X86ISelLowering.cpp revision 67c9d42f93a13286a6977686f9d1ed172d2ced0a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MCTargetExpr.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54
55static cl::opt<bool>
56DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
57
58// Disable16Bit - 16-bit operations typically have a larger encoding than
59// corresponding 32-bit instructions, and 16-bit code is slow on some
60// processors. This is an experimental flag to disable 16-bit operations
61// (which forces them to be Legalized to 32-bit operations).
62static cl::opt<bool>
63Disable16Bit("disable-16bit", cl::Hidden,
64             cl::desc("Disable use of 16-bit instructions"));
65
66// Forward declarations.
67static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
68                       SDValue V2);
69
70static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
71  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
72  default: llvm_unreachable("unknown subtarget type");
73  case X86Subtarget::isDarwin:
74    if (TM.getSubtarget<X86Subtarget>().is64Bit())
75      return new X8664_MachoTargetObjectFile();
76    return new X8632_MachoTargetObjectFile();
77  case X86Subtarget::isELF:
78    return new TargetLoweringObjectFileELF();
79  case X86Subtarget::isMingw:
80  case X86Subtarget::isCygwin:
81  case X86Subtarget::isWindows:
82    return new TargetLoweringObjectFileCOFF();
83  }
84
85}
86
87X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
88  : TargetLowering(TM, createTLOF(TM)) {
89  Subtarget = &TM.getSubtarget<X86Subtarget>();
90  X86ScalarSSEf64 = Subtarget->hasSSE2();
91  X86ScalarSSEf32 = Subtarget->hasSSE1();
92  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
93
94  RegInfo = TM.getRegisterInfo();
95  TD = getTargetData();
96
97  // Set up the TargetLowering object.
98
99  // X86 is weird, it always uses i8 for shift amounts and setcc results.
100  setShiftAmountType(MVT::i8);
101  setBooleanContents(ZeroOrOneBooleanContent);
102  setSchedulingPreference(SchedulingForRegPressure);
103  setStackPointerRegisterToSaveRestore(X86StackPtr);
104
105  if (Subtarget->isTargetDarwin()) {
106    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
107    setUseUnderscoreSetJmp(false);
108    setUseUnderscoreLongJmp(false);
109  } else if (Subtarget->isTargetMingw()) {
110    // MS runtime is weird: it exports _setjmp, but longjmp!
111    setUseUnderscoreSetJmp(true);
112    setUseUnderscoreLongJmp(false);
113  } else {
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(true);
116  }
117
118  // Set up the register classes.
119  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
120  if (!Disable16Bit)
121    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
122  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
123  if (Subtarget->is64Bit())
124    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
125
126  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
127
128  // We don't accept any truncstore of integer registers.
129  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
130  if (!Disable16Bit)
131    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
132  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
136  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
137
138  // SETOEQ and SETUNE require checking two conditions.
139  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
140  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
141  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
142  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
145
146  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
147  // operation.
148  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
149  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
150  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
154    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
155  } else if (!UseSoftFloat) {
156    if (X86ScalarSSEf64) {
157      // We have an impenetrably clever algorithm for ui64->double only.
158      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
159    }
160    // We have an algorithm for SSE2, and we turn this into a 64-bit
161    // FILD for other targets.
162    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
163  }
164
165  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
166  // this operation.
167  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
168  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
169
170  if (!UseSoftFloat) {
171    // SSE has no i16 to fp conversion, only i32
172    if (X86ScalarSSEf32) {
173      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174      // f32 and f64 cases are Legal, f80 case is not
175      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
176    } else {
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    }
180  } else {
181    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
182    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
183  }
184
185  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
186  // are Legal, f80 is custom lowered.
187  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
188  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
189
190  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
191  // this operation.
192  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
193  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
194
195  if (X86ScalarSSEf32) {
196    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
197    // f32 and f64 cases are Legal, f80 case is not
198    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
199  } else {
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  }
203
204  // Handle FP_TO_UINT by promoting the destination to a larger signed
205  // conversion.
206  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
207  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
209
210  if (Subtarget->is64Bit()) {
211    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
212    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
213  } else if (!UseSoftFloat) {
214    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
215      // Expand FP_TO_UINT into a select.
216      // FIXME: We would like to use a Custom expander here eventually to do
217      // the optimal thing for SSE vs. the default expansion in the legalizer.
218      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
219    else
220      // With SSE3 we can use fisttpll to convert to a signed i64; without
221      // SSE, we're stuck with a fistpll.
222      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
223  }
224
225  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
226  if (!X86ScalarSSEf64) {
227    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
228    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
229  }
230
231  // Scalar integer divide and remainder are lowered to use operations that
232  // produce two results, to match the available instructions. This exposes
233  // the two-result form to trivial CSE, which is able to combine x/y and x%y
234  // into a single instruction.
235  //
236  // Scalar integer multiply-high is also lowered to use two-result
237  // operations, to match the available instructions. However, plain multiply
238  // (low) operations are left as Legal, as there are single-result
239  // instructions for this in x86. Using the two-result multiply instructions
240  // when both high and low results are needed must be arranged by dagcombine.
241  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
242  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
243  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
244  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
245  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
246  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
247  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
248  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
249  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
250  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
251  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
252  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
253  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
254  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
255  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
256  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
257  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
258  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
259  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
260  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
261  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
262  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
263  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
264  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
265
266  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
267  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
268  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
269  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
270  if (Subtarget->is64Bit())
271    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
272  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
275  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
276  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
279  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
280
281  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
285  if (Disable16Bit) {
286    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
287    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
288  } else {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
291  }
292  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
293  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
294  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
295  if (Subtarget->is64Bit()) {
296    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
297    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
298    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
299  }
300
301  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
302  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
303
304  // These should be promoted to a larger select which is supported.
305  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
306  // X86 wants to expand cmov itself.
307  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
308  if (Disable16Bit)
309    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
310  else
311    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
317  if (Disable16Bit)
318    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
319  else
320    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
321  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
322  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
323  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
325  if (Subtarget->is64Bit()) {
326    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
327    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
328  }
329  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
330
331  // Darwin ABI issue.
332  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
333  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
334  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
335  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
336  if (Subtarget->is64Bit())
337    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
338  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
339  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
340  if (Subtarget->is64Bit()) {
341    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
342    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
343    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
344    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
345    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
346  }
347  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
348  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
349  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
350  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
351  if (Subtarget->is64Bit()) {
352    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
353    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
354    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
355  }
356
357  if (Subtarget->hasSSE1())
358    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
359
360  if (!Subtarget->hasSSE2())
361    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
362
363  // Expand certain atomics
364  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
365  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
366  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
368
369  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
370  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
371  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
373
374  if (!Subtarget->is64Bit()) {
375    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
376    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
382  }
383
384  // FIXME - use subtarget debug flags
385  if (!Subtarget->isTargetDarwin() &&
386      !Subtarget->isTargetELF() &&
387      !Subtarget->isTargetCygMing()) {
388    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
389  }
390
391  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
392  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
393  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
394  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
395  if (Subtarget->is64Bit()) {
396    setExceptionPointerRegister(X86::RAX);
397    setExceptionSelectorRegister(X86::RDX);
398  } else {
399    setExceptionPointerRegister(X86::EAX);
400    setExceptionSelectorRegister(X86::EDX);
401  }
402  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
403  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
404
405  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
406
407  setOperationAction(ISD::TRAP, MVT::Other, Legal);
408
409  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
410  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
411  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
412  if (Subtarget->is64Bit()) {
413    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
414    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
415  } else {
416    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
418  }
419
420  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
421  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
422  if (Subtarget->is64Bit())
423    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
424  if (Subtarget->isTargetCygMing())
425    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
426  else
427    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
428
429  if (!UseSoftFloat && X86ScalarSSEf64) {
430    // f32 and f64 use SSE.
431    // Set up the FP register classes.
432    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
433    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
434
435    // Use ANDPD to simulate FABS.
436    setOperationAction(ISD::FABS , MVT::f64, Custom);
437    setOperationAction(ISD::FABS , MVT::f32, Custom);
438
439    // Use XORP to simulate FNEG.
440    setOperationAction(ISD::FNEG , MVT::f64, Custom);
441    setOperationAction(ISD::FNEG , MVT::f32, Custom);
442
443    // Use ANDPD and ORPD to simulate FCOPYSIGN.
444    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
445    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
446
447    // We don't support sin/cos/fmod
448    setOperationAction(ISD::FSIN , MVT::f64, Expand);
449    setOperationAction(ISD::FCOS , MVT::f64, Expand);
450    setOperationAction(ISD::FSIN , MVT::f32, Expand);
451    setOperationAction(ISD::FCOS , MVT::f32, Expand);
452
453    // Expand FP immediates into loads from the stack, except for the special
454    // cases we handle.
455    addLegalFPImmediate(APFloat(+0.0)); // xorpd
456    addLegalFPImmediate(APFloat(+0.0f)); // xorps
457  } else if (!UseSoftFloat && X86ScalarSSEf32) {
458    // Use SSE for f32, x87 for f64.
459    // Set up the FP register classes.
460    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
461    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
462
463    // Use ANDPS to simulate FABS.
464    setOperationAction(ISD::FABS , MVT::f32, Custom);
465
466    // Use XORP to simulate FNEG.
467    setOperationAction(ISD::FNEG , MVT::f32, Custom);
468
469    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
470
471    // Use ANDPS and ORPS to simulate FCOPYSIGN.
472    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
473    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
474
475    // We don't support sin/cos/fmod
476    setOperationAction(ISD::FSIN , MVT::f32, Expand);
477    setOperationAction(ISD::FCOS , MVT::f32, Expand);
478
479    // Special cases we handle for FP constants.
480    addLegalFPImmediate(APFloat(+0.0f)); // xorps
481    addLegalFPImmediate(APFloat(+0.0)); // FLD0
482    addLegalFPImmediate(APFloat(+1.0)); // FLD1
483    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
484    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
485
486    if (!UnsafeFPMath) {
487      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
488      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
489    }
490  } else if (!UseSoftFloat) {
491    // f32 and f64 in x87.
492    // Set up the FP register classes.
493    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
494    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
495
496    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
497    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
498    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
500
501    if (!UnsafeFPMath) {
502      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
503      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
504    }
505    addLegalFPImmediate(APFloat(+0.0)); // FLD0
506    addLegalFPImmediate(APFloat(+1.0)); // FLD1
507    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
508    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
509    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
510    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
511    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
512    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
513  }
514
515  // Long double always uses X87.
516  if (!UseSoftFloat) {
517    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
518    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
519    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
520    {
521      bool ignored;
522      APFloat TmpFlt(+0.0);
523      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
524                     &ignored);
525      addLegalFPImmediate(TmpFlt);  // FLD0
526      TmpFlt.changeSign();
527      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
528      APFloat TmpFlt2(+1.0);
529      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
530                      &ignored);
531      addLegalFPImmediate(TmpFlt2);  // FLD1
532      TmpFlt2.changeSign();
533      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
534    }
535
536    if (!UnsafeFPMath) {
537      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
538      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
539    }
540  }
541
542  // Always use a library call for pow.
543  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
544  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
545  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
546
547  setOperationAction(ISD::FLOG, MVT::f80, Expand);
548  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
549  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
550  setOperationAction(ISD::FEXP, MVT::f80, Expand);
551  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
552
553  // First set operation action for all vector types to either promote
554  // (for widening) or expand (for scalarization). Then we will selectively
555  // turn on ones that can be effectively codegen'd.
556  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
557       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
558    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
573    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
574    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
607    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
611    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
612         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
613      setTruncStoreAction((MVT::SimpleValueType)VT,
614                          (MVT::SimpleValueType)InnerVT, Expand);
615    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
616    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
617    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
618  }
619
620  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
621  // with -msoft-float, disable use of MMX as well.
622  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
623    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
624    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
625    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
626    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
627    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
628
629    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
630    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
631    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
632    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
633
634    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
635    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
636    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
637    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
638
639    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
640    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
641
642    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
643    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
644    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
645    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
646    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
647    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
648    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
649
650    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
651    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
652    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
653    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
654    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
655    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
656    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
657
658    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
659    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
660    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
661    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
662    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
663    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
664    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
665
666    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
667    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
668    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
669    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
670    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
671    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
672    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
673    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
674    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
675
676    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
677    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
678    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
681
682    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
683    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
684    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
686
687    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
688    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
689    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
691
692    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
693
694    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
695    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
696    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
697    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
698    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
699    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
701  }
702
703  if (!UseSoftFloat && Subtarget->hasSSE1()) {
704    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
705
706    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
707    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
708    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
711    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
712    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
713    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
714    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
715    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
716    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
717    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
718  }
719
720  if (!UseSoftFloat && Subtarget->hasSSE2()) {
721    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
722
723    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
724    // registers cannot be used even for integer operations.
725    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
726    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
727    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
729
730    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
731    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
732    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
733    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
734    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
735    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
736    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
737    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
738    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
739    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
740    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
741    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
742    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
745    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
746
747    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
748    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
749    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
751
752    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
753    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
754    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
757
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
759    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
763
764    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
765    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
766      EVT VT = (MVT::SimpleValueType)i;
767      // Do not attempt to custom lower non-power-of-2 vectors
768      if (!isPowerOf2_32(VT.getVectorNumElements()))
769        continue;
770      // Do not attempt to custom lower non-128-bit vectors
771      if (!VT.is128BitVector())
772        continue;
773      setOperationAction(ISD::BUILD_VECTOR,
774                         VT.getSimpleVT().SimpleTy, Custom);
775      setOperationAction(ISD::VECTOR_SHUFFLE,
776                         VT.getSimpleVT().SimpleTy, Custom);
777      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
778                         VT.getSimpleVT().SimpleTy, Custom);
779    }
780
781    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
783    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
784    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
785    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
786    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
787
788    if (Subtarget->is64Bit()) {
789      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
790      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
791    }
792
793    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
794    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
795      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
796      EVT VT = SVT;
797
798      // Do not attempt to promote non-128-bit vectors
799      if (!VT.is128BitVector()) {
800        continue;
801      }
802      setOperationAction(ISD::AND,    SVT, Promote);
803      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
804      setOperationAction(ISD::OR,     SVT, Promote);
805      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
806      setOperationAction(ISD::XOR,    SVT, Promote);
807      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
808      setOperationAction(ISD::LOAD,   SVT, Promote);
809      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
810      setOperationAction(ISD::SELECT, SVT, Promote);
811      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
812    }
813
814    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
815
816    // Custom lower v2i64 and v2f64 selects.
817    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
818    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
819    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
820    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
821
822    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
823    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
824    if (!DisableMMX && Subtarget->hasMMX()) {
825      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
826      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
827    }
828  }
829
830  if (Subtarget->hasSSE41()) {
831    // FIXME: Do we need to handle scalar-to-vector here?
832    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
833
834    // i8 and i16 vectors are custom , because the source register and source
835    // source memory operand types are not the same width.  f32 vectors are
836    // custom since the immediate controlling the insert encodes additional
837    // information.
838    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
842
843    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
844    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
845    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
851    }
852  }
853
854  if (Subtarget->hasSSE42()) {
855    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
856  }
857
858  if (!UseSoftFloat && Subtarget->hasAVX()) {
859    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
860    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
861    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
862    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
863
864    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
865    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
866    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
867    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
868    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
869    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
870    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
871    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
873    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
874    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
875    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
876    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
877    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
878    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
879
880    // Operations to consider commented out -v16i16 v32i8
881    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
882    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
883    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
884    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
885    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
886    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
887    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
888    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
889    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
890    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
891    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
892    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
894    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
895
896    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
897    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
898    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
899    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
900
901    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
902    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
903    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
904    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
905    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
906
907    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
909    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
912    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
913
914#if 0
915    // Not sure we want to do this since there are no 256-bit integer
916    // operations in AVX
917
918    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
919    // This includes 256-bit vectors
920    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
921      EVT VT = (MVT::SimpleValueType)i;
922
923      // Do not attempt to custom lower non-power-of-2 vectors
924      if (!isPowerOf2_32(VT.getVectorNumElements()))
925        continue;
926
927      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
928      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
929      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
930    }
931
932    if (Subtarget->is64Bit()) {
933      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
934      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
935    }
936#endif
937
938#if 0
939    // Not sure we want to do this since there are no 256-bit integer
940    // operations in AVX
941
942    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
943    // Including 256-bit vectors
944    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
945      EVT VT = (MVT::SimpleValueType)i;
946
947      if (!VT.is256BitVector()) {
948        continue;
949      }
950      setOperationAction(ISD::AND,    VT, Promote);
951      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
952      setOperationAction(ISD::OR,     VT, Promote);
953      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
954      setOperationAction(ISD::XOR,    VT, Promote);
955      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
956      setOperationAction(ISD::LOAD,   VT, Promote);
957      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
958      setOperationAction(ISD::SELECT, VT, Promote);
959      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
960    }
961
962    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
963#endif
964  }
965
966  // We want to custom lower some of our intrinsics.
967  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
968
969  // Add/Sub/Mul with overflow operations are custom lowered.
970  setOperationAction(ISD::SADDO, MVT::i32, Custom);
971  setOperationAction(ISD::SADDO, MVT::i64, Custom);
972  setOperationAction(ISD::UADDO, MVT::i32, Custom);
973  setOperationAction(ISD::UADDO, MVT::i64, Custom);
974  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
975  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
976  setOperationAction(ISD::USUBO, MVT::i32, Custom);
977  setOperationAction(ISD::USUBO, MVT::i64, Custom);
978  setOperationAction(ISD::SMULO, MVT::i32, Custom);
979  setOperationAction(ISD::SMULO, MVT::i64, Custom);
980
981  if (!Subtarget->is64Bit()) {
982    // These libcalls are not available in 32-bit.
983    setLibcallName(RTLIB::SHL_I128, 0);
984    setLibcallName(RTLIB::SRL_I128, 0);
985    setLibcallName(RTLIB::SRA_I128, 0);
986  }
987
988  // We have target-specific dag combine patterns for the following nodes:
989  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
990  setTargetDAGCombine(ISD::BUILD_VECTOR);
991  setTargetDAGCombine(ISD::SELECT);
992  setTargetDAGCombine(ISD::SHL);
993  setTargetDAGCombine(ISD::SRA);
994  setTargetDAGCombine(ISD::SRL);
995  setTargetDAGCombine(ISD::OR);
996  setTargetDAGCombine(ISD::STORE);
997  setTargetDAGCombine(ISD::MEMBARRIER);
998  setTargetDAGCombine(ISD::ZERO_EXTEND);
999  if (Subtarget->is64Bit())
1000    setTargetDAGCombine(ISD::MUL);
1001
1002  computeRegisterProperties();
1003
1004  // FIXME: These should be based on subtarget info. Plus, the values should
1005  // be smaller when we are in optimizing for size mode.
1006  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1007  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1008  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1009  setPrefLoopAlignment(16);
1010  benefitFromCodePlacementOpt = true;
1011}
1012
1013
1014MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1015  return MVT::i8;
1016}
1017
1018
1019/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1020/// the desired ByVal argument alignment.
1021static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1022  if (MaxAlign == 16)
1023    return;
1024  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1025    if (VTy->getBitWidth() == 128)
1026      MaxAlign = 16;
1027  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1028    unsigned EltAlign = 0;
1029    getMaxByValAlign(ATy->getElementType(), EltAlign);
1030    if (EltAlign > MaxAlign)
1031      MaxAlign = EltAlign;
1032  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1033    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1034      unsigned EltAlign = 0;
1035      getMaxByValAlign(STy->getElementType(i), EltAlign);
1036      if (EltAlign > MaxAlign)
1037        MaxAlign = EltAlign;
1038      if (MaxAlign == 16)
1039        break;
1040    }
1041  }
1042  return;
1043}
1044
1045/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1046/// function arguments in the caller parameter area. For X86, aggregates
1047/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1048/// are at 4-byte boundaries.
1049unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1050  if (Subtarget->is64Bit()) {
1051    // Max of 8 and alignment of type.
1052    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1053    if (TyAlign > 8)
1054      return TyAlign;
1055    return 8;
1056  }
1057
1058  unsigned Align = 4;
1059  if (Subtarget->hasSSE1())
1060    getMaxByValAlign(Ty, Align);
1061  return Align;
1062}
1063
1064/// getOptimalMemOpType - Returns the target specific optimal type for load
1065/// and store operations as a result of memset, memcpy, and memmove
1066/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1067/// determining it.
1068EVT
1069X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1070                                       bool isSrcConst, bool isSrcStr,
1071                                       SelectionDAG &DAG) const {
1072  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1073  // linux.  This is because the stack realignment code can't handle certain
1074  // cases like PR2962.  This should be removed when PR2962 is fixed.
1075  const Function *F = DAG.getMachineFunction().getFunction();
1076  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1077  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1078    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1079      return MVT::v4i32;
1080    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1081      return MVT::v4f32;
1082  }
1083  if (Subtarget->is64Bit() && Size >= 8)
1084    return MVT::i64;
1085  return MVT::i32;
1086}
1087
1088/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1089/// current function.  The returned value is a member of the
1090/// MachineJumpTableInfo::JTEntryKind enum.
1091unsigned X86TargetLowering::getJumpTableEncoding() const {
1092  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1093  // symbol.
1094  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1095      Subtarget->isPICStyleGOT())
1096    return MachineJumpTableInfo::EK_Custom32;
1097
1098  // Otherwise, use the normal jump table encoding heuristics.
1099  return TargetLowering::getJumpTableEncoding();
1100}
1101
1102/// getPICBaseSymbol - Return the X86-32 PIC base.
1103MCSymbol *
1104X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1105                                    MCContext &Ctx) const {
1106  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1107  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1108                               Twine(MF->getFunctionNumber())+"$pb");
1109}
1110
1111
1112const MCExpr *
1113X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1114                                             const MachineBasicBlock *MBB,
1115                                             unsigned uid,MCContext &Ctx) const{
1116  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1117         Subtarget->isPICStyleGOT());
1118  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1119  // entries.
1120  return X86MCTargetExpr::Create(MBB->getSymbol(Ctx),
1121                                 X86MCTargetExpr::GOTOFF, Ctx);
1122}
1123
1124/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1125/// jumptable.
1126SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1127                                                    SelectionDAG &DAG) const {
1128  if (!Subtarget->is64Bit())
1129    // This doesn't have DebugLoc associated with it, but is not really the
1130    // same as a Register.
1131    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1132                       getPointerTy());
1133  return Table;
1134}
1135
1136/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1137/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1138/// MCExpr.
1139const MCExpr *X86TargetLowering::
1140getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1141                             MCContext &Ctx) const {
1142  // X86-64 uses RIP relative addressing based on the jump table label.
1143  if (Subtarget->isPICStyleRIPRel())
1144    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1145
1146  // Otherwise, the reference is relative to the PIC base.
1147  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1148}
1149
1150/// getFunctionAlignment - Return the Log2 alignment of this function.
1151unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1152  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//               Return Value Calling Convention Implementation
1157//===----------------------------------------------------------------------===//
1158
1159#include "X86GenCallingConv.inc"
1160
1161bool
1162X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1163                        const SmallVectorImpl<EVT> &OutTys,
1164                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1165                        SelectionDAG &DAG) {
1166  SmallVector<CCValAssign, 16> RVLocs;
1167  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1168                 RVLocs, *DAG.getContext());
1169  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1170}
1171
1172SDValue
1173X86TargetLowering::LowerReturn(SDValue Chain,
1174                               CallingConv::ID CallConv, bool isVarArg,
1175                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1176                               DebugLoc dl, SelectionDAG &DAG) {
1177
1178  SmallVector<CCValAssign, 16> RVLocs;
1179  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1180                 RVLocs, *DAG.getContext());
1181  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1182
1183  // Add the regs to the liveout set for the function.
1184  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1185  for (unsigned i = 0; i != RVLocs.size(); ++i)
1186    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1187      MRI.addLiveOut(RVLocs[i].getLocReg());
1188
1189  SDValue Flag;
1190
1191  SmallVector<SDValue, 6> RetOps;
1192  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1193  // Operand #1 = Bytes To Pop
1194  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1195
1196  // Copy the result values into the output registers.
1197  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1198    CCValAssign &VA = RVLocs[i];
1199    assert(VA.isRegLoc() && "Can only return in registers!");
1200    SDValue ValToCopy = Outs[i].Val;
1201
1202    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1203    // the RET instruction and handled by the FP Stackifier.
1204    if (VA.getLocReg() == X86::ST0 ||
1205        VA.getLocReg() == X86::ST1) {
1206      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1207      // change the value to the FP stack register class.
1208      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1209        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1210      RetOps.push_back(ValToCopy);
1211      // Don't emit a copytoreg.
1212      continue;
1213    }
1214
1215    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1216    // which is returned in RAX / RDX.
1217    if (Subtarget->is64Bit()) {
1218      EVT ValVT = ValToCopy.getValueType();
1219      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1220        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1221        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1222          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1223      }
1224    }
1225
1226    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1227    Flag = Chain.getValue(1);
1228  }
1229
1230  // The x86-64 ABI for returning structs by value requires that we copy
1231  // the sret argument into %rax for the return. We saved the argument into
1232  // a virtual register in the entry block, so now we copy the value out
1233  // and into %rax.
1234  if (Subtarget->is64Bit() &&
1235      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1236    MachineFunction &MF = DAG.getMachineFunction();
1237    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1238    unsigned Reg = FuncInfo->getSRetReturnReg();
1239    if (!Reg) {
1240      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1241      FuncInfo->setSRetReturnReg(Reg);
1242    }
1243    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1244
1245    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1246    Flag = Chain.getValue(1);
1247
1248    // RAX now acts like a return value.
1249    MRI.addLiveOut(X86::RAX);
1250  }
1251
1252  RetOps[0] = Chain;  // Update chain.
1253
1254  // Add the flag if we have it.
1255  if (Flag.getNode())
1256    RetOps.push_back(Flag);
1257
1258  return DAG.getNode(X86ISD::RET_FLAG, dl,
1259                     MVT::Other, &RetOps[0], RetOps.size());
1260}
1261
1262/// LowerCallResult - Lower the result values of a call into the
1263/// appropriate copies out of appropriate physical registers.
1264///
1265SDValue
1266X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1267                                   CallingConv::ID CallConv, bool isVarArg,
1268                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1269                                   DebugLoc dl, SelectionDAG &DAG,
1270                                   SmallVectorImpl<SDValue> &InVals) {
1271
1272  // Assign locations to each value returned by this call.
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  bool Is64Bit = Subtarget->is64Bit();
1275  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1276                 RVLocs, *DAG.getContext());
1277  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1278
1279  // Copy all of the result registers out of their specified physreg.
1280  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1281    CCValAssign &VA = RVLocs[i];
1282    EVT CopyVT = VA.getValVT();
1283
1284    // If this is x86-64, and we disabled SSE, we can't return FP values
1285    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1286        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1287      llvm_report_error("SSE register return with SSE disabled");
1288    }
1289
1290    // If this is a call to a function that returns an fp value on the floating
1291    // point stack, but where we prefer to use the value in xmm registers, copy
1292    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1293    if ((VA.getLocReg() == X86::ST0 ||
1294         VA.getLocReg() == X86::ST1) &&
1295        isScalarFPTypeInSSEReg(VA.getValVT())) {
1296      CopyVT = MVT::f80;
1297    }
1298
1299    SDValue Val;
1300    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1301      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1302      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1303        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1304                                   MVT::v2i64, InFlag).getValue(1);
1305        Val = Chain.getValue(0);
1306        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1307                          Val, DAG.getConstant(0, MVT::i64));
1308      } else {
1309        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1310                                   MVT::i64, InFlag).getValue(1);
1311        Val = Chain.getValue(0);
1312      }
1313      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1314    } else {
1315      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1316                                 CopyVT, InFlag).getValue(1);
1317      Val = Chain.getValue(0);
1318    }
1319    InFlag = Chain.getValue(2);
1320
1321    if (CopyVT != VA.getValVT()) {
1322      // Round the F80 the right size, which also moves to the appropriate xmm
1323      // register.
1324      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1325                        // This truncation won't change the value.
1326                        DAG.getIntPtrConstant(1));
1327    }
1328
1329    InVals.push_back(Val);
1330  }
1331
1332  return Chain;
1333}
1334
1335
1336//===----------------------------------------------------------------------===//
1337//                C & StdCall & Fast Calling Convention implementation
1338//===----------------------------------------------------------------------===//
1339//  StdCall calling convention seems to be standard for many Windows' API
1340//  routines and around. It differs from C calling convention just a little:
1341//  callee should clean up the stack, not caller. Symbols should be also
1342//  decorated in some fancy way :) It doesn't support any vector arguments.
1343//  For info on fast calling convention see Fast Calling Convention (tail call)
1344//  implementation LowerX86_32FastCCCallTo.
1345
1346/// CallIsStructReturn - Determines whether a call uses struct return
1347/// semantics.
1348static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1349  if (Outs.empty())
1350    return false;
1351
1352  return Outs[0].Flags.isSRet();
1353}
1354
1355/// ArgsAreStructReturn - Determines whether a function uses struct
1356/// return semantics.
1357static bool
1358ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1359  if (Ins.empty())
1360    return false;
1361
1362  return Ins[0].Flags.isSRet();
1363}
1364
1365/// IsCalleePop - Determines whether the callee is required to pop its
1366/// own arguments. Callee pop is necessary to support tail calls.
1367bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1368  if (IsVarArg)
1369    return false;
1370
1371  switch (CallingConv) {
1372  default:
1373    return false;
1374  case CallingConv::X86_StdCall:
1375    return !Subtarget->is64Bit();
1376  case CallingConv::X86_FastCall:
1377    return !Subtarget->is64Bit();
1378  case CallingConv::Fast:
1379    return GuaranteedTailCallOpt;
1380  }
1381}
1382
1383/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1384/// given CallingConvention value.
1385CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1386  if (Subtarget->is64Bit()) {
1387    if (Subtarget->isTargetWin64())
1388      return CC_X86_Win64_C;
1389    else
1390      return CC_X86_64_C;
1391  }
1392
1393  if (CC == CallingConv::X86_FastCall)
1394    return CC_X86_32_FastCall;
1395  else if (CC == CallingConv::Fast)
1396    return CC_X86_32_FastCC;
1397  else
1398    return CC_X86_32_C;
1399}
1400
1401/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1402/// by "Src" to address "Dst" with size and alignment information specified by
1403/// the specific parameter attribute. The copy will be passed as a byval
1404/// function parameter.
1405static SDValue
1406CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1407                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1408                          DebugLoc dl) {
1409  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1410  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1411                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1412}
1413
1414/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1415/// a tailcall target by changing its ABI.
1416static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1417  return GuaranteedTailCallOpt && CC == CallingConv::Fast;
1418}
1419
1420SDValue
1421X86TargetLowering::LowerMemArgument(SDValue Chain,
1422                                    CallingConv::ID CallConv,
1423                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1424                                    DebugLoc dl, SelectionDAG &DAG,
1425                                    const CCValAssign &VA,
1426                                    MachineFrameInfo *MFI,
1427                                    unsigned i) {
1428  // Create the nodes corresponding to a load from this parameter slot.
1429  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1430  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1431  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1432  EVT ValVT;
1433
1434  // If value is passed by pointer we have address passed instead of the value
1435  // itself.
1436  if (VA.getLocInfo() == CCValAssign::Indirect)
1437    ValVT = VA.getLocVT();
1438  else
1439    ValVT = VA.getValVT();
1440
1441  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1442  // changed with more analysis.
1443  // In case of tail call optimization mark all arguments mutable. Since they
1444  // could be overwritten by lowering of arguments in case of a tail call.
1445  if (Flags.isByVal()) {
1446    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1447                                    VA.getLocMemOffset(), isImmutable, false);
1448    return DAG.getFrameIndex(FI, getPointerTy());
1449  } else {
1450    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1451                                    VA.getLocMemOffset(), isImmutable, false);
1452    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1453    return DAG.getLoad(ValVT, dl, Chain, FIN,
1454                       PseudoSourceValue::getFixedStack(FI), 0,
1455                       false, false, 0);
1456  }
1457}
1458
1459SDValue
1460X86TargetLowering::LowerFormalArguments(SDValue Chain,
1461                                        CallingConv::ID CallConv,
1462                                        bool isVarArg,
1463                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1464                                        DebugLoc dl,
1465                                        SelectionDAG &DAG,
1466                                        SmallVectorImpl<SDValue> &InVals) {
1467
1468  MachineFunction &MF = DAG.getMachineFunction();
1469  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1470
1471  const Function* Fn = MF.getFunction();
1472  if (Fn->hasExternalLinkage() &&
1473      Subtarget->isTargetCygMing() &&
1474      Fn->getName() == "main")
1475    FuncInfo->setForceFramePointer(true);
1476
1477  MachineFrameInfo *MFI = MF.getFrameInfo();
1478  bool Is64Bit = Subtarget->is64Bit();
1479  bool IsWin64 = Subtarget->isTargetWin64();
1480
1481  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1482         "Var args not supported with calling convention fastcc");
1483
1484  // Assign locations to all of the incoming arguments.
1485  SmallVector<CCValAssign, 16> ArgLocs;
1486  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1487                 ArgLocs, *DAG.getContext());
1488  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1489
1490  unsigned LastVal = ~0U;
1491  SDValue ArgValue;
1492  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1493    CCValAssign &VA = ArgLocs[i];
1494    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1495    // places.
1496    assert(VA.getValNo() != LastVal &&
1497           "Don't support value assigned to multiple locs yet");
1498    LastVal = VA.getValNo();
1499
1500    if (VA.isRegLoc()) {
1501      EVT RegVT = VA.getLocVT();
1502      TargetRegisterClass *RC = NULL;
1503      if (RegVT == MVT::i32)
1504        RC = X86::GR32RegisterClass;
1505      else if (Is64Bit && RegVT == MVT::i64)
1506        RC = X86::GR64RegisterClass;
1507      else if (RegVT == MVT::f32)
1508        RC = X86::FR32RegisterClass;
1509      else if (RegVT == MVT::f64)
1510        RC = X86::FR64RegisterClass;
1511      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1512        RC = X86::VR128RegisterClass;
1513      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1514        RC = X86::VR64RegisterClass;
1515      else
1516        llvm_unreachable("Unknown argument type!");
1517
1518      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1519      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1520
1521      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1522      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1523      // right size.
1524      if (VA.getLocInfo() == CCValAssign::SExt)
1525        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1526                               DAG.getValueType(VA.getValVT()));
1527      else if (VA.getLocInfo() == CCValAssign::ZExt)
1528        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1529                               DAG.getValueType(VA.getValVT()));
1530      else if (VA.getLocInfo() == CCValAssign::BCvt)
1531        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1532
1533      if (VA.isExtInLoc()) {
1534        // Handle MMX values passed in XMM regs.
1535        if (RegVT.isVector()) {
1536          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1537                                 ArgValue, DAG.getConstant(0, MVT::i64));
1538          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1539        } else
1540          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1541      }
1542    } else {
1543      assert(VA.isMemLoc());
1544      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1545    }
1546
1547    // If value is passed via pointer - do a load.
1548    if (VA.getLocInfo() == CCValAssign::Indirect)
1549      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1550                             false, false, 0);
1551
1552    InVals.push_back(ArgValue);
1553  }
1554
1555  // The x86-64 ABI for returning structs by value requires that we copy
1556  // the sret argument into %rax for the return. Save the argument into
1557  // a virtual register so that we can access it from the return points.
1558  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1559    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1560    unsigned Reg = FuncInfo->getSRetReturnReg();
1561    if (!Reg) {
1562      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1563      FuncInfo->setSRetReturnReg(Reg);
1564    }
1565    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1566    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1567  }
1568
1569  unsigned StackSize = CCInfo.getNextStackOffset();
1570  // Align stack specially for tail calls.
1571  if (FuncIsMadeTailCallSafe(CallConv))
1572    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1573
1574  // If the function takes variable number of arguments, make a frame index for
1575  // the start of the first vararg value... for expansion of llvm.va_start.
1576  if (isVarArg) {
1577    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1578      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1579    }
1580    if (Is64Bit) {
1581      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1582
1583      // FIXME: We should really autogenerate these arrays
1584      static const unsigned GPR64ArgRegsWin64[] = {
1585        X86::RCX, X86::RDX, X86::R8,  X86::R9
1586      };
1587      static const unsigned XMMArgRegsWin64[] = {
1588        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1589      };
1590      static const unsigned GPR64ArgRegs64Bit[] = {
1591        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1592      };
1593      static const unsigned XMMArgRegs64Bit[] = {
1594        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1595        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1596      };
1597      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1598
1599      if (IsWin64) {
1600        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1601        GPR64ArgRegs = GPR64ArgRegsWin64;
1602        XMMArgRegs = XMMArgRegsWin64;
1603      } else {
1604        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1605        GPR64ArgRegs = GPR64ArgRegs64Bit;
1606        XMMArgRegs = XMMArgRegs64Bit;
1607      }
1608      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1609                                                       TotalNumIntRegs);
1610      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1611                                                       TotalNumXMMRegs);
1612
1613      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1614      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1615             "SSE register cannot be used when SSE is disabled!");
1616      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1617             "SSE register cannot be used when SSE is disabled!");
1618      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1619        // Kernel mode asks for SSE to be disabled, so don't push them
1620        // on the stack.
1621        TotalNumXMMRegs = 0;
1622
1623      // For X86-64, if there are vararg parameters that are passed via
1624      // registers, then we must store them to their spots on the stack so they
1625      // may be loaded by deferencing the result of va_next.
1626      VarArgsGPOffset = NumIntRegs * 8;
1627      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1628      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1629                                                 TotalNumXMMRegs * 16, 16,
1630                                                 false);
1631
1632      // Store the integer parameter registers.
1633      SmallVector<SDValue, 8> MemOps;
1634      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1635      unsigned Offset = VarArgsGPOffset;
1636      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1637        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1638                                  DAG.getIntPtrConstant(Offset));
1639        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1640                                     X86::GR64RegisterClass);
1641        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1642        SDValue Store =
1643          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1644                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1645                       Offset, false, false, 0);
1646        MemOps.push_back(Store);
1647        Offset += 8;
1648      }
1649
1650      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1651        // Now store the XMM (fp + vector) parameter registers.
