getOperand(0);
5860  SDValue V2 = SVOp->getOperand(1);
5861  unsigned NumElems = VT.getVectorNumElements();
5862  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5863  EVT NewVT;
5864  switch (VT.getSimpleVT().SimpleTy) {
5865  default: assert(false && "Unexpected!");
5866  case MVT::v4f32: NewVT = MVT::v2f64; break;
5867  case MVT::v4i32: NewVT = MVT::v2i64; break;
5868  case MVT::v8i16: NewVT = MVT::v4i32; break;
5869  case MVT::v16i8: NewVT = MVT::v4i32; break;
5870  }
5871
5872  int Scale = NumElems / NewWidth;
5873  SmallVector<int, 8> MaskVec;
5874  for (unsigned i = 0; i < NumElems; i += Scale) {
5875    int StartIdx = -1;
5876    for (int j = 0; j < Scale; ++j) {
5877      int EltIdx = SVOp->getMaskElt(i+j);
5878      if (EltIdx < 0)
5879        continue;
5880      if (StartIdx == -1)
5881        StartIdx = EltIdx - (EltIdx % Scale);
5882      if (EltIdx != StartIdx + j)
5883        return SDValue();
5884    }
5885    if (StartIdx == -1)
5886      MaskVec.push_back(-1);
5887    else
5888      MaskVec.push_back(StartIdx / Scale);
5889  }
5890
5891  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5892  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5893  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5894}
5895
5896/// getVZextMovL - Return a zero-extending vector move low node.
5897///
5898static SDValue getVZextMovL(EVT VT, EVT OpVT,
5899                            SDValue SrcOp, SelectionDAG &DAG,
5900                            const X86Subtarget *Subtarget, DebugLoc dl) {
5901  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5902    LoadSDNode *LD = NULL;
5903    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5904      LD = dyn_cast<LoadSDNode>(SrcOp);
5905    if (!LD) {
5906      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5907      // instead.
5908      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5909      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5910          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5911          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5912          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5913        // PR2108
5914        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5915        return DAG.getNode(ISD::BITCAST, dl, VT,
5916                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5917                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5918                                                   OpVT,
5919                                                   SrcOp.getOperand(0)
5920                                                          .getOperand(0))));
5921      }
5922    }
5923  }
5924
5925  return DAG.getNode(ISD::BITCAST, dl, VT,
5926                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5927                                 DAG.getNode(ISD::BITCAST, dl,
5928                                             OpVT, SrcOp)));
5929}
5930
5931/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5932/// which could not be matched by any known target speficic shuffle
5933static SDValue
5934LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5935  EVT VT = SVOp->getValueType(0);
5936
5937  unsigned NumElems = VT.getVectorNumElements();
5938  unsigned NumLaneElems = NumElems / 2;
5939
5940  int MinRange[2][2] = { { static_cast<int>(NumElems),
5941                           static_cast<int>(NumElems) },
5942                         { static_cast<int>(NumElems),
5943                           static_cast<int>(NumElems) } };
5944  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5945
5946  // Collect used ranges for each source in each lane
5947  for (unsigned l = 0; l < 2; ++l) {
5948    unsigned LaneStart = l*NumLaneElems;
5949    for (unsigned i = 0; i != NumLaneElems; ++i) {
5950      int Idx = SVOp->getMaskElt(i+LaneStart);
5951      if (Idx < 0)
5952        continue;
5953
5954      int Input = 0;
5955      if (Idx >= (int)NumElems) {
5956        Idx -= NumElems;
5957        Input = 1;
5958      }
5959
5960      if (Idx > MaxRange[l][Input])
5961        MaxRange[l][Input] = Idx;
5962      if (Idx < MinRange[l][Input])
5963        MinRange[l][Input] = Idx;
5964    }
5965  }
5966
5967  // Make sure each range is 128-bits
5968  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5969  for (unsigned l = 0; l < 2; ++l) {
5970    for (unsigned Input = 0; Input < 2; ++Input) {
5971      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5972        continue;
5973
5974      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5975        ExtractIdx[l][Input] = 0;
5976      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5977               MaxRange[l][Input] < (int)NumElems)
5978        ExtractIdx[l][Input] = NumLaneElems;
5979      else
5980        return SDValue();
5981    }
5982  }
5983
5984  DebugLoc dl = SVOp->getDebugLoc();
5985  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5986  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5987
5988  SDValue Ops[2][2];
5989  for (unsigned l = 0; l < 2; ++l) {
5990    for (unsigned Input = 0; Input < 2; ++Input) {
5991      if (ExtractIdx[l][Input] >= 0)
5992        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5993                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5994                                                DAG, dl);
5995      else
5996        Ops[l][Input] = DAG.getUNDEF(NVT);
5997    }
5998  }
5999
6000  // Generate 128-bit shuffles
6001  SmallVector<int, 16> Mask1, Mask2;
6002  for (unsigned i = 0; i != NumLaneElems; ++i) {
6003    int Elt = SVOp->getMaskElt(i);
6004    if (Elt >= (int)NumElems) {
6005      Elt %= NumLaneElems;
6006      Elt += NumLaneElems;
6007    } else if (Elt >= 0) {
6008      Elt %= NumLaneElems;
6009    }
6010    Mask1.push_back(Elt);
6011  }
6012  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
6013    int Elt = SVOp->getMaskElt(i);
6014    if (Elt >= (int)NumElems) {
6015      Elt %= NumLaneElems;
6016      Elt += NumLaneElems;
6017    } else if (Elt >= 0) {
6018      Elt %= NumLaneElems;
6019    }
6020    Mask2.push_back(Elt);
6021  }
6022
6023  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6024  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6025
6026  // Concatenate the result back
6027  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6028                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6029  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6030                            DAG, dl);
6031}
6032
6033/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6034/// 4 elements, and match them with several different shuffle types.
6035static SDValue
6036LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6037  SDValue V1 = SVOp->getOperand(0);
6038  SDValue V2 = SVOp->getOperand(1);
6039  DebugLoc dl = SVOp->getDebugLoc();
6040  EVT VT = SVOp->getValueType(0);
6041
6042  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6043
6044  SmallVector<std::pair<int, int>, 8> Locs;
6045  Locs.resize(4);
6046  SmallVector<int, 8> Mask1(4U, -1);
6047  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6048
6049  unsigned NumHi = 0;
6050  unsigned NumLo = 0;
6051  for (unsigned i = 0; i != 4; ++i) {
6052    int Idx = PermMask[i];
6053    if (Idx < 0) {
6054      Locs[i] = std::make_pair(-1, -1);
6055    } else {
6056      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6057      if (Idx < 4) {
6058        Locs[i] = std::make_pair(0, NumLo);
6059        Mask1[NumLo] = Idx;
6060        NumLo++;
6061      } else {
6062        Locs[i] = std::make_pair(1, NumHi);
6063        if (2+NumHi < 4)
6064          Mask1[2+NumHi] = Idx;
6065        NumHi++;
6066      }
6067    }
6068  }
6069
6070  if (NumLo <= 2 && NumHi <= 2) {
6071    // If no more than two elements come from either vector. This can be
6072    // implemented with two shuffles. First shuffle gather the elements.
6073    // The second shuffle, which takes the first shuffle as both of its
6074    // vector operands, put the elements into the right order.
6075    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6076
6077    SmallVector<int, 8> Mask2(4U, -1);
6078
6079    for (unsigned i = 0; i != 4; ++i) {
6080      if (Locs[i].first == -1)
6081        continue;
6082      else {
6083        unsigned Idx = (i < 2) ? 0 : 4;
6084        Idx += Locs[i].first * 2 + Locs[i].second;
6085        Mask2[i] = Idx;
6086      }
6087    }
6088
6089    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6090  } else if (NumLo == 3 || NumHi == 3) {
6091    // Otherwise, we must have three elements from one vector, call it X, and
6092    // one element from the other, call it Y.  First, use a shufps to build an
6093    // intermediate vector with the one element from Y and the element from X
6094    // that will be in the same half in the final destination (the indexes don't
6095    // matter). Then, use a shufps to build the final vector, taking the half
6096    // containing the element from Y from the intermediate, and the other half
6097    // from X.
6098    if (NumHi == 3) {
6099      // Normalize it so the 3 elements come from V1.
6100      CommuteVectorShuffleMask(PermMask, 4);
6101      std::swap(V1, V2);
6102    }
6103
6104    // Find the element from V2.
6105    unsigned HiIndex;
6106    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6107      int Val = PermMask[HiIndex];
6108      if (Val < 0)
6109        continue;
6110      if (Val >= 4)
6111        break;
6112    }
6113
6114    Mask1[0] = PermMask[HiIndex];
6115    Mask1[1] = -1;
6116    Mask1[2] = PermMask[HiIndex^1];
6117    Mask1[3] = -1;
6118    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6119
6120    if (HiIndex >= 2) {
6121      Mask1[0] = PermMask[0];
6122      Mask1[1] = PermMask[1];
6123      Mask1[2] = HiIndex & 1 ? 6 : 4;
6124      Mask1[3] = HiIndex & 1 ? 4 : 6;
6125      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6126    } else {
6127      Mask1[0] = HiIndex & 1 ? 2 : 0;
6128      Mask1[1] = HiIndex & 1 ? 0 : 2;
6129      Mask1[2] = PermMask[2];
6130      Mask1[3] = PermMask[3];
6131      if (Mask1[2] >= 0)
6132        Mask1[2] += 4;
6133      if (Mask1[3] >= 0)
6134        Mask1[3] += 4;
6135      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6136    }
6137  }
6138
6139  // Break it into (shuffle shuffle_hi, shuffle_lo).
6140  Locs.clear();
6141  Locs.resize(4);
6142  SmallVector<int,8> LoMask(4U, -1);
6143  SmallVector<int,8> HiMask(4U, -1);
6144
6145  SmallVector<int,8> *MaskPtr = &LoMask;
6146  unsigned MaskIdx = 0;
6147  unsigned LoIdx = 0;
6148  unsigned HiIdx = 2;
6149  for (unsigned i = 0; i != 4; ++i) {
6150    if (i == 2) {
6151      MaskPtr = &HiMask;
6152      MaskIdx = 1;
6153      LoIdx = 0;
6154      HiIdx = 2;
6155    }
6156    int Idx = PermMask[i];
6157    if (Idx < 0) {
6158      Locs[i] = std::make_pair(-1, -1);
6159    } else if (Idx < 4) {
6160      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6161      (*MaskPtr)[LoIdx] = Idx;
6162      LoIdx++;
6163    } else {
6164      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6165      (*MaskPtr)[HiIdx] = Idx;
6166      HiIdx++;
6167    }
6168  }
6169
6170  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6171  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6172  SmallVector<int, 8> MaskOps;
6173  for (unsigned i = 0; i != 4; ++i) {
6174    if (Locs[i].first == -1) {
6175      MaskOps.push_back(-1);
6176    } else {
6177      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6178      MaskOps.push_back(Idx);
6179    }
6180  }
6181  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6182}
6183
6184static bool MayFoldVectorLoad(SDValue V) {
6185  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6186    V = V.getOperand(0);
6187  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6188    V = V.getOperand(0);
6189  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6190      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6191    // BUILD_VECTOR (load), undef
6192    V = V.getOperand(0);
6193  if (MayFoldLoad(V))
6194    return true;
6195  return false;
6196}
6197
6198// FIXME: the version above should always be used. Since there's
6199// a bug where several vector shuffles can't be folded because the
6200// DAG is not updated during lowering and a node claims to have two
6201// uses while it only has one, use this version, and let isel match
6202// another instruction if the load really happens to have more than
6203// one use. Remove this version after this bug get fixed.
6204// rdar://8434668, PR8156
6205static bool RelaxedMayFoldVectorLoad(SDValue V) {
6206  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6207    V = V.getOperand(0);
6208  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6209    V = V.getOperand(0);
6210  if (ISD::isNormalLoad(V.getNode()))
6211    return true;
6212  return false;
6213}
6214
6215/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6216/// a vector extract, and if both can be later optimized into a single load.
6217/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6218/// here because otherwise a target specific shuffle node is going to be
6219/// emitted for this shuffle, and the optimization not done.
6220/// FIXME: This is probably not the best approach, but fix the problem
6221/// until the right path is decided.
6222static
6223bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6224                                         const TargetLowering &TLI) {
6225  EVT VT = V.getValueType();
6226  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6227
6228  // Be sure that the vector shuffle is present in a pattern like this:
6229  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6230  if (!V.hasOneUse())
6231    return false;
6232
6233  SDNode *N = *V.getNode()->use_begin();
6234  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6235    return false;
6236
6237  SDValue EltNo = N->getOperand(1);
6238  if (!isa<ConstantSDNode>(EltNo))
6239    return false;
6240
6241  // If the bit convert changed the number of elements, it is unsafe
6242  // to examine the mask.
6243  bool HasShuffleIntoBitcast = false;
6244  if (V.getOpcode() == ISD::BITCAST) {
6245    EVT SrcVT = V.getOperand(0).getValueType();
6246    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6247      return false;
6248    V = V.getOperand(0);
6249    HasShuffleIntoBitcast = true;
6250  }
6251
6252  // Select the input vector, guarding against out of range extract vector.
6253  unsigned NumElems = VT.getVectorNumElements();
6254  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6255  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6256  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6257
6258  // If we are accessing the upper part of a YMM register
6259  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6260  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6261  // because the legalization of N did not happen yet.
6262  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6263    return false;
6264
6265  // Skip one more bit_convert if necessary
6266  if (V.getOpcode() == ISD::BITCAST)
6267    V = V.getOperand(0);
6268
6269  if (!ISD::isNormalLoad(V.getNode()))
6270    return false;
6271
6272  // Is the original load suitable?
6273  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6274
6275  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6276    return false;
6277
6278  if (!HasShuffleIntoBitcast)
6279    return true;
6280
6281  // If there's a bitcast before the shuffle, check if the load type and
6282  // alignment is valid.
6283  unsigned Align = LN0->getAlignment();
6284  unsigned NewAlign =
6285    TLI.getTargetData()->getABITypeAlignment(
6286                                  VT.getTypeForEVT(*DAG.getContext()));
6287
6288  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6289    return false;
6290
6291  return true;
6292}
6293
6294static
6295SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6296  EVT VT = Op.getValueType();
6297
6298  // Canonizalize to v2f64.
6299  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6300  return DAG.getNode(ISD::BITCAST, dl, VT,
6301                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6302                                          V1, DAG));
6303}
6304
6305static
6306SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6307                        bool HasSSE2) {
6308  SDValue V1 = Op.getOperand(0);
6309  SDValue V2 = Op.getOperand(1);
6310  EVT VT = Op.getValueType();
6311
6312  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6313
6314  if (HasSSE2 && VT == MVT::v2f64)
6315    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6316
6317  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6318  return DAG.getNode(ISD::BITCAST, dl, VT,
6319                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6320                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6321                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6322}
6323
6324static
6325SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6326  SDValue V1 = Op.getOperand(0);
6327  SDValue V2 = Op.getOperand(1);
6328  EVT VT = Op.getValueType();
6329
6330  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6331         "unsupported shuffle type");
6332
6333  if (V2.getOpcode() == ISD::UNDEF)
6334    V2 = V1;
6335
6336  // v4i32 or v4f32
6337  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6338}
6339
6340static
6341SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6342  SDValue V1 = Op.getOperand(0);
6343  SDValue V2 = Op.getOperand(1);
6344  EVT VT = Op.getValueType();
6345  unsigned NumElems = VT.getVectorNumElements();
6346
6347  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6348  // operand of these instructions is only memory, so check if there's a
6349  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6350  // same masks.
6351  bool CanFoldLoad = false;
6352
6353  // Trivial case, when V2 comes from a load.
6354  if (MayFoldVectorLoad(V2))
6355    CanFoldLoad = true;
6356
6357  // When V1 is a load, it can be folded later into a store in isel, example:
6358  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6359  //    turns into:
6360  //  (MOVLPSmr addr:$src1, VR128:$src2)
6361  // So, recognize this potential and also use MOVLPS or MOVLPD
6362  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6363    CanFoldLoad = true;
6364
6365  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6366  if (CanFoldLoad) {
6367    if (HasSSE2 && NumElems == 2)
6368      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6369
6370    if (NumElems == 4)
6371      // If we don't care about the second element, procede to use movss.
6372      if (SVOp->getMaskElt(1) != -1)
6373        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6374  }
6375
6376  // movl and movlp will both match v2i64, but v2i64 is never matched by
6377  // movl earlier because we make it strict to avoid messing with the movlp load
6378  // folding logic (see the code above getMOVLP call). Match it here then,
6379  // this is horrible, but will stay like this until we move all shuffle
6380  // matching to x86 specific nodes. Note that for the 1st condition all
6381  // types are matched with movsd.
6382  if (HasSSE2) {
6383    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6384    // as to remove this logic from here, as much as possible
6385    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6386      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6387    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6388  }
6389
6390  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6391
6392  // Invert the operand order and use SHUFPS to match it.
6393  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6394                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6395}
6396
6397static
6398SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6399                               const TargetLowering &TLI,
6400                               const X86Subtarget *Subtarget) {
6401  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6402  EVT VT = Op.getValueType();
6403  DebugLoc dl = Op.getDebugLoc();
6404  SDValue V1 = Op.getOperand(0);
6405  SDValue V2 = Op.getOperand(1);
6406
6407  if (isZeroShuffle(SVOp))
6408    return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6409                         DAG, dl);
6410
6411  // Handle splat operations
6412  if (SVOp->isSplat()) {
6413    unsigned NumElem = VT.getVectorNumElements();
6414    int Size = VT.getSizeInBits();
6415    // Special case, this is the only place now where it's allowed to return
6416    // a vector_shuffle operation without using a target specific node, because
6417    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6418    // this be moved to DAGCombine instead?
6419    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6420      return Op;
6421
6422    // Use vbroadcast whenever the splat comes from a foldable load
6423    SDValue LD = isVectorBroadcast(Op, Subtarget);
6424    if (LD.getNode())
6425      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6426
6427    // Handle splats by matching through known shuffle masks
6428    if ((Size == 128 && NumElem <= 4) ||
6429        (Size == 256 && NumElem < 8))
6430      return SDValue();
6431
6432    // All remaning splats are promoted to target supported vector shuffles.
6433    return PromoteSplat(SVOp, DAG);
6434  }
6435
6436  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6437  // do it!
6438  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6439    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6440    if (NewOp.getNode())
6441      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6442  } else if ((VT == MVT::v4i32 ||
6443             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6444    // FIXME: Figure out a cleaner way to do this.
6445    // Try to make use of movq to zero out the top part.
6446    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6447      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6448      if (NewOp.getNode()) {
6449        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6450          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6451                              DAG, Subtarget, dl);
6452      }
6453    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6454      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6455      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6456        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6457                            DAG, Subtarget, dl);
6458    }
6459  }
6460  return SDValue();
6461}
6462
6463SDValue
6464X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6465  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6466  SDValue V1 = Op.getOperand(0);
6467  SDValue V2 = Op.getOperand(1);
6468  EVT VT = Op.getValueType();
6469  DebugLoc dl = Op.getDebugLoc();
6470  unsigned NumElems = VT.getVectorNumElements();
6471  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6472  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6473  bool V1IsSplat = false;
6474  bool V2IsSplat = false;
6475  bool HasSSE2 = Subtarget->hasSSE2();
6476  bool HasAVX    = Subtarget->hasAVX();
6477  bool HasAVX2   = Subtarget->hasAVX2();
6478  MachineFunction &MF = DAG.getMachineFunction();
6479  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6480
6481  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6482
6483  if (V1IsUndef && V2IsUndef)
6484    return DAG.getUNDEF(VT);
6485
6486  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6487
6488  // Vector shuffle lowering takes 3 steps:
6489  //
6490  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6491  //    narrowing and commutation of operands should be handled.
6492  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6493  //    shuffle nodes.
6494  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6495  //    so the shuffle can be broken into other shuffles and the legalizer can
6496  //    try the lowering again.
6497  //
6498  // The general idea is that no vector_shuffle operation should be left to
6499  // be matched during isel, all of them must be converted to a target specific
6500  // node here.
6501
6502  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6503  // narrowing and commutation of operands should be handled. The actual code
6504  // doesn't include all of those, work in progress...
6505  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6506  if (NewOp.getNode())
6507    return NewOp;
6508
6509  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6510  // unpckh_undef). Only use pshufd if speed is more important than size.
6511  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6512    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6513  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6514    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6515
6516  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6517      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6518    return getMOVDDup(Op, dl, V1, DAG);
6519
6520  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6521    return getMOVHighToLow(Op, dl, DAG);
6522
6523  // Use to match splats
6524  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6525      (VT == MVT::v2f64 || VT == MVT::v2i64))
6526    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6527
6528  if (X86::isPSHUFDMask(SVOp)) {
6529    // The actual implementation will match the mask in the if above and then
6530    // during isel it can match several different instructions, not only pshufd
6531    // as its name says, sad but true, emulate the behavior for now...
6532    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6533        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6534
6535    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6536
6537    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6538      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6539
6540    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6541                                TargetMask, DAG);
6542  }
6543
6544  // Check if this can be converted into a logical shift.
6545  bool isLeft = false;
6546  unsigned ShAmt = 0;
6547  SDValue ShVal;
6548  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6549  if (isShift && ShVal.hasOneUse()) {
6550    // If the shifted value has multiple uses, it may be cheaper to use
6551    // v_set0 + movlhps or movhlps, etc.
6552    EVT EltVT = VT.getVectorElementType();
6553    ShAmt *= EltVT.getSizeInBits();
6554    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6555  }
6556
6557  if (X86::isMOVLMask(SVOp)) {
6558    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6559      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6560    if (!X86::isMOVLPMask(SVOp)) {
6561      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6562        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6563
6564      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6565        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6566    }
6567  }
6568
6569  // FIXME: fold these into legal mask.
6570  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6571    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6572
6573  if (X86::isMOVHLPSMask(SVOp))
6574    return getMOVHighToLow(Op, dl, DAG);
6575
6576  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6577    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6578
6579  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6580    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6581
6582  if (X86::isMOVLPMask(SVOp))
6583    return getMOVLP(Op, dl, DAG, HasSSE2);
6584
6585  if (ShouldXformToMOVHLPS(SVOp) ||
6586      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6587    return CommuteVectorShuffle(SVOp, DAG);
6588
6589  if (isShift) {
6590    // No better options. Use a vshldq / vsrldq.
6591    EVT EltVT = VT.getVectorElementType();
6592    ShAmt *= EltVT.getSizeInBits();
6593    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6594  }
6595
6596  bool Commuted = false;
6597  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6598  // 1,1,1,1 -> v8i16 though.
6599  V1IsSplat = isSplatVector(V1.getNode());
6600  V2IsSplat = isSplatVector(V2.getNode());
6601
6602  // Canonicalize the splat or undef, if present, to be on the RHS.
6603  if (V1IsSplat && !V2IsSplat) {
6604    Op = CommuteVectorShuffle(SVOp, DAG);
6605    SVOp = cast<ShuffleVectorSDNode>(Op);
6606    V1 = SVOp->getOperand(0);
6607    V2 = SVOp->getOperand(1);
6608    std::swap(V1IsSplat, V2IsSplat);
6609    Commuted = true;
6610  }
6611
6612  ArrayRef<int> M = SVOp->getMask();
6613
6614  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6615    // Shuffling low element of v1 into undef, just return v1.
6616    if (V2IsUndef)
6617      return V1;
6618    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6619    // the instruction selector will not match, so get a canonical MOVL with
6620    // swapped operands to undo the commute.
6621    return getMOVL(DAG, dl, VT, V2, V1);
6622  }
6623
6624  if (isUNPCKLMask(M, VT, HasAVX2))
6625    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6626
6627  if (isUNPCKHMask(M, VT, HasAVX2))
6628    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6629
6630  if (V2IsSplat) {
6631    // Normalize mask so all entries that point to V2 points to its first
6632    // element then try to match unpck{h|l} again. If match, return a
6633    // new vector_shuffle with the corrected mask.
6634    SDValue NewMask = NormalizeMask(SVOp, DAG);
6635    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6636    if (NSVOp != SVOp) {
6637      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6638        return NewMask;
6639      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6640        return NewMask;
6641      }
6642    }
6643  }
6644
6645  if (Commuted) {
6646    // Commute is back and try unpck* again.
6647    // FIXME: this seems wrong.
6648    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6649    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6650
6651    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6652      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6653
6654    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6655      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6656  }
6657
6658  // Normalize the node to match x86 shuffle ops if needed
6659  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6660    return CommuteVectorShuffle(SVOp, DAG);
6661
6662  // The checks below are all present in isShuffleMaskLegal, but they are
6663  // inlined here right now to enable us to directly emit target specific
6664  // nodes, and remove one by one until they don't return Op anymore.
6665
6666  if (isPALIGNRMask(M, VT, Subtarget))
6667    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6668                                getShufflePALIGNRImmediate(SVOp),
6669                                DAG);
6670
6671  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6672      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6673    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6674      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6675  }
6676
6677  if (isPSHUFHWMask(M, VT))
6678    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6679                                X86::getShufflePSHUFHWImmediate(SVOp),
6680                                DAG);
6681
6682  if (isPSHUFLWMask(M, VT))
6683    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6684                                X86::getShufflePSHUFLWImmediate(SVOp),
6685                                DAG);
6686
6687  if (isSHUFPMask(M, VT, HasAVX))
6688    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6689                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6690
6691  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6692    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6693  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6694    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6695
6696  //===--------------------------------------------------------------------===//
6697  // Generate target specific nodes for 128 or 256-bit shuffles only
6698  // supported in the AVX instruction set.
6699  //
6700
6701  // Handle VMOVDDUPY permutations
6702  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6703    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6704
6705  // Handle VPERMILPS/D* permutations
6706  if (isVPERMILPMask(M, VT, HasAVX))
6707    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6708                                getShuffleVPERMILPImmediate(SVOp), DAG);
6709
6710  // Handle VPERM2F128/VPERM2I128 permutations
6711  if (isVPERM2X128Mask(M, VT, HasAVX))
6712    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6713                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6714
6715  //===--------------------------------------------------------------------===//
6716  // Since no target specific shuffle was selected for this generic one,
6717  // lower it into other known shuffles. FIXME: this isn't true yet, but
6718  // this is the plan.
6719  //
6720
6721  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6722  if (VT == MVT::v8i16) {
6723    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6724    if (NewOp.getNode())
6725      return NewOp;
6726  }
6727
6728  if (VT == MVT::v16i8) {
6729    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6730    if (NewOp.getNode())
6731      return NewOp;
6732  }
6733
6734  // Handle all 128-bit wide vectors with 4 elements, and match them with
6735  // several different shuffle types.
6736  if (NumElems == 4 && VT.getSizeInBits() == 128)
6737    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6738
6739  // Handle general 256-bit shuffles
6740  if (VT.is256BitVector())
6741    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6742
6743  return SDValue();
6744}
6745
6746SDValue
6747X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6748                                                SelectionDAG &DAG) const {
6749  EVT VT = Op.getValueType();
6750  DebugLoc dl = Op.getDebugLoc();
6751
6752  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6753    return SDValue();
6754
6755  if (VT.getSizeInBits() == 8) {
6756    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6757                                    Op.getOperand(0), Op.getOperand(1));
6758    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6759                                    DAG.getValueType(VT));
6760    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6761  } else if (VT.getSizeInBits() == 16) {
6762    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6763    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6764    if (Idx == 0)
6765      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6766                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6767                                     DAG.getNode(ISD::BITCAST, dl,
6768                                                 MVT::v4i32,
6769                                                 Op.getOperand(0)),
6770                                     Op.getOperand(1)));
6771    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6772                                    Op.getOperand(0), Op.getOperand(1));
6773    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6774                                    DAG.getValueType(VT));
6775    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6776  } else if (VT == MVT::f32) {
6777    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6778    // the result back to FR32 register. It's only worth matching if the
6779    // result has a single use which is a store or a bitcast to i32.  And in
6780    // the case of a store, it's not worth it if the index is a constant 0,
6781    // because a MOVSSmr can be used instead, which is smaller and faster.
6782    if (!Op.hasOneUse())
6783      return SDValue();
6784    SDNode *User = *Op.getNode()->use_begin();
6785    if ((User->getOpcode() != ISD::STORE ||
6786         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6787          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6788        (User->getOpcode() != ISD::BITCAST ||
6789         User->getValueType(0) != MVT::i32))
6790      return SDValue();
6791    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6792                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6793                                              Op.getOperand(0)),
6794                                              Op.getOperand(1));
6795    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6796  } else if (VT == MVT::i32 || VT == MVT::i64) {
6797    // ExtractPS/pextrq works with constant index.
6798    if (isa<ConstantSDNode>(Op.getOperand(1)))
6799      return Op;
6800  }
6801  return SDValue();
6802}
6803
6804
6805SDValue
6806X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6807                                           SelectionDAG &DAG) const {
6808  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6809    return SDValue();
6810
6811  SDValue Vec = Op.getOperand(0);
6812  EVT VecVT = Vec.getValueType();
6813
6814  // If this is a 256-bit vector result, first extract the 128-bit vector and
6815  // then extract the element from the 128-bit vector.
6816  if (VecVT.getSizeInBits() == 256) {
6817    DebugLoc dl = Op.getNode()->getDebugLoc();
6818    unsigned NumElems = VecVT.getVectorNumElements();
6819    SDValue Idx = Op.getOperand(1);
6820    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6821
6822    // Get the 128-bit vector.
6823    bool Upper = IdxVal >= NumElems/2;
6824    Vec = Extract128BitVector(Vec,
6825                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6826
6827    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6828                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6829  }
6830
6831  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6832
6833  if (Subtarget->hasSSE41()) {
6834    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6835    if (Res.getNode())
6836      return Res;
6837  }
6838
6839  EVT VT = Op.getValueType();
6840  DebugLoc dl = Op.getDebugLoc();
6841  // TODO: handle v16i8.
6842  if (VT.getSizeInBits() == 16) {
6843    SDValue Vec = Op.getOperand(0);
6844    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6845    if (Idx == 0)
6846      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6847                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6848                                     DAG.getNode(ISD::BITCAST, dl,
6849                                                 MVT::v4i32, Vec),
6850                                     Op.getOperand(1)));
6851    // Transform it so it match pextrw which produces a 32-bit result.
6852    EVT EltVT = MVT::i32;
6853    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6854                                    Op.getOperand(0), Op.getOperand(1));
6855    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6856                                    DAG.getValueType(VT));
6857    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6858  } else if (VT.getSizeInBits() == 32) {
6859    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6860    if (Idx == 0)
6861      return Op;
6862
6863    // SHUFPS the element to the lowest double word, then movss.
6864    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6865    EVT VVT = Op.getOperand(0).getValueType();
6866    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6867                                       DAG.getUNDEF(VVT), Mask);
6868    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6869                       DAG.getIntPtrConstant(0));
6870  } else if (VT.getSizeInBits() == 64) {
6871    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6872    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6873    //        to match extract_elt for f64.
6874    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6875    if (Idx == 0)
6876      return Op;
6877
6878    // UNPCKHPD the element to the lowest double word, then movsd.
6879    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6880    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6881    int Mask[2] = { 1, -1 };
6882    EVT VVT = Op.getOperand(0).getValueType();
6883    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6884                                       DAG.getUNDEF(VVT), Mask);
6885    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6886                       DAG.getIntPtrConstant(0));
6887  }
6888
6889  return SDValue();
6890}
6891
6892SDValue
6893X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6894                                               SelectionDAG &DAG) const {
6895  EVT VT = Op.getValueType();
6896  EVT EltVT = VT.getVectorElementType();
6897  DebugLoc dl = Op.getDebugLoc();
6898
6899  SDValue N0 = Op.getOperand(0);
6900  SDValue N1 = Op.getOperand(1);
6901  SDValue N2 = Op.getOperand(2);
6902
6903  if (VT.getSizeInBits() == 256)
6904    return SDValue();
6905
6906  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6907      isa<ConstantSDNode>(N2)) {
6908    unsigned Opc;
6909    if (VT == MVT::v8i16)
6910      Opc = X86ISD::PINSRW;
6911    else if (VT == MVT::v16i8)
6912      Opc = X86ISD::PINSRB;
6913    else
6914      Opc = X86ISD::PINSRB;
6915
6916    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6917    // argument.
6918    if (N1.getValueType() != MVT::i32)
6919      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6920    if (N2.getValueType() != MVT::i32)
6921      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6922    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6923  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6924    // Bits [7:6] of the constant are the source select.  This will always be
6925    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6926    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6927    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6928    // Bits [5:4] of the constant are the destination select.  This is the
6929    //  value of the incoming immediate.
6930    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6931    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6932    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6933    // Create this as a scalar to vector..
6934    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6935    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6936  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6937             isa<ConstantSDNode>(N2)) {
6938    // PINSR* works with constant index.
6939    return Op;
6940  }
6941  return SDValue();
6942}
6943
6944SDValue
6945X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6946  EVT VT = Op.getValueType();
6947  EVT EltVT = VT.getVectorElementType();
6948
6949  DebugLoc dl = Op.getDebugLoc();
6950  SDValue N0 = Op.getOperand(0);
6951  SDValue N1 = Op.getOperand(1);
6952  SDValue N2 = Op.getOperand(2);
6953
6954  // If this is a 256-bit vector result, first extract the 128-bit vector,
6955  // insert the element into the extracted half and then place it back.
6956  if (VT.getSizeInBits() == 256) {
6957    if (!isa<ConstantSDNode>(N2))
6958      return SDValue();
6959
6960    // Get the desired 128-bit vector half.
6961    unsigned NumElems = VT.getVectorNumElements();
6962    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6963    bool Upper = IdxVal >= NumElems/2;
6964    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6965    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6966
6967    // Insert the element into the desired half.
6968    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6969                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6970
6971    // Insert the changed part back to the 256-bit vector
6972    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6973  }
6974
6975  if (Subtarget->hasSSE41())
6976    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6977
6978  if (EltVT == MVT::i8)
6979    return SDValue();
6980
6981  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6982    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6983    // as its second argument.
6984    if (N1.getValueType() != MVT::i32)
6985      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6986    if (N2.getValueType() != MVT::i32)
6987      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6988    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6989  }
6990  return SDValue();
6991}
6992
6993SDValue
6994X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6995  LLVMContext *Context = DAG.getContext();
6996  DebugLoc dl = Op.getDebugLoc();
6997  EVT OpVT = Op.getValueType();
6998
6999  // If this is a 256-bit vector result, first insert into a 128-bit
7000  // vector and then insert into the 256-bit vector.
7001  if (OpVT.getSizeInBits() > 128) {
7002    // Insert into a 128-bit vector.
7003    EVT VT128 = EVT::getVectorVT(*Context,
7004                                 OpVT.getVectorElementType(),
7005                                 OpVT.getVectorNumElements() / 2);
7006
7007    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7008
7009    // Insert the 128-bit vector.
7010    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7011                              DAG.getConstant(0, MVT::i32),
7012                              DAG, dl);
7013  }
7014
7015  if (Op.getValueType() == MVT::v1i64 &&
7016      Op.getOperand(0).getValueType() == MVT::i64)
7017    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7018
7019  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7020  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7021         "Expected an SSE type!");
7022  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7023                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7024}
7025
7026// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7027// a simple subregister reference or explicit instructions to grab
7028// upper bits of a vector.
7029SDValue
7030X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7031  if (Subtarget->hasAVX()) {
7032    DebugLoc dl = Op.getNode()->getDebugLoc();
7033    SDValue Vec = Op.getNode()->getOperand(0);
7034    SDValue Idx = Op.getNode()->getOperand(1);
7035
7036    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7037        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7038        return Extract128BitVector(Vec, Idx, DAG, dl);
7039    }
7040  }
7041  return SDValue();
7042}
7043
7044// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7045// simple superregister reference or explicit instructions to insert
7046// the upper bits of a vector.
7047SDValue
7048X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7049  if (Subtarget->hasAVX()) {
7050    DebugLoc dl = Op.getNode()->getDebugLoc();
7051    SDValue Vec = Op.getNode()->getOperand(0);
7052    SDValue SubVec = Op.getNode()->getOperand(1);
7053    SDValue Idx = Op.getNode()->getOperand(2);
7054
7055    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7056        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7057      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7058    }
7059  }
7060  return SDValue();
7061}
7062
7063// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7064// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7065// one of the above mentioned nodes. It has to be wrapped because otherwise
7066// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7067// be used to form addressing mode. These wrapped nodes will be selected
7068// into MOV32ri.
