X86ISelLowering.cpp revision 7782102c70fdfd48776f05099eb67dd268cfc222
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt();
173  X86ScalarSSEf32 = Subtarget->hasXMM();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!TM.Options.UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!TM.Options.UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!TM.Options.UseSoftFloat) {
318    // Since AVX is a superset of SSE3, only check for SSE here.
319    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320      // Expand FP_TO_UINT into a select.
321      // FIXME: We would like to use a Custom expander here eventually to do
322      // the optimal thing for SSE vs. the default expansion in the legalizer.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324    else
325      // With SSE3 we can use fisttpll to convert to a signed i64; without
326      // SSE, we're stuck with a fistpll.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328  }
329
330  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331  if (!X86ScalarSSEf64) {
332    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334    if (Subtarget->is64Bit()) {
335      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336      // Without SSE, i64->f64 goes through memory.
337      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338    }
339  }
340
341  // Scalar integer divide and remainder are lowered to use operations that
342  // produce two results, to match the available instructions. This exposes
343  // the two-result form to trivial CSE, which is able to combine x/y and x%y
344  // into a single instruction.
345  //
346  // Scalar integer multiply-high is also lowered to use two-result
347  // operations, to match the available instructions. However, plain multiply
348  // (low) operations are left as Legal, as there are single-result
349  // instructions for this in x86. Using the two-result multiply instructions
350  // when both high and low results are needed must be arranged by dagcombine.
351  for (unsigned i = 0, e = 4; i != e; ++i) {
352    MVT VT = IntVTs[i];
353    setOperationAction(ISD::MULHS, VT, Expand);
354    setOperationAction(ISD::MULHU, VT, Expand);
355    setOperationAction(ISD::SDIV, VT, Expand);
356    setOperationAction(ISD::UDIV, VT, Expand);
357    setOperationAction(ISD::SREM, VT, Expand);
358    setOperationAction(ISD::UREM, VT, Expand);
359
360    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361    setOperationAction(ISD::ADDC, VT, Custom);
362    setOperationAction(ISD::ADDE, VT, Custom);
363    setOperationAction(ISD::SUBC, VT, Custom);
364    setOperationAction(ISD::SUBE, VT, Custom);
365  }
366
367  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381
382  // Promote the i8 variants and force them on up to i32 which has a shorter
383  // encoding.
384  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
385  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
386  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
387  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
388  if (Subtarget->hasBMI()) {
389    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
390    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
391    if (Subtarget->is64Bit())
392      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
393  } else {
394    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
395    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
396    if (Subtarget->is64Bit())
397      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
398  }
399
400  if (Subtarget->hasLZCNT()) {
401    // When promoting the i8 variants, force them to i32 for a shorter
402    // encoding.
403    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
404    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
406    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
409    if (Subtarget->is64Bit())
410      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
411  } else {
412    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
418    if (Subtarget->is64Bit()) {
419      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
420      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
421    }
422  }
423
424  if (Subtarget->hasPOPCNT()) {
425    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
426  } else {
427    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
429    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
430    if (Subtarget->is64Bit())
431      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
432  }
433
434  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
435  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
436
437  // These should be promoted to a larger select which is supported.
438  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
439  // X86 wants to expand cmov itself.
440  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
452  if (Subtarget->is64Bit()) {
453    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
454    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
455  }
456  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
457
458  // Darwin ABI issue.
459  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
460  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
462  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
463  if (Subtarget->is64Bit())
464    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
465  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
466  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
467  if (Subtarget->is64Bit()) {
468    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
469    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
470    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
471    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
472    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
473  }
474  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
475  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
477  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
478  if (Subtarget->is64Bit()) {
479    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
481    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
482  }
483
484  if (Subtarget->hasXMM())
485    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
486
487  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
488  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
489
490  // On X86 and X86-64, atomic operations are lowered to locked instructions.
491  // Locked instructions, in turn, have implicit fence semantics (all memory
492  // operations are flushed before issuing the locked instruction, and they
493  // are not buffered), so we can fold away the common pattern of
494  // fence-atomic-fence.
495  setShouldFoldAtomicFences(true);
496
497  // Expand certain atomics
498  for (unsigned i = 0, e = 4; i != e; ++i) {
499    MVT VT = IntVTs[i];
500    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
502    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
503  }
504
505  if (!Subtarget->is64Bit()) {
506    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
514  }
515
516  if (Subtarget->hasCmpxchg16b()) {
517    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
518  }
519
520  // FIXME - use subtarget debug flags
521  if (!Subtarget->isTargetDarwin() &&
522      !Subtarget->isTargetELF() &&
523      !Subtarget->isTargetCygMing()) {
524    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
525  }
526
527  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
528  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
529  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
530  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
531  if (Subtarget->is64Bit()) {
532    setExceptionPointerRegister(X86::RAX);
533    setExceptionSelectorRegister(X86::RDX);
534  } else {
535    setExceptionPointerRegister(X86::EAX);
536    setExceptionSelectorRegister(X86::EDX);
537  }
538  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
539  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
540
541  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
542  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
543
544  setOperationAction(ISD::TRAP, MVT::Other, Legal);
545
546  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
547  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
548  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
549  if (Subtarget->is64Bit()) {
550    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
552  } else {
553    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
554    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
555  }
556
557  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
558  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
559
560  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else if (TM.Options.EnableSegmentedStacks)
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Custom);
566  else
567    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568                       MVT::i64 : MVT::i32, Expand);
569
570  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
571    // f32 and f64 use SSE.
572    // Set up the FP register classes.
573    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
574    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
575
576    // Use ANDPD to simulate FABS.
577    setOperationAction(ISD::FABS , MVT::f64, Custom);
578    setOperationAction(ISD::FABS , MVT::f32, Custom);
579
580    // Use XORP to simulate FNEG.
581    setOperationAction(ISD::FNEG , MVT::f64, Custom);
582    setOperationAction(ISD::FNEG , MVT::f32, Custom);
583
584    // Use ANDPD and ORPD to simulate FCOPYSIGN.
585    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
586    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
587
588    // Lower this to FGETSIGNx86 plus an AND.
589    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
590    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
591
592    // We don't support sin/cos/fmod
593    setOperationAction(ISD::FSIN , MVT::f64, Expand);
594    setOperationAction(ISD::FCOS , MVT::f64, Expand);
595    setOperationAction(ISD::FSIN , MVT::f32, Expand);
596    setOperationAction(ISD::FCOS , MVT::f32, Expand);
597
598    // Expand FP immediates into loads from the stack, except for the special
599    // cases we handle.
600    addLegalFPImmediate(APFloat(+0.0)); // xorpd
601    addLegalFPImmediate(APFloat(+0.0f)); // xorps
602  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
603    // Use SSE for f32, x87 for f64.
604    // Set up the FP register classes.
605    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
606    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
607
608    // Use ANDPS to simulate FABS.
609    setOperationAction(ISD::FABS , MVT::f32, Custom);
610
611    // Use XORP to simulate FNEG.
612    setOperationAction(ISD::FNEG , MVT::f32, Custom);
613
614    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
615
616    // Use ANDPS and ORPS to simulate FCOPYSIGN.
617    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
618    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
619
620    // We don't support sin/cos/fmod
621    setOperationAction(ISD::FSIN , MVT::f32, Expand);
622    setOperationAction(ISD::FCOS , MVT::f32, Expand);
623
624    // Special cases we handle for FP constants.
625    addLegalFPImmediate(APFloat(+0.0f)); // xorps
626    addLegalFPImmediate(APFloat(+0.0)); // FLD0
627    addLegalFPImmediate(APFloat(+1.0)); // FLD1
628    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
629    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
630
631    if (!TM.Options.UnsafeFPMath) {
632      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
633      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
634    }
635  } else if (!TM.Options.UseSoftFloat) {
636    // f32 and f64 in x87.
637    // Set up the FP register classes.
638    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
639    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
640
641    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
642    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
644    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
645
646    if (!TM.Options.UnsafeFPMath) {
647      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
648      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
649    }
650    addLegalFPImmediate(APFloat(+0.0)); // FLD0
651    addLegalFPImmediate(APFloat(+1.0)); // FLD1
652    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
653    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
654    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
655    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
656    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
657    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
658  }
659
660  // We don't support FMA.
661  setOperationAction(ISD::FMA, MVT::f64, Expand);
662  setOperationAction(ISD::FMA, MVT::f32, Expand);
663
664  // Long double always uses X87.
665  if (!TM.Options.UseSoftFloat) {
666    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
667    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
668    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
669    {
670      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
671      addLegalFPImmediate(TmpFlt);  // FLD0
672      TmpFlt.changeSign();
673      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
674
675      bool ignored;
676      APFloat TmpFlt2(+1.0);
677      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
678                      &ignored);
679      addLegalFPImmediate(TmpFlt2);  // FLD1
680      TmpFlt2.changeSign();
681      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
682    }
683
684    if (!TM.Options.UnsafeFPMath) {
685      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
686      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
687    }
688
689    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
690    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
691    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
692    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
693    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
694    setOperationAction(ISD::FMA, MVT::f80, Expand);
695  }
696
697  // Always use a library call for pow.
698  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
699  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
700  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
701
702  setOperationAction(ISD::FLOG, MVT::f80, Expand);
703  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
704  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
705  setOperationAction(ISD::FEXP, MVT::f80, Expand);
706  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
707
708  // First set operation action for all vector types to either promote
709  // (for widening) or expand (for scalarization). Then we will selectively
710  // turn on ones that can be effectively codegen'd.
711  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
712       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
713    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
731    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
765    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
770    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
771         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
772      setTruncStoreAction((MVT::SimpleValueType)VT,
773                          (MVT::SimpleValueType)InnerVT, Expand);
774    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
776    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
777  }
778
779  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
780  // with -msoft-float, disable use of MMX as well.
781  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
782    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
783    // No operations on x86mmx supported, everything uses intrinsics.
784  }
785
786  // MMX-sized vectors (other than x86mmx) are expected to be expanded
787  // into smaller operations.
788  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
789  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
791  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
792  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
793  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
794  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
795  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
796  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
797  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
798  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
799  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
800  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
801  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
802  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
803  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
807  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
808  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
810  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
812  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
816  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
817
818  if (!TM.Options.UseSoftFloat && Subtarget->hasXMM()) {
819    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
820
821    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
825    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
826    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
827    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
828    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
829    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
830    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
831    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
832    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
833  }
834
835  if (!TM.Options.UseSoftFloat && Subtarget->hasXMMInt()) {
836    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
837
838    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
839    // registers cannot be used even for integer operations.
840    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
841    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
842    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
843    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
844
845    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
846    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
847    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
848    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
849    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
850    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
851    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
852    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
853    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
854    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
855    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
859    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
860    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
861
862    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
865    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
866
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
868    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
872
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
877    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
878
879    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
880    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
881      EVT VT = (MVT::SimpleValueType)i;
882      // Do not attempt to custom lower non-power-of-2 vectors
883      if (!isPowerOf2_32(VT.getVectorNumElements()))
884        continue;
885      // Do not attempt to custom lower non-128-bit vectors
886      if (!VT.is128BitVector())
887        continue;
888      setOperationAction(ISD::BUILD_VECTOR,
889                         VT.getSimpleVT().SimpleTy, Custom);
890      setOperationAction(ISD::VECTOR_SHUFFLE,
891                         VT.getSimpleVT().SimpleTy, Custom);
892      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
893                         VT.getSimpleVT().SimpleTy, Custom);
894    }
895
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
897    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
899    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
900    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
901    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
902
903    if (Subtarget->is64Bit()) {
904      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
906    }
907
908    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
909    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
910      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
911      EVT VT = SVT;
912
913      // Do not attempt to promote non-128-bit vectors
914      if (!VT.is128BitVector())
915        continue;
916
917      setOperationAction(ISD::AND,    SVT, Promote);
918      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
919      setOperationAction(ISD::OR,     SVT, Promote);
920      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
921      setOperationAction(ISD::XOR,    SVT, Promote);
922      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
923      setOperationAction(ISD::LOAD,   SVT, Promote);
924      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
925      setOperationAction(ISD::SELECT, SVT, Promote);
926      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
927    }
928
929    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
930
931    // Custom lower v2i64 and v2f64 selects.
932    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
933    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
934    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
935    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
936
937    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
938    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
939  }
940
941  if (Subtarget->hasSSE41orAVX()) {
942    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
943    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
944    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
945    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
946    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
947    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
948    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
949    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
950    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
951    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
952
953    // FIXME: Do we need to handle scalar-to-vector here?
954    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
955
956    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
960    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
961
962    // i8 and i16 vectors are custom , because the source register and source
963    // source memory operand types are not the same width.  f32 vectors are
964    // custom since the immediate controlling the insert encodes additional
965    // information.
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
970
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
974    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
975
976    // FIXME: these should be Legal but thats only for the case where
977    // the index is constant.  For now custom expand to deal with that.
978    if (Subtarget->is64Bit()) {
979      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
980      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
981    }
982  }
983
984  if (Subtarget->hasXMMInt()) {
985    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
990
991    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
992    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
993
994    if (Subtarget->hasAVX2()) {
995      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
999      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1000
1001      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1002    } else {
1003      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1007      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1008
1009      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1010    }
1011  }
1012
1013  if (Subtarget->hasSSE42orAVX())
1014    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1015
1016  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1017    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1020    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1021    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1022    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1023
1024    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1026    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1027
1028    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1034
1035    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1039    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1040    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1041
1042    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1043    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1044    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1045
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1051    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1052
1053    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1060    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1061
1062    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1064    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1065    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1066
1067    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1068    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1069    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1070
1071    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1073    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1074    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1075
1076    if (Subtarget->hasAVX2()) {
1077      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1078      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1079      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1080      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1081
1082      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1083      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1084      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1085      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1088      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1089      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1090      // Don't lower v32i8 because there is no 128-bit byte mul
1091
1092      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1093
1094      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1098      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1099
1100      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1101    } else {
1102      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1103      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1104      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1105      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1106
1107      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1108      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1109      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1110      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1111
1112      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1113      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1114      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1115      // Don't lower v32i8 because there is no 128-bit byte mul
1116
1117      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1121      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1122
1123      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1124    }
1125
1126    // Custom lower several nodes for 256-bit types.
1127    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1128                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1129      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1130      EVT VT = SVT;
1131
1132      // Extract subvector is special because the value type
1133      // (result) is 128-bit but the source is 256-bit wide.
1134      if (VT.is128BitVector())
1135        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1136
1137      // Do not attempt to custom lower other non-256-bit vectors
1138      if (!VT.is256BitVector())
1139        continue;
1140
1141      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1142      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1143      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1144      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1145      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1146      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1147    }
1148
1149    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1150    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1151      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1152      EVT VT = SVT;
1153
1154      // Do not attempt to promote non-256-bit vectors
1155      if (!VT.is256BitVector())
1156        continue;
1157
1158      setOperationAction(ISD::AND,    SVT, Promote);
1159      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1160      setOperationAction(ISD::OR,     SVT, Promote);
1161      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1162      setOperationAction(ISD::XOR,    SVT, Promote);
1163      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1164      setOperationAction(ISD::LOAD,   SVT, Promote);
1165      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1166      setOperationAction(ISD::SELECT, SVT, Promote);
1167      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1168    }
1169  }
1170
1171  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1172  // of this type with custom code.
1173  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1174         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1175    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1176                       Custom);
1177  }
1178
1179  // We want to custom lower some of our intrinsics.
1180  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1181
1182
1183  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1184  // handle type legalization for these operations here.
1185  //
1186  // FIXME: We really should do custom legalization for addition and
1187  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1188  // than generic legalization for 64-bit multiplication-with-overflow, though.
1189  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1190    // Add/Sub/Mul with overflow operations are custom lowered.
1191    MVT VT = IntVTs[i];
1192    setOperationAction(ISD::SADDO, VT, Custom);
1193    setOperationAction(ISD::UADDO, VT, Custom);
1194    setOperationAction(ISD::SSUBO, VT, Custom);
1195    setOperationAction(ISD::USUBO, VT, Custom);
1196    setOperationAction(ISD::SMULO, VT, Custom);
1197    setOperationAction(ISD::UMULO, VT, Custom);
1198  }
1199
1200  // There are no 8-bit 3-address imul/mul instructions
1201  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1202  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1203
1204  if (!Subtarget->is64Bit()) {
1205    // These libcalls are not available in 32-bit.
1206    setLibcallName(RTLIB::SHL_I128, 0);
1207    setLibcallName(RTLIB::SRL_I128, 0);
1208    setLibcallName(RTLIB::SRA_I128, 0);
1209  }
1210
1211  // We have target-specific dag combine patterns for the following nodes:
1212  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1213  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1214  setTargetDAGCombine(ISD::VSELECT);
1215  setTargetDAGCombine(ISD::SELECT);
1216  setTargetDAGCombine(ISD::SHL);
1217  setTargetDAGCombine(ISD::SRA);
1218  setTargetDAGCombine(ISD::SRL);
1219  setTargetDAGCombine(ISD::OR);
1220  setTargetDAGCombine(ISD::AND);
1221  setTargetDAGCombine(ISD::ADD);
1222  setTargetDAGCombine(ISD::FADD);
1223  setTargetDAGCombine(ISD::FSUB);
1224  setTargetDAGCombine(ISD::SUB);
1225  setTargetDAGCombine(ISD::LOAD);
1226  setTargetDAGCombine(ISD::STORE);
1227  setTargetDAGCombine(ISD::ZERO_EXTEND);
1228  setTargetDAGCombine(ISD::SINT_TO_FP);
1229  if (Subtarget->is64Bit())
1230    setTargetDAGCombine(ISD::MUL);
1231  if (Subtarget->hasBMI())
1232    setTargetDAGCombine(ISD::XOR);
1233
1234  computeRegisterProperties();
1235
1236  // On Darwin, -Os means optimize for size without hurting performance,
1237  // do not reduce the limit.
1238  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1239  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1240  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1241  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1242  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1243  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1244  setPrefLoopAlignment(4); // 2^4 bytes.
1245  benefitFromCodePlacementOpt = true;
1246
1247  setPrefFunctionAlignment(4); // 2^4 bytes.
1248}
1249
1250
1251EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1252  if (!VT.isVector()) return MVT::i8;
1253  return VT.changeVectorElementTypeToInteger();
1254}
1255
1256
1257/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1258/// the desired ByVal argument alignment.
1259static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1260  if (MaxAlign == 16)
1261    return;
1262  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1263    if (VTy->getBitWidth() == 128)
1264      MaxAlign = 16;
1265  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1266    unsigned EltAlign = 0;
1267    getMaxByValAlign(ATy->getElementType(), EltAlign);
1268    if (EltAlign > MaxAlign)
1269      MaxAlign = EltAlign;
1270  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1271    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1272      unsigned EltAlign = 0;
1273      getMaxByValAlign(STy->getElementType(i), EltAlign);
1274      if (EltAlign > MaxAlign)
1275        MaxAlign = EltAlign;
1276      if (MaxAlign == 16)
1277        break;
1278    }
1279  }
1280  return;
1281}
1282
1283/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1284/// function arguments in the caller parameter area. For X86, aggregates
1285/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1286/// are at 4-byte boundaries.
1287unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1288  if (Subtarget->is64Bit()) {
1289    // Max of 8 and alignment of type.
1290    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1291    if (TyAlign > 8)
1292      return TyAlign;
1293    return 8;
1294  }
1295
1296  unsigned Align = 4;
1297  if (Subtarget->hasXMM())
1298    getMaxByValAlign(Ty, Align);
1299  return Align;
1300}
1301
1302/// getOptimalMemOpType - Returns the target specific optimal type for load
1303/// and store operations as a result of memset, memcpy, and memmove
1304/// lowering. If DstAlign is zero that means it's safe to destination
1305/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1306/// means there isn't a need to check it against alignment requirement,
1307/// probably because the source does not need to be loaded. If
1308/// 'IsZeroVal' is true, that means it's safe to return a
1309/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1310/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1311/// constant so it does not need to be loaded.
1312/// It returns EVT::Other if the type should be determined using generic
1313/// target-independent logic.
1314EVT
1315X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1316                                       unsigned DstAlign, unsigned SrcAlign,
1317                                       bool IsZeroVal,
1318                                       bool MemcpyStrSrc,
1319                                       MachineFunction &MF) const {
1320  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1321  // linux.  This is because the stack realignment code can't handle certain
1322  // cases like PR2962.  This should be removed when PR2962 is fixed.
1323  const Function *F = MF.getFunction();
1324  if (IsZeroVal &&
1325      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1326    if (Size >= 16 &&
1327        (Subtarget->isUnalignedMemAccessFast() ||
1328         ((DstAlign == 0 || DstAlign >= 16) &&
1329          (SrcAlign == 0 || SrcAlign >= 16))) &&
1330        Subtarget->getStackAlignment() >= 16) {
1331      if (Subtarget->hasAVX() &&
1332          Subtarget->getStackAlignment() >= 32)
1333        return MVT::v8f32;
1334      if (Subtarget->hasXMMInt())
1335        return MVT::v4i32;
1336      if (Subtarget->hasXMM())
1337        return MVT::v4f32;
1338    } else if (!MemcpyStrSrc && Size >= 8 &&
1339               !Subtarget->is64Bit() &&
1340               Subtarget->getStackAlignment() >= 8 &&
1341               Subtarget->hasXMMInt()) {
1342      // Do not use f64 to lower memcpy if source is string constant. It's
1343      // better to use i32 to avoid the loads.
1344      return MVT::f64;
1345    }
1346  }
1347  if (Subtarget->is64Bit() && Size >= 8)
1348    return MVT::i64;
1349  return MVT::i32;
1350}
1351
1352/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1353/// current function.  The returned value is a member of the
1354/// MachineJumpTableInfo::JTEntryKind enum.
1355unsigned X86TargetLowering::getJumpTableEncoding() const {
1356  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1357  // symbol.
1358  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1359      Subtarget->isPICStyleGOT())
1360    return MachineJumpTableInfo::EK_Custom32;
1361
1362  // Otherwise, use the normal jump table encoding heuristics.
1363  return TargetLowering::getJumpTableEncoding();
1364}
1365
1366const MCExpr *
1367X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1368                                             const MachineBasicBlock *MBB,
1369                                             unsigned uid,MCContext &Ctx) const{
1370  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1371         Subtarget->isPICStyleGOT());
1372  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1373  // entries.
1374  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1375                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1376}
1377
1378/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1379/// jumptable.
1380SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1381                                                    SelectionDAG &DAG) const {
1382  if (!Subtarget->is64Bit())
1383    // This doesn't have DebugLoc associated with it, but is not really the
1384    // same as a Register.
1385    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1386  return Table;
1387}
1388
1389/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1390/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1391/// MCExpr.
1392const MCExpr *X86TargetLowering::
1393getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1394                             MCContext &Ctx) const {
1395  // X86-64 uses RIP relative addressing based on the jump table label.
1396  if (Subtarget->isPICStyleRIPRel())
1397    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1398
1399  // Otherwise, the reference is relative to the PIC base.
1400  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1401}
1402
1403// FIXME: Why this routine is here? Move to RegInfo!
1404std::pair<const TargetRegisterClass*, uint8_t>
1405X86TargetLowering::findRepresentativeClass(EVT VT) const{
1406  const TargetRegisterClass *RRC = 0;
1407  uint8_t Cost = 1;
1408  switch (VT.getSimpleVT().SimpleTy) {
1409  default:
1410    return TargetLowering::findRepresentativeClass(VT);
1411  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1412    RRC = (Subtarget->is64Bit()
1413           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1414    break;
1415  case MVT::x86mmx:
1416    RRC = X86::VR64RegisterClass;
1417    break;
1418  case MVT::f32: case MVT::f64:
1419  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1420  case MVT::v4f32: case MVT::v2f64:
1421  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1422  case MVT::v4f64:
1423    RRC = X86::VR128RegisterClass;
1424    break;
1425  }
1426  return std::make_pair(RRC, Cost);
1427}
1428
1429bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1430                                               unsigned &Offset) const {
1431  if (!Subtarget->isTargetLinux())
1432    return false;
1433
1434  if (Subtarget->is64Bit()) {
1435    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1436    Offset = 0x28;
1437    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1438      AddressSpace = 256;
1439    else
1440      AddressSpace = 257;
1441  } else {
1442    // %gs:0x14 on i386
1443    Offset = 0x14;
1444    AddressSpace = 256;
1445  }
1446  return true;
1447}
1448
1449
1450//===----------------------------------------------------------------------===//
1451//               Return Value Calling Convention Implementation
1452//===----------------------------------------------------------------------===//
1453
1454#include "X86GenCallingConv.inc"
1455
1456bool
1457X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1458				  MachineFunction &MF, bool isVarArg,
1459                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1460                        LLVMContext &Context) const {
1461  SmallVector<CCValAssign, 16> RVLocs;
1462  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1463                 RVLocs, Context);
1464  return CCInfo.CheckReturn(Outs, RetCC_X86);
1465}
1466
1467SDValue
1468X86TargetLowering::LowerReturn(SDValue Chain,
1469                               CallingConv::ID CallConv, bool isVarArg,
1470                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1471                               const SmallVectorImpl<SDValue> &OutVals,
1472                               DebugLoc dl, SelectionDAG &DAG) const {
1473  MachineFunction &MF = DAG.getMachineFunction();
1474  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1475
1476  SmallVector<CCValAssign, 16> RVLocs;
1477  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1478                 RVLocs, *DAG.getContext());
1479  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1480
1481  // Add the regs to the liveout set for the function.
1482  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1483  for (unsigned i = 0; i != RVLocs.size(); ++i)
1484    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1485      MRI.addLiveOut(RVLocs[i].getLocReg());
1486
1487  SDValue Flag;
1488
1489  SmallVector<SDValue, 6> RetOps;
1490  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1491  // Operand #1 = Bytes To Pop
1492  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1493                   MVT::i16));
1494
1495  // Copy the result values into the output registers.
1496  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1497    CCValAssign &VA = RVLocs[i];
1498    assert(VA.isRegLoc() && "Can only return in registers!");
1499    SDValue ValToCopy = OutVals[i];
1500    EVT ValVT = ValToCopy.getValueType();
1501
1502    // If this is x86-64, and we disabled SSE, we can't return FP values,
1503    // or SSE or MMX vectors.
1504    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1505         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1506          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1507      report_fatal_error("SSE register return with SSE disabled");
1508    }
1509    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1510    // llvm-gcc has never done it right and no one has noticed, so this
1511    // should be OK for now.
1512    if (ValVT == MVT::f64 &&
1513        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1514      report_fatal_error("SSE2 register return with SSE2 disabled");
1515
1516    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1517    // the RET instruction and handled by the FP Stackifier.
1518    if (VA.getLocReg() == X86::ST0 ||
1519        VA.getLocReg() == X86::ST1) {
1520      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1521      // change the value to the FP stack register class.
1522      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1523        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1524      RetOps.push_back(ValToCopy);
1525      // Don't emit a copytoreg.
1526      continue;
1527    }
1528
1529    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1530    // which is returned in RAX / RDX.
1531    if (Subtarget->is64Bit()) {
1532      if (ValVT == MVT::x86mmx) {
1533        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1534          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1535          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1536                                  ValToCopy);
1537          // If we don't have SSE2 available, convert to v4f32 so the generated
1538          // register is legal.
1539          if (!Subtarget->hasXMMInt())
1540            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1541        }
1542      }
1543    }
1544
1545    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1546    Flag = Chain.getValue(1);
1547  }
1548
1549  // The x86-64 ABI for returning structs by value requires that we copy
1550  // the sret argument into %rax for the return. We saved the argument into
1551  // a virtual register in the entry block, so now we copy the value out
1552  // and into %rax.
1553  if (Subtarget->is64Bit() &&
1554      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1555    MachineFunction &MF = DAG.getMachineFunction();
1556    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1557    unsigned Reg = FuncInfo->getSRetReturnReg();
1558    assert(Reg &&
1559           "SRetReturnReg should have been set in LowerFormalArguments().");
1560    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1561
1562    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1563    Flag = Chain.getValue(1);
1564
1565    // RAX now acts like a return value.
1566    MRI.addLiveOut(X86::RAX);
1567  }
1568
1569  RetOps[0] = Chain;  // Update chain.
1570
1571  // Add the flag if we have it.
1572  if (Flag.getNode())
1573    RetOps.push_back(Flag);
1574
1575  return DAG.getNode(X86ISD::RET_FLAG, dl,
1576                     MVT::Other, &RetOps[0], RetOps.size());
1577}
1578
1579bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1580  if (N->getNumValues() != 1)
1581    return false;
1582  if (!N->hasNUsesOfValue(1, 0))
1583    return false;
1584
1585  SDNode *Copy = *N->use_begin();
1586  if (Copy->getOpcode() != ISD::CopyToReg &&
1587      Copy->getOpcode() != ISD::FP_EXTEND)
1588    return false;
1589
1590  bool HasRet = false;
1591  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1592       UI != UE; ++UI) {
1593    if (UI->getOpcode() != X86ISD::RET_FLAG)
1594      return false;
1595    HasRet = true;
1596  }
1597
1598  return HasRet;
1599}
1600
1601EVT
1602X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1603                                            ISD::NodeType ExtendKind) const {
1604  MVT ReturnMVT;
1605  // TODO: Is this also valid on 32-bit?
1606  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1607    ReturnMVT = MVT::i8;
1608  else
1609    ReturnMVT = MVT::i32;
1610
1611  EVT MinVT = getRegisterType(Context, ReturnMVT);
1612  return VT.bitsLT(MinVT) ? MinVT : VT;
1613}
1614
1615/// LowerCallResult - Lower the result values of a call into the
1616/// appropriate copies out of appropriate physical registers.