1652        SmallVector<SDValue, 11> SaveXMMOps;
1653        SaveXMMOps.push_back(Chain);
1654
1655        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1656        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1657        SaveXMMOps.push_back(ALVal);
1658
1659        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1660        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1661
1662        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1663          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1664                                       X86::VR128RegisterClass);
1665          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1666          SaveXMMOps.push_back(Val);
1667        }
1668        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1669                                     MVT::Other,
1670                                     &SaveXMMOps[0], SaveXMMOps.size()));
1671      }
1672
1673      if (!MemOps.empty())
1674        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1675                            &MemOps[0], MemOps.size());
1676    }
1677  }
1678
1679  // Some CCs need callee pop.
1680  if (IsCalleePop(isVarArg, CallConv)) {
1681    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1682  } else {
1683    BytesToPopOnReturn  = 0; // Callee pops nothing.
1684    // If this is an sret function, the return should pop the hidden pointer.
1685    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1686      BytesToPopOnReturn = 4;
1687  }
1688
1689  if (!Is64Bit) {
1690    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1691    if (CallConv == CallingConv::X86_FastCall)
1692      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1693  }
1694
1695  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1696
1697  return Chain;
1698}
1699
1700SDValue
1701X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1702                                    SDValue StackPtr, SDValue Arg,
1703                                    DebugLoc dl, SelectionDAG &DAG,
1704                                    const CCValAssign &VA,
1705                                    ISD::ArgFlagsTy Flags) {
1706  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1707  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1708  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1709  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1710  if (Flags.isByVal()) {
1711    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1712  }
1713  return DAG.getStore(Chain, dl, Arg, PtrOff,
1714                      PseudoSourceValue::getStack(), LocMemOffset,
1715                      false, false, 0);
1716}
1717
1718/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1719/// optimization is performed and it is required.
1720SDValue
1721X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1722                                           SDValue &OutRetAddr, SDValue Chain,
1723                                           bool IsTailCall, bool Is64Bit,
1724                                           int FPDiff, DebugLoc dl) {
1725  // Adjust the Return address stack slot.
1726  EVT VT = getPointerTy();
1727  OutRetAddr = getReturnAddressFrameIndex(DAG);
1728
1729  // Load the "old" Return address.
1730  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1731  return SDValue(OutRetAddr.getNode(), 1);
1732}
1733
1734/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1735/// optimization is performed and it is required (FPDiff!=0).
1736static SDValue
1737EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1738                         SDValue Chain, SDValue RetAddrFrIdx,
1739                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1740  // Store the return address to the appropriate stack slot.
1741  if (!FPDiff) return Chain;
1742  // Calculate the new stack slot for the return address.
1743  int SlotSize = Is64Bit ? 8 : 4;
1744  int NewReturnAddrFI =
1745    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true,false);
1746  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1747  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1748  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1749                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1750                       false, false, 0);
1751  return Chain;
1752}
1753
1754SDValue
1755X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1756                             CallingConv::ID CallConv, bool isVarArg,
1757                             bool &isTailCall,
1758                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1759                             const SmallVectorImpl<ISD::InputArg> &Ins,
1760                             DebugLoc dl, SelectionDAG &DAG,
1761                             SmallVectorImpl<SDValue> &InVals) {
1762  MachineFunction &MF = DAG.getMachineFunction();
1763  bool Is64Bit        = Subtarget->is64Bit();
1764  bool IsStructRet    = CallIsStructReturn(Outs);
1765  bool IsSibcall      = false;
1766
1767  if (isTailCall) {
1768    // Check if it's really possible to do a tail call.
1769    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
1770                                                   Outs, Ins, DAG);
1771
1772    // Sibcalls are automatically detected tailcalls which do not require
1773    // ABI changes.
1774    if (!GuaranteedTailCallOpt && isTailCall)
1775      IsSibcall = true;
1776
1777    if (isTailCall)
1778      ++NumTailCalls;
1779  }
1780
1781  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1782         "Var args not supported with calling convention fastcc");
1783
1784  // Analyze operands of the call, assigning locations to each operand.
1785  SmallVector<CCValAssign, 16> ArgLocs;
1786  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1787                 ArgLocs, *DAG.getContext());
1788  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1789
1790  // Get a count of how many bytes are to be pushed on the stack.
1791  unsigned NumBytes = CCInfo.getNextStackOffset();
1792  if (IsSibcall)
1793    // This is a sibcall. The memory operands are available in caller's
1794    // own caller's stack.
1795    NumBytes = 0;
1796  else if (GuaranteedTailCallOpt && CallConv == CallingConv::Fast)
1797    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1798
1799  int FPDiff = 0;
1800  if (isTailCall && !IsSibcall) {
1801    // Lower arguments at fp - stackoffset + fpdiff.
1802    unsigned NumBytesCallerPushed =
1803      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1804    FPDiff = NumBytesCallerPushed - NumBytes;
1805
1806    // Set the delta of movement of the returnaddr stackslot.
1807    // But only set if delta is greater than previous delta.
1808    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1809      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1810  }
1811
1812  if (!IsSibcall)
1813    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1814
1815  SDValue RetAddrFrIdx;
1816  // Load return adress for tail calls.
1817  if (isTailCall && FPDiff)
1818    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1819                                    Is64Bit, FPDiff, dl);
1820
1821  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1822  SmallVector<SDValue, 8> MemOpChains;
1823  SDValue StackPtr;
1824
1825  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1826  // of tail call optimization arguments are handle later.
1827  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1828    CCValAssign &VA = ArgLocs[i];
1829    EVT RegVT = VA.getLocVT();
1830    SDValue Arg = Outs[i].Val;
1831    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1832    bool isByVal = Flags.isByVal();
1833
1834    // Promote the value if needed.
1835    switch (VA.getLocInfo()) {
1836    default: llvm_unreachable("Unknown loc info!");
1837    case CCValAssign::Full: break;
1838    case CCValAssign::SExt:
1839      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1840      break;
1841    case CCValAssign::ZExt:
1842      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1843      break;
1844    case CCValAssign::AExt:
1845      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1846        // Special case: passing MMX values in XMM registers.
1847        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1848        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1849        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1850      } else
1851        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1852      break;
1853    case CCValAssign::BCvt:
1854      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1855      break;
1856    case CCValAssign::Indirect: {
1857      // Store the argument.
1858      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1859      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1860      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1861                           PseudoSourceValue::getFixedStack(FI), 0,
1862                           false, false, 0);
1863      Arg = SpillSlot;
1864      break;
1865    }
1866    }
1867
1868    if (VA.isRegLoc()) {
1869      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1870    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1871      assert(VA.isMemLoc());
1872      if (StackPtr.getNode() == 0)
1873        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1874      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1875                                             dl, DAG, VA, Flags));
1876    }
1877  }
1878
1879  if (!MemOpChains.empty())
1880    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1881                        &MemOpChains[0], MemOpChains.size());
1882
1883  // Build a sequence of copy-to-reg nodes chained together with token chain
1884  // and flag operands which copy the outgoing args into registers.
1885  SDValue InFlag;
1886  // Tail call byval lowering might overwrite argument registers so in case of
1887  // tail call optimization the copies to registers are lowered later.
1888  if (!isTailCall)
1889    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1890      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1891                               RegsToPass[i].second, InFlag);
1892      InFlag = Chain.getValue(1);
1893    }
1894
1895  if (Subtarget->isPICStyleGOT()) {
1896    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1897    // GOT pointer.
1898    if (!isTailCall) {
1899      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1900                               DAG.getNode(X86ISD::GlobalBaseReg,
1901                                           DebugLoc::getUnknownLoc(),
1902                                           getPointerTy()),
1903                               InFlag);
1904      InFlag = Chain.getValue(1);
1905    } else {
1906      // If we are tail calling and generating PIC/GOT style code load the
1907      // address of the callee into ECX. The value in ecx is used as target of
1908      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1909      // for tail calls on PIC/GOT architectures. Normally we would just put the
1910      // address of GOT into ebx and then call target@PLT. But for tail calls
1911      // ebx would be restored (since ebx is callee saved) before jumping to the
1912      // target@PLT.
1913
1914      // Note: The actual moving to ECX is done further down.
1915      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1916      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1917          !G->getGlobal()->hasProtectedVisibility())
1918        Callee = LowerGlobalAddress(Callee, DAG);
1919      else if (isa<ExternalSymbolSDNode>(Callee))
1920        Callee = LowerExternalSymbol(Callee, DAG);
1921    }
1922  }
1923
1924  if (Is64Bit && isVarArg) {
1925    // From AMD64 ABI document:
1926    // For calls that may call functions that use varargs or stdargs
1927    // (prototype-less calls or calls to functions containing ellipsis (...) in
1928    // the declaration) %al is used as hidden argument to specify the number
1929    // of SSE registers used. The contents of %al do not need to match exactly
1930    // the number of registers, but must be an ubound on the number of SSE
1931    // registers used and is in the range 0 - 8 inclusive.
1932
1933    // FIXME: Verify this on Win64
1934    // Count the number of XMM registers allocated.
1935    static const unsigned XMMArgRegs[] = {
1936      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1937      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1938    };
1939    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1940    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1941           && "SSE registers cannot be used when SSE is disabled");
1942
1943    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1944                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1945    InFlag = Chain.getValue(1);
1946  }
1947
1948
1949  // For tail calls lower the arguments to the 'real' stack slot.
1950  if (isTailCall) {
1951    // Force all the incoming stack arguments to be loaded from the stack
1952    // before any new outgoing arguments are stored to the stack, because the
1953    // outgoing stack slots may alias the incoming argument stack slots, and
1954    // the alias isn't otherwise explicit. This is slightly more conservative
1955    // than necessary, because it means that each store effectively depends
1956    // on every argument instead of just those arguments it would clobber.
1957    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1958
1959    SmallVector<SDValue, 8> MemOpChains2;
1960    SDValue FIN;
1961    int FI = 0;
1962    // Do not flag preceeding copytoreg stuff together with the following stuff.
1963    InFlag = SDValue();
1964    if (GuaranteedTailCallOpt) {
1965      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1966        CCValAssign &VA = ArgLocs[i];
1967        if (VA.isRegLoc())
1968          continue;
1969        assert(VA.isMemLoc());
1970        SDValue Arg = Outs[i].Val;
1971        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1972        // Create frame index.
1973        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1974        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1975        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1976        FIN = DAG.getFrameIndex(FI, getPointerTy());
1977
1978        if (Flags.isByVal()) {
1979          // Copy relative to framepointer.
1980          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1981          if (StackPtr.getNode() == 0)
1982            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1983                                          getPointerTy());
1984          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1985
1986          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1987                                                           ArgChain,
1988                                                           Flags, DAG, dl));
1989        } else {
1990          // Store relative to framepointer.
1991          MemOpChains2.push_back(
1992            DAG.getStore(ArgChain, dl, Arg, FIN,
1993                         PseudoSourceValue::getFixedStack(FI), 0,
1994                         false, false, 0));
1995        }
1996      }
1997    }
1998
1999    if (!MemOpChains2.empty())
2000      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2001                          &MemOpChains2[0], MemOpChains2.size());
2002
2003    // Copy arguments to their registers.
2004    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2005      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2006                               RegsToPass[i].second, InFlag);
2007      InFlag = Chain.getValue(1);
2008    }
2009    InFlag =SDValue();
2010
2011    // Store the return address to the appropriate stack slot.
2012    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2013                                     FPDiff, dl);
2014  }
2015
2016  bool WasGlobalOrExternal = false;
2017  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2018    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2019    // In the 64-bit large code model, we have to make all calls
2020    // through a register, since the call instruction's 32-bit
2021    // pc-relative offset may not be large enough to hold the whole
2022    // address.
2023  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2024    WasGlobalOrExternal = true;
2025    // If the callee is a GlobalAddress node (quite common, every direct call
2026    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2027    // it.
2028
2029    // We should use extra load for direct calls to dllimported functions in
2030    // non-JIT mode.
2031    GlobalValue *GV = G->getGlobal();
2032    if (!GV->hasDLLImportLinkage()) {
2033      unsigned char OpFlags = 0;
2034
2035      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2036      // external symbols most go through the PLT in PIC mode.  If the symbol
2037      // has hidden or protected visibility, or if it is static or local, then
2038      // we don't need to use the PLT - we can directly call it.
2039      if (Subtarget->isTargetELF() &&
2040          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2041          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2042        OpFlags = X86II::MO_PLT;
2043      } else if (Subtarget->isPICStyleStubAny() &&
2044               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2045               Subtarget->getDarwinVers() < 9) {
2046        // PC-relative references to external symbols should go through $stub,
2047        // unless we're building with the leopard linker or later, which
2048        // automatically synthesizes these stubs.
2049        OpFlags = X86II::MO_DARWIN_STUB;
2050      }
2051
2052      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2053                                          G->getOffset(), OpFlags);
2054    }
2055  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2056    WasGlobalOrExternal = true;
2057    unsigned char OpFlags = 0;
2058
2059    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2060    // symbols should go through the PLT.
2061    if (Subtarget->isTargetELF() &&
2062        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2063      OpFlags = X86II::MO_PLT;
2064    } else if (Subtarget->isPICStyleStubAny() &&
2065             Subtarget->getDarwinVers() < 9) {
2066      // PC-relative references to external symbols should go through $stub,
2067      // unless we're building with the leopard linker or later, which
2068      // automatically synthesizes these stubs.
2069      OpFlags = X86II::MO_DARWIN_STUB;
2070    }
2071
2072    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2073                                         OpFlags);
2074  }
2075
2076  if (isTailCall && !WasGlobalOrExternal) {
2077    // Force the address into a (call preserved) caller-saved register since
2078    // tailcall must happen after callee-saved registers are poped.
2079    // FIXME: Give it a special register class that contains caller-saved
2080    // register instead?
2081    unsigned TCReg = Is64Bit ? X86::R11 : X86::EAX;
2082    Chain = DAG.getCopyToReg(Chain,  dl,
2083                             DAG.getRegister(TCReg, getPointerTy()),
2084                             Callee,InFlag);
2085    Callee = DAG.getRegister(TCReg, getPointerTy());
2086  }
2087
2088  // Returns a chain & a flag for retval copy to use.
2089  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2090  SmallVector<SDValue, 8> Ops;
2091
2092  if (!IsSibcall && isTailCall) {
2093    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2094                           DAG.getIntPtrConstant(0, true), InFlag);
2095    InFlag = Chain.getValue(1);
2096  }
2097
2098  Ops.push_back(Chain);
2099  Ops.push_back(Callee);
2100
2101  if (isTailCall)
2102    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2103
2104  // Add argument registers to the end of the list so that they are known live
2105  // into the call.
2106  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2107    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2108                                  RegsToPass[i].second.getValueType()));
2109
2110  // Add an implicit use GOT pointer in EBX.
2111  if (!isTailCall && Subtarget->isPICStyleGOT())
2112    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2113
2114  // Add an implicit use of AL for x86 vararg functions.
2115  if (Is64Bit && isVarArg)
2116    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2117
2118  if (InFlag.getNode())
2119    Ops.push_back(InFlag);
2120
2121  if (isTailCall) {
2122    // If this is the first return lowered for this function, add the regs
2123    // to the liveout set for the function.
2124    if (MF.getRegInfo().liveout_empty()) {
2125      SmallVector<CCValAssign, 16> RVLocs;
2126      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2127                     *DAG.getContext());
2128      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2129      for (unsigned i = 0; i != RVLocs.size(); ++i)
2130        if (RVLocs[i].isRegLoc())
2131          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2132    }
2133
2134    assert(((Callee.getOpcode() == ISD::Register &&
2135               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2136                cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) ||
2137              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2138              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2139           "Expecting a global address, external symbol, or scratch register");
2140
2141    return DAG.getNode(X86ISD::TC_RETURN, dl,
2142                       NodeTys, &Ops[0], Ops.size());
2143  }
2144
2145  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2146  InFlag = Chain.getValue(1);
2147
2148  // Create the CALLSEQ_END node.
2149  unsigned NumBytesForCalleeToPush;
2150  if (IsCalleePop(isVarArg, CallConv))
2151    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2152  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2153    // If this is a call to a struct-return function, the callee
2154    // pops the hidden struct pointer, so we have to push it back.
2155    // This is common for Darwin/X86, Linux & Mingw32 targets.
2156    NumBytesForCalleeToPush = 4;
2157  else
2158    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2159
2160  // Returns a flag for retval copy to use.
2161  if (!IsSibcall) {
2162    Chain = DAG.getCALLSEQ_END(Chain,
2163                               DAG.getIntPtrConstant(NumBytes, true),
2164                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2165                                                     true),
2166                               InFlag);
2167    InFlag = Chain.getValue(1);
2168  }
2169
2170  // Handle result values, copying them out of physregs into vregs that we
2171  // return.
2172  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2173                         Ins, dl, DAG, InVals);
2174}
2175
2176
2177//===----------------------------------------------------------------------===//
2178//                Fast Calling Convention (tail call) implementation
2179//===----------------------------------------------------------------------===//
2180
2181//  Like std call, callee cleans arguments, convention except that ECX is
2182//  reserved for storing the tail called function address. Only 2 registers are
2183//  free for argument passing (inreg). Tail call optimization is performed
2184//  provided:
2185//                * tailcallopt is enabled
2186//                * caller/callee are fastcc
2187//  On X86_64 architecture with GOT-style position independent code only local
2188//  (within module) calls are supported at the moment.
2189//  To keep the stack aligned according to platform abi the function
2190//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2191//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2192//  If a tail called function callee has more arguments than the caller the
2193//  caller needs to make sure that there is room to move the RETADDR to. This is
2194//  achieved by reserving an area the size of the argument delta right after the
2195//  original REtADDR, but before the saved framepointer or the spilled registers
2196//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2197//  stack layout:
2198//    arg1
2199//    arg2
2200//    RETADDR
2201//    [ new RETADDR
2202//      move area ]
2203//    (possible EBP)
2204//    ESI
2205//    EDI
2206//    local1 ..
2207
2208/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2209/// for a 16 byte align requirement.
2210unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2211                                                        SelectionDAG& DAG) {
2212  MachineFunction &MF = DAG.getMachineFunction();
2213  const TargetMachine &TM = MF.getTarget();
2214  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2215  unsigned StackAlignment = TFI.getStackAlignment();
2216  uint64_t AlignMask = StackAlignment - 1;
2217  int64_t Offset = StackSize;
2218  uint64_t SlotSize = TD->getPointerSize();
2219  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2220    // Number smaller than 12 so just add the difference.
2221    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2222  } else {
2223    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2224    Offset = ((~AlignMask) & Offset) + StackAlignment +
2225      (StackAlignment-SlotSize);
2226  }
2227  return Offset;
2228}
2229
2230/// MatchingStackOffset - Return true if the given stack call argument is
2231/// already available in the same position (relatively) of the caller's
2232/// incoming argument stack.
2233static
2234bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2235                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2236                         const X86InstrInfo *TII) {
2237  int FI;
2238  if (Arg.getOpcode() == ISD::CopyFromReg) {
2239    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2240    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2241      return false;
2242    MachineInstr *Def = MRI->getVRegDef(VR);
2243    if (!Def)
2244      return false;
2245    if (!Flags.isByVal()) {
2246      if (!TII->isLoadFromStackSlot(Def, FI))
2247        return false;
2248    } else {
2249      unsigned Opcode = Def->getOpcode();
2250      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2251          Def->getOperand(1).isFI()) {
2252        FI = Def->getOperand(1).getIndex();
2253        if (MFI->getObjectSize(FI) != Flags.getByValSize())
2254          return false;
2255      } else
2256        return false;
2257    }
2258  } else {
2259    LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg);
2260    if (!Ld)
2261      return false;
2262    SDValue Ptr = Ld->getBasePtr();
2263    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2264    if (!FINode)
2265      return false;
2266    FI = FINode->getIndex();
2267  }
2268
2269  if (!MFI->isFixedObjectIndex(FI))
2270    return false;
2271  return Offset == MFI->getObjectOffset(FI);
2272}
2273
2274/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2275/// for tail call optimization. Targets which want to do tail call
2276/// optimization should implement this function.
2277bool
2278X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2279                                                     CallingConv::ID CalleeCC,
2280                                                     bool isVarArg,
2281                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2282                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2283                                                     SelectionDAG& DAG) const {
2284  if (CalleeCC != CallingConv::Fast &&
2285      CalleeCC != CallingConv::C)
2286    return false;
2287
2288  // If -tailcallopt is specified, make fastcc functions tail-callable.
2289  const Function *CallerF = DAG.getMachineFunction().getFunction();
2290  if (GuaranteedTailCallOpt) {
2291    if (CalleeCC == CallingConv::Fast &&
2292        CallerF->getCallingConv() == CalleeCC)
2293      return true;
2294    return false;
2295  }
2296
2297  // Look for obvious safe cases to perform tail call optimization that does not
2298  // requite ABI changes. This is what gcc calls sibcall.
2299
2300  // Do not tail call optimize vararg calls for now.
2301  if (isVarArg)
2302    return false;
2303
2304  // If the callee takes no arguments then go on to check the results of the
2305  // call.
2306  if (!Outs.empty()) {
2307    // Check if stack adjustment is needed. For now, do not do this if any
2308    // argument is passed on the stack.
2309    SmallVector<CCValAssign, 16> ArgLocs;
2310    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2311                   ArgLocs, *DAG.getContext());
2312    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2313    if (CCInfo.getNextStackOffset()) {
2314      MachineFunction &MF = DAG.getMachineFunction();
2315      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2316        return false;
2317      if (Subtarget->isTargetWin64())
2318        // Win64 ABI has additional complications.
2319        return false;
2320
2321      // Check if the arguments are already laid out in the right way as
2322      // the caller's fixed stack objects.
2323      MachineFrameInfo *MFI = MF.getFrameInfo();
2324      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2325      const X86InstrInfo *TII =
2326        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2327      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2328        CCValAssign &VA = ArgLocs[i];
2329        EVT RegVT = VA.getLocVT();
2330        SDValue Arg = Outs[i].Val;
2331        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2332        if (VA.getLocInfo() == CCValAssign::Indirect)
2333          return false;
2334        if (!VA.isRegLoc()) {
2335          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2336                                   MFI, MRI, TII))
2337            return false;
2338        }
2339      }
2340    }
2341  }
2342
2343  return true;
2344}
2345
2346FastISel *
2347X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2348                            DwarfWriter *dw,
2349                            DenseMap<const Value *, unsigned> &vm,
2350                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2351                            DenseMap<const AllocaInst *, int> &am
2352#ifndef NDEBUG
2353                          , SmallSet<Instruction*, 8> &cil
2354#endif
2355                                  ) {
2356  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2357#ifndef NDEBUG
2358                             , cil
2359#endif
2360                             );
2361}
2362
2363
2364//===----------------------------------------------------------------------===//
2365//                           Other Lowering Hooks
2366//===----------------------------------------------------------------------===//
2367
2368
2369SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2370  MachineFunction &MF = DAG.getMachineFunction();
2371  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2372  int ReturnAddrIndex = FuncInfo->getRAIndex();
2373
2374  if (ReturnAddrIndex == 0) {
2375    // Set up a frame object for the return address.
2376    uint64_t SlotSize = TD->getPointerSize();
2377    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2378                                                           true, false);
2379    FuncInfo->setRAIndex(ReturnAddrIndex);
2380  }
2381
2382  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2383}
2384
2385
2386bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2387                                       bool hasSymbolicDisplacement) {
2388  // Offset should fit into 32 bit immediate field.
2389  if (!isInt32(Offset))
2390    return false;
2391
2392  // If we don't have a symbolic displacement - we don't have any extra
2393  // restrictions.
2394  if (!hasSymbolicDisplacement)
2395    return true;
2396
2397  // FIXME: Some tweaks might be needed for medium code model.
2398  if (M != CodeModel::Small && M != CodeModel::Kernel)
2399    return false;
2400
2401  // For small code model we assume that latest object is 16MB before end of 31
2402  // bits boundary. We may also accept pretty large negative constants knowing
2403  // that all objects are in the positive half of address space.
2404  if (M == CodeModel::Small && Offset < 16*1024*1024)
2405    return true;
2406
2407  // For kernel code model we know that all object resist in the negative half
2408  // of 32bits address space. We may not accept negative offsets, since they may
2409  // be just off and we may accept pretty large positive ones.
2410  if (M == CodeModel::Kernel && Offset > 0)
2411    return true;
2412
2413  return false;
2414}
2415
2416/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2417/// specific condition code, returning the condition code and the LHS/RHS of the
2418/// comparison to make.
2419static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2420                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2421  if (!isFP) {
2422    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2423      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2424        // X > -1   -> X == 0, jump !sign.
2425        RHS = DAG.getConstant(0, RHS.getValueType());
2426        return X86::COND_NS;
2427      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2428        // X < 0   -> X == 0, jump on sign.
2429        return X86::COND_S;
2430      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2431        // X < 1   -> X <= 0
2432        RHS = DAG.getConstant(0, RHS.getValueType());
2433        return X86::COND_LE;
2434      }
2435    }
2436
2437    switch (SetCCOpcode) {
2438    default: llvm_unreachable("Invalid integer condition!");
2439    case ISD::SETEQ:  return X86::COND_E;
2440    case ISD::SETGT:  return X86::COND_G;
2441    case ISD::SETGE:  return X86::COND_GE;
2442    case ISD::SETLT:  return X86::COND_L;
2443    case ISD::SETLE:  return X86::COND_LE;
2444    case ISD::SETNE:  return X86::COND_NE;
2445    case ISD::SETULT: return X86::COND_B;
2446    case ISD::SETUGT: return X86::COND_A;
2447    case ISD::SETULE: return X86::COND_BE;
2448    case ISD::SETUGE: return X86::COND_AE;
2449    }
2450  }
2451
2452  // First determine if it is required or is profitable to flip the operands.
2453
2454  // If LHS is a foldable load, but RHS is not, flip the condition.
2455  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2456      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2457    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2458    std::swap(LHS, RHS);
2459  }
2460
2461  switch (SetCCOpcode) {
2462  default: break;
2463  case ISD::SETOLT:
2464  case ISD::SETOLE:
2465  case ISD::SETUGT:
2466  case ISD::SETUGE:
2467    std::swap(LHS, RHS);
2468    break;
2469  }
2470
2471  // On a floating point condition, the flags are set as follows:
2472  // ZF  PF  CF   op
2473  //  0 | 0 | 0 | X > Y
2474  //  0 | 0 | 1 | X < Y
2475  //  1 | 0 | 0 | X == Y
2476  //  1 | 1 | 1 | unordered
2477  switch (SetCCOpcode) {
2478  default: llvm_unreachable("Condcode should be pre-legalized away");
2479  case ISD::SETUEQ:
2480  case ISD::SETEQ:   return X86::COND_E;
2481  case ISD::SETOLT:              // flipped
2482  case ISD::SETOGT:
2483  case ISD::SETGT:   return X86::COND_A;
2484  case ISD::SETOLE:              // flipped
2485  case ISD::SETOGE:
2486  case ISD::SETGE:   return X86::COND_AE;
2487  case ISD::SETUGT:              // flipped
2488  case ISD::SETULT:
2489  case ISD::SETLT:   return X86::COND_B;
2490  case ISD::SETUGE:              // flipped
2491  case ISD::SETULE:
2492  case ISD::SETLE:   return X86::COND_BE;
2493  case ISD::SETONE:
2494  case ISD::SETNE:   return X86::COND_NE;
2495  case ISD::SETUO:   return X86::COND_P;
2496  case ISD::SETO:    return X86::COND_NP;
2497  case ISD::SETOEQ:
2498  case ISD::SETUNE:  return X86::COND_INVALID;
2499  }
2500}
2501
2502/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2503/// code. Current x86 isa includes the following FP cmov instructions:
2504/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2505static bool hasFPCMov(unsigned X86CC) {
2506  switch (X86CC) {
2507  default:
2508    return false;
2509  case X86::COND_B:
2510  case X86::COND_BE:
2511  case X86::COND_E:
2512  case X86::COND_P:
2513  case X86::COND_A:
2514  case X86::COND_AE:
2515  case X86::COND_NE:
2516  case X86::COND_NP:
2517    return true;
2518  }
2519}
2520
2521/// isFPImmLegal - Returns true if the target can instruction select the
2522/// specified FP immediate natively. If false, the legalizer will
2523/// materialize the FP immediate as a load from a constant pool.
2524bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2525  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2526    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2527      return true;
2528  }
2529  return false;
2530}
2531
2532/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2533/// the specified range (L, H].
2534static bool isUndefOrInRange(int Val, int Low, int Hi) {
2535  return (Val < 0) || (Val >= Low && Val < Hi);
2536}
2537
2538/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2539/// specified value.
2540static bool isUndefOrEqual(int Val, int CmpVal) {
2541  if (Val < 0 || Val == CmpVal)
2542    return true;
2543  return false;
2544}
2545
2546/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2547/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2548/// the second operand.
2549static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2550  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2551    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2552  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2553    return (Mask[0] < 2 && Mask[1] < 2);
2554  return false;
2555}
2556
2557bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2558  SmallVector<int, 8> M;
2559  N->getMask(M);
2560  return ::isPSHUFDMask(M, N->getValueType(0));
2561}
2562
2563/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2564/// is suitable for input to PSHUFHW.
2565static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2566  if (VT != MVT::v8i16)
2567    return false;
2568
2569  // Lower quadword copied in order or undef.
2570  for (int i = 0; i != 4; ++i)
2571    if (Mask[i] >= 0 && Mask[i] != i)
2572      return false;
2573
2574  // Upper quadword shuffled.
2575  for (int i = 4; i != 8; ++i)
2576    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2577      return false;
2578
2579  return true;
2580}
2581
2582bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2583  SmallVector<int, 8> M;
2584  N->getMask(M);
2585  return ::isPSHUFHWMask(M, N->getValueType(0));
2586}
2587
2588/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2589/// is suitable for input to PSHUFLW.
2590static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2591  if (VT != MVT::v8i16)
2592    return false;
2593
2594  // Upper quadword copied in order.
2595  for (int i = 4; i != 8; ++i)
2596    if (Mask[i] >= 0 && Mask[i] != i)
2597      return false;
2598
2599  // Lower quadword shuffled.
2600  for (int i = 0; i != 4; ++i)
2601    if (Mask[i] >= 4)
2602      return false;
2603
2604  return true;
2605}
2606
2607bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2608  SmallVector<int, 8> M;
2609  N->getMask(M);
2610  return ::isPSHUFLWMask(M, N->getValueType(0));
2611}
2612
2613/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2614/// is suitable for input to PALIGNR.
2615static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2616                          bool hasSSSE3) {
2617  int i, e = VT.getVectorNumElements();
2618
2619  // Do not handle v2i64 / v2f64 shuffles with palignr.
2620  if (e < 4 || !hasSSSE3)
2621    return false;
2622
2623  for (i = 0; i != e; ++i)
2624    if (Mask[i] >= 0)
2625      break;
2626
2627  // All undef, not a palignr.
2628  if (i == e)
2629    return false;
2630
2631  // Determine if it's ok to perform a palignr with only the LHS, since we
2632  // don't have access to the actual shuffle elements to see if RHS is undef.
2633  bool Unary = Mask[i] < (int)e;
2634  bool NeedsUnary = false;
2635
2636  int s = Mask[i] - i;
2637
2638  // Check the rest of the elements to see if they are consecutive.
2639  for (++i; i != e; ++i) {
2640    int m = Mask[i];
2641    if (m < 0)
2642      continue;
2643
2644    Unary = Unary && (m < (int)e);
2645    NeedsUnary = NeedsUnary || (m < s);
2646
2647    if (NeedsUnary && !Unary)
2648      return false;
2649    if (Unary && m != ((s+i) & (e-1)))
2650      return false;
2651    if (!Unary && m != (s+i))
2652      return false;
2653  }
2654  return true;
2655}
2656
2657bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2658  SmallVector<int, 8> M;
2659  N->getMask(M);
2660  return ::isPALIGNRMask(M, N->getValueType(0), true);
2661}
2662
2663/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2664/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2665static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2666  int NumElems = VT.getVectorNumElements();
2667  if (NumElems != 2 && NumElems != 4)
2668    return false;
2669
2670  int Half = NumElems / 2;
2671  for (int i = 0; i < Half; ++i)
2672    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2673      return false;
2674  for (int i = Half; i < NumElems; ++i)
2675    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2676      return false;
2677
2678  return true;
2679}
2680
2681bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2682  SmallVector<int, 8> M;
2683  N->getMask(M);
2684  return ::isSHUFPMask(M, N->getValueType(0));
2685}
2686
2687/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2688/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2689/// half elements to come from vector 1 (which would equal the dest.) and
2690/// the upper half to come from vector 2.
2691static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2692  int NumElems = VT.getVectorNumElements();
2693
2694  if (NumElems != 2 && NumElems != 4)
2695    return false;
2696
2697  int Half = NumElems / 2;
2698  for (int i = 0; i < Half; ++i)
2699    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2700      return false;
2701  for (int i = Half; i < NumElems; ++i)
2702    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2703      return false;
2704  return true;
2705}
2706
2707static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2708  SmallVector<int, 8> M;
2709  N->getMask(M);
2710  return isCommutedSHUFPMask(M, N->getValueType(0));
2711}
2712
2713/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2714/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2715bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2716  if (N->getValueType(0).getVectorNumElements() != 4)
2717    return false;
2718
2719  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2720  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2721         isUndefOrEqual(N->getMaskElt(1), 7) &&
2722         isUndefOrEqual(N->getMaskElt(2), 2) &&
2723         isUndefOrEqual(N->getMaskElt(3), 3);
2724}
2725
2726/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2727/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2728/// <2, 3, 2, 3>
2729bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2730  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2731
2732  if (NumElems != 4)
2733    return false;
2734
2735  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2736  isUndefOrEqual(N->getMaskElt(1), 3) &&
2737  isUndefOrEqual(N->getMaskElt(2), 2) &&
2738  isUndefOrEqual(N->getMaskElt(3), 3);
2739}
2740
2741/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2742/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2743bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2744  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2745
2746  if (NumElems != 2 && NumElems != 4)
2747    return false;
2748
2749  for (unsigned i = 0; i < NumElems/2; ++i)
2750    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2751      return false;
2752
2753  for (unsigned i = NumElems/2; i < NumElems; ++i)
2754    if (!isUndefOrEqual(N->getMaskElt(i), i))
2755      return false;
2756
2757  return true;
2758}
2759
2760/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2761/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2762bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2763  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2764
2765  if (NumElems != 2 && NumElems != 4)
2766    return false;
2767
2768  for (unsigned i = 0; i < NumElems/2; ++i)
2769    if (!isUndefOrEqual(N->getMaskElt(i), i))
2770      return false;
2771
2772  for (unsigned i = 0; i < NumElems/2; ++i)
2773    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2774      return false;
2775
2776  return true;
2777}
2778
2779/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2780/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2781static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2782                         bool V2IsSplat = false) {
2783  int NumElts = VT.getVectorNumElements();
2784  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2785    return false;
2786
2787  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2788    int BitI  = Mask[i];
2789    int BitI1 = Mask[i+1];
2790    if (!isUndefOrEqual(BitI, j))
2791      return false;
2792    if (V2IsSplat) {
2793      if (!isUndefOrEqual(BitI1, NumElts))
2794        return false;
2795    } else {
2796      if (!isUndefOrEqual(BitI1, j + NumElts))
2797        return false;
2798    }
2799  }
2800  return true;
2801}
2802
2803bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2804  SmallVector<int, 8> M;
2805  N->getMask(M);
2806  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2807}
2808
2809/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2810/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2811static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2812                         bool V2IsSplat = false) {
2813  int NumElts = VT.getVectorNumElements();
2814  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2815    return false;
2816
2817  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2818    int BitI  = Mask[i];
2819    int BitI1 = Mask[i+1];
2820    if (!isUndefOrEqual(BitI, j + NumElts/2))
2821      return false;
2822    if (V2IsSplat) {
2823      if (isUndefOrEqual(BitI1, NumElts))
2824        return false;
2825    } else {
2826      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2827        return false;
2828    }
2829  }
2830  return true;
2831}
2832
2833bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2834  SmallVector<int, 8> M;
2835  N->getMask(M);
2836  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2837}
2838
2839/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2840/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2841/// <0, 0, 1, 1>
2842static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2843  int NumElems = VT.getVectorNumElements();
2844  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2845    return false;
2846
2847  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2848    int BitI  = Mask[i];
2849    int BitI1 = Mask[i+1];
2850    if (!isUndefOrEqual(BitI, j))
2851      return false;
2852    if (!isUndefOrEqual(BitI1, j))
2853      return false;
2854  }
2855  return true;
2856}
2857
2858bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2859  SmallVector<int, 8> M;
2860  N->getMask(M);
2861  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2862}
2863
2864/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2865/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2866/// <2, 2, 3, 3>
2867static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2868  int NumElems = VT.getVectorNumElements();
2869  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2870    return false;
2871
2872  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2873    int BitI  = Mask[i];
2874    int BitI1 = Mask[i+1];
2875    if (!isUndefOrEqual(BitI, j))
2876      return false;
2877    if (!isUndefOrEqual(BitI1, j))
2878      return false;
2879  }
2880  return true;
2881}
2882
2883bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2884  SmallVector<int, 8> M;
2885  N->getMask(M);
2886  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2887}
2888
2889/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2890/// specifies a shuffle of elements that is suitable for input to MOVSS,
2891/// MOVSD, and MOVD, i.e. setting the lowest element.
2892static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2893  if (VT.getVectorElementType().getSizeInBits() < 32)
2894    return false;
2895
2896  int NumElts = VT.getVectorNumElements();
2897
2898  if (!isUndefOrEqual(Mask[0], NumElts))
2899    return false;
2900
2901  for (int i = 1; i < NumElts; ++i)
2902    if (!isUndefOrEqual(Mask[i], i))
2903      return false;
2904
2905  return true;
2906}
2907
2908bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2909  SmallVector<int, 8> M;
2910  N->getMask(M);
2911  return ::isMOVLMask(M, N->getValueType(0));
2912}
2913
2914/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2915/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2916/// element of vector 2 and the other elements to come from vector 1 in order.