7069SDValue
7070X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7071  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7072
7073  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7074  // global base reg.
7075  unsigned char OpFlag = 0;
7076  unsigned WrapperKind = X86ISD::Wrapper;
7077  CodeModel::Model M = getTargetMachine().getCodeModel();
7078
7079  if (Subtarget->isPICStyleRIPRel() &&
7080      (M == CodeModel::Small || M == CodeModel::Kernel))
7081    WrapperKind = X86ISD::WrapperRIP;
7082  else if (Subtarget->isPICStyleGOT())
7083    OpFlag = X86II::MO_GOTOFF;
7084  else if (Subtarget->isPICStyleStubPIC())
7085    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7086
7087  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7088                                             CP->getAlignment(),
7089                                             CP->getOffset(), OpFlag);
7090  DebugLoc DL = CP->getDebugLoc();
7091  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7092  // With PIC, the address is actually $g + Offset.
7093  if (OpFlag) {
7094    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7095                         DAG.getNode(X86ISD::GlobalBaseReg,
7096                                     DebugLoc(), getPointerTy()),
7097                         Result);
7098  }
7099
7100  return Result;
7101}
7102
7103SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7104  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7105
7106  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7107  // global base reg.
7108  unsigned char OpFlag = 0;
7109  unsigned WrapperKind = X86ISD::Wrapper;
7110  CodeModel::Model M = getTargetMachine().getCodeModel();
7111
7112  if (Subtarget->isPICStyleRIPRel() &&
7113      (M == CodeModel::Small || M == CodeModel::Kernel))
7114    WrapperKind = X86ISD::WrapperRIP;
7115  else if (Subtarget->isPICStyleGOT())
7116    OpFlag = X86II::MO_GOTOFF;
7117  else if (Subtarget->isPICStyleStubPIC())
7118    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7119
7120  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7121                                          OpFlag);
7122  DebugLoc DL = JT->getDebugLoc();
7123  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7124
7125  // With PIC, the address is actually $g + Offset.
7126  if (OpFlag)
7127    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7128                         DAG.getNode(X86ISD::GlobalBaseReg,
7129                                     DebugLoc(), getPointerTy()),
7130                         Result);
7131
7132  return Result;
7133}
7134
7135SDValue
7136X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7137  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7138
7139  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7140  // global base reg.
7141  unsigned char OpFlag = 0;
7142  unsigned WrapperKind = X86ISD::Wrapper;
7143  CodeModel::Model M = getTargetMachine().getCodeModel();
7144
7145  if (Subtarget->isPICStyleRIPRel() &&
7146      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7147    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7148      OpFlag = X86II::MO_GOTPCREL;
7149    WrapperKind = X86ISD::WrapperRIP;
7150  } else if (Subtarget->isPICStyleGOT()) {
7151    OpFlag = X86II::MO_GOT;
7152  } else if (Subtarget->isPICStyleStubPIC()) {
7153    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7154  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7155    OpFlag = X86II::MO_DARWIN_NONLAZY;
7156  }
7157
7158  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7159
7160  DebugLoc DL = Op.getDebugLoc();
7161  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7162
7163
7164  // With PIC, the address is actually $g + Offset.
7165  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7166      !Subtarget->is64Bit()) {
7167    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7168                         DAG.getNode(X86ISD::GlobalBaseReg,
7169                                     DebugLoc(), getPointerTy()),
7170                         Result);
7171  }
7172
7173  // For symbols that require a load from a stub to get the address, emit the
7174  // load.
7175  if (isGlobalStubReference(OpFlag))
7176    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7177                         MachinePointerInfo::getGOT(), false, false, false, 0);
7178
7179  return Result;
7180}
7181
7182SDValue
7183X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7184  // Create the TargetBlockAddressAddress node.
7185  unsigned char OpFlags =
7186    Subtarget->ClassifyBlockAddressReference();
7187  CodeModel::Model M = getTargetMachine().getCodeModel();
7188  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7189  DebugLoc dl = Op.getDebugLoc();
7190  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7191                                       /*isTarget=*/true, OpFlags);
7192
7193  if (Subtarget->isPICStyleRIPRel() &&
7194      (M == CodeModel::Small || M == CodeModel::Kernel))
7195    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7196  else
7197    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7198
7199  // With PIC, the address is actually $g + Offset.
7200  if (isGlobalRelativeToPICBase(OpFlags)) {
7201    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7202                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7203                         Result);
7204  }
7205
7206  return Result;
7207}
7208
7209SDValue
7210X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7211                                      int64_t Offset,
7212                                      SelectionDAG &DAG) const {
7213  // Create the TargetGlobalAddress node, folding in the constant
7214  // offset if it is legal.
7215  unsigned char OpFlags =
7216    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7217  CodeModel::Model M = getTargetMachine().getCodeModel();
7218  SDValue Result;
7219  if (OpFlags == X86II::MO_NO_FLAG &&
7220      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7221    // A direct static reference to a global.
7222    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7223    Offset = 0;
7224  } else {
7225    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7226  }
7227
7228  if (Subtarget->isPICStyleRIPRel() &&
7229      (M == CodeModel::Small || M == CodeModel::Kernel))
7230    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7231  else
7232    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7233
7234  // With PIC, the address is actually $g + Offset.
7235  if (isGlobalRelativeToPICBase(OpFlags)) {
7236    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7237                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7238                         Result);
7239  }
7240
7241  // For globals that require a load from a stub to get the address, emit the
7242  // load.
7243  if (isGlobalStubReference(OpFlags))
7244    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7245                         MachinePointerInfo::getGOT(), false, false, false, 0);
7246
7247  // If there was a non-zero offset that we didn't fold, create an explicit
7248  // addition for it.
7249  if (Offset != 0)
7250    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7251                         DAG.getConstant(Offset, getPointerTy()));
7252
7253  return Result;
7254}
7255
7256SDValue
7257X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7258  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7259  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7260  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7261}
7262
7263static SDValue
7264GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7265           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7266           unsigned char OperandFlags) {
7267  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7268  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7269  DebugLoc dl = GA->getDebugLoc();
7270  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7271                                           GA->getValueType(0),
7272                                           GA->getOffset(),
7273                                           OperandFlags);
7274  if (InFlag) {
7275    SDValue Ops[] = { Chain,  TGA, *InFlag };
7276    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7277  } else {
7278    SDValue Ops[]  = { Chain, TGA };
7279    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7280  }
7281
7282  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7283  MFI->setAdjustsStack(true);
7284
7285  SDValue Flag = Chain.getValue(1);
7286  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7287}
7288
7289// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7290static SDValue
7291LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7292                                const EVT PtrVT) {
7293  SDValue InFlag;
7294  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7295  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7296                                     DAG.getNode(X86ISD::GlobalBaseReg,
7297                                                 DebugLoc(), PtrVT), InFlag);
7298  InFlag = Chain.getValue(1);
7299
7300  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7301}
7302
7303// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7304static SDValue
7305LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7306                                const EVT PtrVT) {
7307  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7308                    X86::RAX, X86II::MO_TLSGD);
7309}
7310
7311// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7312// "local exec" model.
7313static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7314                                   const EVT PtrVT, TLSModel::Model model,
7315                                   bool is64Bit) {
7316  DebugLoc dl = GA->getDebugLoc();
7317
7318  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7319  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7320                                                         is64Bit ? 257 : 256));
7321
7322  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7323                                      DAG.getIntPtrConstant(0),
7324                                      MachinePointerInfo(Ptr),
7325                                      false, false, false, 0);
7326
7327  unsigned char OperandFlags = 0;
7328  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7329  // initialexec.
7330  unsigned WrapperKind = X86ISD::Wrapper;
7331  if (model == TLSModel::LocalExec) {
7332    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7333  } else if (is64Bit) {
7334    assert(model == TLSModel::InitialExec);
7335    OperandFlags = X86II::MO_GOTTPOFF;
7336    WrapperKind = X86ISD::WrapperRIP;
7337  } else {
7338    assert(model == TLSModel::InitialExec);
7339    OperandFlags = X86II::MO_INDNTPOFF;
7340  }
7341
7342  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7343  // exec)
7344  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7345                                           GA->getValueType(0),
7346                                           GA->getOffset(), OperandFlags);
7347  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7348
7349  if (model == TLSModel::InitialExec)
7350    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7351                         MachinePointerInfo::getGOT(), false, false, false, 0);
7352
7353  // The address of the thread local variable is the add of the thread
7354  // pointer with the offset of the variable.
7355  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7356}
7357
7358SDValue
7359X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7360
7361  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7362  const GlobalValue *GV = GA->getGlobal();
7363
7364  if (Subtarget->isTargetELF()) {
7365    // TODO: implement the "local dynamic" model
7366    // TODO: implement the "initial exec"model for pic executables
7367
7368    // If GV is an alias then use the aliasee for determining
7369    // thread-localness.
7370    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7371      GV = GA->resolveAliasedGlobal(false);
7372
7373    TLSModel::Model model
7374      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7375
7376    switch (model) {
7377      case TLSModel::GeneralDynamic:
7378      case TLSModel::LocalDynamic: // not implemented
7379        if (Subtarget->is64Bit())
7380          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7381        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7382
7383      case TLSModel::InitialExec:
7384      case TLSModel::LocalExec:
7385        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7386                                   Subtarget->is64Bit());
7387    }
7388  } else if (Subtarget->isTargetDarwin()) {
7389    // Darwin only has one model of TLS.  Lower to that.
7390    unsigned char OpFlag = 0;
7391    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7392                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7393
7394    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7395    // global base reg.
7396    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7397                  !Subtarget->is64Bit();
7398    if (PIC32)
7399      OpFlag = X86II::MO_TLVP_PIC_BASE;
7400    else
7401      OpFlag = X86II::MO_TLVP;
7402    DebugLoc DL = Op.getDebugLoc();
7403    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7404                                                GA->getValueType(0),
7405                                                GA->getOffset(), OpFlag);
7406    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7407
7408    // With PIC32, the address is actually $g + Offset.
7409    if (PIC32)
7410      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7411                           DAG.getNode(X86ISD::GlobalBaseReg,
7412                                       DebugLoc(), getPointerTy()),
7413                           Offset);
7414
7415    // Lowering the machine isd will make sure everything is in the right
7416    // location.
7417    SDValue Chain = DAG.getEntryNode();
7418    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7419    SDValue Args[] = { Chain, Offset };
7420    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7421
7422    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7423    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7424    MFI->setAdjustsStack(true);
7425
7426    // And our return value (tls address) is in the standard call return value
7427    // location.
7428    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7429    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7430                              Chain.getValue(1));
7431  }
7432
7433  llvm_unreachable("TLS not implemented for this target.");
7434}
7435
7436
7437/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7438/// and take a 2 x i32 value to shift plus a shift amount.
7439SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7440  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7441  EVT VT = Op.getValueType();
7442  unsigned VTBits = VT.getSizeInBits();
7443  DebugLoc dl = Op.getDebugLoc();
7444  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7445  SDValue ShOpLo = Op.getOperand(0);
7446  SDValue ShOpHi = Op.getOperand(1);
7447  SDValue ShAmt  = Op.getOperand(2);
7448  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7449                                     DAG.getConstant(VTBits - 1, MVT::i8))
7450                       : DAG.getConstant(0, VT);
7451
7452  SDValue Tmp2, Tmp3;
7453  if (Op.getOpcode() == ISD::SHL_PARTS) {
7454    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7455    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7456  } else {
7457    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7458    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7459  }
7460
7461  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7462                                DAG.getConstant(VTBits, MVT::i8));
7463  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7464                             AndNode, DAG.getConstant(0, MVT::i8));
7465
7466  SDValue Hi, Lo;
7467  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7468  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7469  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7470
7471  if (Op.getOpcode() == ISD::SHL_PARTS) {
7472    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7473    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7474  } else {
7475    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7476    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7477  }
7478
7479  SDValue Ops[2] = { Lo, Hi };
7480  return DAG.getMergeValues(Ops, 2, dl);
7481}
7482
7483SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7484                                           SelectionDAG &DAG) const {
7485  EVT SrcVT = Op.getOperand(0).getValueType();
7486
7487  if (SrcVT.isVector())
7488    return SDValue();
7489
7490  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7491         "Unknown SINT_TO_FP to lower!");
7492
7493  // These are really Legal; return the operand so the caller accepts it as
7494  // Legal.
7495  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7496    return Op;
7497  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7498      Subtarget->is64Bit()) {
7499    return Op;
7500  }
7501
7502  DebugLoc dl = Op.getDebugLoc();
7503  unsigned Size = SrcVT.getSizeInBits()/8;
7504  MachineFunction &MF = DAG.getMachineFunction();
7505  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7506  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7507  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7508                               StackSlot,
7509                               MachinePointerInfo::getFixedStack(SSFI),
7510                               false, false, 0);
7511  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7512}
7513
7514SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7515                                     SDValue StackSlot,
7516                                     SelectionDAG &DAG) const {
7517  // Build the FILD
7518  DebugLoc DL = Op.getDebugLoc();
7519  SDVTList Tys;
7520  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7521  if (useSSE)
7522    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7523  else
7524    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7525
7526  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7527
7528  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7529  MachineMemOperand *MMO;
7530  if (FI) {
7531    int SSFI = FI->getIndex();
7532    MMO =
7533      DAG.getMachineFunction()
7534      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7535                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7536  } else {
7537    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7538    StackSlot = StackSlot.getOperand(1);
7539  }
7540  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7541  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7542                                           X86ISD::FILD, DL,
7543                                           Tys, Ops, array_lengthof(Ops),
7544                                           SrcVT, MMO);
7545
7546  if (useSSE) {
7547    Chain = Result.getValue(1);
7548    SDValue InFlag = Result.getValue(2);
7549
7550    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7551    // shouldn't be necessary except that RFP cannot be live across
7552    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7553    MachineFunction &MF = DAG.getMachineFunction();
7554    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7555    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7556    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7557    Tys = DAG.getVTList(MVT::Other);
7558    SDValue Ops[] = {
7559      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7560    };
7561    MachineMemOperand *MMO =
7562      DAG.getMachineFunction()
7563      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7564                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7565
7566    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7567                                    Ops, array_lengthof(Ops),
7568                                    Op.getValueType(), MMO);
7569    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7570                         MachinePointerInfo::getFixedStack(SSFI),
7571                         false, false, false, 0);
7572  }
7573
7574  return Result;
7575}
7576
7577// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7578SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7579                                               SelectionDAG &DAG) const {
7580  // This algorithm is not obvious. Here it is what we're trying to output:
7581  /*
7582     movq       %rax,  %xmm0
7583     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7584     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7585     #ifdef __SSE3__
7586       haddpd   %xmm0, %xmm0
7587     #else
7588       pshufd   $0x4e, %xmm0, %xmm1
7589       addpd    %xmm1, %xmm0
7590     #endif
7591  */
7592
7593  DebugLoc dl = Op.getDebugLoc();
7594  LLVMContext *Context = DAG.getContext();
7595
7596  // Build some magic constants.
7597  SmallVector<Constant*,4> CV0;
7598  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7599  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7600  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7601  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7602  Constant *C0 = ConstantVector::get(CV0);
7603  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7604
7605  SmallVector<Constant*,2> CV1;
7606  CV1.push_back(
7607    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7608  CV1.push_back(
7609    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7610  Constant *C1 = ConstantVector::get(CV1);
7611  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7612
7613  // Load the 64-bit value into an XMM register.
7614  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7615                            Op.getOperand(0));
7616  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7617                              MachinePointerInfo::getConstantPool(),
7618                              false, false, false, 16);
7619  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7620                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7621                              CLod0);
7622
7623  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7624                              MachinePointerInfo::getConstantPool(),
7625                              false, false, false, 16);
7626  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7627  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7628  SDValue Result;
7629
7630  if (Subtarget->hasSSE3()) {
7631    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7632    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7633  } else {
7634    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7635    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7636                                           S2F, 0x4E, DAG);
7637    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7638                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7639                         Sub);
7640  }
7641
7642  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7643                     DAG.getIntPtrConstant(0));
7644}
7645
7646// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7647SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7648                                               SelectionDAG &DAG) const {
7649  DebugLoc dl = Op.getDebugLoc();
7650  // FP constant to bias correct the final result.
7651  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7652                                   MVT::f64);
7653
7654  // Load the 32-bit value into an XMM register.
7655  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7656                             Op.getOperand(0));
7657
7658  // Zero out the upper parts of the register.
7659  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7660
7661  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7662                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7663                     DAG.getIntPtrConstant(0));
7664
7665  // Or the load with the bias.
7666  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7667                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7668                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7669                                                   MVT::v2f64, Load)),
7670                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7671                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7672                                                   MVT::v2f64, Bias)));
7673  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7674                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7675                   DAG.getIntPtrConstant(0));
7676
7677  // Subtract the bias.
7678  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7679
7680  // Handle final rounding.
7681  EVT DestVT = Op.getValueType();
7682
7683  if (DestVT.bitsLT(MVT::f64)) {
7684    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7685                       DAG.getIntPtrConstant(0));
7686  } else if (DestVT.bitsGT(MVT::f64)) {
7687    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7688  }
7689
7690  // Handle final rounding.
7691  return Sub;
7692}
7693
7694SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7695                                           SelectionDAG &DAG) const {
7696  SDValue N0 = Op.getOperand(0);
7697  DebugLoc dl = Op.getDebugLoc();
7698
7699  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7700  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7701  // the optimization here.
7702  if (DAG.SignBitIsZero(N0))
7703    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7704
7705  EVT SrcVT = N0.getValueType();
7706  EVT DstVT = Op.getValueType();
7707  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7708    return LowerUINT_TO_FP_i64(Op, DAG);
7709  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7710    return LowerUINT_TO_FP_i32(Op, DAG);
7711  else if (Subtarget->is64Bit() &&
7712           SrcVT == MVT::i64 && DstVT == MVT::f32)
7713    return SDValue();
7714
7715  // Make a 64-bit buffer, and use it to build an FILD.
7716  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7717  if (SrcVT == MVT::i32) {
7718    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7719    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7720                                     getPointerTy(), StackSlot, WordOff);
7721    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7722                                  StackSlot, MachinePointerInfo(),
7723                                  false, false, 0);
7724    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7725                                  OffsetSlot, MachinePointerInfo(),
7726                                  false, false, 0);
7727    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7728    return Fild;
7729  }
7730
7731  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7732  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7733                               StackSlot, MachinePointerInfo(),
7734                               false, false, 0);
7735  // For i64 source, we need to add the appropriate power of 2 if the input
7736  // was negative.  This is the same as the optimization in
7737  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7738  // we must be careful to do the computation in x87 extended precision, not
7739  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7740  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7741  MachineMemOperand *MMO =
7742    DAG.getMachineFunction()
7743    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7744                          MachineMemOperand::MOLoad, 8, 8);
7745
7746  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7747  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7748  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7749                                         MVT::i64, MMO);
7750
7751  APInt FF(32, 0x5F800000ULL);
7752
7753  // Check whether the sign bit is set.
7754  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7755                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7756                                 ISD::SETLT);
7757
7758  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7759  SDValue FudgePtr = DAG.getConstantPool(
7760                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7761                                         getPointerTy());
7762
7763  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7764  SDValue Zero = DAG.getIntPtrConstant(0);
7765  SDValue Four = DAG.getIntPtrConstant(4);
7766  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7767                               Zero, Four);
7768  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7769
7770  // Load the value out, extending it from f32 to f80.
7771  // FIXME: Avoid the extend by constructing the right constant pool?
7772  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7773                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7774                                 MVT::f32, false, false, 4);
7775  // Extend everything to 80 bits to force it to be done on x87.
7776  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7777  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7778}
7779
7780std::pair<SDValue,SDValue> X86TargetLowering::
7781FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7782  DebugLoc DL = Op.getDebugLoc();
7783
7784  EVT DstTy = Op.getValueType();
7785
7786  if (!IsSigned) {
7787    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7788    DstTy = MVT::i64;
7789  }
7790
7791  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7792         DstTy.getSimpleVT() >= MVT::i16 &&
7793         "Unknown FP_TO_SINT to lower!");
7794
7795  // These are really Legal.
7796  if (DstTy == MVT::i32 &&
7797      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7798    return std::make_pair(SDValue(), SDValue());
7799  if (Subtarget->is64Bit() &&
7800      DstTy == MVT::i64 &&
7801      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7802    return std::make_pair(SDValue(), SDValue());
7803
7804  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7805  // stack slot.
7806  MachineFunction &MF = DAG.getMachineFunction();
7807  unsigned MemSize = DstTy.getSizeInBits()/8;
7808  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7809  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7810
7811
7812
7813  unsigned Opc;
7814  switch (DstTy.getSimpleVT().SimpleTy) {
7815  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7816  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7817  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7818  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7819  }
7820
7821  SDValue Chain = DAG.getEntryNode();
7822  SDValue Value = Op.getOperand(0);
7823  EVT TheVT = Op.getOperand(0).getValueType();
7824  if (isScalarFPTypeInSSEReg(TheVT)) {
7825    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7826    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7827                         MachinePointerInfo::getFixedStack(SSFI),
7828                         false, false, 0);
7829    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7830    SDValue Ops[] = {
7831      Chain, StackSlot, DAG.getValueType(TheVT)
7832    };
7833
7834    MachineMemOperand *MMO =
7835      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7836                              MachineMemOperand::MOLoad, MemSize, MemSize);
7837    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7838                                    DstTy, MMO);
7839    Chain = Value.getValue(1);
7840    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7841    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7842  }
7843
7844  MachineMemOperand *MMO =
7845    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7846                            MachineMemOperand::MOStore, MemSize, MemSize);
7847
7848  // Build the FP_TO_INT*_IN_MEM
7849  SDValue Ops[] = { Chain, Value, StackSlot };
7850  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7851                                         Ops, 3, DstTy, MMO);
7852
7853  return std::make_pair(FIST, StackSlot);
7854}
7855
7856SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7857                                           SelectionDAG &DAG) const {
7858  if (Op.getValueType().isVector())
7859    return SDValue();
7860
7861  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7862  SDValue FIST = Vals.first, StackSlot = Vals.second;
7863  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7864  if (FIST.getNode() == 0) return Op;
7865
7866  // Load the result.
7867  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7868                     FIST, StackSlot, MachinePointerInfo(),
7869                     false, false, false, 0);
7870}
7871
7872SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7873                                           SelectionDAG &DAG) const {
7874  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7875  SDValue FIST = Vals.first, StackSlot = Vals.second;
7876  assert(FIST.getNode() && "Unexpected failure");
7877
7878  // Load the result.
7879  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7880                     FIST, StackSlot, MachinePointerInfo(),
7881                     false, false, false, 0);
7882}
7883
7884SDValue X86TargetLowering::LowerFABS(SDValue Op,
7885                                     SelectionDAG &DAG) const {
7886  LLVMContext *Context = DAG.getContext();
7887  DebugLoc dl = Op.getDebugLoc();
7888  EVT VT = Op.getValueType();
7889  EVT EltVT = VT;
7890  if (VT.isVector())
7891    EltVT = VT.getVectorElementType();
7892  SmallVector<Constant*,4> CV;
7893  if (EltVT == MVT::f64) {
7894    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7895    CV.assign(2, C);
7896  } else {
7897    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7898    CV.assign(4, C);
7899  }
7900  Constant *C = ConstantVector::get(CV);
7901  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7902  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7903                             MachinePointerInfo::getConstantPool(),
7904                             false, false, false, 16);
7905  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7906}
7907
7908SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7909  LLVMContext *Context = DAG.getContext();
7910  DebugLoc dl = Op.getDebugLoc();
7911  EVT VT = Op.getValueType();
7912  EVT EltVT = VT;
7913  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7914  if (VT.isVector()) {
7915    EltVT = VT.getVectorElementType();
7916    NumElts = VT.getVectorNumElements();
7917  }
7918  SmallVector<Constant*,8> CV;
7919  if (EltVT == MVT::f64) {
7920    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7921    CV.assign(NumElts, C);
7922  } else {
7923    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7924    CV.assign(NumElts, C);
7925  }
7926  Constant *C = ConstantVector::get(CV);
7927  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7928  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7929                             MachinePointerInfo::getConstantPool(),
7930                             false, false, false, 16);
7931  if (VT.isVector()) {
7932    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7933    return DAG.getNode(ISD::BITCAST, dl, VT,
7934                       DAG.getNode(ISD::XOR, dl, XORVT,
7935                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7936                                Op.getOperand(0)),
7937                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7938  } else {
7939    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7940  }
7941}
7942
7943SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7944  LLVMContext *Context = DAG.getContext();
7945  SDValue Op0 = Op.getOperand(0);
7946  SDValue Op1 = Op.getOperand(1);
7947  DebugLoc dl = Op.getDebugLoc();
7948  EVT VT = Op.getValueType();
7949  EVT SrcVT = Op1.getValueType();
7950
7951  // If second operand is smaller, extend it first.
7952  if (SrcVT.bitsLT(VT)) {
7953    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7954    SrcVT = VT;
7955  }
7956  // And if it is bigger, shrink it first.
7957  if (SrcVT.bitsGT(VT)) {
7958    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7959    SrcVT = VT;
7960  }
7961
7962  // At this point the operands and the result should have the same
7963  // type, and that won't be f80 since that is not custom lowered.
7964
7965  // First get the sign bit of second operand.
7966  SmallVector<Constant*,4> CV;
7967  if (SrcVT == MVT::f64) {
7968    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7969    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7970  } else {
7971    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7972    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7973    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7974    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7975  }
7976  Constant *C = ConstantVector::get(CV);
7977  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7978  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7979                              MachinePointerInfo::getConstantPool(),
7980                              false, false, false, 16);
7981  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7982
7983  // Shift sign bit right or left if the two operands have different types.
7984  if (SrcVT.bitsGT(VT)) {
7985    // Op0 is MVT::f32, Op1 is MVT::f64.
7986    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7987    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7988                          DAG.getConstant(32, MVT::i32));
7989    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7990    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7991                          DAG.getIntPtrConstant(0));
7992  }
7993
7994  // Clear first operand sign bit.
7995  CV.clear();
7996  if (VT == MVT::f64) {
7997    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7998    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7999  } else {
8000    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8001    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8002    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8003    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8004  }
8005  C = ConstantVector::get(CV);
8006  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8007  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8008                              MachinePointerInfo::getConstantPool(),
8009                              false, false, false, 16);
8010  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8011
8012  // Or the value with the sign bit.
8013  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8014}
8015
8016SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8017  SDValue N0 = Op.getOperand(0);
8018  DebugLoc dl = Op.getDebugLoc();
8019  EVT VT = Op.getValueType();
8020
8021  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8022  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8023                                  DAG.getConstant(1, VT));
8024  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8025}
8026
8027/// Emit nodes that will be selected as "test Op0,Op0", or something
8028/// equivalent.
8029SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8030                                    SelectionDAG &DAG) const {
8031  DebugLoc dl = Op.getDebugLoc();
8032
8033  // CF and OF aren't always set the way we want. Determine which
8034  // of these we need.
8035  bool NeedCF = false;
8036  bool NeedOF = false;
8037  switch (X86CC) {
8038  default: break;
8039  case X86::COND_A: case X86::COND_AE:
8040  case X86::COND_B: case X86::COND_BE:
8041    NeedCF = true;
8042    break;
8043  case X86::COND_G: case X86::COND_GE:
8044  case X86::COND_L: case X86::COND_LE:
8045  case X86::COND_O: case X86::COND_NO:
8046    NeedOF = true;
8047    break;
8048  }
8049
8050  // See if we can use the EFLAGS value from the operand instead of
8051  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8052  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8053  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8054    // Emit a CMP with 0, which is the TEST pattern.
8055    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8056                       DAG.getConstant(0, Op.getValueType()));
8057
8058  unsigned Opcode = 0;
8059  unsigned NumOperands = 0;
8060  switch (Op.getNode()->getOpcode()) {
8061  case ISD::ADD:
8062    // Due to an isel shortcoming, be conservative if this add is likely to be
8063    // selected as part of a load-modify-store instruction. When the root node
8064    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8065    // uses of other nodes in the match, such as the ADD in this case. This
8066    // leads to the ADD being left around and reselected, with the result being
8067    // two adds in the output.  Alas, even if none our users are stores, that
8068    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8069    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8070    // climbing the DAG back to the root, and it doesn't seem to be worth the
8071    // effort.
8072    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8073         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8074      if (UI->getOpcode() != ISD::CopyToReg &&
8075          UI->getOpcode() != ISD::SETCC &&
8076          UI->getOpcode() != ISD::STORE)
8077        goto default_case;
8078
8079    if (ConstantSDNode *C =
8080        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8081      // An add of one will be selected as an INC.
8082      if (C->getAPIntValue() == 1) {
8083        Opcode = X86ISD::INC;
8084        NumOperands = 1;
8085        break;
8086      }
8087
8088      // An add of negative one (subtract of one) will be selected as a DEC.
8089      if (C->getAPIntValue().isAllOnesValue()) {
8090        Opcode = X86ISD::DEC;
8091        NumOperands = 1;
8092        break;
8093      }
8094    }
8095
8096    // Otherwise use a regular EFLAGS-setting add.
8097    Opcode = X86ISD::ADD;
8098    NumOperands = 2;
8099    break;
8100  case ISD::AND: {
8101    // If the primary and result isn't used, don't bother using X86ISD::AND,
8102    // because a TEST instruction will be better.
8103    bool NonFlagUse = false;
8104    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8105           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8106      SDNode *User = *UI;
8107      unsigned UOpNo = UI.getOperandNo();
8108      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8109        // Look pass truncate.
8110        UOpNo = User->use_begin().getOperandNo();
8111        User = *User->use_begin();
8112      }
8113
8114      if (User->getOpcode() != ISD::BRCOND &&
8115          User->getOpcode() != ISD::SETCC &&
8116          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8117        NonFlagUse = true;
8118        break;
8119      }
8120    }
8121
8122    if (!NonFlagUse)
8123      break;
8124  }
8125    // FALL THROUGH
8126  case ISD::SUB:
8127  case ISD::OR:
8128  case ISD::XOR:
8129    // Due to the ISEL shortcoming noted above, be conservative if this op is
8130    // likely to be selected as part of a load-modify-store instruction.
8131    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8132           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8133      if (UI->getOpcode() == ISD::STORE)
8134        goto default_case;
8135
8136    // Otherwise use a regular EFLAGS-setting instruction.
8137    switch (Op.getNode()->getOpcode()) {
8138    default: llvm_unreachable("unexpected operator!");
8139    case ISD::SUB: Opcode = X86ISD::SUB; break;
8140    case ISD::OR:  Opcode = X86ISD::OR;  break;
8141    case ISD::XOR: Opcode = X86ISD::XOR; break;
8142    case ISD::AND: Opcode = X86ISD::AND; break;
8143    }
8144
8145    NumOperands = 2;
8146    break;
8147  case X86ISD::ADD:
8148  case X86ISD::SUB:
8149  case X86ISD::INC:
8150  case X86ISD::DEC:
8151  case X86ISD::OR:
8152  case X86ISD::XOR:
8153  case X86ISD::AND:
8154    return SDValue(Op.getNode(), 1);
8155  default:
8156  default_case:
8157    break;
8158  }
8159
8160  if (Opcode == 0)
8161    // Emit a CMP with 0, which is the TEST pattern.
8162    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8163                       DAG.getConstant(0, Op.getValueType()));
8164
8165  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8166  SmallVector<SDValue, 4> Ops;
8167  for (unsigned i = 0; i != NumOperands; ++i)
8168    Ops.push_back(Op.getOperand(i));
8169
8170  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8171  DAG.ReplaceAllUsesWith(Op, New);
8172  return SDValue(New.getNode(), 1);
8173}
8174
8175/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8176/// equivalent.
8177SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8178                                   SelectionDAG &DAG) const {
8179  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8180    if (C->getAPIntValue() == 0)
8181      return EmitTest(Op0, X86CC, DAG);
8182
8183  DebugLoc dl = Op0.getDebugLoc();
8184  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8185}
8186
8187/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8188/// if it's possible.
8189SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8190                                     DebugLoc dl, SelectionDAG &DAG) const {
8191  SDValue Op0 = And.getOperand(0);
8192  SDValue Op1 = And.getOperand(1);
8193  if (Op0.getOpcode() == ISD::TRUNCATE)
8194    Op0 = Op0.getOperand(0);
8195  if (Op1.getOpcode() == ISD::TRUNCATE)
8196    Op1 = Op1.getOperand(0);
8197
8198  SDValue LHS, RHS;
8199  if (Op1.getOpcode() == ISD::SHL)
8200    std::swap(Op0, Op1);
8201  if (Op0.getOpcode() == ISD::SHL) {
8202    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8203      if (And00C->getZExtValue() == 1) {
8204        // If we looked past a truncate, check that it's only truncating away
8205        // known zeros.
8206        unsigned BitWidth = Op0.getValueSizeInBits();
8207        unsigned AndBitWidth = And.getValueSizeInBits();
8208        if (BitWidth > AndBitWidth) {
8209          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8210          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8211          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8212            return SDValue();
8213        }
8214        LHS = Op1;
8215        RHS = Op0.getOperand(1);
8216      }
8217  } else if (Op1.getOpcode() == ISD::Constant) {
8218    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8219    uint64_t AndRHSVal = AndRHS->getZExtValue();
8220    SDValue AndLHS = Op0;
8221
8222    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8223      LHS = AndLHS.getOperand(0);
8224      RHS = AndLHS.getOperand(1);
8225    }
8226
8227    // Use BT if the immediate can't be encoded in a TEST instruction.
8228    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8229      LHS = AndLHS;
8230      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8231    }
8232  }
8233
8234  if (LHS.getNode()) {
8235    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8236    // instruction.  Since the shift amount is in-range-or-undefined, we know
8237    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8238    // the encoding for the i16 version is larger than the i32 version.
8239    // Also promote i16 to i32 for performance / code size reason.
8240    if (LHS.getValueType() == MVT::i8 ||
8241        LHS.getValueType() == MVT::i16)
8242      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8243
8244    // If the operand types disagree, extend the shift amount to match.  Since
8245    // BT ignores high bits (like shifts) we can use anyextend.
8246    if (LHS.getValueType() != RHS.getValueType())
8247      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8248
8249    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8250    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8251    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8252                       DAG.getConstant(Cond, MVT::i8), BT);
8253  }
8254
8255  return SDValue();
8256}
8257
8258SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8259
8260  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8261
8262  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8263  SDValue Op0 = Op.getOperand(0);
8264  SDValue Op1 = Op.getOperand(1);
8265  DebugLoc dl = Op.getDebugLoc();
8266  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8267
8268  // Optimize to BT if possible.
8269  // Lower (X & (1 << N)) == 0 to BT(X, N).
8270  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8271  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8272  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8273      Op1.getOpcode() == ISD::Constant &&
8274      cast<ConstantSDNode>(Op1)->isNullValue() &&
8275      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8276    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8277    if (NewSetCC.getNode())
8278      return NewSetCC;
8279  }
8280
8281  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8282  // these.
8283  if (Op1.getOpcode() == ISD::Constant &&
8284      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8285       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8286      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8287
8288    // If the input is a setcc, then reuse the input setcc or use a new one with
8289    // the inverted condition.
8290    if (Op0.getOpcode() == X86ISD::SETCC) {
8291      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8292      bool Invert = (CC == ISD::SETNE) ^
8293        cast<ConstantSDNode>(Op1)->isNullValue();
8294      if (!Invert) return Op0;
8295
8296      CCode = X86::GetOppositeBranchCondition(CCode);
8297      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8298                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8299    }
8300  }
8301
8302  bool isFP = Op1.getValueType().isFloatingPoint();
8303  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8304  if (X86CC == X86::COND_INVALID)
8305    return SDValue();
8306
8307  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8308  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8309                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8310}
8311
8312// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8313// ones, and then concatenate the result back.