1617///
1618SDValue
1619X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1620                                   CallingConv::ID CallConv, bool isVarArg,
1621                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1622                                   DebugLoc dl, SelectionDAG &DAG,
1623                                   SmallVectorImpl<SDValue> &InVals) const {
1624
1625  // Assign locations to each value returned by this call.
1626  SmallVector<CCValAssign, 16> RVLocs;
1627  bool Is64Bit = Subtarget->is64Bit();
1628  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1629		 getTargetMachine(), RVLocs, *DAG.getContext());
1630  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1631
1632  // Copy all of the result registers out of their specified physreg.
1633  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1634    CCValAssign &VA = RVLocs[i];
1635    EVT CopyVT = VA.getValVT();
1636
1637    // If this is x86-64, and we disabled SSE, we can't return FP values
1638    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1639        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1640      report_fatal_error("SSE register return with SSE disabled");
1641    }
1642
1643    SDValue Val;
1644
1645    // If this is a call to a function that returns an fp value on the floating
1646    // point stack, we must guarantee the the value is popped from the stack, so
1647    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1648    // if the return value is not used. We use the FpPOP_RETVAL instruction
1649    // instead.
1650    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1651      // If we prefer to use the value in xmm registers, copy it out as f80 and
1652      // use a truncate to move it from fp stack reg to xmm reg.
1653      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1654      SDValue Ops[] = { Chain, InFlag };
1655      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1656                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1657      Val = Chain.getValue(0);
1658
1659      // Round the f80 to the right size, which also moves it to the appropriate
1660      // xmm register.
1661      if (CopyVT != VA.getValVT())
1662        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1663                          // This truncation won't change the value.
1664                          DAG.getIntPtrConstant(1));
1665    } else {
1666      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1667                                 CopyVT, InFlag).getValue(1);
1668      Val = Chain.getValue(0);
1669    }
1670    InFlag = Chain.getValue(2);
1671    InVals.push_back(Val);
1672  }
1673
1674  return Chain;
1675}
1676
1677
1678//===----------------------------------------------------------------------===//
1679//                C & StdCall & Fast Calling Convention implementation
1680//===----------------------------------------------------------------------===//
1681//  StdCall calling convention seems to be standard for many Windows' API
1682//  routines and around. It differs from C calling convention just a little:
1683//  callee should clean up the stack, not caller. Symbols should be also
1684//  decorated in some fancy way :) It doesn't support any vector arguments.
1685//  For info on fast calling convention see Fast Calling Convention (tail call)
1686//  implementation LowerX86_32FastCCCallTo.
1687
1688/// CallIsStructReturn - Determines whether a call uses struct return
1689/// semantics.
1690static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1691  if (Outs.empty())
1692    return false;
1693
1694  return Outs[0].Flags.isSRet();
1695}
1696
1697/// ArgsAreStructReturn - Determines whether a function uses struct
1698/// return semantics.
1699static bool
1700ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1701  if (Ins.empty())
1702    return false;
1703
1704  return Ins[0].Flags.isSRet();
1705}
1706
1707/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1708/// by "Src" to address "Dst" with size and alignment information specified by
1709/// the specific parameter attribute. The copy will be passed as a byval
1710/// function parameter.
1711static SDValue
1712CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1713                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1714                          DebugLoc dl) {
1715  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1716
1717  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1718                       /*isVolatile*/false, /*AlwaysInline=*/true,
1719                       MachinePointerInfo(), MachinePointerInfo());
1720}
1721
1722/// IsTailCallConvention - Return true if the calling convention is one that
1723/// supports tail call optimization.
1724static bool IsTailCallConvention(CallingConv::ID CC) {
1725  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1726}
1727
1728bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1729  if (!CI->isTailCall())
1730    return false;
1731
1732  CallSite CS(CI);
1733  CallingConv::ID CalleeCC = CS.getCallingConv();
1734  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1735    return false;
1736
1737  return true;
1738}
1739
1740/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1741/// a tailcall target by changing its ABI.
1742static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1743                                   bool GuaranteedTailCallOpt) {
1744  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1745}
1746
1747SDValue
1748X86TargetLowering::LowerMemArgument(SDValue Chain,
1749                                    CallingConv::ID CallConv,
1750                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1751                                    DebugLoc dl, SelectionDAG &DAG,
1752                                    const CCValAssign &VA,
1753                                    MachineFrameInfo *MFI,
1754                                    unsigned i) const {
1755  // Create the nodes corresponding to a load from this parameter slot.
1756  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1757  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1758                              getTargetMachine().Options.GuaranteedTailCallOpt);
1759  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1760  EVT ValVT;
1761
1762  // If value is passed by pointer we have address passed instead of the value
1763  // itself.
1764  if (VA.getLocInfo() == CCValAssign::Indirect)
1765    ValVT = VA.getLocVT();
1766  else
1767    ValVT = VA.getValVT();
1768
1769  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1770  // changed with more analysis.
1771  // In case of tail call optimization mark all arguments mutable. Since they
1772  // could be overwritten by lowering of arguments in case of a tail call.
1773  if (Flags.isByVal()) {
1774    unsigned Bytes = Flags.getByValSize();
1775    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1776    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1777    return DAG.getFrameIndex(FI, getPointerTy());
1778  } else {
1779    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1780                                    VA.getLocMemOffset(), isImmutable);
1781    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1782    return DAG.getLoad(ValVT, dl, Chain, FIN,
1783                       MachinePointerInfo::getFixedStack(FI),
1784                       false, false, false, 0);
1785  }
1786}
1787
1788SDValue
1789X86TargetLowering::LowerFormalArguments(SDValue Chain,
1790                                        CallingConv::ID CallConv,
1791                                        bool isVarArg,
1792                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1793                                        DebugLoc dl,
1794                                        SelectionDAG &DAG,
1795                                        SmallVectorImpl<SDValue> &InVals)
1796                                          const {
1797  MachineFunction &MF = DAG.getMachineFunction();
1798  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1799
1800  const Function* Fn = MF.getFunction();
1801  if (Fn->hasExternalLinkage() &&
1802      Subtarget->isTargetCygMing() &&
1803      Fn->getName() == "main")
1804    FuncInfo->setForceFramePointer(true);
1805
1806  MachineFrameInfo *MFI = MF.getFrameInfo();
1807  bool Is64Bit = Subtarget->is64Bit();
1808  bool IsWin64 = Subtarget->isTargetWin64();
1809
1810  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1811         "Var args not supported with calling convention fastcc or ghc");
1812
1813  // Assign locations to all of the incoming arguments.
1814  SmallVector<CCValAssign, 16> ArgLocs;
1815  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1816                 ArgLocs, *DAG.getContext());
1817
1818  // Allocate shadow area for Win64
1819  if (IsWin64) {
1820    CCInfo.AllocateStack(32, 8);
1821  }
1822
1823  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1824
1825  unsigned LastVal = ~0U;
1826  SDValue ArgValue;
1827  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1828    CCValAssign &VA = ArgLocs[i];
1829    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1830    // places.
1831    assert(VA.getValNo() != LastVal &&
1832           "Don't support value assigned to multiple locs yet");
1833    (void)LastVal;
1834    LastVal = VA.getValNo();
1835
1836    if (VA.isRegLoc()) {
1837      EVT RegVT = VA.getLocVT();
1838      TargetRegisterClass *RC = NULL;
1839      if (RegVT == MVT::i32)
1840        RC = X86::GR32RegisterClass;
1841      else if (Is64Bit && RegVT == MVT::i64)
1842        RC = X86::GR64RegisterClass;
1843      else if (RegVT == MVT::f32)
1844        RC = X86::FR32RegisterClass;
1845      else if (RegVT == MVT::f64)
1846        RC = X86::FR64RegisterClass;
1847      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1848        RC = X86::VR256RegisterClass;
1849      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1850        RC = X86::VR128RegisterClass;
1851      else if (RegVT == MVT::x86mmx)
1852        RC = X86::VR64RegisterClass;
1853      else
1854        llvm_unreachable("Unknown argument type!");
1855
1856      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1857      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1858
1859      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1860      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1861      // right size.
1862      if (VA.getLocInfo() == CCValAssign::SExt)
1863        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1864                               DAG.getValueType(VA.getValVT()));
1865      else if (VA.getLocInfo() == CCValAssign::ZExt)
1866        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1867                               DAG.getValueType(VA.getValVT()));
1868      else if (VA.getLocInfo() == CCValAssign::BCvt)
1869        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1870
1871      if (VA.isExtInLoc()) {
1872        // Handle MMX values passed in XMM regs.
1873        if (RegVT.isVector()) {
1874          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1875                                 ArgValue);
1876        } else
1877          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1878      }
1879    } else {
1880      assert(VA.isMemLoc());
1881      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1882    }
1883
1884    // If value is passed via pointer - do a load.
1885    if (VA.getLocInfo() == CCValAssign::Indirect)
1886      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1887                             MachinePointerInfo(), false, false, false, 0);
1888
1889    InVals.push_back(ArgValue);
1890  }
1891
1892  // The x86-64 ABI for returning structs by value requires that we copy
1893  // the sret argument into %rax for the return. Save the argument into
1894  // a virtual register so that we can access it from the return points.
1895  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1896    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1897    unsigned Reg = FuncInfo->getSRetReturnReg();
1898    if (!Reg) {
1899      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1900      FuncInfo->setSRetReturnReg(Reg);
1901    }
1902    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1903    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1904  }
1905
1906  unsigned StackSize = CCInfo.getNextStackOffset();
1907  // Align stack specially for tail calls.
1908  if (FuncIsMadeTailCallSafe(CallConv,
1909                             MF.getTarget().Options.GuaranteedTailCallOpt))
1910    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1911
1912  // If the function takes variable number of arguments, make a frame index for
1913  // the start of the first vararg value... for expansion of llvm.va_start.
1914  if (isVarArg) {
1915    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1916                    CallConv != CallingConv::X86_ThisCall)) {
1917      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1918    }
1919    if (Is64Bit) {
1920      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1921
1922      // FIXME: We should really autogenerate these arrays
1923      static const unsigned GPR64ArgRegsWin64[] = {
1924        X86::RCX, X86::RDX, X86::R8,  X86::R9
1925      };
1926      static const unsigned GPR64ArgRegs64Bit[] = {
1927        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1928      };
1929      static const unsigned XMMArgRegs64Bit[] = {
1930        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1931        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1932      };
1933      const unsigned *GPR64ArgRegs;
1934      unsigned NumXMMRegs = 0;
1935
1936      if (IsWin64) {
1937        // The XMM registers which might contain var arg parameters are shadowed
1938        // in their paired GPR.  So we only need to save the GPR to their home
1939        // slots.
1940        TotalNumIntRegs = 4;
1941        GPR64ArgRegs = GPR64ArgRegsWin64;
1942      } else {
1943        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1944        GPR64ArgRegs = GPR64ArgRegs64Bit;
1945
1946        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1947                                                TotalNumXMMRegs);
1948      }
1949      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1950                                                       TotalNumIntRegs);
1951
1952      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1953      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1954             "SSE register cannot be used when SSE is disabled!");
1955      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1956               NoImplicitFloatOps) &&
1957             "SSE register cannot be used when SSE is disabled!");
1958      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1959          !Subtarget->hasXMM())
1960        // Kernel mode asks for SSE to be disabled, so don't push them
1961        // on the stack.
1962        TotalNumXMMRegs = 0;
1963
1964      if (IsWin64) {
1965        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1966        // Get to the caller-allocated home save location.  Add 8 to account
1967        // for the return address.
1968        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1969        FuncInfo->setRegSaveFrameIndex(
1970          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1971        // Fixup to set vararg frame on shadow area (4 x i64).
1972        if (NumIntRegs < 4)
1973          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1974      } else {
1975        // For X86-64, if there are vararg parameters that are passed via
1976        // registers, then we must store them to their spots on the stack so
1977        // they may be loaded by deferencing the result of va_next.
1978        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1979        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1980        FuncInfo->setRegSaveFrameIndex(
1981          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1982                               false));
1983      }
1984
1985      // Store the integer parameter registers.
1986      SmallVector<SDValue, 8> MemOps;
1987      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1988                                        getPointerTy());
1989      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1990      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1991        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1992                                  DAG.getIntPtrConstant(Offset));
1993        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1994                                     X86::GR64RegisterClass);
1995        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1996        SDValue Store =
1997          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1998                       MachinePointerInfo::getFixedStack(
1999                         FuncInfo->getRegSaveFrameIndex(), Offset),
2000                       false, false, 0);
2001        MemOps.push_back(Store);
2002        Offset += 8;
2003      }
2004
2005      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2006        // Now store the XMM (fp + vector) parameter registers.
2007        SmallVector<SDValue, 11> SaveXMMOps;
2008        SaveXMMOps.push_back(Chain);
2009
2010        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2011        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2012        SaveXMMOps.push_back(ALVal);
2013
2014        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2015                               FuncInfo->getRegSaveFrameIndex()));
2016        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2017                               FuncInfo->getVarArgsFPOffset()));
2018
2019        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2020          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2021                                       X86::VR128RegisterClass);
2022          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2023          SaveXMMOps.push_back(Val);
2024        }
2025        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2026                                     MVT::Other,
2027                                     &SaveXMMOps[0], SaveXMMOps.size()));
2028      }
2029
2030      if (!MemOps.empty())
2031        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2032                            &MemOps[0], MemOps.size());
2033    }
2034  }
2035
2036  // Some CCs need callee pop.
2037  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2038                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2039    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2040  } else {
2041    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2042    // If this is an sret function, the return should pop the hidden pointer.
2043    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2044      FuncInfo->setBytesToPopOnReturn(4);
2045  }
2046
2047  if (!Is64Bit) {
2048    // RegSaveFrameIndex is X86-64 only.
2049    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2050    if (CallConv == CallingConv::X86_FastCall ||
2051        CallConv == CallingConv::X86_ThisCall)
2052      // fastcc functions can't have varargs.
2053      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2054  }
2055
2056  FuncInfo->setArgumentStackSize(StackSize);
2057
2058  return Chain;
2059}
2060
2061SDValue
2062X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2063                                    SDValue StackPtr, SDValue Arg,
2064                                    DebugLoc dl, SelectionDAG &DAG,
2065                                    const CCValAssign &VA,
2066                                    ISD::ArgFlagsTy Flags) const {
2067  unsigned LocMemOffset = VA.getLocMemOffset();
2068  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2069  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2070  if (Flags.isByVal())
2071    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2072
2073  return DAG.getStore(Chain, dl, Arg, PtrOff,
2074                      MachinePointerInfo::getStack(LocMemOffset),
2075                      false, false, 0);
2076}
2077
2078/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2079/// optimization is performed and it is required.
2080SDValue
2081X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2082                                           SDValue &OutRetAddr, SDValue Chain,
2083                                           bool IsTailCall, bool Is64Bit,
2084                                           int FPDiff, DebugLoc dl) const {
2085  // Adjust the Return address stack slot.
2086  EVT VT = getPointerTy();
2087  OutRetAddr = getReturnAddressFrameIndex(DAG);
2088
2089  // Load the "old" Return address.
2090  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2091                           false, false, false, 0);
2092  return SDValue(OutRetAddr.getNode(), 1);
2093}
2094
2095/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2096/// optimization is performed and it is required (FPDiff!=0).
2097static SDValue
2098EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2099                         SDValue Chain, SDValue RetAddrFrIdx,
2100                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2101  // Store the return address to the appropriate stack slot.
2102  if (!FPDiff) return Chain;
2103  // Calculate the new stack slot for the return address.
2104  int SlotSize = Is64Bit ? 8 : 4;
2105  int NewReturnAddrFI =
2106    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2107  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2108  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2109  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2110                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2111                       false, false, 0);
2112  return Chain;
2113}
2114
2115SDValue
2116X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2117                             CallingConv::ID CallConv, bool isVarArg,
2118                             bool &isTailCall,
2119                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2120                             const SmallVectorImpl<SDValue> &OutVals,
2121                             const SmallVectorImpl<ISD::InputArg> &Ins,
2122                             DebugLoc dl, SelectionDAG &DAG,
2123                             SmallVectorImpl<SDValue> &InVals) const {
2124  MachineFunction &MF = DAG.getMachineFunction();
2125  bool Is64Bit        = Subtarget->is64Bit();
2126  bool IsWin64        = Subtarget->isTargetWin64();
2127  bool IsStructRet    = CallIsStructReturn(Outs);
2128  bool IsSibcall      = false;
2129
2130  if (isTailCall) {
2131    // Check if it's really possible to do a tail call.
2132    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2133                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2134                                                   Outs, OutVals, Ins, DAG);
2135
2136    // Sibcalls are automatically detected tailcalls which do not require
2137    // ABI changes.
2138    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2139      IsSibcall = true;
2140
2141    if (isTailCall)
2142      ++NumTailCalls;
2143  }
2144
2145  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2146         "Var args not supported with calling convention fastcc or ghc");
2147
2148  // Analyze operands of the call, assigning locations to each operand.
2149  SmallVector<CCValAssign, 16> ArgLocs;
2150  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2151                 ArgLocs, *DAG.getContext());
2152
2153  // Allocate shadow area for Win64
2154  if (IsWin64) {
2155    CCInfo.AllocateStack(32, 8);
2156  }
2157
2158  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2159
2160  // Get a count of how many bytes are to be pushed on the stack.
2161  unsigned NumBytes = CCInfo.getNextStackOffset();
2162  if (IsSibcall)
2163    // This is a sibcall. The memory operands are available in caller's
2164    // own caller's stack.
2165    NumBytes = 0;
2166  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2167           IsTailCallConvention(CallConv))
2168    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2169
2170  int FPDiff = 0;
2171  if (isTailCall && !IsSibcall) {
2172    // Lower arguments at fp - stackoffset + fpdiff.
2173    unsigned NumBytesCallerPushed =
2174      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2175    FPDiff = NumBytesCallerPushed - NumBytes;
2176
2177    // Set the delta of movement of the returnaddr stackslot.
2178    // But only set if delta is greater than previous delta.
2179    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2180      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2181  }
2182
2183  if (!IsSibcall)
2184    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2185
2186  SDValue RetAddrFrIdx;
2187  // Load return address for tail calls.
2188  if (isTailCall && FPDiff)
2189    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2190                                    Is64Bit, FPDiff, dl);
2191
2192  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2193  SmallVector<SDValue, 8> MemOpChains;
2194  SDValue StackPtr;
2195
2196  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2197  // of tail call optimization arguments are handle later.
2198  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2199    CCValAssign &VA = ArgLocs[i];
2200    EVT RegVT = VA.getLocVT();
2201    SDValue Arg = OutVals[i];
2202    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2203    bool isByVal = Flags.isByVal();
2204
2205    // Promote the value if needed.
2206    switch (VA.getLocInfo()) {
2207    default: llvm_unreachable("Unknown loc info!");
2208    case CCValAssign::Full: break;
2209    case CCValAssign::SExt:
2210      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2211      break;
2212    case CCValAssign::ZExt:
2213      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2214      break;
2215    case CCValAssign::AExt:
2216      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2217        // Special case: passing MMX values in XMM registers.
2218        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2219        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2220        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2221      } else
2222        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2223      break;
2224    case CCValAssign::BCvt:
2225      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::Indirect: {
2228      // Store the argument.
2229      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2230      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2231      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2232                           MachinePointerInfo::getFixedStack(FI),
2233                           false, false, 0);
2234      Arg = SpillSlot;
2235      break;
2236    }
2237    }
2238
2239    if (VA.isRegLoc()) {
2240      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2241      if (isVarArg && IsWin64) {
2242        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2243        // shadow reg if callee is a varargs function.
2244        unsigned ShadowReg = 0;
2245        switch (VA.getLocReg()) {
2246        case X86::XMM0: ShadowReg = X86::RCX; break;
2247        case X86::XMM1: ShadowReg = X86::RDX; break;
2248        case X86::XMM2: ShadowReg = X86::R8; break;
2249        case X86::XMM3: ShadowReg = X86::R9; break;
2250        }
2251        if (ShadowReg)
2252          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2253      }
2254    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2255      assert(VA.isMemLoc());
2256      if (StackPtr.getNode() == 0)
2257        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2258      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2259                                             dl, DAG, VA, Flags));
2260    }
2261  }
2262
2263  if (!MemOpChains.empty())
2264    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2265                        &MemOpChains[0], MemOpChains.size());
2266
2267  // Build a sequence of copy-to-reg nodes chained together with token chain
2268  // and flag operands which copy the outgoing args into registers.
2269  SDValue InFlag;
2270  // Tail call byval lowering might overwrite argument registers so in case of
2271  // tail call optimization the copies to registers are lowered later.
2272  if (!isTailCall)
2273    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2274      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2275                               RegsToPass[i].second, InFlag);
2276      InFlag = Chain.getValue(1);
2277    }
2278
2279  if (Subtarget->isPICStyleGOT()) {
2280    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2281    // GOT pointer.
2282    if (!isTailCall) {
2283      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2284                               DAG.getNode(X86ISD::GlobalBaseReg,
2285                                           DebugLoc(), getPointerTy()),
2286                               InFlag);
2287      InFlag = Chain.getValue(1);
2288    } else {
2289      // If we are tail calling and generating PIC/GOT style code load the
2290      // address of the callee into ECX. The value in ecx is used as target of
2291      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2292      // for tail calls on PIC/GOT architectures. Normally we would just put the
2293      // address of GOT into ebx and then call target@PLT. But for tail calls
2294      // ebx would be restored (since ebx is callee saved) before jumping to the
2295      // target@PLT.
2296
2297      // Note: The actual moving to ECX is done further down.
2298      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2299      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2300          !G->getGlobal()->hasProtectedVisibility())
2301        Callee = LowerGlobalAddress(Callee, DAG);
2302      else if (isa<ExternalSymbolSDNode>(Callee))
2303        Callee = LowerExternalSymbol(Callee, DAG);
2304    }
2305  }
2306
2307  if (Is64Bit && isVarArg && !IsWin64) {
2308    // From AMD64 ABI document:
2309    // For calls that may call functions that use varargs or stdargs
2310    // (prototype-less calls or calls to functions containing ellipsis (...) in
2311    // the declaration) %al is used as hidden argument to specify the number
2312    // of SSE registers used. The contents of %al do not need to match exactly
2313    // the number of registers, but must be an ubound on the number of SSE
2314    // registers used and is in the range 0 - 8 inclusive.
2315
2316    // Count the number of XMM registers allocated.
2317    static const unsigned XMMArgRegs[] = {
2318      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2319      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2320    };
2321    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2322    assert((Subtarget->hasXMM() || !NumXMMRegs)
2323           && "SSE registers cannot be used when SSE is disabled");
2324
2325    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2326                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2327    InFlag = Chain.getValue(1);
2328  }
2329
2330
2331  // For tail calls lower the arguments to the 'real' stack slot.
2332  if (isTailCall) {
2333    // Force all the incoming stack arguments to be loaded from the stack
2334    // before any new outgoing arguments are stored to the stack, because the
2335    // outgoing stack slots may alias the incoming argument stack slots, and
2336    // the alias isn't otherwise explicit. This is slightly more conservative
2337    // than necessary, because it means that each store effectively depends
2338    // on every argument instead of just those arguments it would clobber.
2339    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2340
2341    SmallVector<SDValue, 8> MemOpChains2;
2342    SDValue FIN;
2343    int FI = 0;
2344    // Do not flag preceding copytoreg stuff together with the following stuff.
2345    InFlag = SDValue();
2346    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2347      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2348        CCValAssign &VA = ArgLocs[i];
2349        if (VA.isRegLoc())
2350          continue;
2351        assert(VA.isMemLoc());
2352        SDValue Arg = OutVals[i];
2353        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2354        // Create frame index.
2355        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2356        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2357        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2358        FIN = DAG.getFrameIndex(FI, getPointerTy());
2359
2360        if (Flags.isByVal()) {
2361          // Copy relative to framepointer.
2362          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2363          if (StackPtr.getNode() == 0)
2364            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2365                                          getPointerTy());
2366          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2367
2368          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2369                                                           ArgChain,
2370                                                           Flags, DAG, dl));
2371        } else {
2372          // Store relative to framepointer.
2373          MemOpChains2.push_back(
2374            DAG.getStore(ArgChain, dl, Arg, FIN,
2375                         MachinePointerInfo::getFixedStack(FI),
2376                         false, false, 0));
2377        }
2378      }
2379    }
2380
2381    if (!MemOpChains2.empty())
2382      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2383                          &MemOpChains2[0], MemOpChains2.size());
2384
2385    // Copy arguments to their registers.
2386    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2387      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2388                               RegsToPass[i].second, InFlag);
2389      InFlag = Chain.getValue(1);
2390    }
2391    InFlag =SDValue();
2392
2393    // Store the return address to the appropriate stack slot.
2394    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2395                                     FPDiff, dl);
2396  }
2397
2398  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2399    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2400    // In the 64-bit large code model, we have to make all calls
2401    // through a register, since the call instruction's 32-bit
2402    // pc-relative offset may not be large enough to hold the whole
2403    // address.
2404  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2405    // If the callee is a GlobalAddress node (quite common, every direct call
2406    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2407    // it.
2408
2409    // We should use extra load for direct calls to dllimported functions in
2410    // non-JIT mode.
2411    const GlobalValue *GV = G->getGlobal();
2412    if (!GV->hasDLLImportLinkage()) {
2413      unsigned char OpFlags = 0;
2414      bool ExtraLoad = false;
2415      unsigned WrapperKind = ISD::DELETED_NODE;
2416
2417      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2418      // external symbols most go through the PLT in PIC mode.  If the symbol
2419      // has hidden or protected visibility, or if it is static or local, then
2420      // we don't need to use the PLT - we can directly call it.
2421      if (Subtarget->isTargetELF() &&
2422          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2423          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2424        OpFlags = X86II::MO_PLT;
2425      } else if (Subtarget->isPICStyleStubAny() &&
2426                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2427                 (!Subtarget->getTargetTriple().isMacOSX() ||
2428                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2429        // PC-relative references to external symbols should go through $stub,
2430        // unless we're building with the leopard linker or later, which
2431        // automatically synthesizes these stubs.
2432        OpFlags = X86II::MO_DARWIN_STUB;
2433      } else if (Subtarget->isPICStyleRIPRel() &&
2434                 isa<Function>(GV) &&
2435                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2436        // If the function is marked as non-lazy, generate an indirect call
2437        // which loads from the GOT directly. This avoids runtime overhead
2438        // at the cost of eager binding (and one extra byte of encoding).
2439        OpFlags = X86II::MO_GOTPCREL;
2440        WrapperKind = X86ISD::WrapperRIP;
2441        ExtraLoad = true;
2442      }
2443
2444      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2445                                          G->getOffset(), OpFlags);
2446
2447      // Add a wrapper if needed.
2448      if (WrapperKind != ISD::DELETED_NODE)
2449        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2450      // Add extra indirection if needed.
2451      if (ExtraLoad)
2452        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2453                             MachinePointerInfo::getGOT(),
2454                             false, false, false, 0);
2455    }
2456  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2457    unsigned char OpFlags = 0;
2458
2459    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2460    // external symbols should go through the PLT.
2461    if (Subtarget->isTargetELF() &&
2462        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2463      OpFlags = X86II::MO_PLT;
2464    } else if (Subtarget->isPICStyleStubAny() &&
2465               (!Subtarget->getTargetTriple().isMacOSX() ||
2466                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2467      // PC-relative references to external symbols should go through $stub,
2468      // unless we're building with the leopard linker or later, which
2469      // automatically synthesizes these stubs.
2470      OpFlags = X86II::MO_DARWIN_STUB;
2471    }
2472
2473    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2474                                         OpFlags);
2475  }
2476
2477  // Returns a chain & a flag for retval copy to use.
2478  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2479  SmallVector<SDValue, 8> Ops;
2480
2481  if (!IsSibcall && isTailCall) {
2482    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2483                           DAG.getIntPtrConstant(0, true), InFlag);
2484    InFlag = Chain.getValue(1);
2485  }
2486
2487  Ops.push_back(Chain);
2488  Ops.push_back(Callee);
2489
2490  if (isTailCall)
2491    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2492
2493  // Add argument registers to the end of the list so that they are known live
2494  // into the call.
2495  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2496    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2497                                  RegsToPass[i].second.getValueType()));
2498
2499  // Add an implicit use GOT pointer in EBX.
2500  if (!isTailCall && Subtarget->isPICStyleGOT())
2501    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2502
2503  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2504  if (Is64Bit && isVarArg && !IsWin64)
2505    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2506
2507  if (InFlag.getNode())
2508    Ops.push_back(InFlag);
2509
2510  if (isTailCall) {
2511    // We used to do:
2512    //// If this is the first return lowered for this function, add the regs
2513    //// to the liveout set for the function.
2514    // This isn't right, although it's probably harmless on x86; liveouts
2515    // should be computed from returns not tail calls.  Consider a void
2516    // function making a tail call to a function returning int.
2517    return DAG.getNode(X86ISD::TC_RETURN, dl,
2518                       NodeTys, &Ops[0], Ops.size());
2519  }
2520
2521  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2522  InFlag = Chain.getValue(1);
2523
2524  // Create the CALLSEQ_END node.
2525  unsigned NumBytesForCalleeToPush;
2526  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2527                       getTargetMachine().Options.GuaranteedTailCallOpt))
2528    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2529  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2530    // If this is a call to a struct-return function, the callee
2531    // pops the hidden struct pointer, so we have to push it back.
2532    // This is common for Darwin/X86, Linux & Mingw32 targets.
2533    NumBytesForCalleeToPush = 4;
2534  else
2535    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2536
2537  // Returns a flag for retval copy to use.