2917static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2918                               bool V2IsSplat = false, bool V2IsUndef = false) {
2919  int NumOps = VT.getVectorNumElements();
2920  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2921    return false;
2922
2923  if (!isUndefOrEqual(Mask[0], 0))
2924    return false;
2925
2926  for (int i = 1; i < NumOps; ++i)
2927    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2928          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2929          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2930      return false;
2931
2932  return true;
2933}
2934
2935static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2936                           bool V2IsUndef = false) {
2937  SmallVector<int, 8> M;
2938  N->getMask(M);
2939  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2940}
2941
2942/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2943/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2944bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2945  if (N->getValueType(0).getVectorNumElements() != 4)
2946    return false;
2947
2948  // Expect 1, 1, 3, 3
2949  for (unsigned i = 0; i < 2; ++i) {
2950    int Elt = N->getMaskElt(i);
2951    if (Elt >= 0 && Elt != 1)
2952      return false;
2953  }
2954
2955  bool HasHi = false;
2956  for (unsigned i = 2; i < 4; ++i) {
2957    int Elt = N->getMaskElt(i);
2958    if (Elt >= 0 && Elt != 3)
2959      return false;
2960    if (Elt == 3)
2961      HasHi = true;
2962  }
2963  // Don't use movshdup if it can be done with a shufps.
2964  // FIXME: verify that matching u, u, 3, 3 is what we want.
2965  return HasHi;
2966}
2967
2968/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2969/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2970bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2971  if (N->getValueType(0).getVectorNumElements() != 4)
2972    return false;
2973
2974  // Expect 0, 0, 2, 2
2975  for (unsigned i = 0; i < 2; ++i)
2976    if (N->getMaskElt(i) > 0)
2977      return false;
2978
2979  bool HasHi = false;
2980  for (unsigned i = 2; i < 4; ++i) {
2981    int Elt = N->getMaskElt(i);
2982    if (Elt >= 0 && Elt != 2)
2983      return false;
2984    if (Elt == 2)
2985      HasHi = true;
2986  }
2987  // Don't use movsldup if it can be done with a shufps.
2988  return HasHi;
2989}
2990
2991/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2992/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2993bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2994  int e = N->getValueType(0).getVectorNumElements() / 2;
2995
2996  for (int i = 0; i < e; ++i)
2997    if (!isUndefOrEqual(N->getMaskElt(i), i))
2998      return false;
2999  for (int i = 0; i < e; ++i)
3000    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3001      return false;
3002  return true;
3003}
3004
3005/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3006/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3007unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3008  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3009  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3010
3011  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3012  unsigned Mask = 0;
3013  for (int i = 0; i < NumOperands; ++i) {
3014    int Val = SVOp->getMaskElt(NumOperands-i-1);
3015    if (Val < 0) Val = 0;
3016    if (Val >= NumOperands) Val -= NumOperands;
3017    Mask |= Val;
3018    if (i != NumOperands - 1)
3019      Mask <<= Shift;
3020  }
3021  return Mask;
3022}
3023
3024/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3025/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3026unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3027  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3028  unsigned Mask = 0;
3029  // 8 nodes, but we only care about the last 4.
3030  for (unsigned i = 7; i >= 4; --i) {
3031    int Val = SVOp->getMaskElt(i);
3032    if (Val >= 0)
3033      Mask |= (Val - 4);
3034    if (i != 4)
3035      Mask <<= 2;
3036  }
3037  return Mask;
3038}
3039
3040/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3041/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3042unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3043  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3044  unsigned Mask = 0;
3045  // 8 nodes, but we only care about the first 4.
3046  for (int i = 3; i >= 0; --i) {
3047    int Val = SVOp->getMaskElt(i);
3048    if (Val >= 0)
3049      Mask |= Val;
3050    if (i != 0)
3051      Mask <<= 2;
3052  }
3053  return Mask;
3054}
3055
3056/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3057/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3058unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3059  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3060  EVT VVT = N->getValueType(0);
3061  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3062  int Val = 0;
3063
3064  unsigned i, e;
3065  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3066    Val = SVOp->getMaskElt(i);
3067    if (Val >= 0)
3068      break;
3069  }
3070  return (Val - i) * EltSize;
3071}
3072
3073/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3074/// constant +0.0.
3075bool X86::isZeroNode(SDValue Elt) {
3076  return ((isa<ConstantSDNode>(Elt) &&
3077           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3078          (isa<ConstantFPSDNode>(Elt) &&
3079           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3080}
3081
3082/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3083/// their permute mask.
3084static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3085                                    SelectionDAG &DAG) {
3086  EVT VT = SVOp->getValueType(0);
3087  unsigned NumElems = VT.getVectorNumElements();
3088  SmallVector<int, 8> MaskVec;
3089
3090  for (unsigned i = 0; i != NumElems; ++i) {
3091    int idx = SVOp->getMaskElt(i);
3092    if (idx < 0)
3093      MaskVec.push_back(idx);
3094    else if (idx < (int)NumElems)
3095      MaskVec.push_back(idx + NumElems);
3096    else
3097      MaskVec.push_back(idx - NumElems);
3098  }
3099  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3100                              SVOp->getOperand(0), &MaskVec[0]);
3101}
3102
3103/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3104/// the two vector operands have swapped position.
3105static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3106  unsigned NumElems = VT.getVectorNumElements();
3107  for (unsigned i = 0; i != NumElems; ++i) {
3108    int idx = Mask[i];
3109    if (idx < 0)
3110      continue;
3111    else if (idx < (int)NumElems)
3112      Mask[i] = idx + NumElems;
3113    else
3114      Mask[i] = idx - NumElems;
3115  }
3116}
3117
3118/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3119/// match movhlps. The lower half elements should come from upper half of
3120/// V1 (and in order), and the upper half elements should come from the upper
3121/// half of V2 (and in order).
3122static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3123  if (Op->getValueType(0).getVectorNumElements() != 4)
3124    return false;
3125  for (unsigned i = 0, e = 2; i != e; ++i)
3126    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3127      return false;
3128  for (unsigned i = 2; i != 4; ++i)
3129    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3130      return false;
3131  return true;
3132}
3133
3134/// isScalarLoadToVector - Returns true if the node is a scalar load that
3135/// is promoted to a vector. It also returns the LoadSDNode by reference if
3136/// required.
3137static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3138  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3139    return false;
3140  N = N->getOperand(0).getNode();
3141  if (!ISD::isNON_EXTLoad(N))
3142    return false;
3143  if (LD)
3144    *LD = cast<LoadSDNode>(N);
3145  return true;
3146}
3147
3148/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3149/// match movlp{s|d}. The lower half elements should come from lower half of
3150/// V1 (and in order), and the upper half elements should come from the upper
3151/// half of V2 (and in order). And since V1 will become the source of the
3152/// MOVLP, it must be either a vector load or a scalar load to vector.
3153static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3154                               ShuffleVectorSDNode *Op) {
3155  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3156    return false;
3157  // Is V2 is a vector load, don't do this transformation. We will try to use
3158  // load folding shufps op.
3159  if (ISD::isNON_EXTLoad(V2))
3160    return false;
3161
3162  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3163
3164  if (NumElems != 2 && NumElems != 4)
3165    return false;
3166  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3167    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3168      return false;
3169  for (unsigned i = NumElems/2; i != NumElems; ++i)
3170    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3171      return false;
3172  return true;
3173}
3174
3175/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3176/// all the same.
3177static bool isSplatVector(SDNode *N) {
3178  if (N->getOpcode() != ISD::BUILD_VECTOR)
3179    return false;
3180
3181  SDValue SplatValue = N->getOperand(0);
3182  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3183    if (N->getOperand(i) != SplatValue)
3184      return false;
3185  return true;
3186}
3187
3188/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3189/// to an zero vector.
3190/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3191static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3192  SDValue V1 = N->getOperand(0);
3193  SDValue V2 = N->getOperand(1);
3194  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3195  for (unsigned i = 0; i != NumElems; ++i) {
3196    int Idx = N->getMaskElt(i);
3197    if (Idx >= (int)NumElems) {
3198      unsigned Opc = V2.getOpcode();
3199      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3200        continue;
3201      if (Opc != ISD::BUILD_VECTOR ||
3202          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3203        return false;
3204    } else if (Idx >= 0) {
3205      unsigned Opc = V1.getOpcode();
3206      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3207        continue;
3208      if (Opc != ISD::BUILD_VECTOR ||
3209          !X86::isZeroNode(V1.getOperand(Idx)))
3210        return false;
3211    }
3212  }
3213  return true;
3214}
3215
3216/// getZeroVector - Returns a vector of specified type with all zero elements.
3217///
3218static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3219                             DebugLoc dl) {
3220  assert(VT.isVector() && "Expected a vector type");
3221
3222  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3223  // type.  This ensures they get CSE'd.
3224  SDValue Vec;
3225  if (VT.getSizeInBits() == 64) { // MMX
3226    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3227    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3228  } else if (HasSSE2) {  // SSE2
3229    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3230    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3231  } else { // SSE1
3232    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3233    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3234  }
3235  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3236}
3237
3238/// getOnesVector - Returns a vector of specified type with all bits set.
3239///
3240static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3241  assert(VT.isVector() && "Expected a vector type");
3242
3243  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3244  // type.  This ensures they get CSE'd.
3245  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3246  SDValue Vec;
3247  if (VT.getSizeInBits() == 64)  // MMX
3248    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3249  else                                              // SSE
3250    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3251  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3252}
3253
3254
3255/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3256/// that point to V2 points to its first element.
3257static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3258  EVT VT = SVOp->getValueType(0);
3259  unsigned NumElems = VT.getVectorNumElements();
3260
3261  bool Changed = false;
3262  SmallVector<int, 8> MaskVec;
3263  SVOp->getMask(MaskVec);
3264
3265  for (unsigned i = 0; i != NumElems; ++i) {
3266    if (MaskVec[i] > (int)NumElems) {
3267      MaskVec[i] = NumElems;
3268      Changed = true;
3269    }
3270  }
3271  if (Changed)
3272    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3273                                SVOp->getOperand(1), &MaskVec[0]);
3274  return SDValue(SVOp, 0);
3275}
3276
3277/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3278/// operation of specified width.
3279static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3280                       SDValue V2) {
3281  unsigned NumElems = VT.getVectorNumElements();
3282  SmallVector<int, 8> Mask;
3283  Mask.push_back(NumElems);
3284  for (unsigned i = 1; i != NumElems; ++i)
3285    Mask.push_back(i);
3286  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3287}
3288
3289/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3290static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3291                          SDValue V2) {
3292  unsigned NumElems = VT.getVectorNumElements();
3293  SmallVector<int, 8> Mask;
3294  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3295    Mask.push_back(i);
3296    Mask.push_back(i + NumElems);
3297  }
3298  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3299}
3300
3301/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3302static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3303                          SDValue V2) {
3304  unsigned NumElems = VT.getVectorNumElements();
3305  unsigned Half = NumElems/2;
3306  SmallVector<int, 8> Mask;
3307  for (unsigned i = 0; i != Half; ++i) {
3308    Mask.push_back(i + Half);
3309    Mask.push_back(i + NumElems + Half);
3310  }
3311  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3312}
3313
3314/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3315static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3316                            bool HasSSE2) {
3317  if (SV->getValueType(0).getVectorNumElements() <= 4)
3318    return SDValue(SV, 0);
3319
3320  EVT PVT = MVT::v4f32;
3321  EVT VT = SV->getValueType(0);
3322  DebugLoc dl = SV->getDebugLoc();
3323  SDValue V1 = SV->getOperand(0);
3324  int NumElems = VT.getVectorNumElements();
3325  int EltNo = SV->getSplatIndex();
3326
3327  // unpack elements to the correct location
3328  while (NumElems > 4) {
3329    if (EltNo < NumElems/2) {
3330      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3331    } else {
3332      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3333      EltNo -= NumElems/2;
3334    }
3335    NumElems >>= 1;
3336  }
3337
3338  // Perform the splat.
3339  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3340  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3341  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3342  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3343}
3344
3345/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3346/// vector of zero or undef vector.  This produces a shuffle where the low
3347/// element of V2 is swizzled into the zero/undef vector, landing at element
3348/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3349static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3350                                             bool isZero, bool HasSSE2,
3351                                             SelectionDAG &DAG) {
3352  EVT VT = V2.getValueType();
3353  SDValue V1 = isZero
3354    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3355  unsigned NumElems = VT.getVectorNumElements();
3356  SmallVector<int, 16> MaskVec;
3357  for (unsigned i = 0; i != NumElems; ++i)
3358    // If this is the insertion idx, put the low elt of V2 here.
3359    MaskVec.push_back(i == Idx ? NumElems : i);
3360  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3361}
3362
3363/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3364/// a shuffle that is zero.
3365static
3366unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3367                                  bool Low, SelectionDAG &DAG) {
3368  unsigned NumZeros = 0;
3369  for (int i = 0; i < NumElems; ++i) {
3370    unsigned Index = Low ? i : NumElems-i-1;
3371    int Idx = SVOp->getMaskElt(Index);
3372    if (Idx < 0) {
3373      ++NumZeros;
3374      continue;
3375    }
3376    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3377    if (Elt.getNode() && X86::isZeroNode(Elt))
3378      ++NumZeros;
3379    else
3380      break;
3381  }
3382  return NumZeros;
3383}
3384
3385/// isVectorShift - Returns true if the shuffle can be implemented as a
3386/// logical left or right shift of a vector.
3387/// FIXME: split into pslldqi, psrldqi, palignr variants.
3388static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3389                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3390  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3391
3392  isLeft = true;
3393  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3394  if (!NumZeros) {
3395    isLeft = false;
3396    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3397    if (!NumZeros)
3398      return false;
3399  }
3400  bool SeenV1 = false;
3401  bool SeenV2 = false;
3402  for (int i = NumZeros; i < NumElems; ++i) {
3403    int Val = isLeft ? (i - NumZeros) : i;
3404    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3405    if (Idx < 0)
3406      continue;
3407    if (Idx < NumElems)
3408      SeenV1 = true;
3409    else {
3410      Idx -= NumElems;
3411      SeenV2 = true;
3412    }
3413    if (Idx != Val)
3414      return false;
3415  }
3416  if (SeenV1 && SeenV2)
3417    return false;
3418
3419  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3420  ShAmt = NumZeros;
3421  return true;
3422}
3423
3424
3425/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3426///
3427static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3428                                       unsigned NumNonZero, unsigned NumZero,
3429                                       SelectionDAG &DAG, TargetLowering &TLI) {
3430  if (NumNonZero > 8)
3431    return SDValue();
3432
3433  DebugLoc dl = Op.getDebugLoc();
3434  SDValue V(0, 0);
3435  bool First = true;
3436  for (unsigned i = 0; i < 16; ++i) {
3437    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3438    if (ThisIsNonZero && First) {
3439      if (NumZero)
3440        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3441      else
3442        V = DAG.getUNDEF(MVT::v8i16);
3443      First = false;
3444    }
3445
3446    if ((i & 1) != 0) {
3447      SDValue ThisElt(0, 0), LastElt(0, 0);
3448      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3449      if (LastIsNonZero) {
3450        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3451                              MVT::i16, Op.getOperand(i-1));
3452      }
3453      if (ThisIsNonZero) {
3454        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3455        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3456                              ThisElt, DAG.getConstant(8, MVT::i8));
3457        if (LastIsNonZero)
3458          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3459      } else
3460        ThisElt = LastElt;
3461
3462      if (ThisElt.getNode())
3463        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3464                        DAG.getIntPtrConstant(i/2));
3465    }
3466  }
3467
3468  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3469}
3470
3471/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3472///
3473static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3474                                       unsigned NumNonZero, unsigned NumZero,
3475                                       SelectionDAG &DAG, TargetLowering &TLI) {
3476  if (NumNonZero > 4)
3477    return SDValue();
3478
3479  DebugLoc dl = Op.getDebugLoc();
3480  SDValue V(0, 0);
3481  bool First = true;
3482  for (unsigned i = 0; i < 8; ++i) {
3483    bool isNonZero = (NonZeros & (1 << i)) != 0;
3484    if (isNonZero) {
3485      if (First) {
3486        if (NumZero)
3487          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3488        else
3489          V = DAG.getUNDEF(MVT::v8i16);
3490        First = false;
3491      }
3492      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3493                      MVT::v8i16, V, Op.getOperand(i),
3494                      DAG.getIntPtrConstant(i));
3495    }
3496  }
3497
3498  return V;
3499}
3500
3501/// getVShift - Return a vector logical shift node.
3502///
3503static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3504                         unsigned NumBits, SelectionDAG &DAG,
3505                         const TargetLowering &TLI, DebugLoc dl) {
3506  bool isMMX = VT.getSizeInBits() == 64;
3507  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3508  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3509  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3510  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3511                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3512                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3513}
3514
3515SDValue
3516X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3517                                          SelectionDAG &DAG) {
3518
3519  // Check if the scalar load can be widened into a vector load. And if
3520  // the address is "base + cst" see if the cst can be "absorbed" into
3521  // the shuffle mask.
3522  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3523    SDValue Ptr = LD->getBasePtr();
3524    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3525      return SDValue();
3526    EVT PVT = LD->getValueType(0);
3527    if (PVT != MVT::i32 && PVT != MVT::f32)
3528      return SDValue();
3529
3530    int FI = -1;
3531    int64_t Offset = 0;
3532    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3533      FI = FINode->getIndex();
3534      Offset = 0;
3535    } else if (Ptr.getOpcode() == ISD::ADD &&
3536               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3537               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3538      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3539      Offset = Ptr.getConstantOperandVal(1);
3540      Ptr = Ptr.getOperand(0);
3541    } else {
3542      return SDValue();
3543    }
3544
3545    SDValue Chain = LD->getChain();
3546    // Make sure the stack object alignment is at least 16.
3547    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3548    if (DAG.InferPtrAlignment(Ptr) < 16) {
3549      if (MFI->isFixedObjectIndex(FI)) {
3550        // Can't change the alignment. FIXME: It's possible to compute
3551        // the exact stack offset and reference FI + adjust offset instead.
3552        // If someone *really* cares about this. That's the way to implement it.
3553        return SDValue();
3554      } else {
3555        MFI->setObjectAlignment(FI, 16);
3556      }
3557    }
3558
3559    // (Offset % 16) must be multiple of 4. Then address is then
3560    // Ptr + (Offset & ~15).
3561    if (Offset < 0)
3562      return SDValue();
3563    if ((Offset % 16) & 3)
3564      return SDValue();
3565    int64_t StartOffset = Offset & ~15;
3566    if (StartOffset)
3567      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3568                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3569
3570    int EltNo = (Offset - StartOffset) >> 2;
3571    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3572    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3573    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3574                             false, false, 0);
3575    // Canonicalize it to a v4i32 shuffle.
3576    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3577    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3578                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3579                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3580  }
3581
3582  return SDValue();
3583}
3584
3585SDValue
3586X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3587  DebugLoc dl = Op.getDebugLoc();
3588  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3589  if (ISD::isBuildVectorAllZeros(Op.getNode())
3590      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3591    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3592    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3593    // eliminated on x86-32 hosts.
3594    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3595      return Op;
3596
3597    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3598      return getOnesVector(Op.getValueType(), DAG, dl);
3599    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3600  }
3601
3602  EVT VT = Op.getValueType();
3603  EVT ExtVT = VT.getVectorElementType();
3604  unsigned EVTBits = ExtVT.getSizeInBits();
3605
3606  unsigned NumElems = Op.getNumOperands();
3607  unsigned NumZero  = 0;
3608  unsigned NumNonZero = 0;
3609  unsigned NonZeros = 0;
3610  bool IsAllConstants = true;
3611  SmallSet<SDValue, 8> Values;
3612  for (unsigned i = 0; i < NumElems; ++i) {
3613    SDValue Elt = Op.getOperand(i);
3614    if (Elt.getOpcode() == ISD::UNDEF)
3615      continue;
3616    Values.insert(Elt);
3617    if (Elt.getOpcode() != ISD::Constant &&
3618        Elt.getOpcode() != ISD::ConstantFP)
3619      IsAllConstants = false;
3620    if (X86::isZeroNode(Elt))
3621      NumZero++;
3622    else {
3623      NonZeros |= (1 << i);
3624      NumNonZero++;
3625    }
3626  }
3627
3628  if (NumNonZero == 0) {
3629    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3630    return DAG.getUNDEF(VT);
3631  }
3632
3633  // Special case for single non-zero, non-undef, element.
3634  if (NumNonZero == 1) {
3635    unsigned Idx = CountTrailingZeros_32(NonZeros);
3636    SDValue Item = Op.getOperand(Idx);
3637
3638    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3639    // the value are obviously zero, truncate the value to i32 and do the
3640    // insertion that way.  Only do this if the value is non-constant or if the
3641    // value is a constant being inserted into element 0.  It is cheaper to do
3642    // a constant pool load than it is to do a movd + shuffle.
3643    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3644        (!IsAllConstants || Idx == 0)) {
3645      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3646        // Handle MMX and SSE both.
3647        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3648        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3649
3650        // Truncate the value (which may itself be a constant) to i32, and
3651        // convert it to a vector with movd (S2V+shuffle to zero extend).
3652        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3653        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3654        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3655                                           Subtarget->hasSSE2(), DAG);
3656
3657        // Now we have our 32-bit value zero extended in the low element of
3658        // a vector.  If Idx != 0, swizzle it into place.
3659        if (Idx != 0) {
3660          SmallVector<int, 4> Mask;
3661          Mask.push_back(Idx);
3662          for (unsigned i = 1; i != VecElts; ++i)
3663            Mask.push_back(i);
3664          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3665                                      DAG.getUNDEF(Item.getValueType()),
3666                                      &Mask[0]);
3667        }
3668        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3669      }
3670    }
3671
3672    // If we have a constant or non-constant insertion into the low element of
3673    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3674    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3675    // depending on what the source datatype is.
3676    if (Idx == 0) {
3677      if (NumZero == 0) {
3678        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3679      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3680          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3681        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3682        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3683        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3684                                           DAG);
3685      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3686        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3687        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3688        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3689        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3690                                           Subtarget->hasSSE2(), DAG);
3691        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3692      }
3693    }
3694
3695    // Is it a vector logical left shift?
3696    if (NumElems == 2 && Idx == 1 &&
3697        X86::isZeroNode(Op.getOperand(0)) &&
3698        !X86::isZeroNode(Op.getOperand(1))) {
3699      unsigned NumBits = VT.getSizeInBits();
3700      return getVShift(true, VT,
3701                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3702                                   VT, Op.getOperand(1)),
3703                       NumBits/2, DAG, *this, dl);
3704    }
3705
3706    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3707      return SDValue();
3708
3709    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3710    // is a non-constant being inserted into an element other than the low one,
3711    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3712    // movd/movss) to move this into the low element, then shuffle it into
3713    // place.
3714    if (EVTBits == 32) {
3715      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3716
3717      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3718      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3719                                         Subtarget->hasSSE2(), DAG);
3720      SmallVector<int, 8> MaskVec;
3721      for (unsigned i = 0; i < NumElems; i++)
3722        MaskVec.push_back(i == Idx ? 0 : 1);
3723      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3724    }
3725  }
3726
3727  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3728  if (Values.size() == 1) {
3729    if (EVTBits == 32) {
3730      // Instead of a shuffle like this:
3731      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3732      // Check if it's possible to issue this instead.
3733      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3734      unsigned Idx = CountTrailingZeros_32(NonZeros);
3735      SDValue Item = Op.getOperand(Idx);
3736      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3737        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3738    }
3739    return SDValue();
3740  }
3741
3742  // A vector full of immediates; various special cases are already
3743  // handled, so this is best done with a single constant-pool load.
3744  if (IsAllConstants)
3745    return SDValue();
3746
3747  // Let legalizer expand 2-wide build_vectors.
3748  if (EVTBits == 64) {
3749    if (NumNonZero == 1) {
3750      // One half is zero or undef.
3751      unsigned Idx = CountTrailingZeros_32(NonZeros);
3752      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3753                                 Op.getOperand(Idx));
3754      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3755                                         Subtarget->hasSSE2(), DAG);
3756    }
3757    return SDValue();
3758  }
3759
3760  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3761  if (EVTBits == 8 && NumElems == 16) {
3762    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3763                                        *this);
3764    if (V.getNode()) return V;
3765  }
3766
3767  if (EVTBits == 16 && NumElems == 8) {
3768    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3769                                        *this);
3770    if (V.getNode()) return V;
3771  }
3772
3773  // If element VT is == 32 bits, turn it into a number of shuffles.
3774  SmallVector<SDValue, 8> V;
3775  V.resize(NumElems);
3776  if (NumElems == 4 && NumZero > 0) {
3777    for (unsigned i = 0; i < 4; ++i) {
3778      bool isZero = !(NonZeros & (1 << i));
3779      if (isZero)
3780        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3781      else
3782        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3783    }
3784
3785    for (unsigned i = 0; i < 2; ++i) {
3786      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3787        default: break;
3788        case 0:
3789          V[i] = V[i*2];  // Must be a zero vector.
3790          break;
3791        case 1:
3792          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3793          break;
3794        case 2:
3795          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3796          break;
3797        case 3:
3798          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3799          break;
3800      }
3801    }
3802
3803    SmallVector<int, 8> MaskVec;
3804    bool Reverse = (NonZeros & 0x3) == 2;
3805    for (unsigned i = 0; i < 2; ++i)
3806      MaskVec.push_back(Reverse ? 1-i : i);
3807    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3808    for (unsigned i = 0; i < 2; ++i)
3809      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3810    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3811  }
3812
3813  if (Values.size() > 2) {
3814    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3815    // values to be inserted is equal to the number of elements, in which case
3816    // use the unpack code below in the hopes of matching the consecutive elts
3817    // load merge pattern for shuffles.
3818    // FIXME: We could probably just check that here directly.
3819    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3820        getSubtarget()->hasSSE41()) {
3821      V[0] = DAG.getUNDEF(VT);
3822      for (unsigned i = 0; i < NumElems; ++i)
3823        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3824          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3825                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3826      return V[0];
3827    }
3828    // Expand into a number of unpckl*.
3829    // e.g. for v4f32
3830    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3831    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3832    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3833    for (unsigned i = 0; i < NumElems; ++i)
3834      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3835    NumElems >>= 1;
3836    while (NumElems != 0) {
3837      for (unsigned i = 0; i < NumElems; ++i)
3838        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3839      NumElems >>= 1;
3840    }
3841    return V[0];
3842  }
3843
3844  return SDValue();
3845}
3846
3847SDValue
3848X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3849  // We support concatenate two MMX registers and place them in a MMX
3850  // register.  This is better than doing a stack convert.
3851  DebugLoc dl = Op.getDebugLoc();
3852  EVT ResVT = Op.getValueType();
3853  assert(Op.getNumOperands() == 2);
3854  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3855         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3856  int Mask[2];
3857  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3858  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3859  InVec = Op.getOperand(1);
3860  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3861    unsigned NumElts = ResVT.getVectorNumElements();
3862    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3863    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3864                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3865  } else {
3866    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3867    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3868    Mask[0] = 0; Mask[1] = 2;
3869    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3870  }
3871  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3872}
3873
3874// v8i16 shuffles - Prefer shuffles in the following order:
3875// 1. [all]   pshuflw, pshufhw, optional move
3876// 2. [ssse3] 1 x pshufb
3877// 3. [ssse3] 2 x pshufb + 1 x por
3878// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3879static
3880SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3881                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3882  SDValue V1 = SVOp->getOperand(0);
3883  SDValue V2 = SVOp->getOperand(1);
3884  DebugLoc dl = SVOp->getDebugLoc();
3885  SmallVector<int, 8> MaskVals;
3886
3887  // Determine if more than 1 of the words in each of the low and high quadwords
3888  // of the result come from the same quadword of one of the two inputs.  Undef
3889  // mask values count as coming from any quadword, for better codegen.
3890  SmallVector<unsigned, 4> LoQuad(4);
3891  SmallVector<unsigned, 4> HiQuad(4);
3892  BitVector InputQuads(4);
3893  for (unsigned i = 0; i < 8; ++i) {
3894    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3895    int EltIdx = SVOp->getMaskElt(i);
3896    MaskVals.push_back(EltIdx);
3897    if (EltIdx < 0) {
3898      ++Quad[0];
3899      ++Quad[1];
3900      ++Quad[2];
3901      ++Quad[3];
3902      continue;
3903    }
3904    ++Quad[EltIdx / 4];
3905    InputQuads.set(EltIdx / 4);
3906  }
3907
3908  int BestLoQuad = -1;
3909  unsigned MaxQuad = 1;
3910  for (unsigned i = 0; i < 4; ++i) {
3911    if (LoQuad[i] > MaxQuad) {
3912      BestLoQuad = i;
3913      MaxQuad = LoQuad[i];
3914    }
3915  }
3916
3917  int BestHiQuad = -1;
3918  MaxQuad = 1;
3919  for (unsigned i = 0; i < 4; ++i) {
3920    if (HiQuad[i] > MaxQuad) {
3921      BestHiQuad = i;
3922      MaxQuad = HiQuad[i];
3923    }
3924  }
3925
3926  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3927  // of the two input vectors, shuffle them into one input vector so only a
3928  // single pshufb instruction is necessary. If There are more than 2 input
3929  // quads, disable the next transformation since it does not help SSSE3.
3930  bool V1Used = InputQuads[0] || InputQuads[1];
3931  bool V2Used = InputQuads[2] || InputQuads[3];
3932  if (TLI.getSubtarget()->hasSSSE3()) {
3933    if (InputQuads.count() == 2 && V1Used && V2Used) {
3934      BestLoQuad = InputQuads.find_first();
3935      BestHiQuad = InputQuads.find_next(BestLoQuad);
3936    }
3937    if (InputQuads.count() > 2) {
3938      BestLoQuad = -1;
3939      BestHiQuad = -1;
3940    }
3941  }
3942
3943  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3944  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3945  // words from all 4 input quadwords.
3946  SDValue NewV;
3947  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3948    SmallVector<int, 8> MaskV;
3949    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3950    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3951    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3952                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3953                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3954    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3955
3956    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3957    // source words for the shuffle, to aid later transformations.
3958    bool AllWordsInNewV = true;
3959    bool InOrder[2] = { true, true };
3960    for (unsigned i = 0; i != 8; ++i) {
3961      int idx = MaskVals[i];
3962      if (idx != (int)i)
3963        InOrder[i/4] = false;
3964      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3965        continue;
3966      AllWordsInNewV = false;
3967      break;
3968    }
3969
3970    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3971    if (AllWordsInNewV) {
3972      for (int i = 0; i != 8; ++i) {
3973        int idx = MaskVals[i];
3974        if (idx < 0)
3975          continue;
3976        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3977        if ((idx != i) && idx < 4)
3978          pshufhw = false;
3979        if ((idx != i) && idx > 3)
3980          pshuflw = false;
3981      }
3982      V1 = NewV;
3983      V2Used = false;
3984      BestLoQuad = 0;
3985      BestHiQuad = 1;
3986    }
3987
3988    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3989    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3990    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3991      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3992                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3993    }
3994  }
3995
3996  // If we have SSSE3, and all words of the result are from 1 input vector,
3997  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3998  // is present, fall back to case 4.
3999  if (TLI.getSubtarget()->hasSSSE3()) {
4000    SmallVector<SDValue,16> pshufbMask;
4001
4002    // If we have elements from both input vectors, set the high bit of the
4003    // shuffle mask element to zero out elements that come from V2 in the V1
4004    // mask, and elements that come from V1 in the V2 mask, so that the two
4005    // results can be OR'd together.
4006    bool TwoInputs = V1Used && V2Used;
4007    for (unsigned i = 0; i != 8; ++i) {
4008      int EltIdx = MaskVals[i] * 2;
4009      if (TwoInputs && (EltIdx >= 16)) {
4010        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4011        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4012        continue;
4013      }
4014      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4015      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4016    }
4017    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4018    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4019                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4020                                 MVT::v16i8, &pshufbMask[0], 16));
4021    if (!TwoInputs)
4022      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4023
4024    // Calculate the shuffle mask for the second input, shuffle it, and
4025    // OR it with the first shuffled input.
4026    pshufbMask.clear();
4027    for (unsigned i = 0; i != 8; ++i) {
4028      int EltIdx = MaskVals[i] * 2;
4029      if (EltIdx < 16) {
4030        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4031        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4032        continue;
4033      }
4034      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4035      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4036    }
4037    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4038    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4039                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4040                                 MVT::v16i8, &pshufbMask[0], 16));
4041    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4042    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4043  }
4044
4045  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4046  // and update MaskVals with new element order.
4047  BitVector InOrder(8);
4048  if (BestLoQuad >= 0) {
4049    SmallVector<int, 8> MaskV;
4050    for (int i = 0; i != 4; ++i) {
4051      int idx = MaskVals[i];
4052      if (idx < 0) {
4053        MaskV.push_back(-1);
4054        InOrder.set(i);
4055      } else if ((idx / 4) == BestLoQuad) {
4056        MaskV.push_back(idx & 3);
4057        InOrder.set(i);
4058      } else {
4059        MaskV.push_back(-1);
4060      }
4061    }
4062    for (unsigned i = 4; i != 8; ++i)
4063      MaskV.push_back(i);
4064    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4065                                &MaskV[0]);
4066  }
4067
4068  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4069  // and update MaskVals with the new element order.
4070  if (BestHiQuad >= 0) {
4071    SmallVector<int, 8> MaskV;
4072    for (unsigned i = 0; i != 4; ++i)
4073      MaskV.push_back(i);
4074    for (unsigned i = 4; i != 8; ++i) {
4075      int idx = MaskVals[i];
4076      if (idx < 0) {
4077        MaskV.push_back(-1);
4078        InOrder.set(i);
4079      } else if ((idx / 4) == BestHiQuad) {
4080        MaskV.push_back((idx & 3) + 4);
4081        InOrder.set(i);
4082      } else {
4083        MaskV.push_back(-1);
4084      }
4085    }
4086    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4087                                &MaskV[0]);
4088  }
4089
4090  // In case BestHi & BestLo were both -1, which means each quadword has a word
4091  // from each of the four input quadwords, calculate the InOrder bitvector now
4092  // before falling through to the insert/extract cleanup.
4093  if (BestLoQuad == -1 && BestHiQuad == -1) {
4094    NewV = V1;
4095    for (int i = 0; i != 8; ++i)
4096      if (MaskVals[i] < 0 || MaskVals[i] == i)
4097        InOrder.set(i);
4098  }
4099
4100  // The other elements are put in the right place using pextrw and pinsrw.
4101  for (unsigned i = 0; i != 8; ++i) {
4102    if (InOrder[i])
4103      continue;
4104    int EltIdx = MaskVals[i];
4105    if (EltIdx < 0)
4106      continue;
4107    SDValue ExtOp = (EltIdx < 8)
4108    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4109                  DAG.getIntPtrConstant(EltIdx))
4110    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4111                  DAG.getIntPtrConstant(EltIdx - 8));
4112    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4113                       DAG.getIntPtrConstant(i));
4114  }
4115  return NewV;
4116}
4117
4118// v16i8 shuffles - Prefer shuffles in the following order:
4119// 1. [ssse3] 1 x pshufb
4120// 2. [ssse3] 2 x pshufb + 1 x por
4121// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4122static
4123SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4124                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4125  SDValue V1 = SVOp->getOperand(0);
4126  SDValue V2 = SVOp->getOperand(1);
4127  DebugLoc dl = SVOp->getDebugLoc();
4128  SmallVector<int, 16> MaskVals;
4129  SVOp->getMask(MaskVals);
4130
4131  // If we have SSSE3, case 1 is generated when all result bytes come from
4132  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4133  // present, fall back to case 3.
4134  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4135  bool V1Only = true;
4136  bool V2Only = true;
4137  for (unsigned i = 0; i < 16; ++i) {
4138    int EltIdx = MaskVals[i];
4139    if (EltIdx < 0)
4140      continue;
4141    if (EltIdx < 16)
4142      V2Only = false;
4143    else
4144      V1Only = false;
4145  }
4146
4147  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4148  if (TLI.getSubtarget()->hasSSSE3()) {
4149    SmallVector<SDValue,16> pshufbMask;
4150
4151    // If all result elements are from one input vector, then only translate
4152    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4153    //
4154    // Otherwise, we have elements from both input vectors, and must zero out
4155    // elements that come from V2 in the first mask, and V1 in the second mask
4156    // so that we can OR them together.
4157    bool TwoInputs = !(V1Only || V2Only);
4158    for (unsigned i = 0; i != 16; ++i) {
4159      int EltIdx = MaskVals[i];
4160      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4161        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4162        continue;
4163      }
4164      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4165    }
4166    // If all the elements are from V2, assign it to V1 and return after
4167    // building the first pshufb.
4168    if (V2Only)
4169      V1 = V2;
4170    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4171                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4172                                 MVT::v16i8, &pshufbMask[0], 16));
4173    if (!TwoInputs)
4174      return V1;
4175
4176    // Calculate the shuffle mask for the second input, shuffle it, and
4177    // OR it with the first shuffled input.
4178    pshufbMask.clear();
4179    for (unsigned i = 0; i != 16; ++i) {
4180      int EltIdx = MaskVals[i];
4181      if (EltIdx < 16) {
4182        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4183        continue;
4184      }
4185      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4186    }
4187    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4188                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4189                                 MVT::v16i8, &pshufbMask[0], 16));
4190    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4191  }
4192
4193  // No SSSE3 - Calculate in place words and then fix all out of place words
4194  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4195  // the 16 different words that comprise the two doublequadword input vectors.