8314static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8315  EVT VT = Op.getValueType();
8316
8317  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8318         "Unsupported value type for operation");
8319
8320  int NumElems = VT.getVectorNumElements();
8321  DebugLoc dl = Op.getDebugLoc();
8322  SDValue CC = Op.getOperand(2);
8323  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8324  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8325
8326  // Extract the LHS vectors
8327  SDValue LHS = Op.getOperand(0);
8328  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8329  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8330
8331  // Extract the RHS vectors
8332  SDValue RHS = Op.getOperand(1);
8333  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8334  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8335
8336  // Issue the operation on the smaller types and concatenate the result back
8337  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8338  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8339  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8340                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8341                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8342}
8343
8344
8345SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8346  SDValue Cond;
8347  SDValue Op0 = Op.getOperand(0);
8348  SDValue Op1 = Op.getOperand(1);
8349  SDValue CC = Op.getOperand(2);
8350  EVT VT = Op.getValueType();
8351  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8352  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8353  DebugLoc dl = Op.getDebugLoc();
8354
8355  if (isFP) {
8356    unsigned SSECC = 8;
8357    EVT EltVT = Op0.getValueType().getVectorElementType();
8358    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8359
8360    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8361    bool Swap = false;
8362
8363    // SSE Condition code mapping:
8364    //  0 - EQ
8365    //  1 - LT
8366    //  2 - LE
8367    //  3 - UNORD
8368    //  4 - NEQ
8369    //  5 - NLT
8370    //  6 - NLE
8371    //  7 - ORD
8372    switch (SetCCOpcode) {
8373    default: break;
8374    case ISD::SETOEQ:
8375    case ISD::SETEQ:  SSECC = 0; break;
8376    case ISD::SETOGT:
8377    case ISD::SETGT: Swap = true; // Fallthrough
8378    case ISD::SETLT:
8379    case ISD::SETOLT: SSECC = 1; break;
8380    case ISD::SETOGE:
8381    case ISD::SETGE: Swap = true; // Fallthrough
8382    case ISD::SETLE:
8383    case ISD::SETOLE: SSECC = 2; break;
8384    case ISD::SETUO:  SSECC = 3; break;
8385    case ISD::SETUNE:
8386    case ISD::SETNE:  SSECC = 4; break;
8387    case ISD::SETULE: Swap = true;
8388    case ISD::SETUGE: SSECC = 5; break;
8389    case ISD::SETULT: Swap = true;
8390    case ISD::SETUGT: SSECC = 6; break;
8391    case ISD::SETO:   SSECC = 7; break;
8392    }
8393    if (Swap)
8394      std::swap(Op0, Op1);
8395
8396    // In the two special cases we can't handle, emit two comparisons.
8397    if (SSECC == 8) {
8398      if (SetCCOpcode == ISD::SETUEQ) {
8399        SDValue UNORD, EQ;
8400        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8401        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8402        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8403      } else if (SetCCOpcode == ISD::SETONE) {
8404        SDValue ORD, NEQ;
8405        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8406        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8407        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8408      }
8409      llvm_unreachable("Illegal FP comparison");
8410    }
8411    // Handle all other FP comparisons here.
8412    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8413  }
8414
8415  // Break 256-bit integer vector compare into smaller ones.
8416  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8417    return Lower256IntVSETCC(Op, DAG);
8418
8419  // We are handling one of the integer comparisons here.  Since SSE only has
8420  // GT and EQ comparisons for integer, swapping operands and multiple
8421  // operations may be required for some comparisons.
8422  unsigned Opc = 0;
8423  bool Swap = false, Invert = false, FlipSigns = false;
8424
8425  switch (SetCCOpcode) {
8426  default: break;
8427  case ISD::SETNE:  Invert = true;
8428  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8429  case ISD::SETLT:  Swap = true;
8430  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8431  case ISD::SETGE:  Swap = true;
8432  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8433  case ISD::SETULT: Swap = true;
8434  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8435  case ISD::SETUGE: Swap = true;
8436  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8437  }
8438  if (Swap)
8439    std::swap(Op0, Op1);
8440
8441  // Check that the operation in question is available (most are plain SSE2,
8442  // but PCMPGTQ and PCMPEQQ have different requirements).
8443  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8444    return SDValue();
8445  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8446    return SDValue();
8447
8448  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8449  // bits of the inputs before performing those operations.
8450  if (FlipSigns) {
8451    EVT EltVT = VT.getVectorElementType();
8452    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8453                                      EltVT);
8454    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8455    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8456                                    SignBits.size());
8457    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8458    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8459  }
8460
8461  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8462
8463  // If the logical-not of the result is required, perform that now.
8464  if (Invert)
8465    Result = DAG.getNOT(dl, Result, VT);
8466
8467  return Result;
8468}
8469
8470// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8471static bool isX86LogicalCmp(SDValue Op) {
8472  unsigned Opc = Op.getNode()->getOpcode();
8473  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8474    return true;
8475  if (Op.getResNo() == 1 &&
8476      (Opc == X86ISD::ADD ||
8477       Opc == X86ISD::SUB ||
8478       Opc == X86ISD::ADC ||
8479       Opc == X86ISD::SBB ||
8480       Opc == X86ISD::SMUL ||
8481       Opc == X86ISD::UMUL ||
8482       Opc == X86ISD::INC ||
8483       Opc == X86ISD::DEC ||
8484       Opc == X86ISD::OR ||
8485       Opc == X86ISD::XOR ||
8486       Opc == X86ISD::AND))
8487    return true;
8488
8489  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8490    return true;
8491
8492  return false;
8493}
8494
8495static bool isZero(SDValue V) {
8496  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8497  return C && C->isNullValue();
8498}
8499
8500static bool isAllOnes(SDValue V) {
8501  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8502  return C && C->isAllOnesValue();
8503}
8504
8505SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8506  bool addTest = true;
8507  SDValue Cond  = Op.getOperand(0);
8508  SDValue Op1 = Op.getOperand(1);
8509  SDValue Op2 = Op.getOperand(2);
8510  DebugLoc DL = Op.getDebugLoc();
8511  SDValue CC;
8512
8513  if (Cond.getOpcode() == ISD::SETCC) {
8514    SDValue NewCond = LowerSETCC(Cond, DAG);
8515    if (NewCond.getNode())
8516      Cond = NewCond;
8517  }
8518
8519  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8520  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8521  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8522  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8523  if (Cond.getOpcode() == X86ISD::SETCC &&
8524      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8525      isZero(Cond.getOperand(1).getOperand(1))) {
8526    SDValue Cmp = Cond.getOperand(1);
8527
8528    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8529
8530    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8531        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8532      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8533
8534      SDValue CmpOp0 = Cmp.getOperand(0);
8535      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8536                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8537
8538      SDValue Res =   // Res = 0 or -1.
8539        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8540                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8541
8542      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8543        Res = DAG.getNOT(DL, Res, Res.getValueType());
8544
8545      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8546      if (N2C == 0 || !N2C->isNullValue())
8547        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8548      return Res;
8549    }
8550  }
8551
8552  // Look past (and (setcc_carry (cmp ...)), 1).
8553  if (Cond.getOpcode() == ISD::AND &&
8554      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8555    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8556    if (C && C->getAPIntValue() == 1)
8557      Cond = Cond.getOperand(0);
8558  }
8559
8560  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8561  // setting operand in place of the X86ISD::SETCC.
8562  unsigned CondOpcode = Cond.getOpcode();
8563  if (CondOpcode == X86ISD::SETCC ||
8564      CondOpcode == X86ISD::SETCC_CARRY) {
8565    CC = Cond.getOperand(0);
8566
8567    SDValue Cmp = Cond.getOperand(1);
8568    unsigned Opc = Cmp.getOpcode();
8569    EVT VT = Op.getValueType();
8570
8571    bool IllegalFPCMov = false;
8572    if (VT.isFloatingPoint() && !VT.isVector() &&
8573        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8574      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8575
8576    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8577        Opc == X86ISD::BT) { // FIXME
8578      Cond = Cmp;
8579      addTest = false;
8580    }
8581  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8582             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8583             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8584              Cond.getOperand(0).getValueType() != MVT::i8)) {
8585    SDValue LHS = Cond.getOperand(0);
8586    SDValue RHS = Cond.getOperand(1);
8587    unsigned X86Opcode;
8588    unsigned X86Cond;
8589    SDVTList VTs;
8590    switch (CondOpcode) {
8591    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8592    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8593    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8594    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8595    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8596    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8597    default: llvm_unreachable("unexpected overflowing operator");
8598    }
8599    if (CondOpcode == ISD::UMULO)
8600      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8601                          MVT::i32);
8602    else
8603      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8604
8605    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8606
8607    if (CondOpcode == ISD::UMULO)
8608      Cond = X86Op.getValue(2);
8609    else
8610      Cond = X86Op.getValue(1);
8611
8612    CC = DAG.getConstant(X86Cond, MVT::i8);
8613    addTest = false;
8614  }
8615
8616  if (addTest) {
8617    // Look pass the truncate.
8618    if (Cond.getOpcode() == ISD::TRUNCATE)
8619      Cond = Cond.getOperand(0);
8620
8621    // We know the result of AND is compared against zero. Try to match
8622    // it to BT.
8623    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8624      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8625      if (NewSetCC.getNode()) {
8626        CC = NewSetCC.getOperand(0);
8627        Cond = NewSetCC.getOperand(1);
8628        addTest = false;
8629      }
8630    }
8631  }
8632
8633  if (addTest) {
8634    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8635    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8636  }
8637
8638  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8639  // a <  b ?  0 : -1 -> RES = setcc_carry
8640  // a >= b ? -1 :  0 -> RES = setcc_carry
8641  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8642  if (Cond.getOpcode() == X86ISD::CMP) {
8643    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8644
8645    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8646        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8647      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8648                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8649      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8650        return DAG.getNOT(DL, Res, Res.getValueType());
8651      return Res;
8652    }
8653  }
8654
8655  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8656  // condition is true.
8657  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8658  SDValue Ops[] = { Op2, Op1, CC, Cond };
8659  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8660}
8661
8662// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8663// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8664// from the AND / OR.
8665static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8666  Opc = Op.getOpcode();
8667  if (Opc != ISD::OR && Opc != ISD::AND)
8668    return false;
8669  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8670          Op.getOperand(0).hasOneUse() &&
8671          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8672          Op.getOperand(1).hasOneUse());
8673}
8674
8675// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8676// 1 and that the SETCC node has a single use.
8677static bool isXor1OfSetCC(SDValue Op) {
8678  if (Op.getOpcode() != ISD::XOR)
8679    return false;
8680  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8681  if (N1C && N1C->getAPIntValue() == 1) {
8682    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8683      Op.getOperand(0).hasOneUse();
8684  }
8685  return false;
8686}
8687
8688SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8689  bool addTest = true;
8690  SDValue Chain = Op.getOperand(0);
8691  SDValue Cond  = Op.getOperand(1);
8692  SDValue Dest  = Op.getOperand(2);
8693  DebugLoc dl = Op.getDebugLoc();
8694  SDValue CC;
8695  bool Inverted = false;
8696
8697  if (Cond.getOpcode() == ISD::SETCC) {
8698    // Check for setcc([su]{add,sub,mul}o == 0).
8699    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8700        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8701        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8702        Cond.getOperand(0).getResNo() == 1 &&
8703        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8704         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8705         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8706         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8707         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8708         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8709      Inverted = true;
8710      Cond = Cond.getOperand(0);
8711    } else {
8712      SDValue NewCond = LowerSETCC(Cond, DAG);
8713      if (NewCond.getNode())
8714        Cond = NewCond;
8715    }
8716  }
8717#if 0
8718  // FIXME: LowerXALUO doesn't handle these!!
8719  else if (Cond.getOpcode() == X86ISD::ADD  ||
8720           Cond.getOpcode() == X86ISD::SUB  ||
8721           Cond.getOpcode() == X86ISD::SMUL ||
8722           Cond.getOpcode() == X86ISD::UMUL)
8723    Cond = LowerXALUO(Cond, DAG);
8724#endif
8725
8726  // Look pass (and (setcc_carry (cmp ...)), 1).
8727  if (Cond.getOpcode() == ISD::AND &&
8728      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8729    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8730    if (C && C->getAPIntValue() == 1)
8731      Cond = Cond.getOperand(0);
8732  }
8733
8734  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8735  // setting operand in place of the X86ISD::SETCC.
8736  unsigned CondOpcode = Cond.getOpcode();
8737  if (CondOpcode == X86ISD::SETCC ||
8738      CondOpcode == X86ISD::SETCC_CARRY) {
8739    CC = Cond.getOperand(0);
8740
8741    SDValue Cmp = Cond.getOperand(1);
8742    unsigned Opc = Cmp.getOpcode();
8743    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8744    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8745      Cond = Cmp;
8746      addTest = false;
8747    } else {
8748      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8749      default: break;
8750      case X86::COND_O:
8751      case X86::COND_B:
8752        // These can only come from an arithmetic instruction with overflow,
8753        // e.g. SADDO, UADDO.
8754        Cond = Cond.getNode()->getOperand(1);
8755        addTest = false;
8756        break;
8757      }
8758    }
8759  }
8760  CondOpcode = Cond.getOpcode();
8761  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8762      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8763      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8764       Cond.getOperand(0).getValueType() != MVT::i8)) {
8765    SDValue LHS = Cond.getOperand(0);
8766    SDValue RHS = Cond.getOperand(1);
8767    unsigned X86Opcode;
8768    unsigned X86Cond;
8769    SDVTList VTs;
8770    switch (CondOpcode) {
8771    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8772    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8773    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8774    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8775    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8776    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8777    default: llvm_unreachable("unexpected overflowing operator");
8778    }
8779    if (Inverted)
8780      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8781    if (CondOpcode == ISD::UMULO)
8782      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8783                          MVT::i32);
8784    else
8785      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8786
8787    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8788
8789    if (CondOpcode == ISD::UMULO)
8790      Cond = X86Op.getValue(2);
8791    else
8792      Cond = X86Op.getValue(1);
8793
8794    CC = DAG.getConstant(X86Cond, MVT::i8);
8795    addTest = false;
8796  } else {
8797    unsigned CondOpc;
8798    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8799      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8800      if (CondOpc == ISD::OR) {
8801        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8802        // two branches instead of an explicit OR instruction with a
8803        // separate test.
8804        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8805            isX86LogicalCmp(Cmp)) {
8806          CC = Cond.getOperand(0).getOperand(0);
8807          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8808                              Chain, Dest, CC, Cmp);
8809          CC = Cond.getOperand(1).getOperand(0);
8810          Cond = Cmp;
8811          addTest = false;
8812        }
8813      } else { // ISD::AND
8814        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8815        // two branches instead of an explicit AND instruction with a
8816        // separate test. However, we only do this if this block doesn't
8817        // have a fall-through edge, because this requires an explicit
8818        // jmp when the condition is false.
8819        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8820            isX86LogicalCmp(Cmp) &&
8821            Op.getNode()->hasOneUse()) {
8822          X86::CondCode CCode =
8823            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8824          CCode = X86::GetOppositeBranchCondition(CCode);
8825          CC = DAG.getConstant(CCode, MVT::i8);
8826          SDNode *User = *Op.getNode()->use_begin();
8827          // Look for an unconditional branch following this conditional branch.
8828          // We need this because we need to reverse the successors in order
8829          // to implement FCMP_OEQ.
8830          if (User->getOpcode() == ISD::BR) {
8831            SDValue FalseBB = User->getOperand(1);
8832            SDNode *NewBR =
8833              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8834            assert(NewBR == User);
8835            (void)NewBR;
8836            Dest = FalseBB;
8837
8838            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8839                                Chain, Dest, CC, Cmp);
8840            X86::CondCode CCode =
8841              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8842            CCode = X86::GetOppositeBranchCondition(CCode);
8843            CC = DAG.getConstant(CCode, MVT::i8);
8844            Cond = Cmp;
8845            addTest = false;
8846          }
8847        }
8848      }
8849    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8850      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8851      // It should be transformed during dag combiner except when the condition
8852      // is set by a arithmetics with overflow node.
8853      X86::CondCode CCode =
8854        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8855      CCode = X86::GetOppositeBranchCondition(CCode);
8856      CC = DAG.getConstant(CCode, MVT::i8);
8857      Cond = Cond.getOperand(0).getOperand(1);
8858      addTest = false;
8859    } else if (Cond.getOpcode() == ISD::SETCC &&
8860               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8861      // For FCMP_OEQ, we can emit
8862      // two branches instead of an explicit AND instruction with a
8863      // separate test. However, we only do this if this block doesn't
8864      // have a fall-through edge, because this requires an explicit
8865      // jmp when the condition is false.
8866      if (Op.getNode()->hasOneUse()) {
8867        SDNode *User = *Op.getNode()->use_begin();
8868        // Look for an unconditional branch following this conditional branch.
8869        // We need this because we need to reverse the successors in order
8870        // to implement FCMP_OEQ.
8871        if (User->getOpcode() == ISD::BR) {
8872          SDValue FalseBB = User->getOperand(1);
8873          SDNode *NewBR =
8874            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8875          assert(NewBR == User);
8876          (void)NewBR;
8877          Dest = FalseBB;
8878
8879          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8880                                    Cond.getOperand(0), Cond.getOperand(1));
8881          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8882          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8883                              Chain, Dest, CC, Cmp);
8884          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8885          Cond = Cmp;
8886          addTest = false;
8887        }
8888      }
8889    } else if (Cond.getOpcode() == ISD::SETCC &&
8890               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8891      // For FCMP_UNE, we can emit
8892      // two branches instead of an explicit AND instruction with a
8893      // separate test. However, we only do this if this block doesn't
8894      // have a fall-through edge, because this requires an explicit
8895      // jmp when the condition is false.
8896      if (Op.getNode()->hasOneUse()) {
8897        SDNode *User = *Op.getNode()->use_begin();
8898        // Look for an unconditional branch following this conditional branch.
8899        // We need this because we need to reverse the successors in order
8900        // to implement FCMP_UNE.
8901        if (User->getOpcode() == ISD::BR) {
8902          SDValue FalseBB = User->getOperand(1);
8903          SDNode *NewBR =
8904            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8905          assert(NewBR == User);
8906          (void)NewBR;
8907
8908          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8909                                    Cond.getOperand(0), Cond.getOperand(1));
8910          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8911          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8912                              Chain, Dest, CC, Cmp);
8913          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8914          Cond = Cmp;
8915          addTest = false;
8916          Dest = FalseBB;
8917        }
8918      }
8919    }
8920  }
8921
8922  if (addTest) {
8923    // Look pass the truncate.
8924    if (Cond.getOpcode() == ISD::TRUNCATE)
8925      Cond = Cond.getOperand(0);
8926
8927    // We know the result of AND is compared against zero. Try to match
8928    // it to BT.
8929    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8930      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8931      if (NewSetCC.getNode()) {
8932        CC = NewSetCC.getOperand(0);
8933        Cond = NewSetCC.getOperand(1);
8934        addTest = false;
8935      }
8936    }
8937  }
8938
8939  if (addTest) {
8940    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8941    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8942  }
8943  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8944                     Chain, Dest, CC, Cond);
8945}
8946
8947
8948// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8949// Calls to _alloca is needed to probe the stack when allocating more than 4k
8950// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8951// that the guard pages used by the OS virtual memory manager are allocated in
8952// correct sequence.
8953SDValue
8954X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8955                                           SelectionDAG &DAG) const {
8956  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8957          getTargetMachine().Options.EnableSegmentedStacks) &&
8958         "This should be used only on Windows targets or when segmented stacks "
8959         "are being used");
8960  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8961  DebugLoc dl = Op.getDebugLoc();
8962
8963  // Get the inputs.
8964  SDValue Chain = Op.getOperand(0);
8965  SDValue Size  = Op.getOperand(1);
8966  // FIXME: Ensure alignment here
8967
8968  bool Is64Bit = Subtarget->is64Bit();
8969  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8970
8971  if (getTargetMachine().Options.EnableSegmentedStacks) {
8972    MachineFunction &MF = DAG.getMachineFunction();
8973    MachineRegisterInfo &MRI = MF.getRegInfo();
8974
8975    if (Is64Bit) {
8976      // The 64 bit implementation of segmented stacks needs to clobber both r10
8977      // r11. This makes it impossible to use it along with nested parameters.
8978      const Function *F = MF.getFunction();
8979
8980      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8981           I != E; I++)
8982        if (I->hasNestAttr())
8983          report_fatal_error("Cannot use segmented stacks with functions that "
8984                             "have nested arguments.");
8985    }
8986
8987    const TargetRegisterClass *AddrRegClass =
8988      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8989    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8990    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8991    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8992                                DAG.getRegister(Vreg, SPTy));
8993    SDValue Ops1[2] = { Value, Chain };
8994    return DAG.getMergeValues(Ops1, 2, dl);
8995  } else {
8996    SDValue Flag;
8997    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8998
8999    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9000    Flag = Chain.getValue(1);
9001    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9002
9003    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9004    Flag = Chain.getValue(1);
9005
9006    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9007
9008    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9009    return DAG.getMergeValues(Ops1, 2, dl);
9010  }
9011}
9012
9013SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9014  MachineFunction &MF = DAG.getMachineFunction();
9015  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9016
9017  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9018  DebugLoc DL = Op.getDebugLoc();
9019
9020  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9021    // vastart just stores the address of the VarArgsFrameIndex slot into the
9022    // memory location argument.
9023    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9024                                   getPointerTy());
9025    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9026                        MachinePointerInfo(SV), false, false, 0);
9027  }
9028
9029  // __va_list_tag:
9030  //   gp_offset         (0 - 6 * 8)
9031  //   fp_offset         (48 - 48 + 8 * 16)
9032  //   overflow_arg_area (point to parameters coming in memory).
9033  //   reg_save_area
9034  SmallVector<SDValue, 8> MemOps;
9035  SDValue FIN = Op.getOperand(1);
9036  // Store gp_offset
9037  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9038                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9039                                               MVT::i32),
9040                               FIN, MachinePointerInfo(SV), false, false, 0);
9041  MemOps.push_back(Store);
9042
9043  // Store fp_offset
9044  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9045                    FIN, DAG.getIntPtrConstant(4));
9046  Store = DAG.getStore(Op.getOperand(0), DL,
9047                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9048                                       MVT::i32),
9049                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9050  MemOps.push_back(Store);
9051
9052  // Store ptr to overflow_arg_area
9053  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9054                    FIN, DAG.getIntPtrConstant(4));
9055  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9056                                    getPointerTy());
9057  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9058                       MachinePointerInfo(SV, 8),
9059                       false, false, 0);
9060  MemOps.push_back(Store);
9061
9062  // Store ptr to reg_save_area.
9063  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9064                    FIN, DAG.getIntPtrConstant(8));
9065  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9066                                    getPointerTy());
9067  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9068                       MachinePointerInfo(SV, 16), false, false, 0);
9069  MemOps.push_back(Store);
9070  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9071                     &MemOps[0], MemOps.size());
9072}
9073
9074SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9075  assert(Subtarget->is64Bit() &&
9076         "LowerVAARG only handles 64-bit va_arg!");
9077  assert((Subtarget->isTargetLinux() ||
9078          Subtarget->isTargetDarwin()) &&
9079          "Unhandled target in LowerVAARG");
9080  assert(Op.getNode()->getNumOperands() == 4);
9081  SDValue Chain = Op.getOperand(0);
9082  SDValue SrcPtr = Op.getOperand(1);
9083  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9084  unsigned Align = Op.getConstantOperandVal(3);
9085  DebugLoc dl = Op.getDebugLoc();
9086
9087  EVT ArgVT = Op.getNode()->getValueType(0);
9088  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9089  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9090  uint8_t ArgMode;
9091
9092  // Decide which area this value should be read from.
9093  // TODO: Implement the AMD64 ABI in its entirety. This simple
9094  // selection mechanism works only for the basic types.
9095  if (ArgVT == MVT::f80) {
9096    llvm_unreachable("va_arg for f80 not yet implemented");
9097  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9098    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9099  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9100    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9101  } else {
9102    llvm_unreachable("Unhandled argument type in LowerVAARG");
9103  }
9104
9105  if (ArgMode == 2) {
9106    // Sanity Check: Make sure using fp_offset makes sense.
9107    assert(!getTargetMachine().Options.UseSoftFloat &&
9108           !(DAG.getMachineFunction()
9109                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9110           Subtarget->hasSSE1());
9111  }
9112
9113  // Insert VAARG_64 node into the DAG
9114  // VAARG_64 returns two values: Variable Argument Address, Chain
9115  SmallVector<SDValue, 11> InstOps;
9116  InstOps.push_back(Chain);
9117  InstOps.push_back(SrcPtr);
9118  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9119  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9120  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9121  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9122  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9123                                          VTs, &InstOps[0], InstOps.size(),
9124                                          MVT::i64,
9125                                          MachinePointerInfo(SV),
9126                                          /*Align=*/0,
9127                                          /*Volatile=*/false,
9128                                          /*ReadMem=*/true,
9129                                          /*WriteMem=*/true);
9130  Chain = VAARG.getValue(1);
9131
9132  // Load the next argument and return it
9133  return DAG.getLoad(ArgVT, dl,
9134                     Chain,
9135                     VAARG,
9136                     MachinePointerInfo(),
9137                     false, false, false, 0);
9138}
9139
9140SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9141  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9142  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9143  SDValue Chain = Op.getOperand(0);
9144  SDValue DstPtr = Op.getOperand(1);
9145  SDValue SrcPtr = Op.getOperand(2);
9146  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9147  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9148  DebugLoc DL = Op.getDebugLoc();
9149
9150  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9151                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9152                       false,
9153                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9154}
9155
9156SDValue
9157X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9158  DebugLoc dl = Op.getDebugLoc();
9159  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9160  switch (IntNo) {
9161  default: return SDValue();    // Don't custom lower most intrinsics.
9162  // Comparison intrinsics.
9163  case Intrinsic::x86_sse_comieq_ss:
9164  case Intrinsic::x86_sse_comilt_ss:
9165  case Intrinsic::x86_sse_comile_ss:
9166  case Intrinsic::x86_sse_comigt_ss:
9167  case Intrinsic::x86_sse_comige_ss:
9168  case Intrinsic::x86_sse_comineq_ss:
9169  case Intrinsic::x86_sse_ucomieq_ss:
9170  case Intrinsic::x86_sse_ucomilt_ss:
9171  case Intrinsic::x86_sse_ucomile_ss:
9172  case Intrinsic::x86_sse_ucomigt_ss:
9173  case Intrinsic::x86_sse_ucomige_ss:
9174  case Intrinsic::x86_sse_ucomineq_ss:
9175  case Intrinsic::x86_sse2_comieq_sd:
9176  case Intrinsic::x86_sse2_comilt_sd:
9177  case Intrinsic::x86_sse2_comile_sd:
9178  case Intrinsic::x86_sse2_comigt_sd:
9179  case Intrinsic::x86_sse2_comige_sd:
9180  case Intrinsic::x86_sse2_comineq_sd:
9181  case Intrinsic::x86_sse2_ucomieq_sd:
9182  case Intrinsic::x86_sse2_ucomilt_sd:
9183  case Intrinsic::x86_sse2_ucomile_sd:
9184  case Intrinsic::x86_sse2_ucomigt_sd:
9185  case Intrinsic::x86_sse2_ucomige_sd:
9186  case Intrinsic::x86_sse2_ucomineq_sd: {
9187    unsigned Opc = 0;
9188    ISD::CondCode CC = ISD::SETCC_INVALID;
9189    switch (IntNo) {
9190    default: break;
9191    case Intrinsic::x86_sse_comieq_ss:
9192    case Intrinsic::x86_sse2_comieq_sd:
9193      Opc = X86ISD::COMI;
9194      CC = ISD::SETEQ;
9195      break;
9196    case Intrinsic::x86_sse_comilt_ss:
9197    case Intrinsic::x86_sse2_comilt_sd:
9198      Opc = X86ISD::COMI;
9199      CC = ISD::SETLT;
9200      break;
9201    case Intrinsic::x86_sse_comile_ss:
9202    case Intrinsic::x86_sse2_comile_sd:
9203      Opc = X86ISD::COMI;
9204      CC = ISD::SETLE;
9205      break;
9206    case Intrinsic::x86_sse_comigt_ss:
9207    case Intrinsic::x86_sse2_comigt_sd:
9208      Opc = X86ISD::COMI;
9209      CC = ISD::SETGT;
9210      break;
9211    case Intrinsic::x86_sse_comige_ss:
9212    case Intrinsic::x86_sse2_comige_sd:
9213      Opc = X86ISD::COMI;
9214      CC = ISD::SETGE;
9215      break;
9216    case Intrinsic::x86_sse_comineq_ss:
9217    case Intrinsic::x86_sse2_comineq_sd:
9218      Opc = X86ISD::COMI;
9219      CC = ISD::SETNE;
9220      break;
9221    case Intrinsic::x86_sse_ucomieq_ss:
9222    case Intrinsic::x86_sse2_ucomieq_sd:
9223      Opc = X86ISD::UCOMI;
9224      CC = ISD::SETEQ;
9225      break;
9226    case Intrinsic::x86_sse_ucomilt_ss:
9227    case Intrinsic::x86_sse2_ucomilt_sd:
9228      Opc = X86ISD::UCOMI;
9229      CC = ISD::SETLT;
9230      break;
9231    case Intrinsic::x86_sse_ucomile_ss:
9232    case Intrinsic::x86_sse2_ucomile_sd:
9233      Opc = X86ISD::UCOMI;
9234      CC = ISD::SETLE;
9235      break;
9236    case Intrinsic::x86_sse_ucomigt_ss:
9237    case Intrinsic::x86_sse2_ucomigt_sd:
9238      Opc = X86ISD::UCOMI;
9239      CC = ISD::SETGT;
9240      break;
9241    case Intrinsic::x86_sse_ucomige_ss:
9242    case Intrinsic::x86_sse2_ucomige_sd:
9243      Opc = X86ISD::UCOMI;
9244      CC = ISD::SETGE;
9245      break;
9246    case Intrinsic::x86_sse_ucomineq_ss:
9247    case Intrinsic::x86_sse2_ucomineq_sd:
9248      Opc = X86ISD::UCOMI;
9249      CC = ISD::SETNE;
9250      break;
9251    }
9252
9253    SDValue LHS = Op.getOperand(1);
9254    SDValue RHS = Op.getOperand(2);
9255    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9256    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9257    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9258    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9259                                DAG.getConstant(X86CC, MVT::i8), Cond);
9260    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9261  }
9262  // Arithmetic intrinsics.
9263  case Intrinsic::x86_sse3_hadd_ps:
9264  case Intrinsic::x86_sse3_hadd_pd:
9265  case Intrinsic::x86_avx_hadd_ps_256:
9266  case Intrinsic::x86_avx_hadd_pd_256:
9267    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9268                       Op.getOperand(1), Op.getOperand(2));
9269  case Intrinsic::x86_sse3_hsub_ps:
9270  case Intrinsic::x86_sse3_hsub_pd:
9271  case Intrinsic::x86_avx_hsub_ps_256:
9272  case Intrinsic::x86_avx_hsub_pd_256:
9273    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9274                       Op.getOperand(1), Op.getOperand(2));
9275  case Intrinsic::x86_avx2_psllv_d:
9276  case Intrinsic::x86_avx2_psllv_q:
9277  case Intrinsic::x86_avx2_psllv_d_256:
9278  case Intrinsic::x86_avx2_psllv_q_256:
9279    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9280                      Op.getOperand(1), Op.getOperand(2));
9281  case Intrinsic::x86_avx2_psrlv_d:
9282  case Intrinsic::x86_avx2_psrlv_q:
9283  case Intrinsic::x86_avx2_psrlv_d_256:
9284  case Intrinsic::x86_avx2_psrlv_q_256:
9285    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9286                      Op.getOperand(1), Op.getOperand(2));
9287  case Intrinsic::x86_avx2_psrav_d:
9288  case Intrinsic::x86_avx2_psrav_d_256:
9289    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9290                      Op.getOperand(1), Op.getOperand(2));
9291
9292  // ptest and testp intrinsics. The intrinsic these come from are designed to
9293  // return an integer value, not just an instruction so lower it to the ptest
9294  // or testp pattern and a setcc for the result.
9295  case Intrinsic::x86_sse41_ptestz:
9296  case Intrinsic::x86_sse41_ptestc:
9297  case Intrinsic::x86_sse41_ptestnzc:
9298  case Intrinsic::x86_avx_ptestz_256:
9299  case Intrinsic::x86_avx_ptestc_256:
9300  case Intrinsic::x86_avx_ptestnzc_256:
9301  case Intrinsic::x86_avx_vtestz_ps:
9302  case Intrinsic::x86_avx_vtestc_ps:
9303  case Intrinsic::x86_avx_vtestnzc_ps:
9304  case Intrinsic::x86_avx_vtestz_pd:
9305  case Intrinsic::x86_avx_vtestc_pd:
9306  case Intrinsic::x86_avx_vtestnzc_pd:
9307  case Intrinsic::x86_avx_vtestz_ps_256:
9308  case Intrinsic::x86_avx_vtestc_ps_256:
9309  case Intrinsic::x86_avx_vtestnzc_ps_256:
9310  case Intrinsic::x86_avx_vtestz_pd_256:
9311  case Intrinsic::x86_avx_vtestc_pd_256:
9312  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9313    bool IsTestPacked = false;
9314    unsigned X86CC = 0;
9315    switch (IntNo) {
9316    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9317    case Intrinsic::x86_avx_vtestz_ps:
9318    case Intrinsic::x86_avx_vtestz_pd:
9319    case Intrinsic::x86_avx_vtestz_ps_256:
9320    case Intrinsic::x86_avx_vtestz_pd_256:
9321      IsTestPacked = true; // Fallthrough
9322    case Intrinsic::x86_sse41_ptestz:
9323    case Intrinsic::x86_avx_ptestz_256:
9324      // ZF = 1
9325      X86CC = X86::COND_E;
9326      break;
9327    case Intrinsic::x86_avx_vtestc_ps:
9328    case Intrinsic::x86_avx_vtestc_pd:
9329    case Intrinsic::x86_avx_vtestc_ps_256:
9330    case Intrinsic::x86_avx_vtestc_pd_256:
9331      IsTestPacked = true; // Fallthrough
9332    case Intrinsic::x86_sse41_ptestc:
9333    case Intrinsic::x86_avx_ptestc_256:
9334      // CF = 1
9335      X86CC = X86::COND_B;
9336      break;
9337    case Intrinsic::x86_avx_vtestnzc_ps:
9338    case Intrinsic::x86_avx_vtestnzc_pd:
9339    case Intrinsic::x86_avx_vtestnzc_ps_256:
9340    case Intrinsic::x86_avx_vtestnzc_pd_256:
9341      IsTestPacked = true; // Fallthrough
9342    case Intrinsic::x86_sse41_ptestnzc:
9343    case Intrinsic::x86_avx_ptestnzc_256:
9344      // ZF and CF = 0
9345      X86CC = X86::COND_A;
9346      break;
9347    }
9348
9349    SDValue LHS = Op.getOperand(1);
9350    SDValue RHS = Op.getOperand(2);
9351    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9352    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9353    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9354    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9355    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9356  }
9357
9358  // Fix vector shift instructions where the last operand is a non-immediate
9359  // i32 value.