2538  if (!IsSibcall) {
2539    Chain = DAG.getCALLSEQ_END(Chain,
2540                               DAG.getIntPtrConstant(NumBytes, true),
2541                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2542                                                     true),
2543                               InFlag);
2544    InFlag = Chain.getValue(1);
2545  }
2546
2547  // Handle result values, copying them out of physregs into vregs that we
2548  // return.
2549  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2550                         Ins, dl, DAG, InVals);
2551}
2552
2553
2554//===----------------------------------------------------------------------===//
2555//                Fast Calling Convention (tail call) implementation
2556//===----------------------------------------------------------------------===//
2557
2558//  Like std call, callee cleans arguments, convention except that ECX is
2559//  reserved for storing the tail called function address. Only 2 registers are
2560//  free for argument passing (inreg). Tail call optimization is performed
2561//  provided:
2562//                * tailcallopt is enabled
2563//                * caller/callee are fastcc
2564//  On X86_64 architecture with GOT-style position independent code only local
2565//  (within module) calls are supported at the moment.
2566//  To keep the stack aligned according to platform abi the function
2567//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2568//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2569//  If a tail called function callee has more arguments than the caller the
2570//  caller needs to make sure that there is room to move the RETADDR to. This is
2571//  achieved by reserving an area the size of the argument delta right after the
2572//  original REtADDR, but before the saved framepointer or the spilled registers
2573//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2574//  stack layout:
2575//    arg1
2576//    arg2
2577//    RETADDR
2578//    [ new RETADDR
2579//      move area ]
2580//    (possible EBP)
2581//    ESI
2582//    EDI
2583//    local1 ..
2584
2585/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2586/// for a 16 byte align requirement.
2587unsigned
2588X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2589                                               SelectionDAG& DAG) const {
2590  MachineFunction &MF = DAG.getMachineFunction();
2591  const TargetMachine &TM = MF.getTarget();
2592  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2593  unsigned StackAlignment = TFI.getStackAlignment();
2594  uint64_t AlignMask = StackAlignment - 1;
2595  int64_t Offset = StackSize;
2596  uint64_t SlotSize = TD->getPointerSize();
2597  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2598    // Number smaller than 12 so just add the difference.
2599    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2600  } else {
2601    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2602    Offset = ((~AlignMask) & Offset) + StackAlignment +
2603      (StackAlignment-SlotSize);
2604  }
2605  return Offset;
2606}
2607
2608/// MatchingStackOffset - Return true if the given stack call argument is
2609/// already available in the same position (relatively) of the caller's
2610/// incoming argument stack.
2611static
2612bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2613                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2614                         const X86InstrInfo *TII) {
2615  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2616  int FI = INT_MAX;
2617  if (Arg.getOpcode() == ISD::CopyFromReg) {
2618    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2619    if (!TargetRegisterInfo::isVirtualRegister(VR))
2620      return false;
2621    MachineInstr *Def = MRI->getVRegDef(VR);
2622    if (!Def)
2623      return false;
2624    if (!Flags.isByVal()) {
2625      if (!TII->isLoadFromStackSlot(Def, FI))
2626        return false;
2627    } else {
2628      unsigned Opcode = Def->getOpcode();
2629      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2630          Def->getOperand(1).isFI()) {
2631        FI = Def->getOperand(1).getIndex();
2632        Bytes = Flags.getByValSize();
2633      } else
2634        return false;
2635    }
2636  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2637    if (Flags.isByVal())
2638      // ByVal argument is passed in as a pointer but it's now being
2639      // dereferenced. e.g.
2640      // define @foo(%struct.X* %A) {
2641      //   tail call @bar(%struct.X* byval %A)
2642      // }
2643      return false;
2644    SDValue Ptr = Ld->getBasePtr();
2645    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2646    if (!FINode)
2647      return false;
2648    FI = FINode->getIndex();
2649  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2650    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2651    FI = FINode->getIndex();
2652    Bytes = Flags.getByValSize();
2653  } else
2654    return false;
2655
2656  assert(FI != INT_MAX);
2657  if (!MFI->isFixedObjectIndex(FI))
2658    return false;
2659  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2660}
2661
2662/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2663/// for tail call optimization. Targets which want to do tail call
2664/// optimization should implement this function.
2665bool
2666X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2667                                                     CallingConv::ID CalleeCC,
2668                                                     bool isVarArg,
2669                                                     bool isCalleeStructRet,
2670                                                     bool isCallerStructRet,
2671                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2672                                    const SmallVectorImpl<SDValue> &OutVals,
2673                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2674                                                     SelectionDAG& DAG) const {
2675  if (!IsTailCallConvention(CalleeCC) &&
2676      CalleeCC != CallingConv::C)
2677    return false;
2678
2679  // If -tailcallopt is specified, make fastcc functions tail-callable.
2680  const MachineFunction &MF = DAG.getMachineFunction();
2681  const Function *CallerF = DAG.getMachineFunction().getFunction();
2682  CallingConv::ID CallerCC = CallerF->getCallingConv();
2683  bool CCMatch = CallerCC == CalleeCC;
2684
2685  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2686    if (IsTailCallConvention(CalleeCC) && CCMatch)
2687      return true;
2688    return false;
2689  }
2690
2691  // Look for obvious safe cases to perform tail call optimization that do not
2692  // require ABI changes. This is what gcc calls sibcall.
2693
2694  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2695  // emit a special epilogue.
2696  if (RegInfo->needsStackRealignment(MF))
2697    return false;
2698
2699  // Also avoid sibcall optimization if either caller or callee uses struct
2700  // return semantics.
2701  if (isCalleeStructRet || isCallerStructRet)
2702    return false;
2703
2704  // An stdcall caller is expected to clean up its arguments; the callee
2705  // isn't going to do that.
2706  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2707    return false;
2708
2709  // Do not sibcall optimize vararg calls unless all arguments are passed via
2710  // registers.
2711  if (isVarArg && !Outs.empty()) {
2712
2713    // Optimizing for varargs on Win64 is unlikely to be safe without
2714    // additional testing.
2715    if (Subtarget->isTargetWin64())
2716      return false;
2717
2718    SmallVector<CCValAssign, 16> ArgLocs;
2719    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2720		   getTargetMachine(), ArgLocs, *DAG.getContext());
2721
2722    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2723    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2724      if (!ArgLocs[i].isRegLoc())
2725        return false;
2726  }
2727
2728  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2729  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2730  // this into a sibcall.
2731  bool Unused = false;
2732  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2733    if (!Ins[i].Used) {
2734      Unused = true;
2735      break;
2736    }
2737  }
2738  if (Unused) {
2739    SmallVector<CCValAssign, 16> RVLocs;
2740    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2741		   getTargetMachine(), RVLocs, *DAG.getContext());
2742    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2743    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2744      CCValAssign &VA = RVLocs[i];
2745      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2746        return false;
2747    }
2748  }
2749
2750  // If the calling conventions do not match, then we'd better make sure the
2751  // results are returned in the same way as what the caller expects.
2752  if (!CCMatch) {
2753    SmallVector<CCValAssign, 16> RVLocs1;
2754    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2755		    getTargetMachine(), RVLocs1, *DAG.getContext());
2756    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2757
2758    SmallVector<CCValAssign, 16> RVLocs2;
2759    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2760		    getTargetMachine(), RVLocs2, *DAG.getContext());
2761    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2762
2763    if (RVLocs1.size() != RVLocs2.size())
2764      return false;
2765    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2766      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2767        return false;
2768      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2769        return false;
2770      if (RVLocs1[i].isRegLoc()) {
2771        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2772          return false;
2773      } else {
2774        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2775          return false;
2776      }
2777    }
2778  }
2779
2780  // If the callee takes no arguments then go on to check the results of the
2781  // call.
2782  if (!Outs.empty()) {
2783    // Check if stack adjustment is needed. For now, do not do this if any
2784    // argument is passed on the stack.
2785    SmallVector<CCValAssign, 16> ArgLocs;
2786    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2787		   getTargetMachine(), ArgLocs, *DAG.getContext());
2788
2789    // Allocate shadow area for Win64
2790    if (Subtarget->isTargetWin64()) {
2791      CCInfo.AllocateStack(32, 8);
2792    }
2793
2794    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2795    if (CCInfo.getNextStackOffset()) {
2796      MachineFunction &MF = DAG.getMachineFunction();
2797      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2798        return false;
2799
2800      // Check if the arguments are already laid out in the right way as
2801      // the caller's fixed stack objects.
2802      MachineFrameInfo *MFI = MF.getFrameInfo();
2803      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2804      const X86InstrInfo *TII =
2805        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2806      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2807        CCValAssign &VA = ArgLocs[i];
2808        SDValue Arg = OutVals[i];
2809        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2810        if (VA.getLocInfo() == CCValAssign::Indirect)
2811          return false;
2812        if (!VA.isRegLoc()) {
2813          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2814                                   MFI, MRI, TII))
2815            return false;
2816        }
2817      }
2818    }
2819
2820    // If the tailcall address may be in a register, then make sure it's
2821    // possible to register allocate for it. In 32-bit, the call address can
2822    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2823    // callee-saved registers are restored. These happen to be the same
2824    // registers used to pass 'inreg' arguments so watch out for those.
2825    if (!Subtarget->is64Bit() &&
2826        !isa<GlobalAddressSDNode>(Callee) &&
2827        !isa<ExternalSymbolSDNode>(Callee)) {
2828      unsigned NumInRegs = 0;
2829      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2830        CCValAssign &VA = ArgLocs[i];
2831        if (!VA.isRegLoc())
2832          continue;
2833        unsigned Reg = VA.getLocReg();
2834        switch (Reg) {
2835        default: break;
2836        case X86::EAX: case X86::EDX: case X86::ECX:
2837          if (++NumInRegs == 3)
2838            return false;
2839          break;
2840        }
2841      }
2842    }
2843  }
2844
2845  return true;
2846}
2847
2848FastISel *
2849X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2850  return X86::createFastISel(funcInfo);
2851}
2852
2853
2854//===----------------------------------------------------------------------===//
2855//                           Other Lowering Hooks
2856//===----------------------------------------------------------------------===//
2857
2858static bool MayFoldLoad(SDValue Op) {
2859  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2860}
2861
2862static bool MayFoldIntoStore(SDValue Op) {
2863  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2864}
2865
2866static bool isTargetShuffle(unsigned Opcode) {
2867  switch(Opcode) {
2868  default: return false;
2869  case X86ISD::PSHUFD:
2870  case X86ISD::PSHUFHW:
2871  case X86ISD::PSHUFLW:
2872  case X86ISD::SHUFPD:
2873  case X86ISD::PALIGN:
2874  case X86ISD::SHUFPS:
2875  case X86ISD::MOVLHPS:
2876  case X86ISD::MOVLHPD:
2877  case X86ISD::MOVHLPS:
2878  case X86ISD::MOVLPS:
2879  case X86ISD::MOVLPD:
2880  case X86ISD::MOVSHDUP:
2881  case X86ISD::MOVSLDUP:
2882  case X86ISD::MOVDDUP:
2883  case X86ISD::MOVSS:
2884  case X86ISD::MOVSD:
2885  case X86ISD::UNPCKL:
2886  case X86ISD::UNPCKH:
2887  case X86ISD::VPERMILP:
2888  case X86ISD::VPERM2X128:
2889    return true;
2890  }
2891  return false;
2892}
2893
2894static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2895                                               SDValue V1, SelectionDAG &DAG) {
2896  switch(Opc) {
2897  default: llvm_unreachable("Unknown x86 shuffle node");
2898  case X86ISD::MOVSHDUP:
2899  case X86ISD::MOVSLDUP:
2900  case X86ISD::MOVDDUP:
2901    return DAG.getNode(Opc, dl, VT, V1);
2902  }
2903
2904  return SDValue();
2905}
2906
2907static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2908                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2909  switch(Opc) {
2910  default: llvm_unreachable("Unknown x86 shuffle node");
2911  case X86ISD::PSHUFD:
2912  case X86ISD::PSHUFHW:
2913  case X86ISD::PSHUFLW:
2914  case X86ISD::VPERMILP:
2915    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2916  }
2917
2918  return SDValue();
2919}
2920
2921static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2922               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2923  switch(Opc) {
2924  default: llvm_unreachable("Unknown x86 shuffle node");
2925  case X86ISD::PALIGN:
2926  case X86ISD::SHUFPD:
2927  case X86ISD::SHUFPS:
2928  case X86ISD::VPERM2X128:
2929    return DAG.getNode(Opc, dl, VT, V1, V2,
2930                       DAG.getConstant(TargetMask, MVT::i8));
2931  }
2932  return SDValue();
2933}
2934
2935static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2936                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2937  switch(Opc) {
2938  default: llvm_unreachable("Unknown x86 shuffle node");
2939  case X86ISD::MOVLHPS:
2940  case X86ISD::MOVLHPD:
2941  case X86ISD::MOVHLPS:
2942  case X86ISD::MOVLPS:
2943  case X86ISD::MOVLPD:
2944  case X86ISD::MOVSS:
2945  case X86ISD::MOVSD:
2946  case X86ISD::UNPCKL:
2947  case X86ISD::UNPCKH:
2948    return DAG.getNode(Opc, dl, VT, V1, V2);
2949  }
2950  return SDValue();
2951}
2952
2953SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2954  MachineFunction &MF = DAG.getMachineFunction();
2955  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2956  int ReturnAddrIndex = FuncInfo->getRAIndex();
2957
2958  if (ReturnAddrIndex == 0) {
2959    // Set up a frame object for the return address.
2960    uint64_t SlotSize = TD->getPointerSize();
2961    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2962                                                           false);
2963    FuncInfo->setRAIndex(ReturnAddrIndex);
2964  }
2965
2966  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2967}
2968
2969
2970bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2971                                       bool hasSymbolicDisplacement) {
2972  // Offset should fit into 32 bit immediate field.
2973  if (!isInt<32>(Offset))
2974    return false;
2975
2976  // If we don't have a symbolic displacement - we don't have any extra
2977  // restrictions.
2978  if (!hasSymbolicDisplacement)
2979    return true;
2980
2981  // FIXME: Some tweaks might be needed for medium code model.
2982  if (M != CodeModel::Small && M != CodeModel::Kernel)
2983    return false;
2984
2985  // For small code model we assume that latest object is 16MB before end of 31
2986  // bits boundary. We may also accept pretty large negative constants knowing
2987  // that all objects are in the positive half of address space.
2988  if (M == CodeModel::Small && Offset < 16*1024*1024)
2989    return true;
2990
2991  // For kernel code model we know that all object resist in the negative half
2992  // of 32bits address space. We may not accept negative offsets, since they may
2993  // be just off and we may accept pretty large positive ones.
2994  if (M == CodeModel::Kernel && Offset > 0)
2995    return true;
2996
2997  return false;
2998}
2999
3000/// isCalleePop - Determines whether the callee is required to pop its
3001/// own arguments. Callee pop is necessary to support tail calls.
3002bool X86::isCalleePop(CallingConv::ID CallingConv,
3003                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3004  if (IsVarArg)
3005    return false;
3006
3007  switch (CallingConv) {
3008  default:
3009    return false;
3010  case CallingConv::X86_StdCall:
3011    return !is64Bit;
3012  case CallingConv::X86_FastCall:
3013    return !is64Bit;
3014  case CallingConv::X86_ThisCall:
3015    return !is64Bit;
3016  case CallingConv::Fast:
3017    return TailCallOpt;
3018  case CallingConv::GHC:
3019    return TailCallOpt;
3020  }
3021}
3022
3023/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3024/// specific condition code, returning the condition code and the LHS/RHS of the
3025/// comparison to make.
3026static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3027                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3028  if (!isFP) {
3029    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3030      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3031        // X > -1   -> X == 0, jump !sign.
3032        RHS = DAG.getConstant(0, RHS.getValueType());
3033        return X86::COND_NS;
3034      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3035        // X < 0   -> X == 0, jump on sign.
3036        return X86::COND_S;
3037      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3038        // X < 1   -> X <= 0
3039        RHS = DAG.getConstant(0, RHS.getValueType());
3040        return X86::COND_LE;
3041      }
3042    }
3043
3044    switch (SetCCOpcode) {
3045    default: llvm_unreachable("Invalid integer condition!");
3046    case ISD::SETEQ:  return X86::COND_E;
3047    case ISD::SETGT:  return X86::COND_G;
3048    case ISD::SETGE:  return X86::COND_GE;
3049    case ISD::SETLT:  return X86::COND_L;
3050    case ISD::SETLE:  return X86::COND_LE;
3051    case ISD::SETNE:  return X86::COND_NE;
3052    case ISD::SETULT: return X86::COND_B;
3053    case ISD::SETUGT: return X86::COND_A;
3054    case ISD::SETULE: return X86::COND_BE;
3055    case ISD::SETUGE: return X86::COND_AE;
3056    }
3057  }
3058
3059  // First determine if it is required or is profitable to flip the operands.
3060
3061  // If LHS is a foldable load, but RHS is not, flip the condition.
3062  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3063      !ISD::isNON_EXTLoad(RHS.getNode())) {
3064    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3065    std::swap(LHS, RHS);
3066  }
3067
3068  switch (SetCCOpcode) {
3069  default: break;
3070  case ISD::SETOLT:
3071  case ISD::SETOLE:
3072  case ISD::SETUGT:
3073  case ISD::SETUGE:
3074    std::swap(LHS, RHS);
3075    break;
3076  }
3077
3078  // On a floating point condition, the flags are set as follows:
3079  // ZF  PF  CF   op
3080  //  0 | 0 | 0 | X > Y
3081  //  0 | 0 | 1 | X < Y
3082  //  1 | 0 | 0 | X == Y
3083  //  1 | 1 | 1 | unordered
3084  switch (SetCCOpcode) {
3085  default: llvm_unreachable("Condcode should be pre-legalized away");
3086  case ISD::SETUEQ:
3087  case ISD::SETEQ:   return X86::COND_E;
3088  case ISD::SETOLT:              // flipped
3089  case ISD::SETOGT:
3090  case ISD::SETGT:   return X86::COND_A;
3091  case ISD::SETOLE:              // flipped
3092  case ISD::SETOGE:
3093  case ISD::SETGE:   return X86::COND_AE;
3094  case ISD::SETUGT:              // flipped
3095  case ISD::SETULT:
3096  case ISD::SETLT:   return X86::COND_B;
3097  case ISD::SETUGE:              // flipped
3098  case ISD::SETULE:
3099  case ISD::SETLE:   return X86::COND_BE;
3100  case ISD::SETONE:
3101  case ISD::SETNE:   return X86::COND_NE;
3102  case ISD::SETUO:   return X86::COND_P;
3103  case ISD::SETO:    return X86::COND_NP;
3104  case ISD::SETOEQ:
3105  case ISD::SETUNE:  return X86::COND_INVALID;
3106  }
3107}
3108
3109/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3110/// code. Current x86 isa includes the following FP cmov instructions:
3111/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3112static bool hasFPCMov(unsigned X86CC) {
3113  switch (X86CC) {
3114  default:
3115    return false;
3116  case X86::COND_B:
3117  case X86::COND_BE:
3118  case X86::COND_E:
3119  case X86::COND_P:
3120  case X86::COND_A:
3121  case X86::COND_AE:
3122  case X86::COND_NE:
3123  case X86::COND_NP:
3124    return true;
3125  }
3126}
3127
3128/// isFPImmLegal - Returns true if the target can instruction select the
3129/// specified FP immediate natively. If false, the legalizer will
3130/// materialize the FP immediate as a load from a constant pool.
3131bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3132  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3133    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3134      return true;
3135  }
3136  return false;
3137}
3138
3139/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3140/// the specified range (L, H].
3141static bool isUndefOrInRange(int Val, int Low, int Hi) {
3142  return (Val < 0) || (Val >= Low && Val < Hi);
3143}
3144
3145/// isUndefOrInRange - Return true if every element in Mask, begining
3146/// from position Pos and ending in Pos+Size, falls within the specified
3147/// range (L, L+Pos]. or is undef.
3148static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3149                             int Pos, int Size, int Low, int Hi) {
3150  for (int i = Pos, e = Pos+Size; i != e; ++i)
3151    if (!isUndefOrInRange(Mask[i], Low, Hi))
3152      return false;
3153  return true;
3154}
3155
3156/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3157/// specified value.
3158static bool isUndefOrEqual(int Val, int CmpVal) {
3159  if (Val < 0 || Val == CmpVal)
3160    return true;
3161  return false;
3162}
3163
3164/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3165/// from position Pos and ending in Pos+Size, falls within the specified
3166/// sequential range (L, L+Pos]. or is undef.
3167static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3168                                       int Pos, int Size, int Low) {
3169  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3170    if (!isUndefOrEqual(Mask[i], Low))
3171      return false;
3172  return true;
3173}
3174
3175/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3176/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3177/// the second operand.
3178static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3179  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3180    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3181  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3182    return (Mask[0] < 2 && Mask[1] < 2);
3183  return false;
3184}
3185
3186bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3187  SmallVector<int, 8> M;
3188  N->getMask(M);
3189  return ::isPSHUFDMask(M, N->getValueType(0));
3190}
3191
3192/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3193/// is suitable for input to PSHUFHW.
3194static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3195  if (VT != MVT::v8i16)
3196    return false;
3197
3198  // Lower quadword copied in order or undef.
3199  for (int i = 0; i != 4; ++i)
3200    if (Mask[i] >= 0 && Mask[i] != i)
3201      return false;
3202
3203  // Upper quadword shuffled.
3204  for (int i = 4; i != 8; ++i)
3205    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3206      return false;
3207
3208  return true;
3209}
3210
3211bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3212  SmallVector<int, 8> M;
3213  N->getMask(M);
3214  return ::isPSHUFHWMask(M, N->getValueType(0));
3215}
3216
3217/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3218/// is suitable for input to PSHUFLW.
3219static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3220  if (VT != MVT::v8i16)
3221    return false;
3222
3223  // Upper quadword copied in order.
3224  for (int i = 4; i != 8; ++i)
3225    if (Mask[i] >= 0 && Mask[i] != i)
3226      return false;
3227
3228  // Lower quadword shuffled.
3229  for (int i = 0; i != 4; ++i)
3230    if (Mask[i] >= 4)
3231      return false;
3232
3233  return true;
3234}
3235
3236bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3237  SmallVector<int, 8> M;
3238  N->getMask(M);
3239  return ::isPSHUFLWMask(M, N->getValueType(0));
3240}
3241
3242/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3243/// is suitable for input to PALIGNR.
3244static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3245                          bool hasSSSE3OrAVX) {
3246  int i, e = VT.getVectorNumElements();
3247  if (VT.getSizeInBits() != 128)
3248    return false;
3249
3250  // Do not handle v2i64 / v2f64 shuffles with palignr.
3251  if (e < 4 || !hasSSSE3OrAVX)
3252    return false;
3253
3254  for (i = 0; i != e; ++i)
3255    if (Mask[i] >= 0)
3256      break;
3257
3258  // All undef, not a palignr.
3259  if (i == e)
3260    return false;
3261
3262  // Make sure we're shifting in the right direction.
3263  if (Mask[i] <= i)
3264    return false;
3265
3266  int s = Mask[i] - i;
3267
3268  // Check the rest of the elements to see if they are consecutive.
3269  for (++i; i != e; ++i) {
3270    int m = Mask[i];
3271    if (m >= 0 && m != s+i)
3272      return false;
3273  }
3274  return true;
3275}
3276
3277/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3278/// specifies a shuffle of elements that is suitable for input to 256-bit
3279/// VSHUFPSY.
3280static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3281                          bool HasAVX, bool Commuted = false) {
3282  int NumElems = VT.getVectorNumElements();
3283
3284  if (!HasAVX || VT.getSizeInBits() != 256)
3285    return false;
3286
3287  if (NumElems != 4 && NumElems != 8)
3288    return false;
3289
3290  // VSHUFPSY divides the resulting vector into 4 chunks.
3291  // The sources are also splitted into 4 chunks, and each destination
3292  // chunk must come from a different source chunk.
3293  //
3294  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3295  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3296  //
3297  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3298  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3299  //
3300  // VSHUFPDY divides the resulting vector into 4 chunks.
3301  // The sources are also splitted into 4 chunks, and each destination
3302  // chunk must come from a different source chunk.
3303  //
3304  //  SRC1 =>      X3       X2       X1       X0
3305  //  SRC2 =>      Y3       Y2       Y1       Y0
3306  //
3307  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3308  //
3309  unsigned QuarterSize = NumElems/4;
3310  unsigned HalfSize = QuarterSize*2;
3311  for (unsigned l = 0; l != 2; ++l) {
3312    unsigned LaneStart = l*HalfSize;
3313    for (unsigned s = 0; s != 2; ++s) {
3314      unsigned QuarterStart = s*QuarterSize;
3315      unsigned Src = (Commuted) ? (1-s) : s;
3316      unsigned SrcStart = Src*NumElems + LaneStart;
3317      for (unsigned i = 0; i != QuarterSize; ++i) {
3318        int Idx = Mask[i+QuarterStart+LaneStart];
3319        if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3320          return false;
3321        // For VSHUFPSY, the mask of the second half must be the same as the
3322        // first but with the appropriate offsets. This works in the same way as
3323        // VPERMILPS works with masks.
3324        if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3325          continue;
3326        if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+HalfSize))
3327          return false;
3328      }
3329    }
3330  }
3331
3332  return true;
3333}
3334
3335/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3336/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3337static unsigned getShuffleVSHUFPYImmediate(SDNode *N) {
3338  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3339  EVT VT = SVOp->getValueType(0);
3340  int NumElems = VT.getVectorNumElements();
3341
3342  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3343  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3344
3345  int HalfSize = NumElems/2;
3346  unsigned Mul = (NumElems == 8) ? 2 : 1;
3347  unsigned Mask = 0;
3348  for (int i = 0; i != NumElems; ++i) {
3349    int Elt = SVOp->getMaskElt(i);
3350    if (Elt < 0)
3351      continue;
3352    Elt %= HalfSize;
3353    unsigned Shamt = i;
3354    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3355    if (NumElems == 8) Shamt %= HalfSize;
3356    Mask |= Elt << (Shamt*Mul);
3357  }
3358
3359  return Mask;
3360}
3361
3362/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3363/// the two vector operands have swapped position.
3364static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3365                                     unsigned NumElems) {
3366  for (unsigned i = 0; i != NumElems; ++i) {
3367    int idx = Mask[i];
3368    if (idx < 0)
3369      continue;
3370    else if (idx < (int)NumElems)
3371      Mask[i] = idx + NumElems;
3372    else
3373      Mask[i] = idx - NumElems;
3374  }
3375}
3376
3377/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3378/// specifies a shuffle of elements that is suitable for input to 128-bit
3379/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3380/// reverse of what x86 shuffles want.
3381static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3382                        bool Commuted = false) {
3383  unsigned NumElems = VT.getVectorNumElements();
3384
3385  if (VT.getSizeInBits() != 128)
3386    return false;
3387
3388  if (NumElems != 2 && NumElems != 4)
3389    return false;
3390
3391  unsigned Half = NumElems / 2;
3392  unsigned SrcStart = Commuted ? NumElems : 0;
3393  for (unsigned i = 0; i != Half; ++i)
3394    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3395      return false;
3396  SrcStart = Commuted ? 0 : NumElems;
3397  for (unsigned i = Half; i != NumElems; ++i)
3398    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3399      return false;
3400
3401  return true;
3402}
3403
3404bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3405  SmallVector<int, 8> M;
3406  N->getMask(M);
3407  return ::isSHUFPMask(M, N->getValueType(0));
3408}
3409
3410/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3411/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3412bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3413  EVT VT = N->getValueType(0);
3414  unsigned NumElems = VT.getVectorNumElements();
3415
3416  if (VT.getSizeInBits() != 128)
3417    return false;
3418
3419  if (NumElems != 4)
3420    return false;
3421
3422  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3423  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3424         isUndefOrEqual(N->getMaskElt(1), 7) &&
3425         isUndefOrEqual(N->getMaskElt(2), 2) &&
3426         isUndefOrEqual(N->getMaskElt(3), 3);
3427}
3428
3429/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3430/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3431/// <2, 3, 2, 3>
3432bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3433  EVT VT = N->getValueType(0);
3434  unsigned NumElems = VT.getVectorNumElements();
3435
3436  if (VT.getSizeInBits() != 128)
3437    return false;
3438
3439  if (NumElems != 4)
3440    return false;
3441
3442  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3443         isUndefOrEqual(N->getMaskElt(1), 3) &&
3444         isUndefOrEqual(N->getMaskElt(2), 2) &&
3445         isUndefOrEqual(N->getMaskElt(3), 3);
3446}
3447
3448/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3449/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3450bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3451  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3452
3453  if (NumElems != 2 && NumElems != 4)
3454    return false;
3455
3456  for (unsigned i = 0; i < NumElems/2; ++i)
3457    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3458      return false;
3459
3460  for (unsigned i = NumElems/2; i < NumElems; ++i)
3461    if (!isUndefOrEqual(N->getMaskElt(i), i))
3462      return false;
3463
3464  return true;
3465}
3466
3467/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3468/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3469bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3470  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3471
3472  if ((NumElems != 2 && NumElems != 4)
3473      || N->getValueType(0).getSizeInBits() > 128)
3474    return false;
3475
3476  for (unsigned i = 0; i < NumElems/2; ++i)
3477    if (!isUndefOrEqual(N->getMaskElt(i), i))
3478      return false;
3479
3480  for (unsigned i = 0; i < NumElems/2; ++i)
3481    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3482      return false;
3483
3484  return true;
3485}
3486
3487/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3488/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3489static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3490                         bool HasAVX2, bool V2IsSplat = false) {
3491  unsigned NumElts = VT.getVectorNumElements();
3492
3493  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3494         "Unsupported vector type for unpckh");
3495
3496  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3497      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3498    return false;
3499
3500  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3501  // independently on 128-bit lanes.