4196  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4197  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4198  SDValue NewV = V2Only ? V2 : V1;
4199  for (int i = 0; i != 8; ++i) {
4200    int Elt0 = MaskVals[i*2];
4201    int Elt1 = MaskVals[i*2+1];
4202
4203    // This word of the result is all undef, skip it.
4204    if (Elt0 < 0 && Elt1 < 0)
4205      continue;
4206
4207    // This word of the result is already in the correct place, skip it.
4208    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4209      continue;
4210    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4211      continue;
4212
4213    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4214    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4215    SDValue InsElt;
4216
4217    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4218    // using a single extract together, load it and store it.
4219    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4220      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4221                           DAG.getIntPtrConstant(Elt1 / 2));
4222      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4223                        DAG.getIntPtrConstant(i));
4224      continue;
4225    }
4226
4227    // If Elt1 is defined, extract it from the appropriate source.  If the
4228    // source byte is not also odd, shift the extracted word left 8 bits
4229    // otherwise clear the bottom 8 bits if we need to do an or.
4230    if (Elt1 >= 0) {
4231      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4232                           DAG.getIntPtrConstant(Elt1 / 2));
4233      if ((Elt1 & 1) == 0)
4234        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4235                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4236      else if (Elt0 >= 0)
4237        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4238                             DAG.getConstant(0xFF00, MVT::i16));
4239    }
4240    // If Elt0 is defined, extract it from the appropriate source.  If the
4241    // source byte is not also even, shift the extracted word right 8 bits. If
4242    // Elt1 was also defined, OR the extracted values together before
4243    // inserting them in the result.
4244    if (Elt0 >= 0) {
4245      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4246                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4247      if ((Elt0 & 1) != 0)
4248        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4249                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4250      else if (Elt1 >= 0)
4251        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4252                             DAG.getConstant(0x00FF, MVT::i16));
4253      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4254                         : InsElt0;
4255    }
4256    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4257                       DAG.getIntPtrConstant(i));
4258  }
4259  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4260}
4261
4262/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4263/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4264/// done when every pair / quad of shuffle mask elements point to elements in
4265/// the right sequence. e.g.
4266/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4267static
4268SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4269                                 SelectionDAG &DAG,
4270                                 TargetLowering &TLI, DebugLoc dl) {
4271  EVT VT = SVOp->getValueType(0);
4272  SDValue V1 = SVOp->getOperand(0);
4273  SDValue V2 = SVOp->getOperand(1);
4274  unsigned NumElems = VT.getVectorNumElements();
4275  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4276  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4277  EVT MaskEltVT = MaskVT.getVectorElementType();
4278  EVT NewVT = MaskVT;
4279  switch (VT.getSimpleVT().SimpleTy) {
4280  default: assert(false && "Unexpected!");
4281  case MVT::v4f32: NewVT = MVT::v2f64; break;
4282  case MVT::v4i32: NewVT = MVT::v2i64; break;
4283  case MVT::v8i16: NewVT = MVT::v4i32; break;
4284  case MVT::v16i8: NewVT = MVT::v4i32; break;
4285  }
4286
4287  if (NewWidth == 2) {
4288    if (VT.isInteger())
4289      NewVT = MVT::v2i64;
4290    else
4291      NewVT = MVT::v2f64;
4292  }
4293  int Scale = NumElems / NewWidth;
4294  SmallVector<int, 8> MaskVec;
4295  for (unsigned i = 0; i < NumElems; i += Scale) {
4296    int StartIdx = -1;
4297    for (int j = 0; j < Scale; ++j) {
4298      int EltIdx = SVOp->getMaskElt(i+j);
4299      if (EltIdx < 0)
4300        continue;
4301      if (StartIdx == -1)
4302        StartIdx = EltIdx - (EltIdx % Scale);
4303      if (EltIdx != StartIdx + j)
4304        return SDValue();
4305    }
4306    if (StartIdx == -1)
4307      MaskVec.push_back(-1);
4308    else
4309      MaskVec.push_back(StartIdx / Scale);
4310  }
4311
4312  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4313  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4314  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4315}
4316
4317/// getVZextMovL - Return a zero-extending vector move low node.
4318///
4319static SDValue getVZextMovL(EVT VT, EVT OpVT,
4320                            SDValue SrcOp, SelectionDAG &DAG,
4321                            const X86Subtarget *Subtarget, DebugLoc dl) {
4322  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4323    LoadSDNode *LD = NULL;
4324    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4325      LD = dyn_cast<LoadSDNode>(SrcOp);
4326    if (!LD) {
4327      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4328      // instead.
4329      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4330      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4331          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4332          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4333          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4334        // PR2108
4335        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4336        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4337                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4338                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4339                                                   OpVT,
4340                                                   SrcOp.getOperand(0)
4341                                                          .getOperand(0))));
4342      }
4343    }
4344  }
4345
4346  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4347                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4348                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4349                                             OpVT, SrcOp)));
4350}
4351
4352/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4353/// shuffles.
4354static SDValue
4355LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4356  SDValue V1 = SVOp->getOperand(0);
4357  SDValue V2 = SVOp->getOperand(1);
4358  DebugLoc dl = SVOp->getDebugLoc();
4359  EVT VT = SVOp->getValueType(0);
4360
4361  SmallVector<std::pair<int, int>, 8> Locs;
4362  Locs.resize(4);
4363  SmallVector<int, 8> Mask1(4U, -1);
4364  SmallVector<int, 8> PermMask;
4365  SVOp->getMask(PermMask);
4366
4367  unsigned NumHi = 0;
4368  unsigned NumLo = 0;
4369  for (unsigned i = 0; i != 4; ++i) {
4370    int Idx = PermMask[i];
4371    if (Idx < 0) {
4372      Locs[i] = std::make_pair(-1, -1);
4373    } else {
4374      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4375      if (Idx < 4) {
4376        Locs[i] = std::make_pair(0, NumLo);
4377        Mask1[NumLo] = Idx;
4378        NumLo++;
4379      } else {
4380        Locs[i] = std::make_pair(1, NumHi);
4381        if (2+NumHi < 4)
4382          Mask1[2+NumHi] = Idx;
4383        NumHi++;
4384      }
4385    }
4386  }
4387
4388  if (NumLo <= 2 && NumHi <= 2) {
4389    // If no more than two elements come from either vector. This can be
4390    // implemented with two shuffles. First shuffle gather the elements.
4391    // The second shuffle, which takes the first shuffle as both of its
4392    // vector operands, put the elements into the right order.
4393    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4394
4395    SmallVector<int, 8> Mask2(4U, -1);
4396
4397    for (unsigned i = 0; i != 4; ++i) {
4398      if (Locs[i].first == -1)
4399        continue;
4400      else {
4401        unsigned Idx = (i < 2) ? 0 : 4;
4402        Idx += Locs[i].first * 2 + Locs[i].second;
4403        Mask2[i] = Idx;
4404      }
4405    }
4406
4407    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4408  } else if (NumLo == 3 || NumHi == 3) {
4409    // Otherwise, we must have three elements from one vector, call it X, and
4410    // one element from the other, call it Y.  First, use a shufps to build an
4411    // intermediate vector with the one element from Y and the element from X
4412    // that will be in the same half in the final destination (the indexes don't
4413    // matter). Then, use a shufps to build the final vector, taking the half
4414    // containing the element from Y from the intermediate, and the other half
4415    // from X.
4416    if (NumHi == 3) {
4417      // Normalize it so the 3 elements come from V1.
4418      CommuteVectorShuffleMask(PermMask, VT);
4419      std::swap(V1, V2);
4420    }
4421
4422    // Find the element from V2.
4423    unsigned HiIndex;
4424    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4425      int Val = PermMask[HiIndex];
4426      if (Val < 0)
4427        continue;
4428      if (Val >= 4)
4429        break;
4430    }
4431
4432    Mask1[0] = PermMask[HiIndex];
4433    Mask1[1] = -1;
4434    Mask1[2] = PermMask[HiIndex^1];
4435    Mask1[3] = -1;
4436    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4437
4438    if (HiIndex >= 2) {
4439      Mask1[0] = PermMask[0];
4440      Mask1[1] = PermMask[1];
4441      Mask1[2] = HiIndex & 1 ? 6 : 4;
4442      Mask1[3] = HiIndex & 1 ? 4 : 6;
4443      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4444    } else {
4445      Mask1[0] = HiIndex & 1 ? 2 : 0;
4446      Mask1[1] = HiIndex & 1 ? 0 : 2;
4447      Mask1[2] = PermMask[2];
4448      Mask1[3] = PermMask[3];
4449      if (Mask1[2] >= 0)
4450        Mask1[2] += 4;
4451      if (Mask1[3] >= 0)
4452        Mask1[3] += 4;
4453      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4454    }
4455  }
4456
4457  // Break it into (shuffle shuffle_hi, shuffle_lo).
4458  Locs.clear();
4459  SmallVector<int,8> LoMask(4U, -1);
4460  SmallVector<int,8> HiMask(4U, -1);
4461
4462  SmallVector<int,8> *MaskPtr = &LoMask;
4463  unsigned MaskIdx = 0;
4464  unsigned LoIdx = 0;
4465  unsigned HiIdx = 2;
4466  for (unsigned i = 0; i != 4; ++i) {
4467    if (i == 2) {
4468      MaskPtr = &HiMask;
4469      MaskIdx = 1;
4470      LoIdx = 0;
4471      HiIdx = 2;
4472    }
4473    int Idx = PermMask[i];
4474    if (Idx < 0) {
4475      Locs[i] = std::make_pair(-1, -1);
4476    } else if (Idx < 4) {
4477      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4478      (*MaskPtr)[LoIdx] = Idx;
4479      LoIdx++;
4480    } else {
4481      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4482      (*MaskPtr)[HiIdx] = Idx;
4483      HiIdx++;
4484    }
4485  }
4486
4487  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4488  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4489  SmallVector<int, 8> MaskOps;
4490  for (unsigned i = 0; i != 4; ++i) {
4491    if (Locs[i].first == -1) {
4492      MaskOps.push_back(-1);
4493    } else {
4494      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4495      MaskOps.push_back(Idx);
4496    }
4497  }
4498  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4499}
4500
4501SDValue
4502X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4503  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4504  SDValue V1 = Op.getOperand(0);
4505  SDValue V2 = Op.getOperand(1);
4506  EVT VT = Op.getValueType();
4507  DebugLoc dl = Op.getDebugLoc();
4508  unsigned NumElems = VT.getVectorNumElements();
4509  bool isMMX = VT.getSizeInBits() == 64;
4510  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4511  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4512  bool V1IsSplat = false;
4513  bool V2IsSplat = false;
4514
4515  if (isZeroShuffle(SVOp))
4516    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4517
4518  // Promote splats to v4f32.
4519  if (SVOp->isSplat()) {
4520    if (isMMX || NumElems < 4)
4521      return Op;
4522    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4523  }
4524
4525  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4526  // do it!
4527  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4528    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4529    if (NewOp.getNode())
4530      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4531                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4532  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4533    // FIXME: Figure out a cleaner way to do this.
4534    // Try to make use of movq to zero out the top part.
4535    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4536      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4537      if (NewOp.getNode()) {
4538        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4539          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4540                              DAG, Subtarget, dl);
4541      }
4542    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4543      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4544      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4545        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4546                            DAG, Subtarget, dl);
4547    }
4548  }
4549
4550  if (X86::isPSHUFDMask(SVOp))
4551    return Op;
4552
4553  // Check if this can be converted into a logical shift.
4554  bool isLeft = false;
4555  unsigned ShAmt = 0;
4556  SDValue ShVal;
4557  bool isShift = getSubtarget()->hasSSE2() &&
4558    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4559  if (isShift && ShVal.hasOneUse()) {
4560    // If the shifted value has multiple uses, it may be cheaper to use
4561    // v_set0 + movlhps or movhlps, etc.
4562    EVT EltVT = VT.getVectorElementType();
4563    ShAmt *= EltVT.getSizeInBits();
4564    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4565  }
4566
4567  if (X86::isMOVLMask(SVOp)) {
4568    if (V1IsUndef)
4569      return V2;
4570    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4571      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4572    if (!isMMX)
4573      return Op;
4574  }
4575
4576  // FIXME: fold these into legal mask.
4577  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4578                 X86::isMOVSLDUPMask(SVOp) ||
4579                 X86::isMOVHLPSMask(SVOp) ||
4580                 X86::isMOVLHPSMask(SVOp) ||
4581                 X86::isMOVLPMask(SVOp)))
4582    return Op;
4583
4584  if (ShouldXformToMOVHLPS(SVOp) ||
4585      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4586    return CommuteVectorShuffle(SVOp, DAG);
4587
4588  if (isShift) {
4589    // No better options. Use a vshl / vsrl.
4590    EVT EltVT = VT.getVectorElementType();
4591    ShAmt *= EltVT.getSizeInBits();
4592    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4593  }
4594
4595  bool Commuted = false;
4596  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4597  // 1,1,1,1 -> v8i16 though.
4598  V1IsSplat = isSplatVector(V1.getNode());
4599  V2IsSplat = isSplatVector(V2.getNode());
4600
4601  // Canonicalize the splat or undef, if present, to be on the RHS.
4602  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4603    Op = CommuteVectorShuffle(SVOp, DAG);
4604    SVOp = cast<ShuffleVectorSDNode>(Op);
4605    V1 = SVOp->getOperand(0);
4606    V2 = SVOp->getOperand(1);
4607    std::swap(V1IsSplat, V2IsSplat);
4608    std::swap(V1IsUndef, V2IsUndef);
4609    Commuted = true;
4610  }
4611
4612  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4613    // Shuffling low element of v1 into undef, just return v1.
4614    if (V2IsUndef)
4615      return V1;
4616    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4617    // the instruction selector will not match, so get a canonical MOVL with
4618    // swapped operands to undo the commute.
4619    return getMOVL(DAG, dl, VT, V2, V1);
4620  }
4621
4622  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4623      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4624      X86::isUNPCKLMask(SVOp) ||
4625      X86::isUNPCKHMask(SVOp))
4626    return Op;
4627
4628  if (V2IsSplat) {
4629    // Normalize mask so all entries that point to V2 points to its first
4630    // element then try to match unpck{h|l} again. If match, return a
4631    // new vector_shuffle with the corrected mask.
4632    SDValue NewMask = NormalizeMask(SVOp, DAG);
4633    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4634    if (NSVOp != SVOp) {
4635      if (X86::isUNPCKLMask(NSVOp, true)) {
4636        return NewMask;
4637      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4638        return NewMask;
4639      }
4640    }
4641  }
4642
4643  if (Commuted) {
4644    // Commute is back and try unpck* again.
4645    // FIXME: this seems wrong.
4646    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4647    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4648    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4649        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4650        X86::isUNPCKLMask(NewSVOp) ||
4651        X86::isUNPCKHMask(NewSVOp))
4652      return NewOp;
4653  }
4654
4655  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4656
4657  // Normalize the node to match x86 shuffle ops if needed
4658  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4659    return CommuteVectorShuffle(SVOp, DAG);
4660
4661  // Check for legal shuffle and return?
4662  SmallVector<int, 16> PermMask;
4663  SVOp->getMask(PermMask);
4664  if (isShuffleMaskLegal(PermMask, VT))
4665    return Op;
4666
4667  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4668  if (VT == MVT::v8i16) {
4669    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4670    if (NewOp.getNode())
4671      return NewOp;
4672  }
4673
4674  if (VT == MVT::v16i8) {
4675    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4676    if (NewOp.getNode())
4677      return NewOp;
4678  }
4679
4680  // Handle all 4 wide cases with a number of shuffles except for MMX.
4681  if (NumElems == 4 && !isMMX)
4682    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4683
4684  return SDValue();
4685}
4686
4687SDValue
4688X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4689                                                SelectionDAG &DAG) {
4690  EVT VT = Op.getValueType();
4691  DebugLoc dl = Op.getDebugLoc();
4692  if (VT.getSizeInBits() == 8) {
4693    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4694                                    Op.getOperand(0), Op.getOperand(1));
4695    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4696                                    DAG.getValueType(VT));
4697    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4698  } else if (VT.getSizeInBits() == 16) {
4699    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4700    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4701    if (Idx == 0)
4702      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4703                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4704                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4705                                                 MVT::v4i32,
4706                                                 Op.getOperand(0)),
4707                                     Op.getOperand(1)));
4708    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4709                                    Op.getOperand(0), Op.getOperand(1));
4710    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4711                                    DAG.getValueType(VT));
4712    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4713  } else if (VT == MVT::f32) {
4714    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4715    // the result back to FR32 register. It's only worth matching if the
4716    // result has a single use which is a store or a bitcast to i32.  And in
4717    // the case of a store, it's not worth it if the index is a constant 0,
4718    // because a MOVSSmr can be used instead, which is smaller and faster.
4719    if (!Op.hasOneUse())
4720      return SDValue();
4721    SDNode *User = *Op.getNode()->use_begin();
4722    if ((User->getOpcode() != ISD::STORE ||
4723         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4724          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4725        (User->getOpcode() != ISD::BIT_CONVERT ||
4726         User->getValueType(0) != MVT::i32))
4727      return SDValue();
4728    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4729                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4730                                              Op.getOperand(0)),
4731                                              Op.getOperand(1));
4732    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4733  } else if (VT == MVT::i32) {
4734    // ExtractPS works with constant index.
4735    if (isa<ConstantSDNode>(Op.getOperand(1)))
4736      return Op;
4737  }
4738  return SDValue();
4739}
4740
4741
4742SDValue
4743X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4744  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4745    return SDValue();
4746
4747  if (Subtarget->hasSSE41()) {
4748    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4749    if (Res.getNode())
4750      return Res;
4751  }
4752
4753  EVT VT = Op.getValueType();
4754  DebugLoc dl = Op.getDebugLoc();
4755  // TODO: handle v16i8.
4756  if (VT.getSizeInBits() == 16) {
4757    SDValue Vec = Op.getOperand(0);
4758    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4759    if (Idx == 0)
4760      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4761                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4762                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4763                                                 MVT::v4i32, Vec),
4764                                     Op.getOperand(1)));
4765    // Transform it so it match pextrw which produces a 32-bit result.
4766    EVT EltVT = MVT::i32;
4767    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4768                                    Op.getOperand(0), Op.getOperand(1));
4769    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4770                                    DAG.getValueType(VT));
4771    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4772  } else if (VT.getSizeInBits() == 32) {
4773    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4774    if (Idx == 0)
4775      return Op;
4776
4777    // SHUFPS the element to the lowest double word, then movss.
4778    int Mask[4] = { Idx, -1, -1, -1 };
4779    EVT VVT = Op.getOperand(0).getValueType();
4780    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4781                                       DAG.getUNDEF(VVT), Mask);
4782    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4783                       DAG.getIntPtrConstant(0));
4784  } else if (VT.getSizeInBits() == 64) {
4785    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4786    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4787    //        to match extract_elt for f64.
4788    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4789    if (Idx == 0)
4790      return Op;
4791
4792    // UNPCKHPD the element to the lowest double word, then movsd.
4793    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4794    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4795    int Mask[2] = { 1, -1 };
4796    EVT VVT = Op.getOperand(0).getValueType();
4797    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4798                                       DAG.getUNDEF(VVT), Mask);
4799    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4800                       DAG.getIntPtrConstant(0));
4801  }
4802
4803  return SDValue();
4804}
4805
4806SDValue
4807X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4808  EVT VT = Op.getValueType();
4809  EVT EltVT = VT.getVectorElementType();
4810  DebugLoc dl = Op.getDebugLoc();
4811
4812  SDValue N0 = Op.getOperand(0);
4813  SDValue N1 = Op.getOperand(1);
4814  SDValue N2 = Op.getOperand(2);
4815
4816  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4817      isa<ConstantSDNode>(N2)) {
4818    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4819                                                : X86ISD::PINSRW;
4820    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4821    // argument.
4822    if (N1.getValueType() != MVT::i32)
4823      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4824    if (N2.getValueType() != MVT::i32)
4825      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4826    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4827  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4828    // Bits [7:6] of the constant are the source select.  This will always be
4829    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4830    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4831    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4832    // Bits [5:4] of the constant are the destination select.  This is the
4833    //  value of the incoming immediate.
4834    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4835    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4836    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4837    // Create this as a scalar to vector..
4838    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4839    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4840  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4841    // PINSR* works with constant index.
4842    return Op;
4843  }
4844  return SDValue();
4845}
4846
4847SDValue
4848X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4849  EVT VT = Op.getValueType();
4850  EVT EltVT = VT.getVectorElementType();
4851
4852  if (Subtarget->hasSSE41())
4853    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4854
4855  if (EltVT == MVT::i8)
4856    return SDValue();
4857
4858  DebugLoc dl = Op.getDebugLoc();
4859  SDValue N0 = Op.getOperand(0);
4860  SDValue N1 = Op.getOperand(1);
4861  SDValue N2 = Op.getOperand(2);
4862
4863  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4864    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4865    // as its second argument.
4866    if (N1.getValueType() != MVT::i32)
4867      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4868    if (N2.getValueType() != MVT::i32)
4869      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4870    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4871  }
4872  return SDValue();
4873}
4874
4875SDValue
4876X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4877  DebugLoc dl = Op.getDebugLoc();
4878  if (Op.getValueType() == MVT::v2f32)
4879    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4880                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4881                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4882                                               Op.getOperand(0))));
4883
4884  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4885    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4886
4887  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4888  EVT VT = MVT::v2i32;
4889  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4890  default: break;
4891  case MVT::v16i8:
4892  case MVT::v8i16:
4893    VT = MVT::v4i32;
4894    break;
4895  }
4896  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4897                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4898}
4899
4900// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4901// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4902// one of the above mentioned nodes. It has to be wrapped because otherwise
4903// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4904// be used to form addressing mode. These wrapped nodes will be selected
4905// into MOV32ri.
4906SDValue
4907X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4908  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4909
4910  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4911  // global base reg.
4912  unsigned char OpFlag = 0;
4913  unsigned WrapperKind = X86ISD::Wrapper;
4914  CodeModel::Model M = getTargetMachine().getCodeModel();
4915
4916  if (Subtarget->isPICStyleRIPRel() &&
4917      (M == CodeModel::Small || M == CodeModel::Kernel))
4918    WrapperKind = X86ISD::WrapperRIP;
4919  else if (Subtarget->isPICStyleGOT())
4920    OpFlag = X86II::MO_GOTOFF;
4921  else if (Subtarget->isPICStyleStubPIC())
4922    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4923
4924  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4925                                             CP->getAlignment(),
4926                                             CP->getOffset(), OpFlag);
4927  DebugLoc DL = CP->getDebugLoc();
4928  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4929  // With PIC, the address is actually $g + Offset.
4930  if (OpFlag) {
4931    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4932                         DAG.getNode(X86ISD::GlobalBaseReg,
4933                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4934                         Result);
4935  }
4936
4937  return Result;
4938}
4939
4940SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4941  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4942
4943  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4944  // global base reg.
4945  unsigned char OpFlag = 0;
4946  unsigned WrapperKind = X86ISD::Wrapper;
4947  CodeModel::Model M = getTargetMachine().getCodeModel();
4948
4949  if (Subtarget->isPICStyleRIPRel() &&
4950      (M == CodeModel::Small || M == CodeModel::Kernel))
4951    WrapperKind = X86ISD::WrapperRIP;
4952  else if (Subtarget->isPICStyleGOT())
4953    OpFlag = X86II::MO_GOTOFF;
4954  else if (Subtarget->isPICStyleStubPIC())
4955    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4956
4957  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4958                                          OpFlag);
4959  DebugLoc DL = JT->getDebugLoc();
4960  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4961
4962  // With PIC, the address is actually $g + Offset.
4963  if (OpFlag) {
4964    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4965                         DAG.getNode(X86ISD::GlobalBaseReg,
4966                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4967                         Result);
4968  }
4969
4970  return Result;
4971}
4972
4973SDValue
4974X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4975  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4976
4977  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4978  // global base reg.
4979  unsigned char OpFlag = 0;
4980  unsigned WrapperKind = X86ISD::Wrapper;
4981  CodeModel::Model M = getTargetMachine().getCodeModel();
4982
4983  if (Subtarget->isPICStyleRIPRel() &&
4984      (M == CodeModel::Small || M == CodeModel::Kernel))
4985    WrapperKind = X86ISD::WrapperRIP;
4986  else if (Subtarget->isPICStyleGOT())
4987    OpFlag = X86II::MO_GOTOFF;
4988  else if (Subtarget->isPICStyleStubPIC())
4989    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4990
4991  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4992
4993  DebugLoc DL = Op.getDebugLoc();
4994  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4995
4996
4997  // With PIC, the address is actually $g + Offset.
4998  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4999      !Subtarget->is64Bit()) {
5000    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5001                         DAG.getNode(X86ISD::GlobalBaseReg,
5002                                     DebugLoc::getUnknownLoc(),
5003                                     getPointerTy()),
5004                         Result);
5005  }
5006
5007  return Result;
5008}
5009
5010SDValue
5011X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5012  // Create the TargetBlockAddressAddress node.
5013  unsigned char OpFlags =
5014    Subtarget->ClassifyBlockAddressReference();
5015  CodeModel::Model M = getTargetMachine().getCodeModel();
5016  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5017  DebugLoc dl = Op.getDebugLoc();
5018  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5019                                       /*isTarget=*/true, OpFlags);
5020
5021  if (Subtarget->isPICStyleRIPRel() &&
5022      (M == CodeModel::Small || M == CodeModel::Kernel))
5023    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5024  else
5025    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5026
5027  // With PIC, the address is actually $g + Offset.
5028  if (isGlobalRelativeToPICBase(OpFlags)) {
5029    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5030                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5031                         Result);
5032  }
5033
5034  return Result;
5035}
5036
5037SDValue
5038X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5039                                      int64_t Offset,
5040                                      SelectionDAG &DAG) const {
5041  // Create the TargetGlobalAddress node, folding in the constant
5042  // offset if it is legal.
5043  unsigned char OpFlags =
5044    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5045  CodeModel::Model M = getTargetMachine().getCodeModel();
5046  SDValue Result;
5047  if (OpFlags == X86II::MO_NO_FLAG &&
5048      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5049    // A direct static reference to a global.
5050    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5051    Offset = 0;
5052  } else {
5053    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5054  }
5055
5056  if (Subtarget->isPICStyleRIPRel() &&
5057      (M == CodeModel::Small || M == CodeModel::Kernel))
5058    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5059  else
5060    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5061
5062  // With PIC, the address is actually $g + Offset.
5063  if (isGlobalRelativeToPICBase(OpFlags)) {
5064    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5065                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5066                         Result);
5067  }
5068
5069  // For globals that require a load from a stub to get the address, emit the
5070  // load.
5071  if (isGlobalStubReference(OpFlags))
5072    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5073                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5074
5075  // If there was a non-zero offset that we didn't fold, create an explicit
5076  // addition for it.
5077  if (Offset != 0)
5078    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5079                         DAG.getConstant(Offset, getPointerTy()));
5080
5081  return Result;
5082}
5083
5084SDValue
5085X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5086  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5087  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5088  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5089}
5090
5091static SDValue
5092GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5093           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5094           unsigned char OperandFlags) {
5095  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5096  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5097  DebugLoc dl = GA->getDebugLoc();
5098  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5099                                           GA->getValueType(0),
5100                                           GA->getOffset(),
5101                                           OperandFlags);
5102  if (InFlag) {
5103    SDValue Ops[] = { Chain,  TGA, *InFlag };
5104    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5105  } else {
5106    SDValue Ops[]  = { Chain, TGA };
5107    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5108  }
5109
5110  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5111  MFI->setHasCalls(true);
5112
5113  SDValue Flag = Chain.getValue(1);
5114  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5115}
5116
5117// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5118static SDValue
5119LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5120                                const EVT PtrVT) {
5121  SDValue InFlag;
5122  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5123  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5124                                     DAG.getNode(X86ISD::GlobalBaseReg,
5125                                                 DebugLoc::getUnknownLoc(),
5126                                                 PtrVT), InFlag);
5127  InFlag = Chain.getValue(1);
5128
5129  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5130}
5131
5132// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5133static SDValue
5134LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5135                                const EVT PtrVT) {
5136  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5137                    X86::RAX, X86II::MO_TLSGD);
5138}
5139
5140// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5141// "local exec" model.
5142static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5143                                   const EVT PtrVT, TLSModel::Model model,
5144                                   bool is64Bit) {
5145  DebugLoc dl = GA->getDebugLoc();
5146  // Get the Thread Pointer
5147  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5148                             DebugLoc::getUnknownLoc(), PtrVT,
5149                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5150                                             MVT::i32));
5151
5152  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5153                                      NULL, 0, false, false, 0);
5154
5155  unsigned char OperandFlags = 0;
5156  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5157  // initialexec.
5158  unsigned WrapperKind = X86ISD::Wrapper;
5159  if (model == TLSModel::LocalExec) {
5160    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5161  } else if (is64Bit) {
5162    assert(model == TLSModel::InitialExec);
5163    OperandFlags = X86II::MO_GOTTPOFF;
5164    WrapperKind = X86ISD::WrapperRIP;
5165  } else {
5166    assert(model == TLSModel::InitialExec);
5167    OperandFlags = X86II::MO_INDNTPOFF;
5168  }
5169
5170  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5171  // exec)
5172  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5173                                           GA->getOffset(), OperandFlags);
5174  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5175
5176  if (model == TLSModel::InitialExec)
5177    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5178                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5179
5180  // The address of the thread local variable is the add of the thread
5181  // pointer with the offset of the variable.
5182  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5183}
5184
5185SDValue
5186X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5187  // TODO: implement the "local dynamic" model
5188  // TODO: implement the "initial exec"model for pic executables
5189  assert(Subtarget->isTargetELF() &&
5190         "TLS not implemented for non-ELF targets");
5191  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5192  const GlobalValue *GV = GA->getGlobal();
5193
5194  // If GV is an alias then use the aliasee for determining
5195  // thread-localness.
5196  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5197    GV = GA->resolveAliasedGlobal(false);
5198
5199  TLSModel::Model model = getTLSModel(GV,
5200                                      getTargetMachine().getRelocationModel());
5201
5202  switch (model) {
5203  case TLSModel::GeneralDynamic:
5204  case TLSModel::LocalDynamic: // not implemented
5205    if (Subtarget->is64Bit())
5206      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5207    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5208
5209  case TLSModel::InitialExec:
5210  case TLSModel::LocalExec:
5211    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5212                               Subtarget->is64Bit());
5213  }
5214
5215  llvm_unreachable("Unreachable");
5216  return SDValue();
5217}
5218
5219
5220/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5221/// take a 2 x i32 value to shift plus a shift amount.
5222SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5223  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5224  EVT VT = Op.getValueType();
5225  unsigned VTBits = VT.getSizeInBits();
5226  DebugLoc dl = Op.getDebugLoc();
5227  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5228  SDValue ShOpLo = Op.getOperand(0);
5229  SDValue ShOpHi = Op.getOperand(1);
5230  SDValue ShAmt  = Op.getOperand(2);
5231  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5232                                     DAG.getConstant(VTBits - 1, MVT::i8))
5233                       : DAG.getConstant(0, VT);
5234
5235  SDValue Tmp2, Tmp3;
5236  if (Op.getOpcode() == ISD::SHL_PARTS) {
5237    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5238    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5239  } else {
5240    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5241    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5242  }
5243
5244  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5245                                DAG.getConstant(VTBits, MVT::i8));
5246  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
5247                             AndNode, DAG.getConstant(0, MVT::i8));
5248
5249  SDValue Hi, Lo;
5250  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5251  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5252  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5253
5254  if (Op.getOpcode() == ISD::SHL_PARTS) {
5255    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5256    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5257  } else {
5258    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5259    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5260  }
5261
5262  SDValue Ops[2] = { Lo, Hi };
5263  return DAG.getMergeValues(Ops, 2, dl);
5264}
5265
5266SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5267  EVT SrcVT = Op.getOperand(0).getValueType();
5268
5269  if (SrcVT.isVector()) {
5270    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5271      return Op;
5272    }
5273    return SDValue();
5274  }
5275
5276  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5277         "Unknown SINT_TO_FP to lower!");
5278
5279  // These are really Legal; return the operand so the caller accepts it as
5280  // Legal.
5281  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5282    return Op;
5283  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5284      Subtarget->is64Bit()) {
5285    return Op;
5286  }
5287
5288  DebugLoc dl = Op.getDebugLoc();
5289  unsigned Size = SrcVT.getSizeInBits()/8;
5290  MachineFunction &MF = DAG.getMachineFunction();
5291  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5292  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5293  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5294                               StackSlot,
5295                               PseudoSourceValue::getFixedStack(SSFI), 0,
5296                               false, false, 0);
5297  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5298}
5299
5300SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5301                                     SDValue StackSlot,
5302                                     SelectionDAG &DAG) {
5303  // Build the FILD
5304  DebugLoc dl = Op.getDebugLoc();
5305  SDVTList Tys;
5306  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5307  if (useSSE)
5308    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5309  else
5310    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5311  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5312  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5313                               Tys, Ops, array_lengthof(Ops));
5314
5315  if (useSSE) {
5316    Chain = Result.getValue(1);
5317    SDValue InFlag = Result.getValue(2);
5318
5319    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5320    // shouldn't be necessary except that RFP cannot be live across
5321    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5322    MachineFunction &MF = DAG.getMachineFunction();
5323    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5324    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5325    Tys = DAG.getVTList(MVT::Other);
5326    SDValue Ops[] = {
5327      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5328    };
5329    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5330    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5331                         PseudoSourceValue::getFixedStack(SSFI), 0,
5332                         false, false, 0);
5333  }
5334
5335  return Result;
5336}
5337
5338// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5339SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5340  // This algorithm is not obvious. Here it is in C code, more or less:
5341  /*
5342    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5343      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5344      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5345
5346      // Copy ints to xmm registers.
5347      __m128i xh = _mm_cvtsi32_si128( hi );
5348      __m128i xl = _mm_cvtsi32_si128( lo );
5349
5350      // Combine into low half of a single xmm register.
5351      __m128i x = _mm_unpacklo_epi32( xh, xl );
5352      __m128d d;
5353      double sd;
5354
5355      // Merge in appropriate exponents to give the integer bits the right
5356      // magnitude.
5357      x = _mm_unpacklo_epi32( x, exp );
5358
5359      // Subtract away the biases to deal with the IEEE-754 double precision
5360      // implicit 1.
5361      d = _mm_sub_pd( (__m128d) x, bias );
5362
5363      // All conversions up to here are exact. The correctly rounded result is
5364      // calculated using the current rounding mode using the following
5365      // horizontal add.
5366      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5367      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5368                                // store doesn't really need to be here (except
5369                                // maybe to zero the other double)
5370      return sd;
5371    }
5372  */
5373
5374  DebugLoc dl = Op.getDebugLoc();
5375  LLVMContext *Context = DAG.getContext();
5376
5377  // Build some magic constants.
5378  std::vector<Constant*> CV0;
5379  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5380  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5381  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5382  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5383  Constant *C0 = ConstantVector::get(CV0);
5384  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5385
5386  std::vector<Constant*> CV1;
5387  CV1.push_back(
5388    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5389  CV1.push_back(
5390    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5391  Constant *C1 = ConstantVector::get(CV1);
5392  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5393
5394  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5395                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5396                                        Op.getOperand(0),
5397                                        DAG.getIntPtrConstant(1)));
5398  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5399                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5400                                        Op.getOperand(0),
5401                                        DAG.getIntPtrConstant(0)));
5402  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5403  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5404                              PseudoSourceValue::getConstantPool(), 0,
5405                              false, false, 16);
5406  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5407  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5408  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5409                              PseudoSourceValue::getConstantPool(), 0,
5410                              false, false, 16);
5411  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5412
5413  // Add the halves; easiest way is to swap them into another reg first.
5414  int ShufMask[2] = { 1, -1 };
5415  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5416                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5417  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5418  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5419                     DAG.getIntPtrConstant(0));
5420}
5421
5422// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5423SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5424  DebugLoc dl = Op.getDebugLoc();
5425  // FP constant to bias correct the final result.
5426  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5427                                   MVT::f64);
5428
5429  // Load the 32-bit value into an XMM register.
5430  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5431                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5432                                         Op.getOperand(0),
5433                                         DAG.getIntPtrConstant(0)));
5434
5435  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5436                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5437                     DAG.getIntPtrConstant(0));
5438
5439  // Or the load with the bias.
5440  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5441                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5442                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5443                                                   MVT::v2f64, Load)),
5444                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5445                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5446                                                   MVT::v2f64, Bias)));
5447  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5448                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5449                   DAG.getIntPtrConstant(0));
5450
5451  // Subtract the bias.
5452  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5453
5454  // Handle final rounding.
5455  EVT DestVT = Op.getValueType();
5456
5457  if (DestVT.bitsLT(MVT::f64)) {
5458    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5459                       DAG.getIntPtrConstant(0));
5460  } else if (DestVT.bitsGT(MVT::f64)) {
5461    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5462  }
5463
5464  // Handle final rounding.
5465  return Sub;
5466}
5467
5468SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5469  SDValue N0 = Op.getOperand(0);
5470  DebugLoc dl = Op.getDebugLoc();
5471
5472  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5473  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5474  // the optimization here.
5475  if (DAG.SignBitIsZero(N0))
5476    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5477
5478  EVT SrcVT = N0.getValueType();
5479  if (SrcVT == MVT::i64) {
5480    // We only handle SSE2 f64 target here; caller can expand the rest.
5481    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5482      return SDValue();
5483
5484    return LowerUINT_TO_FP_i64(Op, DAG);
5485  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5486    return LowerUINT_TO_FP_i32(Op, DAG);
5487  }
5488
5489  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5490
5491  // Make a 64-bit buffer, and use it to build an FILD.