9360  case Intrinsic::x86_avx2_pslli_w:
9361  case Intrinsic::x86_avx2_pslli_d:
9362  case Intrinsic::x86_avx2_pslli_q:
9363  case Intrinsic::x86_avx2_psrli_w:
9364  case Intrinsic::x86_avx2_psrli_d:
9365  case Intrinsic::x86_avx2_psrli_q:
9366  case Intrinsic::x86_avx2_psrai_w:
9367  case Intrinsic::x86_avx2_psrai_d:
9368  case Intrinsic::x86_sse2_pslli_w:
9369  case Intrinsic::x86_sse2_pslli_d:
9370  case Intrinsic::x86_sse2_pslli_q:
9371  case Intrinsic::x86_sse2_psrli_w:
9372  case Intrinsic::x86_sse2_psrli_d:
9373  case Intrinsic::x86_sse2_psrli_q:
9374  case Intrinsic::x86_sse2_psrai_w:
9375  case Intrinsic::x86_sse2_psrai_d:
9376  case Intrinsic::x86_mmx_pslli_w:
9377  case Intrinsic::x86_mmx_pslli_d:
9378  case Intrinsic::x86_mmx_pslli_q:
9379  case Intrinsic::x86_mmx_psrli_w:
9380  case Intrinsic::x86_mmx_psrli_d:
9381  case Intrinsic::x86_mmx_psrli_q:
9382  case Intrinsic::x86_mmx_psrai_w:
9383  case Intrinsic::x86_mmx_psrai_d: {
9384    SDValue ShAmt = Op.getOperand(2);
9385    if (isa<ConstantSDNode>(ShAmt))
9386      return SDValue();
9387
9388    unsigned NewIntNo = 0;
9389    EVT ShAmtVT = MVT::v4i32;
9390    switch (IntNo) {
9391    case Intrinsic::x86_sse2_pslli_w:
9392      NewIntNo = Intrinsic::x86_sse2_psll_w;
9393      break;
9394    case Intrinsic::x86_sse2_pslli_d:
9395      NewIntNo = Intrinsic::x86_sse2_psll_d;
9396      break;
9397    case Intrinsic::x86_sse2_pslli_q:
9398      NewIntNo = Intrinsic::x86_sse2_psll_q;
9399      break;
9400    case Intrinsic::x86_sse2_psrli_w:
9401      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9402      break;
9403    case Intrinsic::x86_sse2_psrli_d:
9404      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9405      break;
9406    case Intrinsic::x86_sse2_psrli_q:
9407      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9408      break;
9409    case Intrinsic::x86_sse2_psrai_w:
9410      NewIntNo = Intrinsic::x86_sse2_psra_w;
9411      break;
9412    case Intrinsic::x86_sse2_psrai_d:
9413      NewIntNo = Intrinsic::x86_sse2_psra_d;
9414      break;
9415    case Intrinsic::x86_avx2_pslli_w:
9416      NewIntNo = Intrinsic::x86_avx2_psll_w;
9417      break;
9418    case Intrinsic::x86_avx2_pslli_d:
9419      NewIntNo = Intrinsic::x86_avx2_psll_d;
9420      break;
9421    case Intrinsic::x86_avx2_pslli_q:
9422      NewIntNo = Intrinsic::x86_avx2_psll_q;
9423      break;
9424    case Intrinsic::x86_avx2_psrli_w:
9425      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9426      break;
9427    case Intrinsic::x86_avx2_psrli_d:
9428      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9429      break;
9430    case Intrinsic::x86_avx2_psrli_q:
9431      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9432      break;
9433    case Intrinsic::x86_avx2_psrai_w:
9434      NewIntNo = Intrinsic::x86_avx2_psra_w;
9435      break;
9436    case Intrinsic::x86_avx2_psrai_d:
9437      NewIntNo = Intrinsic::x86_avx2_psra_d;
9438      break;
9439    default: {
9440      ShAmtVT = MVT::v2i32;
9441      switch (IntNo) {
9442      case Intrinsic::x86_mmx_pslli_w:
9443        NewIntNo = Intrinsic::x86_mmx_psll_w;
9444        break;
9445      case Intrinsic::x86_mmx_pslli_d:
9446        NewIntNo = Intrinsic::x86_mmx_psll_d;
9447        break;
9448      case Intrinsic::x86_mmx_pslli_q:
9449        NewIntNo = Intrinsic::x86_mmx_psll_q;
9450        break;
9451      case Intrinsic::x86_mmx_psrli_w:
9452        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9453        break;
9454      case Intrinsic::x86_mmx_psrli_d:
9455        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9456        break;
9457      case Intrinsic::x86_mmx_psrli_q:
9458        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9459        break;
9460      case Intrinsic::x86_mmx_psrai_w:
9461        NewIntNo = Intrinsic::x86_mmx_psra_w;
9462        break;
9463      case Intrinsic::x86_mmx_psrai_d:
9464        NewIntNo = Intrinsic::x86_mmx_psra_d;
9465        break;
9466      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9467      }
9468      break;
9469    }
9470    }
9471
9472    // The vector shift intrinsics with scalars uses 32b shift amounts but
9473    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9474    // to be zero.
9475    SDValue ShOps[4];
9476    ShOps[0] = ShAmt;
9477    ShOps[1] = DAG.getConstant(0, MVT::i32);
9478    if (ShAmtVT == MVT::v4i32) {
9479      ShOps[2] = DAG.getUNDEF(MVT::i32);
9480      ShOps[3] = DAG.getUNDEF(MVT::i32);
9481      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9482    } else {
9483      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9484// FIXME this must be lowered to get rid of the invalid type.
9485    }
9486
9487    EVT VT = Op.getValueType();
9488    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9489    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9490                       DAG.getConstant(NewIntNo, MVT::i32),
9491                       Op.getOperand(1), ShAmt);
9492  }
9493  }
9494}
9495
9496SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9497                                           SelectionDAG &DAG) const {
9498  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9499  MFI->setReturnAddressIsTaken(true);
9500
9501  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9502  DebugLoc dl = Op.getDebugLoc();
9503
9504  if (Depth > 0) {
9505    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9506    SDValue Offset =
9507      DAG.getConstant(TD->getPointerSize(),
9508                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9509    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9510                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9511                                   FrameAddr, Offset),
9512                       MachinePointerInfo(), false, false, false, 0);
9513  }
9514
9515  // Just load the return address.
9516  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9517  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9518                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9519}
9520
9521SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9522  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9523  MFI->setFrameAddressIsTaken(true);
9524
9525  EVT VT = Op.getValueType();
9526  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9527  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9528  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9529  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9530  while (Depth--)
9531    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9532                            MachinePointerInfo(),
9533                            false, false, false, 0);
9534  return FrameAddr;
9535}
9536
9537SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9538                                                     SelectionDAG &DAG) const {
9539  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9540}
9541
9542SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9543  MachineFunction &MF = DAG.getMachineFunction();
9544  SDValue Chain     = Op.getOperand(0);
9545  SDValue Offset    = Op.getOperand(1);
9546  SDValue Handler   = Op.getOperand(2);
9547  DebugLoc dl       = Op.getDebugLoc();
9548
9549  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9550                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9551                                     getPointerTy());
9552  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9553
9554  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9555                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9556  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9557  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9558                       false, false, 0);
9559  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9560  MF.getRegInfo().addLiveOut(StoreAddrReg);
9561
9562  return DAG.getNode(X86ISD::EH_RETURN, dl,
9563                     MVT::Other,
9564                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9565}
9566
9567SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9568                                                  SelectionDAG &DAG) const {
9569  return Op.getOperand(0);
9570}
9571
9572SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9573                                                SelectionDAG &DAG) const {
9574  SDValue Root = Op.getOperand(0);
9575  SDValue Trmp = Op.getOperand(1); // trampoline
9576  SDValue FPtr = Op.getOperand(2); // nested function
9577  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9578  DebugLoc dl  = Op.getDebugLoc();
9579
9580  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9581
9582  if (Subtarget->is64Bit()) {
9583    SDValue OutChains[6];
9584
9585    // Large code-model.
9586    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9587    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9588
9589    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9590    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9591
9592    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9593
9594    // Load the pointer to the nested function into R11.
9595    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9596    SDValue Addr = Trmp;
9597    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9598                                Addr, MachinePointerInfo(TrmpAddr),
9599                                false, false, 0);
9600
9601    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9602                       DAG.getConstant(2, MVT::i64));
9603    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9604                                MachinePointerInfo(TrmpAddr, 2),
9605                                false, false, 2);
9606
9607    // Load the 'nest' parameter value into R10.
9608    // R10 is specified in X86CallingConv.td
9609    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9610    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9611                       DAG.getConstant(10, MVT::i64));
9612    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9613                                Addr, MachinePointerInfo(TrmpAddr, 10),
9614                                false, false, 0);
9615
9616    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9617                       DAG.getConstant(12, MVT::i64));
9618    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9619                                MachinePointerInfo(TrmpAddr, 12),
9620                                false, false, 2);
9621
9622    // Jump to the nested function.
9623    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9624    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9625                       DAG.getConstant(20, MVT::i64));
9626    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9627                                Addr, MachinePointerInfo(TrmpAddr, 20),
9628                                false, false, 0);
9629
9630    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9631    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9632                       DAG.getConstant(22, MVT::i64));
9633    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9634                                MachinePointerInfo(TrmpAddr, 22),
9635                                false, false, 0);
9636
9637    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9638  } else {
9639    const Function *Func =
9640      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9641    CallingConv::ID CC = Func->getCallingConv();
9642    unsigned NestReg;
9643
9644    switch (CC) {
9645    default:
9646      llvm_unreachable("Unsupported calling convention");
9647    case CallingConv::C:
9648    case CallingConv::X86_StdCall: {
9649      // Pass 'nest' parameter in ECX.
9650      // Must be kept in sync with X86CallingConv.td
9651      NestReg = X86::ECX;
9652
9653      // Check that ECX wasn't needed by an 'inreg' parameter.
9654      FunctionType *FTy = Func->getFunctionType();
9655      const AttrListPtr &Attrs = Func->getAttributes();
9656
9657      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9658        unsigned InRegCount = 0;
9659        unsigned Idx = 1;
9660
9661        for (FunctionType::param_iterator I = FTy->param_begin(),
9662             E = FTy->param_end(); I != E; ++I, ++Idx)
9663          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9664            // FIXME: should only count parameters that are lowered to integers.
9665            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9666
9667        if (InRegCount > 2) {
9668          report_fatal_error("Nest register in use - reduce number of inreg"
9669                             " parameters!");
9670        }
9671      }
9672      break;
9673    }
9674    case CallingConv::X86_FastCall:
9675    case CallingConv::X86_ThisCall:
9676    case CallingConv::Fast:
9677      // Pass 'nest' parameter in EAX.
9678      // Must be kept in sync with X86CallingConv.td
9679      NestReg = X86::EAX;
9680      break;
9681    }
9682
9683    SDValue OutChains[4];
9684    SDValue Addr, Disp;
9685
9686    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9687                       DAG.getConstant(10, MVT::i32));
9688    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9689
9690    // This is storing the opcode for MOV32ri.
9691    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9692    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9693    OutChains[0] = DAG.getStore(Root, dl,
9694                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9695                                Trmp, MachinePointerInfo(TrmpAddr),
9696                                false, false, 0);
9697
9698    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9699                       DAG.getConstant(1, MVT::i32));
9700    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9701                                MachinePointerInfo(TrmpAddr, 1),
9702                                false, false, 1);
9703
9704    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9705    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9706                       DAG.getConstant(5, MVT::i32));
9707    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9708                                MachinePointerInfo(TrmpAddr, 5),
9709                                false, false, 1);
9710
9711    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9712                       DAG.getConstant(6, MVT::i32));
9713    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9714                                MachinePointerInfo(TrmpAddr, 6),
9715                                false, false, 1);
9716
9717    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9718  }
9719}
9720
9721SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9722                                            SelectionDAG &DAG) const {
9723  /*
9724   The rounding mode is in bits 11:10 of FPSR, and has the following
9725   settings:
9726     00 Round to nearest
9727     01 Round to -inf
9728     10 Round to +inf
9729     11 Round to 0
9730
9731  FLT_ROUNDS, on the other hand, expects the following:
9732    -1 Undefined
9733     0 Round to 0
9734     1 Round to nearest
9735     2 Round to +inf
9736     3 Round to -inf
9737
9738  To perform the conversion, we do:
9739    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9740  */
9741
9742  MachineFunction &MF = DAG.getMachineFunction();
9743  const TargetMachine &TM = MF.getTarget();
9744  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9745  unsigned StackAlignment = TFI.getStackAlignment();
9746  EVT VT = Op.getValueType();
9747  DebugLoc DL = Op.getDebugLoc();
9748
9749  // Save FP Control Word to stack slot
9750  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9751  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9752
9753
9754  MachineMemOperand *MMO =
9755   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9756                           MachineMemOperand::MOStore, 2, 2);
9757
9758  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9759  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9760                                          DAG.getVTList(MVT::Other),
9761                                          Ops, 2, MVT::i16, MMO);
9762
9763  // Load FP Control Word from stack slot
9764  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9765                            MachinePointerInfo(), false, false, false, 0);
9766
9767  // Transform as necessary
9768  SDValue CWD1 =
9769    DAG.getNode(ISD::SRL, DL, MVT::i16,
9770                DAG.getNode(ISD::AND, DL, MVT::i16,
9771                            CWD, DAG.getConstant(0x800, MVT::i16)),
9772                DAG.getConstant(11, MVT::i8));
9773  SDValue CWD2 =
9774    DAG.getNode(ISD::SRL, DL, MVT::i16,
9775                DAG.getNode(ISD::AND, DL, MVT::i16,
9776                            CWD, DAG.getConstant(0x400, MVT::i16)),
9777                DAG.getConstant(9, MVT::i8));
9778
9779  SDValue RetVal =
9780    DAG.getNode(ISD::AND, DL, MVT::i16,
9781                DAG.getNode(ISD::ADD, DL, MVT::i16,
9782                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9783                            DAG.getConstant(1, MVT::i16)),
9784                DAG.getConstant(3, MVT::i16));
9785
9786
9787  return DAG.getNode((VT.getSizeInBits() < 16 ?
9788                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9789}
9790
9791SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9792  EVT VT = Op.getValueType();
9793  EVT OpVT = VT;
9794  unsigned NumBits = VT.getSizeInBits();
9795  DebugLoc dl = Op.getDebugLoc();
9796
9797  Op = Op.getOperand(0);
9798  if (VT == MVT::i8) {
9799    // Zero extend to i32 since there is not an i8 bsr.
9800    OpVT = MVT::i32;
9801    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9802  }
9803
9804  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9805  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9806  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9807
9808  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9809  SDValue Ops[] = {
9810    Op,
9811    DAG.getConstant(NumBits+NumBits-1, OpVT),
9812    DAG.getConstant(X86::COND_E, MVT::i8),
9813    Op.getValue(1)
9814  };
9815  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9816
9817  // Finally xor with NumBits-1.
9818  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9819
9820  if (VT == MVT::i8)
9821    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9822  return Op;
9823}
9824
9825SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9826                                                SelectionDAG &DAG) const {
9827  EVT VT = Op.getValueType();
9828  EVT OpVT = VT;
9829  unsigned NumBits = VT.getSizeInBits();
9830  DebugLoc dl = Op.getDebugLoc();
9831
9832  Op = Op.getOperand(0);
9833  if (VT == MVT::i8) {
9834    // Zero extend to i32 since there is not an i8 bsr.
9835    OpVT = MVT::i32;
9836    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9837  }
9838
9839  // Issue a bsr (scan bits in reverse).
9840  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9841  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9842
9843  // And xor with NumBits-1.
9844  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9845
9846  if (VT == MVT::i8)
9847    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9848  return Op;
9849}
9850
9851SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9852  EVT VT = Op.getValueType();
9853  unsigned NumBits = VT.getSizeInBits();
9854  DebugLoc dl = Op.getDebugLoc();
9855  Op = Op.getOperand(0);
9856
9857  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9858  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9859  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9860
9861  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9862  SDValue Ops[] = {
9863    Op,
9864    DAG.getConstant(NumBits, VT),
9865    DAG.getConstant(X86::COND_E, MVT::i8),
9866    Op.getValue(1)
9867  };
9868  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9869}
9870
9871// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9872// ones, and then concatenate the result back.
9873static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9874  EVT VT = Op.getValueType();
9875
9876  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9877         "Unsupported value type for operation");
9878
9879  int NumElems = VT.getVectorNumElements();
9880  DebugLoc dl = Op.getDebugLoc();
9881  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9882  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9883
9884  // Extract the LHS vectors
9885  SDValue LHS = Op.getOperand(0);
9886  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9887  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9888
9889  // Extract the RHS vectors
9890  SDValue RHS = Op.getOperand(1);
9891  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9892  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9893
9894  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9895  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9896
9897  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9898                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9899                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9900}
9901
9902SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9903  assert(Op.getValueType().getSizeInBits() == 256 &&
9904         Op.getValueType().isInteger() &&
9905         "Only handle AVX 256-bit vector integer operation");
9906  return Lower256IntArith(Op, DAG);
9907}
9908
9909SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9910  assert(Op.getValueType().getSizeInBits() == 256 &&
9911         Op.getValueType().isInteger() &&
9912         "Only handle AVX 256-bit vector integer operation");
9913  return Lower256IntArith(Op, DAG);
9914}
9915
9916SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9917  EVT VT = Op.getValueType();
9918
9919  // Decompose 256-bit ops into smaller 128-bit ops.
9920  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9921    return Lower256IntArith(Op, DAG);
9922
9923  DebugLoc dl = Op.getDebugLoc();
9924
9925  SDValue A = Op.getOperand(0);
9926  SDValue B = Op.getOperand(1);
9927
9928  if (VT == MVT::v4i64) {
9929    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9930
9931    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9932    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9933    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9934    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9935    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9936    //
9937    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9938    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9939    //  return AloBlo + AloBhi + AhiBlo;
9940
9941    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9942                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9943                         A, DAG.getConstant(32, MVT::i32));
9944    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9945                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9946                         B, DAG.getConstant(32, MVT::i32));
9947    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9948                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9949                         A, B);
9950    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9951                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9952                         A, Bhi);
9953    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9954                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9955                         Ahi, B);
9956    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9957                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9958                         AloBhi, DAG.getConstant(32, MVT::i32));
9959    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9960                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9961                         AhiBlo, DAG.getConstant(32, MVT::i32));
9962    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9963    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9964    return Res;
9965  }
9966
9967  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9968
9969  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9970  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9971  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9972  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9973  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9974  //
9975  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9976  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9977  //  return AloBlo + AloBhi + AhiBlo;
9978
9979  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9980                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9981                       A, DAG.getConstant(32, MVT::i32));
9982  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9983                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9984                       B, DAG.getConstant(32, MVT::i32));
9985  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9986                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9987                       A, B);
9988  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9989                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9990                       A, Bhi);
9991  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9992                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9993                       Ahi, B);
9994  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9995                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9996                       AloBhi, DAG.getConstant(32, MVT::i32));
9997  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9998                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9999                       AhiBlo, DAG.getConstant(32, MVT::i32));
10000  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10001  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10002  return Res;
10003}
10004
10005// getTargetVShiftNOde - Handle vector element shifts where the shift amount
10006// may or may not be a constant. Takes immediate version of shift as input.
10007static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10008                                   SDValue SrcOp, SDValue ShAmt,
10009                                   SelectionDAG &DAG) {
10010  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10011
10012  if (isa<ConstantSDNode>(ShAmt)) {
10013    switch (Opc) {
10014      default: llvm_unreachable("Unknown target vector shift node");
10015      case X86ISD::VSHLI:
10016      case X86ISD::VSRLI:
10017      case X86ISD::VSRAI:
10018        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10019    }
10020  }
10021
10022  // Change opcode to non-immediate version
10023  switch (Opc) {
10024    default: llvm_unreachable("Unknown target vector shift node");
10025    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10026    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10027    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10028  }
10029
10030  // Need to build a vector containing shift amount
10031  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10032  SDValue ShOps[4];
10033  ShOps[0] = ShAmt;
10034  ShOps[1] = DAG.getConstant(0, MVT::i32);
10035  ShOps[2] = DAG.getUNDEF(MVT::i32);
10036  ShOps[3] = DAG.getUNDEF(MVT::i32);
10037  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10038  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
10039  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10040}
10041
10042SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10043
10044  EVT VT = Op.getValueType();
10045  DebugLoc dl = Op.getDebugLoc();
10046  SDValue R = Op.getOperand(0);
10047  SDValue Amt = Op.getOperand(1);
10048  LLVMContext *Context = DAG.getContext();
10049
10050  if (!Subtarget->hasSSE2())
10051    return SDValue();
10052
10053  // Optimize shl/srl/sra with constant shift amount.
10054  if (isSplatVector(Amt.getNode())) {
10055    SDValue SclrAmt = Amt->getOperand(0);
10056    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10057      uint64_t ShiftAmt = C->getZExtValue();
10058
10059      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10060          (Subtarget->hasAVX2() &&
10061           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10062        if (Op.getOpcode() == ISD::SHL)
10063          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10064                             DAG.getConstant(ShiftAmt, MVT::i32));
10065        if (Op.getOpcode() == ISD::SRL)
10066          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10067                             DAG.getConstant(ShiftAmt, MVT::i32));
10068        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10069          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10070                             DAG.getConstant(ShiftAmt, MVT::i32));
10071      }
10072
10073      if (VT == MVT::v16i8) {
10074        if (Op.getOpcode() == ISD::SHL) {
10075          // Make a large shift.
10076          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10077                                    DAG.getConstant(ShiftAmt, MVT::i32));
10078          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10079          // Zero out the rightmost bits.
10080          SmallVector<SDValue, 16> V(16,
10081                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10082                                                     MVT::i8));
10083          return DAG.getNode(ISD::AND, dl, VT, SHL,
10084                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10085        }
10086        if (Op.getOpcode() == ISD::SRL) {
10087          // Make a large shift.
10088          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10089                                    DAG.getConstant(ShiftAmt, MVT::i32));
10090          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10091          // Zero out the leftmost bits.
10092          SmallVector<SDValue, 16> V(16,
10093                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10094                                                     MVT::i8));
10095          return DAG.getNode(ISD::AND, dl, VT, SRL,
10096                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10097        }
10098        if (Op.getOpcode() == ISD::SRA) {
10099          if (ShiftAmt == 7) {
10100            // R s>> 7  ===  R s< 0
10101            SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10102                                          /* HasAVX2 */false, DAG, dl);
10103            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10104          }
10105
10106          // R s>> a === ((R u>> a) ^ m) - m
10107          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10108          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10109                                                         MVT::i8));
10110          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10111          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10112          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10113          return Res;
10114        }
10115      }
10116
10117      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10118        if (Op.getOpcode() == ISD::SHL) {
10119          // Make a large shift.
10120          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10121                                    DAG.getConstant(ShiftAmt, MVT::i32));
10122          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10123          // Zero out the rightmost bits.
10124          SmallVector<SDValue, 32> V(32,
10125                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10126                                                     MVT::i8));
10127          return DAG.getNode(ISD::AND, dl, VT, SHL,
10128                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10129        }
10130        if (Op.getOpcode() == ISD::SRL) {
10131          // Make a large shift.
10132          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10133                                    DAG.getConstant(ShiftAmt, MVT::i32));
10134          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10135          // Zero out the leftmost bits.
10136          SmallVector<SDValue, 32> V(32,
10137                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10138                                                     MVT::i8));
10139          return DAG.getNode(ISD::AND, dl, VT, SRL,
10140                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10141        }
10142        if (Op.getOpcode() == ISD::SRA) {
10143          if (ShiftAmt == 7) {
10144            // R s>> 7  ===  R s< 0
10145            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10146                                          true /* HasAVX2 */, DAG, dl);
10147            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10148          }
10149
10150          // R s>> a === ((R u>> a) ^ m) - m
10151          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10152          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10153                                                         MVT::i8));
10154          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10155          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10156          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10157          return Res;
10158        }
10159      }
10160    }
10161  }
10162
10163  // Lower SHL with variable shift amount.
10164  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10165    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10166                     DAG.getConstant(23, MVT::i32));
10167
10168    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10169
10170    std::vector<Constant*> CV(4, CI);
10171    Constant *C = ConstantVector::get(CV);
10172    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10173    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10174                                 MachinePointerInfo::getConstantPool(),
10175                                 false, false, false, 16);
10176
10177    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10178    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10179    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10180    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10181  }
10182  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10183    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10184
10185    // a = a << 5;
10186    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10187                     DAG.getConstant(5, MVT::i32));
10188    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10189
10190    // Turn 'a' into a mask suitable for VSELECT
10191    SDValue VSelM = DAG.getConstant(0x80, VT);
10192    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10193    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10194
10195    SDValue CM1 = DAG.getConstant(0x0f, VT);
10196    SDValue CM2 = DAG.getConstant(0x3f, VT);
10197
10198    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10199    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10200    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10201                            DAG.getConstant(4, MVT::i32), DAG);
10202    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10203    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10204
10205    // a += a
10206    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10207    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10208    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10209
10210    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10211    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10212    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10213                            DAG.getConstant(2, MVT::i32), DAG);
10214    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10215    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10216
10217    // a += a
10218    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10219    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10220    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10221
10222    // return VSELECT(r, r+r, a);
10223    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10224                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10225    return R;
10226  }
10227
10228  // Decompose 256-bit shifts into smaller 128-bit shifts.
10229  if (VT.getSizeInBits() == 256) {
10230    unsigned NumElems = VT.getVectorNumElements();
10231    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10232    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10233
10234    // Extract the two vectors
10235    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10236    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10237                                     DAG, dl);
10238
10239    // Recreate the shift amount vectors
10240    SDValue Amt1, Amt2;
10241    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10242      // Constant shift amount
10243      SmallVector<SDValue, 4> Amt1Csts;
10244      SmallVector<SDValue, 4> Amt2Csts;
10245      for (unsigned i = 0; i != NumElems/2; ++i)
10246        Amt1Csts.push_back(Amt->getOperand(i));
10247      for (unsigned i = NumElems/2; i != NumElems; ++i)
10248        Amt2Csts.push_back(Amt->getOperand(i));
10249
10250      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10251                                 &Amt1Csts[0], NumElems/2);
10252      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10253                                 &Amt2Csts[0], NumElems/2);
10254    } else {
10255      // Variable shift amount
10256      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10257      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10258                                 DAG, dl);
10259    }
10260
10261    // Issue new vector shifts for the smaller types
10262    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10263    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10264
10265    // Concatenate the result back
10266    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10267  }
10268
10269  return SDValue();
10270}
10271
10272SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10273  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10274  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10275  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10276  // has only one use.
10277  SDNode *N = Op.getNode();
10278  SDValue LHS = N->getOperand(0);
10279  SDValue RHS = N->getOperand(1);
10280  unsigned BaseOp = 0;
10281  unsigned Cond = 0;
10282  DebugLoc DL = Op.getDebugLoc();
10283  switch (Op.getOpcode()) {
10284  default: llvm_unreachable("Unknown ovf instruction!");
10285  case ISD::SADDO:
10286    // A subtract of one will be selected as a INC. Note that INC doesn't
10287    // set CF, so we can't do this for UADDO.
10288    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10289      if (C->isOne()) {
10290        BaseOp = X86ISD::INC;
10291        Cond = X86::COND_O;
10292        break;
10293      }
10294    BaseOp = X86ISD::ADD;
10295    Cond = X86::COND_O;
10296    break;
10297  case ISD::UADDO:
10298    BaseOp = X86ISD::ADD;
10299    Cond = X86::COND_B;
10300    break;
10301  case ISD::SSUBO:
10302    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10303    // set CF, so we can't do this for USUBO.
10304    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10305      if (C->isOne()) {
10306        BaseOp = X86ISD::DEC;
10307        Cond = X86::COND_O;
10308        break;
10309      }
10310    BaseOp = X86ISD::SUB;
10311    Cond = X86::COND_O;
10312    break;
10313  case ISD::USUBO:
10314    BaseOp = X86ISD::SUB;
10315    Cond = X86::COND_B;
10316    break;
10317  case ISD::SMULO:
10318    BaseOp = X86ISD::SMUL;
10319    Cond = X86::COND_O;
10320    break;
10321  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10322    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10323                                 MVT::i32);
10324    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10325
10326    SDValue SetCC =
10327      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10328                  DAG.getConstant(X86::COND_O, MVT::i32),
10329                  SDValue(Sum.getNode(), 2));
10330
10331    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10332  }
10333  }
10334
10335  // Also sets EFLAGS.
10336  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10337  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10338
10339  SDValue SetCC =
10340    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10341                DAG.getConstant(Cond, MVT::i32),
10342                SDValue(Sum.getNode(), 1));
10343
10344  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10345}
10346
10347SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10348                                                  SelectionDAG &DAG) const {
10349  DebugLoc dl = Op.getDebugLoc();
10350  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10351  EVT VT = Op.getValueType();
10352
10353  if (!Subtarget->hasSSE2() || !VT.isVector())
10354    return SDValue();
10355
10356  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10357                      ExtraVT.getScalarType().getSizeInBits();
10358  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10359
10360  switch (VT.getSimpleVT().SimpleTy) {
10361    default: return SDValue();
10362    case MVT::v8i32:
10363    case MVT::v16i16:
10364      if (!Subtarget->hasAVX())
10365        return SDValue();
10366      if (!Subtarget->hasAVX2()) {
10367        // needs to be split
10368        int NumElems = VT.getVectorNumElements();
10369        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10370        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10371
10372        // Extract the LHS vectors
10373        SDValue LHS = Op.getOperand(0);
10374        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10375        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10376
10377        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10378        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10379
10380        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10381        int ExtraNumElems = ExtraVT.getVectorNumElements();
10382        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10383                                   ExtraNumElems/2);
10384        SDValue Extra = DAG.getValueType(ExtraVT);
10385
10386        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10387        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10388
10389        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10390      }
10391      // fall through
10392    case MVT::v4i32:
10393    case MVT::v8i16: {
10394      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10395                                         Op.getOperand(0), ShAmt, DAG);
10396      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10397    }
10398  }
10399}
10400
10401
10402SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10403  DebugLoc dl = Op.getDebugLoc();
10404
10405  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10406  // There isn't any reason to disable it if the target processor supports it.
10407  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10408    SDValue Chain = Op.getOperand(0);
10409    SDValue Zero = DAG.getConstant(0, MVT::i32);
10410    SDValue Ops[] = {
10411      DAG.getRegister(X86::ESP, MVT::i32), // Base
10412      DAG.getTargetConstant(1, MVT::i8),   // Scale
10413      DAG.getRegister(0, MVT::i32),        // Index
10414      DAG.getTargetConstant(0, MVT::i32),  // Disp
10415      DAG.getRegister(0, MVT::i32),        // Segment.
10416      Zero,
10417      Chain
10418    };
10419    SDNode *Res =
10420      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10421                          array_lengthof(Ops));
10422    return SDValue(Res, 0);
10423  }
10424
10425  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10426  if (!isDev)
10427    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10428
10429  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10430  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10431  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10432  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10433
10434  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10435  if (!Op1 && !Op2 && !Op3 && Op4)
10436    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10437
10438  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10439  if (Op1 && !Op2 && !Op3 && !Op4)
10440    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10441
10442  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10443  //           (MFENCE)>;
10444  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10445}
10446
10447SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10448                                             SelectionDAG &DAG) const {
10449  DebugLoc dl = Op.getDebugLoc();
10450  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10451    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10452  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10453    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10454
10455  // The only fence that needs an instruction is a sequentially-consistent
10456  // cross-thread fence.
10457  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10458    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10459    // no-sse2). There isn't any reason to disable it if the target processor
10460    // supports it.
10461    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10462      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10463
10464    SDValue Chain = Op.getOperand(0);
10465    SDValue Zero = DAG.getConstant(0, MVT::i32);
10466    SDValue Ops[] = {
10467      DAG.getRegister(X86::ESP, MVT::i32), // Base
10468      DAG.getTargetConstant(1, MVT::i8),   // Scale
10469      DAG.getRegister(0, MVT::i32),        // Index
10470      DAG.getTargetConstant(0, MVT::i32),  // Disp
10471      DAG.getRegister(0, MVT::i32),        // Segment.
10472      Zero,
10473      Chain
10474    };
10475    SDNode *Res =
10476      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10477                         array_lengthof(Ops));
10478    return SDValue(Res, 0);
10479  }
10480
10481  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10482  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10483}
10484
10485
10486SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10487  EVT T = Op.getValueType();
10488  DebugLoc DL = Op.getDebugLoc();
10489  unsigned Reg = 0;
10490  unsigned size = 0;
10491  switch(T.getSimpleVT().SimpleTy) {
10492  default:
10493    assert(false && "Invalid value type!");
10494  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10495  case MVT::i16: Reg = X86::AX;  size = 2; break;
10496  case MVT::i32: Reg = X86::EAX; size = 4; break;
10497  case MVT::i64:
10498    assert(Subtarget->is64Bit() && "Node not type legal!");
10499    Reg = X86::RAX; size = 8;
10500    break;
10501  }
10502  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10503                                    Op.getOperand(2), SDValue());
10504  SDValue Ops[] = { cpIn.getValue(0),
10505                    Op.getOperand(1),
10506                    Op.getOperand(3),
10507                    DAG.getTargetConstant(size, MVT::i8),
10508                    cpIn.getValue(1) };
10509  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10510  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10511  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10512                                           Ops, 5, T, MMO);
10513  SDValue cpOut =
10514    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10515  return cpOut;
10516}
10517
10518SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10519                                                 SelectionDAG &DAG) const {
10520  assert(Subtarget->is64Bit() && "Result not type legalized?");
10521  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10522  SDValue TheChain = Op.getOperand(0);
10523  DebugLoc dl = Op.getDebugLoc();
10524  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10525  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10526  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10527                                   rax.getValue(2));
10528  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10529                            DAG.getConstant(32, MVT::i8));
10530  SDValue Ops[] = {
10531    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10532    rdx.getValue(1)
10533  };
10534  return DAG.getMergeValues(Ops, 2, dl);
10535}
10536
10537SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10538                                            SelectionDAG &DAG) const {
10539  EVT SrcVT = Op.getOperand(0).getValueType();
10540  EVT DstVT = Op.getValueType();
10541  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10542         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10543  assert((DstVT == MVT::i64 ||
10544          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10545         "Unexpected custom BITCAST");
10546  // i64 <=> MMX conversions are Legal.
10547  if (SrcVT==MVT::i64 && DstVT.isVector())
10548    return Op;
10549  if (DstVT==MVT::i64 && SrcVT.isVector())
10550    return Op;
10551  // MMX <=> MMX conversions are Legal.
10552  if (SrcVT.isVector() && DstVT.isVector())
10553    return Op;
10554  // All other conversions need to be expanded.
10555  return SDValue();
10556}
10557
10558SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10559  SDNode *Node = Op.getNode();
10560  DebugLoc dl = Node->getDebugLoc();
10561  EVT T = Node->getValueType(0);
10562  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10563                              DAG.getConstant(0, T), Node->getOperand(2));
10564  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10565                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10566                       Node->getOperand(0),
10567                       Node->getOperand(1), negOp,
10568                       cast<AtomicSDNode>(Node)->getSrcValue(),
10569                       cast<AtomicSDNode>(Node)->getAlignment(),
10570                       cast<AtomicSDNode>(Node)->getOrdering(),
10571                       cast<AtomicSDNode>(Node)->getSynchScope());
10572}
10573
10574static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10575  SDNode *Node = Op.getNode();
10576  DebugLoc dl = Node->getDebugLoc();
10577  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10578
10579  // Convert seq_cst store -> xchg
10580  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10581  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10582  //        (The only way to get a 16-byte store is cmpxchg16b)
10583  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10584  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10585      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10586    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10587                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10588                                 Node->getOperand(0),
10589                                 Node->getOperand(1), Node->getOperand(2),
10590                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10591                                 cast<AtomicSDNode>(Node)->getOrdering(),
10592                                 cast<AtomicSDNode>(Node)->getSynchScope());
10593    return Swap.getValue(1);
10594  }
10595  // Other atomic stores have a simple pattern.
10596  return Op;
10597}
10598
10599static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10600  EVT VT = Op.getNode()->getValueType(0);
10601
10602  // Let legalize expand this if it isn't a legal type yet.
10603  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10604    return SDValue();
10605
10606  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10607
10608  unsigned Opc;
10609  bool ExtraOp = false;
10610  switch (Op.getOpcode()) {
10611  default: assert(0 && "Invalid code");
10612  case ISD::ADDC: Opc = X86ISD::ADD; break;
10613  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10614  case ISD::SUBC: Opc = X86ISD::SUB; break;
10615  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10616  }
10617
10618  if (!ExtraOp)
10619    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10620                       Op.getOperand(1));
10621  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10622                     Op.getOperand(1), Op.getOperand(2));
10623}
10624
10625/// LowerOperation - Provide custom lowering hooks for some operations.