3502  unsigned NumLanes = VT.getSizeInBits()/128;
3503  unsigned NumLaneElts = NumElts/NumLanes;
3504
3505  for (unsigned l = 0; l != NumLanes; ++l) {
3506    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3507         i != (l+1)*NumLaneElts;
3508         i += 2, ++j) {
3509      int BitI  = Mask[i];
3510      int BitI1 = Mask[i+1];
3511      if (!isUndefOrEqual(BitI, j))
3512        return false;
3513      if (V2IsSplat) {
3514        if (!isUndefOrEqual(BitI1, NumElts))
3515          return false;
3516      } else {
3517        if (!isUndefOrEqual(BitI1, j + NumElts))
3518          return false;
3519      }
3520    }
3521  }
3522
3523  return true;
3524}
3525
3526bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3527  SmallVector<int, 8> M;
3528  N->getMask(M);
3529  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3530}
3531
3532/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3533/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3534static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3535                         bool HasAVX2, bool V2IsSplat = false) {
3536  unsigned NumElts = VT.getVectorNumElements();
3537
3538  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3539         "Unsupported vector type for unpckh");
3540
3541  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3542      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3543    return false;
3544
3545  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3546  // independently on 128-bit lanes.
3547  unsigned NumLanes = VT.getSizeInBits()/128;
3548  unsigned NumLaneElts = NumElts/NumLanes;
3549
3550  for (unsigned l = 0; l != NumLanes; ++l) {
3551    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3552         i != (l+1)*NumLaneElts; i += 2, ++j) {
3553      int BitI  = Mask[i];
3554      int BitI1 = Mask[i+1];
3555      if (!isUndefOrEqual(BitI, j))
3556        return false;
3557      if (V2IsSplat) {
3558        if (isUndefOrEqual(BitI1, NumElts))
3559          return false;
3560      } else {
3561        if (!isUndefOrEqual(BitI1, j+NumElts))
3562          return false;
3563      }
3564    }
3565  }
3566  return true;
3567}
3568
3569bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3570  SmallVector<int, 8> M;
3571  N->getMask(M);
3572  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3573}
3574
3575/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3576/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3577/// <0, 0, 1, 1>
3578static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3579                                  bool HasAVX2) {
3580  unsigned NumElts = VT.getVectorNumElements();
3581
3582  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3583         "Unsupported vector type for unpckh");
3584
3585  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3586      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3587    return false;
3588
3589  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3590  // FIXME: Need a better way to get rid of this, there's no latency difference
3591  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3592  // the former later. We should also remove the "_undef" special mask.
3593  if (NumElts == 4 && VT.getSizeInBits() == 256)
3594    return false;
3595
3596  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3597  // independently on 128-bit lanes.
3598  unsigned NumLanes = VT.getSizeInBits()/128;
3599  unsigned NumLaneElts = NumElts/NumLanes;
3600
3601  for (unsigned l = 0; l != NumLanes; ++l) {
3602    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3603         i != (l+1)*NumLaneElts;
3604         i += 2, ++j) {
3605      int BitI  = Mask[i];
3606      int BitI1 = Mask[i+1];
3607
3608      if (!isUndefOrEqual(BitI, j))
3609        return false;
3610      if (!isUndefOrEqual(BitI1, j))
3611        return false;
3612    }
3613  }
3614
3615  return true;
3616}
3617
3618bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3619  SmallVector<int, 8> M;
3620  N->getMask(M);
3621  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3622}
3623
3624/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3625/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3626/// <2, 2, 3, 3>
3627static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3628                                  bool HasAVX2) {
3629  unsigned NumElts = VT.getVectorNumElements();
3630
3631  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3632         "Unsupported vector type for unpckh");
3633
3634  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3635      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3636    return false;
3637
3638  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3639  // independently on 128-bit lanes.
3640  unsigned NumLanes = VT.getSizeInBits()/128;
3641  unsigned NumLaneElts = NumElts/NumLanes;
3642
3643  for (unsigned l = 0; l != NumLanes; ++l) {
3644    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3645         i != (l+1)*NumLaneElts; i += 2, ++j) {
3646      int BitI  = Mask[i];
3647      int BitI1 = Mask[i+1];
3648      if (!isUndefOrEqual(BitI, j))
3649        return false;
3650      if (!isUndefOrEqual(BitI1, j))
3651        return false;
3652    }
3653  }
3654  return true;
3655}
3656
3657bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3658  SmallVector<int, 8> M;
3659  N->getMask(M);
3660  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3661}
3662
3663/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3664/// specifies a shuffle of elements that is suitable for input to MOVSS,
3665/// MOVSD, and MOVD, i.e. setting the lowest element.
3666static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3667  if (VT.getVectorElementType().getSizeInBits() < 32)
3668    return false;
3669
3670  int NumElts = VT.getVectorNumElements();
3671
3672  if (!isUndefOrEqual(Mask[0], NumElts))
3673    return false;
3674
3675  for (int i = 1; i < NumElts; ++i)
3676    if (!isUndefOrEqual(Mask[i], i))
3677      return false;
3678
3679  return true;
3680}
3681
3682bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3683  SmallVector<int, 8> M;
3684  N->getMask(M);
3685  return ::isMOVLMask(M, N->getValueType(0));
3686}
3687
3688/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3689/// as permutations between 128-bit chunks or halves. As an example: this
3690/// shuffle bellow:
3691///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3692/// The first half comes from the second half of V1 and the second half from the
3693/// the second half of V2.
3694static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3695                             bool HasAVX) {
3696  if (!HasAVX || VT.getSizeInBits() != 256)
3697    return false;
3698
3699  // The shuffle result is divided into half A and half B. In total the two
3700  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3701  // B must come from C, D, E or F.
3702  int HalfSize = VT.getVectorNumElements()/2;
3703  bool MatchA = false, MatchB = false;
3704
3705  // Check if A comes from one of C, D, E, F.
3706  for (int Half = 0; Half < 4; ++Half) {
3707    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3708      MatchA = true;
3709      break;
3710    }
3711  }
3712
3713  // Check if B comes from one of C, D, E, F.
3714  for (int Half = 0; Half < 4; ++Half) {
3715    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3716      MatchB = true;
3717      break;
3718    }
3719  }
3720
3721  return MatchA && MatchB;
3722}
3723
3724/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3725/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3726static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3727  EVT VT = SVOp->getValueType(0);
3728
3729  int HalfSize = VT.getVectorNumElements()/2;
3730
3731  int FstHalf = 0, SndHalf = 0;
3732  for (int i = 0; i < HalfSize; ++i) {
3733    if (SVOp->getMaskElt(i) > 0) {
3734      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3735      break;
3736    }
3737  }
3738  for (int i = HalfSize; i < HalfSize*2; ++i) {
3739    if (SVOp->getMaskElt(i) > 0) {
3740      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3741      break;
3742    }
3743  }
3744
3745  return (FstHalf | (SndHalf << 4));
3746}
3747
3748/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3749/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3750/// Note that VPERMIL mask matching is different depending whether theunderlying
3751/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3752/// to the same elements of the low, but to the higher half of the source.
3753/// In VPERMILPD the two lanes could be shuffled independently of each other
3754/// with the same restriction that lanes can't be crossed.
3755static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3756                           bool HasAVX) {
3757  int NumElts = VT.getVectorNumElements();
3758  int NumLanes = VT.getSizeInBits()/128;
3759
3760  if (!HasAVX)
3761    return false;
3762
3763  // Only match 256-bit with 32/64-bit types
3764  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3765    return false;
3766
3767  int LaneSize = NumElts/NumLanes;
3768  for (int l = 0; l != NumLanes; ++l) {
3769    int LaneStart = l*LaneSize;
3770    for (int i = 0; i != LaneSize; ++i) {
3771      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3772        return false;
3773      if (NumElts == 4 || l == 0)
3774        continue;
3775      // VPERMILPS handling
3776      if (Mask[i] < 0)
3777        continue;
3778      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneSize))
3779        return false;
3780    }
3781  }
3782
3783  return true;
3784}
3785
3786/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3787/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3788static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3789  EVT VT = SVOp->getValueType(0);
3790
3791  int NumElts = VT.getVectorNumElements();
3792  int NumLanes = VT.getSizeInBits()/128;
3793  int LaneSize = NumElts/NumLanes;
3794
3795  // Although the mask is equal for both lanes do it twice to get the cases
3796  // where a mask will match because the same mask element is undef on the
3797  // first half but valid on the second. This would get pathological cases
3798  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3799  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3800  unsigned Mask = 0;
3801  for (int i = 0; i != NumElts; ++i) {
3802    int MaskElt = SVOp->getMaskElt(i);
3803    if (MaskElt < 0)
3804      continue;
3805    MaskElt %= LaneSize;
3806    unsigned Shamt = i;
3807    // VPERMILPSY, the mask of the first half must be equal to the second one
3808    if (NumElts == 8) Shamt %= LaneSize;
3809    Mask |= MaskElt << (Shamt*Shift);
3810  }
3811
3812  return Mask;
3813}
3814
3815/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3816/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3817/// element of vector 2 and the other elements to come from vector 1 in order.
3818static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3819                               bool V2IsSplat = false, bool V2IsUndef = false) {
3820  int NumOps = VT.getVectorNumElements();
3821  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3822    return false;
3823
3824  if (!isUndefOrEqual(Mask[0], 0))
3825    return false;
3826
3827  for (int i = 1; i < NumOps; ++i)
3828    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3829          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3830          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3831      return false;
3832
3833  return true;
3834}
3835
3836static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3837                           bool V2IsUndef = false) {
3838  SmallVector<int, 8> M;
3839  N->getMask(M);
3840  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3841}
3842
3843/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3844/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3845/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3846bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3847                         const X86Subtarget *Subtarget) {
3848  if (!Subtarget->hasSSE3orAVX())
3849    return false;
3850
3851  // The second vector must be undef
3852  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3853    return false;
3854
3855  EVT VT = N->getValueType(0);
3856  unsigned NumElems = VT.getVectorNumElements();
3857
3858  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3859      (VT.getSizeInBits() == 256 && NumElems != 8))
3860    return false;
3861
3862  // "i+1" is the value the indexed mask element must have
3863  for (unsigned i = 0; i < NumElems; i += 2)
3864    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3865        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3866      return false;
3867
3868  return true;
3869}
3870
3871/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3872/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3873/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3874bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3875                         const X86Subtarget *Subtarget) {
3876  if (!Subtarget->hasSSE3orAVX())
3877    return false;
3878
3879  // The second vector must be undef
3880  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3881    return false;
3882
3883  EVT VT = N->getValueType(0);
3884  unsigned NumElems = VT.getVectorNumElements();
3885
3886  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3887      (VT.getSizeInBits() == 256 && NumElems != 8))
3888    return false;
3889
3890  // "i" is the value the indexed mask element must have
3891  for (unsigned i = 0; i < NumElems; i += 2)
3892    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3893        !isUndefOrEqual(N->getMaskElt(i+1), i))
3894      return false;
3895
3896  return true;
3897}
3898
3899/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to 256-bit
3901/// version of MOVDDUP.
3902static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3903                           bool HasAVX) {
3904  int NumElts = VT.getVectorNumElements();
3905
3906  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3907    return false;
3908
3909  for (int i = 0; i != NumElts/2; ++i)
3910    if (!isUndefOrEqual(Mask[i], 0))
3911      return false;
3912  for (int i = NumElts/2; i != NumElts; ++i)
3913    if (!isUndefOrEqual(Mask[i], NumElts/2))
3914      return false;
3915  return true;
3916}
3917
3918/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3919/// specifies a shuffle of elements that is suitable for input to 128-bit
3920/// version of MOVDDUP.
3921bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3922  EVT VT = N->getValueType(0);
3923
3924  if (VT.getSizeInBits() != 128)
3925    return false;
3926
3927  int e = VT.getVectorNumElements() / 2;
3928  for (int i = 0; i < e; ++i)
3929    if (!isUndefOrEqual(N->getMaskElt(i), i))
3930      return false;
3931  for (int i = 0; i < e; ++i)
3932    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3933      return false;
3934  return true;
3935}
3936
3937/// isVEXTRACTF128Index - Return true if the specified
3938/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3939/// suitable for input to VEXTRACTF128.
3940bool X86::isVEXTRACTF128Index(SDNode *N) {
3941  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3942    return false;
3943
3944  // The index should be aligned on a 128-bit boundary.
3945  uint64_t Index =
3946    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3947
3948  unsigned VL = N->getValueType(0).getVectorNumElements();
3949  unsigned VBits = N->getValueType(0).getSizeInBits();
3950  unsigned ElSize = VBits / VL;
3951  bool Result = (Index * ElSize) % 128 == 0;
3952
3953  return Result;
3954}
3955
3956/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3957/// operand specifies a subvector insert that is suitable for input to
3958/// VINSERTF128.
3959bool X86::isVINSERTF128Index(SDNode *N) {
3960  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3961    return false;
3962
3963  // The index should be aligned on a 128-bit boundary.
3964  uint64_t Index =
3965    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3966
3967  unsigned VL = N->getValueType(0).getVectorNumElements();
3968  unsigned VBits = N->getValueType(0).getSizeInBits();
3969  unsigned ElSize = VBits / VL;
3970  bool Result = (Index * ElSize) % 128 == 0;
3971
3972  return Result;
3973}
3974
3975/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3976/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3977unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3978  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3979  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3980
3981  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3982  unsigned Mask = 0;
3983  for (int i = 0; i < NumOperands; ++i) {
3984    int Val = SVOp->getMaskElt(NumOperands-i-1);
3985    if (Val < 0) Val = 0;
3986    if (Val >= NumOperands) Val -= NumOperands;
3987    Mask |= Val;
3988    if (i != NumOperands - 1)
3989      Mask <<= Shift;
3990  }
3991  return Mask;
3992}
3993
3994/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3995/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3996unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3997  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3998  unsigned Mask = 0;
3999  // 8 nodes, but we only care about the last 4.
4000  for (unsigned i = 7; i >= 4; --i) {
4001    int Val = SVOp->getMaskElt(i);
4002    if (Val >= 0)
4003      Mask |= (Val - 4);
4004    if (i != 4)
4005      Mask <<= 2;
4006  }
4007  return Mask;
4008}
4009
4010/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4011/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4012unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4013  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4014  unsigned Mask = 0;
4015  // 8 nodes, but we only care about the first 4.
4016  for (int i = 3; i >= 0; --i) {
4017    int Val = SVOp->getMaskElt(i);
4018    if (Val >= 0)
4019      Mask |= Val;
4020    if (i != 0)
4021      Mask <<= 2;
4022  }
4023  return Mask;
4024}
4025
4026/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4027/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4028static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4029  EVT VT = SVOp->getValueType(0);
4030  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4031  int Val = 0;
4032
4033  unsigned i, e;
4034  for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4035    Val = SVOp->getMaskElt(i);
4036    if (Val >= 0)
4037      break;
4038  }
4039  assert(Val - i > 0 && "PALIGNR imm should be positive");
4040  return (Val - i) * EltSize;
4041}
4042
4043/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4044/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4045/// instructions.
4046unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4047  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4048    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4049
4050  uint64_t Index =
4051    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4052
4053  EVT VecVT = N->getOperand(0).getValueType();
4054  EVT ElVT = VecVT.getVectorElementType();
4055
4056  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057  return Index / NumElemsPerChunk;
4058}
4059
4060/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4061/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4062/// instructions.
4063unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4064  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4065    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4066
4067  uint64_t Index =
4068    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4069
4070  EVT VecVT = N->getValueType(0);
4071  EVT ElVT = VecVT.getVectorElementType();
4072
4073  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4074  return Index / NumElemsPerChunk;
4075}
4076
4077/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4078/// constant +0.0.
4079bool X86::isZeroNode(SDValue Elt) {
4080  return ((isa<ConstantSDNode>(Elt) &&
4081           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4082          (isa<ConstantFPSDNode>(Elt) &&
4083           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4084}
4085
4086/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4087/// their permute mask.
4088static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4089                                    SelectionDAG &DAG) {
4090  EVT VT = SVOp->getValueType(0);
4091  unsigned NumElems = VT.getVectorNumElements();
4092  SmallVector<int, 8> MaskVec;
4093
4094  for (unsigned i = 0; i != NumElems; ++i) {
4095    int idx = SVOp->getMaskElt(i);
4096    if (idx < 0)
4097      MaskVec.push_back(idx);
4098    else if (idx < (int)NumElems)
4099      MaskVec.push_back(idx + NumElems);
4100    else
4101      MaskVec.push_back(idx - NumElems);
4102  }
4103  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4104                              SVOp->getOperand(0), &MaskVec[0]);
4105}
4106
4107/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4108/// match movhlps. The lower half elements should come from upper half of
4109/// V1 (and in order), and the upper half elements should come from the upper
4110/// half of V2 (and in order).
4111static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4112  EVT VT = Op->getValueType(0);
4113  if (VT.getSizeInBits() != 128)
4114    return false;
4115  if (VT.getVectorNumElements() != 4)
4116    return false;
4117  for (unsigned i = 0, e = 2; i != e; ++i)
4118    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4119      return false;
4120  for (unsigned i = 2; i != 4; ++i)
4121    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4122      return false;
4123  return true;
4124}
4125
4126/// isScalarLoadToVector - Returns true if the node is a scalar load that
4127/// is promoted to a vector. It also returns the LoadSDNode by reference if
4128/// required.
4129static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4130  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4131    return false;
4132  N = N->getOperand(0).getNode();
4133  if (!ISD::isNON_EXTLoad(N))
4134    return false;
4135  if (LD)
4136    *LD = cast<LoadSDNode>(N);
4137  return true;
4138}
4139
4140// Test whether the given value is a vector value which will be legalized
4141// into a load.
4142static bool WillBeConstantPoolLoad(SDNode *N) {
4143  if (N->getOpcode() != ISD::BUILD_VECTOR)
4144    return false;
4145
4146  // Check for any non-constant elements.
4147  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4148    switch (N->getOperand(i).getNode()->getOpcode()) {
4149    case ISD::UNDEF:
4150    case ISD::ConstantFP:
4151    case ISD::Constant:
4152      break;
4153    default:
4154      return false;
4155    }
4156
4157  // Vectors of all-zeros and all-ones are materialized with special
4158  // instructions rather than being loaded.
4159  return !ISD::isBuildVectorAllZeros(N) &&
4160         !ISD::isBuildVectorAllOnes(N);
4161}
4162
4163/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4164/// match movlp{s|d}. The lower half elements should come from lower half of
4165/// V1 (and in order), and the upper half elements should come from the upper
4166/// half of V2 (and in order). And since V1 will become the source of the
4167/// MOVLP, it must be either a vector load or a scalar load to vector.
4168static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4169                               ShuffleVectorSDNode *Op) {
4170  EVT VT = Op->getValueType(0);
4171  if (VT.getSizeInBits() != 128)
4172    return false;
4173
4174  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4175    return false;
4176  // Is V2 is a vector load, don't do this transformation. We will try to use
4177  // load folding shufps op.
4178  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4179    return false;
4180
4181  unsigned NumElems = VT.getVectorNumElements();
4182
4183  if (NumElems != 2 && NumElems != 4)
4184    return false;
4185  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4186    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4187      return false;
4188  for (unsigned i = NumElems/2; i != NumElems; ++i)
4189    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4190      return false;
4191  return true;
4192}
4193
4194/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4195/// all the same.
4196static bool isSplatVector(SDNode *N) {
4197  if (N->getOpcode() != ISD::BUILD_VECTOR)
4198    return false;
4199
4200  SDValue SplatValue = N->getOperand(0);
4201  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4202    if (N->getOperand(i) != SplatValue)
4203      return false;
4204  return true;
4205}
4206
4207/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4208/// to an zero vector.
4209/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4210static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4211  SDValue V1 = N->getOperand(0);
4212  SDValue V2 = N->getOperand(1);
4213  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4214  for (unsigned i = 0; i != NumElems; ++i) {
4215    int Idx = N->getMaskElt(i);
4216    if (Idx >= (int)NumElems) {
4217      unsigned Opc = V2.getOpcode();
4218      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4219        continue;
4220      if (Opc != ISD::BUILD_VECTOR ||
4221          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4222        return false;
4223    } else if (Idx >= 0) {
4224      unsigned Opc = V1.getOpcode();
4225      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4226        continue;
4227      if (Opc != ISD::BUILD_VECTOR ||
4228          !X86::isZeroNode(V1.getOperand(Idx)))
4229        return false;
4230    }
4231  }
4232  return true;
4233}
4234
4235/// getZeroVector - Returns a vector of specified type with all zero elements.
4236///
4237static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4238                             DebugLoc dl) {
4239  assert(VT.isVector() && "Expected a vector type");
4240
4241  // Always build SSE zero vectors as <4 x i32> bitcasted
4242  // to their dest type. This ensures they get CSE'd.
4243  SDValue Vec;
4244  if (VT.getSizeInBits() == 128) {  // SSE
4245    if (HasXMMInt) {  // SSE2
4246      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4247      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4248    } else { // SSE1
4249      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4250      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4251    }
4252  } else if (VT.getSizeInBits() == 256) { // AVX
4253    // 256-bit logic and arithmetic instructions in AVX are
4254    // all floating-point, no support for integer ops. Default
4255    // to emitting fp zeroed vectors then.
4256    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4257    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4259  }
4260  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4261}
4262
4263/// getOnesVector - Returns a vector of specified type with all bits set.
4264/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4265/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4266/// Then bitcast to their original type, ensuring they get CSE'd.
4267static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4268                             DebugLoc dl) {
4269  assert(VT.isVector() && "Expected a vector type");
4270  assert((VT.is128BitVector() || VT.is256BitVector())
4271         && "Expected a 128-bit or 256-bit vector type");
4272
4273  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4274  SDValue Vec;
4275  if (VT.getSizeInBits() == 256) {
4276    if (HasAVX2) { // AVX2
4277      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4278      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4279    } else { // AVX
4280      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4281      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4282                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4283      Vec = Insert128BitVector(InsV, Vec,
4284                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4285    }
4286  } else {
4287    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4291}
4292
4293/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4294/// that point to V2 points to its first element.
4295static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4296  EVT VT = SVOp->getValueType(0);
4297  unsigned NumElems = VT.getVectorNumElements();
4298
4299  bool Changed = false;
4300  SmallVector<int, 8> MaskVec;
4301  SVOp->getMask(MaskVec);
4302
4303  for (unsigned i = 0; i != NumElems; ++i) {
4304    if (MaskVec[i] > (int)NumElems) {
4305      MaskVec[i] = NumElems;
4306      Changed = true;
4307    }
4308  }
4309  if (Changed)
4310    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4311                                SVOp->getOperand(1), &MaskVec[0]);
4312  return SDValue(SVOp, 0);
4313}
4314
4315/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4316/// operation of specified width.
4317static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4318                       SDValue V2) {
4319  unsigned NumElems = VT.getVectorNumElements();
4320  SmallVector<int, 8> Mask;
4321  Mask.push_back(NumElems);
4322  for (unsigned i = 1; i != NumElems; ++i)
4323    Mask.push_back(i);
4324  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4325}
4326
4327/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4328static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4329                          SDValue V2) {
4330  unsigned NumElems = VT.getVectorNumElements();
4331  SmallVector<int, 8> Mask;
4332  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4333    Mask.push_back(i);
4334    Mask.push_back(i + NumElems);
4335  }
4336  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4337}
4338
4339/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4340static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4341                          SDValue V2) {
4342  unsigned NumElems = VT.getVectorNumElements();
4343  unsigned Half = NumElems/2;
4344  SmallVector<int, 8> Mask;
4345  for (unsigned i = 0; i != Half; ++i) {
4346    Mask.push_back(i + Half);
4347    Mask.push_back(i + NumElems + Half);
4348  }
4349  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4350}
4351
4352// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4353// a generic shuffle instruction because the target has no such instructions.
4354// Generate shuffles which repeat i16 and i8 several times until they can be
4355// represented by v4f32 and then be manipulated by target suported shuffles.
4356static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4357  EVT VT = V.getValueType();
4358  int NumElems = VT.getVectorNumElements();
4359  DebugLoc dl = V.getDebugLoc();
4360
4361  while (NumElems > 4) {
4362    if (EltNo < NumElems/2) {
4363      V = getUnpackl(DAG, dl, VT, V, V);
4364    } else {
4365      V = getUnpackh(DAG, dl, VT, V, V);
4366      EltNo -= NumElems/2;
4367    }
4368    NumElems >>= 1;
4369  }
4370  return V;
4371}
4372
4373/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4374static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4375  EVT VT = V.getValueType();
4376  DebugLoc dl = V.getDebugLoc();
4377  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4378         && "Vector size not supported");
4379
4380  if (VT.getSizeInBits() == 128) {
4381    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4382    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4383    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4384                             &SplatMask[0]);
4385  } else {
4386    // To use VPERMILPS to splat scalars, the second half of indicies must
4387    // refer to the higher part, which is a duplication of the lower one,
4388    // because VPERMILPS can only handle in-lane permutations.
4389    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4390                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4391
4392    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4393    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4394                             &SplatMask[0]);
4395  }
4396
4397  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4398}
4399
4400/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4401static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4402  EVT SrcVT = SV->getValueType(0);
4403  SDValue V1 = SV->getOperand(0);
4404  DebugLoc dl = SV->getDebugLoc();
4405
4406  int EltNo = SV->getSplatIndex();
4407  int NumElems = SrcVT.getVectorNumElements();
4408  unsigned Size = SrcVT.getSizeInBits();
4409
4410  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4411          "Unknown how to promote splat for type");
4412
4413  // Extract the 128-bit part containing the splat element and update
4414  // the splat element index when it refers to the higher register.
4415  if (Size == 256) {
4416    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4417    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4418    if (Idx > 0)
4419      EltNo -= NumElems/2;
4420  }
4421
4422  // All i16 and i8 vector types can't be used directly by a generic shuffle
4423  // instruction because the target has no such instruction. Generate shuffles
4424  // which repeat i16 and i8 several times until they fit in i32, and then can
4425  // be manipulated by target suported shuffles.
4426  EVT EltVT = SrcVT.getVectorElementType();
4427  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4428    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4429
4430  // Recreate the 256-bit vector and place the same 128-bit vector
4431  // into the low and high part. This is necessary because we want
4432  // to use VPERM* to shuffle the vectors
4433  if (Size == 256) {
4434    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4435                         DAG.getConstant(0, MVT::i32), DAG, dl);
4436    V1 = Insert128BitVector(InsV, V1,
4437               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4438  }
4439
4440  return getLegalSplat(DAG, V1, EltNo);
4441}
4442
4443/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4444/// vector of zero or undef vector.  This produces a shuffle where the low
4445/// element of V2 is swizzled into the zero/undef vector, landing at element
4446/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4447static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4448                                           bool isZero, bool HasXMMInt,
4449                                           SelectionDAG &DAG) {
4450  EVT VT = V2.getValueType();
4451  SDValue V1 = isZero
4452    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4453  unsigned NumElems = VT.getVectorNumElements();
4454  SmallVector<int, 16> MaskVec;
4455  for (unsigned i = 0; i != NumElems; ++i)
4456    // If this is the insertion idx, put the low elt of V2 here.
4457    MaskVec.push_back(i == Idx ? NumElems : i);
4458  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4459}
4460
4461/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4462/// element of the result of the vector shuffle.
4463static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4464                                   unsigned Depth) {
4465  if (Depth == 6)
4466    return SDValue();  // Limit search depth.
4467
4468  SDValue V = SDValue(N, 0);
4469  EVT VT = V.getValueType();
4470  unsigned Opcode = V.getOpcode();
4471
4472  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4473  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4474    Index = SV->getMaskElt(Index);
4475
4476    if (Index < 0)
4477      return DAG.getUNDEF(VT.getVectorElementType());
4478
4479    int NumElems = VT.getVectorNumElements();
4480    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4481    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4482  }
4483
4484  // Recurse into target specific vector shuffles to find scalars.
4485  if (isTargetShuffle(Opcode)) {
4486    int NumElems = VT.getVectorNumElements();
4487    SmallVector<unsigned, 16> ShuffleMask;
4488    SDValue ImmN;
4489
4490    switch(Opcode) {
4491    case X86ISD::SHUFPS:
4492    case X86ISD::SHUFPD:
4493      ImmN = N->getOperand(N->getNumOperands()-1);
4494      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4495                      ShuffleMask);
4496      break;
4497    case X86ISD::UNPCKH:
4498      DecodeUNPCKHMask(VT, ShuffleMask);
4499      break;
4500    case X86ISD::UNPCKL:
4501      DecodeUNPCKLMask(VT, ShuffleMask);
4502      break;
4503    case X86ISD::MOVHLPS:
4504      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4505      break;
4506    case X86ISD::MOVLHPS:
4507      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4508      break;
4509    case X86ISD::PSHUFD:
4510      ImmN = N->getOperand(N->getNumOperands()-1);
4511      DecodePSHUFMask(NumElems,
4512                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4513                      ShuffleMask);
4514      break;
4515    case X86ISD::PSHUFHW:
4516      ImmN = N->getOperand(N->getNumOperands()-1);
4517      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4518                        ShuffleMask);
4519      break;
4520    case X86ISD::PSHUFLW:
4521      ImmN = N->getOperand(N->getNumOperands()-1);
4522      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4523                        ShuffleMask);
4524      break;
4525    case X86ISD::MOVSS:
4526    case X86ISD::MOVSD: {
4527      // The index 0 always comes from the first element of the second source,
4528      // this is why MOVSS and MOVSD are used in the first place. The other
4529      // elements come from the other positions of the first source vector.