5492  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5493  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5494  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5495                                   getPointerTy(), StackSlot, WordOff);
5496  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5497                                StackSlot, NULL, 0, false, false, 0);
5498  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5499                                OffsetSlot, NULL, 0, false, false, 0);
5500  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5501}
5502
5503std::pair<SDValue,SDValue> X86TargetLowering::
5504FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5505  DebugLoc dl = Op.getDebugLoc();
5506
5507  EVT DstTy = Op.getValueType();
5508
5509  if (!IsSigned) {
5510    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5511    DstTy = MVT::i64;
5512  }
5513
5514  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5515         DstTy.getSimpleVT() >= MVT::i16 &&
5516         "Unknown FP_TO_SINT to lower!");
5517
5518  // These are really Legal.
5519  if (DstTy == MVT::i32 &&
5520      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5521    return std::make_pair(SDValue(), SDValue());
5522  if (Subtarget->is64Bit() &&
5523      DstTy == MVT::i64 &&
5524      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5525    return std::make_pair(SDValue(), SDValue());
5526
5527  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5528  // stack slot.
5529  MachineFunction &MF = DAG.getMachineFunction();
5530  unsigned MemSize = DstTy.getSizeInBits()/8;
5531  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5532  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5533
5534  unsigned Opc;
5535  switch (DstTy.getSimpleVT().SimpleTy) {
5536  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5537  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5538  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5539  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5540  }
5541
5542  SDValue Chain = DAG.getEntryNode();
5543  SDValue Value = Op.getOperand(0);
5544  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5545    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5546    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5547                         PseudoSourceValue::getFixedStack(SSFI), 0,
5548                         false, false, 0);
5549    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5550    SDValue Ops[] = {
5551      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5552    };
5553    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5554    Chain = Value.getValue(1);
5555    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5556    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5557  }
5558
5559  // Build the FP_TO_INT*_IN_MEM
5560  SDValue Ops[] = { Chain, Value, StackSlot };
5561  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5562
5563  return std::make_pair(FIST, StackSlot);
5564}
5565
5566SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5567  if (Op.getValueType().isVector()) {
5568    if (Op.getValueType() == MVT::v2i32 &&
5569        Op.getOperand(0).getValueType() == MVT::v2f64) {
5570      return Op;
5571    }
5572    return SDValue();
5573  }
5574
5575  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5576  SDValue FIST = Vals.first, StackSlot = Vals.second;
5577  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5578  if (FIST.getNode() == 0) return Op;
5579
5580  // Load the result.
5581  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5582                     FIST, StackSlot, NULL, 0, false, false, 0);
5583}
5584
5585SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5586  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5587  SDValue FIST = Vals.first, StackSlot = Vals.second;
5588  assert(FIST.getNode() && "Unexpected failure");
5589
5590  // Load the result.
5591  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5592                     FIST, StackSlot, NULL, 0, false, false, 0);
5593}
5594
5595SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5596  LLVMContext *Context = DAG.getContext();
5597  DebugLoc dl = Op.getDebugLoc();
5598  EVT VT = Op.getValueType();
5599  EVT EltVT = VT;
5600  if (VT.isVector())
5601    EltVT = VT.getVectorElementType();
5602  std::vector<Constant*> CV;
5603  if (EltVT == MVT::f64) {
5604    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5605    CV.push_back(C);
5606    CV.push_back(C);
5607  } else {
5608    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5609    CV.push_back(C);
5610    CV.push_back(C);
5611    CV.push_back(C);
5612    CV.push_back(C);
5613  }
5614  Constant *C = ConstantVector::get(CV);
5615  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5616  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5617                             PseudoSourceValue::getConstantPool(), 0,
5618                             false, false, 16);
5619  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5620}
5621
5622SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5623  LLVMContext *Context = DAG.getContext();
5624  DebugLoc dl = Op.getDebugLoc();
5625  EVT VT = Op.getValueType();
5626  EVT EltVT = VT;
5627  if (VT.isVector())
5628    EltVT = VT.getVectorElementType();
5629  std::vector<Constant*> CV;
5630  if (EltVT == MVT::f64) {
5631    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5632    CV.push_back(C);
5633    CV.push_back(C);
5634  } else {
5635    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5636    CV.push_back(C);
5637    CV.push_back(C);
5638    CV.push_back(C);
5639    CV.push_back(C);
5640  }
5641  Constant *C = ConstantVector::get(CV);
5642  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5643  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5644                             PseudoSourceValue::getConstantPool(), 0,
5645                             false, false, 16);
5646  if (VT.isVector()) {
5647    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5648                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5649                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5650                                Op.getOperand(0)),
5651                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5652  } else {
5653    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5654  }
5655}
5656
5657SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5658  LLVMContext *Context = DAG.getContext();
5659  SDValue Op0 = Op.getOperand(0);
5660  SDValue Op1 = Op.getOperand(1);
5661  DebugLoc dl = Op.getDebugLoc();
5662  EVT VT = Op.getValueType();
5663  EVT SrcVT = Op1.getValueType();
5664
5665  // If second operand is smaller, extend it first.
5666  if (SrcVT.bitsLT(VT)) {
5667    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5668    SrcVT = VT;
5669  }
5670  // And if it is bigger, shrink it first.
5671  if (SrcVT.bitsGT(VT)) {
5672    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5673    SrcVT = VT;
5674  }
5675
5676  // At this point the operands and the result should have the same
5677  // type, and that won't be f80 since that is not custom lowered.
5678
5679  // First get the sign bit of second operand.
5680  std::vector<Constant*> CV;
5681  if (SrcVT == MVT::f64) {
5682    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5683    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5684  } else {
5685    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5686    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5687    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5688    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5689  }
5690  Constant *C = ConstantVector::get(CV);
5691  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5692  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5693                              PseudoSourceValue::getConstantPool(), 0,
5694                              false, false, 16);
5695  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5696
5697  // Shift sign bit right or left if the two operands have different types.
5698  if (SrcVT.bitsGT(VT)) {
5699    // Op0 is MVT::f32, Op1 is MVT::f64.
5700    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5701    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5702                          DAG.getConstant(32, MVT::i32));
5703    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5704    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5705                          DAG.getIntPtrConstant(0));
5706  }
5707
5708  // Clear first operand sign bit.
5709  CV.clear();
5710  if (VT == MVT::f64) {
5711    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5712    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5713  } else {
5714    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5715    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5716    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5717    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5718  }
5719  C = ConstantVector::get(CV);
5720  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5721  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5722                              PseudoSourceValue::getConstantPool(), 0,
5723                              false, false, 16);
5724  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5725
5726  // Or the value with the sign bit.
5727  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5728}
5729
5730/// Emit nodes that will be selected as "test Op0,Op0", or something
5731/// equivalent.
5732SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5733                                    SelectionDAG &DAG) {
5734  DebugLoc dl = Op.getDebugLoc();
5735
5736  // CF and OF aren't always set the way we want. Determine which
5737  // of these we need.
5738  bool NeedCF = false;
5739  bool NeedOF = false;
5740  switch (X86CC) {
5741  case X86::COND_A: case X86::COND_AE:
5742  case X86::COND_B: case X86::COND_BE:
5743    NeedCF = true;
5744    break;
5745  case X86::COND_G: case X86::COND_GE:
5746  case X86::COND_L: case X86::COND_LE:
5747  case X86::COND_O: case X86::COND_NO:
5748    NeedOF = true;
5749    break;
5750  default: break;
5751  }
5752
5753  // See if we can use the EFLAGS value from the operand instead of
5754  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5755  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5756  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5757    unsigned Opcode = 0;
5758    unsigned NumOperands = 0;
5759    switch (Op.getNode()->getOpcode()) {
5760    case ISD::ADD:
5761      // Due to an isel shortcoming, be conservative if this add is likely to
5762      // be selected as part of a load-modify-store instruction. When the root
5763      // node in a match is a store, isel doesn't know how to remap non-chain
5764      // non-flag uses of other nodes in the match, such as the ADD in this
5765      // case. This leads to the ADD being left around and reselected, with
5766      // the result being two adds in the output.
5767      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5768           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5769        if (UI->getOpcode() == ISD::STORE)
5770          goto default_case;
5771      if (ConstantSDNode *C =
5772            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5773        // An add of one will be selected as an INC.
5774        if (C->getAPIntValue() == 1) {
5775          Opcode = X86ISD::INC;
5776          NumOperands = 1;
5777          break;
5778        }
5779        // An add of negative one (subtract of one) will be selected as a DEC.
5780        if (C->getAPIntValue().isAllOnesValue()) {
5781          Opcode = X86ISD::DEC;
5782          NumOperands = 1;
5783          break;
5784        }
5785      }
5786      // Otherwise use a regular EFLAGS-setting add.
5787      Opcode = X86ISD::ADD;
5788      NumOperands = 2;
5789      break;
5790    case ISD::AND: {
5791      // If the primary and result isn't used, don't bother using X86ISD::AND,
5792      // because a TEST instruction will be better.
5793      bool NonFlagUse = false;
5794      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5795             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5796        SDNode *User = *UI;
5797        unsigned UOpNo = UI.getOperandNo();
5798        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5799          // Look pass truncate.
5800          UOpNo = User->use_begin().getOperandNo();
5801          User = *User->use_begin();
5802        }
5803        if (User->getOpcode() != ISD::BRCOND &&
5804            User->getOpcode() != ISD::SETCC &&
5805            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5806          NonFlagUse = true;
5807          break;
5808        }
5809      }
5810      if (!NonFlagUse)
5811        break;
5812    }
5813    // FALL THROUGH
5814    case ISD::SUB:
5815    case ISD::OR:
5816    case ISD::XOR:
5817      // Due to the ISEL shortcoming noted above, be conservative if this op is
5818      // likely to be selected as part of a load-modify-store instruction.
5819      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5820           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5821        if (UI->getOpcode() == ISD::STORE)
5822          goto default_case;
5823      // Otherwise use a regular EFLAGS-setting instruction.
5824      switch (Op.getNode()->getOpcode()) {
5825      case ISD::SUB: Opcode = X86ISD::SUB; break;
5826      case ISD::OR:  Opcode = X86ISD::OR;  break;
5827      case ISD::XOR: Opcode = X86ISD::XOR; break;
5828      case ISD::AND: Opcode = X86ISD::AND; break;
5829      default: llvm_unreachable("unexpected operator!");
5830      }
5831      NumOperands = 2;
5832      break;
5833    case X86ISD::ADD:
5834    case X86ISD::SUB:
5835    case X86ISD::INC:
5836    case X86ISD::DEC:
5837    case X86ISD::OR:
5838    case X86ISD::XOR:
5839    case X86ISD::AND:
5840      return SDValue(Op.getNode(), 1);
5841    default:
5842    default_case:
5843      break;
5844    }
5845    if (Opcode != 0) {
5846      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5847      SmallVector<SDValue, 4> Ops;
5848      for (unsigned i = 0; i != NumOperands; ++i)
5849        Ops.push_back(Op.getOperand(i));
5850      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5851      DAG.ReplaceAllUsesWith(Op, New);
5852      return SDValue(New.getNode(), 1);
5853    }
5854  }
5855
5856  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5857  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5858                     DAG.getConstant(0, Op.getValueType()));
5859}
5860
5861/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5862/// equivalent.
5863SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5864                                   SelectionDAG &DAG) {
5865  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5866    if (C->getAPIntValue() == 0)
5867      return EmitTest(Op0, X86CC, DAG);
5868
5869  DebugLoc dl = Op0.getDebugLoc();
5870  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5871}
5872
5873/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5874/// if it's possible.
5875static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC,
5876                         DebugLoc dl, SelectionDAG &DAG) {
5877  SDValue LHS, RHS;
5878  if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5879    if (ConstantSDNode *Op010C =
5880        dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5881      if (Op010C->getZExtValue() == 1) {
5882        LHS = Op0.getOperand(0);
5883        RHS = Op0.getOperand(1).getOperand(1);
5884      }
5885  } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5886    if (ConstantSDNode *Op000C =
5887        dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5888      if (Op000C->getZExtValue() == 1) {
5889        LHS = Op0.getOperand(1);
5890        RHS = Op0.getOperand(0).getOperand(1);
5891      }
5892  } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5893    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5894    SDValue AndLHS = Op0.getOperand(0);
5895    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5896      LHS = AndLHS.getOperand(0);
5897      RHS = AndLHS.getOperand(1);
5898    }
5899  }
5900
5901  if (LHS.getNode()) {
5902    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5903    // instruction.  Since the shift amount is in-range-or-undefined, we know
5904    // that doing a bittest on the i16 value is ok.  We extend to i32 because
5905    // the encoding for the i16 version is larger than the i32 version.
5906    if (LHS.getValueType() == MVT::i8)
5907      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5908
5909    // If the operand types disagree, extend the shift amount to match.  Since
5910    // BT ignores high bits (like shifts) we can use anyextend.
5911    if (LHS.getValueType() != RHS.getValueType())
5912      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5913
5914    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5915    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5916    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5917                       DAG.getConstant(Cond, MVT::i8), BT);
5918  }
5919
5920  return SDValue();
5921}
5922
5923SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5924  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5925  SDValue Op0 = Op.getOperand(0);
5926  SDValue Op1 = Op.getOperand(1);
5927  DebugLoc dl = Op.getDebugLoc();
5928  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5929
5930  // Optimize to BT if possible.
5931  // Lower (X & (1 << N)) == 0 to BT(X, N).
5932  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5933  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5934  if (Op0.getOpcode() == ISD::AND &&
5935      Op0.hasOneUse() &&
5936      Op1.getOpcode() == ISD::Constant &&
5937      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5938      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5939    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
5940    if (NewSetCC.getNode())
5941      return NewSetCC;
5942  }
5943
5944  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5945  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5946  if (X86CC == X86::COND_INVALID)
5947    return SDValue();
5948
5949  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5950
5951  // Use sbb x, x to materialize carry bit into a GPR.
5952  if (X86CC == X86::COND_B)
5953    return DAG.getNode(ISD::AND, dl, MVT::i8,
5954                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
5955                                   DAG.getConstant(X86CC, MVT::i8), Cond),
5956                       DAG.getConstant(1, MVT::i8));
5957
5958  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5959                     DAG.getConstant(X86CC, MVT::i8), Cond);
5960}
5961
5962SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5963  SDValue Cond;
5964  SDValue Op0 = Op.getOperand(0);
5965  SDValue Op1 = Op.getOperand(1);
5966  SDValue CC = Op.getOperand(2);
5967  EVT VT = Op.getValueType();
5968  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5969  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5970  DebugLoc dl = Op.getDebugLoc();
5971
5972  if (isFP) {
5973    unsigned SSECC = 8;
5974    EVT VT0 = Op0.getValueType();
5975    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5976    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5977    bool Swap = false;
5978
5979    switch (SetCCOpcode) {
5980    default: break;
5981    case ISD::SETOEQ:
5982    case ISD::SETEQ:  SSECC = 0; break;
5983    case ISD::SETOGT:
5984    case ISD::SETGT: Swap = true; // Fallthrough
5985    case ISD::SETLT:
5986    case ISD::SETOLT: SSECC = 1; break;
5987    case ISD::SETOGE:
5988    case ISD::SETGE: Swap = true; // Fallthrough
5989    case ISD::SETLE:
5990    case ISD::SETOLE: SSECC = 2; break;
5991    case ISD::SETUO:  SSECC = 3; break;
5992    case ISD::SETUNE:
5993    case ISD::SETNE:  SSECC = 4; break;
5994    case ISD::SETULE: Swap = true;
5995    case ISD::SETUGE: SSECC = 5; break;
5996    case ISD::SETULT: Swap = true;
5997    case ISD::SETUGT: SSECC = 6; break;
5998    case ISD::SETO:   SSECC = 7; break;
5999    }
6000    if (Swap)
6001      std::swap(Op0, Op1);
6002
6003    // In the two special cases we can't handle, emit two comparisons.
6004    if (SSECC == 8) {
6005      if (SetCCOpcode == ISD::SETUEQ) {
6006        SDValue UNORD, EQ;
6007        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6008        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6009        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6010      }
6011      else if (SetCCOpcode == ISD::SETONE) {
6012        SDValue ORD, NEQ;
6013        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6014        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6015        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6016      }
6017      llvm_unreachable("Illegal FP comparison");
6018    }
6019    // Handle all other FP comparisons here.
6020    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6021  }
6022
6023  // We are handling one of the integer comparisons here.  Since SSE only has
6024  // GT and EQ comparisons for integer, swapping operands and multiple
6025  // operations may be required for some comparisons.
6026  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6027  bool Swap = false, Invert = false, FlipSigns = false;
6028
6029  switch (VT.getSimpleVT().SimpleTy) {
6030  default: break;
6031  case MVT::v8i8:
6032  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6033  case MVT::v4i16:
6034  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6035  case MVT::v2i32:
6036  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6037  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6038  }
6039
6040  switch (SetCCOpcode) {
6041  default: break;
6042  case ISD::SETNE:  Invert = true;
6043  case ISD::SETEQ:  Opc = EQOpc; break;
6044  case ISD::SETLT:  Swap = true;
6045  case ISD::SETGT:  Opc = GTOpc; break;
6046  case ISD::SETGE:  Swap = true;
6047  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6048  case ISD::SETULT: Swap = true;
6049  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6050  case ISD::SETUGE: Swap = true;
6051  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6052  }
6053  if (Swap)
6054    std::swap(Op0, Op1);
6055
6056  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6057  // bits of the inputs before performing those operations.
6058  if (FlipSigns) {
6059    EVT EltVT = VT.getVectorElementType();
6060    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6061                                      EltVT);
6062    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6063    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6064                                    SignBits.size());
6065    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6066    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6067  }
6068
6069  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6070
6071  // If the logical-not of the result is required, perform that now.
6072  if (Invert)
6073    Result = DAG.getNOT(dl, Result, VT);
6074
6075  return Result;
6076}
6077
6078// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6079static bool isX86LogicalCmp(SDValue Op) {
6080  unsigned Opc = Op.getNode()->getOpcode();
6081  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6082    return true;
6083  if (Op.getResNo() == 1 &&
6084      (Opc == X86ISD::ADD ||
6085       Opc == X86ISD::SUB ||
6086       Opc == X86ISD::SMUL ||
6087       Opc == X86ISD::UMUL ||
6088       Opc == X86ISD::INC ||
6089       Opc == X86ISD::DEC ||
6090       Opc == X86ISD::OR ||
6091       Opc == X86ISD::XOR ||
6092       Opc == X86ISD::AND))
6093    return true;
6094
6095  return false;
6096}
6097
6098SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6099  bool addTest = true;
6100  SDValue Cond  = Op.getOperand(0);
6101  DebugLoc dl = Op.getDebugLoc();
6102  SDValue CC;
6103
6104  if (Cond.getOpcode() == ISD::SETCC) {
6105    SDValue NewCond = LowerSETCC(Cond, DAG);
6106    if (NewCond.getNode())
6107      Cond = NewCond;
6108  }
6109
6110  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6111  SDValue Op1 = Op.getOperand(1);
6112  SDValue Op2 = Op.getOperand(2);
6113  if (Cond.getOpcode() == X86ISD::SETCC &&
6114      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6115    SDValue Cmp = Cond.getOperand(1);
6116    if (Cmp.getOpcode() == X86ISD::CMP) {
6117      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6118      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6119      ConstantSDNode *RHSC =
6120        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6121      if (N1C && N1C->isAllOnesValue() &&
6122          N2C && N2C->isNullValue() &&
6123          RHSC && RHSC->isNullValue()) {
6124        SDValue CmpOp0 = Cmp.getOperand(0);
6125        Cmp = DAG.getNode(X86ISD::CMP, dl, CmpOp0.getValueType(),
6126                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6127        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6128                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6129      }
6130    }
6131  }
6132
6133  // Look pass (and (setcc_carry (cmp ...)), 1).
6134  if (Cond.getOpcode() == ISD::AND &&
6135      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6136    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6137    if (C && C->getAPIntValue() == 1)
6138      Cond = Cond.getOperand(0);
6139  }
6140
6141  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6142  // setting operand in place of the X86ISD::SETCC.
6143  if (Cond.getOpcode() == X86ISD::SETCC ||
6144      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6145    CC = Cond.getOperand(0);
6146
6147    SDValue Cmp = Cond.getOperand(1);
6148    unsigned Opc = Cmp.getOpcode();
6149    EVT VT = Op.getValueType();
6150
6151    bool IllegalFPCMov = false;
6152    if (VT.isFloatingPoint() && !VT.isVector() &&
6153        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6154      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6155
6156    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6157        Opc == X86ISD::BT) { // FIXME
6158      Cond = Cmp;
6159      addTest = false;
6160    }
6161  }
6162
6163  if (addTest) {
6164    // Look pass the truncate.
6165    if (Cond.getOpcode() == ISD::TRUNCATE)
6166      Cond = Cond.getOperand(0);
6167
6168    // We know the result of AND is compared against zero. Try to match
6169    // it to BT.
6170    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6171      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6172      if (NewSetCC.getNode()) {
6173        CC = NewSetCC.getOperand(0);
6174        Cond = NewSetCC.getOperand(1);
6175        addTest = false;
6176      }
6177    }
6178  }
6179
6180  if (addTest) {
6181    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6182    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6183  }
6184
6185  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6186  // condition is true.
6187  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6188  SDValue Ops[] = { Op2, Op1, CC, Cond };
6189  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6190}
6191
6192// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6193// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6194// from the AND / OR.
6195static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6196  Opc = Op.getOpcode();
6197  if (Opc != ISD::OR && Opc != ISD::AND)
6198    return false;
6199  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6200          Op.getOperand(0).hasOneUse() &&
6201          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6202          Op.getOperand(1).hasOneUse());
6203}
6204
6205// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6206// 1 and that the SETCC node has a single use.
6207static bool isXor1OfSetCC(SDValue Op) {
6208  if (Op.getOpcode() != ISD::XOR)
6209    return false;
6210  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6211  if (N1C && N1C->getAPIntValue() == 1) {
6212    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6213      Op.getOperand(0).hasOneUse();
6214  }
6215  return false;
6216}
6217
6218SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6219  bool addTest = true;
6220  SDValue Chain = Op.getOperand(0);
6221  SDValue Cond  = Op.getOperand(1);
6222  SDValue Dest  = Op.getOperand(2);
6223  DebugLoc dl = Op.getDebugLoc();
6224  SDValue CC;
6225
6226  if (Cond.getOpcode() == ISD::SETCC) {
6227    SDValue NewCond = LowerSETCC(Cond, DAG);
6228    if (NewCond.getNode())
6229      Cond = NewCond;
6230  }
6231#if 0
6232  // FIXME: LowerXALUO doesn't handle these!!
6233  else if (Cond.getOpcode() == X86ISD::ADD  ||
6234           Cond.getOpcode() == X86ISD::SUB  ||
6235           Cond.getOpcode() == X86ISD::SMUL ||
6236           Cond.getOpcode() == X86ISD::UMUL)
6237    Cond = LowerXALUO(Cond, DAG);
6238#endif
6239
6240  // Look pass (and (setcc_carry (cmp ...)), 1).
6241  if (Cond.getOpcode() == ISD::AND &&
6242      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6243    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6244    if (C && C->getAPIntValue() == 1)
6245      Cond = Cond.getOperand(0);
6246  }
6247
6248  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6249  // setting operand in place of the X86ISD::SETCC.
6250  if (Cond.getOpcode() == X86ISD::SETCC ||
6251      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6252    CC = Cond.getOperand(0);
6253
6254    SDValue Cmp = Cond.getOperand(1);
6255    unsigned Opc = Cmp.getOpcode();
6256    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6257    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6258      Cond = Cmp;
6259      addTest = false;
6260    } else {
6261      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6262      default: break;
6263      case X86::COND_O:
6264      case X86::COND_B:
6265        // These can only come from an arithmetic instruction with overflow,
6266        // e.g. SADDO, UADDO.
6267        Cond = Cond.getNode()->getOperand(1);
6268        addTest = false;
6269        break;
6270      }
6271    }
6272  } else {
6273    unsigned CondOpc;
6274    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6275      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6276      if (CondOpc == ISD::OR) {
6277        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6278        // two branches instead of an explicit OR instruction with a
6279        // separate test.
6280        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6281            isX86LogicalCmp(Cmp)) {
6282          CC = Cond.getOperand(0).getOperand(0);
6283          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6284                              Chain, Dest, CC, Cmp);
6285          CC = Cond.getOperand(1).getOperand(0);
6286          Cond = Cmp;
6287          addTest = false;
6288        }
6289      } else { // ISD::AND
6290        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6291        // two branches instead of an explicit AND instruction with a
6292        // separate test. However, we only do this if this block doesn't
6293        // have a fall-through edge, because this requires an explicit
6294        // jmp when the condition is false.
6295        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6296            isX86LogicalCmp(Cmp) &&
6297            Op.getNode()->hasOneUse()) {
6298          X86::CondCode CCode =
6299            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6300          CCode = X86::GetOppositeBranchCondition(CCode);
6301          CC = DAG.getConstant(CCode, MVT::i8);
6302          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6303          // Look for an unconditional branch following this conditional branch.
6304          // We need this because we need to reverse the successors in order
6305          // to implement FCMP_OEQ.
6306          if (User.getOpcode() == ISD::BR) {
6307            SDValue FalseBB = User.getOperand(1);
6308            SDValue NewBR =
6309              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6310            assert(NewBR == User);
6311            Dest = FalseBB;
6312
6313            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6314                                Chain, Dest, CC, Cmp);
6315            X86::CondCode CCode =
6316              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6317            CCode = X86::GetOppositeBranchCondition(CCode);
6318            CC = DAG.getConstant(CCode, MVT::i8);
6319            Cond = Cmp;
6320            addTest = false;
6321          }
6322        }
6323      }
6324    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6325      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6326      // It should be transformed during dag combiner except when the condition
6327      // is set by a arithmetics with overflow node.
6328      X86::CondCode CCode =
6329        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6330      CCode = X86::GetOppositeBranchCondition(CCode);
6331      CC = DAG.getConstant(CCode, MVT::i8);
6332      Cond = Cond.getOperand(0).getOperand(1);
6333      addTest = false;
6334    }
6335  }
6336
6337  if (addTest) {
6338    // Look pass the truncate.
6339    if (Cond.getOpcode() == ISD::TRUNCATE)
6340      Cond = Cond.getOperand(0);
6341
6342    // We know the result of AND is compared against zero. Try to match
6343    // it to BT.
6344    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6345      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6346      if (NewSetCC.getNode()) {
6347        CC = NewSetCC.getOperand(0);
6348        Cond = NewSetCC.getOperand(1);
6349        addTest = false;
6350      }
6351    }
6352  }
6353
6354  if (addTest) {
6355    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6356    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6357  }
6358  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6359                     Chain, Dest, CC, Cond);
6360}
6361
6362
6363// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6364// Calls to _alloca is needed to probe the stack when allocating more than 4k
6365// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6366// that the guard pages used by the OS virtual memory manager are allocated in
6367// correct sequence.
6368SDValue
6369X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6370                                           SelectionDAG &DAG) {
6371  assert(Subtarget->isTargetCygMing() &&
6372         "This should be used only on Cygwin/Mingw targets");
6373  DebugLoc dl = Op.getDebugLoc();
6374
6375  // Get the inputs.
6376  SDValue Chain = Op.getOperand(0);
6377  SDValue Size  = Op.getOperand(1);
6378  // FIXME: Ensure alignment here
6379
6380  SDValue Flag;
6381
6382  EVT IntPtr = getPointerTy();
6383  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6384
6385  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
6386
6387  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6388  Flag = Chain.getValue(1);
6389
6390  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6391  SDValue Ops[] = { Chain,
6392                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
6393                      DAG.getRegister(X86::EAX, IntPtr),
6394                      DAG.getRegister(X86StackPtr, SPTy),
6395                      Flag };
6396  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6397  Flag = Chain.getValue(1);
6398
6399  Chain = DAG.getCALLSEQ_END(Chain,
6400                             DAG.getIntPtrConstant(0, true),
6401                             DAG.getIntPtrConstant(0, true),
6402                             Flag);
6403
6404  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6405
6406  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6407  return DAG.getMergeValues(Ops1, 2, dl);
6408}
6409
6410SDValue
6411X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6412                                           SDValue Chain,
6413                                           SDValue Dst, SDValue Src,
6414                                           SDValue Size, unsigned Align,
6415                                           const Value *DstSV,
6416                                           uint64_t DstSVOff) {
6417  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6418
6419  // If not DWORD aligned or size is more than the threshold, call the library.
6420  // The libc version is likely to be faster for these cases. It can use the
6421  // address value and run time information about the CPU.
6422  if ((Align & 3) != 0 ||
6423      !ConstantSize ||
6424      ConstantSize->getZExtValue() >
6425        getSubtarget()->getMaxInlineSizeThreshold()) {
6426    SDValue InFlag(0, 0);
6427
6428    // Check to see if there is a specialized entry-point for memory zeroing.
6429    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6430
6431    if (const char *bzeroEntry =  V &&
6432        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6433      EVT IntPtr = getPointerTy();
6434      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6435      TargetLowering::ArgListTy Args;
6436      TargetLowering::ArgListEntry Entry;
6437      Entry.Node = Dst;
6438      Entry.Ty = IntPtrTy;
6439      Args.push_back(Entry);
6440      Entry.Node = Size;
6441      Args.push_back(Entry);
6442      std::pair<SDValue,SDValue> CallResult =
6443        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6444                    false, false, false, false,
6445                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6446                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl,
6447                    DAG.GetOrdering(Chain.getNode()));
6448      return CallResult.second;
6449    }
6450
6451    // Otherwise have the target-independent code call memset.
6452    return SDValue();
6453  }
6454
6455  uint64_t SizeVal = ConstantSize->getZExtValue();
6456  SDValue InFlag(0, 0);
6457  EVT AVT;
6458  SDValue Count;
6459  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6460  unsigned BytesLeft = 0;
6461  bool TwoRepStos = false;
6462  if (ValC) {
6463    unsigned ValReg;
6464    uint64_t Val = ValC->getZExtValue() & 255;
6465
6466    // If the value is a constant, then we can potentially use larger sets.
6467    switch (Align & 3) {
6468    case 2:   // WORD aligned
6469      AVT = MVT::i16;
6470      ValReg = X86::AX;
6471      Val = (Val << 8) | Val;
6472      break;
6473    case 0:  // DWORD aligned
6474      AVT = MVT::i32;
6475      ValReg = X86::EAX;
6476      Val = (Val << 8)  | Val;
6477      Val = (Val << 16) | Val;
6478      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6479        AVT = MVT::i64;
6480        ValReg = X86::RAX;
6481        Val = (Val << 32) | Val;
6482      }
6483      break;
6484    default:  // Byte aligned
6485      AVT = MVT::i8;
6486      ValReg = X86::AL;
6487      Count = DAG.getIntPtrConstant(SizeVal);
6488      break;
6489    }
6490
6491    if (AVT.bitsGT(MVT::i8)) {
6492      unsigned UBytes = AVT.getSizeInBits() / 8;
6493      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6494      BytesLeft = SizeVal % UBytes;
6495    }
6496
6497    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6498                              InFlag);
6499    InFlag = Chain.getValue(1);
6500  } else {
6501    AVT = MVT::i8;
6502    Count  = DAG.getIntPtrConstant(SizeVal);
6503    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6504    InFlag = Chain.getValue(1);
6505  }
6506
6507  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6508                                                              X86::ECX,
6509                            Count, InFlag);
6510  InFlag = Chain.getValue(1);
6511  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6512                                                              X86::EDI,
6513                            Dst, InFlag);
6514  InFlag = Chain.getValue(1);
6515
6516  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6517  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6518  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6519
6520  if (TwoRepStos) {
6521    InFlag = Chain.getValue(1);
6522    Count  = Size;
6523    EVT CVT = Count.getValueType();
6524    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6525                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6526    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6527                                                             X86::ECX,
6528                              Left, InFlag);
6529    InFlag = Chain.getValue(1);
6530    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6531    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6532    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6533  } else if (BytesLeft) {
6534    // Handle the last 1 - 7 bytes.
6535    unsigned Offset = SizeVal - BytesLeft;
6536    EVT AddrVT = Dst.getValueType();
6537    EVT SizeVT = Size.getValueType();
6538
6539    Chain = DAG.getMemset(Chain, dl,
6540                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6541                                      DAG.getConstant(Offset, AddrVT)),
6542                          Src,
6543                          DAG.getConstant(BytesLeft, SizeVT),
6544                          Align, DstSV, DstSVOff + Offset);
6545  }
6546
6547  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6548  return Chain;
6549}
6550
6551SDValue
6552X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6553                                      SDValue Chain, SDValue Dst, SDValue Src,
6554                                      SDValue Size, unsigned Align,
6555                                      bool AlwaysInline,
6556                                      const Value *DstSV, uint64_t DstSVOff,
6557                                      const Value *SrcSV, uint64_t SrcSVOff) {
6558  // This requires the copy size to be a constant, preferrably
6559  // within a subtarget-specific limit.
6560  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6561  if (!ConstantSize)
6562    return SDValue();
6563  uint64_t SizeVal = ConstantSize->getZExtValue();
6564  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6565    return SDValue();
6566
6567  /// If not DWORD aligned, call the library.
6568  if ((Align & 3) != 0)
6569    return SDValue();
6570
6571  // DWORD aligned
6572  EVT AVT = MVT::i32;
6573  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6574    AVT = MVT::i64;
6575
6576  unsigned UBytes = AVT.getSizeInBits() / 8;
6577  unsigned CountVal = SizeVal / UBytes;
6578  SDValue Count = DAG.getIntPtrConstant(CountVal);
6579  unsigned BytesLeft = SizeVal % UBytes;
6580
6581  SDValue InFlag(0, 0);
6582  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6583                                                              X86::ECX,
6584                            Count, InFlag);
6585  InFlag = Chain.getValue(1);
6586  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6587                                                             X86::EDI,
6588                            Dst, InFlag);
6589  InFlag = Chain.getValue(1);
6590  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6591                                                              X86::ESI,
6592                            Src, InFlag);
6593  InFlag = Chain.getValue(1);
6594
6595  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6596  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6597  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6598                                array_lengthof(Ops));
6599
6600  SmallVector<SDValue, 4> Results;
6601  Results.push_back(RepMovs);
6602  if (BytesLeft) {
6603    // Handle the last 1 - 7 bytes.
6604    unsigned Offset = SizeVal - BytesLeft;
6605    EVT DstVT = Dst.getValueType();
6606    EVT SrcVT = Src.getValueType();
6607    EVT SizeVT = Size.getValueType();
6608    Results.push_back(DAG.getMemcpy(Chain, dl,
6609                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6610                                                DAG.getConstant(Offset, DstVT)),
6611                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6612                                                DAG.getConstant(Offset, SrcVT)),
6613                                    DAG.getConstant(BytesLeft, SizeVT),
6614                                    Align, AlwaysInline,
6615                                    DstSV, DstSVOff + Offset,
6616                                    SrcSV, SrcSVOff + Offset));
6617  }
6618
6619  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6620                     &Results[0], Results.size());
6621}
6622
6623SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6624  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6625  DebugLoc dl = Op.getDebugLoc();
6626
6627  if (!Subtarget->is64Bit()) {
6628    // vastart just stores the address of the VarArgsFrameIndex slot into the
6629    // memory location argument.
6630    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6631    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6632                        false, false, 0);
6633  }
6634
6635  // __va_list_tag:
6636  //   gp_offset         (0 - 6 * 8)
6637  //   fp_offset         (48 - 48 + 8 * 16)
6638  //   overflow_arg_area (point to parameters coming in memory).
6639  //   reg_save_area
6640  SmallVector<SDValue, 8> MemOps;
6641  SDValue FIN = Op.getOperand(1);
6642  // Store gp_offset
6643  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6644                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6645                               FIN, SV, 0, false, false, 0);
6646  MemOps.push_back(Store);
6647
6648  // Store fp_offset
6649  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6650                    FIN, DAG.getIntPtrConstant(4));
6651  Store = DAG.getStore(Op.getOperand(0), dl,
6652                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6653                       FIN, SV, 0, false, false, 0);
6654  MemOps.push_back(Store);
6655
6656  // Store ptr to overflow_arg_area
6657  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6658                    FIN, DAG.getIntPtrConstant(4));
6659  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6660  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6661                       false, false, 0);
6662  MemOps.push_back(Store);
6663
6664  // Store ptr to reg_save_area.
6665  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6666                    FIN, DAG.getIntPtrConstant(8));
6667  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6668  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6669                       false, false, 0);
6670  MemOps.push_back(Store);
6671  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6672                     &MemOps[0], MemOps.size());
6673}
6674
6675SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6676  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6677  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6678  SDValue Chain = Op.getOperand(0);
6679  SDValue SrcPtr = Op.getOperand(1);
6680  SDValue SrcSV = Op.getOperand(2);
6681
6682  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6683  return SDValue();
6684}
6685
6686SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6687  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6688  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6689  SDValue Chain = Op.getOperand(0);
6690  SDValue DstPtr = Op.getOperand(1);
6691  SDValue SrcPtr = Op.getOperand(2);
6692  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6693  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6694  DebugLoc dl = Op.getDebugLoc();
6695
6696  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6697                       DAG.getIntPtrConstant(24), 8, false,
6698                       DstSV, 0, SrcSV, 0);
6699}
6700
6701SDValue
6702X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6703  DebugLoc dl = Op.getDebugLoc();
6704  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6705  switch (IntNo) {
6706  default: return SDValue();    // Don't custom lower most intrinsics.
6707  // Comparison intrinsics.