10626///
10627SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10628  switch (Op.getOpcode()) {
10629  default: llvm_unreachable("Should not custom lower this!");
10630  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10631  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10632  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10633  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10634  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10635  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10636  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10637  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10638  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10639  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10640  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10641  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10642  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10643  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10644  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10645  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10646  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10647  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10648  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10649  case ISD::SHL_PARTS:
10650  case ISD::SRA_PARTS:
10651  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10652  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10653  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10654  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10655  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10656  case ISD::FABS:               return LowerFABS(Op, DAG);
10657  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10658  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10659  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10660  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10661  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10662  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10663  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10664  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10665  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10666  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10667  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10668  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10669  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10670  case ISD::FRAME_TO_ARGS_OFFSET:
10671                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10672  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10673  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10674  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10675  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10676  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10677  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10678  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10679  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10680  case ISD::MUL:                return LowerMUL(Op, DAG);
10681  case ISD::SRA:
10682  case ISD::SRL:
10683  case ISD::SHL:                return LowerShift(Op, DAG);
10684  case ISD::SADDO:
10685  case ISD::UADDO:
10686  case ISD::SSUBO:
10687  case ISD::USUBO:
10688  case ISD::SMULO:
10689  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10690  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10691  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10692  case ISD::ADDC:
10693  case ISD::ADDE:
10694  case ISD::SUBC:
10695  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10696  case ISD::ADD:                return LowerADD(Op, DAG);
10697  case ISD::SUB:                return LowerSUB(Op, DAG);
10698  }
10699}
10700
10701static void ReplaceATOMIC_LOAD(SDNode *Node,
10702                                  SmallVectorImpl<SDValue> &Results,
10703                                  SelectionDAG &DAG) {
10704  DebugLoc dl = Node->getDebugLoc();
10705  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10706
10707  // Convert wide load -> cmpxchg8b/cmpxchg16b
10708  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10709  //        (The only way to get a 16-byte load is cmpxchg16b)
10710  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10711  SDValue Zero = DAG.getConstant(0, VT);
10712  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10713                               Node->getOperand(0),
10714                               Node->getOperand(1), Zero, Zero,
10715                               cast<AtomicSDNode>(Node)->getMemOperand(),
10716                               cast<AtomicSDNode>(Node)->getOrdering(),
10717                               cast<AtomicSDNode>(Node)->getSynchScope());
10718  Results.push_back(Swap.getValue(0));
10719  Results.push_back(Swap.getValue(1));
10720}
10721
10722void X86TargetLowering::
10723ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10724                        SelectionDAG &DAG, unsigned NewOp) const {
10725  DebugLoc dl = Node->getDebugLoc();
10726  assert (Node->getValueType(0) == MVT::i64 &&
10727          "Only know how to expand i64 atomics");
10728
10729  SDValue Chain = Node->getOperand(0);
10730  SDValue In1 = Node->getOperand(1);
10731  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10732                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10733  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10734                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10735  SDValue Ops[] = { Chain, In1, In2L, In2H };
10736  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10737  SDValue Result =
10738    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10739                            cast<MemSDNode>(Node)->getMemOperand());
10740  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10741  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10742  Results.push_back(Result.getValue(2));
10743}
10744
10745/// ReplaceNodeResults - Replace a node with an illegal result type
10746/// with a new node built out of custom code.
10747void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10748                                           SmallVectorImpl<SDValue>&Results,
10749                                           SelectionDAG &DAG) const {
10750  DebugLoc dl = N->getDebugLoc();
10751  switch (N->getOpcode()) {
10752  default:
10753    assert(false && "Do not know how to custom type legalize this operation!");
10754    return;
10755  case ISD::SIGN_EXTEND_INREG:
10756  case ISD::ADDC:
10757  case ISD::ADDE:
10758  case ISD::SUBC:
10759  case ISD::SUBE:
10760    // We don't want to expand or promote these.
10761    return;
10762  case ISD::FP_TO_SINT: {
10763    std::pair<SDValue,SDValue> Vals =
10764        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10765    SDValue FIST = Vals.first, StackSlot = Vals.second;
10766    if (FIST.getNode() != 0) {
10767      EVT VT = N->getValueType(0);
10768      // Return a load from the stack slot.
10769      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10770                                    MachinePointerInfo(),
10771                                    false, false, false, 0));
10772    }
10773    return;
10774  }
10775  case ISD::READCYCLECOUNTER: {
10776    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10777    SDValue TheChain = N->getOperand(0);
10778    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10779    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10780                                     rd.getValue(1));
10781    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10782                                     eax.getValue(2));
10783    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10784    SDValue Ops[] = { eax, edx };
10785    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10786    Results.push_back(edx.getValue(1));
10787    return;
10788  }
10789  case ISD::ATOMIC_CMP_SWAP: {
10790    EVT T = N->getValueType(0);
10791    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10792    bool Regs64bit = T == MVT::i128;
10793    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10794    SDValue cpInL, cpInH;
10795    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10796                        DAG.getConstant(0, HalfT));
10797    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10798                        DAG.getConstant(1, HalfT));
10799    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10800                             Regs64bit ? X86::RAX : X86::EAX,
10801                             cpInL, SDValue());
10802    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10803                             Regs64bit ? X86::RDX : X86::EDX,
10804                             cpInH, cpInL.getValue(1));
10805    SDValue swapInL, swapInH;
10806    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10807                          DAG.getConstant(0, HalfT));
10808    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10809                          DAG.getConstant(1, HalfT));
10810    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10811                               Regs64bit ? X86::RBX : X86::EBX,
10812                               swapInL, cpInH.getValue(1));
10813    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10814                               Regs64bit ? X86::RCX : X86::ECX,
10815                               swapInH, swapInL.getValue(1));
10816    SDValue Ops[] = { swapInH.getValue(0),
10817                      N->getOperand(1),
10818                      swapInH.getValue(1) };
10819    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10820    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10821    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10822                                  X86ISD::LCMPXCHG8_DAG;
10823    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10824                                             Ops, 3, T, MMO);
10825    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10826                                        Regs64bit ? X86::RAX : X86::EAX,
10827                                        HalfT, Result.getValue(1));
10828    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10829                                        Regs64bit ? X86::RDX : X86::EDX,
10830                                        HalfT, cpOutL.getValue(2));
10831    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10832    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10833    Results.push_back(cpOutH.getValue(1));
10834    return;
10835  }
10836  case ISD::ATOMIC_LOAD_ADD:
10837    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10838    return;
10839  case ISD::ATOMIC_LOAD_AND:
10840    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10841    return;
10842  case ISD::ATOMIC_LOAD_NAND:
10843    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10844    return;
10845  case ISD::ATOMIC_LOAD_OR:
10846    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10847    return;
10848  case ISD::ATOMIC_LOAD_SUB:
10849    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10850    return;
10851  case ISD::ATOMIC_LOAD_XOR:
10852    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10853    return;
10854  case ISD::ATOMIC_SWAP:
10855    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10856    return;
10857  case ISD::ATOMIC_LOAD:
10858    ReplaceATOMIC_LOAD(N, Results, DAG);
10859  }
10860}
10861
10862const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10863  switch (Opcode) {
10864  default: return NULL;
10865  case X86ISD::BSF:                return "X86ISD::BSF";
10866  case X86ISD::BSR:                return "X86ISD::BSR";
10867  case X86ISD::SHLD:               return "X86ISD::SHLD";
10868  case X86ISD::SHRD:               return "X86ISD::SHRD";
10869  case X86ISD::FAND:               return "X86ISD::FAND";
10870  case X86ISD::FOR:                return "X86ISD::FOR";
10871  case X86ISD::FXOR:               return "X86ISD::FXOR";
10872  case X86ISD::FSRL:               return "X86ISD::FSRL";
10873  case X86ISD::FILD:               return "X86ISD::FILD";
10874  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10875  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10876  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10877  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10878  case X86ISD::FLD:                return "X86ISD::FLD";
10879  case X86ISD::FST:                return "X86ISD::FST";
10880  case X86ISD::CALL:               return "X86ISD::CALL";
10881  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10882  case X86ISD::BT:                 return "X86ISD::BT";
10883  case X86ISD::CMP:                return "X86ISD::CMP";
10884  case X86ISD::COMI:               return "X86ISD::COMI";
10885  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10886  case X86ISD::SETCC:              return "X86ISD::SETCC";
10887  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10888  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10889  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10890  case X86ISD::CMOV:               return "X86ISD::CMOV";
10891  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10892  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10893  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10894  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10895  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10896  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10897  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10898  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10899  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10900  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10901  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10902  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10903  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10904  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10905  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10906  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10907  case X86ISD::HADD:               return "X86ISD::HADD";
10908  case X86ISD::HSUB:               return "X86ISD::HSUB";
10909  case X86ISD::FHADD:              return "X86ISD::FHADD";
10910  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10911  case X86ISD::FMAX:               return "X86ISD::FMAX";
10912  case X86ISD::FMIN:               return "X86ISD::FMIN";
10913  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10914  case X86ISD::FRCP:               return "X86ISD::FRCP";
10915  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10916  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10917  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10918  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10919  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10920  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10921  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10922  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10923  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10924  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10925  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10926  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10927  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10928  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10929  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10930  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
10931  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
10932  case X86ISD::VSHL:               return "X86ISD::VSHL";
10933  case X86ISD::VSRL:               return "X86ISD::VSRL";
10934  case X86ISD::VSRA:               return "X86ISD::VSRA";
10935  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
10936  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
10937  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
10938  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10939  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10940  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
10941  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
10942  case X86ISD::ADD:                return "X86ISD::ADD";
10943  case X86ISD::SUB:                return "X86ISD::SUB";
10944  case X86ISD::ADC:                return "X86ISD::ADC";
10945  case X86ISD::SBB:                return "X86ISD::SBB";
10946  case X86ISD::SMUL:               return "X86ISD::SMUL";
10947  case X86ISD::UMUL:               return "X86ISD::UMUL";
10948  case X86ISD::INC:                return "X86ISD::INC";
10949  case X86ISD::DEC:                return "X86ISD::DEC";
10950  case X86ISD::OR:                 return "X86ISD::OR";
10951  case X86ISD::XOR:                return "X86ISD::XOR";
10952  case X86ISD::AND:                return "X86ISD::AND";
10953  case X86ISD::ANDN:               return "X86ISD::ANDN";
10954  case X86ISD::BLSI:               return "X86ISD::BLSI";
10955  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10956  case X86ISD::BLSR:               return "X86ISD::BLSR";
10957  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10958  case X86ISD::PTEST:              return "X86ISD::PTEST";
10959  case X86ISD::TESTP:              return "X86ISD::TESTP";
10960  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10961  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10962  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10963  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10964  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
10965  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10966  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10967  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10968  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10969  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10970  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10971  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10972  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10973  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10974  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10975  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
10976  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
10977  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10978  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
10979  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
10980  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10981  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10982  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10983  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10984  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10985  }
10986}
10987
10988// isLegalAddressingMode - Return true if the addressing mode represented
10989// by AM is legal for this target, for a load/store of the specified type.
10990bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10991                                              Type *Ty) const {
10992  // X86 supports extremely general addressing modes.
10993  CodeModel::Model M = getTargetMachine().getCodeModel();
10994  Reloc::Model R = getTargetMachine().getRelocationModel();
10995
10996  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10997  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10998    return false;
10999
11000  if (AM.BaseGV) {
11001    unsigned GVFlags =
11002      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11003
11004    // If a reference to this global requires an extra load, we can't fold it.
11005    if (isGlobalStubReference(GVFlags))
11006      return false;
11007
11008    // If BaseGV requires a register for the PIC base, we cannot also have a
11009    // BaseReg specified.
11010    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11011      return false;
11012
11013    // If lower 4G is not available, then we must use rip-relative addressing.
11014    if ((M != CodeModel::Small || R != Reloc::Static) &&
11015        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11016      return false;
11017  }
11018
11019  switch (AM.Scale) {
11020  case 0:
11021  case 1:
11022  case 2:
11023  case 4:
11024  case 8:
11025    // These scales always work.
11026    break;
11027  case 3:
11028  case 5:
11029  case 9:
11030    // These scales are formed with basereg+scalereg.  Only accept if there is
11031    // no basereg yet.
11032    if (AM.HasBaseReg)
11033      return false;
11034    break;
11035  default:  // Other stuff never works.
11036    return false;
11037  }
11038
11039  return true;
11040}
11041
11042
11043bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11044  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11045    return false;
11046  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11047  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11048  if (NumBits1 <= NumBits2)
11049    return false;
11050  return true;
11051}
11052
11053bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11054  if (!VT1.isInteger() || !VT2.isInteger())
11055    return false;
11056  unsigned NumBits1 = VT1.getSizeInBits();
11057  unsigned NumBits2 = VT2.getSizeInBits();
11058  if (NumBits1 <= NumBits2)
11059    return false;
11060  return true;
11061}
11062
11063bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11064  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11065  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11066}
11067
11068bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11069  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11070  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11071}
11072
11073bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11074  // i16 instructions are longer (0x66 prefix) and potentially slower.
11075  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11076}
11077
11078/// isShuffleMaskLegal - Targets can use this to indicate that they only
11079/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11080/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11081/// are assumed to be legal.
11082bool
11083X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11084                                      EVT VT) const {
11085  // Very little shuffling can be done for 64-bit vectors right now.
11086  if (VT.getSizeInBits() == 64)
11087    return false;
11088
11089  // FIXME: pshufb, blends, shifts.
11090  return (VT.getVectorNumElements() == 2 ||
11091          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11092          isMOVLMask(M, VT) ||
11093          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11094          isPSHUFDMask(M, VT) ||
11095          isPSHUFHWMask(M, VT) ||
11096          isPSHUFLWMask(M, VT) ||
11097          isPALIGNRMask(M, VT, Subtarget) ||
11098          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11099          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11100          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11101          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11102}
11103
11104bool
11105X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11106                                          EVT VT) const {
11107  unsigned NumElts = VT.getVectorNumElements();
11108  // FIXME: This collection of masks seems suspect.
11109  if (NumElts == 2)
11110    return true;
11111  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11112    return (isMOVLMask(Mask, VT)  ||
11113            isCommutedMOVLMask(Mask, VT, true) ||
11114            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11115            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11116  }
11117  return false;
11118}
11119
11120//===----------------------------------------------------------------------===//
11121//                           X86 Scheduler Hooks
11122//===----------------------------------------------------------------------===//
11123
11124// private utility function
11125MachineBasicBlock *
11126X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11127                                                       MachineBasicBlock *MBB,
11128                                                       unsigned regOpc,
11129                                                       unsigned immOpc,
11130                                                       unsigned LoadOpc,
11131                                                       unsigned CXchgOpc,
11132                                                       unsigned notOpc,
11133                                                       unsigned EAXreg,
11134                                                       TargetRegisterClass *RC,
11135                                                       bool invSrc) const {
11136  // For the atomic bitwise operator, we generate
11137  //   thisMBB:
11138  //   newMBB:
11139  //     ld  t1 = [bitinstr.addr]
11140  //     op  t2 = t1, [bitinstr.val]
11141  //     mov EAX = t1
11142  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11143  //     bz  newMBB
11144  //     fallthrough -->nextMBB
11145  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11146  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11147  MachineFunction::iterator MBBIter = MBB;
11148  ++MBBIter;
11149
11150  /// First build the CFG
11151  MachineFunction *F = MBB->getParent();
11152  MachineBasicBlock *thisMBB = MBB;
11153  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11154  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11155  F->insert(MBBIter, newMBB);
11156  F->insert(MBBIter, nextMBB);
11157
11158  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11159  nextMBB->splice(nextMBB->begin(), thisMBB,
11160                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11161                  thisMBB->end());
11162  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11163
11164  // Update thisMBB to fall through to newMBB
11165  thisMBB->addSuccessor(newMBB);
11166
11167  // newMBB jumps to itself and fall through to nextMBB
11168  newMBB->addSuccessor(nextMBB);
11169  newMBB->addSuccessor(newMBB);
11170
11171  // Insert instructions into newMBB based on incoming instruction
11172  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11173         "unexpected number of operands");
11174  DebugLoc dl = bInstr->getDebugLoc();
11175  MachineOperand& destOper = bInstr->getOperand(0);
11176  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11177  int numArgs = bInstr->getNumOperands() - 1;
11178  for (int i=0; i < numArgs; ++i)
11179    argOpers[i] = &bInstr->getOperand(i+1);
11180
11181  // x86 address has 4 operands: base, index, scale, and displacement
11182  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11183  int valArgIndx = lastAddrIndx + 1;
11184
11185  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11186  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11187  for (int i=0; i <= lastAddrIndx; ++i)
11188    (*MIB).addOperand(*argOpers[i]);
11189
11190  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11191  if (invSrc) {
11192    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11193  }
11194  else
11195    tt = t1;
11196
11197  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11198  assert((argOpers[valArgIndx]->isReg() ||
11199          argOpers[valArgIndx]->isImm()) &&
11200         "invalid operand");
11201  if (argOpers[valArgIndx]->isReg())
11202    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11203  else
11204    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11205  MIB.addReg(tt);
11206  (*MIB).addOperand(*argOpers[valArgIndx]);
11207
11208  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11209  MIB.addReg(t1);
11210
11211  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11212  for (int i=0; i <= lastAddrIndx; ++i)
11213    (*MIB).addOperand(*argOpers[i]);
11214  MIB.addReg(t2);
11215  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11216  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11217                    bInstr->memoperands_end());
11218
11219  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11220  MIB.addReg(EAXreg);
11221
11222  // insert branch
11223  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11224
11225  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11226  return nextMBB;
11227}
11228
11229// private utility function:  64 bit atomics on 32 bit host.
11230MachineBasicBlock *
11231X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11232                                                       MachineBasicBlock *MBB,
11233                                                       unsigned regOpcL,
11234                                                       unsigned regOpcH,
11235                                                       unsigned immOpcL,
11236                                                       unsigned immOpcH,
11237                                                       bool invSrc) const {
11238  // For the atomic bitwise operator, we generate
11239  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11240  //     ld t1,t2 = [bitinstr.addr]
11241  //   newMBB:
11242  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11243  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11244  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11245  //     mov ECX, EBX <- t5, t6
11246  //     mov EAX, EDX <- t1, t2
11247  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11248  //     mov t3, t4 <- EAX, EDX
11249  //     bz  newMBB
11250  //     result in out1, out2
11251  //     fallthrough -->nextMBB
11252
11253  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11254  const unsigned LoadOpc = X86::MOV32rm;
11255  const unsigned NotOpc = X86::NOT32r;
11256  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11257  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11258  MachineFunction::iterator MBBIter = MBB;
11259  ++MBBIter;
11260
11261  /// First build the CFG
11262  MachineFunction *F = MBB->getParent();
11263  MachineBasicBlock *thisMBB = MBB;
11264  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11265  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11266  F->insert(MBBIter, newMBB);
11267  F->insert(MBBIter, nextMBB);
11268
11269  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11270  nextMBB->splice(nextMBB->begin(), thisMBB,
11271                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11272                  thisMBB->end());
11273  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11274
11275  // Update thisMBB to fall through to newMBB
11276  thisMBB->addSuccessor(newMBB);
11277
11278  // newMBB jumps to itself and fall through to nextMBB
11279  newMBB->addSuccessor(nextMBB);
11280  newMBB->addSuccessor(newMBB);
11281
11282  DebugLoc dl = bInstr->getDebugLoc();
11283  // Insert instructions into newMBB based on incoming instruction
11284  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11285  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11286         "unexpected number of operands");
11287  MachineOperand& dest1Oper = bInstr->getOperand(0);
11288  MachineOperand& dest2Oper = bInstr->getOperand(1);
11289  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11290  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11291    argOpers[i] = &bInstr->getOperand(i+2);
11292
11293    // We use some of the operands multiple times, so conservatively just
11294    // clear any kill flags that might be present.
11295    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11296      argOpers[i]->setIsKill(false);
11297  }
11298
11299  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11300  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11301
11302  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11303  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11304  for (int i=0; i <= lastAddrIndx; ++i)
11305    (*MIB).addOperand(*argOpers[i]);
11306  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11307  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11308  // add 4 to displacement.
11309  for (int i=0; i <= lastAddrIndx-2; ++i)
11310    (*MIB).addOperand(*argOpers[i]);
11311  MachineOperand newOp3 = *(argOpers[3]);
11312  if (newOp3.isImm())
11313    newOp3.setImm(newOp3.getImm()+4);
11314  else
11315    newOp3.setOffset(newOp3.getOffset()+4);
11316  (*MIB).addOperand(newOp3);
11317  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11318
11319  // t3/4 are defined later, at the bottom of the loop
11320  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11321  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11322  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11323    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11324  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11325    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11326
11327  // The subsequent operations should be using the destination registers of
11328  //the PHI instructions.
11329  if (invSrc) {
11330    t1 = F->getRegInfo().createVirtualRegister(RC);
11331    t2 = F->getRegInfo().createVirtualRegister(RC);
11332    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11333    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11334  } else {
11335    t1 = dest1Oper.getReg();
11336    t2 = dest2Oper.getReg();
11337  }
11338
11339  int valArgIndx = lastAddrIndx + 1;
11340  assert((argOpers[valArgIndx]->isReg() ||
11341          argOpers[valArgIndx]->isImm()) &&
11342         "invalid operand");
11343  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11344  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11345  if (argOpers[valArgIndx]->isReg())
11346    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11347  else
11348    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11349  if (regOpcL != X86::MOV32rr)
11350    MIB.addReg(t1);
11351  (*MIB).addOperand(*argOpers[valArgIndx]);
11352  assert(argOpers[valArgIndx + 1]->isReg() ==
11353         argOpers[valArgIndx]->isReg());
11354  assert(argOpers[valArgIndx + 1]->isImm() ==
11355         argOpers[valArgIndx]->isImm());
11356  if (argOpers[valArgIndx + 1]->isReg())
11357    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11358  else
11359    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11360  if (regOpcH != X86::MOV32rr)
11361    MIB.addReg(t2);
11362  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11363
11364  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11365  MIB.addReg(t1);
11366  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11367  MIB.addReg(t2);
11368
11369  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11370  MIB.addReg(t5);
11371  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11372  MIB.addReg(t6);
11373
11374  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11375  for (int i=0; i <= lastAddrIndx; ++i)
11376    (*MIB).addOperand(*argOpers[i]);
11377
11378  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11379  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11380                    bInstr->memoperands_end());
11381
11382  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11383  MIB.addReg(X86::EAX);
11384  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11385  MIB.addReg(X86::EDX);
11386
11387  // insert branch
11388  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11389
11390  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11391  return nextMBB;
11392}
11393
11394// private utility function
11395MachineBasicBlock *
11396X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11397                                                      MachineBasicBlock *MBB,
11398                                                      unsigned cmovOpc) const {
11399  // For the atomic min/max operator, we generate
11400  //   thisMBB:
11401  //   newMBB:
11402  //     ld t1 = [min/max.addr]
11403  //     mov t2 = [min/max.val]
11404  //     cmp  t1, t2
11405  //     cmov[cond] t2 = t1
11406  //     mov EAX = t1
11407  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11408  //     bz   newMBB
11409  //     fallthrough -->nextMBB
11410  //
11411  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11412  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11413  MachineFunction::iterator MBBIter = MBB;
11414  ++MBBIter;
11415
11416  /// First build the CFG
11417  MachineFunction *F = MBB->getParent();
11418  MachineBasicBlock *thisMBB = MBB;
11419  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11420  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11421  F->insert(MBBIter, newMBB);
11422  F->insert(MBBIter, nextMBB);
11423
11424  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11425  nextMBB->splice(nextMBB->begin(), thisMBB,
11426                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11427                  thisMBB->end());
11428  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11429
11430  // Update thisMBB to fall through to newMBB
11431  thisMBB->addSuccessor(newMBB);
11432
11433  // newMBB jumps to newMBB and fall through to nextMBB
11434  newMBB->addSuccessor(nextMBB);
11435  newMBB->addSuccessor(newMBB);
11436
11437  DebugLoc dl = mInstr->getDebugLoc();
11438  // Insert instructions into newMBB based on incoming instruction
11439  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11440         "unexpected number of operands");
11441  MachineOperand& destOper = mInstr->getOperand(0);
11442  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11443  int numArgs = mInstr->getNumOperands() - 1;
11444  for (int i=0; i < numArgs; ++i)
11445    argOpers[i] = &mInstr->getOperand(i+1);
11446
11447  // x86 address has 4 operands: base, index, scale, and displacement
11448  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11449  int valArgIndx = lastAddrIndx + 1;
11450
11451  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11452  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11453  for (int i=0; i <= lastAddrIndx; ++i)
11454    (*MIB).addOperand(*argOpers[i]);
11455
11456  // We only support register and immediate values
11457  assert((argOpers[valArgIndx]->isReg() ||
11458          argOpers[valArgIndx]->isImm()) &&
11459         "invalid operand");
11460
11461  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11462  if (argOpers[valArgIndx]->isReg())
11463    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11464  else
11465    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11466  (*MIB).addOperand(*argOpers[valArgIndx]);
11467
11468  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11469  MIB.addReg(t1);
11470
11471  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11472  MIB.addReg(t1);
11473  MIB.addReg(t2);
11474
11475  // Generate movc
11476  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11477  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11478  MIB.addReg(t2);
11479  MIB.addReg(t1);
11480
11481  // Cmp and exchange if none has modified the memory location
11482  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11483  for (int i=0; i <= lastAddrIndx; ++i)
11484    (*MIB).addOperand(*argOpers[i]);
11485  MIB.addReg(t3);
11486  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11487  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11488                    mInstr->memoperands_end());
11489
11490  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11491  MIB.addReg(X86::EAX);
11492
11493  // insert branch
11494  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11495
11496  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11497  return nextMBB;
11498}
11499
11500// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11501// or XMM0_V32I8 in AVX all of this code can be replaced with that
11502// in the .td file.
11503MachineBasicBlock *
11504X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11505                            unsigned numArgs, bool memArg) const {
11506  assert(Subtarget->hasSSE42() &&
11507         "Target must have SSE4.2 or AVX features enabled");
11508
11509  DebugLoc dl = MI->getDebugLoc();
11510  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11511  unsigned Opc;
11512  if (!Subtarget->hasAVX()) {
11513    if (memArg)
11514      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11515    else
11516      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11517  } else {
11518    if (memArg)
11519      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11520    else
11521      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11522  }
11523
11524  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11525  for (unsigned i = 0; i < numArgs; ++i) {
11526    MachineOperand &Op = MI->getOperand(i+1);
11527    if (!(Op.isReg() && Op.isImplicit()))
11528      MIB.addOperand(Op);
11529  }
11530  BuildMI(*BB, MI, dl,
11531    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11532             MI->getOperand(0).getReg())
11533    .addReg(X86::XMM0);
11534
11535  MI->eraseFromParent();
11536  return BB;
11537}
11538
11539MachineBasicBlock *
11540X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11541  DebugLoc dl = MI->getDebugLoc();
11542  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11543
11544  // Address into RAX/EAX, other two args into ECX, EDX.
11545  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11546  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11547  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11548  for (int i = 0; i < X86::AddrNumOperands; ++i)
11549    MIB.addOperand(MI->getOperand(i));
11550
11551  unsigned ValOps = X86::AddrNumOperands;
11552  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11553    .addReg(MI->getOperand(ValOps).getReg());
11554  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11555    .addReg(MI->getOperand(ValOps+1).getReg());
11556
11557  // The instruction doesn't actually take any operands though.
11558  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11559
11560  MI->eraseFromParent(); // The pseudo is gone now.
11561  return BB;
11562}
11563
11564MachineBasicBlock *
11565X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11566  DebugLoc dl = MI->getDebugLoc();
11567  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11568
11569  // First arg in ECX, the second in EAX.
11570  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11571    .addReg(MI->getOperand(0).getReg());
11572  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11573    .addReg(MI->getOperand(1).getReg());
11574
11575  // The instruction doesn't actually take any operands though.
11576  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11577
11578  MI->eraseFromParent(); // The pseudo is gone now.
11579  return BB;
11580}
11581
11582MachineBasicBlock *
11583X86TargetLowering::EmitVAARG64WithCustomInserter(
11584                   MachineInstr *MI,
11585                   MachineBasicBlock *MBB) const {
11586  // Emit va_arg instruction on X86-64.
11587
11588  // Operands to this pseudo-instruction:
11589  // 0  ) Output        : destination address (reg)
11590  // 1-5) Input         : va_list address (addr, i64mem)
11591  // 6  ) ArgSize       : Size (in bytes) of vararg type
11592  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11593  // 8  ) Align         : Alignment of type
11594  // 9  ) EFLAGS (implicit-def)
11595
11596  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11597  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11598
11599  unsigned DestReg = MI->getOperand(0).getReg();
11600  MachineOperand &Base = MI->getOperand(1);
11601  MachineOperand &Scale = MI->getOperand(2);
11602  MachineOperand &Index = MI->getOperand(3);
11603  MachineOperand &Disp = MI->getOperand(4);
11604  MachineOperand &Segment = MI->getOperand(5);
11605  unsigned ArgSize = MI->getOperand(6).getImm();
11606  unsigned ArgMode = MI->getOperand(7).getImm();
11607  unsigned Align = MI->getOperand(8).getImm();
11608
11609  // Memory Reference
11610  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11611  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11612  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11613
11614  // Machine Information
11615  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11616  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11617  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11618  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11619  DebugLoc DL = MI->getDebugLoc();
11620
11621  // struct va_list {
11622  //   i32   gp_offset
11623  //   i32   fp_offset
11624  //   i64   overflow_area (address)
11625  //   i64   reg_save_area (address)
11626  // }
11627  // sizeof(va_list) = 24
11628  // alignment(va_list) = 8
11629
11630  unsigned TotalNumIntRegs = 6;
11631  unsigned TotalNumXMMRegs = 8;
11632  bool UseGPOffset = (ArgMode == 1);
11633  bool UseFPOffset = (ArgMode == 2);
11634  unsigned MaxOffset = TotalNumIntRegs * 8 +
11635                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11636
11637  /* Align ArgSize to a multiple of 8 */
11638  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11639  bool NeedsAlign = (Align > 8);
11640
11641  MachineBasicBlock *thisMBB = MBB;
11642  MachineBasicBlock *overflowMBB;
11643  MachineBasicBlock *offsetMBB;
11644  MachineBasicBlock *endMBB;
11645
11646  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11647  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11648  unsigned OffsetReg = 0;
11649
11650  if (!UseGPOffset && !UseFPOffset) {
11651    // If we only pull from the overflow region, we don't create a branch.
11652    // We don't need to alter control flow.
11653    OffsetDestReg = 0; // unused
11654    OverflowDestReg = DestReg;
11655
11656    offsetMBB = NULL;
11657    overflowMBB = thisMBB;
11658    endMBB = thisMBB;
11659  } else {
11660    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11661    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11662    // If not, pull from overflow_area. (branch to overflowMBB)
11663    //
11664    //       thisMBB
11665    //         |     .
11666    //         |        .
11667    //     offsetMBB   overflowMBB
11668    //         |        .
11669    //         |     .
11670    //        endMBB
11671
11672    // Registers for the PHI in endMBB
11673    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11674    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11675
11676    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11677    MachineFunction *MF = MBB->getParent();
11678    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11679    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11680    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11681
11682    MachineFunction::iterator MBBIter = MBB;
11683    ++MBBIter;
11684
11685    // Insert the new basic blocks
11686    MF->insert(MBBIter, offsetMBB);
11687    MF->insert(MBBIter, overflowMBB);
11688    MF->insert(MBBIter, endMBB);
11689
11690    // Transfer the remainder of MBB and its successor edges to endMBB.
11691    endMBB->splice(endMBB->begin(), thisMBB,
11692                    llvm::next(MachineBasicBlock::iterator(MI)),
11693                    thisMBB->end());
11694    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11695
11696    // Make offsetMBB and overflowMBB successors of thisMBB
11697    thisMBB->addSuccessor(offsetMBB);
11698    thisMBB->addSuccessor(overflowMBB);
11699
11700    // endMBB is a successor of both offsetMBB and overflowMBB
11701    offsetMBB->addSuccessor(endMBB);
11702    overflowMBB->addSuccessor(endMBB);
11703
11704    // Load the offset value into a register
11705    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11706    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11707      .addOperand(Base)
11708      .addOperand(Scale)
11709      .addOperand(Index)
11710      .addDisp(Disp, UseFPOffset ? 4 : 0)
11711      .addOperand(Segment)
11712      .setMemRefs(MMOBegin, MMOEnd);
11713
11714    // Check if there is enough room left to pull this argument.
11715    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11716      .addReg(OffsetReg)
11717      .addImm(MaxOffset + 8 - ArgSizeA8);
11718
11719    // Branch to "overflowMBB" if offset >= max
11720    // Fall through to "offsetMBB" otherwise
11721    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11722      .addMBB(overflowMBB);
11723  }
11724
11725  // In offsetMBB, emit code to use the reg_save_area.
11726  if (offsetMBB) {
11727    assert(OffsetReg != 0);
11728
11729    // Read the reg_save_area address.
11730    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11731    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11732      .addOperand(Base)
11733      .addOperand(Scale)
11734      .addOperand(Index)
11735      .addDisp(Disp, 16)
11736      .addOperand(Segment)
11737      .setMemRefs(MMOBegin, MMOEnd);
11738
11739    // Zero-extend the offset
11740    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11741      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11742        .addImm(0)
11743        .addReg(OffsetReg)
11744        .addImm(X86::sub_32bit);
11745
11746    // Add the offset to the reg_save_area to get the final address.
11747    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11748      .addReg(OffsetReg64)
11749      .addReg(RegSaveReg);
11750
11751    // Compute the offset for the next argument
11752    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11753    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11754      .addReg(OffsetReg)
11755      .addImm(UseFPOffset ? 16 : 8);
11756
11757    // Store it back into the va_list.
11758    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11759      .addOperand(Base)
11760      .addOperand(Scale)
11761      .addOperand(Index)
11762      .addDisp(Disp, UseFPOffset ? 4 : 0)
11763      .addOperand(Segment)
11764      .addReg(NextOffsetReg)
11765      .setMemRefs(MMOBegin, MMOEnd);
11766
11767    // Jump to endMBB
11768    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11769      .addMBB(endMBB);
11770  }
11771
11772  //
11773  // Emit code to use overflow area
11774  //
11775
11776  // Load the overflow_area address into a register.
11777  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11778  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11779    .addOperand(Base)
11780    .addOperand(Scale)
11781    .addOperand(Index)
11782    .addDisp(Disp, 8)
11783    .addOperand(Segment)
11784    .setMemRefs(MMOBegin, MMOEnd);
11785
11786  // If we need to align it, do so. Otherwise, just copy the address
11787  // to OverflowDestReg.
11788  if (NeedsAlign) {
11789    // Align the overflow address
11790    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11791    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11792
11793    // aligned_addr = (addr + (align-1)) & ~(align-1)
11794    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11795      .addReg(OverflowAddrReg)
11796      .addImm(Align-1);
11797
11798    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11799      .addReg(TmpReg)
11800      .addImm(~(uint64_t)(Align-1));
11801  } else {
11802    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11803      .addReg(OverflowAddrReg);
11804  }
11805
11806  // Compute the next overflow address after this argument.
11807  // (the overflow address should be kept 8-byte aligned)
11808  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11809  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11810    .addReg(OverflowDestReg)
11811    .addImm(ArgSizeA8);
11812
11813  // Store the new overflow address.
11814  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11815    .addOperand(Base)
11816    .addOperand(Scale)
11817    .addOperand(Index)
11818    .addDisp(Disp, 8)
11819    .addOperand(Segment)
11820    .addReg(NextAddrReg)
11821    .setMemRefs(MMOBegin, MMOEnd);
11822
11823  // If we branched, emit the PHI to the front of endMBB.
11824  if (offsetMBB) {
11825    BuildMI(*endMBB, endMBB->begin(), DL,
11826            TII->get(X86::PHI), DestReg)
11827      .addReg(OffsetDestReg).addMBB(offsetMBB)
11828      .addReg(OverflowDestReg).addMBB(overflowMBB);
11829  }
11830
11831  // Erase the pseudo instruction
11832  MI->eraseFromParent();
11833
11834  return endMBB;
11835}
11836
11837MachineBasicBlock *
11838X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11839                                                 MachineInstr *MI,
11840                                                 MachineBasicBlock *MBB) const {
11841  // Emit code to save XMM registers to the stack. The ABI says that the
11842  // number of registers to save is given in %al, so it's theoretically
11843  // possible to do an indirect jump trick to avoid saving all of them,
11844  // however this code takes a simpler approach and just executes all
11845  // of the stores if %al is non-zero. It's less code, and it's probably
11846  // easier on the hardware branch predictor, and stores aren't all that
11847  // expensive anyway.
11848
11849  // Create the new basic blocks. One block contains all the XMM stores,
11850  // and one block is the final destination regardless of whether any
11851  // stores were performed.
11852  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11853  MachineFunction *F = MBB->getParent();
11854  MachineFunction::iterator MBBIter = MBB;
11855  ++MBBIter;
11856  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11857  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11858  F->insert(MBBIter, XMMSaveMBB);
11859  F->insert(MBBIter, EndMBB);
11860
11861  // Transfer the remainder of MBB and its successor edges to EndMBB.