4530      unsigned OpNum = (Index == 0) ? 1 : 0;
4531      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4532                                 Depth+1);
4533    }
4534    case X86ISD::VPERMILP:
4535      ImmN = N->getOperand(N->getNumOperands()-1);
4536      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4537                        ShuffleMask);
4538      break;
4539    case X86ISD::VPERM2X128:
4540      ImmN = N->getOperand(N->getNumOperands()-1);
4541      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4542                           ShuffleMask);
4543      break;
4544    case X86ISD::MOVDDUP:
4545    case X86ISD::MOVLHPD:
4546    case X86ISD::MOVLPD:
4547    case X86ISD::MOVLPS:
4548    case X86ISD::MOVSHDUP:
4549    case X86ISD::MOVSLDUP:
4550    case X86ISD::PALIGN:
4551      return SDValue(); // Not yet implemented.
4552    default:
4553      assert(0 && "unknown target shuffle node");
4554      return SDValue();
4555    }
4556
4557    Index = ShuffleMask[Index];
4558    if (Index < 0)
4559      return DAG.getUNDEF(VT.getVectorElementType());
4560
4561    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4562    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4563                               Depth+1);
4564  }
4565
4566  // Actual nodes that may contain scalar elements
4567  if (Opcode == ISD::BITCAST) {
4568    V = V.getOperand(0);
4569    EVT SrcVT = V.getValueType();
4570    unsigned NumElems = VT.getVectorNumElements();
4571
4572    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4573      return SDValue();
4574  }
4575
4576  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4577    return (Index == 0) ? V.getOperand(0)
4578                          : DAG.getUNDEF(VT.getVectorElementType());
4579
4580  if (V.getOpcode() == ISD::BUILD_VECTOR)
4581    return V.getOperand(Index);
4582
4583  return SDValue();
4584}
4585
4586/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4587/// shuffle operation which come from a consecutively from a zero. The
4588/// search can start in two different directions, from left or right.
4589static
4590unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4591                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4592  int i = 0;
4593
4594  while (i < NumElems) {
4595    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4596    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4597    if (!(Elt.getNode() &&
4598         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4599      break;
4600    ++i;
4601  }
4602
4603  return i;
4604}
4605
4606/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4607/// MaskE correspond consecutively to elements from one of the vector operands,
4608/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4609static
4610bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4611                              int OpIdx, int NumElems, unsigned &OpNum) {
4612  bool SeenV1 = false;
4613  bool SeenV2 = false;
4614
4615  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4616    int Idx = SVOp->getMaskElt(i);
4617    // Ignore undef indicies
4618    if (Idx < 0)
4619      continue;
4620
4621    if (Idx < NumElems)
4622      SeenV1 = true;
4623    else
4624      SeenV2 = true;
4625
4626    // Only accept consecutive elements from the same vector
4627    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4628      return false;
4629  }
4630
4631  OpNum = SeenV1 ? 0 : 1;
4632  return true;
4633}
4634
4635/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4636/// logical left shift of a vector.
4637static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4638                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4639  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4640  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4641              false /* check zeros from right */, DAG);
4642  unsigned OpSrc;
4643
4644  if (!NumZeros)
4645    return false;
4646
4647  // Considering the elements in the mask that are not consecutive zeros,
4648  // check if they consecutively come from only one of the source vectors.
4649  //
4650  //               V1 = {X, A, B, C}     0
4651  //                         \  \  \    /
4652  //   vector_shuffle V1, V2 <1, 2, 3, X>
4653  //
4654  if (!isShuffleMaskConsecutive(SVOp,
4655            0,                   // Mask Start Index
4656            NumElems-NumZeros-1, // Mask End Index
4657            NumZeros,            // Where to start looking in the src vector
4658            NumElems,            // Number of elements in vector
4659            OpSrc))              // Which source operand ?
4660    return false;
4661
4662  isLeft = false;
4663  ShAmt = NumZeros;
4664  ShVal = SVOp->getOperand(OpSrc);
4665  return true;
4666}
4667
4668/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4669/// logical left shift of a vector.
4670static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4671                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4672  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4673  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4674              true /* check zeros from left */, DAG);
4675  unsigned OpSrc;
4676
4677  if (!NumZeros)
4678    return false;
4679
4680  // Considering the elements in the mask that are not consecutive zeros,
4681  // check if they consecutively come from only one of the source vectors.
4682  //
4683  //                           0    { A, B, X, X } = V2
4684  //                          / \    /  /
4685  //   vector_shuffle V1, V2 <X, X, 4, 5>
4686  //
4687  if (!isShuffleMaskConsecutive(SVOp,
4688            NumZeros,     // Mask Start Index
4689            NumElems-1,   // Mask End Index
4690            0,            // Where to start looking in the src vector
4691            NumElems,     // Number of elements in vector
4692            OpSrc))       // Which source operand ?
4693    return false;
4694
4695  isLeft = true;
4696  ShAmt = NumZeros;
4697  ShVal = SVOp->getOperand(OpSrc);
4698  return true;
4699}
4700
4701/// isVectorShift - Returns true if the shuffle can be implemented as a
4702/// logical left or right shift of a vector.
4703static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4704                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4705  // Although the logic below support any bitwidth size, there are no
4706  // shift instructions which handle more than 128-bit vectors.
4707  if (SVOp->getValueType(0).getSizeInBits() > 128)
4708    return false;
4709
4710  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4711      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4712    return true;
4713
4714  return false;
4715}
4716
4717/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4718///
4719static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4720                                       unsigned NumNonZero, unsigned NumZero,
4721                                       SelectionDAG &DAG,
4722                                       const TargetLowering &TLI) {
4723  if (NumNonZero > 8)
4724    return SDValue();
4725
4726  DebugLoc dl = Op.getDebugLoc();
4727  SDValue V(0, 0);
4728  bool First = true;
4729  for (unsigned i = 0; i < 16; ++i) {
4730    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4731    if (ThisIsNonZero && First) {
4732      if (NumZero)
4733        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4734      else
4735        V = DAG.getUNDEF(MVT::v8i16);
4736      First = false;
4737    }
4738
4739    if ((i & 1) != 0) {
4740      SDValue ThisElt(0, 0), LastElt(0, 0);
4741      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4742      if (LastIsNonZero) {
4743        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4744                              MVT::i16, Op.getOperand(i-1));
4745      }
4746      if (ThisIsNonZero) {
4747        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4748        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4749                              ThisElt, DAG.getConstant(8, MVT::i8));
4750        if (LastIsNonZero)
4751          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4752      } else
4753        ThisElt = LastElt;
4754
4755      if (ThisElt.getNode())
4756        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4757                        DAG.getIntPtrConstant(i/2));
4758    }
4759  }
4760
4761  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4762}
4763
4764/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4765///
4766static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4767                                     unsigned NumNonZero, unsigned NumZero,
4768                                     SelectionDAG &DAG,
4769                                     const TargetLowering &TLI) {
4770  if (NumNonZero > 4)
4771    return SDValue();
4772
4773  DebugLoc dl = Op.getDebugLoc();
4774  SDValue V(0, 0);
4775  bool First = true;
4776  for (unsigned i = 0; i < 8; ++i) {
4777    bool isNonZero = (NonZeros & (1 << i)) != 0;
4778    if (isNonZero) {
4779      if (First) {
4780        if (NumZero)
4781          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4782        else
4783          V = DAG.getUNDEF(MVT::v8i16);
4784        First = false;
4785      }
4786      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4787                      MVT::v8i16, V, Op.getOperand(i),
4788                      DAG.getIntPtrConstant(i));
4789    }
4790  }
4791
4792  return V;
4793}
4794
4795/// getVShift - Return a vector logical shift node.
4796///
4797static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4798                         unsigned NumBits, SelectionDAG &DAG,
4799                         const TargetLowering &TLI, DebugLoc dl) {
4800  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4801  EVT ShVT = MVT::v2i64;
4802  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4803  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4804  return DAG.getNode(ISD::BITCAST, dl, VT,
4805                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4806                             DAG.getConstant(NumBits,
4807                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4808}
4809
4810SDValue
4811X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4812                                          SelectionDAG &DAG) const {
4813
4814  // Check if the scalar load can be widened into a vector load. And if
4815  // the address is "base + cst" see if the cst can be "absorbed" into
4816  // the shuffle mask.
4817  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4818    SDValue Ptr = LD->getBasePtr();
4819    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4820      return SDValue();
4821    EVT PVT = LD->getValueType(0);
4822    if (PVT != MVT::i32 && PVT != MVT::f32)
4823      return SDValue();
4824
4825    int FI = -1;
4826    int64_t Offset = 0;
4827    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4828      FI = FINode->getIndex();
4829      Offset = 0;
4830    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4831               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4832      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4833      Offset = Ptr.getConstantOperandVal(1);
4834      Ptr = Ptr.getOperand(0);
4835    } else {
4836      return SDValue();
4837    }
4838
4839    // FIXME: 256-bit vector instructions don't require a strict alignment,
4840    // improve this code to support it better.
4841    unsigned RequiredAlign = VT.getSizeInBits()/8;
4842    SDValue Chain = LD->getChain();
4843    // Make sure the stack object alignment is at least 16 or 32.
4844    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4845    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4846      if (MFI->isFixedObjectIndex(FI)) {
4847        // Can't change the alignment. FIXME: It's possible to compute
4848        // the exact stack offset and reference FI + adjust offset instead.
4849        // If someone *really* cares about this. That's the way to implement it.
4850        return SDValue();
4851      } else {
4852        MFI->setObjectAlignment(FI, RequiredAlign);
4853      }
4854    }
4855
4856    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4857    // Ptr + (Offset & ~15).
4858    if (Offset < 0)
4859      return SDValue();
4860    if ((Offset % RequiredAlign) & 3)
4861      return SDValue();
4862    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4863    if (StartOffset)
4864      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4865                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4866
4867    int EltNo = (Offset - StartOffset) >> 2;
4868    int NumElems = VT.getVectorNumElements();
4869
4870    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4871    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4872    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4873                             LD->getPointerInfo().getWithOffset(StartOffset),
4874                             false, false, false, 0);
4875
4876    // Canonicalize it to a v4i32 or v8i32 shuffle.
4877    SmallVector<int, 8> Mask;
4878    for (int i = 0; i < NumElems; ++i)
4879      Mask.push_back(EltNo);
4880
4881    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4882    return DAG.getNode(ISD::BITCAST, dl, NVT,
4883                       DAG.getVectorShuffle(CanonVT, dl, V1,
4884                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4885  }
4886
4887  return SDValue();
4888}
4889
4890/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4891/// vector of type 'VT', see if the elements can be replaced by a single large
4892/// load which has the same value as a build_vector whose operands are 'elts'.
4893///
4894/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4895///
4896/// FIXME: we'd also like to handle the case where the last elements are zero
4897/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4898/// There's even a handy isZeroNode for that purpose.
4899static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4900                                        DebugLoc &DL, SelectionDAG &DAG) {
4901  EVT EltVT = VT.getVectorElementType();
4902  unsigned NumElems = Elts.size();
4903
4904  LoadSDNode *LDBase = NULL;
4905  unsigned LastLoadedElt = -1U;
4906
4907  // For each element in the initializer, see if we've found a load or an undef.
4908  // If we don't find an initial load element, or later load elements are
4909  // non-consecutive, bail out.
4910  for (unsigned i = 0; i < NumElems; ++i) {
4911    SDValue Elt = Elts[i];
4912
4913    if (!Elt.getNode() ||
4914        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4915      return SDValue();
4916    if (!LDBase) {
4917      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4918        return SDValue();
4919      LDBase = cast<LoadSDNode>(Elt.getNode());
4920      LastLoadedElt = i;
4921      continue;
4922    }
4923    if (Elt.getOpcode() == ISD::UNDEF)
4924      continue;
4925
4926    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4927    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4928      return SDValue();
4929    LastLoadedElt = i;
4930  }
4931
4932  // If we have found an entire vector of loads and undefs, then return a large
4933  // load of the entire vector width starting at the base pointer.  If we found
4934  // consecutive loads for the low half, generate a vzext_load node.
4935  if (LastLoadedElt == NumElems - 1) {
4936    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4937      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4938                         LDBase->getPointerInfo(),
4939                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4940                         LDBase->isInvariant(), 0);
4941    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4942                       LDBase->getPointerInfo(),
4943                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4944                       LDBase->isInvariant(), LDBase->getAlignment());
4945  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4946             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4947    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4948    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4949    SDValue ResNode =
4950        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4951                                LDBase->getPointerInfo(),
4952                                LDBase->getAlignment(),
4953                                false/*isVolatile*/, true/*ReadMem*/,
4954                                false/*WriteMem*/);
4955    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4956  }
4957  return SDValue();
4958}
4959
4960/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4961/// a vbroadcast node. We support two patterns:
4962/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4963/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4964/// a scalar load.
4965/// The scalar load node is returned when a pattern is found,
4966/// or SDValue() otherwise.
4967static SDValue isVectorBroadcast(SDValue &Op, bool hasAVX2) {
4968  EVT VT = Op.getValueType();
4969  SDValue V = Op;
4970
4971  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4972    V = V.getOperand(0);
4973
4974  //A suspected load to be broadcasted.
4975  SDValue Ld;
4976
4977  switch (V.getOpcode()) {
4978    default:
4979      // Unknown pattern found.
4980      return SDValue();
4981
4982    case ISD::BUILD_VECTOR: {
4983      // The BUILD_VECTOR node must be a splat.
4984      if (!isSplatVector(V.getNode()))
4985        return SDValue();
4986
4987      Ld = V.getOperand(0);
4988
4989      // The suspected load node has several users. Make sure that all
4990      // of its users are from the BUILD_VECTOR node.
4991      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4992        return SDValue();
4993      break;
4994    }
4995
4996    case ISD::VECTOR_SHUFFLE: {
4997      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4998
4999      // Shuffles must have a splat mask where the first element is
5000      // broadcasted.
5001      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5002        return SDValue();
5003
5004      SDValue Sc = Op.getOperand(0);
5005      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5006        return SDValue();
5007
5008      Ld = Sc.getOperand(0);
5009
5010      // The scalar_to_vector node and the suspected
5011      // load node must have exactly one user.
5012      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5013        return SDValue();
5014      break;
5015    }
5016  }
5017
5018  // The scalar source must be a normal load.
5019  if (!ISD::isNormalLoad(Ld.getNode()))
5020    return SDValue();
5021
5022  bool Is256 = VT.getSizeInBits() == 256;
5023  bool Is128 = VT.getSizeInBits() == 128;
5024  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5025
5026  if (hasAVX2) {
5027    // VBroadcast to YMM
5028    if (Is256 && (ScalarSize == 8  || ScalarSize == 16 ||
5029                  ScalarSize == 32 || ScalarSize == 64 ))
5030      return Ld;
5031
5032    // VBroadcast to XMM
5033    if (Is128 && (ScalarSize ==  8 || ScalarSize == 32 ||
5034                  ScalarSize == 16 || ScalarSize == 64 ))
5035      return Ld;
5036  }
5037
5038  // VBroadcast to YMM
5039  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5040    return Ld;
5041
5042  // VBroadcast to XMM
5043  if (Is128 && (ScalarSize == 32))
5044    return Ld;
5045
5046
5047  // Unsupported broadcast.
5048  return SDValue();
5049}
5050
5051SDValue
5052X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5053  DebugLoc dl = Op.getDebugLoc();
5054
5055  EVT VT = Op.getValueType();
5056  EVT ExtVT = VT.getVectorElementType();
5057  unsigned NumElems = Op.getNumOperands();
5058
5059  // Vectors containing all zeros can be matched by pxor and xorps later
5060  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5061    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5062    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5063    if (Op.getValueType() == MVT::v4i32 ||
5064        Op.getValueType() == MVT::v8i32)
5065      return Op;
5066
5067    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5068  }
5069
5070  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5071  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5072  // vpcmpeqd on 256-bit vectors.
5073  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5074    if (Op.getValueType() == MVT::v4i32 ||
5075        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5076      return Op;
5077
5078    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5079  }
5080
5081  SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
5082  if (Subtarget->hasAVX() && LD.getNode())
5083      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5084
5085  unsigned EVTBits = ExtVT.getSizeInBits();
5086
5087  unsigned NumZero  = 0;
5088  unsigned NumNonZero = 0;
5089  unsigned NonZeros = 0;
5090  bool IsAllConstants = true;
5091  SmallSet<SDValue, 8> Values;
5092  for (unsigned i = 0; i < NumElems; ++i) {
5093    SDValue Elt = Op.getOperand(i);
5094    if (Elt.getOpcode() == ISD::UNDEF)
5095      continue;
5096    Values.insert(Elt);
5097    if (Elt.getOpcode() != ISD::Constant &&
5098        Elt.getOpcode() != ISD::ConstantFP)
5099      IsAllConstants = false;
5100    if (X86::isZeroNode(Elt))
5101      NumZero++;
5102    else {
5103      NonZeros |= (1 << i);
5104      NumNonZero++;
5105    }
5106  }
5107
5108  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5109  if (NumNonZero == 0)
5110    return DAG.getUNDEF(VT);
5111
5112  // Special case for single non-zero, non-undef, element.
5113  if (NumNonZero == 1) {
5114    unsigned Idx = CountTrailingZeros_32(NonZeros);
5115    SDValue Item = Op.getOperand(Idx);
5116
5117    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5118    // the value are obviously zero, truncate the value to i32 and do the
5119    // insertion that way.  Only do this if the value is non-constant or if the
5120    // value is a constant being inserted into element 0.  It is cheaper to do
5121    // a constant pool load than it is to do a movd + shuffle.
5122    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5123        (!IsAllConstants || Idx == 0)) {
5124      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5125        // Handle SSE only.
5126        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5127        EVT VecVT = MVT::v4i32;
5128        unsigned VecElts = 4;
5129
5130        // Truncate the value (which may itself be a constant) to i32, and
5131        // convert it to a vector with movd (S2V+shuffle to zero extend).
5132        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5133        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5134        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5135                                           Subtarget->hasXMMInt(), DAG);
5136
5137        // Now we have our 32-bit value zero extended in the low element of
5138        // a vector.  If Idx != 0, swizzle it into place.
5139        if (Idx != 0) {
5140          SmallVector<int, 4> Mask;
5141          Mask.push_back(Idx);
5142          for (unsigned i = 1; i != VecElts; ++i)
5143            Mask.push_back(i);
5144          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5145                                      DAG.getUNDEF(Item.getValueType()),
5146                                      &Mask[0]);
5147        }
5148        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5149      }
5150    }
5151
5152    // If we have a constant or non-constant insertion into the low element of
5153    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5154    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5155    // depending on what the source datatype is.
5156    if (Idx == 0) {
5157      if (NumZero == 0) {
5158        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5159      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5160          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5161        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5162        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5163        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5164                                           DAG);
5165      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5166        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5167        unsigned NumBits = VT.getSizeInBits();
5168        assert((NumBits == 128 || NumBits == 256) &&
5169               "Expected an SSE or AVX value type!");
5170        EVT MiddleVT = NumBits == 128 ? MVT::v4i32 : MVT::v8i32;
5171        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5172        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5173                                           Subtarget->hasXMMInt(), DAG);
5174        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5175      }
5176    }
5177
5178    // Is it a vector logical left shift?
5179    if (NumElems == 2 && Idx == 1 &&
5180        X86::isZeroNode(Op.getOperand(0)) &&
5181        !X86::isZeroNode(Op.getOperand(1))) {
5182      unsigned NumBits = VT.getSizeInBits();
5183      return getVShift(true, VT,
5184                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5185                                   VT, Op.getOperand(1)),
5186                       NumBits/2, DAG, *this, dl);
5187    }
5188
5189    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5190      return SDValue();
5191
5192    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5193    // is a non-constant being inserted into an element other than the low one,
5194    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5195    // movd/movss) to move this into the low element, then shuffle it into
5196    // place.
5197    if (EVTBits == 32) {
5198      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5199
5200      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5201      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5202                                         Subtarget->hasXMMInt(), DAG);
5203      SmallVector<int, 8> MaskVec;
5204      for (unsigned i = 0; i < NumElems; i++)
5205        MaskVec.push_back(i == Idx ? 0 : 1);
5206      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5207    }
5208  }
5209
5210  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5211  if (Values.size() == 1) {
5212    if (EVTBits == 32) {
5213      // Instead of a shuffle like this:
5214      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5215      // Check if it's possible to issue this instead.
5216      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5217      unsigned Idx = CountTrailingZeros_32(NonZeros);
5218      SDValue Item = Op.getOperand(Idx);
5219      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5220        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5221    }
5222    return SDValue();
5223  }
5224
5225  // A vector full of immediates; various special cases are already
5226  // handled, so this is best done with a single constant-pool load.
5227  if (IsAllConstants)
5228    return SDValue();
5229
5230  // For AVX-length vectors, build the individual 128-bit pieces and use
5231  // shuffles to put them in place.
5232  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5233    SmallVector<SDValue, 32> V;
5234    for (unsigned i = 0; i < NumElems; ++i)
5235      V.push_back(Op.getOperand(i));
5236
5237    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5238
5239    // Build both the lower and upper subvector.
5240    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5241    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5242                                NumElems/2);
5243
5244    // Recreate the wider vector with the lower and upper part.
5245    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5246                                DAG.getConstant(0, MVT::i32), DAG, dl);
5247    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5248                              DAG, dl);
5249  }
5250
5251  // Let legalizer expand 2-wide build_vectors.
5252  if (EVTBits == 64) {
5253    if (NumNonZero == 1) {
5254      // One half is zero or undef.
5255      unsigned Idx = CountTrailingZeros_32(NonZeros);
5256      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5257                                 Op.getOperand(Idx));
5258      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5259                                         Subtarget->hasXMMInt(), DAG);
5260    }
5261    return SDValue();
5262  }
5263
5264  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5265  if (EVTBits == 8 && NumElems == 16) {
5266    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5267                                        *this);
5268    if (V.getNode()) return V;
5269  }
5270
5271  if (EVTBits == 16 && NumElems == 8) {
5272    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5273                                      *this);
5274    if (V.getNode()) return V;
5275  }
5276
5277  // If element VT is == 32 bits, turn it into a number of shuffles.
5278  SmallVector<SDValue, 8> V;
5279  V.resize(NumElems);
5280  if (NumElems == 4 && NumZero > 0) {
5281    for (unsigned i = 0; i < 4; ++i) {
5282      bool isZero = !(NonZeros & (1 << i));
5283      if (isZero)
5284        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5285      else
5286        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5287    }
5288
5289    for (unsigned i = 0; i < 2; ++i) {
5290      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5291        default: break;
5292        case 0:
5293          V[i] = V[i*2];  // Must be a zero vector.
5294          break;
5295        case 1:
5296          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5297          break;
5298        case 2:
5299          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5300          break;
5301        case 3:
5302          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5303          break;
5304      }
5305    }
5306
5307    SmallVector<int, 8> MaskVec;
5308    bool Reverse = (NonZeros & 0x3) == 2;
5309    for (unsigned i = 0; i < 2; ++i)
5310      MaskVec.push_back(Reverse ? 1-i : i);
5311    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5312    for (unsigned i = 0; i < 2; ++i)
5313      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5314    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5315  }
5316
5317  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5318    // Check for a build vector of consecutive loads.
5319    for (unsigned i = 0; i < NumElems; ++i)
5320      V[i] = Op.getOperand(i);
5321
5322    // Check for elements which are consecutive loads.
5323    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5324    if (LD.getNode())
5325      return LD;
5326
5327    // For SSE 4.1, use insertps to put the high elements into the low element.
5328    if (getSubtarget()->hasSSE41orAVX()) {
5329      SDValue Result;
5330      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5331        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5332      else
5333        Result = DAG.getUNDEF(VT);
5334
5335      for (unsigned i = 1; i < NumElems; ++i) {
5336        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5337        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5338                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5339      }
5340      return Result;
5341    }
5342
5343    // Otherwise, expand into a number of unpckl*, start by extending each of
5344    // our (non-undef) elements to the full vector width with the element in the
5345    // bottom slot of the vector (which generates no code for SSE).
5346    for (unsigned i = 0; i < NumElems; ++i) {
5347      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5348        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5349      else
5350        V[i] = DAG.getUNDEF(VT);
5351    }
5352
5353    // Next, we iteratively mix elements, e.g. for v4f32:
5354    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5355    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5356    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5357    unsigned EltStride = NumElems >> 1;
5358    while (EltStride != 0) {
5359      for (unsigned i = 0; i < EltStride; ++i) {
5360        // If V[i+EltStride] is undef and this is the first round of mixing,
5361        // then it is safe to just drop this shuffle: V[i] is already in the
5362        // right place, the one element (since it's the first round) being
5363        // inserted as undef can be dropped.  This isn't safe for successive
5364        // rounds because they will permute elements within both vectors.
5365        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5366            EltStride == NumElems/2)
5367          continue;
5368
5369        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5370      }
5371      EltStride >>= 1;
5372    }
5373    return V[0];
5374  }
5375  return SDValue();
5376}
5377
5378// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5379// them in a MMX register.  This is better than doing a stack convert.
5380static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5381  DebugLoc dl = Op.getDebugLoc();
5382  EVT ResVT = Op.getValueType();
5383
5384  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5385         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5386  int Mask[2];
5387  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5388  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5389  InVec = Op.getOperand(1);
5390  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5391    unsigned NumElts = ResVT.getVectorNumElements();
5392    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5393    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5394                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5395  } else {
5396    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5397    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5398    Mask[0] = 0; Mask[1] = 2;
5399    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5400  }
5401  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5402}
5403
5404// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5405// to create 256-bit vectors from two other 128-bit ones.
5406static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5407  DebugLoc dl = Op.getDebugLoc();
5408  EVT ResVT = Op.getValueType();
5409
5410  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5411
5412  SDValue V1 = Op.getOperand(0);
5413  SDValue V2 = Op.getOperand(1);
5414  unsigned NumElems = ResVT.getVectorNumElements();
5415
5416  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5417                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5418  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5419                            DAG, dl);
5420}
5421
5422SDValue
5423X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5424  EVT ResVT = Op.getValueType();
5425
5426  assert(Op.getNumOperands() == 2);
5427  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5428         "Unsupported CONCAT_VECTORS for value type");
5429
5430  // We support concatenate two MMX registers and place them in a MMX register.
5431  // This is better than doing a stack convert.
5432  if (ResVT.is128BitVector())
5433    return LowerMMXCONCAT_VECTORS(Op, DAG);
5434
5435  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5436  // from two other 128-bit ones.
5437  return LowerAVXCONCAT_VECTORS(Op, DAG);
5438}
5439
5440// v8i16 shuffles - Prefer shuffles in the following order:
5441// 1. [all]   pshuflw, pshufhw, optional move
5442// 2. [ssse3] 1 x pshufb
5443// 3. [ssse3] 2 x pshufb + 1 x por
5444// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5445SDValue
5446X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5447                                            SelectionDAG &DAG) const {
5448  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5449  SDValue V1 = SVOp->getOperand(0);
5450  SDValue V2 = SVOp->getOperand(1);
5451  DebugLoc dl = SVOp->getDebugLoc();
5452  SmallVector<int, 8> MaskVals;
5453
5454  // Determine if more than 1 of the words in each of the low and high quadwords
5455  // of the result come from the same quadword of one of the two inputs.  Undef
5456  // mask values count as coming from any quadword, for better codegen.
5457  unsigned LoQuad[] = { 0, 0, 0, 0 };
5458  unsigned HiQuad[] = { 0, 0, 0, 0 };
5459  BitVector InputQuads(4);
5460  for (unsigned i = 0; i < 8; ++i) {
5461    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5462    int EltIdx = SVOp->getMaskElt(i);
5463    MaskVals.push_back(EltIdx);
5464    if (EltIdx < 0) {
5465      ++Quad[0];
5466      ++Quad[1];
5467      ++Quad[2];
5468      ++Quad[3];
5469      continue;
5470    }
5471    ++Quad[EltIdx / 4];
5472    InputQuads.set(EltIdx / 4);
5473  }
5474
5475  int BestLoQuad = -1;
5476  unsigned MaxQuad = 1;
5477  for (unsigned i = 0; i < 4; ++i) {
5478    if (LoQuad[i] > MaxQuad) {
5479      BestLoQuad = i;
5480      MaxQuad = LoQuad[i];
5481    }
5482  }
5483
5484  int BestHiQuad = -1;
5485  MaxQuad = 1;
5486  for (unsigned i = 0; i < 4; ++i) {
5487    if (HiQuad[i] > MaxQuad) {
5488      BestHiQuad = i;
5489      MaxQuad = HiQuad[i];
5490    }
5491  }
5492
5493  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5494  // of the two input vectors, shuffle them into one input vector so only a
5495  // single pshufb instruction is necessary. If There are more than 2 input
5496  // quads, disable the next transformation since it does not help SSSE3.
5497  bool V1Used = InputQuads[0] || InputQuads[1];
5498  bool V2Used = InputQuads[2] || InputQuads[3];
5499  if (Subtarget->hasSSSE3orAVX()) {
5500    if (InputQuads.count() == 2 && V1Used && V2Used) {
5501      BestLoQuad = InputQuads.find_first();
5502      BestHiQuad = InputQuads.find_next(BestLoQuad);
5503    }
5504    if (InputQuads.count() > 2) {
5505      BestLoQuad = -1;
5506      BestHiQuad = -1;
5507    }
5508  }
5509
5510  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5511  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5512  // words from all 4 input quadwords.
5513  SDValue NewV;
5514  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5515    SmallVector<int, 8> MaskV;
5516    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5517    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5518    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5519                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5520                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5521    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5522
5523    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5524    // source words for the shuffle, to aid later transformations.