6708  case Intrinsic::x86_sse_comieq_ss:
6709  case Intrinsic::x86_sse_comilt_ss:
6710  case Intrinsic::x86_sse_comile_ss:
6711  case Intrinsic::x86_sse_comigt_ss:
6712  case Intrinsic::x86_sse_comige_ss:
6713  case Intrinsic::x86_sse_comineq_ss:
6714  case Intrinsic::x86_sse_ucomieq_ss:
6715  case Intrinsic::x86_sse_ucomilt_ss:
6716  case Intrinsic::x86_sse_ucomile_ss:
6717  case Intrinsic::x86_sse_ucomigt_ss:
6718  case Intrinsic::x86_sse_ucomige_ss:
6719  case Intrinsic::x86_sse_ucomineq_ss:
6720  case Intrinsic::x86_sse2_comieq_sd:
6721  case Intrinsic::x86_sse2_comilt_sd:
6722  case Intrinsic::x86_sse2_comile_sd:
6723  case Intrinsic::x86_sse2_comigt_sd:
6724  case Intrinsic::x86_sse2_comige_sd:
6725  case Intrinsic::x86_sse2_comineq_sd:
6726  case Intrinsic::x86_sse2_ucomieq_sd:
6727  case Intrinsic::x86_sse2_ucomilt_sd:
6728  case Intrinsic::x86_sse2_ucomile_sd:
6729  case Intrinsic::x86_sse2_ucomigt_sd:
6730  case Intrinsic::x86_sse2_ucomige_sd:
6731  case Intrinsic::x86_sse2_ucomineq_sd: {
6732    unsigned Opc = 0;
6733    ISD::CondCode CC = ISD::SETCC_INVALID;
6734    switch (IntNo) {
6735    default: break;
6736    case Intrinsic::x86_sse_comieq_ss:
6737    case Intrinsic::x86_sse2_comieq_sd:
6738      Opc = X86ISD::COMI;
6739      CC = ISD::SETEQ;
6740      break;
6741    case Intrinsic::x86_sse_comilt_ss:
6742    case Intrinsic::x86_sse2_comilt_sd:
6743      Opc = X86ISD::COMI;
6744      CC = ISD::SETLT;
6745      break;
6746    case Intrinsic::x86_sse_comile_ss:
6747    case Intrinsic::x86_sse2_comile_sd:
6748      Opc = X86ISD::COMI;
6749      CC = ISD::SETLE;
6750      break;
6751    case Intrinsic::x86_sse_comigt_ss:
6752    case Intrinsic::x86_sse2_comigt_sd:
6753      Opc = X86ISD::COMI;
6754      CC = ISD::SETGT;
6755      break;
6756    case Intrinsic::x86_sse_comige_ss:
6757    case Intrinsic::x86_sse2_comige_sd:
6758      Opc = X86ISD::COMI;
6759      CC = ISD::SETGE;
6760      break;
6761    case Intrinsic::x86_sse_comineq_ss:
6762    case Intrinsic::x86_sse2_comineq_sd:
6763      Opc = X86ISD::COMI;
6764      CC = ISD::SETNE;
6765      break;
6766    case Intrinsic::x86_sse_ucomieq_ss:
6767    case Intrinsic::x86_sse2_ucomieq_sd:
6768      Opc = X86ISD::UCOMI;
6769      CC = ISD::SETEQ;
6770      break;
6771    case Intrinsic::x86_sse_ucomilt_ss:
6772    case Intrinsic::x86_sse2_ucomilt_sd:
6773      Opc = X86ISD::UCOMI;
6774      CC = ISD::SETLT;
6775      break;
6776    case Intrinsic::x86_sse_ucomile_ss:
6777    case Intrinsic::x86_sse2_ucomile_sd:
6778      Opc = X86ISD::UCOMI;
6779      CC = ISD::SETLE;
6780      break;
6781    case Intrinsic::x86_sse_ucomigt_ss:
6782    case Intrinsic::x86_sse2_ucomigt_sd:
6783      Opc = X86ISD::UCOMI;
6784      CC = ISD::SETGT;
6785      break;
6786    case Intrinsic::x86_sse_ucomige_ss:
6787    case Intrinsic::x86_sse2_ucomige_sd:
6788      Opc = X86ISD::UCOMI;
6789      CC = ISD::SETGE;
6790      break;
6791    case Intrinsic::x86_sse_ucomineq_ss:
6792    case Intrinsic::x86_sse2_ucomineq_sd:
6793      Opc = X86ISD::UCOMI;
6794      CC = ISD::SETNE;
6795      break;
6796    }
6797
6798    SDValue LHS = Op.getOperand(1);
6799    SDValue RHS = Op.getOperand(2);
6800    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6801    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6802    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6803    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6804                                DAG.getConstant(X86CC, MVT::i8), Cond);
6805    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6806  }
6807  // ptest intrinsics. The intrinsic these come from are designed to return
6808  // an integer value, not just an instruction so lower it to the ptest
6809  // pattern and a setcc for the result.
6810  case Intrinsic::x86_sse41_ptestz:
6811  case Intrinsic::x86_sse41_ptestc:
6812  case Intrinsic::x86_sse41_ptestnzc:{
6813    unsigned X86CC = 0;
6814    switch (IntNo) {
6815    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6816    case Intrinsic::x86_sse41_ptestz:
6817      // ZF = 1
6818      X86CC = X86::COND_E;
6819      break;
6820    case Intrinsic::x86_sse41_ptestc:
6821      // CF = 1
6822      X86CC = X86::COND_B;
6823      break;
6824    case Intrinsic::x86_sse41_ptestnzc:
6825      // ZF and CF = 0
6826      X86CC = X86::COND_A;
6827      break;
6828    }
6829
6830    SDValue LHS = Op.getOperand(1);
6831    SDValue RHS = Op.getOperand(2);
6832    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6833    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6834    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6835    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6836  }
6837
6838  // Fix vector shift instructions where the last operand is a non-immediate
6839  // i32 value.
6840  case Intrinsic::x86_sse2_pslli_w:
6841  case Intrinsic::x86_sse2_pslli_d:
6842  case Intrinsic::x86_sse2_pslli_q:
6843  case Intrinsic::x86_sse2_psrli_w:
6844  case Intrinsic::x86_sse2_psrli_d:
6845  case Intrinsic::x86_sse2_psrli_q:
6846  case Intrinsic::x86_sse2_psrai_w:
6847  case Intrinsic::x86_sse2_psrai_d:
6848  case Intrinsic::x86_mmx_pslli_w:
6849  case Intrinsic::x86_mmx_pslli_d:
6850  case Intrinsic::x86_mmx_pslli_q:
6851  case Intrinsic::x86_mmx_psrli_w:
6852  case Intrinsic::x86_mmx_psrli_d:
6853  case Intrinsic::x86_mmx_psrli_q:
6854  case Intrinsic::x86_mmx_psrai_w:
6855  case Intrinsic::x86_mmx_psrai_d: {
6856    SDValue ShAmt = Op.getOperand(2);
6857    if (isa<ConstantSDNode>(ShAmt))
6858      return SDValue();
6859
6860    unsigned NewIntNo = 0;
6861    EVT ShAmtVT = MVT::v4i32;
6862    switch (IntNo) {
6863    case Intrinsic::x86_sse2_pslli_w:
6864      NewIntNo = Intrinsic::x86_sse2_psll_w;
6865      break;
6866    case Intrinsic::x86_sse2_pslli_d:
6867      NewIntNo = Intrinsic::x86_sse2_psll_d;
6868      break;
6869    case Intrinsic::x86_sse2_pslli_q:
6870      NewIntNo = Intrinsic::x86_sse2_psll_q;
6871      break;
6872    case Intrinsic::x86_sse2_psrli_w:
6873      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6874      break;
6875    case Intrinsic::x86_sse2_psrli_d:
6876      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6877      break;
6878    case Intrinsic::x86_sse2_psrli_q:
6879      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6880      break;
6881    case Intrinsic::x86_sse2_psrai_w:
6882      NewIntNo = Intrinsic::x86_sse2_psra_w;
6883      break;
6884    case Intrinsic::x86_sse2_psrai_d:
6885      NewIntNo = Intrinsic::x86_sse2_psra_d;
6886      break;
6887    default: {
6888      ShAmtVT = MVT::v2i32;
6889      switch (IntNo) {
6890      case Intrinsic::x86_mmx_pslli_w:
6891        NewIntNo = Intrinsic::x86_mmx_psll_w;
6892        break;
6893      case Intrinsic::x86_mmx_pslli_d:
6894        NewIntNo = Intrinsic::x86_mmx_psll_d;
6895        break;
6896      case Intrinsic::x86_mmx_pslli_q:
6897        NewIntNo = Intrinsic::x86_mmx_psll_q;
6898        break;
6899      case Intrinsic::x86_mmx_psrli_w:
6900        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6901        break;
6902      case Intrinsic::x86_mmx_psrli_d:
6903        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6904        break;
6905      case Intrinsic::x86_mmx_psrli_q:
6906        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6907        break;
6908      case Intrinsic::x86_mmx_psrai_w:
6909        NewIntNo = Intrinsic::x86_mmx_psra_w;
6910        break;
6911      case Intrinsic::x86_mmx_psrai_d:
6912        NewIntNo = Intrinsic::x86_mmx_psra_d;
6913        break;
6914      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6915      }
6916      break;
6917    }
6918    }
6919
6920    // The vector shift intrinsics with scalars uses 32b shift amounts but
6921    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6922    // to be zero.
6923    SDValue ShOps[4];
6924    ShOps[0] = ShAmt;
6925    ShOps[1] = DAG.getConstant(0, MVT::i32);
6926    if (ShAmtVT == MVT::v4i32) {
6927      ShOps[2] = DAG.getUNDEF(MVT::i32);
6928      ShOps[3] = DAG.getUNDEF(MVT::i32);
6929      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6930    } else {
6931      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6932    }
6933
6934    EVT VT = Op.getValueType();
6935    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6936    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6937                       DAG.getConstant(NewIntNo, MVT::i32),
6938                       Op.getOperand(1), ShAmt);
6939  }
6940  }
6941}
6942
6943SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6944  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6945  DebugLoc dl = Op.getDebugLoc();
6946
6947  if (Depth > 0) {
6948    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6949    SDValue Offset =
6950      DAG.getConstant(TD->getPointerSize(),
6951                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6952    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6953                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6954                                   FrameAddr, Offset),
6955                       NULL, 0, false, false, 0);
6956  }
6957
6958  // Just load the return address.
6959  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6960  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6961                     RetAddrFI, NULL, 0, false, false, 0);
6962}
6963
6964SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6965  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6966  MFI->setFrameAddressIsTaken(true);
6967  EVT VT = Op.getValueType();
6968  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6969  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6970  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6971  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6972  while (Depth--)
6973    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
6974                            false, false, 0);
6975  return FrameAddr;
6976}
6977
6978SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6979                                                     SelectionDAG &DAG) {
6980  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6981}
6982
6983SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6984{
6985  MachineFunction &MF = DAG.getMachineFunction();
6986  SDValue Chain     = Op.getOperand(0);
6987  SDValue Offset    = Op.getOperand(1);
6988  SDValue Handler   = Op.getOperand(2);
6989  DebugLoc dl       = Op.getDebugLoc();
6990
6991  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6992                                  getPointerTy());
6993  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6994
6995  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6996                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6997  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6998  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
6999  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7000  MF.getRegInfo().addLiveOut(StoreAddrReg);
7001
7002  return DAG.getNode(X86ISD::EH_RETURN, dl,
7003                     MVT::Other,
7004                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7005}
7006
7007SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7008                                             SelectionDAG &DAG) {
7009  SDValue Root = Op.getOperand(0);
7010  SDValue Trmp = Op.getOperand(1); // trampoline
7011  SDValue FPtr = Op.getOperand(2); // nested function
7012  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7013  DebugLoc dl  = Op.getDebugLoc();
7014
7015  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7016
7017  if (Subtarget->is64Bit()) {
7018    SDValue OutChains[6];
7019
7020    // Large code-model.
7021    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7022    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7023
7024    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7025    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7026
7027    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7028
7029    // Load the pointer to the nested function into R11.
7030    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7031    SDValue Addr = Trmp;
7032    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7033                                Addr, TrmpAddr, 0, false, false, 0);
7034
7035    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7036                       DAG.getConstant(2, MVT::i64));
7037    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7038                                false, false, 2);
7039
7040    // Load the 'nest' parameter value into R10.
7041    // R10 is specified in X86CallingConv.td
7042    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7043    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7044                       DAG.getConstant(10, MVT::i64));
7045    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7046                                Addr, TrmpAddr, 10, false, false, 0);
7047
7048    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7049                       DAG.getConstant(12, MVT::i64));
7050    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7051                                false, false, 2);
7052
7053    // Jump to the nested function.
7054    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7055    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7056                       DAG.getConstant(20, MVT::i64));
7057    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7058                                Addr, TrmpAddr, 20, false, false, 0);
7059
7060    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7061    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7062                       DAG.getConstant(22, MVT::i64));
7063    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7064                                TrmpAddr, 22, false, false, 0);
7065
7066    SDValue Ops[] =
7067      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7068    return DAG.getMergeValues(Ops, 2, dl);
7069  } else {
7070    const Function *Func =
7071      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7072    CallingConv::ID CC = Func->getCallingConv();
7073    unsigned NestReg;
7074
7075    switch (CC) {
7076    default:
7077      llvm_unreachable("Unsupported calling convention");
7078    case CallingConv::C:
7079    case CallingConv::X86_StdCall: {
7080      // Pass 'nest' parameter in ECX.
7081      // Must be kept in sync with X86CallingConv.td
7082      NestReg = X86::ECX;
7083
7084      // Check that ECX wasn't needed by an 'inreg' parameter.
7085      const FunctionType *FTy = Func->getFunctionType();
7086      const AttrListPtr &Attrs = Func->getAttributes();
7087
7088      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7089        unsigned InRegCount = 0;
7090        unsigned Idx = 1;
7091
7092        for (FunctionType::param_iterator I = FTy->param_begin(),
7093             E = FTy->param_end(); I != E; ++I, ++Idx)
7094          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7095            // FIXME: should only count parameters that are lowered to integers.
7096            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7097
7098        if (InRegCount > 2) {
7099          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7100        }
7101      }
7102      break;
7103    }
7104    case CallingConv::X86_FastCall:
7105    case CallingConv::Fast:
7106      // Pass 'nest' parameter in EAX.
7107      // Must be kept in sync with X86CallingConv.td
7108      NestReg = X86::EAX;
7109      break;
7110    }
7111
7112    SDValue OutChains[4];
7113    SDValue Addr, Disp;
7114
7115    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7116                       DAG.getConstant(10, MVT::i32));
7117    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7118
7119    // This is storing the opcode for MOV32ri.
7120    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7121    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7122    OutChains[0] = DAG.getStore(Root, dl,
7123                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7124                                Trmp, TrmpAddr, 0, false, false, 0);
7125
7126    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7127                       DAG.getConstant(1, MVT::i32));
7128    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7129                                false, false, 1);
7130
7131    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7132    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7133                       DAG.getConstant(5, MVT::i32));
7134    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7135                                TrmpAddr, 5, false, false, 1);
7136
7137    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7138                       DAG.getConstant(6, MVT::i32));
7139    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7140                                false, false, 1);
7141
7142    SDValue Ops[] =
7143      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7144    return DAG.getMergeValues(Ops, 2, dl);
7145  }
7146}
7147
7148SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7149  /*
7150   The rounding mode is in bits 11:10 of FPSR, and has the following
7151   settings:
7152     00 Round to nearest
7153     01 Round to -inf
7154     10 Round to +inf
7155     11 Round to 0
7156
7157  FLT_ROUNDS, on the other hand, expects the following:
7158    -1 Undefined
7159     0 Round to 0
7160     1 Round to nearest
7161     2 Round to +inf
7162     3 Round to -inf
7163
7164  To perform the conversion, we do:
7165    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7166  */
7167
7168  MachineFunction &MF = DAG.getMachineFunction();
7169  const TargetMachine &TM = MF.getTarget();
7170  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7171  unsigned StackAlignment = TFI.getStackAlignment();
7172  EVT VT = Op.getValueType();
7173  DebugLoc dl = Op.getDebugLoc();
7174
7175  // Save FP Control Word to stack slot
7176  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7177  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7178
7179  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7180                              DAG.getEntryNode(), StackSlot);
7181
7182  // Load FP Control Word from stack slot
7183  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7184                            false, false, 0);
7185
7186  // Transform as necessary
7187  SDValue CWD1 =
7188    DAG.getNode(ISD::SRL, dl, MVT::i16,
7189                DAG.getNode(ISD::AND, dl, MVT::i16,
7190                            CWD, DAG.getConstant(0x800, MVT::i16)),
7191                DAG.getConstant(11, MVT::i8));
7192  SDValue CWD2 =
7193    DAG.getNode(ISD::SRL, dl, MVT::i16,
7194                DAG.getNode(ISD::AND, dl, MVT::i16,
7195                            CWD, DAG.getConstant(0x400, MVT::i16)),
7196                DAG.getConstant(9, MVT::i8));
7197
7198  SDValue RetVal =
7199    DAG.getNode(ISD::AND, dl, MVT::i16,
7200                DAG.getNode(ISD::ADD, dl, MVT::i16,
7201                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7202                            DAG.getConstant(1, MVT::i16)),
7203                DAG.getConstant(3, MVT::i16));
7204
7205
7206  return DAG.getNode((VT.getSizeInBits() < 16 ?
7207                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7208}
7209
7210SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7211  EVT VT = Op.getValueType();
7212  EVT OpVT = VT;
7213  unsigned NumBits = VT.getSizeInBits();
7214  DebugLoc dl = Op.getDebugLoc();
7215
7216  Op = Op.getOperand(0);
7217  if (VT == MVT::i8) {
7218    // Zero extend to i32 since there is not an i8 bsr.
7219    OpVT = MVT::i32;
7220    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7221  }
7222
7223  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7224  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7225  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7226
7227  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7228  SDValue Ops[] = {
7229    Op,
7230    DAG.getConstant(NumBits+NumBits-1, OpVT),
7231    DAG.getConstant(X86::COND_E, MVT::i8),
7232    Op.getValue(1)
7233  };
7234  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7235
7236  // Finally xor with NumBits-1.
7237  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7238
7239  if (VT == MVT::i8)
7240    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7241  return Op;
7242}
7243
7244SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7245  EVT VT = Op.getValueType();
7246  EVT OpVT = VT;
7247  unsigned NumBits = VT.getSizeInBits();
7248  DebugLoc dl = Op.getDebugLoc();
7249
7250  Op = Op.getOperand(0);
7251  if (VT == MVT::i8) {
7252    OpVT = MVT::i32;
7253    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7254  }
7255
7256  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7257  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7258  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7259
7260  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7261  SDValue Ops[] = {
7262    Op,
7263    DAG.getConstant(NumBits, OpVT),
7264    DAG.getConstant(X86::COND_E, MVT::i8),
7265    Op.getValue(1)
7266  };
7267  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7268
7269  if (VT == MVT::i8)
7270    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7271  return Op;
7272}
7273
7274SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7275  EVT VT = Op.getValueType();
7276  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7277  DebugLoc dl = Op.getDebugLoc();
7278
7279  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7280  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7281  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7282  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7283  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7284  //
7285  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7286  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7287  //  return AloBlo + AloBhi + AhiBlo;
7288
7289  SDValue A = Op.getOperand(0);
7290  SDValue B = Op.getOperand(1);
7291
7292  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7293                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7294                       A, DAG.getConstant(32, MVT::i32));
7295  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7296                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7297                       B, DAG.getConstant(32, MVT::i32));
7298  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7299                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7300                       A, B);
7301  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7302                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7303                       A, Bhi);
7304  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7305                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7306                       Ahi, B);
7307  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7308                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7309                       AloBhi, DAG.getConstant(32, MVT::i32));
7310  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7311                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7312                       AhiBlo, DAG.getConstant(32, MVT::i32));
7313  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7314  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7315  return Res;
7316}
7317
7318
7319SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7320  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7321  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7322  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7323  // has only one use.
7324  SDNode *N = Op.getNode();
7325  SDValue LHS = N->getOperand(0);
7326  SDValue RHS = N->getOperand(1);
7327  unsigned BaseOp = 0;
7328  unsigned Cond = 0;
7329  DebugLoc dl = Op.getDebugLoc();
7330
7331  switch (Op.getOpcode()) {
7332  default: llvm_unreachable("Unknown ovf instruction!");
7333  case ISD::SADDO:
7334    // A subtract of one will be selected as a INC. Note that INC doesn't
7335    // set CF, so we can't do this for UADDO.
7336    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7337      if (C->getAPIntValue() == 1) {
7338        BaseOp = X86ISD::INC;
7339        Cond = X86::COND_O;
7340        break;
7341      }
7342    BaseOp = X86ISD::ADD;
7343    Cond = X86::COND_O;
7344    break;
7345  case ISD::UADDO:
7346    BaseOp = X86ISD::ADD;
7347    Cond = X86::COND_B;
7348    break;
7349  case ISD::SSUBO:
7350    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7351    // set CF, so we can't do this for USUBO.
7352    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7353      if (C->getAPIntValue() == 1) {
7354        BaseOp = X86ISD::DEC;
7355        Cond = X86::COND_O;
7356        break;
7357      }
7358    BaseOp = X86ISD::SUB;
7359    Cond = X86::COND_O;
7360    break;
7361  case ISD::USUBO:
7362    BaseOp = X86ISD::SUB;
7363    Cond = X86::COND_B;
7364    break;
7365  case ISD::SMULO:
7366    BaseOp = X86ISD::SMUL;
7367    Cond = X86::COND_O;
7368    break;
7369  case ISD::UMULO:
7370    BaseOp = X86ISD::UMUL;
7371    Cond = X86::COND_B;
7372    break;
7373  }
7374
7375  // Also sets EFLAGS.
7376  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7377  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7378
7379  SDValue SetCC =
7380    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7381                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7382
7383  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7384  return Sum;
7385}
7386
7387SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7388  EVT T = Op.getValueType();
7389  DebugLoc dl = Op.getDebugLoc();
7390  unsigned Reg = 0;
7391  unsigned size = 0;
7392  switch(T.getSimpleVT().SimpleTy) {
7393  default:
7394    assert(false && "Invalid value type!");
7395  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7396  case MVT::i16: Reg = X86::AX;  size = 2; break;
7397  case MVT::i32: Reg = X86::EAX; size = 4; break;
7398  case MVT::i64:
7399    assert(Subtarget->is64Bit() && "Node not type legal!");
7400    Reg = X86::RAX; size = 8;
7401    break;
7402  }
7403  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7404                                    Op.getOperand(2), SDValue());
7405  SDValue Ops[] = { cpIn.getValue(0),
7406                    Op.getOperand(1),
7407                    Op.getOperand(3),
7408                    DAG.getTargetConstant(size, MVT::i8),
7409                    cpIn.getValue(1) };
7410  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7411  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7412  SDValue cpOut =
7413    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7414  return cpOut;
7415}
7416
7417SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7418                                                 SelectionDAG &DAG) {
7419  assert(Subtarget->is64Bit() && "Result not type legalized?");
7420  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7421  SDValue TheChain = Op.getOperand(0);
7422  DebugLoc dl = Op.getDebugLoc();
7423  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7424  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7425  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7426                                   rax.getValue(2));
7427  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7428                            DAG.getConstant(32, MVT::i8));
7429  SDValue Ops[] = {
7430    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7431    rdx.getValue(1)
7432  };
7433  return DAG.getMergeValues(Ops, 2, dl);
7434}
7435
7436SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7437  SDNode *Node = Op.getNode();
7438  DebugLoc dl = Node->getDebugLoc();
7439  EVT T = Node->getValueType(0);
7440  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7441                              DAG.getConstant(0, T), Node->getOperand(2));
7442  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7443                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7444                       Node->getOperand(0),
7445                       Node->getOperand(1), negOp,
7446                       cast<AtomicSDNode>(Node)->getSrcValue(),
7447                       cast<AtomicSDNode>(Node)->getAlignment());
7448}
7449
7450/// LowerOperation - Provide custom lowering hooks for some operations.
7451///
7452SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7453  switch (Op.getOpcode()) {
7454  default: llvm_unreachable("Should not custom lower this!");
7455  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7456  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7457  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7458  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7459  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7460  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7461  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7462  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7463  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7464  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7465  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7466  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7467  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7468  case ISD::SHL_PARTS:
7469  case ISD::SRA_PARTS:
7470  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7471  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7472  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7473  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7474  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7475  case ISD::FABS:               return LowerFABS(Op, DAG);
7476  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7477  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7478  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7479  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7480  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7481  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7482  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7483  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7484  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7485  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7486  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7487  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7488  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7489  case ISD::FRAME_TO_ARGS_OFFSET:
7490                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7491  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7492  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7493  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7494  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7495  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7496  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7497  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7498  case ISD::SADDO:
7499  case ISD::UADDO:
7500  case ISD::SSUBO:
7501  case ISD::USUBO:
7502  case ISD::SMULO:
7503  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7504  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7505  }
7506}
7507
7508void X86TargetLowering::
7509ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7510                        SelectionDAG &DAG, unsigned NewOp) {
7511  EVT T = Node->getValueType(0);
7512  DebugLoc dl = Node->getDebugLoc();
7513  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7514
7515  SDValue Chain = Node->getOperand(0);
7516  SDValue In1 = Node->getOperand(1);
7517  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7518                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7519  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7520                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7521  SDValue Ops[] = { Chain, In1, In2L, In2H };
7522  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7523  SDValue Result =
7524    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7525                            cast<MemSDNode>(Node)->getMemOperand());
7526  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7527  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7528  Results.push_back(Result.getValue(2));
7529}
7530
7531/// ReplaceNodeResults - Replace a node with an illegal result type
7532/// with a new node built out of custom code.
7533void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7534                                           SmallVectorImpl<SDValue>&Results,
7535                                           SelectionDAG &DAG) {
7536  DebugLoc dl = N->getDebugLoc();
7537  switch (N->getOpcode()) {
7538  default:
7539    assert(false && "Do not know how to custom type legalize this operation!");
7540    return;
7541  case ISD::FP_TO_SINT: {
7542    std::pair<SDValue,SDValue> Vals =
7543        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7544    SDValue FIST = Vals.first, StackSlot = Vals.second;
7545    if (FIST.getNode() != 0) {
7546      EVT VT = N->getValueType(0);
7547      // Return a load from the stack slot.
7548      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7549                                    false, false, 0));
7550    }
7551    return;
7552  }
7553  case ISD::READCYCLECOUNTER: {
7554    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7555    SDValue TheChain = N->getOperand(0);
7556    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7557    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7558                                     rd.getValue(1));
7559    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7560                                     eax.getValue(2));
7561    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7562    SDValue Ops[] = { eax, edx };
7563    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7564    Results.push_back(edx.getValue(1));
7565    return;
7566  }
7567  case ISD::ATOMIC_CMP_SWAP: {
7568    EVT T = N->getValueType(0);
7569    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7570    SDValue cpInL, cpInH;
7571    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7572                        DAG.getConstant(0, MVT::i32));
7573    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7574                        DAG.getConstant(1, MVT::i32));
7575    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7576    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7577                             cpInL.getValue(1));
7578    SDValue swapInL, swapInH;
7579    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7580                          DAG.getConstant(0, MVT::i32));
7581    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7582                          DAG.getConstant(1, MVT::i32));
7583    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7584                               cpInH.getValue(1));
7585    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7586                               swapInL.getValue(1));
7587    SDValue Ops[] = { swapInH.getValue(0),
7588                      N->getOperand(1),
7589                      swapInH.getValue(1) };
7590    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7591    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7592    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7593                                        MVT::i32, Result.getValue(1));
7594    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7595                                        MVT::i32, cpOutL.getValue(2));
7596    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7597    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7598    Results.push_back(cpOutH.getValue(1));
7599    return;
7600  }
7601  case ISD::ATOMIC_LOAD_ADD:
7602    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7603    return;
7604  case ISD::ATOMIC_LOAD_AND:
7605    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7606    return;
7607  case ISD::ATOMIC_LOAD_NAND:
7608    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7609    return;
7610  case ISD::ATOMIC_LOAD_OR:
7611    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7612    return;
7613  case ISD::ATOMIC_LOAD_SUB:
7614    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7615    return;
7616  case ISD::ATOMIC_LOAD_XOR:
7617    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7618    return;
7619  case ISD::ATOMIC_SWAP:
7620    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7621    return;
7622  }
7623}
7624
7625const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7626  switch (Opcode) {
7627  default: return NULL;
7628  case X86ISD::BSF:                return "X86ISD::BSF";
7629  case X86ISD::BSR:                return "X86ISD::BSR";
7630  case X86ISD::SHLD:               return "X86ISD::SHLD";
7631  case X86ISD::SHRD:               return "X86ISD::SHRD";
7632  case X86ISD::FAND:               return "X86ISD::FAND";
7633  case X86ISD::FOR:                return "X86ISD::FOR";
7634  case X86ISD::FXOR:               return "X86ISD::FXOR";
7635  case X86ISD::FSRL:               return "X86ISD::FSRL";
7636  case X86ISD::FILD:               return "X86ISD::FILD";
7637  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7638  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7639  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7640  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7641  case X86ISD::FLD:                return "X86ISD::FLD";
7642  case X86ISD::FST:                return "X86ISD::FST";
7643  case X86ISD::CALL:               return "X86ISD::CALL";
7644  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7645  case X86ISD::BT:                 return "X86ISD::BT";
7646  case X86ISD::CMP:                return "X86ISD::CMP";
7647  case X86ISD::COMI:               return "X86ISD::COMI";
7648  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7649  case X86ISD::SETCC:              return "X86ISD::SETCC";
7650  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7651  case X86ISD::CMOV:               return "X86ISD::CMOV";
7652  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7653  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7654  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7655  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7656  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7657  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7658  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7659  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7660  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7661  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7662  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7663  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7664  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7665  case X86ISD::FMAX:               return "X86ISD::FMAX";
7666  case X86ISD::FMIN:               return "X86ISD::FMIN";
7667  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7668  case X86ISD::FRCP:               return "X86ISD::FRCP";
7669  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7670  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7671  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7672  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7673  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7674  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7675  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7676  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7677  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7678  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7679  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7680  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7681  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7682  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7683  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7684  case X86ISD::VSHL:               return "X86ISD::VSHL";
7685  case X86ISD::VSRL:               return "X86ISD::VSRL";
7686  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7687  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7688  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7689  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7690  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7691  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7692  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7693  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7694  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7695  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7696  case X86ISD::ADD:                return "X86ISD::ADD";
7697  case X86ISD::SUB:                return "X86ISD::SUB";
7698  case X86ISD::SMUL:               return "X86ISD::SMUL";
7699  case X86ISD::UMUL:               return "X86ISD::UMUL";
7700  case X86ISD::INC:                return "X86ISD::INC";
7701  case X86ISD::DEC:                return "X86ISD::DEC";
7702  case X86ISD::OR:                 return "X86ISD::OR";
7703  case X86ISD::XOR:                return "X86ISD::XOR";
7704  case X86ISD::AND:                return "X86ISD::AND";
7705  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7706  case X86ISD::PTEST:              return "X86ISD::PTEST";
7707  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7708  }
7709}
7710
7711// isLegalAddressingMode - Return true if the addressing mode represented
7712// by AM is legal for this target, for a load/store of the specified type.
7713bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7714                                              const Type *Ty) const {
7715  // X86 supports extremely general addressing modes.
7716  CodeModel::Model M = getTargetMachine().getCodeModel();
7717
7718  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7719  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7720    return false;
7721
7722  if (AM.BaseGV) {
7723    unsigned GVFlags =
7724      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7725
7726    // If a reference to this global requires an extra load, we can't fold it.
7727    if (isGlobalStubReference(GVFlags))
7728      return false;
7729
7730    // If BaseGV requires a register for the PIC base, we cannot also have a
7731    // BaseReg specified.
7732    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7733      return false;
7734
7735    // If lower 4G is not available, then we must use rip-relative addressing.
7736    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7737      return false;
7738  }
7739
7740  switch (AM.Scale) {
7741  case 0:
7742  case 1:
7743  case 2:
7744  case 4:
7745  case 8:
7746    // These scales always work.
7747    break;
7748  case 3:
7749  case 5:
7750  case 9:
7751    // These scales are formed with basereg+scalereg.  Only accept if there is
7752    // no basereg yet.
7753    if (AM.HasBaseReg)
7754      return false;
7755    break;
7756  default:  // Other stuff never works.
7757    return false;
7758  }
7759
7760  return true;
7761}
7762
7763
7764bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7765  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7766    return false;
7767  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7768  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7769  if (NumBits1 <= NumBits2)
7770    return false;
7771  return Subtarget->is64Bit() || NumBits1 < 64;
7772}
7773
7774bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7775  if (!VT1.isInteger() || !VT2.isInteger())
7776    return false;
7777  unsigned NumBits1 = VT1.getSizeInBits();
7778  unsigned NumBits2 = VT2.getSizeInBits();
7779  if (NumBits1 <= NumBits2)
7780    return false;
7781  return Subtarget->is64Bit() || NumBits1 < 64;
7782}
7783
7784bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7785  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7786  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7787}
7788
7789bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7790  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7791  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7792}
7793
7794bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7795  // i16 instructions are longer (0x66 prefix) and potentially slower.
7796  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7797}
7798
7799/// isShuffleMaskLegal - Targets can use this to indicate that they only
7800/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7801/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7802/// are assumed to be legal.
7803bool
7804X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7805                                      EVT VT) const {
7806  // Only do shuffles on 128-bit vector types for now.
7807  if (VT.getSizeInBits() == 64)
7808    return false;
7809
7810  // FIXME: pshufb, blends, shifts.
7811  return (VT.getVectorNumElements() == 2 ||
7812          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7813          isMOVLMask(M, VT) ||
7814          isSHUFPMask(M, VT) ||
7815          isPSHUFDMask(M, VT) ||
7816          isPSHUFHWMask(M, VT) ||
7817          isPSHUFLWMask(M, VT) ||
7818          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7819          isUNPCKLMask(M, VT) ||
7820          isUNPCKHMask(M, VT) ||
7821          isUNPCKL_v_undef_Mask(M, VT) ||
7822          isUNPCKH_v_undef_Mask(M, VT));
7823}
7824
7825bool
7826X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7827                                          EVT VT) const {
7828  unsigned NumElts = VT.getVectorNumElements();
7829  // FIXME: This collection of masks seems suspect.
7830  if (NumElts == 2)
7831    return true;
7832  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7833    return (isMOVLMask(Mask, VT)  ||
7834            isCommutedMOVLMask(Mask, VT, true) ||
7835            isSHUFPMask(Mask, VT) ||
7836            isCommutedSHUFPMask(Mask, VT));
7837  }
7838  return false;
7839}
7840
7841//===----------------------------------------------------------------------===//
7842//                           X86 Scheduler Hooks
7843//===----------------------------------------------------------------------===//
7844
7845// private utility function
7846MachineBasicBlock *
7847X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7848                                                       MachineBasicBlock *MBB,
7849                                                       unsigned regOpc,
7850                                                       unsigned immOpc,
7851                                                       unsigned LoadOpc,
7852                                                       unsigned CXchgOpc,
7853                                                       unsigned copyOpc,
7854                                                       unsigned notOpc,
7855                                                       unsigned EAXreg,
7856                                                       TargetRegisterClass *RC,
7857                                                       bool invSrc) const {
7858  // For the atomic bitwise operator, we generate
7859  //   thisMBB:
7860  //   newMBB:
7861  //     ld  t1 = [bitinstr.addr]
7862  //     op  t2 = t1, [bitinstr.val]
7863  //     mov EAX = t1
7864  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7865  //     bz  newMBB
7866  //     fallthrough -->nextMBB
7867  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7868  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7869  MachineFunction::iterator MBBIter = MBB;
7870  ++MBBIter;
7871
7872  /// First build the CFG
7873  MachineFunction *F = MBB->getParent();
7874  MachineBasicBlock *thisMBB = MBB;
7875  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7876  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7877  F->insert(MBBIter, newMBB);
7878  F->insert(MBBIter, nextMBB);
7879
7880  // Move all successors to thisMBB to nextMBB
7881  nextMBB->transferSuccessors(thisMBB);
7882
7883  // Update thisMBB to fall through to newMBB
7884  thisMBB->addSuccessor(newMBB);
7885
7886  // newMBB jumps to itself and fall through to nextMBB
7887  newMBB->addSuccessor(nextMBB);
7888  newMBB->addSuccessor(newMBB);
7889
7890  // Insert instructions into newMBB based on incoming instruction
7891  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7892         "unexpected number of operands");
7893  DebugLoc dl = bInstr->getDebugLoc();
7894  MachineOperand& destOper = bInstr->getOperand(0);
7895  MachineOperand* argOpers[2 + X86AddrNumOperands];
7896  int numArgs = bInstr->getNumOperands() - 1;
7897  for (int i=0; i < numArgs; ++i)
7898    argOpers[i] = &bInstr->getOperand(i+1);
7899
7900  // x86 address has 4 operands: base, index, scale, and displacement
7901  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7902  int valArgIndx = lastAddrIndx + 1;
7903
7904  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7905  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7906  for (int i=0; i <= lastAddrIndx; ++i)
7907    (*MIB).addOperand(*argOpers[i]);
7908
7909  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7910  if (invSrc) {
7911    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7912  }
7913  else
7914    tt = t1;
7915
7916  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7917  assert((argOpers[valArgIndx]->isReg() ||
7918          argOpers[valArgIndx]->isImm()) &&
7919         "invalid operand");
7920  if (argOpers[valArgIndx]->isReg())
7921    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7922  else
7923    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7924  MIB.addReg(tt);
7925  (*MIB).addOperand(*argOpers[valArgIndx]);
7926
7927  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7928  MIB.addReg(t1);
7929
7930  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7931  for (int i=0; i <= lastAddrIndx; ++i)
7932    (*MIB).addOperand(*argOpers[i]);
7933  MIB.addReg(t2);
7934  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7935  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7936                    bInstr->memoperands_end());
7937
7938  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7939  MIB.addReg(EAXreg);
7940
7941  // insert branch
7942  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
7943
7944  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7945  return nextMBB;
7946}
7947
7948// private utility function:  64 bit atomics on 32 bit host.