11862  EndMBB->splice(EndMBB->begin(), MBB,
11863                 llvm::next(MachineBasicBlock::iterator(MI)),
11864                 MBB->end());
11865  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11866
11867  // The original block will now fall through to the XMM save block.
11868  MBB->addSuccessor(XMMSaveMBB);
11869  // The XMMSaveMBB will fall through to the end block.
11870  XMMSaveMBB->addSuccessor(EndMBB);
11871
11872  // Now add the instructions.
11873  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11874  DebugLoc DL = MI->getDebugLoc();
11875
11876  unsigned CountReg = MI->getOperand(0).getReg();
11877  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11878  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11879
11880  if (!Subtarget->isTargetWin64()) {
11881    // If %al is 0, branch around the XMM save block.
11882    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11883    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11884    MBB->addSuccessor(EndMBB);
11885  }
11886
11887  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11888  // In the XMM save block, save all the XMM argument registers.
11889  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11890    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11891    MachineMemOperand *MMO =
11892      F->getMachineMemOperand(
11893          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11894        MachineMemOperand::MOStore,
11895        /*Size=*/16, /*Align=*/16);
11896    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11897      .addFrameIndex(RegSaveFrameIndex)
11898      .addImm(/*Scale=*/1)
11899      .addReg(/*IndexReg=*/0)
11900      .addImm(/*Disp=*/Offset)
11901      .addReg(/*Segment=*/0)
11902      .addReg(MI->getOperand(i).getReg())
11903      .addMemOperand(MMO);
11904  }
11905
11906  MI->eraseFromParent();   // The pseudo instruction is gone now.
11907
11908  return EndMBB;
11909}
11910
11911MachineBasicBlock *
11912X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11913                                     MachineBasicBlock *BB) const {
11914  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11915  DebugLoc DL = MI->getDebugLoc();
11916
11917  // To "insert" a SELECT_CC instruction, we actually have to insert the
11918  // diamond control-flow pattern.  The incoming instruction knows the
11919  // destination vreg to set, the condition code register to branch on, the
11920  // true/false values to select between, and a branch opcode to use.
11921  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11922  MachineFunction::iterator It = BB;
11923  ++It;
11924
11925  //  thisMBB:
11926  //  ...
11927  //   TrueVal = ...
11928  //   cmpTY ccX, r1, r2
11929  //   bCC copy1MBB
11930  //   fallthrough --> copy0MBB
11931  MachineBasicBlock *thisMBB = BB;
11932  MachineFunction *F = BB->getParent();
11933  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11934  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11935  F->insert(It, copy0MBB);
11936  F->insert(It, sinkMBB);
11937
11938  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11939  // live into the sink and copy blocks.
11940  if (!MI->killsRegister(X86::EFLAGS)) {
11941    copy0MBB->addLiveIn(X86::EFLAGS);
11942    sinkMBB->addLiveIn(X86::EFLAGS);
11943  }
11944
11945  // Transfer the remainder of BB and its successor edges to sinkMBB.
11946  sinkMBB->splice(sinkMBB->begin(), BB,
11947                  llvm::next(MachineBasicBlock::iterator(MI)),
11948                  BB->end());
11949  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11950
11951  // Add the true and fallthrough blocks as its successors.
11952  BB->addSuccessor(copy0MBB);
11953  BB->addSuccessor(sinkMBB);
11954
11955  // Create the conditional branch instruction.
11956  unsigned Opc =
11957    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11958  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11959
11960  //  copy0MBB:
11961  //   %FalseValue = ...
11962  //   # fallthrough to sinkMBB
11963  copy0MBB->addSuccessor(sinkMBB);
11964
11965  //  sinkMBB:
11966  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11967  //  ...
11968  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11969          TII->get(X86::PHI), MI->getOperand(0).getReg())
11970    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11971    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11972
11973  MI->eraseFromParent();   // The pseudo instruction is gone now.
11974  return sinkMBB;
11975}
11976
11977MachineBasicBlock *
11978X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11979                                        bool Is64Bit) const {
11980  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11981  DebugLoc DL = MI->getDebugLoc();
11982  MachineFunction *MF = BB->getParent();
11983  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11984
11985  assert(getTargetMachine().Options.EnableSegmentedStacks);
11986
11987  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11988  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11989
11990  // BB:
11991  //  ... [Till the alloca]
11992  // If stacklet is not large enough, jump to mallocMBB
11993  //
11994  // bumpMBB:
11995  //  Allocate by subtracting from RSP
11996  //  Jump to continueMBB
11997  //
11998  // mallocMBB:
11999  //  Allocate by call to runtime
12000  //
12001  // continueMBB:
12002  //  ...
12003  //  [rest of original BB]
12004  //
12005
12006  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12007  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12008  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12009
12010  MachineRegisterInfo &MRI = MF->getRegInfo();
12011  const TargetRegisterClass *AddrRegClass =
12012    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12013
12014  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12015    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12016    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12017    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12018    sizeVReg = MI->getOperand(1).getReg(),
12019    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12020
12021  MachineFunction::iterator MBBIter = BB;
12022  ++MBBIter;
12023
12024  MF->insert(MBBIter, bumpMBB);
12025  MF->insert(MBBIter, mallocMBB);
12026  MF->insert(MBBIter, continueMBB);
12027
12028  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12029                      (MachineBasicBlock::iterator(MI)), BB->end());
12030  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12031
12032  // Add code to the main basic block to check if the stack limit has been hit,
12033  // and if so, jump to mallocMBB otherwise to bumpMBB.
12034  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12035  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12036    .addReg(tmpSPVReg).addReg(sizeVReg);
12037  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12038    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12039    .addReg(SPLimitVReg);
12040  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12041
12042  // bumpMBB simply decreases the stack pointer, since we know the current
12043  // stacklet has enough space.
12044  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12045    .addReg(SPLimitVReg);
12046  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12047    .addReg(SPLimitVReg);
12048  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12049
12050  // Calls into a routine in libgcc to allocate more space from the heap.
12051  if (Is64Bit) {
12052    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12053      .addReg(sizeVReg);
12054    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12055    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12056  } else {
12057    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12058      .addImm(12);
12059    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12060    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12061      .addExternalSymbol("__morestack_allocate_stack_space");
12062  }
12063
12064  if (!Is64Bit)
12065    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12066      .addImm(16);
12067
12068  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12069    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12070  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12071
12072  // Set up the CFG correctly.
12073  BB->addSuccessor(bumpMBB);
12074  BB->addSuccessor(mallocMBB);
12075  mallocMBB->addSuccessor(continueMBB);
12076  bumpMBB->addSuccessor(continueMBB);
12077
12078  // Take care of the PHI nodes.
12079  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12080          MI->getOperand(0).getReg())
12081    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12082    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12083
12084  // Delete the original pseudo instruction.
12085  MI->eraseFromParent();
12086
12087  // And we're done.
12088  return continueMBB;
12089}
12090
12091MachineBasicBlock *
12092X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12093                                          MachineBasicBlock *BB) const {
12094  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12095  DebugLoc DL = MI->getDebugLoc();
12096
12097  assert(!Subtarget->isTargetEnvMacho());
12098
12099  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12100  // non-trivial part is impdef of ESP.
12101
12102  if (Subtarget->isTargetWin64()) {
12103    if (Subtarget->isTargetCygMing()) {
12104      // ___chkstk(Mingw64):
12105      // Clobbers R10, R11, RAX and EFLAGS.
12106      // Updates RSP.
12107      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12108        .addExternalSymbol("___chkstk")
12109        .addReg(X86::RAX, RegState::Implicit)
12110        .addReg(X86::RSP, RegState::Implicit)
12111        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12112        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12113        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12114    } else {
12115      // __chkstk(MSVCRT): does not update stack pointer.
12116      // Clobbers R10, R11 and EFLAGS.
12117      // FIXME: RAX(allocated size) might be reused and not killed.
12118      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12119        .addExternalSymbol("__chkstk")
12120        .addReg(X86::RAX, RegState::Implicit)
12121        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12122      // RAX has the offset to subtracted from RSP.
12123      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12124        .addReg(X86::RSP)
12125        .addReg(X86::RAX);
12126    }
12127  } else {
12128    const char *StackProbeSymbol =
12129      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12130
12131    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12132      .addExternalSymbol(StackProbeSymbol)
12133      .addReg(X86::EAX, RegState::Implicit)
12134      .addReg(X86::ESP, RegState::Implicit)
12135      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12136      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12137      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12138  }
12139
12140  MI->eraseFromParent();   // The pseudo instruction is gone now.
12141  return BB;
12142}
12143
12144MachineBasicBlock *
12145X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12146                                      MachineBasicBlock *BB) const {
12147  // This is pretty easy.  We're taking the value that we received from
12148  // our load from the relocation, sticking it in either RDI (x86-64)
12149  // or EAX and doing an indirect call.  The return value will then
12150  // be in the normal return register.
12151  const X86InstrInfo *TII
12152    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12153  DebugLoc DL = MI->getDebugLoc();
12154  MachineFunction *F = BB->getParent();
12155
12156  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12157  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12158
12159  if (Subtarget->is64Bit()) {
12160    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12161                                      TII->get(X86::MOV64rm), X86::RDI)
12162    .addReg(X86::RIP)
12163    .addImm(0).addReg(0)
12164    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12165                      MI->getOperand(3).getTargetFlags())
12166    .addReg(0);
12167    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12168    addDirectMem(MIB, X86::RDI);
12169  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12170    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12171                                      TII->get(X86::MOV32rm), X86::EAX)
12172    .addReg(0)
12173    .addImm(0).addReg(0)
12174    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12175                      MI->getOperand(3).getTargetFlags())
12176    .addReg(0);
12177    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12178    addDirectMem(MIB, X86::EAX);
12179  } else {
12180    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12181                                      TII->get(X86::MOV32rm), X86::EAX)
12182    .addReg(TII->getGlobalBaseReg(F))
12183    .addImm(0).addReg(0)
12184    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12185                      MI->getOperand(3).getTargetFlags())
12186    .addReg(0);
12187    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12188    addDirectMem(MIB, X86::EAX);
12189  }
12190
12191  MI->eraseFromParent(); // The pseudo instruction is gone now.
12192  return BB;
12193}
12194
12195MachineBasicBlock *
12196X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12197                                               MachineBasicBlock *BB) const {
12198  switch (MI->getOpcode()) {
12199  default: assert(0 && "Unexpected instr type to insert");
12200  case X86::TAILJMPd64:
12201  case X86::TAILJMPr64:
12202  case X86::TAILJMPm64:
12203    assert(0 && "TAILJMP64 would not be touched here.");
12204  case X86::TCRETURNdi64:
12205  case X86::TCRETURNri64:
12206  case X86::TCRETURNmi64:
12207    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12208    // On AMD64, additional defs should be added before register allocation.
12209    if (!Subtarget->isTargetWin64()) {
12210      MI->addRegisterDefined(X86::RSI);
12211      MI->addRegisterDefined(X86::RDI);
12212      MI->addRegisterDefined(X86::XMM6);
12213      MI->addRegisterDefined(X86::XMM7);
12214      MI->addRegisterDefined(X86::XMM8);
12215      MI->addRegisterDefined(X86::XMM9);
12216      MI->addRegisterDefined(X86::XMM10);
12217      MI->addRegisterDefined(X86::XMM11);
12218      MI->addRegisterDefined(X86::XMM12);
12219      MI->addRegisterDefined(X86::XMM13);
12220      MI->addRegisterDefined(X86::XMM14);
12221      MI->addRegisterDefined(X86::XMM15);
12222    }
12223    return BB;
12224  case X86::WIN_ALLOCA:
12225    return EmitLoweredWinAlloca(MI, BB);
12226  case X86::SEG_ALLOCA_32:
12227    return EmitLoweredSegAlloca(MI, BB, false);
12228  case X86::SEG_ALLOCA_64:
12229    return EmitLoweredSegAlloca(MI, BB, true);
12230  case X86::TLSCall_32:
12231  case X86::TLSCall_64:
12232    return EmitLoweredTLSCall(MI, BB);
12233  case X86::CMOV_GR8:
12234  case X86::CMOV_FR32:
12235  case X86::CMOV_FR64:
12236  case X86::CMOV_V4F32:
12237  case X86::CMOV_V2F64:
12238  case X86::CMOV_V2I64:
12239  case X86::CMOV_V8F32:
12240  case X86::CMOV_V4F64:
12241  case X86::CMOV_V4I64:
12242  case X86::CMOV_GR16:
12243  case X86::CMOV_GR32:
12244  case X86::CMOV_RFP32:
12245  case X86::CMOV_RFP64:
12246  case X86::CMOV_RFP80:
12247    return EmitLoweredSelect(MI, BB);
12248
12249  case X86::FP32_TO_INT16_IN_MEM:
12250  case X86::FP32_TO_INT32_IN_MEM:
12251  case X86::FP32_TO_INT64_IN_MEM:
12252  case X86::FP64_TO_INT16_IN_MEM:
12253  case X86::FP64_TO_INT32_IN_MEM:
12254  case X86::FP64_TO_INT64_IN_MEM:
12255  case X86::FP80_TO_INT16_IN_MEM:
12256  case X86::FP80_TO_INT32_IN_MEM:
12257  case X86::FP80_TO_INT64_IN_MEM: {
12258    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12259    DebugLoc DL = MI->getDebugLoc();
12260
12261    // Change the floating point control register to use "round towards zero"
12262    // mode when truncating to an integer value.
12263    MachineFunction *F = BB->getParent();
12264    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12265    addFrameReference(BuildMI(*BB, MI, DL,
12266                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12267
12268    // Load the old value of the high byte of the control word...
12269    unsigned OldCW =
12270      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12271    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12272                      CWFrameIdx);
12273
12274    // Set the high part to be round to zero...
12275    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12276      .addImm(0xC7F);
12277
12278    // Reload the modified control word now...
12279    addFrameReference(BuildMI(*BB, MI, DL,
12280                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12281
12282    // Restore the memory image of control word to original value
12283    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12284      .addReg(OldCW);
12285
12286    // Get the X86 opcode to use.
12287    unsigned Opc;
12288    switch (MI->getOpcode()) {
12289    default: llvm_unreachable("illegal opcode!");
12290    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12291    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12292    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12293    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12294    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12295    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12296    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12297    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12298    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12299    }
12300
12301    X86AddressMode AM;
12302    MachineOperand &Op = MI->getOperand(0);
12303    if (Op.isReg()) {
12304      AM.BaseType = X86AddressMode::RegBase;
12305      AM.Base.Reg = Op.getReg();
12306    } else {
12307      AM.BaseType = X86AddressMode::FrameIndexBase;
12308      AM.Base.FrameIndex = Op.getIndex();
12309    }
12310    Op = MI->getOperand(1);
12311    if (Op.isImm())
12312      AM.Scale = Op.getImm();
12313    Op = MI->getOperand(2);
12314    if (Op.isImm())
12315      AM.IndexReg = Op.getImm();
12316    Op = MI->getOperand(3);
12317    if (Op.isGlobal()) {
12318      AM.GV = Op.getGlobal();
12319    } else {
12320      AM.Disp = Op.getImm();
12321    }
12322    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12323                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12324
12325    // Reload the original control word now.
12326    addFrameReference(BuildMI(*BB, MI, DL,
12327                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12328
12329    MI->eraseFromParent();   // The pseudo instruction is gone now.
12330    return BB;
12331  }
12332    // String/text processing lowering.
12333  case X86::PCMPISTRM128REG:
12334  case X86::VPCMPISTRM128REG:
12335    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12336  case X86::PCMPISTRM128MEM:
12337  case X86::VPCMPISTRM128MEM:
12338    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12339  case X86::PCMPESTRM128REG:
12340  case X86::VPCMPESTRM128REG:
12341    return EmitPCMP(MI, BB, 5, false /* in mem */);
12342  case X86::PCMPESTRM128MEM:
12343  case X86::VPCMPESTRM128MEM:
12344    return EmitPCMP(MI, BB, 5, true /* in mem */);
12345
12346    // Thread synchronization.
12347  case X86::MONITOR:
12348    return EmitMonitor(MI, BB);
12349  case X86::MWAIT:
12350    return EmitMwait(MI, BB);
12351
12352    // Atomic Lowering.
12353  case X86::ATOMAND32:
12354    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12355                                               X86::AND32ri, X86::MOV32rm,
12356                                               X86::LCMPXCHG32,
12357                                               X86::NOT32r, X86::EAX,
12358                                               X86::GR32RegisterClass);
12359  case X86::ATOMOR32:
12360    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12361                                               X86::OR32ri, X86::MOV32rm,
12362                                               X86::LCMPXCHG32,
12363                                               X86::NOT32r, X86::EAX,
12364                                               X86::GR32RegisterClass);
12365  case X86::ATOMXOR32:
12366    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12367                                               X86::XOR32ri, X86::MOV32rm,
12368                                               X86::LCMPXCHG32,
12369                                               X86::NOT32r, X86::EAX,
12370                                               X86::GR32RegisterClass);
12371  case X86::ATOMNAND32:
12372    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12373                                               X86::AND32ri, X86::MOV32rm,
12374                                               X86::LCMPXCHG32,
12375                                               X86::NOT32r, X86::EAX,
12376                                               X86::GR32RegisterClass, true);
12377  case X86::ATOMMIN32:
12378    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12379  case X86::ATOMMAX32:
12380    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12381  case X86::ATOMUMIN32:
12382    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12383  case X86::ATOMUMAX32:
12384    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12385
12386  case X86::ATOMAND16:
12387    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12388                                               X86::AND16ri, X86::MOV16rm,
12389                                               X86::LCMPXCHG16,
12390                                               X86::NOT16r, X86::AX,
12391                                               X86::GR16RegisterClass);
12392  case X86::ATOMOR16:
12393    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12394                                               X86::OR16ri, X86::MOV16rm,
12395                                               X86::LCMPXCHG16,
12396                                               X86::NOT16r, X86::AX,
12397                                               X86::GR16RegisterClass);
12398  case X86::ATOMXOR16:
12399    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12400                                               X86::XOR16ri, X86::MOV16rm,
12401                                               X86::LCMPXCHG16,
12402                                               X86::NOT16r, X86::AX,
12403                                               X86::GR16RegisterClass);
12404  case X86::ATOMNAND16:
12405    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12406                                               X86::AND16ri, X86::MOV16rm,
12407                                               X86::LCMPXCHG16,
12408                                               X86::NOT16r, X86::AX,
12409                                               X86::GR16RegisterClass, true);
12410  case X86::ATOMMIN16:
12411    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12412  case X86::ATOMMAX16:
12413    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12414  case X86::ATOMUMIN16:
12415    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12416  case X86::ATOMUMAX16:
12417    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12418
12419  case X86::ATOMAND8:
12420    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12421                                               X86::AND8ri, X86::MOV8rm,
12422                                               X86::LCMPXCHG8,
12423                                               X86::NOT8r, X86::AL,
12424                                               X86::GR8RegisterClass);
12425  case X86::ATOMOR8:
12426    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12427                                               X86::OR8ri, X86::MOV8rm,
12428                                               X86::LCMPXCHG8,
12429                                               X86::NOT8r, X86::AL,
12430                                               X86::GR8RegisterClass);
12431  case X86::ATOMXOR8:
12432    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12433                                               X86::XOR8ri, X86::MOV8rm,
12434                                               X86::LCMPXCHG8,
12435                                               X86::NOT8r, X86::AL,
12436                                               X86::GR8RegisterClass);
12437  case X86::ATOMNAND8:
12438    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12439                                               X86::AND8ri, X86::MOV8rm,
12440                                               X86::LCMPXCHG8,
12441                                               X86::NOT8r, X86::AL,
12442                                               X86::GR8RegisterClass, true);
12443  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12444  // This group is for 64-bit host.
12445  case X86::ATOMAND64:
12446    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12447                                               X86::AND64ri32, X86::MOV64rm,
12448                                               X86::LCMPXCHG64,
12449                                               X86::NOT64r, X86::RAX,
12450                                               X86::GR64RegisterClass);
12451  case X86::ATOMOR64:
12452    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12453                                               X86::OR64ri32, X86::MOV64rm,
12454                                               X86::LCMPXCHG64,
12455                                               X86::NOT64r, X86::RAX,
12456                                               X86::GR64RegisterClass);
12457  case X86::ATOMXOR64:
12458    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12459                                               X86::XOR64ri32, X86::MOV64rm,
12460                                               X86::LCMPXCHG64,
12461                                               X86::NOT64r, X86::RAX,
12462                                               X86::GR64RegisterClass);
12463  case X86::ATOMNAND64:
12464    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12465                                               X86::AND64ri32, X86::MOV64rm,
12466                                               X86::LCMPXCHG64,
12467                                               X86::NOT64r, X86::RAX,
12468                                               X86::GR64RegisterClass, true);
12469  case X86::ATOMMIN64:
12470    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12471  case X86::ATOMMAX64:
12472    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12473  case X86::ATOMUMIN64:
12474    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12475  case X86::ATOMUMAX64:
12476    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12477
12478  // This group does 64-bit operations on a 32-bit host.
12479  case X86::ATOMAND6432:
12480    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12481                                               X86::AND32rr, X86::AND32rr,
12482                                               X86::AND32ri, X86::AND32ri,
12483                                               false);
12484  case X86::ATOMOR6432:
12485    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12486                                               X86::OR32rr, X86::OR32rr,
12487                                               X86::OR32ri, X86::OR32ri,
12488                                               false);
12489  case X86::ATOMXOR6432:
12490    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12491                                               X86::XOR32rr, X86::XOR32rr,
12492                                               X86::XOR32ri, X86::XOR32ri,
12493                                               false);
12494  case X86::ATOMNAND6432:
12495    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12496                                               X86::AND32rr, X86::AND32rr,
12497                                               X86::AND32ri, X86::AND32ri,
12498                                               true);
12499  case X86::ATOMADD6432:
12500    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12501                                               X86::ADD32rr, X86::ADC32rr,
12502                                               X86::ADD32ri, X86::ADC32ri,
12503                                               false);
12504  case X86::ATOMSUB6432:
12505    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12506                                               X86::SUB32rr, X86::SBB32rr,
12507                                               X86::SUB32ri, X86::SBB32ri,
12508                                               false);
12509  case X86::ATOMSWAP6432:
12510    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12511                                               X86::MOV32rr, X86::MOV32rr,
12512                                               X86::MOV32ri, X86::MOV32ri,
12513                                               false);
12514  case X86::VASTART_SAVE_XMM_REGS:
12515    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12516
12517  case X86::VAARG_64:
12518    return EmitVAARG64WithCustomInserter(MI, BB);
12519  }
12520}
12521
12522//===----------------------------------------------------------------------===//
12523//                           X86 Optimization Hooks
12524//===----------------------------------------------------------------------===//
12525
12526void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12527                                                       const APInt &Mask,
12528                                                       APInt &KnownZero,
12529                                                       APInt &KnownOne,
12530                                                       const SelectionDAG &DAG,
12531                                                       unsigned Depth) const {
12532  unsigned Opc = Op.getOpcode();
12533  assert((Opc >= ISD::BUILTIN_OP_END ||
12534          Opc == ISD::INTRINSIC_WO_CHAIN ||
12535          Opc == ISD::INTRINSIC_W_CHAIN ||
12536          Opc == ISD::INTRINSIC_VOID) &&
12537         "Should use MaskedValueIsZero if you don't know whether Op"
12538         " is a target node!");
12539
12540  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12541  switch (Opc) {
12542  default: break;
12543  case X86ISD::ADD:
12544  case X86ISD::SUB:
12545  case X86ISD::ADC:
12546  case X86ISD::SBB:
12547  case X86ISD::SMUL:
12548  case X86ISD::UMUL:
12549  case X86ISD::INC:
12550  case X86ISD::DEC:
12551  case X86ISD::OR:
12552  case X86ISD::XOR:
12553  case X86ISD::AND:
12554    // These nodes' second result is a boolean.
12555    if (Op.getResNo() == 0)
12556      break;
12557    // Fallthrough
12558  case X86ISD::SETCC:
12559    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12560                                       Mask.getBitWidth() - 1);
12561    break;
12562  case ISD::INTRINSIC_WO_CHAIN: {
12563    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12564    unsigned NumLoBits = 0;
12565    switch (IntId) {
12566    default: break;
12567    case Intrinsic::x86_sse_movmsk_ps:
12568    case Intrinsic::x86_avx_movmsk_ps_256:
12569    case Intrinsic::x86_sse2_movmsk_pd:
12570    case Intrinsic::x86_avx_movmsk_pd_256:
12571    case Intrinsic::x86_mmx_pmovmskb:
12572    case Intrinsic::x86_sse2_pmovmskb_128:
12573    case Intrinsic::x86_avx2_pmovmskb: {
12574      // High bits of movmskp{s|d}, pmovmskb are known zero.
12575      switch (IntId) {
12576        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12577        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12578        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12579        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12580        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12581        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12582        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12583      }
12584      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12585                                        Mask.getBitWidth() - NumLoBits);
12586      break;
12587    }
12588    }
12589    break;
12590  }
12591  }
12592}
12593
12594unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12595                                                         unsigned Depth) const {
12596  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12597  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12598    return Op.getValueType().getScalarType().getSizeInBits();
12599
12600  // Fallback case.
12601  return 1;
12602}
12603
12604/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12605/// node is a GlobalAddress + offset.
12606bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12607                                       const GlobalValue* &GA,
12608                                       int64_t &Offset) const {
12609  if (N->getOpcode() == X86ISD::Wrapper) {
12610    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12611      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12612      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12613      return true;
12614    }
12615  }
12616  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12617}
12618
12619/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12620/// same as extracting the high 128-bit part of 256-bit vector and then
12621/// inserting the result into the low part of a new 256-bit vector
12622static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12623  EVT VT = SVOp->getValueType(0);
12624  int NumElems = VT.getVectorNumElements();
12625
12626  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12627  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12628    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12629        SVOp->getMaskElt(j) >= 0)
12630      return false;
12631
12632  return true;
12633}
12634
12635/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12636/// same as extracting the low 128-bit part of 256-bit vector and then
12637/// inserting the result into the high part of a new 256-bit vector
12638static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12639  EVT VT = SVOp->getValueType(0);
12640  int NumElems = VT.getVectorNumElements();
12641
12642  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12643  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12644    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12645        SVOp->getMaskElt(j) >= 0)
12646      return false;
12647
12648  return true;
12649}
12650
12651/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12652static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12653                                        TargetLowering::DAGCombinerInfo &DCI,
12654                                        bool HasAVX2) {
12655  DebugLoc dl = N->getDebugLoc();
12656  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12657  SDValue V1 = SVOp->getOperand(0);
12658  SDValue V2 = SVOp->getOperand(1);
12659  EVT VT = SVOp->getValueType(0);
12660  int NumElems = VT.getVectorNumElements();
12661
12662  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12663      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12664    //
12665    //                   0,0,0,...
12666    //                      |
12667    //    V      UNDEF    BUILD_VECTOR    UNDEF
12668    //     \      /           \           /
12669    //  CONCAT_VECTOR         CONCAT_VECTOR
12670    //         \                  /
12671    //          \                /
12672    //          RESULT: V + zero extended
12673    //
12674    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12675        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12676        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12677      return SDValue();
12678
12679    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12680      return SDValue();
12681
12682    // To match the shuffle mask, the first half of the mask should
12683    // be exactly the first vector, and all the rest a splat with the
12684    // first element of the second one.
12685    for (int i = 0; i < NumElems/2; ++i)
12686      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12687          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12688        return SDValue();
12689
12690    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12691    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12692      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12693      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12694      SDValue ResNode =
12695        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12696                                Ld->getMemoryVT(),
12697                                Ld->getPointerInfo(),
12698                                Ld->getAlignment(),
12699                                false/*isVolatile*/, true/*ReadMem*/,
12700                                false/*WriteMem*/);
12701      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12702    }
12703
12704    // Emit a zeroed vector and insert the desired subvector on its
12705    // first half.
12706    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12707    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12708                         DAG.getConstant(0, MVT::i32), DAG, dl);
12709    return DCI.CombineTo(N, InsV);
12710  }
12711
12712  //===--------------------------------------------------------------------===//
12713  // Combine some shuffles into subvector extracts and inserts:
12714  //
12715
12716  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12717  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12718    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12719                                    DAG, dl);
12720    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12721                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12722    return DCI.CombineTo(N, InsV);
12723  }
12724
12725  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12726  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12727    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12728    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12729                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12730    return DCI.CombineTo(N, InsV);
12731  }
12732
12733  return SDValue();
12734}
12735
12736/// PerformShuffleCombine - Performs several different shuffle combines.
12737static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12738                                     TargetLowering::DAGCombinerInfo &DCI,
12739                                     const X86Subtarget *Subtarget) {
12740  DebugLoc dl = N->getDebugLoc();
12741  EVT VT = N->getValueType(0);
12742
12743  // Don't create instructions with illegal types after legalize types has run.
12744  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12745  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12746    return SDValue();
12747
12748  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12749  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12750      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12751    return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12752
12753  // Only handle 128 wide vector from here on.
12754  if (VT.getSizeInBits() != 128)
12755    return SDValue();
12756
12757  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12758  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12759  // consecutive, non-overlapping, and in the right order.
12760  SmallVector<SDValue, 16> Elts;
12761  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12762    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12763
12764  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12765}
12766
12767/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12768/// generation and convert it from being a bunch of shuffles and extracts
12769/// to a simple store and scalar loads to extract the elements.
12770static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12771                                                const TargetLowering &TLI) {
12772  SDValue InputVector = N->getOperand(0);
12773
12774  // Only operate on vectors of 4 elements, where the alternative shuffling
12775  // gets to be more expensive.
12776  if (InputVector.getValueType() != MVT::v4i32)
12777    return SDValue();
12778
12779  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12780  // single use which is a sign-extend or zero-extend, and all elements are
12781  // used.
12782  SmallVector<SDNode *, 4> Uses;
12783  unsigned ExtractedElements = 0;
12784  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12785       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12786    if (UI.getUse().getResNo() != InputVector.getResNo())
12787      return SDValue();
12788
12789    SDNode *Extract = *UI;
12790    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12791      return SDValue();
12792
12793    if (Extract->getValueType(0) != MVT::i32)
12794      return SDValue();
12795    if (!Extract->hasOneUse())
12796      return SDValue();
12797    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12798        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12799      return SDValue();
12800    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12801      return SDValue();
12802
12803    // Record which element was extracted.
12804    ExtractedElements |=
12805      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12806
12807    Uses.push_back(Extract);
12808  }
12809
12810  // If not all the elements were used, this may not be worthwhile.
12811  if (ExtractedElements != 15)
12812    return SDValue();
12813
12814  // Ok, we've now decided to do the transformation.
12815  DebugLoc dl = InputVector.getDebugLoc();
12816
12817  // Store the value to a temporary stack slot.
12818  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12819  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12820                            MachinePointerInfo(), false, false, 0);
12821
12822  // Replace each use (extract) with a load of the appropriate element.
12823  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12824       UE = Uses.end(); UI != UE; ++UI) {
12825    SDNode *Extract = *UI;
12826
12827    // cOMpute the element's address.
12828    SDValue Idx = Extract->getOperand(1);
12829    unsigned EltSize =
12830        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12831    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12832    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12833
12834    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12835                                     StackPtr, OffsetVal);
12836
12837    // Load the scalar.
12838    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12839                                     ScalarAddr, MachinePointerInfo(),
12840                                     false, false, false, 0);
12841
12842    // Replace the exact with the load.
12843    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12844  }
12845
12846  // The replacement was made in place; don't return anything.
12847  return SDValue();
12848}
12849
12850/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12851/// nodes.
12852static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12853                                    TargetLowering::DAGCombinerInfo &DCI,
12854                                    const X86Subtarget *Subtarget) {
12855  DebugLoc DL = N->getDebugLoc();
12856  SDValue Cond = N->getOperand(0);
12857  // Get the LHS/RHS of the select.
12858  SDValue LHS = N->getOperand(1);
12859  SDValue RHS = N->getOperand(2);
12860  EVT VT = LHS.getValueType();
12861
12862  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12863  // instructions match the semantics of the common C idiom x<y?x:y but not
12864  // x<=y?x:y, because of how they handle negative zero (which can be
12865  // ignored in unsafe-math mode).
12866  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12867      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12868      (Subtarget->hasSSE2() ||
12869       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12870    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12871
12872    unsigned Opcode = 0;
12873    // Check for x CC y ? x : y.
12874    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12875        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12876      switch (CC) {
12877      default: break;
12878      case ISD::SETULT:
12879        // Converting this to a min would handle NaNs incorrectly, and swapping
12880        // the operands would cause it to handle comparisons between positive
12881        // and negative zero incorrectly.
12882        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12883          if (!DAG.getTarget().Options.UnsafeFPMath &&
12884              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12885            break;
12886          std::swap(LHS, RHS);
12887        }
12888        Opcode = X86ISD::FMIN;
12889        break;
12890      case ISD::SETOLE:
12891        // Converting this to a min would handle comparisons between positive
12892        // and negative zero incorrectly.
12893        if (!DAG.getTarget().Options.UnsafeFPMath &&
12894            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12895          break;
12896        Opcode = X86ISD::FMIN;
12897        break;
12898      case ISD::SETULE:
12899        // Converting this to a min would handle both negative zeros and NaNs
12900        // incorrectly, but we can swap the operands to fix both.
12901        std::swap(LHS, RHS);
12902      case ISD::SETOLT:
12903      case ISD::SETLT:
12904      case ISD::SETLE:
12905        Opcode = X86ISD::FMIN;
12906        break;
12907
12908      case ISD::SETOGE:
12909        // Converting this to a max would handle comparisons between positive
12910        // and negative zero incorrectly.
12911        if (!DAG.getTarget().Options.UnsafeFPMath &&
12912            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12913          break;
12914        Opcode = X86ISD::FMAX;
12915        break;
12916      case ISD::SETUGT:
12917        // Converting this to a max would handle NaNs incorrectly, and swapping
12918        // the operands would cause it to handle comparisons between positive
12919        // and negative zero incorrectly.
12920        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12921          if (!DAG.getTarget().Options.UnsafeFPMath &&
12922              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12923            break;
12924          std::swap(LHS, RHS);
12925        }
12926        Opcode = X86ISD::FMAX;
12927        break;
12928      case ISD::SETUGE:
12929        // Converting this to a max would handle both negative zeros and NaNs
12930        // incorrectly, but we can swap the operands to fix both.
12931        std::swap(LHS, RHS);
12932      case ISD::SETOGT:
12933      case ISD::SETGT:
12934      case ISD::SETGE:
12935        Opcode = X86ISD::FMAX;
12936        break;
12937      }
12938    // Check for x CC y ? y : x -- a min/max with reversed arms.
12939    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12940               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12941      switch (CC) {
12942      default: break;
12943      case ISD::SETOGE:
12944        // Converting this to a min would handle comparisons between positive
12945        // and negative zero incorrectly, and swapping the operands would
12946        // cause it to handle NaNs incorrectly.
12947        if (!DAG.getTarget().Options.UnsafeFPMath &&
12948            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12949          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12950            break;
12951          std::swap(LHS, RHS);
12952        }
12953        Opcode = X86ISD::FMIN;
12954        break;
12955      case ISD::SETUGT:
12956        // Converting this to a min would handle NaNs incorrectly.
12957        if (!DAG.getTarget().Options.UnsafeFPMath &&
12958            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12959          break;
12960        Opcode = X86ISD::FMIN;
12961        break;
12962      case ISD::SETUGE:
12963        // Converting this to a min would handle both negative zeros and NaNs
12964        // incorrectly, but we can swap the operands to fix both.
12965        std::swap(LHS, RHS);
12966      case ISD::SETOGT:
12967      case ISD::SETGT:
12968      case ISD::SETGE:
12969        Opcode = X86ISD::FMIN;
12970        break;
12971
12972      case ISD::SETULT:
12973        // Converting this to a max would handle NaNs incorrectly.
12974        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12975          break;
12976        Opcode = X86ISD::FMAX;
12977        break;
12978      case ISD::SETOLE:
12979        // Converting this to a max would handle comparisons between positive
12980        // and negative zero incorrectly, and swapping the operands would
12981        // cause it to handle NaNs incorrectly.