5525    bool AllWordsInNewV = true;
5526    bool InOrder[2] = { true, true };
5527    for (unsigned i = 0; i != 8; ++i) {
5528      int idx = MaskVals[i];
5529      if (idx != (int)i)
5530        InOrder[i/4] = false;
5531      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5532        continue;
5533      AllWordsInNewV = false;
5534      break;
5535    }
5536
5537    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5538    if (AllWordsInNewV) {
5539      for (int i = 0; i != 8; ++i) {
5540        int idx = MaskVals[i];
5541        if (idx < 0)
5542          continue;
5543        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5544        if ((idx != i) && idx < 4)
5545          pshufhw = false;
5546        if ((idx != i) && idx > 3)
5547          pshuflw = false;
5548      }
5549      V1 = NewV;
5550      V2Used = false;
5551      BestLoQuad = 0;
5552      BestHiQuad = 1;
5553    }
5554
5555    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5556    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5557    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5558      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5559      unsigned TargetMask = 0;
5560      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5561                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5562      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5563                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5564      V1 = NewV.getOperand(0);
5565      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5566    }
5567  }
5568
5569  // If we have SSSE3, and all words of the result are from 1 input vector,
5570  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5571  // is present, fall back to case 4.
5572  if (Subtarget->hasSSSE3orAVX()) {
5573    SmallVector<SDValue,16> pshufbMask;
5574
5575    // If we have elements from both input vectors, set the high bit of the
5576    // shuffle mask element to zero out elements that come from V2 in the V1
5577    // mask, and elements that come from V1 in the V2 mask, so that the two
5578    // results can be OR'd together.
5579    bool TwoInputs = V1Used && V2Used;
5580    for (unsigned i = 0; i != 8; ++i) {
5581      int EltIdx = MaskVals[i] * 2;
5582      if (TwoInputs && (EltIdx >= 16)) {
5583        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5584        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5585        continue;
5586      }
5587      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5588      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5589    }
5590    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5591    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5592                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5593                                 MVT::v16i8, &pshufbMask[0], 16));
5594    if (!TwoInputs)
5595      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5596
5597    // Calculate the shuffle mask for the second input, shuffle it, and
5598    // OR it with the first shuffled input.
5599    pshufbMask.clear();
5600    for (unsigned i = 0; i != 8; ++i) {
5601      int EltIdx = MaskVals[i] * 2;
5602      if (EltIdx < 16) {
5603        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5604        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5605        continue;
5606      }
5607      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5608      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5609    }
5610    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5611    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5612                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5613                                 MVT::v16i8, &pshufbMask[0], 16));
5614    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5615    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5616  }
5617
5618  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5619  // and update MaskVals with new element order.
5620  BitVector InOrder(8);
5621  if (BestLoQuad >= 0) {
5622    SmallVector<int, 8> MaskV;
5623    for (int i = 0; i != 4; ++i) {
5624      int idx = MaskVals[i];
5625      if (idx < 0) {
5626        MaskV.push_back(-1);
5627        InOrder.set(i);
5628      } else if ((idx / 4) == BestLoQuad) {
5629        MaskV.push_back(idx & 3);
5630        InOrder.set(i);
5631      } else {
5632        MaskV.push_back(-1);
5633      }
5634    }
5635    for (unsigned i = 4; i != 8; ++i)
5636      MaskV.push_back(i);
5637    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5638                                &MaskV[0]);
5639
5640    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5641      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5642                               NewV.getOperand(0),
5643                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5644                               DAG);
5645  }
5646
5647  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5648  // and update MaskVals with the new element order.
5649  if (BestHiQuad >= 0) {
5650    SmallVector<int, 8> MaskV;
5651    for (unsigned i = 0; i != 4; ++i)
5652      MaskV.push_back(i);
5653    for (unsigned i = 4; i != 8; ++i) {
5654      int idx = MaskVals[i];
5655      if (idx < 0) {
5656        MaskV.push_back(-1);
5657        InOrder.set(i);
5658      } else if ((idx / 4) == BestHiQuad) {
5659        MaskV.push_back((idx & 3) + 4);
5660        InOrder.set(i);
5661      } else {
5662        MaskV.push_back(-1);
5663      }
5664    }
5665    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5666                                &MaskV[0]);
5667
5668    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5669      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5670                              NewV.getOperand(0),
5671                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5672                              DAG);
5673  }
5674
5675  // In case BestHi & BestLo were both -1, which means each quadword has a word
5676  // from each of the four input quadwords, calculate the InOrder bitvector now
5677  // before falling through to the insert/extract cleanup.
5678  if (BestLoQuad == -1 && BestHiQuad == -1) {
5679    NewV = V1;
5680    for (int i = 0; i != 8; ++i)
5681      if (MaskVals[i] < 0 || MaskVals[i] == i)
5682        InOrder.set(i);
5683  }
5684
5685  // The other elements are put in the right place using pextrw and pinsrw.
5686  for (unsigned i = 0; i != 8; ++i) {
5687    if (InOrder[i])
5688      continue;
5689    int EltIdx = MaskVals[i];
5690    if (EltIdx < 0)
5691      continue;
5692    SDValue ExtOp = (EltIdx < 8)
5693    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5694                  DAG.getIntPtrConstant(EltIdx))
5695    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5696                  DAG.getIntPtrConstant(EltIdx - 8));
5697    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5698                       DAG.getIntPtrConstant(i));
5699  }
5700  return NewV;
5701}
5702
5703// v16i8 shuffles - Prefer shuffles in the following order:
5704// 1. [ssse3] 1 x pshufb
5705// 2. [ssse3] 2 x pshufb + 1 x por
5706// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5707static
5708SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5709                                 SelectionDAG &DAG,
5710                                 const X86TargetLowering &TLI) {
5711  SDValue V1 = SVOp->getOperand(0);
5712  SDValue V2 = SVOp->getOperand(1);
5713  DebugLoc dl = SVOp->getDebugLoc();
5714  SmallVector<int, 16> MaskVals;
5715  SVOp->getMask(MaskVals);
5716
5717  // If we have SSSE3, case 1 is generated when all result bytes come from
5718  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5719  // present, fall back to case 3.
5720  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5721  bool V1Only = true;
5722  bool V2Only = true;
5723  for (unsigned i = 0; i < 16; ++i) {
5724    int EltIdx = MaskVals[i];
5725    if (EltIdx < 0)
5726      continue;
5727    if (EltIdx < 16)
5728      V2Only = false;
5729    else
5730      V1Only = false;
5731  }
5732
5733  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5734  if (TLI.getSubtarget()->hasSSSE3orAVX()) {
5735    SmallVector<SDValue,16> pshufbMask;
5736
5737    // If all result elements are from one input vector, then only translate
5738    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5739    //
5740    // Otherwise, we have elements from both input vectors, and must zero out
5741    // elements that come from V2 in the first mask, and V1 in the second mask
5742    // so that we can OR them together.
5743    bool TwoInputs = !(V1Only || V2Only);
5744    for (unsigned i = 0; i != 16; ++i) {
5745      int EltIdx = MaskVals[i];
5746      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5747        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5748        continue;
5749      }
5750      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5751    }
5752    // If all the elements are from V2, assign it to V1 and return after
5753    // building the first pshufb.
5754    if (V2Only)
5755      V1 = V2;
5756    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5757                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5758                                 MVT::v16i8, &pshufbMask[0], 16));
5759    if (!TwoInputs)
5760      return V1;
5761
5762    // Calculate the shuffle mask for the second input, shuffle it, and
5763    // OR it with the first shuffled input.
5764    pshufbMask.clear();
5765    for (unsigned i = 0; i != 16; ++i) {
5766      int EltIdx = MaskVals[i];
5767      if (EltIdx < 16) {
5768        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5769        continue;
5770      }
5771      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5772    }
5773    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5774                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5775                                 MVT::v16i8, &pshufbMask[0], 16));
5776    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5777  }
5778
5779  // No SSSE3 - Calculate in place words and then fix all out of place words
5780  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5781  // the 16 different words that comprise the two doublequadword input vectors.
5782  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5783  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5784  SDValue NewV = V2Only ? V2 : V1;
5785  for (int i = 0; i != 8; ++i) {
5786    int Elt0 = MaskVals[i*2];
5787    int Elt1 = MaskVals[i*2+1];
5788
5789    // This word of the result is all undef, skip it.
5790    if (Elt0 < 0 && Elt1 < 0)
5791      continue;
5792
5793    // This word of the result is already in the correct place, skip it.
5794    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5795      continue;
5796    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5797      continue;
5798
5799    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5800    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5801    SDValue InsElt;
5802
5803    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5804    // using a single extract together, load it and store it.
5805    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5806      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5807                           DAG.getIntPtrConstant(Elt1 / 2));
5808      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5809                        DAG.getIntPtrConstant(i));
5810      continue;
5811    }
5812
5813    // If Elt1 is defined, extract it from the appropriate source.  If the
5814    // source byte is not also odd, shift the extracted word left 8 bits
5815    // otherwise clear the bottom 8 bits if we need to do an or.
5816    if (Elt1 >= 0) {
5817      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5818                           DAG.getIntPtrConstant(Elt1 / 2));
5819      if ((Elt1 & 1) == 0)
5820        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5821                             DAG.getConstant(8,
5822                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5823      else if (Elt0 >= 0)
5824        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5825                             DAG.getConstant(0xFF00, MVT::i16));
5826    }
5827    // If Elt0 is defined, extract it from the appropriate source.  If the
5828    // source byte is not also even, shift the extracted word right 8 bits. If
5829    // Elt1 was also defined, OR the extracted values together before
5830    // inserting them in the result.
5831    if (Elt0 >= 0) {
5832      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5833                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5834      if ((Elt0 & 1) != 0)
5835        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5836                              DAG.getConstant(8,
5837                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5838      else if (Elt1 >= 0)
5839        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5840                             DAG.getConstant(0x00FF, MVT::i16));
5841      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5842                         : InsElt0;
5843    }
5844    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5845                       DAG.getIntPtrConstant(i));
5846  }
5847  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5848}
5849
5850/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5851/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5852/// done when every pair / quad of shuffle mask elements point to elements in
5853/// the right sequence. e.g.
5854/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5855static
5856SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5857                                 SelectionDAG &DAG, DebugLoc dl) {
5858  EVT VT = SVOp->getValueType(0);
5859  SDValue V1 = SVOp->getOperand(0);
5860  SDValue V2 = SVOp->getOperand(1);
5861  unsigned NumElems = VT.getVectorNumElements();
5862  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5863  EVT NewVT;
5864  switch (VT.getSimpleVT().SimpleTy) {
5865  default: assert(false && "Unexpected!");
5866  case MVT::v4f32: NewVT = MVT::v2f64; break;
5867  case MVT::v4i32: NewVT = MVT::v2i64; break;
5868  case MVT::v8i16: NewVT = MVT::v4i32; break;
5869  case MVT::v16i8: NewVT = MVT::v4i32; break;
5870  }
5871
5872  int Scale = NumElems / NewWidth;
5873  SmallVector<int, 8> MaskVec;
5874  for (unsigned i = 0; i < NumElems; i += Scale) {
5875    int StartIdx = -1;
5876    for (int j = 0; j < Scale; ++j) {
5877      int EltIdx = SVOp->getMaskElt(i+j);
5878      if (EltIdx < 0)
5879        continue;
5880      if (StartIdx == -1)
5881        StartIdx = EltIdx - (EltIdx % Scale);
5882      if (EltIdx != StartIdx + j)
5883        return SDValue();
5884    }
5885    if (StartIdx == -1)
5886      MaskVec.push_back(-1);
5887    else
5888      MaskVec.push_back(StartIdx / Scale);
5889  }
5890
5891  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5892  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5893  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5894}
5895
5896/// getVZextMovL - Return a zero-extending vector move low node.
5897///
5898static SDValue getVZextMovL(EVT VT, EVT OpVT,
5899                            SDValue SrcOp, SelectionDAG &DAG,
5900                            const X86Subtarget *Subtarget, DebugLoc dl) {
5901  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5902    LoadSDNode *LD = NULL;
5903    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5904      LD = dyn_cast<LoadSDNode>(SrcOp);
5905    if (!LD) {
5906      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5907      // instead.
5908      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5909      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5910          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5911          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5912          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5913        // PR2108
5914        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5915        return DAG.getNode(ISD::BITCAST, dl, VT,
5916                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5917                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5918                                                   OpVT,
5919                                                   SrcOp.getOperand(0)
5920                                                          .getOperand(0))));
5921      }
5922    }
5923  }
5924
5925  return DAG.getNode(ISD::BITCAST, dl, VT,
5926                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5927                                 DAG.getNode(ISD::BITCAST, dl,
5928                                             OpVT, SrcOp)));
5929}
5930
5931/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5932/// shuffle node referes to only one lane in the sources.
5933static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5934  EVT VT = SVOp->getValueType(0);
5935  int NumElems = VT.getVectorNumElements();
5936  int HalfSize = NumElems/2;
5937  SmallVector<int, 16> M;
5938  SVOp->getMask(M);
5939  bool MatchA = false, MatchB = false;
5940
5941  for (int l = 0; l < NumElems*2; l += HalfSize) {
5942    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5943      MatchA = true;
5944      break;
5945    }
5946  }
5947
5948  for (int l = 0; l < NumElems*2; l += HalfSize) {
5949    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5950      MatchB = true;
5951      break;
5952    }
5953  }
5954
5955  return MatchA && MatchB;
5956}
5957
5958/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5959/// which could not be matched by any known target speficic shuffle
5960static SDValue
5961LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5962  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5963    // If each half of a vector shuffle node referes to only one lane in the
5964    // source vectors, extract each used 128-bit lane and shuffle them using
5965    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5966    // the work to the legalizer.
5967    DebugLoc dl = SVOp->getDebugLoc();
5968    EVT VT = SVOp->getValueType(0);
5969    int NumElems = VT.getVectorNumElements();
5970    int HalfSize = NumElems/2;
5971
5972    // Extract the reference for each half
5973    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5974    int FstVecOpNum = 0, SndVecOpNum = 0;
5975    for (int i = 0; i < HalfSize; ++i) {
5976      int Elt = SVOp->getMaskElt(i);
5977      if (SVOp->getMaskElt(i) < 0)
5978        continue;
5979      FstVecOpNum = Elt/NumElems;
5980      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5981      break;
5982    }
5983    for (int i = HalfSize; i < NumElems; ++i) {
5984      int Elt = SVOp->getMaskElt(i);
5985      if (SVOp->getMaskElt(i) < 0)
5986        continue;
5987      SndVecOpNum = Elt/NumElems;
5988      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5989      break;
5990    }
5991
5992    // Extract the subvectors
5993    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5994                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5995    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5996                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5997
5998    // Generate 128-bit shuffles
5999    SmallVector<int, 16> MaskV1, MaskV2;
6000    for (int i = 0; i < HalfSize; ++i) {
6001      int Elt = SVOp->getMaskElt(i);
6002      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6003    }
6004    for (int i = HalfSize; i < NumElems; ++i) {
6005      int Elt = SVOp->getMaskElt(i);
6006      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6007    }
6008
6009    EVT NVT = V1.getValueType();
6010    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6011    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6012
6013    // Concatenate the result back
6014    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6015                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6016    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6017                              DAG, dl);
6018  }
6019
6020  return SDValue();
6021}
6022
6023/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6024/// 4 elements, and match them with several different shuffle types.
6025static SDValue
6026LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6027  SDValue V1 = SVOp->getOperand(0);
6028  SDValue V2 = SVOp->getOperand(1);
6029  DebugLoc dl = SVOp->getDebugLoc();
6030  EVT VT = SVOp->getValueType(0);
6031
6032  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6033
6034  SmallVector<std::pair<int, int>, 8> Locs;
6035  Locs.resize(4);
6036  SmallVector<int, 8> Mask1(4U, -1);
6037  SmallVector<int, 8> PermMask;
6038  SVOp->getMask(PermMask);
6039
6040  unsigned NumHi = 0;
6041  unsigned NumLo = 0;
6042  for (unsigned i = 0; i != 4; ++i) {
6043    int Idx = PermMask[i];
6044    if (Idx < 0) {
6045      Locs[i] = std::make_pair(-1, -1);
6046    } else {
6047      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6048      if (Idx < 4) {
6049        Locs[i] = std::make_pair(0, NumLo);
6050        Mask1[NumLo] = Idx;
6051        NumLo++;
6052      } else {
6053        Locs[i] = std::make_pair(1, NumHi);
6054        if (2+NumHi < 4)
6055          Mask1[2+NumHi] = Idx;
6056        NumHi++;
6057      }
6058    }
6059  }
6060
6061  if (NumLo <= 2 && NumHi <= 2) {
6062    // If no more than two elements come from either vector. This can be
6063    // implemented with two shuffles. First shuffle gather the elements.
6064    // The second shuffle, which takes the first shuffle as both of its
6065    // vector operands, put the elements into the right order.
6066    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6067
6068    SmallVector<int, 8> Mask2(4U, -1);
6069
6070    for (unsigned i = 0; i != 4; ++i) {
6071      if (Locs[i].first == -1)
6072        continue;
6073      else {
6074        unsigned Idx = (i < 2) ? 0 : 4;
6075        Idx += Locs[i].first * 2 + Locs[i].second;
6076        Mask2[i] = Idx;
6077      }
6078    }
6079
6080    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6081  } else if (NumLo == 3 || NumHi == 3) {
6082    // Otherwise, we must have three elements from one vector, call it X, and
6083    // one element from the other, call it Y.  First, use a shufps to build an
6084    // intermediate vector with the one element from Y and the element from X
6085    // that will be in the same half in the final destination (the indexes don't
6086    // matter). Then, use a shufps to build the final vector, taking the half
6087    // containing the element from Y from the intermediate, and the other half
6088    // from X.
6089    if (NumHi == 3) {
6090      // Normalize it so the 3 elements come from V1.
6091      CommuteVectorShuffleMask(PermMask, 4);
6092      std::swap(V1, V2);
6093    }
6094
6095    // Find the element from V2.
6096    unsigned HiIndex;
6097    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6098      int Val = PermMask[HiIndex];
6099      if (Val < 0)
6100        continue;
6101      if (Val >= 4)
6102        break;
6103    }
6104
6105    Mask1[0] = PermMask[HiIndex];
6106    Mask1[1] = -1;
6107    Mask1[2] = PermMask[HiIndex^1];
6108    Mask1[3] = -1;
6109    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6110
6111    if (HiIndex >= 2) {
6112      Mask1[0] = PermMask[0];
6113      Mask1[1] = PermMask[1];
6114      Mask1[2] = HiIndex & 1 ? 6 : 4;
6115      Mask1[3] = HiIndex & 1 ? 4 : 6;
6116      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6117    } else {
6118      Mask1[0] = HiIndex & 1 ? 2 : 0;
6119      Mask1[1] = HiIndex & 1 ? 0 : 2;
6120      Mask1[2] = PermMask[2];
6121      Mask1[3] = PermMask[3];
6122      if (Mask1[2] >= 0)
6123        Mask1[2] += 4;
6124      if (Mask1[3] >= 0)
6125        Mask1[3] += 4;
6126      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6127    }
6128  }
6129
6130  // Break it into (shuffle shuffle_hi, shuffle_lo).
6131  Locs.clear();
6132  Locs.resize(4);
6133  SmallVector<int,8> LoMask(4U, -1);
6134  SmallVector<int,8> HiMask(4U, -1);
6135
6136  SmallVector<int,8> *MaskPtr = &LoMask;
6137  unsigned MaskIdx = 0;
6138  unsigned LoIdx = 0;
6139  unsigned HiIdx = 2;
6140  for (unsigned i = 0; i != 4; ++i) {
6141    if (i == 2) {
6142      MaskPtr = &HiMask;
6143      MaskIdx = 1;
6144      LoIdx = 0;
6145      HiIdx = 2;
6146    }
6147    int Idx = PermMask[i];
6148    if (Idx < 0) {
6149      Locs[i] = std::make_pair(-1, -1);
6150    } else if (Idx < 4) {
6151      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6152      (*MaskPtr)[LoIdx] = Idx;
6153      LoIdx++;
6154    } else {
6155      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6156      (*MaskPtr)[HiIdx] = Idx;
6157      HiIdx++;
6158    }
6159  }
6160
6161  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6162  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6163  SmallVector<int, 8> MaskOps;
6164  for (unsigned i = 0; i != 4; ++i) {
6165    if (Locs[i].first == -1) {
6166      MaskOps.push_back(-1);
6167    } else {
6168      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6169      MaskOps.push_back(Idx);
6170    }
6171  }
6172  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6173}
6174
6175static bool MayFoldVectorLoad(SDValue V) {
6176  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6177    V = V.getOperand(0);
6178  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6179    V = V.getOperand(0);
6180  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6181      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6182    // BUILD_VECTOR (load), undef
6183    V = V.getOperand(0);
6184  if (MayFoldLoad(V))
6185    return true;
6186  return false;
6187}
6188
6189// FIXME: the version above should always be used. Since there's
6190// a bug where several vector shuffles can't be folded because the
6191// DAG is not updated during lowering and a node claims to have two
6192// uses while it only has one, use this version, and let isel match
6193// another instruction if the load really happens to have more than
6194// one use. Remove this version after this bug get fixed.
6195// rdar://8434668, PR8156
6196static bool RelaxedMayFoldVectorLoad(SDValue V) {
6197  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6198    V = V.getOperand(0);
6199  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6200    V = V.getOperand(0);
6201  if (ISD::isNormalLoad(V.getNode()))
6202    return true;
6203  return false;
6204}
6205
6206/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6207/// a vector extract, and if both can be later optimized into a single load.
6208/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6209/// here because otherwise a target specific shuffle node is going to be
6210/// emitted for this shuffle, and the optimization not done.
6211/// FIXME: This is probably not the best approach, but fix the problem
6212/// until the right path is decided.
6213static
6214bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6215                                         const TargetLowering &TLI) {
6216  EVT VT = V.getValueType();
6217  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6218
6219  // Be sure that the vector shuffle is present in a pattern like this:
6220  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6221  if (!V.hasOneUse())
6222    return false;
6223
6224  SDNode *N = *V.getNode()->use_begin();
6225  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6226    return false;
6227
6228  SDValue EltNo = N->getOperand(1);
6229  if (!isa<ConstantSDNode>(EltNo))
6230    return false;
6231
6232  // If the bit convert changed the number of elements, it is unsafe
6233  // to examine the mask.
6234  bool HasShuffleIntoBitcast = false;
6235  if (V.getOpcode() == ISD::BITCAST) {
6236    EVT SrcVT = V.getOperand(0).getValueType();
6237    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6238      return false;
6239    V = V.getOperand(0);
6240    HasShuffleIntoBitcast = true;
6241  }
6242
6243  // Select the input vector, guarding against out of range extract vector.
6244  unsigned NumElems = VT.getVectorNumElements();
6245  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6246  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6247  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6248
6249  // Skip one more bit_convert if necessary
6250  if (V.getOpcode() == ISD::BITCAST)
6251    V = V.getOperand(0);
6252
6253  if (ISD::isNormalLoad(V.getNode())) {
6254    // Is the original load suitable?
6255    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6256
6257    // FIXME: avoid the multi-use bug that is preventing lots of
6258    // of foldings to be detected, this is still wrong of course, but
6259    // give the temporary desired behavior, and if it happens that
6260    // the load has real more uses, during isel it will not fold, and
6261    // will generate poor code.
6262    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6263      return false;
6264
6265    if (!HasShuffleIntoBitcast)
6266      return true;
6267
6268    // If there's a bitcast before the shuffle, check if the load type and
6269    // alignment is valid.
6270    unsigned Align = LN0->getAlignment();
6271    unsigned NewAlign =
6272      TLI.getTargetData()->getABITypeAlignment(
6273                                    VT.getTypeForEVT(*DAG.getContext()));
6274
6275    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6276      return false;
6277  }
6278
6279  return true;
6280}
6281
6282static
6283SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6284  EVT VT = Op.getValueType();
6285
6286  // Canonizalize to v2f64.
6287  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6288  return DAG.getNode(ISD::BITCAST, dl, VT,
6289                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6290                                          V1, DAG));
6291}
6292
6293static
6294SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6295                        bool HasXMMInt) {
6296  SDValue V1 = Op.getOperand(0);
6297  SDValue V2 = Op.getOperand(1);
6298  EVT VT = Op.getValueType();
6299
6300  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6301
6302  if (HasXMMInt && VT == MVT::v2f64)
6303    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6304
6305  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6306  return DAG.getNode(ISD::BITCAST, dl, VT,
6307                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6308                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6309                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6310}
6311
6312static
6313SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6314  SDValue V1 = Op.getOperand(0);
6315  SDValue V2 = Op.getOperand(1);
6316  EVT VT = Op.getValueType();
6317
6318  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6319         "unsupported shuffle type");
6320
6321  if (V2.getOpcode() == ISD::UNDEF)
6322    V2 = V1;
6323
6324  // v4i32 or v4f32
6325  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6326}
6327
6328static inline unsigned getSHUFPOpcode(EVT VT) {
6329  switch(VT.getSimpleVT().SimpleTy) {
6330  case MVT::v8i32: // Use fp unit for int unpack.
6331  case MVT::v8f32:
6332  case MVT::v4i32: // Use fp unit for int unpack.
6333  case MVT::v4f32: return X86ISD::SHUFPS;
6334  case MVT::v4i64: // Use fp unit for int unpack.
6335  case MVT::v4f64:
6336  case MVT::v2i64: // Use fp unit for int unpack.
6337  case MVT::v2f64: return X86ISD::SHUFPD;
6338  default:
6339    llvm_unreachable("Unknown type for shufp*");
6340  }
6341  return 0;
6342}
6343
6344static
6345SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6346  SDValue V1 = Op.getOperand(0);
6347  SDValue V2 = Op.getOperand(1);
6348  EVT VT = Op.getValueType();
6349  unsigned NumElems = VT.getVectorNumElements();
6350
6351  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6352  // operand of these instructions is only memory, so check if there's a
6353  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6354  // same masks.
6355  bool CanFoldLoad = false;
6356
6357  // Trivial case, when V2 comes from a load.
6358  if (MayFoldVectorLoad(V2))
6359    CanFoldLoad = true;
6360
6361  // When V1 is a load, it can be folded later into a store in isel, example:
6362  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6363  //    turns into:
6364  //  (MOVLPSmr addr:$src1, VR128:$src2)
6365  // So, recognize this potential and also use MOVLPS or MOVLPD
6366  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6367    CanFoldLoad = true;
6368
6369  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6370  if (CanFoldLoad) {
6371    if (HasXMMInt && NumElems == 2)
6372      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6373
6374    if (NumElems == 4)
6375      // If we don't care about the second element, procede to use movss.
6376      if (SVOp->getMaskElt(1) != -1)
6377        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6378  }
6379
6380  // movl and movlp will both match v2i64, but v2i64 is never matched by
6381  // movl earlier because we make it strict to avoid messing with the movlp load
6382  // folding logic (see the code above getMOVLP call). Match it here then,
6383  // this is horrible, but will stay like this until we move all shuffle
6384  // matching to x86 specific nodes. Note that for the 1st condition all
6385  // types are matched with movsd.
6386  if (HasXMMInt) {
6387    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6388    // as to remove this logic from here, as much as possible
6389    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6390      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6391    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6392  }
6393
6394  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6395
6396  // Invert the operand order and use SHUFPS to match it.
6397  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6398                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6399}
6400
6401static
6402SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6403                               const TargetLowering &TLI,
6404                               const X86Subtarget *Subtarget) {
6405  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6406  EVT VT = Op.getValueType();
6407  DebugLoc dl = Op.getDebugLoc();
6408  SDValue V1 = Op.getOperand(0);
6409  SDValue V2 = Op.getOperand(1);
6410
6411  if (isZeroShuffle(SVOp))
6412    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6413
6414  // Handle splat operations
6415  if (SVOp->isSplat()) {
6416    unsigned NumElem = VT.getVectorNumElements();
6417    int Size = VT.getSizeInBits();
6418    // Special case, this is the only place now where it's allowed to return
6419    // a vector_shuffle operation without using a target specific node, because
6420    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6421    // this be moved to DAGCombine instead?
6422    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6423      return Op;
6424
6425    // Use vbroadcast whenever the splat comes from a foldable load
6426    SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
6427    if (Subtarget->hasAVX() && LD.getNode())
6428      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6429
6430    // Handle splats by matching through known shuffle masks
6431    if ((Size == 128 && NumElem <= 4) ||
6432        (Size == 256 && NumElem < 8))
6433      return SDValue();
6434
6435    // All remaning splats are promoted to target supported vector shuffles.
6436    return PromoteSplat(SVOp, DAG);
6437  }
6438
6439  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6440  // do it!
6441  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6442    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6443    if (NewOp.getNode())
6444      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6445  } else if ((VT == MVT::v4i32 ||
6446             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6447    // FIXME: Figure out a cleaner way to do this.
6448    // Try to make use of movq to zero out the top part.
6449    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6450      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6451      if (NewOp.getNode()) {
6452        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6453          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6454                              DAG, Subtarget, dl);
6455      }
6456    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6457      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6458      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6459        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6460                            DAG, Subtarget, dl);
6461    }
6462  }
6463  return SDValue();
6464}
6465
6466SDValue
6467X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6468  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6469  SDValue V1 = Op.getOperand(0);
6470  SDValue V2 = Op.getOperand(1);
6471  EVT VT = Op.getValueType();
6472  DebugLoc dl = Op.getDebugLoc();
6473  unsigned NumElems = VT.getVectorNumElements();
6474  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6475  bool V1IsSplat = false;
6476  bool V2IsSplat = false;
6477  bool HasXMMInt = Subtarget->hasXMMInt();
6478  bool HasAVX    = Subtarget->hasAVX();
6479  bool HasAVX2   = Subtarget->hasAVX2();
6480  MachineFunction &MF = DAG.getMachineFunction();
6481  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6482
6483  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6484
6485  assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6486
6487  // Vector shuffle lowering takes 3 steps:
6488  //
6489  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6490  //    narrowing and commutation of operands should be handled.