7949MachineBasicBlock *
7950X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7951                                                       MachineBasicBlock *MBB,
7952                                                       unsigned regOpcL,
7953                                                       unsigned regOpcH,
7954                                                       unsigned immOpcL,
7955                                                       unsigned immOpcH,
7956                                                       bool invSrc) const {
7957  // For the atomic bitwise operator, we generate
7958  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7959  //     ld t1,t2 = [bitinstr.addr]
7960  //   newMBB:
7961  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7962  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7963  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7964  //     mov ECX, EBX <- t5, t6
7965  //     mov EAX, EDX <- t1, t2
7966  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7967  //     mov t3, t4 <- EAX, EDX
7968  //     bz  newMBB
7969  //     result in out1, out2
7970  //     fallthrough -->nextMBB
7971
7972  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7973  const unsigned LoadOpc = X86::MOV32rm;
7974  const unsigned copyOpc = X86::MOV32rr;
7975  const unsigned NotOpc = X86::NOT32r;
7976  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7977  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7978  MachineFunction::iterator MBBIter = MBB;
7979  ++MBBIter;
7980
7981  /// First build the CFG
7982  MachineFunction *F = MBB->getParent();
7983  MachineBasicBlock *thisMBB = MBB;
7984  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7985  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7986  F->insert(MBBIter, newMBB);
7987  F->insert(MBBIter, nextMBB);
7988
7989  // Move all successors to thisMBB to nextMBB
7990  nextMBB->transferSuccessors(thisMBB);
7991
7992  // Update thisMBB to fall through to newMBB
7993  thisMBB->addSuccessor(newMBB);
7994
7995  // newMBB jumps to itself and fall through to nextMBB
7996  newMBB->addSuccessor(nextMBB);
7997  newMBB->addSuccessor(newMBB);
7998
7999  DebugLoc dl = bInstr->getDebugLoc();
8000  // Insert instructions into newMBB based on incoming instruction
8001  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8002  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8003         "unexpected number of operands");
8004  MachineOperand& dest1Oper = bInstr->getOperand(0);
8005  MachineOperand& dest2Oper = bInstr->getOperand(1);
8006  MachineOperand* argOpers[2 + X86AddrNumOperands];
8007  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8008    argOpers[i] = &bInstr->getOperand(i+2);
8009
8010  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8011  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8012
8013  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8014  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8015  for (int i=0; i <= lastAddrIndx; ++i)
8016    (*MIB).addOperand(*argOpers[i]);
8017  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8018  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8019  // add 4 to displacement.
8020  for (int i=0; i <= lastAddrIndx-2; ++i)
8021    (*MIB).addOperand(*argOpers[i]);
8022  MachineOperand newOp3 = *(argOpers[3]);
8023  if (newOp3.isImm())
8024    newOp3.setImm(newOp3.getImm()+4);
8025  else
8026    newOp3.setOffset(newOp3.getOffset()+4);
8027  (*MIB).addOperand(newOp3);
8028  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8029
8030  // t3/4 are defined later, at the bottom of the loop
8031  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8032  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8033  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8034    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8035  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8036    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8037
8038  // The subsequent operations should be using the destination registers of
8039  //the PHI instructions.
8040  if (invSrc) {
8041    t1 = F->getRegInfo().createVirtualRegister(RC);
8042    t2 = F->getRegInfo().createVirtualRegister(RC);
8043    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8044    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8045  } else {
8046    t1 = dest1Oper.getReg();
8047    t2 = dest2Oper.getReg();
8048  }
8049
8050  int valArgIndx = lastAddrIndx + 1;
8051  assert((argOpers[valArgIndx]->isReg() ||
8052          argOpers[valArgIndx]->isImm()) &&
8053         "invalid operand");
8054  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8055  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8056  if (argOpers[valArgIndx]->isReg())
8057    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8058  else
8059    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8060  if (regOpcL != X86::MOV32rr)
8061    MIB.addReg(t1);
8062  (*MIB).addOperand(*argOpers[valArgIndx]);
8063  assert(argOpers[valArgIndx + 1]->isReg() ==
8064         argOpers[valArgIndx]->isReg());
8065  assert(argOpers[valArgIndx + 1]->isImm() ==
8066         argOpers[valArgIndx]->isImm());
8067  if (argOpers[valArgIndx + 1]->isReg())
8068    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8069  else
8070    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8071  if (regOpcH != X86::MOV32rr)
8072    MIB.addReg(t2);
8073  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8074
8075  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8076  MIB.addReg(t1);
8077  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8078  MIB.addReg(t2);
8079
8080  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8081  MIB.addReg(t5);
8082  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8083  MIB.addReg(t6);
8084
8085  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8086  for (int i=0; i <= lastAddrIndx; ++i)
8087    (*MIB).addOperand(*argOpers[i]);
8088
8089  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8090  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8091                    bInstr->memoperands_end());
8092
8093  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8094  MIB.addReg(X86::EAX);
8095  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8096  MIB.addReg(X86::EDX);
8097
8098  // insert branch
8099  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8100
8101  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8102  return nextMBB;
8103}
8104
8105// private utility function
8106MachineBasicBlock *
8107X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8108                                                      MachineBasicBlock *MBB,
8109                                                      unsigned cmovOpc) const {
8110  // For the atomic min/max operator, we generate
8111  //   thisMBB:
8112  //   newMBB:
8113  //     ld t1 = [min/max.addr]
8114  //     mov t2 = [min/max.val]
8115  //     cmp  t1, t2
8116  //     cmov[cond] t2 = t1
8117  //     mov EAX = t1
8118  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8119  //     bz   newMBB
8120  //     fallthrough -->nextMBB
8121  //
8122  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8123  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8124  MachineFunction::iterator MBBIter = MBB;
8125  ++MBBIter;
8126
8127  /// First build the CFG
8128  MachineFunction *F = MBB->getParent();
8129  MachineBasicBlock *thisMBB = MBB;
8130  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8131  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8132  F->insert(MBBIter, newMBB);
8133  F->insert(MBBIter, nextMBB);
8134
8135  // Move all successors of thisMBB to nextMBB
8136  nextMBB->transferSuccessors(thisMBB);
8137
8138  // Update thisMBB to fall through to newMBB
8139  thisMBB->addSuccessor(newMBB);
8140
8141  // newMBB jumps to newMBB and fall through to nextMBB
8142  newMBB->addSuccessor(nextMBB);
8143  newMBB->addSuccessor(newMBB);
8144
8145  DebugLoc dl = mInstr->getDebugLoc();
8146  // Insert instructions into newMBB based on incoming instruction
8147  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8148         "unexpected number of operands");
8149  MachineOperand& destOper = mInstr->getOperand(0);
8150  MachineOperand* argOpers[2 + X86AddrNumOperands];
8151  int numArgs = mInstr->getNumOperands() - 1;
8152  for (int i=0; i < numArgs; ++i)
8153    argOpers[i] = &mInstr->getOperand(i+1);
8154
8155  // x86 address has 4 operands: base, index, scale, and displacement
8156  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8157  int valArgIndx = lastAddrIndx + 1;
8158
8159  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8160  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8161  for (int i=0; i <= lastAddrIndx; ++i)
8162    (*MIB).addOperand(*argOpers[i]);
8163
8164  // We only support register and immediate values
8165  assert((argOpers[valArgIndx]->isReg() ||
8166          argOpers[valArgIndx]->isImm()) &&
8167         "invalid operand");
8168
8169  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8170  if (argOpers[valArgIndx]->isReg())
8171    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8172  else
8173    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8174  (*MIB).addOperand(*argOpers[valArgIndx]);
8175
8176  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8177  MIB.addReg(t1);
8178
8179  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8180  MIB.addReg(t1);
8181  MIB.addReg(t2);
8182
8183  // Generate movc
8184  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8185  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8186  MIB.addReg(t2);
8187  MIB.addReg(t1);
8188
8189  // Cmp and exchange if none has modified the memory location
8190  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8191  for (int i=0; i <= lastAddrIndx; ++i)
8192    (*MIB).addOperand(*argOpers[i]);
8193  MIB.addReg(t3);
8194  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8195  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8196                    mInstr->memoperands_end());
8197
8198  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8199  MIB.addReg(X86::EAX);
8200
8201  // insert branch
8202  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8203
8204  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8205  return nextMBB;
8206}
8207
8208// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8209// all of this code can be replaced with that in the .td file.
8210MachineBasicBlock *
8211X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8212                            unsigned numArgs, bool memArg) const {
8213
8214  MachineFunction *F = BB->getParent();
8215  DebugLoc dl = MI->getDebugLoc();
8216  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8217
8218  unsigned Opc;
8219  if (memArg)
8220    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8221  else
8222    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8223
8224  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8225
8226  for (unsigned i = 0; i < numArgs; ++i) {
8227    MachineOperand &Op = MI->getOperand(i+1);
8228
8229    if (!(Op.isReg() && Op.isImplicit()))
8230      MIB.addOperand(Op);
8231  }
8232
8233  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8234    .addReg(X86::XMM0);
8235
8236  F->DeleteMachineInstr(MI);
8237
8238  return BB;
8239}
8240
8241MachineBasicBlock *
8242X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8243                                                 MachineInstr *MI,
8244                                                 MachineBasicBlock *MBB) const {
8245  // Emit code to save XMM registers to the stack. The ABI says that the
8246  // number of registers to save is given in %al, so it's theoretically
8247  // possible to do an indirect jump trick to avoid saving all of them,
8248  // however this code takes a simpler approach and just executes all
8249  // of the stores if %al is non-zero. It's less code, and it's probably
8250  // easier on the hardware branch predictor, and stores aren't all that
8251  // expensive anyway.
8252
8253  // Create the new basic blocks. One block contains all the XMM stores,
8254  // and one block is the final destination regardless of whether any
8255  // stores were performed.
8256  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8257  MachineFunction *F = MBB->getParent();
8258  MachineFunction::iterator MBBIter = MBB;
8259  ++MBBIter;
8260  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8261  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8262  F->insert(MBBIter, XMMSaveMBB);
8263  F->insert(MBBIter, EndMBB);
8264
8265  // Set up the CFG.
8266  // Move any original successors of MBB to the end block.
8267  EndMBB->transferSuccessors(MBB);
8268  // The original block will now fall through to the XMM save block.
8269  MBB->addSuccessor(XMMSaveMBB);
8270  // The XMMSaveMBB will fall through to the end block.
8271  XMMSaveMBB->addSuccessor(EndMBB);
8272
8273  // Now add the instructions.
8274  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8275  DebugLoc DL = MI->getDebugLoc();
8276
8277  unsigned CountReg = MI->getOperand(0).getReg();
8278  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8279  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8280
8281  if (!Subtarget->isTargetWin64()) {
8282    // If %al is 0, branch around the XMM save block.
8283    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8284    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8285    MBB->addSuccessor(EndMBB);
8286  }
8287
8288  // In the XMM save block, save all the XMM argument registers.
8289  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8290    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8291    MachineMemOperand *MMO =
8292      F->getMachineMemOperand(
8293        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8294        MachineMemOperand::MOStore, Offset,
8295        /*Size=*/16, /*Align=*/16);
8296    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8297      .addFrameIndex(RegSaveFrameIndex)
8298      .addImm(/*Scale=*/1)
8299      .addReg(/*IndexReg=*/0)
8300      .addImm(/*Disp=*/Offset)
8301      .addReg(/*Segment=*/0)
8302      .addReg(MI->getOperand(i).getReg())
8303      .addMemOperand(MMO);
8304  }
8305
8306  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8307
8308  return EndMBB;
8309}
8310
8311MachineBasicBlock *
8312X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8313                                     MachineBasicBlock *BB,
8314                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8315  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8316  DebugLoc DL = MI->getDebugLoc();
8317
8318  // To "insert" a SELECT_CC instruction, we actually have to insert the
8319  // diamond control-flow pattern.  The incoming instruction knows the
8320  // destination vreg to set, the condition code register to branch on, the
8321  // true/false values to select between, and a branch opcode to use.
8322  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8323  MachineFunction::iterator It = BB;
8324  ++It;
8325
8326  //  thisMBB:
8327  //  ...
8328  //   TrueVal = ...
8329  //   cmpTY ccX, r1, r2
8330  //   bCC copy1MBB
8331  //   fallthrough --> copy0MBB
8332  MachineBasicBlock *thisMBB = BB;
8333  MachineFunction *F = BB->getParent();
8334  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8335  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8336  unsigned Opc =
8337    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8338  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8339  F->insert(It, copy0MBB);
8340  F->insert(It, sinkMBB);
8341  // Update machine-CFG edges by first adding all successors of the current
8342  // block to the new block which will contain the Phi node for the select.
8343  // Also inform sdisel of the edge changes.
8344  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8345         E = BB->succ_end(); I != E; ++I) {
8346    EM->insert(std::make_pair(*I, sinkMBB));
8347    sinkMBB->addSuccessor(*I);
8348  }
8349  // Next, remove all successors of the current block, and add the true
8350  // and fallthrough blocks as its successors.
8351  while (!BB->succ_empty())
8352    BB->removeSuccessor(BB->succ_begin());
8353  // Add the true and fallthrough blocks as its successors.
8354  BB->addSuccessor(copy0MBB);
8355  BB->addSuccessor(sinkMBB);
8356
8357  //  copy0MBB:
8358  //   %FalseValue = ...
8359  //   # fallthrough to sinkMBB
8360  BB = copy0MBB;
8361
8362  // Update machine-CFG edges
8363  BB->addSuccessor(sinkMBB);
8364
8365  //  sinkMBB:
8366  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8367  //  ...
8368  BB = sinkMBB;
8369  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8370    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8371    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8372
8373  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8374  return BB;
8375}
8376
8377
8378MachineBasicBlock *
8379X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8380                                               MachineBasicBlock *BB,
8381                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8382  switch (MI->getOpcode()) {
8383  default: assert(false && "Unexpected instr type to insert");
8384  case X86::CMOV_GR8:
8385  case X86::CMOV_V1I64:
8386  case X86::CMOV_FR32:
8387  case X86::CMOV_FR64:
8388  case X86::CMOV_V4F32:
8389  case X86::CMOV_V2F64:
8390  case X86::CMOV_V2I64:
8391    return EmitLoweredSelect(MI, BB, EM);
8392
8393  case X86::FP32_TO_INT16_IN_MEM:
8394  case X86::FP32_TO_INT32_IN_MEM:
8395  case X86::FP32_TO_INT64_IN_MEM:
8396  case X86::FP64_TO_INT16_IN_MEM:
8397  case X86::FP64_TO_INT32_IN_MEM:
8398  case X86::FP64_TO_INT64_IN_MEM:
8399  case X86::FP80_TO_INT16_IN_MEM:
8400  case X86::FP80_TO_INT32_IN_MEM:
8401  case X86::FP80_TO_INT64_IN_MEM: {
8402    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8403    DebugLoc DL = MI->getDebugLoc();
8404
8405    // Change the floating point control register to use "round towards zero"
8406    // mode when truncating to an integer value.
8407    MachineFunction *F = BB->getParent();
8408    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8409    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8410
8411    // Load the old value of the high byte of the control word...
8412    unsigned OldCW =
8413      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8414    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8415                      CWFrameIdx);
8416
8417    // Set the high part to be round to zero...
8418    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8419      .addImm(0xC7F);
8420
8421    // Reload the modified control word now...
8422    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8423
8424    // Restore the memory image of control word to original value
8425    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8426      .addReg(OldCW);
8427
8428    // Get the X86 opcode to use.
8429    unsigned Opc;
8430    switch (MI->getOpcode()) {
8431    default: llvm_unreachable("illegal opcode!");
8432    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8433    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8434    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8435    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8436    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8437    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8438    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8439    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8440    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8441    }
8442
8443    X86AddressMode AM;
8444    MachineOperand &Op = MI->getOperand(0);
8445    if (Op.isReg()) {
8446      AM.BaseType = X86AddressMode::RegBase;
8447      AM.Base.Reg = Op.getReg();
8448    } else {
8449      AM.BaseType = X86AddressMode::FrameIndexBase;
8450      AM.Base.FrameIndex = Op.getIndex();
8451    }
8452    Op = MI->getOperand(1);
8453    if (Op.isImm())
8454      AM.Scale = Op.getImm();
8455    Op = MI->getOperand(2);
8456    if (Op.isImm())
8457      AM.IndexReg = Op.getImm();
8458    Op = MI->getOperand(3);
8459    if (Op.isGlobal()) {
8460      AM.GV = Op.getGlobal();
8461    } else {
8462      AM.Disp = Op.getImm();
8463    }
8464    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8465                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8466
8467    // Reload the original control word now.
8468    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8469
8470    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8471    return BB;
8472  }
8473    // String/text processing lowering.
8474  case X86::PCMPISTRM128REG:
8475    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8476  case X86::PCMPISTRM128MEM:
8477    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8478  case X86::PCMPESTRM128REG:
8479    return EmitPCMP(MI, BB, 5, false /* in mem */);
8480  case X86::PCMPESTRM128MEM:
8481    return EmitPCMP(MI, BB, 5, true /* in mem */);
8482
8483    // Atomic Lowering.
8484  case X86::ATOMAND32:
8485    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8486                                               X86::AND32ri, X86::MOV32rm,
8487                                               X86::LCMPXCHG32, X86::MOV32rr,
8488                                               X86::NOT32r, X86::EAX,
8489                                               X86::GR32RegisterClass);
8490  case X86::ATOMOR32:
8491    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8492                                               X86::OR32ri, X86::MOV32rm,
8493                                               X86::LCMPXCHG32, X86::MOV32rr,
8494                                               X86::NOT32r, X86::EAX,
8495                                               X86::GR32RegisterClass);
8496  case X86::ATOMXOR32:
8497    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8498                                               X86::XOR32ri, X86::MOV32rm,
8499                                               X86::LCMPXCHG32, X86::MOV32rr,
8500                                               X86::NOT32r, X86::EAX,
8501                                               X86::GR32RegisterClass);
8502  case X86::ATOMNAND32:
8503    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8504                                               X86::AND32ri, X86::MOV32rm,
8505                                               X86::LCMPXCHG32, X86::MOV32rr,
8506                                               X86::NOT32r, X86::EAX,
8507                                               X86::GR32RegisterClass, true);
8508  case X86::ATOMMIN32:
8509    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8510  case X86::ATOMMAX32:
8511    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8512  case X86::ATOMUMIN32:
8513    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8514  case X86::ATOMUMAX32:
8515    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8516
8517  case X86::ATOMAND16:
8518    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8519                                               X86::AND16ri, X86::MOV16rm,
8520                                               X86::LCMPXCHG16, X86::MOV16rr,
8521                                               X86::NOT16r, X86::AX,
8522                                               X86::GR16RegisterClass);
8523  case X86::ATOMOR16:
8524    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8525                                               X86::OR16ri, X86::MOV16rm,
8526                                               X86::LCMPXCHG16, X86::MOV16rr,
8527                                               X86::NOT16r, X86::AX,
8528                                               X86::GR16RegisterClass);
8529  case X86::ATOMXOR16:
8530    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8531                                               X86::XOR16ri, X86::MOV16rm,
8532                                               X86::LCMPXCHG16, X86::MOV16rr,
8533                                               X86::NOT16r, X86::AX,
8534                                               X86::GR16RegisterClass);
8535  case X86::ATOMNAND16:
8536    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8537                                               X86::AND16ri, X86::MOV16rm,
8538                                               X86::LCMPXCHG16, X86::MOV16rr,
8539                                               X86::NOT16r, X86::AX,
8540                                               X86::GR16RegisterClass, true);
8541  case X86::ATOMMIN16:
8542    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8543  case X86::ATOMMAX16:
8544    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8545  case X86::ATOMUMIN16:
8546    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8547  case X86::ATOMUMAX16:
8548    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8549
8550  case X86::ATOMAND8:
8551    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8552                                               X86::AND8ri, X86::MOV8rm,
8553                                               X86::LCMPXCHG8, X86::MOV8rr,
8554                                               X86::NOT8r, X86::AL,
8555                                               X86::GR8RegisterClass);
8556  case X86::ATOMOR8:
8557    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8558                                               X86::OR8ri, X86::MOV8rm,
8559                                               X86::LCMPXCHG8, X86::MOV8rr,
8560                                               X86::NOT8r, X86::AL,
8561                                               X86::GR8RegisterClass);
8562  case X86::ATOMXOR8:
8563    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8564                                               X86::XOR8ri, X86::MOV8rm,
8565                                               X86::LCMPXCHG8, X86::MOV8rr,
8566                                               X86::NOT8r, X86::AL,
8567                                               X86::GR8RegisterClass);
8568  case X86::ATOMNAND8:
8569    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8570                                               X86::AND8ri, X86::MOV8rm,
8571                                               X86::LCMPXCHG8, X86::MOV8rr,
8572                                               X86::NOT8r, X86::AL,
8573                                               X86::GR8RegisterClass, true);
8574  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8575  // This group is for 64-bit host.
8576  case X86::ATOMAND64:
8577    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8578                                               X86::AND64ri32, X86::MOV64rm,
8579                                               X86::LCMPXCHG64, X86::MOV64rr,
8580                                               X86::NOT64r, X86::RAX,
8581                                               X86::GR64RegisterClass);
8582  case X86::ATOMOR64:
8583    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8584                                               X86::OR64ri32, X86::MOV64rm,
8585                                               X86::LCMPXCHG64, X86::MOV64rr,
8586                                               X86::NOT64r, X86::RAX,
8587                                               X86::GR64RegisterClass);
8588  case X86::ATOMXOR64:
8589    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8590                                               X86::XOR64ri32, X86::MOV64rm,
8591                                               X86::LCMPXCHG64, X86::MOV64rr,
8592                                               X86::NOT64r, X86::RAX,
8593                                               X86::GR64RegisterClass);
8594  case X86::ATOMNAND64:
8595    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8596                                               X86::AND64ri32, X86::MOV64rm,
8597                                               X86::LCMPXCHG64, X86::MOV64rr,
8598                                               X86::NOT64r, X86::RAX,
8599                                               X86::GR64RegisterClass, true);
8600  case X86::ATOMMIN64:
8601    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8602  case X86::ATOMMAX64:
8603    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8604  case X86::ATOMUMIN64:
8605    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8606  case X86::ATOMUMAX64:
8607    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8608
8609  // This group does 64-bit operations on a 32-bit host.
8610  case X86::ATOMAND6432:
8611    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8612                                               X86::AND32rr, X86::AND32rr,
8613                                               X86::AND32ri, X86::AND32ri,
8614                                               false);
8615  case X86::ATOMOR6432:
8616    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8617                                               X86::OR32rr, X86::OR32rr,
8618                                               X86::OR32ri, X86::OR32ri,
8619                                               false);
8620  case X86::ATOMXOR6432:
8621    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8622                                               X86::XOR32rr, X86::XOR32rr,
8623                                               X86::XOR32ri, X86::XOR32ri,
8624                                               false);
8625  case X86::ATOMNAND6432:
8626    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8627                                               X86::AND32rr, X86::AND32rr,
8628                                               X86::AND32ri, X86::AND32ri,
8629                                               true);
8630  case X86::ATOMADD6432:
8631    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8632                                               X86::ADD32rr, X86::ADC32rr,
8633                                               X86::ADD32ri, X86::ADC32ri,
8634                                               false);
8635  case X86::ATOMSUB6432:
8636    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8637                                               X86::SUB32rr, X86::SBB32rr,
8638                                               X86::SUB32ri, X86::SBB32ri,
8639                                               false);
8640  case X86::ATOMSWAP6432:
8641    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8642                                               X86::MOV32rr, X86::MOV32rr,
8643                                               X86::MOV32ri, X86::MOV32ri,
8644                                               false);
8645  case X86::VASTART_SAVE_XMM_REGS:
8646    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8647  }
8648}
8649
8650//===----------------------------------------------------------------------===//
8651//                           X86 Optimization Hooks
8652//===----------------------------------------------------------------------===//
8653
8654void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8655                                                       const APInt &Mask,
8656                                                       APInt &KnownZero,
8657                                                       APInt &KnownOne,
8658                                                       const SelectionDAG &DAG,
8659                                                       unsigned Depth) const {
8660  unsigned Opc = Op.getOpcode();
8661  assert((Opc >= ISD::BUILTIN_OP_END ||
8662          Opc == ISD::INTRINSIC_WO_CHAIN ||
8663          Opc == ISD::INTRINSIC_W_CHAIN ||
8664          Opc == ISD::INTRINSIC_VOID) &&
8665         "Should use MaskedValueIsZero if you don't know whether Op"
8666         " is a target node!");
8667
8668  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8669  switch (Opc) {
8670  default: break;
8671  case X86ISD::ADD:
8672  case X86ISD::SUB:
8673  case X86ISD::SMUL:
8674  case X86ISD::UMUL:
8675  case X86ISD::INC:
8676  case X86ISD::DEC:
8677  case X86ISD::OR:
8678  case X86ISD::XOR:
8679  case X86ISD::AND:
8680    // These nodes' second result is a boolean.
8681    if (Op.getResNo() == 0)
8682      break;
8683    // Fallthrough
8684  case X86ISD::SETCC:
8685    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8686                                       Mask.getBitWidth() - 1);
8687    break;
8688  }
8689}
8690
8691/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8692/// node is a GlobalAddress + offset.
8693bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8694                                       GlobalValue* &GA, int64_t &Offset) const{
8695  if (N->getOpcode() == X86ISD::Wrapper) {
8696    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8697      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8698      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8699      return true;
8700    }
8701  }
8702  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8703}
8704
8705static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8706                                     EVT EltVT, LoadSDNode *&LDBase,
8707                                     unsigned &LastLoadedElt,
8708                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8709                                     const TargetLowering &TLI) {
8710  LDBase = NULL;
8711  LastLoadedElt = -1U;
8712  for (unsigned i = 0; i < NumElems; ++i) {
8713    if (N->getMaskElt(i) < 0) {
8714      if (!LDBase)
8715        return false;
8716      continue;
8717    }
8718
8719    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8720    if (!Elt.getNode() ||
8721        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8722      return false;
8723    if (!LDBase) {
8724      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8725        return false;
8726      LDBase = cast<LoadSDNode>(Elt.getNode());
8727      LastLoadedElt = i;
8728      continue;
8729    }
8730    if (Elt.getOpcode() == ISD::UNDEF)
8731      continue;
8732
8733    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8734    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8735      return false;
8736    LastLoadedElt = i;
8737  }
8738  return true;
8739}
8740
8741/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8742/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8743/// if the load addresses are consecutive, non-overlapping, and in the right
8744/// order.  In the case of v2i64, it will see if it can rewrite the
8745/// shuffle to be an appropriate build vector so it can take advantage of
8746// performBuildVectorCombine.
8747static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8748                                     const TargetLowering &TLI) {
8749  DebugLoc dl = N->getDebugLoc();
8750  EVT VT = N->getValueType(0);
8751  EVT EltVT = VT.getVectorElementType();
8752  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8753  unsigned NumElems = VT.getVectorNumElements();
8754
8755  if (VT.getSizeInBits() != 128)
8756    return SDValue();
8757
8758  // Try to combine a vector_shuffle into a 128-bit load.
8759  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8760  LoadSDNode *LD = NULL;
8761  unsigned LastLoadedElt;
8762  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8763                                MFI, TLI))
8764    return SDValue();
8765
8766  if (LastLoadedElt == NumElems - 1) {
8767    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8768      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8769                         LD->getSrcValue(), LD->getSrcValueOffset(),
8770                         LD->isVolatile(), LD->isNonTemporal(), 0);
8771    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8772                       LD->getSrcValue(), LD->getSrcValueOffset(),
8773                       LD->isVolatile(), LD->isNonTemporal(),
8774                       LD->getAlignment());
8775  } else if (NumElems == 4 && LastLoadedElt == 1) {
8776    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8777    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8778    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8779    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8780  }
8781  return SDValue();
8782}
8783
8784/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8785static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8786                                    const X86Subtarget *Subtarget) {
8787  DebugLoc DL = N->getDebugLoc();
8788  SDValue Cond = N->getOperand(0);
8789  // Get the LHS/RHS of the select.
8790  SDValue LHS = N->getOperand(1);
8791  SDValue RHS = N->getOperand(2);
8792
8793  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8794  // instructions have the peculiarity that if either operand is a NaN,
8795  // they chose what we call the RHS operand (and as such are not symmetric).
8796  // It happens that this matches the semantics of the common C idiom
8797  // x<y?x:y and related forms, so we can recognize these cases.
8798  if (Subtarget->hasSSE2() &&
8799      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8800      Cond.getOpcode() == ISD::SETCC) {
8801    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8802
8803    unsigned Opcode = 0;
8804    // Check for x CC y ? x : y.
8805    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8806      switch (CC) {
8807      default: break;
8808      case ISD::SETULT:
8809        // This can be a min if we can prove that at least one of the operands
8810        // is not a nan.
8811        if (!FiniteOnlyFPMath()) {
8812          if (DAG.isKnownNeverNaN(RHS)) {
8813            // Put the potential NaN in the RHS so that SSE will preserve it.
8814            std::swap(LHS, RHS);
8815          } else if (!DAG.isKnownNeverNaN(LHS))
8816            break;
8817        }
8818        Opcode = X86ISD::FMIN;
8819        break;
8820      case ISD::SETOLE:
8821        // This can be a min if we can prove that at least one of the operands
8822        // is not a nan.
8823        if (!FiniteOnlyFPMath()) {
8824          if (DAG.isKnownNeverNaN(LHS)) {
8825            // Put the potential NaN in the RHS so that SSE will preserve it.
8826            std::swap(LHS, RHS);
8827          } else if (!DAG.isKnownNeverNaN(RHS))
8828            break;
8829        }
8830        Opcode = X86ISD::FMIN;
8831        break;
8832      case ISD::SETULE:
8833        // This can be a min, but if either operand is a NaN we need it to
8834        // preserve the original LHS.
8835        std::swap(LHS, RHS);
8836      case ISD::SETOLT:
8837      case ISD::SETLT:
8838      case ISD::SETLE:
8839        Opcode = X86ISD::FMIN;
8840        break;
8841
8842      case ISD::SETOGE:
8843        // This can be a max if we can prove that at least one of the operands
8844        // is not a nan.
8845        if (!FiniteOnlyFPMath()) {
8846          if (DAG.isKnownNeverNaN(LHS)) {
8847            // Put the potential NaN in the RHS so that SSE will preserve it.
8848            std::swap(LHS, RHS);
8849          } else if (!DAG.isKnownNeverNaN(RHS))
8850            break;
8851        }
8852        Opcode = X86ISD::FMAX;
8853        break;
8854      case ISD::SETUGT:
8855        // This can be a max if we can prove that at least one of the operands
8856        // is not a nan.
8857        if (!FiniteOnlyFPMath()) {
8858          if (DAG.isKnownNeverNaN(RHS)) {
8859            // Put the potential NaN in the RHS so that SSE will preserve it.
8860            std::swap(LHS, RHS);
8861          } else if (!DAG.isKnownNeverNaN(LHS))
8862            break;
8863        }
8864        Opcode = X86ISD::FMAX;
8865        break;
8866      case ISD::SETUGE:
8867        // This can be a max, but if either operand is a NaN we need it to
8868        // preserve the original LHS.
8869        std::swap(LHS, RHS);
8870      case ISD::SETOGT:
8871      case ISD::SETGT:
8872      case ISD::SETGE:
8873        Opcode = X86ISD::FMAX;
8874        break;
8875      }
8876    // Check for x CC y ? y : x -- a min/max with reversed arms.
8877    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8878      switch (CC) {
8879      default: break;
8880      case ISD::SETOGE:
8881        // This can be a min if we can prove that at least one of the operands
8882        // is not a nan.
8883        if (!FiniteOnlyFPMath()) {
8884          if (DAG.isKnownNeverNaN(RHS)) {
8885            // Put the potential NaN in the RHS so that SSE will preserve it.
8886            std::swap(LHS, RHS);
8887          } else if (!DAG.isKnownNeverNaN(LHS))
8888            break;
8889        }
8890        Opcode = X86ISD::FMIN;
8891        break;
8892      case ISD::SETUGT:
8893        // This can be a min if we can prove that at least one of the operands
8894        // is not a nan.
8895        if (!FiniteOnlyFPMath()) {
8896          if (DAG.isKnownNeverNaN(LHS)) {
8897            // Put the potential NaN in the RHS so that SSE will preserve it.
8898            std::swap(LHS, RHS);
8899          } else if (!DAG.isKnownNeverNaN(RHS))
8900            break;
8901        }
8902        Opcode = X86ISD::FMIN;
8903        break;
8904      case ISD::SETUGE:
8905        // This can be a min, but if either operand is a NaN we need it to
8906        // preserve the original LHS.
8907        std::swap(LHS, RHS);
8908      case ISD::SETOGT:
8909      case ISD::SETGT:
8910      case ISD::SETGE:
8911        Opcode = X86ISD::FMIN;
8912        break;
8913
8914      case ISD::SETULT:
8915        // This can be a max if we can prove that at least one of the operands
8916        // is not a nan.
8917        if (!FiniteOnlyFPMath()) {
8918          if (DAG.isKnownNeverNaN(LHS)) {
8919            // Put the potential NaN in the RHS so that SSE will preserve it.
8920            std::swap(LHS, RHS);
8921          } else if (!DAG.isKnownNeverNaN(RHS))
8922            break;
8923        }
8924        Opcode = X86ISD::FMAX;
8925        break;
8926      case ISD::SETOLE:
8927        // This can be a max if we can prove that at least one of the operands
8928        // is not a nan.
8929        if (!FiniteOnlyFPMath()) {
8930          if (DAG.isKnownNeverNaN(RHS)) {
8931            // Put the potential NaN in the RHS so that SSE will preserve it.
8932            std::swap(LHS, RHS);
8933          } else if (!DAG.isKnownNeverNaN(LHS))
8934            break;
8935        }
8936        Opcode = X86ISD::FMAX;
8937        break;
8938      case ISD::SETULE:
8939        // This can be a max, but if either operand is a NaN we need it to
8940        // preserve the original LHS.
8941        std::swap(LHS, RHS);
8942      case ISD::SETOLT:
8943      case ISD::SETLT:
8944      case ISD::SETLE:
8945        Opcode = X86ISD::FMAX;
8946        break;
8947      }
8948    }
8949
8950    if (Opcode)
8951      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8952  }
8953
8954  // If this is a select between two integer constants, try to do some
8955  // optimizations.
8956  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8957    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8958      // Don't do this for crazy integer types.
8959      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8960        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8961        // so that TrueC (the true value) is larger than FalseC.
8962        bool NeedsCondInvert = false;
8963
8964        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8965            // Efficiently invertible.
8966            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8967             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8968              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8969          NeedsCondInvert = true;
8970          std::swap(TrueC, FalseC);
8971        }
8972
8973        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8974        if (FalseC->getAPIntValue() == 0 &&
8975            TrueC->getAPIntValue().isPowerOf2()) {
8976          if (NeedsCondInvert) // Invert the condition if needed.
8977            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8978                               DAG.getConstant(1, Cond.getValueType()));
8979
8980          // Zero extend the condition if needed.
8981          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8982
8983          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8984          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8985                             DAG.getConstant(ShAmt, MVT::i8));
8986        }
8987
8988        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8989        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8990          if (NeedsCondInvert) // Invert the condition if needed.
8991            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8992                               DAG.getConstant(1, Cond.getValueType()));
8993
8994          // Zero extend the condition if needed.
8995          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8996                             FalseC->getValueType(0), Cond);
8997          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8998                             SDValue(FalseC, 0));
8999        }
9000
9001        // Optimize cases that will turn into an LEA instruction.  This requires
9002        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9003        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9004          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9005          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9006
9007          bool isFastMultiplier = false;
9008          if (Diff < 10) {
9009            switch ((unsigned char)Diff) {
9010              default: break;
9011              case 1:  // result = add base, cond
9012              case 2:  // result = lea base(    , cond*2)
9013              case 3:  // result = lea base(cond, cond*2)
9014              case 4:  // result = lea base(    , cond*4)
9015              case 5:  // result = lea base(cond, cond*4)
9016              case 8:  // result = lea base(    , cond*8)
9017              case 9:  // result = lea base(cond, cond*8)
9018                isFastMultiplier = true;
9019                break;
9020            }
9021          }
9022
9023          if (isFastMultiplier) {
9024            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9025            if (NeedsCondInvert) // Invert the condition if needed.
9026              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9027                                 DAG.getConstant(1, Cond.getValueType()));
9028
9029            // Zero extend the condition if needed.
9030            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9031                               Cond);
9032            // Scale the condition by the difference.
9033            if (Diff != 1)
9034              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9035                                 DAG.getConstant(Diff, Cond.getValueType()));
9036
9037            // Add the base if non-zero.
9038            if (FalseC->getAPIntValue() != 0)
9039              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9040                                 SDValue(FalseC, 0));
9041            return Cond;
9042          }
9043        }
9044      }
9045  }
9046
9047  return SDValue();
9048}
9049
9050/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9051static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9052                                  TargetLowering::DAGCombinerInfo &DCI) {
9053  DebugLoc DL = N->getDebugLoc();
9054
9055  // If the flag operand isn't dead, don't touch this CMOV.
9056  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9057    return SDValue();
9058
9059  // If this is a select between two integer constants, try to do some
9060  // optimizations.  Note that the operands are ordered the opposite of SELECT
9061  // operands.
9062  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9063    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9064      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9065      // larger than FalseC (the false value).
9066      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9067
9068      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9069        CC = X86::GetOppositeBranchCondition(CC);
9070        std::swap(TrueC, FalseC);
9071      }
9072
9073      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9074      // This is efficient for any integer data type (including i8/i16) and
9075      // shift amount.
9076      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9077        SDValue Cond = N->getOperand(3);
9078        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9079                           DAG.getConstant(CC, MVT::i8), Cond);
9080
9081        // Zero extend the condition if needed.
9082        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9083
9084        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9085        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9086                           DAG.getConstant(ShAmt, MVT::i8));
9087        if (N->getNumValues() == 2)  // Dead flag value?
9088          return DCI.CombineTo(N, Cond, SDValue());
9089        return Cond;
9090      }
9091
9092      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9093      // for any integer data type, including i8/i16.
9094      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9095        SDValue Cond = N->getOperand(3);
9096        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9097                           DAG.getConstant(CC, MVT::i8), Cond);
9098
9099        // Zero extend the condition if needed.