12982        if (!DAG.getTarget().Options.UnsafeFPMath &&
12983            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12984          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12985            break;
12986          std::swap(LHS, RHS);
12987        }
12988        Opcode = X86ISD::FMAX;
12989        break;
12990      case ISD::SETULE:
12991        // Converting this to a max would handle both negative zeros and NaNs
12992        // incorrectly, but we can swap the operands to fix both.
12993        std::swap(LHS, RHS);
12994      case ISD::SETOLT:
12995      case ISD::SETLT:
12996      case ISD::SETLE:
12997        Opcode = X86ISD::FMAX;
12998        break;
12999      }
13000    }
13001
13002    if (Opcode)
13003      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13004  }
13005
13006  // If this is a select between two integer constants, try to do some
13007  // optimizations.
13008  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13009    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13010      // Don't do this for crazy integer types.
13011      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13012        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13013        // so that TrueC (the true value) is larger than FalseC.
13014        bool NeedsCondInvert = false;
13015
13016        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13017            // Efficiently invertible.
13018            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13019             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13020              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13021          NeedsCondInvert = true;
13022          std::swap(TrueC, FalseC);
13023        }
13024
13025        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13026        if (FalseC->getAPIntValue() == 0 &&
13027            TrueC->getAPIntValue().isPowerOf2()) {
13028          if (NeedsCondInvert) // Invert the condition if needed.
13029            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13030                               DAG.getConstant(1, Cond.getValueType()));
13031
13032          // Zero extend the condition if needed.
13033          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13034
13035          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13036          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13037                             DAG.getConstant(ShAmt, MVT::i8));
13038        }
13039
13040        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13041        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13042          if (NeedsCondInvert) // Invert the condition if needed.
13043            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13044                               DAG.getConstant(1, Cond.getValueType()));
13045
13046          // Zero extend the condition if needed.
13047          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13048                             FalseC->getValueType(0), Cond);
13049          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13050                             SDValue(FalseC, 0));
13051        }
13052
13053        // Optimize cases that will turn into an LEA instruction.  This requires
13054        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13055        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13056          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13057          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13058
13059          bool isFastMultiplier = false;
13060          if (Diff < 10) {
13061            switch ((unsigned char)Diff) {
13062              default: break;
13063              case 1:  // result = add base, cond
13064              case 2:  // result = lea base(    , cond*2)
13065              case 3:  // result = lea base(cond, cond*2)
13066              case 4:  // result = lea base(    , cond*4)
13067              case 5:  // result = lea base(cond, cond*4)
13068              case 8:  // result = lea base(    , cond*8)
13069              case 9:  // result = lea base(cond, cond*8)
13070                isFastMultiplier = true;
13071                break;
13072            }
13073          }
13074
13075          if (isFastMultiplier) {
13076            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13077            if (NeedsCondInvert) // Invert the condition if needed.
13078              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13079                                 DAG.getConstant(1, Cond.getValueType()));
13080
13081            // Zero extend the condition if needed.
13082            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13083                               Cond);
13084            // Scale the condition by the difference.
13085            if (Diff != 1)
13086              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13087                                 DAG.getConstant(Diff, Cond.getValueType()));
13088
13089            // Add the base if non-zero.
13090            if (FalseC->getAPIntValue() != 0)
13091              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13092                                 SDValue(FalseC, 0));
13093            return Cond;
13094          }
13095        }
13096      }
13097  }
13098
13099  // Canonicalize max and min:
13100  // (x > y) ? x : y -> (x >= y) ? x : y
13101  // (x < y) ? x : y -> (x <= y) ? x : y
13102  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13103  // the need for an extra compare
13104  // against zero. e.g.
13105  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13106  // subl   %esi, %edi
13107  // testl  %edi, %edi
13108  // movl   $0, %eax
13109  // cmovgl %edi, %eax
13110  // =>
13111  // xorl   %eax, %eax
13112  // subl   %esi, $edi
13113  // cmovsl %eax, %edi
13114  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13115      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13116      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13117    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13118    switch (CC) {
13119    default: break;
13120    case ISD::SETLT:
13121    case ISD::SETGT: {
13122      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13123      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13124                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13125      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13126    }
13127    }
13128  }
13129
13130  // If we know that this node is legal then we know that it is going to be
13131  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13132  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13133  // to simplify previous instructions.
13134  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13135  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13136      !DCI.isBeforeLegalize() &&
13137      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13138    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13139    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13140    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13141
13142    APInt KnownZero, KnownOne;
13143    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13144                                          DCI.isBeforeLegalizeOps());
13145    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13146        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13147      DCI.CommitTargetLoweringOpt(TLO);
13148  }
13149
13150  return SDValue();
13151}
13152
13153/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13154static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13155                                  TargetLowering::DAGCombinerInfo &DCI) {
13156  DebugLoc DL = N->getDebugLoc();
13157
13158  // If the flag operand isn't dead, don't touch this CMOV.
13159  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13160    return SDValue();
13161
13162  SDValue FalseOp = N->getOperand(0);
13163  SDValue TrueOp = N->getOperand(1);
13164  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13165  SDValue Cond = N->getOperand(3);
13166  if (CC == X86::COND_E || CC == X86::COND_NE) {
13167    switch (Cond.getOpcode()) {
13168    default: break;
13169    case X86ISD::BSR:
13170    case X86ISD::BSF:
13171      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13172      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13173        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13174    }
13175  }
13176
13177  // If this is a select between two integer constants, try to do some
13178  // optimizations.  Note that the operands are ordered the opposite of SELECT
13179  // operands.
13180  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13181    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13182      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13183      // larger than FalseC (the false value).
13184      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13185        CC = X86::GetOppositeBranchCondition(CC);
13186        std::swap(TrueC, FalseC);
13187      }
13188
13189      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13190      // This is efficient for any integer data type (including i8/i16) and
13191      // shift amount.
13192      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13193        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13194                           DAG.getConstant(CC, MVT::i8), Cond);
13195
13196        // Zero extend the condition if needed.
13197        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13198
13199        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13200        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13201                           DAG.getConstant(ShAmt, MVT::i8));
13202        if (N->getNumValues() == 2)  // Dead flag value?
13203          return DCI.CombineTo(N, Cond, SDValue());
13204        return Cond;
13205      }
13206
13207      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13208      // for any integer data type, including i8/i16.
13209      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13210        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13211                           DAG.getConstant(CC, MVT::i8), Cond);
13212
13213        // Zero extend the condition if needed.
13214        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13215                           FalseC->getValueType(0), Cond);
13216        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13217                           SDValue(FalseC, 0));
13218
13219        if (N->getNumValues() == 2)  // Dead flag value?
13220          return DCI.CombineTo(N, Cond, SDValue());
13221        return Cond;
13222      }
13223
13224      // Optimize cases that will turn into an LEA instruction.  This requires
13225      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13226      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13227        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13228        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13229
13230        bool isFastMultiplier = false;
13231        if (Diff < 10) {
13232          switch ((unsigned char)Diff) {
13233          default: break;
13234          case 1:  // result = add base, cond
13235          case 2:  // result = lea base(    , cond*2)
13236          case 3:  // result = lea base(cond, cond*2)
13237          case 4:  // result = lea base(    , cond*4)
13238          case 5:  // result = lea base(cond, cond*4)
13239          case 8:  // result = lea base(    , cond*8)
13240          case 9:  // result = lea base(cond, cond*8)
13241            isFastMultiplier = true;
13242            break;
13243          }
13244        }
13245
13246        if (isFastMultiplier) {
13247          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13248          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13249                             DAG.getConstant(CC, MVT::i8), Cond);
13250          // Zero extend the condition if needed.
13251          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13252                             Cond);
13253          // Scale the condition by the difference.
13254          if (Diff != 1)
13255            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13256                               DAG.getConstant(Diff, Cond.getValueType()));
13257
13258          // Add the base if non-zero.
13259          if (FalseC->getAPIntValue() != 0)
13260            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13261                               SDValue(FalseC, 0));
13262          if (N->getNumValues() == 2)  // Dead flag value?
13263            return DCI.CombineTo(N, Cond, SDValue());
13264          return Cond;
13265        }
13266      }
13267    }
13268  }
13269  return SDValue();
13270}
13271
13272
13273/// PerformMulCombine - Optimize a single multiply with constant into two
13274/// in order to implement it with two cheaper instructions, e.g.
13275/// LEA + SHL, LEA + LEA.
13276static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13277                                 TargetLowering::DAGCombinerInfo &DCI) {
13278  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13279    return SDValue();
13280
13281  EVT VT = N->getValueType(0);
13282  if (VT != MVT::i64)
13283    return SDValue();
13284
13285  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13286  if (!C)
13287    return SDValue();
13288  uint64_t MulAmt = C->getZExtValue();
13289  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13290    return SDValue();
13291
13292  uint64_t MulAmt1 = 0;
13293  uint64_t MulAmt2 = 0;
13294  if ((MulAmt % 9) == 0) {
13295    MulAmt1 = 9;
13296    MulAmt2 = MulAmt / 9;
13297  } else if ((MulAmt % 5) == 0) {
13298    MulAmt1 = 5;
13299    MulAmt2 = MulAmt / 5;
13300  } else if ((MulAmt % 3) == 0) {
13301    MulAmt1 = 3;
13302    MulAmt2 = MulAmt / 3;
13303  }
13304  if (MulAmt2 &&
13305      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13306    DebugLoc DL = N->getDebugLoc();
13307
13308    if (isPowerOf2_64(MulAmt2) &&
13309        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13310      // If second multiplifer is pow2, issue it first. We want the multiply by
13311      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13312      // is an add.
13313      std::swap(MulAmt1, MulAmt2);
13314
13315    SDValue NewMul;
13316    if (isPowerOf2_64(MulAmt1))
13317      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13318                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13319    else
13320      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13321                           DAG.getConstant(MulAmt1, VT));
13322
13323    if (isPowerOf2_64(MulAmt2))
13324      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13325                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13326    else
13327      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13328                           DAG.getConstant(MulAmt2, VT));
13329
13330    // Do not add new nodes to DAG combiner worklist.
13331    DCI.CombineTo(N, NewMul, false);
13332  }
13333  return SDValue();
13334}
13335
13336static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13337  SDValue N0 = N->getOperand(0);
13338  SDValue N1 = N->getOperand(1);
13339  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13340  EVT VT = N0.getValueType();
13341
13342  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13343  // since the result of setcc_c is all zero's or all ones.
13344  if (VT.isInteger() && !VT.isVector() &&
13345      N1C && N0.getOpcode() == ISD::AND &&
13346      N0.getOperand(1).getOpcode() == ISD::Constant) {
13347    SDValue N00 = N0.getOperand(0);
13348    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13349        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13350          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13351         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13352      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13353      APInt ShAmt = N1C->getAPIntValue();
13354      Mask = Mask.shl(ShAmt);
13355      if (Mask != 0)
13356        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13357                           N00, DAG.getConstant(Mask, VT));
13358    }
13359  }
13360
13361
13362  // Hardware support for vector shifts is sparse which makes us scalarize the
13363  // vector operations in many cases. Also, on sandybridge ADD is faster than
13364  // shl.
13365  // (shl V, 1) -> add V,V
13366  if (isSplatVector(N1.getNode())) {
13367    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13368    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13369    // We shift all of the values by one. In many cases we do not have
13370    // hardware support for this operation. This is better expressed as an ADD
13371    // of two values.
13372    if (N1C && (1 == N1C->getZExtValue())) {
13373      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13374    }
13375  }
13376
13377  return SDValue();
13378}
13379
13380/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13381///                       when possible.
13382static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13383                                   const X86Subtarget *Subtarget) {
13384  EVT VT = N->getValueType(0);
13385  if (N->getOpcode() == ISD::SHL) {
13386    SDValue V = PerformSHLCombine(N, DAG);
13387    if (V.getNode()) return V;
13388  }
13389
13390  // On X86 with SSE2 support, we can transform this to a vector shift if
13391  // all elements are shifted by the same amount.  We can't do this in legalize
13392  // because the a constant vector is typically transformed to a constant pool
13393  // so we have no knowledge of the shift amount.
13394  if (!Subtarget->hasSSE2())
13395    return SDValue();
13396
13397  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13398      (!Subtarget->hasAVX2() ||
13399       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13400    return SDValue();
13401
13402  SDValue ShAmtOp = N->getOperand(1);
13403  EVT EltVT = VT.getVectorElementType();
13404  DebugLoc DL = N->getDebugLoc();
13405  SDValue BaseShAmt = SDValue();
13406  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13407    unsigned NumElts = VT.getVectorNumElements();
13408    unsigned i = 0;
13409    for (; i != NumElts; ++i) {
13410      SDValue Arg = ShAmtOp.getOperand(i);
13411      if (Arg.getOpcode() == ISD::UNDEF) continue;
13412      BaseShAmt = Arg;
13413      break;
13414    }
13415    // Handle the case where the build_vector is all undef
13416    // FIXME: Should DAG allow this?
13417    if (i == NumElts)
13418      return SDValue();
13419
13420    for (; i != NumElts; ++i) {
13421      SDValue Arg = ShAmtOp.getOperand(i);
13422      if (Arg.getOpcode() == ISD::UNDEF) continue;
13423      if (Arg != BaseShAmt) {
13424        return SDValue();
13425      }
13426    }
13427  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13428             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13429    SDValue InVec = ShAmtOp.getOperand(0);
13430    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13431      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13432      unsigned i = 0;
13433      for (; i != NumElts; ++i) {
13434        SDValue Arg = InVec.getOperand(i);
13435        if (Arg.getOpcode() == ISD::UNDEF) continue;
13436        BaseShAmt = Arg;
13437        break;
13438      }
13439    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13440       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13441         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13442         if (C->getZExtValue() == SplatIdx)
13443           BaseShAmt = InVec.getOperand(1);
13444       }
13445    }
13446    if (BaseShAmt.getNode() == 0)
13447      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13448                              DAG.getIntPtrConstant(0));
13449  } else
13450    return SDValue();
13451
13452  // The shift amount is an i32.
13453  if (EltVT.bitsGT(MVT::i32))
13454    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13455  else if (EltVT.bitsLT(MVT::i32))
13456    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13457
13458  // The shift amount is identical so we can do a vector shift.
13459  SDValue  ValOp = N->getOperand(0);
13460  switch (N->getOpcode()) {
13461  default:
13462    llvm_unreachable("Unknown shift opcode!");
13463  case ISD::SHL:
13464    switch (VT.getSimpleVT().SimpleTy) {
13465    default: return SDValue();
13466    case MVT::v2i64:
13467    case MVT::v4i32:
13468    case MVT::v8i16:
13469    case MVT::v4i64:
13470    case MVT::v8i32:
13471    case MVT::v16i16:
13472      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13473    }
13474  case ISD::SRA:
13475    switch (VT.getSimpleVT().SimpleTy) {
13476    default: return SDValue();
13477    case MVT::v4i32:
13478    case MVT::v8i16:
13479    case MVT::v8i32:
13480    case MVT::v16i16:
13481      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13482    }
13483  case ISD::SRL:
13484    switch (VT.getSimpleVT().SimpleTy) {
13485    default: return SDValue();
13486    case MVT::v2i64:
13487    case MVT::v4i32:
13488    case MVT::v8i16:
13489    case MVT::v4i64:
13490    case MVT::v8i32:
13491    case MVT::v16i16:
13492      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13493    }
13494  }
13495}
13496
13497
13498// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13499// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13500// and friends.  Likewise for OR -> CMPNEQSS.
13501static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13502                            TargetLowering::DAGCombinerInfo &DCI,
13503                            const X86Subtarget *Subtarget) {
13504  unsigned opcode;
13505
13506  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13507  // we're requiring SSE2 for both.
13508  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13509    SDValue N0 = N->getOperand(0);
13510    SDValue N1 = N->getOperand(1);
13511    SDValue CMP0 = N0->getOperand(1);
13512    SDValue CMP1 = N1->getOperand(1);
13513    DebugLoc DL = N->getDebugLoc();
13514
13515    // The SETCCs should both refer to the same CMP.
13516    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13517      return SDValue();
13518
13519    SDValue CMP00 = CMP0->getOperand(0);
13520    SDValue CMP01 = CMP0->getOperand(1);
13521    EVT     VT    = CMP00.getValueType();
13522
13523    if (VT == MVT::f32 || VT == MVT::f64) {
13524      bool ExpectingFlags = false;
13525      // Check for any users that want flags:
13526      for (SDNode::use_iterator UI = N->use_begin(),
13527             UE = N->use_end();
13528           !ExpectingFlags && UI != UE; ++UI)
13529        switch (UI->getOpcode()) {
13530        default:
13531        case ISD::BR_CC:
13532        case ISD::BRCOND:
13533        case ISD::SELECT:
13534          ExpectingFlags = true;
13535          break;
13536        case ISD::CopyToReg:
13537        case ISD::SIGN_EXTEND:
13538        case ISD::ZERO_EXTEND:
13539        case ISD::ANY_EXTEND:
13540          break;
13541        }
13542
13543      if (!ExpectingFlags) {
13544        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13545        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13546
13547        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13548          X86::CondCode tmp = cc0;
13549          cc0 = cc1;
13550          cc1 = tmp;
13551        }
13552
13553        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13554            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13555          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13556          X86ISD::NodeType NTOperator = is64BitFP ?
13557            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13558          // FIXME: need symbolic constants for these magic numbers.
13559          // See X86ATTInstPrinter.cpp:printSSECC().
13560          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13561          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13562                                              DAG.getConstant(x86cc, MVT::i8));
13563          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13564                                              OnesOrZeroesF);
13565          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13566                                      DAG.getConstant(1, MVT::i32));
13567          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13568          return OneBitOfTruth;
13569        }
13570      }
13571    }
13572  }
13573  return SDValue();
13574}
13575
13576/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13577/// so it can be folded inside ANDNP.
13578static bool CanFoldXORWithAllOnes(const SDNode *N) {
13579  EVT VT = N->getValueType(0);
13580
13581  // Match direct AllOnes for 128 and 256-bit vectors
13582  if (ISD::isBuildVectorAllOnes(N))
13583    return true;
13584
13585  // Look through a bit convert.
13586  if (N->getOpcode() == ISD::BITCAST)
13587    N = N->getOperand(0).getNode();
13588
13589  // Sometimes the operand may come from a insert_subvector building a 256-bit
13590  // allones vector
13591  if (VT.getSizeInBits() == 256 &&
13592      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13593    SDValue V1 = N->getOperand(0);
13594    SDValue V2 = N->getOperand(1);
13595
13596    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13597        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13598        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13599        ISD::isBuildVectorAllOnes(V2.getNode()))
13600      return true;
13601  }
13602
13603  return false;
13604}
13605
13606static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13607                                 TargetLowering::DAGCombinerInfo &DCI,
13608                                 const X86Subtarget *Subtarget) {
13609  if (DCI.isBeforeLegalizeOps())
13610    return SDValue();
13611
13612  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13613  if (R.getNode())
13614    return R;
13615
13616  EVT VT = N->getValueType(0);
13617
13618  // Create ANDN, BLSI, and BLSR instructions
13619  // BLSI is X & (-X)
13620  // BLSR is X & (X-1)
13621  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13622    SDValue N0 = N->getOperand(0);
13623    SDValue N1 = N->getOperand(1);
13624    DebugLoc DL = N->getDebugLoc();
13625
13626    // Check LHS for not
13627    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13628      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13629    // Check RHS for not
13630    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13631      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13632
13633    // Check LHS for neg
13634    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13635        isZero(N0.getOperand(0)))
13636      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13637
13638    // Check RHS for neg
13639    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13640        isZero(N1.getOperand(0)))
13641      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13642
13643    // Check LHS for X-1
13644    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13645        isAllOnes(N0.getOperand(1)))
13646      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13647
13648    // Check RHS for X-1
13649    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13650        isAllOnes(N1.getOperand(1)))
13651      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13652
13653    return SDValue();
13654  }
13655
13656  // Want to form ANDNP nodes:
13657  // 1) In the hopes of then easily combining them with OR and AND nodes
13658  //    to form PBLEND/PSIGN.
13659  // 2) To match ANDN packed intrinsics
13660  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13661    return SDValue();
13662
13663  SDValue N0 = N->getOperand(0);
13664  SDValue N1 = N->getOperand(1);
13665  DebugLoc DL = N->getDebugLoc();
13666
13667  // Check LHS for vnot
13668  if (N0.getOpcode() == ISD::XOR &&
13669      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13670      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13671    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13672
13673  // Check RHS for vnot
13674  if (N1.getOpcode() == ISD::XOR &&
13675      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13676      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13677    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13678
13679  return SDValue();
13680}
13681
13682static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13683                                TargetLowering::DAGCombinerInfo &DCI,
13684                                const X86Subtarget *Subtarget) {
13685  if (DCI.isBeforeLegalizeOps())
13686    return SDValue();
13687
13688  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13689  if (R.getNode())
13690    return R;
13691
13692  EVT VT = N->getValueType(0);
13693
13694  SDValue N0 = N->getOperand(0);
13695  SDValue N1 = N->getOperand(1);
13696
13697  // look for psign/blend
13698  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13699    if (!Subtarget->hasSSSE3() ||
13700        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13701      return SDValue();
13702
13703    // Canonicalize pandn to RHS
13704    if (N0.getOpcode() == X86ISD::ANDNP)
13705      std::swap(N0, N1);
13706    // or (and (m, y), (pandn m, x))
13707    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13708      SDValue Mask = N1.getOperand(0);
13709      SDValue X    = N1.getOperand(1);
13710      SDValue Y;
13711      if (N0.getOperand(0) == Mask)
13712        Y = N0.getOperand(1);
13713      if (N0.getOperand(1) == Mask)
13714        Y = N0.getOperand(0);
13715
13716      // Check to see if the mask appeared in both the AND and ANDNP and
13717      if (!Y.getNode())
13718        return SDValue();
13719
13720      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13721      if (Mask.getOpcode() != ISD::BITCAST ||
13722          X.getOpcode() != ISD::BITCAST ||
13723          Y.getOpcode() != ISD::BITCAST)
13724        return SDValue();
13725
13726      // Look through mask bitcast.
13727      Mask = Mask.getOperand(0);
13728      EVT MaskVT = Mask.getValueType();
13729
13730      // Validate that the Mask operand is a vector sra node.
13731      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13732      // there is no psrai.b
13733      SDValue SraSrc, SraC;
13734      if (Mask.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
13735        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13736        case Intrinsic::x86_sse2_psrai_w:
13737        case Intrinsic::x86_sse2_psrai_d:
13738        case Intrinsic::x86_avx2_psrai_w:
13739        case Intrinsic::x86_avx2_psrai_d:
13740          break;
13741        default: return SDValue();
13742        }
13743
13744        SraSrc = Mask.getOperand(1);
13745        SraC = Mask.getOperand(2);
13746      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
13747        SraSrc = Mask.getOperand(0);
13748        SraC = Mask.getOperand(1);
13749      } else
13750        return SDValue();
13751
13752      // Check that the SRA is all signbits.
13753      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13754      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13755      if ((SraAmt + 1) != EltBits)
13756        return SDValue();
13757
13758      DebugLoc DL = N->getDebugLoc();
13759
13760      // Now we know we at least have a plendvb with the mask val.  See if
13761      // we can form a psignb/w/d.
13762      // psign = x.type == y.type == mask.type && y = sub(0, x);
13763      X = X.getOperand(0);
13764      Y = Y.getOperand(0);
13765      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13766          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13767          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
13768        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
13769               "Unsupported VT for PSIGN");
13770        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, SraSrc);
13771        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13772      }
13773      // PBLENDVB only available on SSE 4.1
13774      if (!Subtarget->hasSSE41())
13775        return SDValue();
13776
13777      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13778
13779      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13780      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13781      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13782      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13783      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13784    }
13785  }
13786
13787  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13788    return SDValue();
13789
13790  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13791  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13792    std::swap(N0, N1);
13793  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13794    return SDValue();
13795  if (!N0.hasOneUse() || !N1.hasOneUse())
13796    return SDValue();
13797
13798  SDValue ShAmt0 = N0.getOperand(1);
13799  if (ShAmt0.getValueType() != MVT::i8)
13800    return SDValue();
13801  SDValue ShAmt1 = N1.getOperand(1);
13802  if (ShAmt1.getValueType() != MVT::i8)
13803    return SDValue();
13804  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13805    ShAmt0 = ShAmt0.getOperand(0);
13806  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13807    ShAmt1 = ShAmt1.getOperand(0);
13808
13809  DebugLoc DL = N->getDebugLoc();
13810  unsigned Opc = X86ISD::SHLD;
13811  SDValue Op0 = N0.getOperand(0);
13812  SDValue Op1 = N1.getOperand(0);
13813  if (ShAmt0.getOpcode() == ISD::SUB) {
13814    Opc = X86ISD::SHRD;
13815    std::swap(Op0, Op1);
13816    std::swap(ShAmt0, ShAmt1);
13817  }
13818
13819  unsigned Bits = VT.getSizeInBits();
13820  if (ShAmt1.getOpcode() == ISD::SUB) {
13821    SDValue Sum = ShAmt1.getOperand(0);
13822    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13823      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13824      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13825        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13826      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13827        return DAG.getNode(Opc, DL, VT,
13828                           Op0, Op1,
13829                           DAG.getNode(ISD::TRUNCATE, DL,
13830                                       MVT::i8, ShAmt0));
13831    }
13832  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13833    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13834    if (ShAmt0C &&
13835        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13836      return DAG.getNode(Opc, DL, VT,
13837                         N0.getOperand(0), N1.getOperand(0),
13838                         DAG.getNode(ISD::TRUNCATE, DL,
13839                                       MVT::i8, ShAmt0));
13840  }
13841
13842  return SDValue();
13843}
13844
13845// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13846static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13847                                 TargetLowering::DAGCombinerInfo &DCI,
13848                                 const X86Subtarget *Subtarget) {
13849  if (DCI.isBeforeLegalizeOps())
13850    return SDValue();
13851
13852  EVT VT = N->getValueType(0);
13853
13854  if (VT != MVT::i32 && VT != MVT::i64)
13855    return SDValue();
13856
13857  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13858
13859  // Create BLSMSK instructions by finding X ^ (X-1)
13860  SDValue N0 = N->getOperand(0);
13861  SDValue N1 = N->getOperand(1);
13862  DebugLoc DL = N->getDebugLoc();
13863
13864  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13865      isAllOnes(N0.getOperand(1)))
13866    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13867
13868  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13869      isAllOnes(N1.getOperand(1)))
13870    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13871
13872  return SDValue();
13873}
13874
13875/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13876static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13877                                   const X86Subtarget *Subtarget) {
13878  LoadSDNode *Ld = cast<LoadSDNode>(N);
13879  EVT RegVT = Ld->getValueType(0);
13880  EVT MemVT = Ld->getMemoryVT();
13881  DebugLoc dl = Ld->getDebugLoc();
13882  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13883
13884  ISD::LoadExtType Ext = Ld->getExtensionType();
13885
13886  // If this is a vector EXT Load then attempt to optimize it using a
13887  // shuffle. We need SSE4 for the shuffles.
13888  // TODO: It is possible to support ZExt by zeroing the undef values
13889  // during the shuffle phase or after the shuffle.
13890  if (RegVT.isVector() && RegVT.isInteger() &&
13891      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13892    assert(MemVT != RegVT && "Cannot extend to the same type");
13893    assert(MemVT.isVector() && "Must load a vector from memory");
13894
13895    unsigned NumElems = RegVT.getVectorNumElements();
13896    unsigned RegSz = RegVT.getSizeInBits();
13897    unsigned MemSz = MemVT.getSizeInBits();
13898    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13899    // All sizes must be a power of two
13900    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13901
13902    // Attempt to load the original value using a single load op.
13903    // Find a scalar type which is equal to the loaded word size.
13904    MVT SclrLoadTy = MVT::i8;
13905    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13906         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13907      MVT Tp = (MVT::SimpleValueType)tp;
13908      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13909        SclrLoadTy = Tp;
13910        break;
13911      }
13912    }
13913
13914    // Proceed if a load word is found.
13915    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13916
13917    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13918      RegSz/SclrLoadTy.getSizeInBits());
13919
13920    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13921                                  RegSz/MemVT.getScalarType().getSizeInBits());
13922    // Can't shuffle using an illegal type.
13923    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13924
13925    // Perform a single load.
13926    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13927                                  Ld->getBasePtr(),
13928                                  Ld->getPointerInfo(), Ld->isVolatile(),
13929                                  Ld->isNonTemporal(), Ld->isInvariant(),
13930                                  Ld->getAlignment());
13931
13932    // Insert the word loaded into a vector.
13933    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13934      LoadUnitVecVT, ScalarLoad);
13935
13936    // Bitcast the loaded value to a vector of the original element type, in
13937    // the size of the target vector type.
13938    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
13939                                    ScalarInVector);
13940    unsigned SizeRatio = RegSz/MemSz;
13941
13942    // Redistribute the loaded elements into the different locations.
13943    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13944    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13945
13946    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13947                                DAG.getUNDEF(SlicedVec.getValueType()),
13948                                ShuffleVec.data());
13949
13950    // Bitcast to the requested type.
13951    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13952    // Replace the original load with the new sequence
13953    // and return the new chain.
13954    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13955    return SDValue(ScalarLoad.getNode(), 1);
13956  }
13957
13958  return SDValue();
13959}
13960
13961/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13962static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13963                                   const X86Subtarget *Subtarget) {
13964  StoreSDNode *St = cast<StoreSDNode>(N);
13965  EVT VT = St->getValue().getValueType();
13966  EVT StVT = St->getMemoryVT();
13967  DebugLoc dl = St->getDebugLoc();
13968  SDValue StoredVal = St->getOperand(1);
13969  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13970
13971  // If we are saving a concatenation of two XMM registers, perform two stores.
13972  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13973  // 128-bit ones. If in the future the cost becomes only one memory access the
13974  // first version would be better.
13975  if (VT.getSizeInBits() == 256 &&
13976    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13977    StoredVal.getNumOperands() == 2) {
13978
13979    SDValue Value0 = StoredVal.getOperand(0);
13980    SDValue Value1 = StoredVal.getOperand(1);
13981
13982    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13983    SDValue Ptr0 = St->getBasePtr();
13984    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13985
13986    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13987                                St->getPointerInfo(), St->isVolatile(),
13988                                St->isNonTemporal(), St->getAlignment());
13989    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13990                                St->getPointerInfo(), St->isVolatile(),
13991                                St->isNonTemporal(), St->getAlignment());
13992    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13993  }
13994
13995  // Optimize trunc store (of multiple scalars) to shuffle and store.
13996  // First, pack all of the elements in one place. Next, store to memory
13997  // in fewer chunks.
13998  if (St->isTruncatingStore() && VT.isVector()) {
13999    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14000    unsigned NumElems = VT.getVectorNumElements();
14001    assert(StVT != VT && "Cannot truncate to the same type");
14002    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14003    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14004
14005    // From, To sizes and ElemCount must be pow of two
14006    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14007    // We are going to use the original vector elt for storing.
14008    // Accumulated smaller vector elements must be a multiple of the store size.
14009    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14010
14011    unsigned SizeRatio  = FromSz / ToSz;
14012
14013    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14014
14015    // Create a type on which we perform the shuffle
14016    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14017            StVT.getScalarType(), NumElems*SizeRatio);
14018
14019    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14020
14021    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14022    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14023    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14024
14025    // Can't shuffle using an illegal type
14026    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14027
14028    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14029                                DAG.getUNDEF(WideVec.getValueType()),
14030                                ShuffleVec.data());
14031    // At this point all of the data is stored at the bottom of the
14032    // register. We now need to save it to mem.
14033
14034    // Find the largest store unit
14035    MVT StoreType = MVT::i8;
14036    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14037         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14038      MVT Tp = (MVT::SimpleValueType)tp;
14039      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14040        StoreType = Tp;
14041    }
14042
14043    // Bitcast the original vector into a vector of store-size units
14044    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14045            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14046    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14047    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14048    SmallVector<SDValue, 8> Chains;
14049    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14050                                        TLI.getPointerTy());
14051    SDValue Ptr = St->getBasePtr();
14052
14053    // Perform one or more big stores into memory.
14054    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14055      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14056                                   StoreType, ShuffWide,
14057                                   DAG.getIntPtrConstant(i));
14058      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14059                                St->getPointerInfo(), St->isVolatile(),
14060                                St->isNonTemporal(), St->getAlignment());
14061      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14062      Chains.push_back(Ch);
14063    }
14064
14065    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14066                               Chains.size());
14067  }
14068
14069
14070  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14071  // the FP state in cases where an emms may be missing.
14072  // A preferable solution to the general problem is to figure out the right
14073  // places to insert EMMS.  This qualifies as a quick hack.
14074
14075  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14076  if (VT.getSizeInBits() != 64)
14077    return SDValue();
14078
14079  const Function *F = DAG.getMachineFunction().getFunction();
14080  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14081  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14082                     && Subtarget->hasSSE2();
14083  if ((VT.isVector() ||
14084       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14085      isa<LoadSDNode>(St->getValue()) &&
14086      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14087      St->getChain().hasOneUse() && !St->isVolatile()) {
14088    SDNode* LdVal = St->getValue().getNode();
14089    LoadSDNode *Ld = 0;
14090    int TokenFactorIndex = -1;
14091    SmallVector<SDValue, 8> Ops;
14092    SDNode* ChainVal = St->getChain().getNode();
14093    // Must be a store of a load.  We currently handle two cases:  the load
14094    // is a direct child, and it's under an intervening TokenFactor.  It is
14095    // possible to dig deeper under nested TokenFactors.
14096    if (ChainVal == LdVal)
14097      Ld = cast<LoadSDNode>(St->getChain());
14098    else if (St->getValue().hasOneUse() &&
14099             ChainVal->getOpcode() == ISD::TokenFactor) {
14100      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14101        if (ChainVal->getOperand(i).getNode() == LdVal) {
14102          TokenFactorIndex = i;
14103          Ld = cast<LoadSDNode>(St->getValue());
14104        } else
14105          Ops.push_back(ChainVal->getOperand(i));
14106      }
14107    }
14108
14109    if (!Ld || !ISD::isNormalLoad(Ld))
14110      return SDValue();
14111
14112    // If this is not the MMX case, i.e. we are just turning i64 load/store
14113    // into f64 load/store, avoid the transformation if there are multiple
14114    // uses of the loaded value.
14115    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14116      return SDValue();
14117
14118    DebugLoc LdDL = Ld->getDebugLoc();
14119    DebugLoc StDL = N->getDebugLoc();
14120    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14121    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14122    // pair instead.
14123    if (Subtarget->is64Bit() || F64IsLegal) {
14124      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14125      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14126                                  Ld->getPointerInfo(), Ld->isVolatile(),
14127                                  Ld->isNonTemporal(), Ld->isInvariant(),
14128                                  Ld->getAlignment());
14129      SDValue NewChain = NewLd.getValue(1);
14130      if (TokenFactorIndex != -1) {
14131        Ops.push_back(NewChain);
14132        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14133                               Ops.size());
14134      }
14135      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14136                          St->getPointerInfo(),
14137                          St->isVolatile(), St->isNonTemporal(),
14138                          St->getAlignment());
14139    }
14140
14141    // Otherwise, lower to two pairs of 32-bit loads / stores.
14142    SDValue LoAddr = Ld->getBasePtr();
14143    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14144                                 DAG.getConstant(4, MVT::i32));
14145
14146    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14147                               Ld->getPointerInfo(),
14148                               Ld->isVolatile(), Ld->isNonTemporal(),
14149                               Ld->isInvariant(), Ld->getAlignment());
14150    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14151                               Ld->getPointerInfo().getWithOffset(4),
14152                               Ld->isVolatile(), Ld->isNonTemporal(),
14153                               Ld->isInvariant(),
14154                               MinAlign(Ld->getAlignment(), 4));
14155
14156    SDValue NewChain = LoLd.getValue(1);
14157    if (TokenFactorIndex != -1) {
14158      Ops.push_back(LoLd);
14159      Ops.push_back(HiLd);
14160      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14161                             Ops.size());
14162    }
14163
14164    LoAddr = St->getBasePtr();
14165    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14166                         DAG.getConstant(4, MVT::i32));
14167
14168    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14169                                St->getPointerInfo(),
14170                                St->isVolatile(), St->isNonTemporal(),
14171                                St->getAlignment());
14172    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14173                                St->getPointerInfo().getWithOffset(4),
14174                                St->isVolatile(),
14175                                St->isNonTemporal(),
14176                                MinAlign(St->getAlignment(), 4));
14177    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14178  }
14179  return SDValue();
14180}
14181
14182/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14183/// and return the operands for the horizontal operation in LHS and RHS.  A
14184/// horizontal operation performs the binary operation on successive elements
14185/// of its first operand, then on successive elements of its second operand,
14186/// returning the resulting values in a vector.  For example, if
14187///   A = < float a0, float a1, float a2, float a3 >
14188/// and
14189///   B = < float b0, float b1, float b2, float b3 >
14190/// then the result of doing a horizontal operation on A and B is
14191///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14192/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14193/// A horizontal-op B, for some already available A and B, and if so then LHS is
14194/// set to A, RHS to B, and the routine returns 'true'.