6491  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6492  //    shuffle nodes.
6493  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6494  //    so the shuffle can be broken into other shuffles and the legalizer can
6495  //    try the lowering again.
6496  //
6497  // The general idea is that no vector_shuffle operation should be left to
6498  // be matched during isel, all of them must be converted to a target specific
6499  // node here.
6500
6501  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6502  // narrowing and commutation of operands should be handled. The actual code
6503  // doesn't include all of those, work in progress...
6504  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6505  if (NewOp.getNode())
6506    return NewOp;
6507
6508  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6509  // unpckh_undef). Only use pshufd if speed is more important than size.
6510  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6511    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6512  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6513    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6514
6515  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
6516      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6517    return getMOVDDup(Op, dl, V1, DAG);
6518
6519  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6520    return getMOVHighToLow(Op, dl, DAG);
6521
6522  // Use to match splats
6523  if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6524      (VT == MVT::v2f64 || VT == MVT::v2i64))
6525    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6526
6527  if (X86::isPSHUFDMask(SVOp)) {
6528    // The actual implementation will match the mask in the if above and then
6529    // during isel it can match several different instructions, not only pshufd
6530    // as its name says, sad but true, emulate the behavior for now...
6531    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6532        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6533
6534    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6535
6536    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6537      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6538
6539    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6540                                TargetMask, DAG);
6541  }
6542
6543  // Check if this can be converted into a logical shift.
6544  bool isLeft = false;
6545  unsigned ShAmt = 0;
6546  SDValue ShVal;
6547  bool isShift = HasXMMInt && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6548  if (isShift && ShVal.hasOneUse()) {
6549    // If the shifted value has multiple uses, it may be cheaper to use
6550    // v_set0 + movlhps or movhlps, etc.
6551    EVT EltVT = VT.getVectorElementType();
6552    ShAmt *= EltVT.getSizeInBits();
6553    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6554  }
6555
6556  if (X86::isMOVLMask(SVOp)) {
6557    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6558      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6559    if (!X86::isMOVLPMask(SVOp)) {
6560      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6561        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6562
6563      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6564        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6565    }
6566  }
6567
6568  // FIXME: fold these into legal mask.
6569  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6570    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6571
6572  if (X86::isMOVHLPSMask(SVOp))
6573    return getMOVHighToLow(Op, dl, DAG);
6574
6575  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6576    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6577
6578  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6579    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6580
6581  if (X86::isMOVLPMask(SVOp))
6582    return getMOVLP(Op, dl, DAG, HasXMMInt);
6583
6584  if (ShouldXformToMOVHLPS(SVOp) ||
6585      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6586    return CommuteVectorShuffle(SVOp, DAG);
6587
6588  if (isShift) {
6589    // No better options. Use a vshl / vsrl.
6590    EVT EltVT = VT.getVectorElementType();
6591    ShAmt *= EltVT.getSizeInBits();
6592    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6593  }
6594
6595  bool Commuted = false;
6596  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6597  // 1,1,1,1 -> v8i16 though.
6598  V1IsSplat = isSplatVector(V1.getNode());
6599  V2IsSplat = isSplatVector(V2.getNode());
6600
6601  // Canonicalize the splat or undef, if present, to be on the RHS.
6602  if (V1IsSplat && !V2IsSplat) {
6603    Op = CommuteVectorShuffle(SVOp, DAG);
6604    SVOp = cast<ShuffleVectorSDNode>(Op);
6605    V1 = SVOp->getOperand(0);
6606    V2 = SVOp->getOperand(1);
6607    std::swap(V1IsSplat, V2IsSplat);
6608    Commuted = true;
6609  }
6610
6611  SmallVector<int, 32> M;
6612  SVOp->getMask(M);
6613
6614  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6615    // Shuffling low element of v1 into undef, just return v1.
6616    if (V2IsUndef)
6617      return V1;
6618    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6619    // the instruction selector will not match, so get a canonical MOVL with
6620    // swapped operands to undo the commute.
6621    return getMOVL(DAG, dl, VT, V2, V1);
6622  }
6623
6624  if (isUNPCKLMask(M, VT, HasAVX2))
6625    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6626
6627  if (isUNPCKHMask(M, VT, HasAVX2))
6628    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6629
6630  if (V2IsSplat) {
6631    // Normalize mask so all entries that point to V2 points to its first
6632    // element then try to match unpck{h|l} again. If match, return a
6633    // new vector_shuffle with the corrected mask.
6634    SDValue NewMask = NormalizeMask(SVOp, DAG);
6635    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6636    if (NSVOp != SVOp) {
6637      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6638        return NewMask;
6639      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6640        return NewMask;
6641      }
6642    }
6643  }
6644
6645  if (Commuted) {
6646    // Commute is back and try unpck* again.
6647    // FIXME: this seems wrong.
6648    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6649    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6650
6651    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6652      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6653
6654    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6655      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6656  }
6657
6658  // Normalize the node to match x86 shuffle ops if needed
6659  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6660                     isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6661    return CommuteVectorShuffle(SVOp, DAG);
6662
6663  // The checks below are all present in isShuffleMaskLegal, but they are
6664  // inlined here right now to enable us to directly emit target specific
6665  // nodes, and remove one by one until they don't return Op anymore.
6666
6667  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
6668    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6669                                getShufflePALIGNRImmediate(SVOp),
6670                                DAG);
6671
6672  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6673      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6674    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6675      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6676  }
6677
6678  if (isPSHUFHWMask(M, VT))
6679    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6680                                X86::getShufflePSHUFHWImmediate(SVOp),
6681                                DAG);
6682
6683  if (isPSHUFLWMask(M, VT))
6684    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6685                                X86::getShufflePSHUFLWImmediate(SVOp),
6686                                DAG);
6687
6688  if (isSHUFPMask(M, VT))
6689    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6690                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6691
6692  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6693    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6694  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6695    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6696
6697  //===--------------------------------------------------------------------===//
6698  // Generate target specific nodes for 128 or 256-bit shuffles only
6699  // supported in the AVX instruction set.
6700  //
6701
6702  // Handle VMOVDDUPY permutations
6703  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6704    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6705
6706  // Handle VPERMILPS/D* permutations
6707  if (isVPERMILPMask(M, VT, HasAVX))
6708    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6709                                getShuffleVPERMILPImmediate(SVOp), DAG);
6710
6711  // Handle VPERM2F128/VPERM2I128 permutations
6712  if (isVPERM2X128Mask(M, VT, HasAVX))
6713    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6714                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6715
6716  // Handle VSHUFPS/DY permutations
6717  if (isVSHUFPYMask(M, VT, HasAVX))
6718    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6719                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6720
6721  //===--------------------------------------------------------------------===//
6722  // Since no target specific shuffle was selected for this generic one,
6723  // lower it into other known shuffles. FIXME: this isn't true yet, but
6724  // this is the plan.
6725  //
6726
6727  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6728  if (VT == MVT::v8i16) {
6729    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6730    if (NewOp.getNode())
6731      return NewOp;
6732  }
6733
6734  if (VT == MVT::v16i8) {
6735    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6736    if (NewOp.getNode())
6737      return NewOp;
6738  }
6739
6740  // Handle all 128-bit wide vectors with 4 elements, and match them with
6741  // several different shuffle types.
6742  if (NumElems == 4 && VT.getSizeInBits() == 128)
6743    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6744
6745  // Handle general 256-bit shuffles
6746  if (VT.is256BitVector())
6747    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6748
6749  return SDValue();
6750}
6751
6752SDValue
6753X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6754                                                SelectionDAG &DAG) const {
6755  EVT VT = Op.getValueType();
6756  DebugLoc dl = Op.getDebugLoc();
6757
6758  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6759    return SDValue();
6760
6761  if (VT.getSizeInBits() == 8) {
6762    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6763                                    Op.getOperand(0), Op.getOperand(1));
6764    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6765                                    DAG.getValueType(VT));
6766    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6767  } else if (VT.getSizeInBits() == 16) {
6768    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6769    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6770    if (Idx == 0)
6771      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6772                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6773                                     DAG.getNode(ISD::BITCAST, dl,
6774                                                 MVT::v4i32,
6775                                                 Op.getOperand(0)),
6776                                     Op.getOperand(1)));
6777    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6778                                    Op.getOperand(0), Op.getOperand(1));
6779    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6780                                    DAG.getValueType(VT));
6781    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6782  } else if (VT == MVT::f32) {
6783    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6784    // the result back to FR32 register. It's only worth matching if the
6785    // result has a single use which is a store or a bitcast to i32.  And in
6786    // the case of a store, it's not worth it if the index is a constant 0,
6787    // because a MOVSSmr can be used instead, which is smaller and faster.
6788    if (!Op.hasOneUse())
6789      return SDValue();
6790    SDNode *User = *Op.getNode()->use_begin();
6791    if ((User->getOpcode() != ISD::STORE ||
6792         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6793          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6794        (User->getOpcode() != ISD::BITCAST ||
6795         User->getValueType(0) != MVT::i32))
6796      return SDValue();
6797    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6798                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6799                                              Op.getOperand(0)),
6800                                              Op.getOperand(1));
6801    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6802  } else if (VT == MVT::i32 || VT == MVT::i64) {
6803    // ExtractPS/pextrq works with constant index.
6804    if (isa<ConstantSDNode>(Op.getOperand(1)))
6805      return Op;
6806  }
6807  return SDValue();
6808}
6809
6810
6811SDValue
6812X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6813                                           SelectionDAG &DAG) const {
6814  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6815    return SDValue();
6816
6817  SDValue Vec = Op.getOperand(0);
6818  EVT VecVT = Vec.getValueType();
6819
6820  // If this is a 256-bit vector result, first extract the 128-bit vector and
6821  // then extract the element from the 128-bit vector.
6822  if (VecVT.getSizeInBits() == 256) {
6823    DebugLoc dl = Op.getNode()->getDebugLoc();
6824    unsigned NumElems = VecVT.getVectorNumElements();
6825    SDValue Idx = Op.getOperand(1);
6826    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6827
6828    // Get the 128-bit vector.
6829    bool Upper = IdxVal >= NumElems/2;
6830    Vec = Extract128BitVector(Vec,
6831                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6832
6833    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6834                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6835  }
6836
6837  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6838
6839  if (Subtarget->hasSSE41orAVX()) {
6840    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6841    if (Res.getNode())
6842      return Res;
6843  }
6844
6845  EVT VT = Op.getValueType();
6846  DebugLoc dl = Op.getDebugLoc();
6847  // TODO: handle v16i8.
6848  if (VT.getSizeInBits() == 16) {
6849    SDValue Vec = Op.getOperand(0);
6850    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6851    if (Idx == 0)
6852      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6853                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6854                                     DAG.getNode(ISD::BITCAST, dl,
6855                                                 MVT::v4i32, Vec),
6856                                     Op.getOperand(1)));
6857    // Transform it so it match pextrw which produces a 32-bit result.
6858    EVT EltVT = MVT::i32;
6859    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6860                                    Op.getOperand(0), Op.getOperand(1));
6861    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6862                                    DAG.getValueType(VT));
6863    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6864  } else if (VT.getSizeInBits() == 32) {
6865    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6866    if (Idx == 0)
6867      return Op;
6868
6869    // SHUFPS the element to the lowest double word, then movss.
6870    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6871    EVT VVT = Op.getOperand(0).getValueType();
6872    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6873                                       DAG.getUNDEF(VVT), Mask);
6874    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6875                       DAG.getIntPtrConstant(0));
6876  } else if (VT.getSizeInBits() == 64) {
6877    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6878    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6879    //        to match extract_elt for f64.
6880    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6881    if (Idx == 0)
6882      return Op;
6883
6884    // UNPCKHPD the element to the lowest double word, then movsd.
6885    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6886    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6887    int Mask[2] = { 1, -1 };
6888    EVT VVT = Op.getOperand(0).getValueType();
6889    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6890                                       DAG.getUNDEF(VVT), Mask);
6891    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6892                       DAG.getIntPtrConstant(0));
6893  }
6894
6895  return SDValue();
6896}
6897
6898SDValue
6899X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6900                                               SelectionDAG &DAG) const {
6901  EVT VT = Op.getValueType();
6902  EVT EltVT = VT.getVectorElementType();
6903  DebugLoc dl = Op.getDebugLoc();
6904
6905  SDValue N0 = Op.getOperand(0);
6906  SDValue N1 = Op.getOperand(1);
6907  SDValue N2 = Op.getOperand(2);
6908
6909  if (VT.getSizeInBits() == 256)
6910    return SDValue();
6911
6912  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6913      isa<ConstantSDNode>(N2)) {
6914    unsigned Opc;
6915    if (VT == MVT::v8i16)
6916      Opc = X86ISD::PINSRW;
6917    else if (VT == MVT::v16i8)
6918      Opc = X86ISD::PINSRB;
6919    else
6920      Opc = X86ISD::PINSRB;
6921
6922    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6923    // argument.
6924    if (N1.getValueType() != MVT::i32)
6925      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6926    if (N2.getValueType() != MVT::i32)
6927      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6928    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6929  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6930    // Bits [7:6] of the constant are the source select.  This will always be
6931    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6932    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6933    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6934    // Bits [5:4] of the constant are the destination select.  This is the
6935    //  value of the incoming immediate.
6936    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6937    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6938    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6939    // Create this as a scalar to vector..
6940    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6941    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6942  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6943             isa<ConstantSDNode>(N2)) {
6944    // PINSR* works with constant index.
6945    return Op;
6946  }
6947  return SDValue();
6948}
6949
6950SDValue
6951X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6952  EVT VT = Op.getValueType();
6953  EVT EltVT = VT.getVectorElementType();
6954
6955  DebugLoc dl = Op.getDebugLoc();
6956  SDValue N0 = Op.getOperand(0);
6957  SDValue N1 = Op.getOperand(1);
6958  SDValue N2 = Op.getOperand(2);
6959
6960  // If this is a 256-bit vector result, first extract the 128-bit vector,
6961  // insert the element into the extracted half and then place it back.
6962  if (VT.getSizeInBits() == 256) {
6963    if (!isa<ConstantSDNode>(N2))
6964      return SDValue();
6965
6966    // Get the desired 128-bit vector half.
6967    unsigned NumElems = VT.getVectorNumElements();
6968    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6969    bool Upper = IdxVal >= NumElems/2;
6970    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6971    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6972
6973    // Insert the element into the desired half.
6974    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6975                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6976
6977    // Insert the changed part back to the 256-bit vector
6978    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6979  }
6980
6981  if (Subtarget->hasSSE41orAVX())
6982    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6983
6984  if (EltVT == MVT::i8)
6985    return SDValue();
6986
6987  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6988    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6989    // as its second argument.
6990    if (N1.getValueType() != MVT::i32)
6991      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6992    if (N2.getValueType() != MVT::i32)
6993      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6994    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6995  }
6996  return SDValue();
6997}
6998
6999SDValue
7000X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7001  LLVMContext *Context = DAG.getContext();
7002  DebugLoc dl = Op.getDebugLoc();
7003  EVT OpVT = Op.getValueType();
7004
7005  // If this is a 256-bit vector result, first insert into a 128-bit
7006  // vector and then insert into the 256-bit vector.
7007  if (OpVT.getSizeInBits() > 128) {
7008    // Insert into a 128-bit vector.
7009    EVT VT128 = EVT::getVectorVT(*Context,
7010                                 OpVT.getVectorElementType(),
7011                                 OpVT.getVectorNumElements() / 2);
7012
7013    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7014
7015    // Insert the 128-bit vector.
7016    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7017                              DAG.getConstant(0, MVT::i32),
7018                              DAG, dl);
7019  }
7020
7021  if (Op.getValueType() == MVT::v1i64 &&
7022      Op.getOperand(0).getValueType() == MVT::i64)
7023    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7024
7025  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7026  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7027         "Expected an SSE type!");
7028  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7029                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7030}
7031
7032// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7033// a simple subregister reference or explicit instructions to grab
7034// upper bits of a vector.
7035SDValue
7036X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7037  if (Subtarget->hasAVX()) {
7038    DebugLoc dl = Op.getNode()->getDebugLoc();
7039    SDValue Vec = Op.getNode()->getOperand(0);
7040    SDValue Idx = Op.getNode()->getOperand(1);
7041
7042    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7043        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7044        return Extract128BitVector(Vec, Idx, DAG, dl);
7045    }
7046  }
7047  return SDValue();
7048}
7049
7050// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7051// simple superregister reference or explicit instructions to insert
7052// the upper bits of a vector.
7053SDValue
7054X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7055  if (Subtarget->hasAVX()) {
7056    DebugLoc dl = Op.getNode()->getDebugLoc();
7057    SDValue Vec = Op.getNode()->getOperand(0);
7058    SDValue SubVec = Op.getNode()->getOperand(1);
7059    SDValue Idx = Op.getNode()->getOperand(2);
7060
7061    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7062        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7063      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7064    }
7065  }
7066  return SDValue();
7067}
7068
7069// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7070// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7071// one of the above mentioned nodes. It has to be wrapped because otherwise
7072// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7073// be used to form addressing mode. These wrapped nodes will be selected
7074// into MOV32ri.
7075SDValue
7076X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7077  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7078
7079  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7080  // global base reg.
7081  unsigned char OpFlag = 0;
7082  unsigned WrapperKind = X86ISD::Wrapper;
7083  CodeModel::Model M = getTargetMachine().getCodeModel();
7084
7085  if (Subtarget->isPICStyleRIPRel() &&
7086      (M == CodeModel::Small || M == CodeModel::Kernel))
7087    WrapperKind = X86ISD::WrapperRIP;
7088  else if (Subtarget->isPICStyleGOT())
7089    OpFlag = X86II::MO_GOTOFF;
7090  else if (Subtarget->isPICStyleStubPIC())
7091    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7092
7093  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7094                                             CP->getAlignment(),
7095                                             CP->getOffset(), OpFlag);
7096  DebugLoc DL = CP->getDebugLoc();
7097  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7098  // With PIC, the address is actually $g + Offset.
7099  if (OpFlag) {
7100    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7101                         DAG.getNode(X86ISD::GlobalBaseReg,
7102                                     DebugLoc(), getPointerTy()),
7103                         Result);
7104  }
7105
7106  return Result;
7107}
7108
7109SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7110  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7111
7112  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7113  // global base reg.
7114  unsigned char OpFlag = 0;
7115  unsigned WrapperKind = X86ISD::Wrapper;
7116  CodeModel::Model M = getTargetMachine().getCodeModel();
7117
7118  if (Subtarget->isPICStyleRIPRel() &&
7119      (M == CodeModel::Small || M == CodeModel::Kernel))
7120    WrapperKind = X86ISD::WrapperRIP;
7121  else if (Subtarget->isPICStyleGOT())
7122    OpFlag = X86II::MO_GOTOFF;
7123  else if (Subtarget->isPICStyleStubPIC())
7124    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7125
7126  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7127                                          OpFlag);
7128  DebugLoc DL = JT->getDebugLoc();
7129  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7130
7131  // With PIC, the address is actually $g + Offset.
7132  if (OpFlag)
7133    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7134                         DAG.getNode(X86ISD::GlobalBaseReg,
7135                                     DebugLoc(), getPointerTy()),
7136                         Result);
7137
7138  return Result;
7139}
7140
7141SDValue
7142X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7143  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7144
7145  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7146  // global base reg.
7147  unsigned char OpFlag = 0;
7148  unsigned WrapperKind = X86ISD::Wrapper;
7149  CodeModel::Model M = getTargetMachine().getCodeModel();
7150
7151  if (Subtarget->isPICStyleRIPRel() &&
7152      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7153    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7154      OpFlag = X86II::MO_GOTPCREL;
7155    WrapperKind = X86ISD::WrapperRIP;
7156  } else if (Subtarget->isPICStyleGOT()) {
7157    OpFlag = X86II::MO_GOT;
7158  } else if (Subtarget->isPICStyleStubPIC()) {
7159    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7160  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7161    OpFlag = X86II::MO_DARWIN_NONLAZY;
7162  }
7163
7164  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7165
7166  DebugLoc DL = Op.getDebugLoc();
7167  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7168
7169
7170  // With PIC, the address is actually $g + Offset.
7171  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7172      !Subtarget->is64Bit()) {
7173    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7174                         DAG.getNode(X86ISD::GlobalBaseReg,
7175                                     DebugLoc(), getPointerTy()),
7176                         Result);
7177  }
7178
7179  // For symbols that require a load from a stub to get the address, emit the
7180  // load.
7181  if (isGlobalStubReference(OpFlag))
7182    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7183                         MachinePointerInfo::getGOT(), false, false, false, 0);
7184
7185  return Result;
7186}
7187
7188SDValue
7189X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7190  // Create the TargetBlockAddressAddress node.
7191  unsigned char OpFlags =
7192    Subtarget->ClassifyBlockAddressReference();
7193  CodeModel::Model M = getTargetMachine().getCodeModel();
7194  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7195  DebugLoc dl = Op.getDebugLoc();
7196  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7197                                       /*isTarget=*/true, OpFlags);
7198
7199  if (Subtarget->isPICStyleRIPRel() &&
7200      (M == CodeModel::Small || M == CodeModel::Kernel))
7201    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7202  else
7203    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7204
7205  // With PIC, the address is actually $g + Offset.
7206  if (isGlobalRelativeToPICBase(OpFlags)) {
7207    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7208                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7209                         Result);
7210  }
7211
7212  return Result;
7213}
7214
7215SDValue
7216X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7217                                      int64_t Offset,
7218                                      SelectionDAG &DAG) const {
7219  // Create the TargetGlobalAddress node, folding in the constant
7220  // offset if it is legal.
7221  unsigned char OpFlags =
7222    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7223  CodeModel::Model M = getTargetMachine().getCodeModel();
7224  SDValue Result;
7225  if (OpFlags == X86II::MO_NO_FLAG &&
7226      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7227    // A direct static reference to a global.
7228    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7229    Offset = 0;
7230  } else {
7231    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7232  }
7233
7234  if (Subtarget->isPICStyleRIPRel() &&
7235      (M == CodeModel::Small || M == CodeModel::Kernel))
7236    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7237  else
7238    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7239
7240  // With PIC, the address is actually $g + Offset.
7241  if (isGlobalRelativeToPICBase(OpFlags)) {
7242    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7243                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7244                         Result);
7245  }
7246
7247  // For globals that require a load from a stub to get the address, emit the
7248  // load.
7249  if (isGlobalStubReference(OpFlags))
7250    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7251                         MachinePointerInfo::getGOT(), false, false, false, 0);
7252
7253  // If there was a non-zero offset that we didn't fold, create an explicit
7254  // addition for it.
7255  if (Offset != 0)
7256    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7257                         DAG.getConstant(Offset, getPointerTy()));
7258
7259  return Result;
7260}
7261
7262SDValue
7263X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7264  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7265  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7266  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7267}
7268
7269static SDValue
7270GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7271           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7272           unsigned char OperandFlags) {
7273  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7274  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7275  DebugLoc dl = GA->getDebugLoc();
7276  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7277                                           GA->getValueType(0),
7278                                           GA->getOffset(),
7279                                           OperandFlags);
7280  if (InFlag) {
7281    SDValue Ops[] = { Chain,  TGA, *InFlag };
7282    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7283  } else {
7284    SDValue Ops[]  = { Chain, TGA };
7285    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7286  }
7287
7288  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7289  MFI->setAdjustsStack(true);
7290
7291  SDValue Flag = Chain.getValue(1);
7292  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7293}
7294
7295// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7296static SDValue
7297LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7298                                const EVT PtrVT) {
7299  SDValue InFlag;
7300  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7301  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7302                                     DAG.getNode(X86ISD::GlobalBaseReg,
7303                                                 DebugLoc(), PtrVT), InFlag);
7304  InFlag = Chain.getValue(1);
7305
7306  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7307}
7308
7309// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7310static SDValue
7311LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7312                                const EVT PtrVT) {
7313  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7314                    X86::RAX, X86II::MO_TLSGD);
7315}
7316
7317// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7318// "local exec" model.
7319static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7320                                   const EVT PtrVT, TLSModel::Model model,
7321                                   bool is64Bit) {
7322  DebugLoc dl = GA->getDebugLoc();
7323
7324  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7325  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7326                                                         is64Bit ? 257 : 256));
7327
7328  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7329                                      DAG.getIntPtrConstant(0),
7330                                      MachinePointerInfo(Ptr),
7331                                      false, false, false, 0);
7332
7333  unsigned char OperandFlags = 0;
7334  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7335  // initialexec.
7336  unsigned WrapperKind = X86ISD::Wrapper;
7337  if (model == TLSModel::LocalExec) {
7338    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7339  } else if (is64Bit) {
7340    assert(model == TLSModel::InitialExec);
7341    OperandFlags = X86II::MO_GOTTPOFF;
7342    WrapperKind = X86ISD::WrapperRIP;
7343  } else {
7344    assert(model == TLSModel::InitialExec);
7345    OperandFlags = X86II::MO_INDNTPOFF;
7346  }
7347
7348  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7349  // exec)
7350  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7351                                           GA->getValueType(0),
7352                                           GA->getOffset(), OperandFlags);
7353  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7354
7355  if (model == TLSModel::InitialExec)
7356    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7357                         MachinePointerInfo::getGOT(), false, false, false, 0);
7358
7359  // The address of the thread local variable is the add of the thread
7360  // pointer with the offset of the variable.
7361  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7362}
7363
7364SDValue
7365X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7366
7367  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7368  const GlobalValue *GV = GA->getGlobal();
7369
7370  if (Subtarget->isTargetELF()) {
7371    // TODO: implement the "local dynamic" model
7372    // TODO: implement the "initial exec"model for pic executables
7373
7374    // If GV is an alias then use the aliasee for determining
7375    // thread-localness.
7376    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7377      GV = GA->resolveAliasedGlobal(false);
7378
7379    TLSModel::Model model
7380      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7381
7382    switch (model) {
7383      case TLSModel::GeneralDynamic:
7384      case TLSModel::LocalDynamic: // not implemented
7385        if (Subtarget->is64Bit())
7386          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7387        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7388
7389      case TLSModel::InitialExec:
7390      case TLSModel::LocalExec:
7391        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7392                                   Subtarget->is64Bit());
7393    }
7394  } else if (Subtarget->isTargetDarwin()) {
7395    // Darwin only has one model of TLS.  Lower to that.
7396    unsigned char OpFlag = 0;
7397    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7398                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7399
7400    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7401    // global base reg.
7402    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7403                  !Subtarget->is64Bit();
7404    if (PIC32)
7405      OpFlag = X86II::MO_TLVP_PIC_BASE;
7406    else
7407      OpFlag = X86II::MO_TLVP;
7408    DebugLoc DL = Op.getDebugLoc();
7409    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7410                                                GA->getValueType(0),
7411                                                GA->getOffset(), OpFlag);
7412    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7413
7414    // With PIC32, the address is actually $g + Offset.
7415    if (PIC32)
7416      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7417                           DAG.getNode(X86ISD::GlobalBaseReg,
7418                                       DebugLoc(), getPointerTy()),
7419                           Offset);
7420
7421    // Lowering the machine isd will make sure everything is in the right
7422    // location.
7423    SDValue Chain = DAG.getEntryNode();
7424    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7425    SDValue Args[] = { Chain, Offset };
7426    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7427
7428    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7429    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7430    MFI->setAdjustsStack(true);
7431
7432    // And our return value (tls address) is in the standard call return value
7433    // location.
7434    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7435    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7436                              Chain.getValue(1));
7437  }
7438
7439  assert(false &&
7440         "TLS not implemented for this target.");
7441
7442  llvm_unreachable("Unreachable");
7443  return SDValue();
7444}
7445
7446
7447/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7448/// take a 2 x i32 value to shift plus a shift amount.
7449SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7450  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7451  EVT VT = Op.getValueType();
7452  unsigned VTBits = VT.getSizeInBits();
7453  DebugLoc dl = Op.getDebugLoc();
7454  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7455  SDValue ShOpLo = Op.getOperand(0);
7456  SDValue ShOpHi = Op.getOperand(1);
7457  SDValue ShAmt  = Op.getOperand(2);
7458  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7459                                     DAG.getConstant(VTBits - 1, MVT::i8))
7460                       : DAG.getConstant(0, VT);
7461
7462  SDValue Tmp2, Tmp3;
7463  if (Op.getOpcode() == ISD::SHL_PARTS) {
7464    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7465    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7466  } else {
7467    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7468    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7469  }
7470
7471  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7472                                DAG.getConstant(VTBits, MVT::i8));
7473  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7474                             AndNode, DAG.getConstant(0, MVT::i8));
7475
7476  SDValue Hi, Lo;
7477  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7478  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7479  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7480
7481  if (Op.getOpcode() == ISD::SHL_PARTS) {
7482    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7483    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7484  } else {
7485    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7486    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7487  }
7488
7489  SDValue Ops[2] = { Lo, Hi };
7490  return DAG.getMergeValues(Ops, 2, dl);
7491}
7492
7493SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7494                                           SelectionDAG &DAG) const {
7495  EVT SrcVT = Op.getOperand(0).getValueType();
7496
7497  if (SrcVT.isVector())
7498    return SDValue();
7499
7500  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7501         "Unknown SINT_TO_FP to lower!");
7502
7503  // These are really Legal; return the operand so the caller accepts it as
7504  // Legal.