9100        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9101                           FalseC->getValueType(0), Cond);
9102        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9103                           SDValue(FalseC, 0));
9104
9105        if (N->getNumValues() == 2)  // Dead flag value?
9106          return DCI.CombineTo(N, Cond, SDValue());
9107        return Cond;
9108      }
9109
9110      // Optimize cases that will turn into an LEA instruction.  This requires
9111      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9112      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9113        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9114        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9115
9116        bool isFastMultiplier = false;
9117        if (Diff < 10) {
9118          switch ((unsigned char)Diff) {
9119          default: break;
9120          case 1:  // result = add base, cond
9121          case 2:  // result = lea base(    , cond*2)
9122          case 3:  // result = lea base(cond, cond*2)
9123          case 4:  // result = lea base(    , cond*4)
9124          case 5:  // result = lea base(cond, cond*4)
9125          case 8:  // result = lea base(    , cond*8)
9126          case 9:  // result = lea base(cond, cond*8)
9127            isFastMultiplier = true;
9128            break;
9129          }
9130        }
9131
9132        if (isFastMultiplier) {
9133          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9134          SDValue Cond = N->getOperand(3);
9135          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9136                             DAG.getConstant(CC, MVT::i8), Cond);
9137          // Zero extend the condition if needed.
9138          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9139                             Cond);
9140          // Scale the condition by the difference.
9141          if (Diff != 1)
9142            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9143                               DAG.getConstant(Diff, Cond.getValueType()));
9144
9145          // Add the base if non-zero.
9146          if (FalseC->getAPIntValue() != 0)
9147            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9148                               SDValue(FalseC, 0));
9149          if (N->getNumValues() == 2)  // Dead flag value?
9150            return DCI.CombineTo(N, Cond, SDValue());
9151          return Cond;
9152        }
9153      }
9154    }
9155  }
9156  return SDValue();
9157}
9158
9159
9160/// PerformMulCombine - Optimize a single multiply with constant into two
9161/// in order to implement it with two cheaper instructions, e.g.
9162/// LEA + SHL, LEA + LEA.
9163static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9164                                 TargetLowering::DAGCombinerInfo &DCI) {
9165  if (DAG.getMachineFunction().
9166      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
9167    return SDValue();
9168
9169  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9170    return SDValue();
9171
9172  EVT VT = N->getValueType(0);
9173  if (VT != MVT::i64)
9174    return SDValue();
9175
9176  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9177  if (!C)
9178    return SDValue();
9179  uint64_t MulAmt = C->getZExtValue();
9180  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9181    return SDValue();
9182
9183  uint64_t MulAmt1 = 0;
9184  uint64_t MulAmt2 = 0;
9185  if ((MulAmt % 9) == 0) {
9186    MulAmt1 = 9;
9187    MulAmt2 = MulAmt / 9;
9188  } else if ((MulAmt % 5) == 0) {
9189    MulAmt1 = 5;
9190    MulAmt2 = MulAmt / 5;
9191  } else if ((MulAmt % 3) == 0) {
9192    MulAmt1 = 3;
9193    MulAmt2 = MulAmt / 3;
9194  }
9195  if (MulAmt2 &&
9196      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9197    DebugLoc DL = N->getDebugLoc();
9198
9199    if (isPowerOf2_64(MulAmt2) &&
9200        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9201      // If second multiplifer is pow2, issue it first. We want the multiply by
9202      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9203      // is an add.
9204      std::swap(MulAmt1, MulAmt2);
9205
9206    SDValue NewMul;
9207    if (isPowerOf2_64(MulAmt1))
9208      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9209                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9210    else
9211      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9212                           DAG.getConstant(MulAmt1, VT));
9213
9214    if (isPowerOf2_64(MulAmt2))
9215      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9216                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9217    else
9218      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9219                           DAG.getConstant(MulAmt2, VT));
9220
9221    // Do not add new nodes to DAG combiner worklist.
9222    DCI.CombineTo(N, NewMul, false);
9223  }
9224  return SDValue();
9225}
9226
9227static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9228  SDValue N0 = N->getOperand(0);
9229  SDValue N1 = N->getOperand(1);
9230  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9231  EVT VT = N0.getValueType();
9232
9233  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9234  // since the result of setcc_c is all zero's or all ones.
9235  if (N1C && N0.getOpcode() == ISD::AND &&
9236      N0.getOperand(1).getOpcode() == ISD::Constant) {
9237    SDValue N00 = N0.getOperand(0);
9238    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9239        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9240          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9241         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9242      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9243      APInt ShAmt = N1C->getAPIntValue();
9244      Mask = Mask.shl(ShAmt);
9245      if (Mask != 0)
9246        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9247                           N00, DAG.getConstant(Mask, VT));
9248    }
9249  }
9250
9251  return SDValue();
9252}
9253
9254/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9255///                       when possible.
9256static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9257                                   const X86Subtarget *Subtarget) {
9258  EVT VT = N->getValueType(0);
9259  if (!VT.isVector() && VT.isInteger() &&
9260      N->getOpcode() == ISD::SHL)
9261    return PerformSHLCombine(N, DAG);
9262
9263  // On X86 with SSE2 support, we can transform this to a vector shift if
9264  // all elements are shifted by the same amount.  We can't do this in legalize
9265  // because the a constant vector is typically transformed to a constant pool
9266  // so we have no knowledge of the shift amount.
9267  if (!Subtarget->hasSSE2())
9268    return SDValue();
9269
9270  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9271    return SDValue();
9272
9273  SDValue ShAmtOp = N->getOperand(1);
9274  EVT EltVT = VT.getVectorElementType();
9275  DebugLoc DL = N->getDebugLoc();
9276  SDValue BaseShAmt = SDValue();
9277  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9278    unsigned NumElts = VT.getVectorNumElements();
9279    unsigned i = 0;
9280    for (; i != NumElts; ++i) {
9281      SDValue Arg = ShAmtOp.getOperand(i);
9282      if (Arg.getOpcode() == ISD::UNDEF) continue;
9283      BaseShAmt = Arg;
9284      break;
9285    }
9286    for (; i != NumElts; ++i) {
9287      SDValue Arg = ShAmtOp.getOperand(i);
9288      if (Arg.getOpcode() == ISD::UNDEF) continue;
9289      if (Arg != BaseShAmt) {
9290        return SDValue();
9291      }
9292    }
9293  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9294             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9295    SDValue InVec = ShAmtOp.getOperand(0);
9296    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9297      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9298      unsigned i = 0;
9299      for (; i != NumElts; ++i) {
9300        SDValue Arg = InVec.getOperand(i);
9301        if (Arg.getOpcode() == ISD::UNDEF) continue;
9302        BaseShAmt = Arg;
9303        break;
9304      }
9305    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9306       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9307         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9308         if (C->getZExtValue() == SplatIdx)
9309           BaseShAmt = InVec.getOperand(1);
9310       }
9311    }
9312    if (BaseShAmt.getNode() == 0)
9313      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9314                              DAG.getIntPtrConstant(0));
9315  } else
9316    return SDValue();
9317
9318  // The shift amount is an i32.
9319  if (EltVT.bitsGT(MVT::i32))
9320    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9321  else if (EltVT.bitsLT(MVT::i32))
9322    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9323
9324  // The shift amount is identical so we can do a vector shift.
9325  SDValue  ValOp = N->getOperand(0);
9326  switch (N->getOpcode()) {
9327  default:
9328    llvm_unreachable("Unknown shift opcode!");
9329    break;
9330  case ISD::SHL:
9331    if (VT == MVT::v2i64)
9332      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9333                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9334                         ValOp, BaseShAmt);
9335    if (VT == MVT::v4i32)
9336      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9337                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9338                         ValOp, BaseShAmt);
9339    if (VT == MVT::v8i16)
9340      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9341                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9342                         ValOp, BaseShAmt);
9343    break;
9344  case ISD::SRA:
9345    if (VT == MVT::v4i32)
9346      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9347                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9348                         ValOp, BaseShAmt);
9349    if (VT == MVT::v8i16)
9350      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9351                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9352                         ValOp, BaseShAmt);
9353    break;
9354  case ISD::SRL:
9355    if (VT == MVT::v2i64)
9356      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9357                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9358                         ValOp, BaseShAmt);
9359    if (VT == MVT::v4i32)
9360      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9361                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9362                         ValOp, BaseShAmt);
9363    if (VT ==  MVT::v8i16)
9364      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9365                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9366                         ValOp, BaseShAmt);
9367    break;
9368  }
9369  return SDValue();
9370}
9371
9372static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9373                                const X86Subtarget *Subtarget) {
9374  EVT VT = N->getValueType(0);
9375  if (VT != MVT::i64 || !Subtarget->is64Bit())
9376    return SDValue();
9377
9378  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9379  SDValue N0 = N->getOperand(0);
9380  SDValue N1 = N->getOperand(1);
9381  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9382    std::swap(N0, N1);
9383  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9384    return SDValue();
9385
9386  SDValue ShAmt0 = N0.getOperand(1);
9387  if (ShAmt0.getValueType() != MVT::i8)
9388    return SDValue();
9389  SDValue ShAmt1 = N1.getOperand(1);
9390  if (ShAmt1.getValueType() != MVT::i8)
9391    return SDValue();
9392  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9393    ShAmt0 = ShAmt0.getOperand(0);
9394  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9395    ShAmt1 = ShAmt1.getOperand(0);
9396
9397  DebugLoc DL = N->getDebugLoc();
9398  unsigned Opc = X86ISD::SHLD;
9399  SDValue Op0 = N0.getOperand(0);
9400  SDValue Op1 = N1.getOperand(0);
9401  if (ShAmt0.getOpcode() == ISD::SUB) {
9402    Opc = X86ISD::SHRD;
9403    std::swap(Op0, Op1);
9404    std::swap(ShAmt0, ShAmt1);
9405  }
9406
9407  if (ShAmt1.getOpcode() == ISD::SUB) {
9408    SDValue Sum = ShAmt1.getOperand(0);
9409    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9410      if (SumC->getSExtValue() == 64 &&
9411          ShAmt1.getOperand(1) == ShAmt0)
9412        return DAG.getNode(Opc, DL, VT,
9413                           Op0, Op1,
9414                           DAG.getNode(ISD::TRUNCATE, DL,
9415                                       MVT::i8, ShAmt0));
9416    }
9417  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9418    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9419    if (ShAmt0C &&
9420        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9421      return DAG.getNode(Opc, DL, VT,
9422                         N0.getOperand(0), N1.getOperand(0),
9423                         DAG.getNode(ISD::TRUNCATE, DL,
9424                                       MVT::i8, ShAmt0));
9425  }
9426
9427  return SDValue();
9428}
9429
9430/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9431static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9432                                   const X86Subtarget *Subtarget) {
9433  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9434  // the FP state in cases where an emms may be missing.
9435  // A preferable solution to the general problem is to figure out the right
9436  // places to insert EMMS.  This qualifies as a quick hack.
9437
9438  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9439  StoreSDNode *St = cast<StoreSDNode>(N);
9440  EVT VT = St->getValue().getValueType();
9441  if (VT.getSizeInBits() != 64)
9442    return SDValue();
9443
9444  const Function *F = DAG.getMachineFunction().getFunction();
9445  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9446  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9447    && Subtarget->hasSSE2();
9448  if ((VT.isVector() ||
9449       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9450      isa<LoadSDNode>(St->getValue()) &&
9451      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9452      St->getChain().hasOneUse() && !St->isVolatile()) {
9453    SDNode* LdVal = St->getValue().getNode();
9454    LoadSDNode *Ld = 0;
9455    int TokenFactorIndex = -1;
9456    SmallVector<SDValue, 8> Ops;
9457    SDNode* ChainVal = St->getChain().getNode();
9458    // Must be a store of a load.  We currently handle two cases:  the load
9459    // is a direct child, and it's under an intervening TokenFactor.  It is
9460    // possible to dig deeper under nested TokenFactors.
9461    if (ChainVal == LdVal)
9462      Ld = cast<LoadSDNode>(St->getChain());
9463    else if (St->getValue().hasOneUse() &&
9464             ChainVal->getOpcode() == ISD::TokenFactor) {
9465      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9466        if (ChainVal->getOperand(i).getNode() == LdVal) {
9467          TokenFactorIndex = i;
9468          Ld = cast<LoadSDNode>(St->getValue());
9469        } else
9470          Ops.push_back(ChainVal->getOperand(i));
9471      }
9472    }
9473
9474    if (!Ld || !ISD::isNormalLoad(Ld))
9475      return SDValue();
9476
9477    // If this is not the MMX case, i.e. we are just turning i64 load/store
9478    // into f64 load/store, avoid the transformation if there are multiple
9479    // uses of the loaded value.
9480    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9481      return SDValue();
9482
9483    DebugLoc LdDL = Ld->getDebugLoc();
9484    DebugLoc StDL = N->getDebugLoc();
9485    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9486    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9487    // pair instead.
9488    if (Subtarget->is64Bit() || F64IsLegal) {
9489      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9490      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9491                                  Ld->getBasePtr(), Ld->getSrcValue(),
9492                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9493                                  Ld->isNonTemporal(), Ld->getAlignment());
9494      SDValue NewChain = NewLd.getValue(1);
9495      if (TokenFactorIndex != -1) {
9496        Ops.push_back(NewChain);
9497        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9498                               Ops.size());
9499      }
9500      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9501                          St->getSrcValue(), St->getSrcValueOffset(),
9502                          St->isVolatile(), St->isNonTemporal(),
9503                          St->getAlignment());
9504    }
9505
9506    // Otherwise, lower to two pairs of 32-bit loads / stores.
9507    SDValue LoAddr = Ld->getBasePtr();
9508    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9509                                 DAG.getConstant(4, MVT::i32));
9510
9511    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9512                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9513                               Ld->isVolatile(), Ld->isNonTemporal(),
9514                               Ld->getAlignment());
9515    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9516                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9517                               Ld->isVolatile(), Ld->isNonTemporal(),
9518                               MinAlign(Ld->getAlignment(), 4));
9519
9520    SDValue NewChain = LoLd.getValue(1);
9521    if (TokenFactorIndex != -1) {
9522      Ops.push_back(LoLd);
9523      Ops.push_back(HiLd);
9524      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9525                             Ops.size());
9526    }
9527
9528    LoAddr = St->getBasePtr();
9529    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9530                         DAG.getConstant(4, MVT::i32));
9531
9532    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9533                                St->getSrcValue(), St->getSrcValueOffset(),
9534                                St->isVolatile(), St->isNonTemporal(),
9535                                St->getAlignment());
9536    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9537                                St->getSrcValue(),
9538                                St->getSrcValueOffset() + 4,
9539                                St->isVolatile(),
9540                                St->isNonTemporal(),
9541                                MinAlign(St->getAlignment(), 4));
9542    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9543  }
9544  return SDValue();
9545}
9546
9547/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9548/// X86ISD::FXOR nodes.
9549static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9550  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9551  // F[X]OR(0.0, x) -> x
9552  // F[X]OR(x, 0.0) -> x
9553  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9554    if (C->getValueAPF().isPosZero())
9555      return N->getOperand(1);
9556  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9557    if (C->getValueAPF().isPosZero())
9558      return N->getOperand(0);
9559  return SDValue();
9560}
9561
9562/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9563static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9564  // FAND(0.0, x) -> 0.0
9565  // FAND(x, 0.0) -> 0.0
9566  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9567    if (C->getValueAPF().isPosZero())
9568      return N->getOperand(0);
9569  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9570    if (C->getValueAPF().isPosZero())
9571      return N->getOperand(1);
9572  return SDValue();
9573}
9574
9575static SDValue PerformBTCombine(SDNode *N,
9576                                SelectionDAG &DAG,
9577                                TargetLowering::DAGCombinerInfo &DCI) {
9578  // BT ignores high bits in the bit index operand.
9579  SDValue Op1 = N->getOperand(1);
9580  if (Op1.hasOneUse()) {
9581    unsigned BitWidth = Op1.getValueSizeInBits();
9582    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9583    APInt KnownZero, KnownOne;
9584    TargetLowering::TargetLoweringOpt TLO(DAG);
9585    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9586    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9587        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9588      DCI.CommitTargetLoweringOpt(TLO);
9589  }
9590  return SDValue();
9591}
9592
9593static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9594  SDValue Op = N->getOperand(0);
9595  if (Op.getOpcode() == ISD::BIT_CONVERT)
9596    Op = Op.getOperand(0);
9597  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9598  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9599      VT.getVectorElementType().getSizeInBits() ==
9600      OpVT.getVectorElementType().getSizeInBits()) {
9601    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9602  }
9603  return SDValue();
9604}
9605
9606// On X86 and X86-64, atomic operations are lowered to locked instructions.
9607// Locked instructions, in turn, have implicit fence semantics (all memory
9608// operations are flushed before issuing the locked instruction, and the
9609// are not buffered), so we can fold away the common pattern of
9610// fence-atomic-fence.
9611static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9612  SDValue atomic = N->getOperand(0);
9613  switch (atomic.getOpcode()) {
9614    case ISD::ATOMIC_CMP_SWAP:
9615    case ISD::ATOMIC_SWAP:
9616    case ISD::ATOMIC_LOAD_ADD:
9617    case ISD::ATOMIC_LOAD_SUB:
9618    case ISD::ATOMIC_LOAD_AND:
9619    case ISD::ATOMIC_LOAD_OR:
9620    case ISD::ATOMIC_LOAD_XOR:
9621    case ISD::ATOMIC_LOAD_NAND:
9622    case ISD::ATOMIC_LOAD_MIN:
9623    case ISD::ATOMIC_LOAD_MAX:
9624    case ISD::ATOMIC_LOAD_UMIN:
9625    case ISD::ATOMIC_LOAD_UMAX:
9626      break;
9627    default:
9628      return SDValue();
9629  }
9630
9631  SDValue fence = atomic.getOperand(0);
9632  if (fence.getOpcode() != ISD::MEMBARRIER)
9633    return SDValue();
9634
9635  switch (atomic.getOpcode()) {
9636    case ISD::ATOMIC_CMP_SWAP:
9637      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9638                                    atomic.getOperand(1), atomic.getOperand(2),
9639                                    atomic.getOperand(3));
9640    case ISD::ATOMIC_SWAP:
9641    case ISD::ATOMIC_LOAD_ADD:
9642    case ISD::ATOMIC_LOAD_SUB:
9643    case ISD::ATOMIC_LOAD_AND:
9644    case ISD::ATOMIC_LOAD_OR:
9645    case ISD::ATOMIC_LOAD_XOR:
9646    case ISD::ATOMIC_LOAD_NAND:
9647    case ISD::ATOMIC_LOAD_MIN:
9648    case ISD::ATOMIC_LOAD_MAX:
9649    case ISD::ATOMIC_LOAD_UMIN:
9650    case ISD::ATOMIC_LOAD_UMAX:
9651      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9652                                    atomic.getOperand(1), atomic.getOperand(2));
9653    default:
9654      return SDValue();
9655  }
9656}
9657
9658static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9659  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9660  //           (and (i32 x86isd::setcc_carry), 1)
9661  // This eliminates the zext. This transformation is necessary because
9662  // ISD::SETCC is always legalized to i8.
9663  DebugLoc dl = N->getDebugLoc();
9664  SDValue N0 = N->getOperand(0);
9665  EVT VT = N->getValueType(0);
9666  if (N0.getOpcode() == ISD::AND &&
9667      N0.hasOneUse() &&
9668      N0.getOperand(0).hasOneUse()) {
9669    SDValue N00 = N0.getOperand(0);
9670    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9671      return SDValue();
9672    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9673    if (!C || C->getZExtValue() != 1)
9674      return SDValue();
9675    return DAG.getNode(ISD::AND, dl, VT,
9676                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9677                                   N00.getOperand(0), N00.getOperand(1)),
9678                       DAG.getConstant(1, VT));
9679  }
9680
9681  return SDValue();
9682}
9683
9684SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9685                                             DAGCombinerInfo &DCI) const {
9686  SelectionDAG &DAG = DCI.DAG;
9687  switch (N->getOpcode()) {
9688  default: break;
9689  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9690  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9691  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9692  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9693  case ISD::SHL:
9694  case ISD::SRA:
9695  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9696  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9697  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9698  case X86ISD::FXOR:
9699  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9700  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9701  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9702  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9703  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9704  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9705  }
9706
9707  return SDValue();
9708}
9709
9710//===----------------------------------------------------------------------===//
9711//                           X86 Inline Assembly Support
9712//===----------------------------------------------------------------------===//
9713
9714static bool LowerToBSwap(CallInst *CI) {
9715  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9716  // we will turn this bswap into something that will be lowered to logical ops
9717  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9718  // so don't worry about this.
9719
9720  // Verify this is a simple bswap.
9721  if (CI->getNumOperands() != 2 ||
9722      CI->getType() != CI->getOperand(1)->getType() ||
9723      !CI->getType()->isIntegerTy())
9724    return false;
9725
9726  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9727  if (!Ty || Ty->getBitWidth() % 16 != 0)
9728    return false;
9729
9730  // Okay, we can do this xform, do so now.
9731  const Type *Tys[] = { Ty };
9732  Module *M = CI->getParent()->getParent()->getParent();
9733  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9734
9735  Value *Op = CI->getOperand(1);
9736  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9737
9738  CI->replaceAllUsesWith(Op);
9739  CI->eraseFromParent();
9740  return true;
9741}
9742
9743bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9744  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9745  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9746
9747  std::string AsmStr = IA->getAsmString();
9748
9749  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9750  SmallVector<StringRef, 4> AsmPieces;
9751  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9752
9753  switch (AsmPieces.size()) {
9754  default: return false;
9755  case 1:
9756    AsmStr = AsmPieces[0];
9757    AsmPieces.clear();
9758    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9759
9760    // bswap $0
9761    if (AsmPieces.size() == 2 &&
9762        (AsmPieces[0] == "bswap" ||
9763         AsmPieces[0] == "bswapq" ||
9764         AsmPieces[0] == "bswapl") &&
9765        (AsmPieces[1] == "$0" ||
9766         AsmPieces[1] == "${0:q}")) {
9767      // No need to check constraints, nothing other than the equivalent of
9768      // "=r,0" would be valid here.
9769      return LowerToBSwap(CI);
9770    }
9771    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9772    if (CI->getType()->isIntegerTy(16) &&
9773        AsmPieces.size() == 3 &&
9774        AsmPieces[0] == "rorw" &&
9775        AsmPieces[1] == "$$8," &&
9776        AsmPieces[2] == "${0:w}" &&
9777        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9778      return LowerToBSwap(CI);
9779    }
9780    break;
9781  case 3:
9782    if (CI->getType()->isIntegerTy(64) &&
9783        Constraints.size() >= 2 &&
9784        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9785        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9786      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9787      SmallVector<StringRef, 4> Words;
9788      SplitString(AsmPieces[0], Words, " \t");
9789      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9790        Words.clear();
9791        SplitString(AsmPieces[1], Words, " \t");
9792        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9793          Words.clear();
9794          SplitString(AsmPieces[2], Words, " \t,");
9795          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9796              Words[2] == "%edx") {
9797            return LowerToBSwap(CI);
9798          }
9799        }
9800      }
9801    }
9802    break;
9803  }
9804  return false;
9805}
9806
9807
9808
9809/// getConstraintType - Given a constraint letter, return the type of
9810/// constraint it is for this target.
9811X86TargetLowering::ConstraintType
9812X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9813  if (Constraint.size() == 1) {
9814    switch (Constraint[0]) {
9815    case 'A':
9816      return C_Register;
9817    case 'f':
9818    case 'r':
9819    case 'R':
9820    case 'l':
9821    case 'q':
9822    case 'Q':
9823    case 'x':
9824    case 'y':
9825    case 'Y':
9826      return C_RegisterClass;
9827    case 'e':
9828    case 'Z':
9829      return C_Other;
9830    default:
9831      break;
9832    }
9833  }
9834  return TargetLowering::getConstraintType(Constraint);
9835}
9836
9837/// LowerXConstraint - try to replace an X constraint, which matches anything,
9838/// with another that has more specific requirements based on the type of the
9839/// corresponding operand.
9840const char *X86TargetLowering::
9841LowerXConstraint(EVT ConstraintVT) const {
9842  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9843  // 'f' like normal targets.
9844  if (ConstraintVT.isFloatingPoint()) {
9845    if (Subtarget->hasSSE2())
9846      return "Y";
9847    if (Subtarget->hasSSE1())
9848      return "x";
9849  }
9850
9851  return TargetLowering::LowerXConstraint(ConstraintVT);
9852}
9853
9854/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9855/// vector.  If it is invalid, don't add anything to Ops.
9856void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9857                                                     char Constraint,
9858                                                     bool hasMemory,
9859                                                     std::vector<SDValue>&Ops,
9860                                                     SelectionDAG &DAG) const {
9861  SDValue Result(0, 0);
9862
9863  switch (Constraint) {
9864  default: break;
9865  case 'I':
9866    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9867      if (C->getZExtValue() <= 31) {
9868        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9869        break;
9870      }
9871    }
9872    return;
9873  case 'J':
9874    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9875      if (C->getZExtValue() <= 63) {
9876        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9877        break;
9878      }
9879    }
9880    return;
9881  case 'K':
9882    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9883      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9884        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9885        break;
9886      }
9887    }
9888    return;
9889  case 'N':
9890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9891      if (C->getZExtValue() <= 255) {
9892        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9893        break;
9894      }
9895    }
9896    return;
9897  case 'e': {
9898    // 32-bit signed value
9899    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9900      const ConstantInt *CI = C->getConstantIntValue();
9901      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9902                                  C->getSExtValue())) {
9903        // Widen to 64 bits here to get it sign extended.
9904        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9905        break;
9906      }
9907    // FIXME gcc accepts some relocatable values here too, but only in certain
9908    // memory models; it's complicated.
9909    }
9910    return;
9911  }
9912  case 'Z': {
9913    // 32-bit unsigned value
9914    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9915      const ConstantInt *CI = C->getConstantIntValue();
9916      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9917                                  C->getZExtValue())) {
9918        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9919        break;
9920      }
9921    }
9922    // FIXME gcc accepts some relocatable values here too, but only in certain
9923    // memory models; it's complicated.
9924    return;
9925  }
9926  case 'i': {
9927    // Literal immediates are always ok.
9928    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9929      // Widen to 64 bits here to get it sign extended.
9930      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9931      break;
9932    }
9933
9934    // If we are in non-pic codegen mode, we allow the address of a global (with
9935    // an optional displacement) to be used with 'i'.
9936    GlobalAddressSDNode *GA = 0;
9937    int64_t Offset = 0;
9938
9939    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9940    while (1) {
9941      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9942        Offset += GA->getOffset();
9943        break;
9944      } else if (Op.getOpcode() == ISD::ADD) {
9945        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9946          Offset += C->getZExtValue();
9947          Op = Op.getOperand(0);
9948          continue;
9949        }
9950      } else if (Op.getOpcode() == ISD::SUB) {
9951        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9952          Offset += -C->getZExtValue();
9953          Op = Op.getOperand(0);
9954          continue;
9955        }
9956      }
9957
9958      // Otherwise, this isn't something we can handle, reject it.
9959      return;
9960    }
9961
9962    GlobalValue *GV = GA->getGlobal();
9963    // If we require an extra load to get this address, as in PIC mode, we
9964    // can't accept it.
9965    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9966                                                        getTargetMachine())))
9967      return;
9968
9969    if (hasMemory)
9970      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9971    else
9972      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9973    Result = Op;
9974    break;
9975  }
9976  }
9977
9978  if (Result.getNode()) {
9979    Ops.push_back(Result);
9980    return;
9981  }
9982  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9983                                                      Ops, DAG);
9984}
9985
9986std::vector<unsigned> X86TargetLowering::
9987getRegClassForInlineAsmConstraint(const std::string &Constraint,
9988                                  EVT VT) const {
9989  if (Constraint.size() == 1) {
9990    // FIXME: not handling fp-stack yet!
9991    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9992    default: break;  // Unknown constraint letter
9993    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9994      if (Subtarget->is64Bit()) {
9995        if (VT == MVT::i32)
9996          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9997                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9998                                       X86::R10D,X86::R11D,X86::R12D,
9999                                       X86::R13D,X86::R14D,X86::R15D,
10000                                       X86::EBP, X86::ESP, 0);
10001        else if (VT == MVT::i16)
10002          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10003                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10004                                       X86::R10W,X86::R11W,X86::R12W,
10005                                       X86::R13W,X86::R14W,X86::R15W,
10006                                       X86::BP,  X86::SP, 0);
10007        else if (VT == MVT::i8)
10008          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10009                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10010                                       X86::R10B,X86::R11B,X86::R12B,
10011                                       X86::R13B,X86::R14B,X86::R15B,
10012                                       X86::BPL, X86::SPL, 0);
10013
10014        else if (VT == MVT::i64)
10015          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10016                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10017                                       X86::R10, X86::R11, X86::R12,
10018                                       X86::R13, X86::R14, X86::R15,
10019                                       X86::RBP, X86::RSP, 0);
10020
10021        break;
10022      }
10023      // 32-bit fallthrough
10024    case 'Q':   // Q_REGS
10025      if (VT == MVT::i32)
10026        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10027      else if (VT == MVT::i16)
10028        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10029      else if (VT == MVT::i8)
10030        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10031      else if (VT == MVT::i64)
10032        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10033      break;
10034    }
10035  }
10036
10037  return std::vector<unsigned>();
10038}
10039
10040std::pair<unsigned, const TargetRegisterClass*>
10041X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10042                                                EVT VT) const {
10043  // First, see if this is a constraint that directly corresponds to an LLVM
10044  // register class.
10045  if (Constraint.size() == 1) {
10046    // GCC Constraint Letters
10047    switch (Constraint[0]) {
10048    default: break;
10049    case 'r':   // GENERAL_REGS
10050    case 'l':   // INDEX_REGS
10051      if (VT == MVT::i8)
10052        return std::make_pair(0U, X86::GR8RegisterClass);
10053      if (VT == MVT::i16)
10054        return std::make_pair(0U, X86::GR16RegisterClass);
10055      if (VT == MVT::i32 || !Subtarget->is64Bit())
10056        return std::make_pair(0U, X86::GR32RegisterClass);
10057      return std::make_pair(0U, X86::GR64RegisterClass);
10058    case 'R':   // LEGACY_REGS
10059      if (VT == MVT::i8)
10060        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10061      if (VT == MVT::i16)
10062        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10063      if (VT == MVT::i32 || !Subtarget->is64Bit())
10064        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10065      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10066    case 'f':  // FP Stack registers.
10067      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10068      // value to the correct fpstack register class.
10069      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10070        return std::make_pair(0U, X86::RFP32RegisterClass);
10071      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10072        return std::make_pair(0U, X86::RFP64RegisterClass);
10073      return std::make_pair(0U, X86::RFP80RegisterClass);
10074    case 'y':   // MMX_REGS if MMX allowed.
10075      if (!Subtarget->hasMMX()) break;
10076      return std::make_pair(0U, X86::VR64RegisterClass);
10077    case 'Y':   // SSE_REGS if SSE2 allowed
10078      if (!Subtarget->hasSSE2()) break;
10079      // FALL THROUGH.
10080    case 'x':   // SSE_REGS if SSE1 allowed
10081      if (!Subtarget->hasSSE1()) break;
10082
10083      switch (VT.getSimpleVT().SimpleTy) {
10084      default: break;
10085      // Scalar SSE types.
10086      case MVT::f32:
10087      case MVT::i32:
10088        return std::make_pair(0U, X86::FR32RegisterClass);
10089      case MVT::f64:
10090      case MVT::i64:
10091        return std::make_pair(0U, X86::FR64RegisterClass);
10092      // Vector types.
10093      case MVT::v16i8:
10094      case MVT::v8i16:
10095      case MVT::v4i32:
10096      case MVT::v2i64:
10097      case MVT::v4f32:
10098      case MVT::v2f64:
10099        return std::make_pair(0U, X86::VR128RegisterClass);
10100      }
10101      break;
10102    }
10103  }
10104
10105  // Use the default implementation in TargetLowering to convert the register
10106  // constraint into a member of a register class.
10107  std::pair<unsigned, const TargetRegisterClass*> Res;
10108  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10109
10110  // Not found as a standard register?
10111  if (Res.second == 0) {
10112    // Map st(0) -> st(7) -> ST0
10113    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10114        tolower(Constraint[1]) == 's' &&
10115        tolower(Constraint[2]) == 't' &&
10116        Constraint[3] == '(' &&
10117        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10118        Constraint[5] == ')' &&
10119        Constraint[6] == '}') {
10120
10121      Res.first = X86::ST0+Constraint[4]-'0';
10122      Res.second = X86::RFP80RegisterClass;
10123      return Res;
10124    }
10125
10126    // GCC allows "st(0)" to be called just plain "st".
10127    if (StringRef("{st}").equals_lower(Constraint)) {
10128      Res.first = X86::ST0;
10129      Res.second = X86::RFP80RegisterClass;
10130      return Res;
10131    }
10132
10133    // flags -> EFLAGS
10134    if (StringRef("{flags}").equals_lower(Constraint)) {
10135      Res.first = X86::EFLAGS;
10136      Res.second = X86::CCRRegisterClass;
10137      return Res;
10138    }
10139
10140    // 'A' means EAX + EDX.
10141    if (Constraint == "A") {
10142      Res.first = X86::EAX;
10143      Res.second = X86::GR32_ADRegisterClass;
10144      return Res;
10145    }
10146    return Res;
10147  }
10148
10149  // Otherwise, check to see if this is a register class of the wrong value
10150  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10151  // turn into {ax},{dx}.
10152  if (Res.second->hasType(VT))
10153    return Res;   // Correct type already, nothing to do.
10154
10155  // All of the single-register GCC register classes map their values onto
10156  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10157  // really want an 8-bit or 32-bit register, map to the appropriate register
10158  // class and return the appropriate register.
10159  if (Res.second == X86::GR16RegisterClass) {
10160    if (VT == MVT::i8) {
10161      unsigned DestReg = 0;
10162      switch (Res.first) {
10163      default: break;
10164      case X86::AX: DestReg = X86::AL; break;
10165      case X86::DX: DestReg = X86::DL; break;
10166      case X86::CX: DestReg = X86::CL; break;
10167      case X86::BX: DestReg = X86::BL; break;
10168      }
10169      if (DestReg) {
10170        Res.first = DestReg;
10171        Res.second = X86::GR8RegisterClass;
10172      }
10173    } else if (VT == MVT::i32) {
10174      unsigned DestReg = 0;
10175      switch (Res.first) {
10176      default: break;
10177      case X86::AX: DestReg = X86::EAX; break;
10178      case X86::DX: DestReg = X86::EDX; break;
10179      case X86::CX: DestReg = X86::ECX; break;
10180      case X86::BX: DestReg = X86::EBX; break;
10181      case X86::SI: DestReg = X86::ESI; break;
10182      case X86::DI: DestReg = X86::EDI; break;
10183      case X86::BP: DestReg = X86::EBP; break;
10184      case X86::SP: DestReg = X86::ESP; break;
10185      }
10186      if (DestReg) {
10187        Res.first = DestReg;
10188        Res.second = X86::GR32RegisterClass;
10189      }
10190    } else if (VT == MVT::i64) {
10191      unsigned DestReg = 0;
10192      switch (Res.first) {
10193      default: break;
10194      case X86::AX: DestReg = X86::RAX; break;
10195      case X86::DX: DestReg = X86::RDX; break;
10196      case X86::CX: DestReg = X86::RCX; break;
10197      case X86::BX: DestReg = X86::RBX; break;
10198      case X86::SI: DestReg = X86::RSI; break;
10199      case X86::DI: DestReg = X86::RDI; break;
10200      case X86::BP: DestReg = X86::RBP; break;
10201      case X86::SP: DestReg = X86::RSP; break;
10202      }
10203      if (DestReg) {
10204        Res.first = DestReg;
10205        Res.second = X86::GR64RegisterClass;
10206      }
10207    }
10208  } else if (Res.second == X86::FR32RegisterClass ||
10209             Res.second == X86::FR64RegisterClass ||
10210             Res.second == X86::VR128RegisterClass) {
10211    // Handle references to XMM physical registers that got mapped into the
10212    // wrong class.  This can happen with constraints like {xmm0} where the
10213    // target independent register mapper will just pick the first match it can
10214    // find, ignoring the required type.
10215    if (VT == MVT::f32)
10216      Res.second = X86::FR32RegisterClass;
10217    else if (VT == MVT::f64)
10218      Res.second = X86::FR64RegisterClass;
10219    else if (X86::VR128RegisterClass->hasType(VT))
10220      Res.second = X86::VR128RegisterClass;
10221  }
10222
10223  return Res;
10224}
10225
10226//===----------------------------------------------------------------------===//
10227//                           X86 Widen vector type
10228//===----------------------------------------------------------------------===//
10229
10230/// getWidenVectorType: given a vector type, returns the type to widen
10231/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
10232/// If there is no vector type that we want to widen to, returns MVT::Other
10233/// When and where to widen is target dependent based on the cost of
10234/// scalarizing vs using the wider vector type.
10235
10236EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
10237  assert(VT.isVector());
10238  if (isTypeLegal(VT))
10239    return VT;
10240
10241  // TODO: In computeRegisterProperty, we can compute the list of legal vector
10242  //       type based on element type.  This would speed up our search (though
10243  //       it may not be worth it since the size of the list is relatively
10244  //       small).
10245  EVT EltVT = VT.getVectorElementType();
10246  unsigned NElts = VT.getVectorNumElements();
10247
10248  // On X86, it make sense to widen any vector wider than 1
10249  if (NElts <= 1)
10250    return MVT::Other;
10251
10252  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
10253       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
10254    EVT SVT = (MVT::SimpleValueType)nVT;
10255
10256    if (isTypeLegal(SVT) &&
10257        SVT.getVectorElementType() == EltVT &&
10258        SVT.getVectorNumElements() > NElts)
10259      return SVT;
10260  }
10261  return MVT::Other;
10262}
10263