14195/// Note that the binary operation should have the property that if one of the
14196/// operands is UNDEF then the result is UNDEF.
14197static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14198  // Look for the following pattern: if
14199  //   A = < float a0, float a1, float a2, float a3 >
14200  //   B = < float b0, float b1, float b2, float b3 >
14201  // and
14202  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14203  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14204  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14205  // which is A horizontal-op B.
14206
14207  // At least one of the operands should be a vector shuffle.
14208  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14209      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14210    return false;
14211
14212  EVT VT = LHS.getValueType();
14213
14214  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14215         "Unsupported vector type for horizontal add/sub");
14216
14217  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14218  // operate independently on 128-bit lanes.
14219  unsigned NumElts = VT.getVectorNumElements();
14220  unsigned NumLanes = VT.getSizeInBits()/128;
14221  unsigned NumLaneElts = NumElts / NumLanes;
14222  assert((NumLaneElts % 2 == 0) &&
14223         "Vector type should have an even number of elements in each lane");
14224  unsigned HalfLaneElts = NumLaneElts/2;
14225
14226  // View LHS in the form
14227  //   LHS = VECTOR_SHUFFLE A, B, LMask
14228  // If LHS is not a shuffle then pretend it is the shuffle
14229  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14230  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14231  // type VT.
14232  SDValue A, B;
14233  SmallVector<int, 16> LMask(NumElts);
14234  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14235    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14236      A = LHS.getOperand(0);
14237    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14238      B = LHS.getOperand(1);
14239    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14240    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14241  } else {
14242    if (LHS.getOpcode() != ISD::UNDEF)
14243      A = LHS;
14244    for (unsigned i = 0; i != NumElts; ++i)
14245      LMask[i] = i;
14246  }
14247
14248  // Likewise, view RHS in the form
14249  //   RHS = VECTOR_SHUFFLE C, D, RMask
14250  SDValue C, D;
14251  SmallVector<int, 16> RMask(NumElts);
14252  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14253    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14254      C = RHS.getOperand(0);
14255    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14256      D = RHS.getOperand(1);
14257    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14258    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14259  } else {
14260    if (RHS.getOpcode() != ISD::UNDEF)
14261      C = RHS;
14262    for (unsigned i = 0; i != NumElts; ++i)
14263      RMask[i] = i;
14264  }
14265
14266  // Check that the shuffles are both shuffling the same vectors.
14267  if (!(A == C && B == D) && !(A == D && B == C))
14268    return false;
14269
14270  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14271  if (!A.getNode() && !B.getNode())
14272    return false;
14273
14274  // If A and B occur in reverse order in RHS, then "swap" them (which means
14275  // rewriting the mask).
14276  if (A != C)
14277    CommuteVectorShuffleMask(RMask, NumElts);
14278
14279  // At this point LHS and RHS are equivalent to
14280  //   LHS = VECTOR_SHUFFLE A, B, LMask
14281  //   RHS = VECTOR_SHUFFLE A, B, RMask
14282  // Check that the masks correspond to performing a horizontal operation.
14283  for (unsigned i = 0; i != NumElts; ++i) {
14284    int LIdx = LMask[i], RIdx = RMask[i];
14285
14286    // Ignore any UNDEF components.
14287    if (LIdx < 0 || RIdx < 0 ||
14288        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14289        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14290      continue;
14291
14292    // Check that successive elements are being operated on.  If not, this is
14293    // not a horizontal operation.
14294    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14295    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14296    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14297    if (!(LIdx == Index && RIdx == Index + 1) &&
14298        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14299      return false;
14300  }
14301
14302  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14303  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14304  return true;
14305}
14306
14307/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14308static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14309                                  const X86Subtarget *Subtarget) {
14310  EVT VT = N->getValueType(0);
14311  SDValue LHS = N->getOperand(0);
14312  SDValue RHS = N->getOperand(1);
14313
14314  // Try to synthesize horizontal adds from adds of shuffles.
14315  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14316       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14317      isHorizontalBinOp(LHS, RHS, true))
14318    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14319  return SDValue();
14320}
14321
14322/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14323static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14324                                  const X86Subtarget *Subtarget) {
14325  EVT VT = N->getValueType(0);
14326  SDValue LHS = N->getOperand(0);
14327  SDValue RHS = N->getOperand(1);
14328
14329  // Try to synthesize horizontal subs from subs of shuffles.
14330  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14331       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14332      isHorizontalBinOp(LHS, RHS, false))
14333    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14334  return SDValue();
14335}
14336
14337/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14338/// X86ISD::FXOR nodes.
14339static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14340  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14341  // F[X]OR(0.0, x) -> x
14342  // F[X]OR(x, 0.0) -> x
14343  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14344    if (C->getValueAPF().isPosZero())
14345      return N->getOperand(1);
14346  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14347    if (C->getValueAPF().isPosZero())
14348      return N->getOperand(0);
14349  return SDValue();
14350}
14351
14352/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14353static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14354  // FAND(0.0, x) -> 0.0
14355  // FAND(x, 0.0) -> 0.0
14356  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14357    if (C->getValueAPF().isPosZero())
14358      return N->getOperand(0);
14359  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14360    if (C->getValueAPF().isPosZero())
14361      return N->getOperand(1);
14362  return SDValue();
14363}
14364
14365static SDValue PerformBTCombine(SDNode *N,
14366                                SelectionDAG &DAG,
14367                                TargetLowering::DAGCombinerInfo &DCI) {
14368  // BT ignores high bits in the bit index operand.
14369  SDValue Op1 = N->getOperand(1);
14370  if (Op1.hasOneUse()) {
14371    unsigned BitWidth = Op1.getValueSizeInBits();
14372    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14373    APInt KnownZero, KnownOne;
14374    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14375                                          !DCI.isBeforeLegalizeOps());
14376    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14377    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14378        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14379      DCI.CommitTargetLoweringOpt(TLO);
14380  }
14381  return SDValue();
14382}
14383
14384static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14385  SDValue Op = N->getOperand(0);
14386  if (Op.getOpcode() == ISD::BITCAST)
14387    Op = Op.getOperand(0);
14388  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14389  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14390      VT.getVectorElementType().getSizeInBits() ==
14391      OpVT.getVectorElementType().getSizeInBits()) {
14392    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14393  }
14394  return SDValue();
14395}
14396
14397static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14398  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14399  //           (and (i32 x86isd::setcc_carry), 1)
14400  // This eliminates the zext. This transformation is necessary because
14401  // ISD::SETCC is always legalized to i8.
14402  DebugLoc dl = N->getDebugLoc();
14403  SDValue N0 = N->getOperand(0);
14404  EVT VT = N->getValueType(0);
14405  if (N0.getOpcode() == ISD::AND &&
14406      N0.hasOneUse() &&
14407      N0.getOperand(0).hasOneUse()) {
14408    SDValue N00 = N0.getOperand(0);
14409    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14410      return SDValue();
14411    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14412    if (!C || C->getZExtValue() != 1)
14413      return SDValue();
14414    return DAG.getNode(ISD::AND, dl, VT,
14415                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14416                                   N00.getOperand(0), N00.getOperand(1)),
14417                       DAG.getConstant(1, VT));
14418  }
14419
14420  return SDValue();
14421}
14422
14423// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14424static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14425  unsigned X86CC = N->getConstantOperandVal(0);
14426  SDValue EFLAG = N->getOperand(1);
14427  DebugLoc DL = N->getDebugLoc();
14428
14429  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14430  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14431  // cases.
14432  if (X86CC == X86::COND_B)
14433    return DAG.getNode(ISD::AND, DL, MVT::i8,
14434                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14435                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14436                       DAG.getConstant(1, MVT::i8));
14437
14438  return SDValue();
14439}
14440
14441static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14442                                        const X86TargetLowering *XTLI) {
14443  SDValue Op0 = N->getOperand(0);
14444  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14445  // a 32-bit target where SSE doesn't support i64->FP operations.
14446  if (Op0.getOpcode() == ISD::LOAD) {
14447    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14448    EVT VT = Ld->getValueType(0);
14449    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14450        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14451        !XTLI->getSubtarget()->is64Bit() &&
14452        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14453      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14454                                          Ld->getChain(), Op0, DAG);
14455      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14456      return FILDChain;
14457    }
14458  }
14459  return SDValue();
14460}
14461
14462// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14463static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14464                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14465  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14466  // the result is either zero or one (depending on the input carry bit).
14467  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14468  if (X86::isZeroNode(N->getOperand(0)) &&
14469      X86::isZeroNode(N->getOperand(1)) &&
14470      // We don't have a good way to replace an EFLAGS use, so only do this when
14471      // dead right now.
14472      SDValue(N, 1).use_empty()) {
14473    DebugLoc DL = N->getDebugLoc();
14474    EVT VT = N->getValueType(0);
14475    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14476    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14477                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14478                                           DAG.getConstant(X86::COND_B,MVT::i8),
14479                                           N->getOperand(2)),
14480                               DAG.getConstant(1, VT));
14481    return DCI.CombineTo(N, Res1, CarryOut);
14482  }
14483
14484  return SDValue();
14485}
14486
14487// fold (add Y, (sete  X, 0)) -> adc  0, Y
14488//      (add Y, (setne X, 0)) -> sbb -1, Y
14489//      (sub (sete  X, 0), Y) -> sbb  0, Y
14490//      (sub (setne X, 0), Y) -> adc -1, Y
14491static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14492  DebugLoc DL = N->getDebugLoc();
14493
14494  // Look through ZExts.
14495  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14496  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14497    return SDValue();
14498
14499  SDValue SetCC = Ext.getOperand(0);
14500  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14501    return SDValue();
14502
14503  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14504  if (CC != X86::COND_E && CC != X86::COND_NE)
14505    return SDValue();
14506
14507  SDValue Cmp = SetCC.getOperand(1);
14508  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14509      !X86::isZeroNode(Cmp.getOperand(1)) ||
14510      !Cmp.getOperand(0).getValueType().isInteger())
14511    return SDValue();
14512
14513  SDValue CmpOp0 = Cmp.getOperand(0);
14514  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14515                               DAG.getConstant(1, CmpOp0.getValueType()));
14516
14517  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14518  if (CC == X86::COND_NE)
14519    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14520                       DL, OtherVal.getValueType(), OtherVal,
14521                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14522  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14523                     DL, OtherVal.getValueType(), OtherVal,
14524                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14525}
14526
14527/// PerformADDCombine - Do target-specific dag combines on integer adds.
14528static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14529                                 const X86Subtarget *Subtarget) {
14530  EVT VT = N->getValueType(0);
14531  SDValue Op0 = N->getOperand(0);
14532  SDValue Op1 = N->getOperand(1);
14533
14534  // Try to synthesize horizontal adds from adds of shuffles.
14535  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14536       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14537      isHorizontalBinOp(Op0, Op1, true))
14538    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14539
14540  return OptimizeConditionalInDecrement(N, DAG);
14541}
14542
14543static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14544                                 const X86Subtarget *Subtarget) {
14545  SDValue Op0 = N->getOperand(0);
14546  SDValue Op1 = N->getOperand(1);
14547
14548  // X86 can't encode an immediate LHS of a sub. See if we can push the
14549  // negation into a preceding instruction.
14550  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14551    // If the RHS of the sub is a XOR with one use and a constant, invert the
14552    // immediate. Then add one to the LHS of the sub so we can turn
14553    // X-Y -> X+~Y+1, saving one register.
14554    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14555        isa<ConstantSDNode>(Op1.getOperand(1))) {
14556      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14557      EVT VT = Op0.getValueType();
14558      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14559                                   Op1.getOperand(0),
14560                                   DAG.getConstant(~XorC, VT));
14561      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14562                         DAG.getConstant(C->getAPIntValue()+1, VT));
14563    }
14564  }
14565
14566  // Try to synthesize horizontal adds from adds of shuffles.
14567  EVT VT = N->getValueType(0);
14568  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14569       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14570      isHorizontalBinOp(Op0, Op1, true))
14571    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14572
14573  return OptimizeConditionalInDecrement(N, DAG);
14574}
14575
14576SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14577                                             DAGCombinerInfo &DCI) const {
14578  SelectionDAG &DAG = DCI.DAG;
14579  switch (N->getOpcode()) {
14580  default: break;
14581  case ISD::EXTRACT_VECTOR_ELT:
14582    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14583  case ISD::VSELECT:
14584  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14585  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14586  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14587  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14588  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14589  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14590  case ISD::SHL:
14591  case ISD::SRA:
14592  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14593  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14594  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14595  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14596  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14597  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14598  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14599  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14600  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14601  case X86ISD::FXOR:
14602  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14603  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14604  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14605  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14606  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14607  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14608  case X86ISD::SHUFP:       // Handle all target specific shuffles
14609  case X86ISD::PALIGN:
14610  case X86ISD::UNPCKH:
14611  case X86ISD::UNPCKL:
14612  case X86ISD::MOVHLPS:
14613  case X86ISD::MOVLHPS:
14614  case X86ISD::PSHUFD:
14615  case X86ISD::PSHUFHW:
14616  case X86ISD::PSHUFLW:
14617  case X86ISD::MOVSS:
14618  case X86ISD::MOVSD:
14619  case X86ISD::VPERMILP:
14620  case X86ISD::VPERM2X128:
14621  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14622  }
14623
14624  return SDValue();
14625}
14626
14627/// isTypeDesirableForOp - Return true if the target has native support for
14628/// the specified value type and it is 'desirable' to use the type for the
14629/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14630/// instruction encodings are longer and some i16 instructions are slow.
14631bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14632  if (!isTypeLegal(VT))
14633    return false;
14634  if (VT != MVT::i16)
14635    return true;
14636
14637  switch (Opc) {
14638  default:
14639    return true;
14640  case ISD::LOAD:
14641  case ISD::SIGN_EXTEND:
14642  case ISD::ZERO_EXTEND:
14643  case ISD::ANY_EXTEND:
14644  case ISD::SHL:
14645  case ISD::SRL:
14646  case ISD::SUB:
14647  case ISD::ADD:
14648  case ISD::MUL:
14649  case ISD::AND:
14650  case ISD::OR:
14651  case ISD::XOR:
14652    return false;
14653  }
14654}
14655
14656/// IsDesirableToPromoteOp - This method query the target whether it is
14657/// beneficial for dag combiner to promote the specified node. If true, it
14658/// should return the desired promotion type by reference.
14659bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14660  EVT VT = Op.getValueType();
14661  if (VT != MVT::i16)
14662    return false;
14663
14664  bool Promote = false;
14665  bool Commute = false;
14666  switch (Op.getOpcode()) {
14667  default: break;
14668  case ISD::LOAD: {
14669    LoadSDNode *LD = cast<LoadSDNode>(Op);
14670    // If the non-extending load has a single use and it's not live out, then it
14671    // might be folded.
14672    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14673                                                     Op.hasOneUse()*/) {
14674      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14675             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14676        // The only case where we'd want to promote LOAD (rather then it being
14677        // promoted as an operand is when it's only use is liveout.
14678        if (UI->getOpcode() != ISD::CopyToReg)
14679          return false;
14680      }
14681    }
14682    Promote = true;
14683    break;
14684  }
14685  case ISD::SIGN_EXTEND:
14686  case ISD::ZERO_EXTEND:
14687  case ISD::ANY_EXTEND:
14688    Promote = true;
14689    break;
14690  case ISD::SHL:
14691  case ISD::SRL: {
14692    SDValue N0 = Op.getOperand(0);
14693    // Look out for (store (shl (load), x)).
14694    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14695      return false;
14696    Promote = true;
14697    break;
14698  }
14699  case ISD::ADD:
14700  case ISD::MUL:
14701  case ISD::AND:
14702  case ISD::OR:
14703  case ISD::XOR:
14704    Commute = true;
14705    // fallthrough
14706  case ISD::SUB: {
14707    SDValue N0 = Op.getOperand(0);
14708    SDValue N1 = Op.getOperand(1);
14709    if (!Commute && MayFoldLoad(N1))
14710      return false;
14711    // Avoid disabling potential load folding opportunities.
14712    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14713      return false;
14714    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14715      return false;
14716    Promote = true;
14717  }
14718  }
14719
14720  PVT = MVT::i32;
14721  return Promote;
14722}
14723
14724//===----------------------------------------------------------------------===//
14725//                           X86 Inline Assembly Support
14726//===----------------------------------------------------------------------===//
14727
14728namespace {
14729  // Helper to match a string separated by whitespace.
14730  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14731    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14732
14733    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14734      StringRef piece(*args[i]);
14735      if (!s.startswith(piece)) // Check if the piece matches.
14736        return false;
14737
14738      s = s.substr(piece.size());
14739      StringRef::size_type pos = s.find_first_not_of(" \t");
14740      if (pos == 0) // We matched a prefix.
14741        return false;
14742
14743      s = s.substr(pos);
14744    }
14745
14746    return s.empty();
14747  }
14748  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14749}
14750
14751bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14752  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14753
14754  std::string AsmStr = IA->getAsmString();
14755
14756  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14757  if (!Ty || Ty->getBitWidth() % 16 != 0)
14758    return false;
14759
14760  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14761  SmallVector<StringRef, 4> AsmPieces;
14762  SplitString(AsmStr, AsmPieces, ";\n");
14763
14764  switch (AsmPieces.size()) {
14765  default: return false;
14766  case 1:
14767    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14768    // we will turn this bswap into something that will be lowered to logical
14769    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14770    // lower so don't worry about this.
14771    // bswap $0
14772    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14773        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14774        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14775        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14776        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14777        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14778      // No need to check constraints, nothing other than the equivalent of
14779      // "=r,0" would be valid here.
14780      return IntrinsicLowering::LowerToByteSwap(CI);
14781    }
14782
14783    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14784    if (CI->getType()->isIntegerTy(16) &&
14785        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14786        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14787         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14788      AsmPieces.clear();
14789      const std::string &ConstraintsStr = IA->getConstraintString();
14790      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14791      std::sort(AsmPieces.begin(), AsmPieces.end());
14792      if (AsmPieces.size() == 4 &&
14793          AsmPieces[0] == "~{cc}" &&
14794          AsmPieces[1] == "~{dirflag}" &&
14795          AsmPieces[2] == "~{flags}" &&
14796          AsmPieces[3] == "~{fpsr}")
14797      return IntrinsicLowering::LowerToByteSwap(CI);
14798    }
14799    break;
14800  case 3:
14801    if (CI->getType()->isIntegerTy(32) &&
14802        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14803        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14804        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14805        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14806      AsmPieces.clear();
14807      const std::string &ConstraintsStr = IA->getConstraintString();
14808      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14809      std::sort(AsmPieces.begin(), AsmPieces.end());
14810      if (AsmPieces.size() == 4 &&
14811          AsmPieces[0] == "~{cc}" &&
14812          AsmPieces[1] == "~{dirflag}" &&
14813          AsmPieces[2] == "~{flags}" &&
14814          AsmPieces[3] == "~{fpsr}")
14815        return IntrinsicLowering::LowerToByteSwap(CI);
14816    }
14817
14818    if (CI->getType()->isIntegerTy(64)) {
14819      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14820      if (Constraints.size() >= 2 &&
14821          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14822          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14823        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14824        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14825            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14826            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14827          return IntrinsicLowering::LowerToByteSwap(CI);
14828      }
14829    }
14830    break;
14831  }
14832  return false;
14833}
14834
14835
14836
14837/// getConstraintType - Given a constraint letter, return the type of
14838/// constraint it is for this target.
14839X86TargetLowering::ConstraintType
14840X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14841  if (Constraint.size() == 1) {
14842    switch (Constraint[0]) {
14843    case 'R':
14844    case 'q':
14845    case 'Q':
14846    case 'f':
14847    case 't':
14848    case 'u':
14849    case 'y':
14850    case 'x':
14851    case 'Y':
14852    case 'l':
14853      return C_RegisterClass;
14854    case 'a':
14855    case 'b':
14856    case 'c':
14857    case 'd':
14858    case 'S':
14859    case 'D':
14860    case 'A':
14861      return C_Register;
14862    case 'I':
14863    case 'J':
14864    case 'K':
14865    case 'L':
14866    case 'M':
14867    case 'N':
14868    case 'G':
14869    case 'C':
14870    case 'e':
14871    case 'Z':
14872      return C_Other;
14873    default:
14874      break;
14875    }
14876  }
14877  return TargetLowering::getConstraintType(Constraint);
14878}
14879
14880/// Examine constraint type and operand type and determine a weight value.
14881/// This object must already have been set up with the operand type
14882/// and the current alternative constraint selected.
14883TargetLowering::ConstraintWeight
14884  X86TargetLowering::getSingleConstraintMatchWeight(
14885    AsmOperandInfo &info, const char *constraint) const {
14886  ConstraintWeight weight = CW_Invalid;
14887  Value *CallOperandVal = info.CallOperandVal;
14888    // If we don't have a value, we can't do a match,
14889    // but allow it at the lowest weight.
14890  if (CallOperandVal == NULL)
14891    return CW_Default;
14892  Type *type = CallOperandVal->getType();
14893  // Look at the constraint type.
14894  switch (*constraint) {
14895  default:
14896    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14897  case 'R':
14898  case 'q':
14899  case 'Q':
14900  case 'a':
14901  case 'b':
14902  case 'c':
14903  case 'd':
14904  case 'S':
14905  case 'D':
14906  case 'A':
14907    if (CallOperandVal->getType()->isIntegerTy())
14908      weight = CW_SpecificReg;
14909    break;
14910  case 'f':
14911  case 't':
14912  case 'u':
14913      if (type->isFloatingPointTy())
14914        weight = CW_SpecificReg;
14915      break;
14916  case 'y':
14917      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14918        weight = CW_SpecificReg;
14919      break;
14920  case 'x':
14921  case 'Y':
14922    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14923        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14924      weight = CW_Register;
14925    break;
14926  case 'I':
14927    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14928      if (C->getZExtValue() <= 31)
14929        weight = CW_Constant;
14930    }
14931    break;
14932  case 'J':
14933    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14934      if (C->getZExtValue() <= 63)
14935        weight = CW_Constant;
14936    }
14937    break;
14938  case 'K':
14939    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14940      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14941        weight = CW_Constant;
14942    }
14943    break;
14944  case 'L':
14945    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14946      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14947        weight = CW_Constant;
14948    }
14949    break;
14950  case 'M':
14951    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14952      if (C->getZExtValue() <= 3)
14953        weight = CW_Constant;
14954    }
14955    break;
14956  case 'N':
14957    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14958      if (C->getZExtValue() <= 0xff)
14959        weight = CW_Constant;
14960    }
14961    break;
14962  case 'G':
14963  case 'C':
14964    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14965      weight = CW_Constant;
14966    }
14967    break;
14968  case 'e':
14969    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14970      if ((C->getSExtValue() >= -0x80000000LL) &&
14971          (C->getSExtValue() <= 0x7fffffffLL))
14972        weight = CW_Constant;
14973    }
14974    break;
14975  case 'Z':
14976    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14977      if (C->getZExtValue() <= 0xffffffff)
14978        weight = CW_Constant;
14979    }
14980    break;
14981  }
14982  return weight;
14983}
14984
14985/// LowerXConstraint - try to replace an X constraint, which matches anything,
14986/// with another that has more specific requirements based on the type of the
14987/// corresponding operand.
14988const char *X86TargetLowering::
14989LowerXConstraint(EVT ConstraintVT) const {
14990  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14991  // 'f' like normal targets.
14992  if (ConstraintVT.isFloatingPoint()) {
14993    if (Subtarget->hasSSE2())
14994      return "Y";
14995    if (Subtarget->hasSSE1())
14996      return "x";
14997  }
14998
14999  return TargetLowering::LowerXConstraint(ConstraintVT);
15000}
15001
15002/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15003/// vector.  If it is invalid, don't add anything to Ops.
15004void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15005                                                     std::string &Constraint,
15006                                                     std::vector<SDValue>&Ops,
15007                                                     SelectionDAG &DAG) const {
15008  SDValue Result(0, 0);
15009
15010  // Only support length 1 constraints for now.
15011  if (Constraint.length() > 1) return;
15012
15013  char ConstraintLetter = Constraint[0];
15014  switch (ConstraintLetter) {
15015  default: break;
15016  case 'I':
15017    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15018      if (C->getZExtValue() <= 31) {
15019        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15020        break;
15021      }
15022    }
15023    return;
15024  case 'J':
15025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15026      if (C->getZExtValue() <= 63) {
15027        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15028        break;
15029      }
15030    }
15031    return;
15032  case 'K':
15033    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15034      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15035        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15036        break;
15037      }
15038    }
15039    return;
15040  case 'N':
15041    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15042      if (C->getZExtValue() <= 255) {
15043        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15044        break;
15045      }
15046    }
15047    return;
15048  case 'e': {
15049    // 32-bit signed value
15050    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15051      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15052                                           C->getSExtValue())) {
15053        // Widen to 64 bits here to get it sign extended.
15054        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15055        break;
15056      }
15057    // FIXME gcc accepts some relocatable values here too, but only in certain
15058    // memory models; it's complicated.
15059    }
15060    return;
15061  }
15062  case 'Z': {
15063    // 32-bit unsigned value
15064    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15065      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15066                                           C->getZExtValue())) {
15067        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15068        break;
15069      }
15070    }
15071    // FIXME gcc accepts some relocatable values here too, but only in certain
15072    // memory models; it's complicated.
15073    return;
15074  }
15075  case 'i': {
15076    // Literal immediates are always ok.
15077    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15078      // Widen to 64 bits here to get it sign extended.
15079      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15080      break;
15081    }
15082
15083    // In any sort of PIC mode addresses need to be computed at runtime by
15084    // adding in a register or some sort of table lookup.  These can't
15085    // be used as immediates.
15086    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15087      return;
15088
15089    // If we are in non-pic codegen mode, we allow the address of a global (with
15090    // an optional displacement) to be used with 'i'.
15091    GlobalAddressSDNode *GA = 0;
15092    int64_t Offset = 0;
15093
15094    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15095    while (1) {
15096      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15097        Offset += GA->getOffset();
15098        break;
15099      } else if (Op.getOpcode() == ISD::ADD) {
15100        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15101          Offset += C->getZExtValue();
15102          Op = Op.getOperand(0);
15103          continue;
15104        }
15105      } else if (Op.getOpcode() == ISD::SUB) {
15106        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15107          Offset += -C->getZExtValue();
15108          Op = Op.getOperand(0);
15109          continue;
15110        }
15111      }
15112
15113      // Otherwise, this isn't something we can handle, reject it.
15114      return;
15115    }
15116
15117    const GlobalValue *GV = GA->getGlobal();
15118    // If we require an extra load to get this address, as in PIC mode, we
15119    // can't accept it.
15120    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15121                                                        getTargetMachine())))
15122      return;
15123
15124    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15125                                        GA->getValueType(0), Offset);
15126    break;
15127  }
15128  }
15129
15130  if (Result.getNode()) {
15131    Ops.push_back(Result);
15132    return;
15133  }
15134  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15135}
15136
15137std::pair<unsigned, const TargetRegisterClass*>
15138X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15139                                                EVT VT) const {
15140  // First, see if this is a constraint that directly corresponds to an LLVM
15141  // register class.
15142  if (Constraint.size() == 1) {
15143    // GCC Constraint Letters
15144    switch (Constraint[0]) {
15145    default: break;
15146      // TODO: Slight differences here in allocation order and leaving
15147      // RIP in the class. Do they matter any more here than they do
15148      // in the normal allocation?
15149    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15150      if (Subtarget->is64Bit()) {
15151	if (VT == MVT::i32 || VT == MVT::f32)
15152	  return std::make_pair(0U, X86::GR32RegisterClass);
15153	else if (VT == MVT::i16)
15154	  return std::make_pair(0U, X86::GR16RegisterClass);
15155	else if (VT == MVT::i8 || VT == MVT::i1)
15156	  return std::make_pair(0U, X86::GR8RegisterClass);
15157	else if (VT == MVT::i64 || VT == MVT::f64)
15158	  return std::make_pair(0U, X86::GR64RegisterClass);
15159	break;
15160      }
15161      // 32-bit fallthrough
15162    case 'Q':   // Q_REGS
15163      if (VT == MVT::i32 || VT == MVT::f32)
15164	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15165      else if (VT == MVT::i16)
15166	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15167      else if (VT == MVT::i8 || VT == MVT::i1)
15168	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15169      else if (VT == MVT::i64)
15170	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15171      break;
15172    case 'r':   // GENERAL_REGS
15173    case 'l':   // INDEX_REGS
15174      if (VT == MVT::i8 || VT == MVT::i1)
15175        return std::make_pair(0U, X86::GR8RegisterClass);
15176      if (VT == MVT::i16)
15177        return std::make_pair(0U, X86::GR16RegisterClass);
15178      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15179        return std::make_pair(0U, X86::GR32RegisterClass);
15180      return std::make_pair(0U, X86::GR64RegisterClass);
15181    case 'R':   // LEGACY_REGS
15182      if (VT == MVT::i8 || VT == MVT::i1)
15183        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15184      if (VT == MVT::i16)
15185        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15186      if (VT == MVT::i32 || !Subtarget->is64Bit())
15187        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15188      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15189    case 'f':  // FP Stack registers.
15190      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15191      // value to the correct fpstack register class.
15192      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15193        return std::make_pair(0U, X86::RFP32RegisterClass);
15194      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15195        return std::make_pair(0U, X86::RFP64RegisterClass);
15196      return std::make_pair(0U, X86::RFP80RegisterClass);
15197    case 'y':   // MMX_REGS if MMX allowed.
15198      if (!Subtarget->hasMMX()) break;
15199      return std::make_pair(0U, X86::VR64RegisterClass);
15200    case 'Y':   // SSE_REGS if SSE2 allowed
15201      if (!Subtarget->hasSSE2()) break;
15202      // FALL THROUGH.
15203    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15204      if (!Subtarget->hasSSE1()) break;
15205
15206      switch (VT.getSimpleVT().SimpleTy) {
15207      default: break;
15208      // Scalar SSE types.
15209      case MVT::f32:
15210      case MVT::i32:
15211        return std::make_pair(0U, X86::FR32RegisterClass);
15212      case MVT::f64:
15213      case MVT::i64:
15214        return std::make_pair(0U, X86::FR64RegisterClass);
15215      // Vector types.
15216      case MVT::v16i8:
15217      case MVT::v8i16:
15218      case MVT::v4i32:
15219      case MVT::v2i64:
15220      case MVT::v4f32:
15221      case MVT::v2f64:
15222        return std::make_pair(0U, X86::VR128RegisterClass);
15223      // AVX types.
15224      case MVT::v32i8:
15225      case MVT::v16i16:
15226      case MVT::v8i32:
15227      case MVT::v4i64:
15228      case MVT::v8f32:
15229      case MVT::v4f64:
15230        return std::make_pair(0U, X86::VR256RegisterClass);
15231
15232      }
15233      break;
15234    }
15235  }
15236
15237  // Use the default implementation in TargetLowering to convert the register
15238  // constraint into a member of a register class.
15239  std::pair<unsigned, const TargetRegisterClass*> Res;
15240  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15241
15242  // Not found as a standard register?
15243  if (Res.second == 0) {
15244    // Map st(0) -> st(7) -> ST0
15245    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15246        tolower(Constraint[1]) == 's' &&
15247        tolower(Constraint[2]) == 't' &&
15248        Constraint[3] == '(' &&
15249        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15250        Constraint[5] == ')' &&
15251        Constraint[6] == '}') {
15252
15253      Res.first = X86::ST0+Constraint[4]-'0';
15254      Res.second = X86::RFP80RegisterClass;
15255      return Res;
15256    }
15257
15258    // GCC allows "st(0)" to be called just plain "st".
15259    if (StringRef("{st}").equals_lower(Constraint)) {
15260      Res.first = X86::ST0;
15261      Res.second = X86::RFP80RegisterClass;
15262      return Res;
15263    }
15264
15265    // flags -> EFLAGS
15266    if (StringRef("{flags}").equals_lower(Constraint)) {
15267      Res.first = X86::EFLAGS;
15268      Res.second = X86::CCRRegisterClass;
15269      return Res;
15270    }
15271
15272    // 'A' means EAX + EDX.
15273    if (Constraint == "A") {
15274      Res.first = X86::EAX;
15275      Res.second = X86::GR32_ADRegisterClass;
15276      return Res;
15277    }
15278    return Res;
15279  }
15280
15281  // Otherwise, check to see if this is a register class of the wrong value
15282  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15283  // turn into {ax},{dx}.
15284  if (Res.second->hasType(VT))
15285    return Res;   // Correct type already, nothing to do.
15286
15287  // All of the single-register GCC register classes map their values onto
15288  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15289  // really want an 8-bit or 32-bit register, map to the appropriate register
15290  // class and return the appropriate register.
15291  if (Res.second == X86::GR16RegisterClass) {
15292    if (VT == MVT::i8) {
15293      unsigned DestReg = 0;
15294      switch (Res.first) {
15295      default: break;
15296      case X86::AX: DestReg = X86::AL; break;
15297      case X86::DX: DestReg = X86::DL; break;
15298      case X86::CX: DestReg = X86::CL; break;
15299      case X86::BX: DestReg = X86::BL; break;
15300      }
15301      if (DestReg) {
15302        Res.first = DestReg;
15303        Res.second = X86::GR8RegisterClass;
15304      }
15305    } else if (VT == MVT::i32) {
15306      unsigned DestReg = 0;
15307      switch (Res.first) {
15308      default: break;
15309      case X86::AX: DestReg = X86::EAX; break;
15310      case X86::DX: DestReg = X86::EDX; break;
15311      case X86::CX: DestReg = X86::ECX; break;
15312      case X86::BX: DestReg = X86::EBX; break;
15313      case X86::SI: DestReg = X86::ESI; break;
15314      case X86::DI: DestReg = X86::EDI; break;
15315      case X86::BP: DestReg = X86::EBP; break;
15316      case X86::SP: DestReg = X86::ESP; break;
15317      }
15318      if (DestReg) {
15319        Res.first = DestReg;
15320        Res.second = X86::GR32RegisterClass;
15321      }
15322    } else if (VT == MVT::i64) {
15323      unsigned DestReg = 0;
15324      switch (Res.first) {
15325      default: break;
15326      case X86::AX: DestReg = X86::RAX; break;
15327      case X86::DX: DestReg = X86::RDX; break;
15328      case X86::CX: DestReg = X86::RCX; break;
15329      case X86::BX: DestReg = X86::RBX; break;
15330      case X86::SI: DestReg = X86::RSI; break;
15331      case X86::DI: DestReg = X86::RDI; break;
15332      case X86::BP: DestReg = X86::RBP; break;
15333      case X86::SP: DestReg = X86::RSP; break;
15334      }
15335      if (DestReg) {
15336        Res.first = DestReg;
15337        Res.second = X86::GR64RegisterClass;
15338      }
15339    }
15340  } else if (Res.second == X86::FR32RegisterClass ||
15341             Res.second == X86::FR64RegisterClass ||
15342             Res.second == X86::VR128RegisterClass) {
15343    // Handle references to XMM physical registers that got mapped into the
15344    // wrong class.  This can happen with constraints like {xmm0} where the
15345    // target independent register mapper will just pick the first match it can
15346    // find, ignoring the required type.
15347    if (VT == MVT::f32)
15348      Res.second = X86::FR32RegisterClass;
15349    else if (VT == MVT::f64)
15350      Res.second = X86::FR64RegisterClass;
15351    else if (X86::VR128RegisterClass->hasType(VT))
15352      Res.second = X86::VR128RegisterClass;
15353  }
15354
15355  return Res;
15356}
15357