7505  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7506    return Op;
7507  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7508      Subtarget->is64Bit()) {
7509    return Op;
7510  }
7511
7512  DebugLoc dl = Op.getDebugLoc();
7513  unsigned Size = SrcVT.getSizeInBits()/8;
7514  MachineFunction &MF = DAG.getMachineFunction();
7515  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7516  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7517  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7518                               StackSlot,
7519                               MachinePointerInfo::getFixedStack(SSFI),
7520                               false, false, 0);
7521  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7522}
7523
7524SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7525                                     SDValue StackSlot,
7526                                     SelectionDAG &DAG) const {
7527  // Build the FILD
7528  DebugLoc DL = Op.getDebugLoc();
7529  SDVTList Tys;
7530  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7531  if (useSSE)
7532    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7533  else
7534    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7535
7536  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7537
7538  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7539  MachineMemOperand *MMO;
7540  if (FI) {
7541    int SSFI = FI->getIndex();
7542    MMO =
7543      DAG.getMachineFunction()
7544      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7545                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7546  } else {
7547    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7548    StackSlot = StackSlot.getOperand(1);
7549  }
7550  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7551  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7552                                           X86ISD::FILD, DL,
7553                                           Tys, Ops, array_lengthof(Ops),
7554                                           SrcVT, MMO);
7555
7556  if (useSSE) {
7557    Chain = Result.getValue(1);
7558    SDValue InFlag = Result.getValue(2);
7559
7560    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7561    // shouldn't be necessary except that RFP cannot be live across
7562    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7563    MachineFunction &MF = DAG.getMachineFunction();
7564    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7565    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7566    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7567    Tys = DAG.getVTList(MVT::Other);
7568    SDValue Ops[] = {
7569      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7570    };
7571    MachineMemOperand *MMO =
7572      DAG.getMachineFunction()
7573      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7574                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7575
7576    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7577                                    Ops, array_lengthof(Ops),
7578                                    Op.getValueType(), MMO);
7579    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7580                         MachinePointerInfo::getFixedStack(SSFI),
7581                         false, false, false, 0);
7582  }
7583
7584  return Result;
7585}
7586
7587// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7588SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7589                                               SelectionDAG &DAG) const {
7590  // This algorithm is not obvious. Here it is in C code, more or less:
7591  /*
7592    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7593      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7594      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7595
7596      // Copy ints to xmm registers.
7597      __m128i xh = _mm_cvtsi32_si128( hi );
7598      __m128i xl = _mm_cvtsi32_si128( lo );
7599
7600      // Combine into low half of a single xmm register.
7601      __m128i x = _mm_unpacklo_epi32( xh, xl );
7602      __m128d d;
7603      double sd;
7604
7605      // Merge in appropriate exponents to give the integer bits the right
7606      // magnitude.
7607      x = _mm_unpacklo_epi32( x, exp );
7608
7609      // Subtract away the biases to deal with the IEEE-754 double precision
7610      // implicit 1.
7611      d = _mm_sub_pd( (__m128d) x, bias );
7612
7613      // All conversions up to here are exact. The correctly rounded result is
7614      // calculated using the current rounding mode using the following
7615      // horizontal add.
7616      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7617      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7618                                // store doesn't really need to be here (except
7619                                // maybe to zero the other double)
7620      return sd;
7621    }
7622  */
7623
7624  DebugLoc dl = Op.getDebugLoc();
7625  LLVMContext *Context = DAG.getContext();
7626
7627  // Build some magic constants.
7628  SmallVector<Constant*,4> CV0;
7629  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7630  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7631  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7632  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7633  Constant *C0 = ConstantVector::get(CV0);
7634  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7635
7636  SmallVector<Constant*,2> CV1;
7637  CV1.push_back(
7638    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7639  CV1.push_back(
7640    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7641  Constant *C1 = ConstantVector::get(CV1);
7642  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7643
7644  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7645                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7646                                        Op.getOperand(0),
7647                                        DAG.getIntPtrConstant(1)));
7648  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7649                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7650                                        Op.getOperand(0),
7651                                        DAG.getIntPtrConstant(0)));
7652  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7653  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7654                              MachinePointerInfo::getConstantPool(),
7655                              false, false, false, 16);
7656  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7657  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7658  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7659                              MachinePointerInfo::getConstantPool(),
7660                              false, false, false, 16);
7661  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7662
7663  // Add the halves; easiest way is to swap them into another reg first.
7664  int ShufMask[2] = { 1, -1 };
7665  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7666                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7667  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7668  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7669                     DAG.getIntPtrConstant(0));
7670}
7671
7672// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7673SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7674                                               SelectionDAG &DAG) const {
7675  DebugLoc dl = Op.getDebugLoc();
7676  // FP constant to bias correct the final result.
7677  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7678                                   MVT::f64);
7679
7680  // Load the 32-bit value into an XMM register.
7681  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7682                             Op.getOperand(0));
7683
7684  // Zero out the upper parts of the register.
7685  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7686                                     DAG);
7687
7688  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7689                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7690                     DAG.getIntPtrConstant(0));
7691
7692  // Or the load with the bias.
7693  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7694                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7695                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7696                                                   MVT::v2f64, Load)),
7697                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7698                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7699                                                   MVT::v2f64, Bias)));
7700  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7701                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7702                   DAG.getIntPtrConstant(0));
7703
7704  // Subtract the bias.
7705  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7706
7707  // Handle final rounding.
7708  EVT DestVT = Op.getValueType();
7709
7710  if (DestVT.bitsLT(MVT::f64)) {
7711    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7712                       DAG.getIntPtrConstant(0));
7713  } else if (DestVT.bitsGT(MVT::f64)) {
7714    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7715  }
7716
7717  // Handle final rounding.
7718  return Sub;
7719}
7720
7721SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7722                                           SelectionDAG &DAG) const {
7723  SDValue N0 = Op.getOperand(0);
7724  DebugLoc dl = Op.getDebugLoc();
7725
7726  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7727  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7728  // the optimization here.
7729  if (DAG.SignBitIsZero(N0))
7730    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7731
7732  EVT SrcVT = N0.getValueType();
7733  EVT DstVT = Op.getValueType();
7734  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7735    return LowerUINT_TO_FP_i64(Op, DAG);
7736  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7737    return LowerUINT_TO_FP_i32(Op, DAG);
7738
7739  // Make a 64-bit buffer, and use it to build an FILD.
7740  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7741  if (SrcVT == MVT::i32) {
7742    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7743    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7744                                     getPointerTy(), StackSlot, WordOff);
7745    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7746                                  StackSlot, MachinePointerInfo(),
7747                                  false, false, 0);
7748    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7749                                  OffsetSlot, MachinePointerInfo(),
7750                                  false, false, 0);
7751    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7752    return Fild;
7753  }
7754
7755  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7756  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7757                                StackSlot, MachinePointerInfo(),
7758                               false, false, 0);
7759  // For i64 source, we need to add the appropriate power of 2 if the input
7760  // was negative.  This is the same as the optimization in
7761  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7762  // we must be careful to do the computation in x87 extended precision, not
7763  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7764  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7765  MachineMemOperand *MMO =
7766    DAG.getMachineFunction()
7767    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7768                          MachineMemOperand::MOLoad, 8, 8);
7769
7770  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7771  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7772  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7773                                         MVT::i64, MMO);
7774
7775  APInt FF(32, 0x5F800000ULL);
7776
7777  // Check whether the sign bit is set.
7778  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7779                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7780                                 ISD::SETLT);
7781
7782  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7783  SDValue FudgePtr = DAG.getConstantPool(
7784                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7785                                         getPointerTy());
7786
7787  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7788  SDValue Zero = DAG.getIntPtrConstant(0);
7789  SDValue Four = DAG.getIntPtrConstant(4);
7790  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7791                               Zero, Four);
7792  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7793
7794  // Load the value out, extending it from f32 to f80.
7795  // FIXME: Avoid the extend by constructing the right constant pool?
7796  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7797                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7798                                 MVT::f32, false, false, 4);
7799  // Extend everything to 80 bits to force it to be done on x87.
7800  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7801  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7802}
7803
7804std::pair<SDValue,SDValue> X86TargetLowering::
7805FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7806  DebugLoc DL = Op.getDebugLoc();
7807
7808  EVT DstTy = Op.getValueType();
7809
7810  if (!IsSigned) {
7811    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7812    DstTy = MVT::i64;
7813  }
7814
7815  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7816         DstTy.getSimpleVT() >= MVT::i16 &&
7817         "Unknown FP_TO_SINT to lower!");
7818
7819  // These are really Legal.
7820  if (DstTy == MVT::i32 &&
7821      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7822    return std::make_pair(SDValue(), SDValue());
7823  if (Subtarget->is64Bit() &&
7824      DstTy == MVT::i64 &&
7825      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7826    return std::make_pair(SDValue(), SDValue());
7827
7828  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7829  // stack slot.
7830  MachineFunction &MF = DAG.getMachineFunction();
7831  unsigned MemSize = DstTy.getSizeInBits()/8;
7832  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7833  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7834
7835
7836
7837  unsigned Opc;
7838  switch (DstTy.getSimpleVT().SimpleTy) {
7839  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7840  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7841  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7842  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7843  }
7844
7845  SDValue Chain = DAG.getEntryNode();
7846  SDValue Value = Op.getOperand(0);
7847  EVT TheVT = Op.getOperand(0).getValueType();
7848  if (isScalarFPTypeInSSEReg(TheVT)) {
7849    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7850    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7851                         MachinePointerInfo::getFixedStack(SSFI),
7852                         false, false, 0);
7853    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7854    SDValue Ops[] = {
7855      Chain, StackSlot, DAG.getValueType(TheVT)
7856    };
7857
7858    MachineMemOperand *MMO =
7859      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7860                              MachineMemOperand::MOLoad, MemSize, MemSize);
7861    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7862                                    DstTy, MMO);
7863    Chain = Value.getValue(1);
7864    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7865    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7866  }
7867
7868  MachineMemOperand *MMO =
7869    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7870                            MachineMemOperand::MOStore, MemSize, MemSize);
7871
7872  // Build the FP_TO_INT*_IN_MEM
7873  SDValue Ops[] = { Chain, Value, StackSlot };
7874  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7875                                         Ops, 3, DstTy, MMO);
7876
7877  return std::make_pair(FIST, StackSlot);
7878}
7879
7880SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7881                                           SelectionDAG &DAG) const {
7882  if (Op.getValueType().isVector())
7883    return SDValue();
7884
7885  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7886  SDValue FIST = Vals.first, StackSlot = Vals.second;
7887  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7888  if (FIST.getNode() == 0) return Op;
7889
7890  // Load the result.
7891  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7892                     FIST, StackSlot, MachinePointerInfo(),
7893                     false, false, false, 0);
7894}
7895
7896SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7897                                           SelectionDAG &DAG) const {
7898  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7899  SDValue FIST = Vals.first, StackSlot = Vals.second;
7900  assert(FIST.getNode() && "Unexpected failure");
7901
7902  // Load the result.
7903  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7904                     FIST, StackSlot, MachinePointerInfo(),
7905                     false, false, false, 0);
7906}
7907
7908SDValue X86TargetLowering::LowerFABS(SDValue Op,
7909                                     SelectionDAG &DAG) const {
7910  LLVMContext *Context = DAG.getContext();
7911  DebugLoc dl = Op.getDebugLoc();
7912  EVT VT = Op.getValueType();
7913  EVT EltVT = VT;
7914  if (VT.isVector())
7915    EltVT = VT.getVectorElementType();
7916  SmallVector<Constant*,4> CV;
7917  if (EltVT == MVT::f64) {
7918    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7919    CV.assign(2, C);
7920  } else {
7921    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7922    CV.assign(4, C);
7923  }
7924  Constant *C = ConstantVector::get(CV);
7925  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7926  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7927                             MachinePointerInfo::getConstantPool(),
7928                             false, false, false, 16);
7929  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7930}
7931
7932SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7933  LLVMContext *Context = DAG.getContext();
7934  DebugLoc dl = Op.getDebugLoc();
7935  EVT VT = Op.getValueType();
7936  EVT EltVT = VT;
7937  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7938  if (VT.isVector()) {
7939    EltVT = VT.getVectorElementType();
7940    NumElts = VT.getVectorNumElements();
7941  }
7942  SmallVector<Constant*,8> CV;
7943  if (EltVT == MVT::f64) {
7944    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7945    CV.assign(NumElts, C);
7946  } else {
7947    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7948    CV.assign(NumElts, C);
7949  }
7950  Constant *C = ConstantVector::get(CV);
7951  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7952  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7953                             MachinePointerInfo::getConstantPool(),
7954                             false, false, false, 16);
7955  if (VT.isVector()) {
7956    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7957    return DAG.getNode(ISD::BITCAST, dl, VT,
7958                       DAG.getNode(ISD::XOR, dl, XORVT,
7959                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7960                                Op.getOperand(0)),
7961                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7962  } else {
7963    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7964  }
7965}
7966
7967SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7968  LLVMContext *Context = DAG.getContext();
7969  SDValue Op0 = Op.getOperand(0);
7970  SDValue Op1 = Op.getOperand(1);
7971  DebugLoc dl = Op.getDebugLoc();
7972  EVT VT = Op.getValueType();
7973  EVT SrcVT = Op1.getValueType();
7974
7975  // If second operand is smaller, extend it first.
7976  if (SrcVT.bitsLT(VT)) {
7977    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7978    SrcVT = VT;
7979  }
7980  // And if it is bigger, shrink it first.
7981  if (SrcVT.bitsGT(VT)) {
7982    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7983    SrcVT = VT;
7984  }
7985
7986  // At this point the operands and the result should have the same
7987  // type, and that won't be f80 since that is not custom lowered.
7988
7989  // First get the sign bit of second operand.
7990  SmallVector<Constant*,4> CV;
7991  if (SrcVT == MVT::f64) {
7992    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7993    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7994  } else {
7995    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7996    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7997    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7998    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7999  }
8000  Constant *C = ConstantVector::get(CV);
8001  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8002  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8003                              MachinePointerInfo::getConstantPool(),
8004                              false, false, false, 16);
8005  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8006
8007  // Shift sign bit right or left if the two operands have different types.
8008  if (SrcVT.bitsGT(VT)) {
8009    // Op0 is MVT::f32, Op1 is MVT::f64.
8010    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8011    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8012                          DAG.getConstant(32, MVT::i32));
8013    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8014    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8015                          DAG.getIntPtrConstant(0));
8016  }
8017
8018  // Clear first operand sign bit.
8019  CV.clear();
8020  if (VT == MVT::f64) {
8021    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8022    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8023  } else {
8024    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8025    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8026    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8027    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8028  }
8029  C = ConstantVector::get(CV);
8030  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8031  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8032                              MachinePointerInfo::getConstantPool(),
8033                              false, false, false, 16);
8034  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8035
8036  // Or the value with the sign bit.
8037  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8038}
8039
8040SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8041  SDValue N0 = Op.getOperand(0);
8042  DebugLoc dl = Op.getDebugLoc();
8043  EVT VT = Op.getValueType();
8044
8045  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8046  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8047                                  DAG.getConstant(1, VT));
8048  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8049}
8050
8051/// Emit nodes that will be selected as "test Op0,Op0", or something
8052/// equivalent.
8053SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8054                                    SelectionDAG &DAG) const {
8055  DebugLoc dl = Op.getDebugLoc();
8056
8057  // CF and OF aren't always set the way we want. Determine which
8058  // of these we need.
8059  bool NeedCF = false;
8060  bool NeedOF = false;
8061  switch (X86CC) {
8062  default: break;
8063  case X86::COND_A: case X86::COND_AE:
8064  case X86::COND_B: case X86::COND_BE:
8065    NeedCF = true;
8066    break;
8067  case X86::COND_G: case X86::COND_GE:
8068  case X86::COND_L: case X86::COND_LE:
8069  case X86::COND_O: case X86::COND_NO:
8070    NeedOF = true;
8071    break;
8072  }
8073
8074  // See if we can use the EFLAGS value from the operand instead of
8075  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8076  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8077  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8078    // Emit a CMP with 0, which is the TEST pattern.
8079    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8080                       DAG.getConstant(0, Op.getValueType()));
8081
8082  unsigned Opcode = 0;
8083  unsigned NumOperands = 0;
8084  switch (Op.getNode()->getOpcode()) {
8085  case ISD::ADD:
8086    // Due to an isel shortcoming, be conservative if this add is likely to be
8087    // selected as part of a load-modify-store instruction. When the root node
8088    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8089    // uses of other nodes in the match, such as the ADD in this case. This
8090    // leads to the ADD being left around and reselected, with the result being
8091    // two adds in the output.  Alas, even if none our users are stores, that
8092    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8093    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8094    // climbing the DAG back to the root, and it doesn't seem to be worth the
8095    // effort.
8096    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8097         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8098      if (UI->getOpcode() != ISD::CopyToReg &&
8099          UI->getOpcode() != ISD::SETCC &&
8100          UI->getOpcode() != ISD::STORE)
8101        goto default_case;
8102
8103    if (ConstantSDNode *C =
8104        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8105      // An add of one will be selected as an INC.
8106      if (C->getAPIntValue() == 1) {
8107        Opcode = X86ISD::INC;
8108        NumOperands = 1;
8109        break;
8110      }
8111
8112      // An add of negative one (subtract of one) will be selected as a DEC.
8113      if (C->getAPIntValue().isAllOnesValue()) {
8114        Opcode = X86ISD::DEC;
8115        NumOperands = 1;
8116        break;
8117      }
8118    }
8119
8120    // Otherwise use a regular EFLAGS-setting add.
8121    Opcode = X86ISD::ADD;
8122    NumOperands = 2;
8123    break;
8124  case ISD::AND: {
8125    // If the primary and result isn't used, don't bother using X86ISD::AND,
8126    // because a TEST instruction will be better.
8127    bool NonFlagUse = false;
8128    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8129           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8130      SDNode *User = *UI;
8131      unsigned UOpNo = UI.getOperandNo();
8132      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8133        // Look pass truncate.
8134        UOpNo = User->use_begin().getOperandNo();
8135        User = *User->use_begin();
8136      }
8137
8138      if (User->getOpcode() != ISD::BRCOND &&
8139          User->getOpcode() != ISD::SETCC &&
8140          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8141        NonFlagUse = true;
8142        break;
8143      }
8144    }
8145
8146    if (!NonFlagUse)
8147      break;
8148  }
8149    // FALL THROUGH
8150  case ISD::SUB:
8151  case ISD::OR:
8152  case ISD::XOR:
8153    // Due to the ISEL shortcoming noted above, be conservative if this op is
8154    // likely to be selected as part of a load-modify-store instruction.
8155    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8156           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8157      if (UI->getOpcode() == ISD::STORE)
8158        goto default_case;
8159
8160    // Otherwise use a regular EFLAGS-setting instruction.
8161    switch (Op.getNode()->getOpcode()) {
8162    default: llvm_unreachable("unexpected operator!");
8163    case ISD::SUB: Opcode = X86ISD::SUB; break;
8164    case ISD::OR:  Opcode = X86ISD::OR;  break;
8165    case ISD::XOR: Opcode = X86ISD::XOR; break;
8166    case ISD::AND: Opcode = X86ISD::AND; break;
8167    }
8168
8169    NumOperands = 2;
8170    break;
8171  case X86ISD::ADD:
8172  case X86ISD::SUB:
8173  case X86ISD::INC:
8174  case X86ISD::DEC:
8175  case X86ISD::OR:
8176  case X86ISD::XOR:
8177  case X86ISD::AND:
8178    return SDValue(Op.getNode(), 1);
8179  default:
8180  default_case:
8181    break;
8182  }
8183
8184  if (Opcode == 0)
8185    // Emit a CMP with 0, which is the TEST pattern.
8186    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8187                       DAG.getConstant(0, Op.getValueType()));
8188
8189  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8190  SmallVector<SDValue, 4> Ops;
8191  for (unsigned i = 0; i != NumOperands; ++i)
8192    Ops.push_back(Op.getOperand(i));
8193
8194  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8195  DAG.ReplaceAllUsesWith(Op, New);
8196  return SDValue(New.getNode(), 1);
8197}
8198
8199/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8200/// equivalent.
8201SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8202                                   SelectionDAG &DAG) const {
8203  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8204    if (C->getAPIntValue() == 0)
8205      return EmitTest(Op0, X86CC, DAG);
8206
8207  DebugLoc dl = Op0.getDebugLoc();
8208  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8209}
8210
8211/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8212/// if it's possible.
8213SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8214                                     DebugLoc dl, SelectionDAG &DAG) const {
8215  SDValue Op0 = And.getOperand(0);
8216  SDValue Op1 = And.getOperand(1);
8217  if (Op0.getOpcode() == ISD::TRUNCATE)
8218    Op0 = Op0.getOperand(0);
8219  if (Op1.getOpcode() == ISD::TRUNCATE)
8220    Op1 = Op1.getOperand(0);
8221
8222  SDValue LHS, RHS;
8223  if (Op1.getOpcode() == ISD::SHL)
8224    std::swap(Op0, Op1);
8225  if (Op0.getOpcode() == ISD::SHL) {
8226    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8227      if (And00C->getZExtValue() == 1) {
8228        // If we looked past a truncate, check that it's only truncating away
8229        // known zeros.
8230        unsigned BitWidth = Op0.getValueSizeInBits();
8231        unsigned AndBitWidth = And.getValueSizeInBits();
8232        if (BitWidth > AndBitWidth) {
8233          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8234          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8235          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8236            return SDValue();
8237        }
8238        LHS = Op1;
8239        RHS = Op0.getOperand(1);
8240      }
8241  } else if (Op1.getOpcode() == ISD::Constant) {
8242    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8243    uint64_t AndRHSVal = AndRHS->getZExtValue();
8244    SDValue AndLHS = Op0;
8245
8246    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8247      LHS = AndLHS.getOperand(0);
8248      RHS = AndLHS.getOperand(1);
8249    }
8250
8251    // Use BT if the immediate can't be encoded in a TEST instruction.
8252    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8253      LHS = AndLHS;
8254      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8255    }
8256  }
8257
8258  if (LHS.getNode()) {
8259    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8260    // instruction.  Since the shift amount is in-range-or-undefined, we know
8261    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8262    // the encoding for the i16 version is larger than the i32 version.
8263    // Also promote i16 to i32 for performance / code size reason.
8264    if (LHS.getValueType() == MVT::i8 ||
8265        LHS.getValueType() == MVT::i16)
8266      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8267
8268    // If the operand types disagree, extend the shift amount to match.  Since
8269    // BT ignores high bits (like shifts) we can use anyextend.
8270    if (LHS.getValueType() != RHS.getValueType())
8271      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8272
8273    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8274    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8275    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8276                       DAG.getConstant(Cond, MVT::i8), BT);
8277  }
8278
8279  return SDValue();
8280}
8281
8282SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8283
8284  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8285
8286  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8287  SDValue Op0 = Op.getOperand(0);
8288  SDValue Op1 = Op.getOperand(1);
8289  DebugLoc dl = Op.getDebugLoc();
8290  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8291
8292  // Optimize to BT if possible.
8293  // Lower (X & (1 << N)) == 0 to BT(X, N).
8294  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8295  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8296  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8297      Op1.getOpcode() == ISD::Constant &&
8298      cast<ConstantSDNode>(Op1)->isNullValue() &&
8299      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8300    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8301    if (NewSetCC.getNode())
8302      return NewSetCC;
8303  }
8304
8305  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8306  // these.
8307  if (Op1.getOpcode() == ISD::Constant &&
8308      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8309       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8310      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8311
8312    // If the input is a setcc, then reuse the input setcc or use a new one with
8313    // the inverted condition.
8314    if (Op0.getOpcode() == X86ISD::SETCC) {
8315      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8316      bool Invert = (CC == ISD::SETNE) ^
8317        cast<ConstantSDNode>(Op1)->isNullValue();
8318      if (!Invert) return Op0;
8319
8320      CCode = X86::GetOppositeBranchCondition(CCode);
8321      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8322                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8323    }
8324  }
8325
8326  bool isFP = Op1.getValueType().isFloatingPoint();
8327  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8328  if (X86CC == X86::COND_INVALID)
8329    return SDValue();
8330
8331  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8332  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8333                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8334}
8335
8336// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8337// ones, and then concatenate the result back.
8338static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8339  EVT VT = Op.getValueType();
8340
8341  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8342         "Unsupported value type for operation");
8343
8344  int NumElems = VT.getVectorNumElements();
8345  DebugLoc dl = Op.getDebugLoc();
8346  SDValue CC = Op.getOperand(2);
8347  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8348  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8349
8350  // Extract the LHS vectors
8351  SDValue LHS = Op.getOperand(0);
8352  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8353  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8354
8355  // Extract the RHS vectors
8356  SDValue RHS = Op.getOperand(1);
8357  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8358  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8359
8360  // Issue the operation on the smaller types and concatenate the result back
8361  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8362  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8363  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8364                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8365                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8366}
8367
8368
8369SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8370  SDValue Cond;
8371  SDValue Op0 = Op.getOperand(0);
8372  SDValue Op1 = Op.getOperand(1);
8373  SDValue CC = Op.getOperand(2);
8374  EVT VT = Op.getValueType();
8375  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8376  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8377  DebugLoc dl = Op.getDebugLoc();
8378
8379  if (isFP) {
8380    unsigned SSECC = 8;
8381    EVT EltVT = Op0.getValueType().getVectorElementType();
8382    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8383
8384    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8385    bool Swap = false;
8386
8387    // SSE Condition code mapping:
8388    //  0 - EQ
8389    //  1 - LT
8390    //  2 - LE
8391    //  3 - UNORD
8392    //  4 - NEQ
8393    //  5 - NLT
8394    //  6 - NLE
8395    //  7 - ORD
8396    switch (SetCCOpcode) {
8397    default: break;
8398    case ISD::SETOEQ:
8399    case ISD::SETEQ:  SSECC = 0; break;
8400    case ISD::SETOGT:
8401    case ISD::SETGT: Swap = true; // Fallthrough
8402    case ISD::SETLT:
8403    case ISD::SETOLT: SSECC = 1; break;
8404    case ISD::SETOGE:
8405    case ISD::SETGE: Swap = true; // Fallthrough
8406    case ISD::SETLE:
8407    case ISD::SETOLE: SSECC = 2; break;
8408    case ISD::SETUO:  SSECC = 3; break;
8409    case ISD::SETUNE:
8410    case ISD::SETNE:  SSECC = 4; break;
8411    case ISD::SETULE: Swap = true;
8412    case ISD::SETUGE: SSECC = 5; break;
8413    case ISD::SETULT: Swap = true;
8414    case ISD::SETUGT: SSECC = 6; break;
8415    case ISD::SETO:   SSECC = 7; break;
8416    }
8417    if (Swap)
8418      std::swap(Op0, Op1);
8419
8420    // In the two special cases we can't handle, emit two comparisons.
8421    if (SSECC == 8) {
8422      if (SetCCOpcode == ISD::SETUEQ) {
8423        SDValue UNORD, EQ;
8424        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8425        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8426        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8427      } else if (SetCCOpcode == ISD::SETONE) {
8428        SDValue ORD, NEQ;
8429        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8430        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8431        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8432      }
8433      llvm_unreachable("Illegal FP comparison");
8434    }
8435    // Handle all other FP comparisons here.
8436    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8437  }
8438
8439  // Break 256-bit integer vector compare into smaller ones.
8440  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8441    return Lower256IntVSETCC(Op, DAG);
8442
8443  // We are handling one of the integer comparisons here.  Since SSE only has
8444  // GT and EQ comparisons for integer, swapping operands and multiple
8445  // operations may be required for some comparisons.
8446  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8447  bool Swap = false, Invert = false, FlipSigns = false;
8448
8449  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8450  default: break;
8451  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8452  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8453  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8454  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8455  }
8456
8457  switch (SetCCOpcode) {
8458  default: break;
8459  case ISD::SETNE:  Invert = true;
8460  case ISD::SETEQ:  Opc = EQOpc; break;
8461  case ISD::SETLT:  Swap = true;
8462  case ISD::SETGT:  Opc = GTOpc; break;
8463  case ISD::SETGE:  Swap = true;
8464  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8465  case ISD::SETULT: Swap = true;
8466  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8467  case ISD::SETUGE: Swap = true;
8468  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8469  }
8470  if (Swap)
8471    std::swap(Op0, Op1);
8472
8473  // Check that the operation in question is available (most are plain SSE2,
8474  // but PCMPGTQ and PCMPEQQ have different requirements).
8475  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42orAVX())
8476    return SDValue();
8477  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41orAVX())
8478    return SDValue();
8479
8480  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8481  // bits of the inputs before performing those operations.
8482  if (FlipSigns) {
8483    EVT EltVT = VT.getVectorElementType();
8484    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8485                                      EltVT);
8486    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8487    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8488                                    SignBits.size());
8489    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8490    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8491  }
8492
8493  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8494
8495  // If the logical-not of the result is required, perform that now.
8496  if (Invert)
8497    Result = DAG.getNOT(dl, Result, VT);
8498
8499  return Result;
8500}
8501
8502// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8503static bool isX86LogicalCmp(SDValue Op) {
8504  unsigned Opc = Op.getNode()->getOpcode();
8505  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8506    return true;
8507  if (Op.getResNo() == 1 &&
8508      (Opc == X86ISD::ADD ||
8509       Opc == X86ISD::SUB ||
8510       Opc == X86ISD::ADC ||
8511       Opc == X86ISD::SBB ||
8512       Opc == X86ISD::SMUL ||
8513       Opc == X86ISD::UMUL ||
8514       Opc == X86ISD::INC ||
8515       Opc == X86ISD::DEC ||
8516       Opc == X86ISD::OR ||
8517       Opc == X86ISD::XOR ||
8518       Opc == X86ISD::AND))
8519    return true;
8520
8521  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8522    return true;
8523
8524  return false;
8525}
8526
8527static bool isZero(SDValue V) {
8528  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8529  return C && C->isNullValue();
8530}
8531
8532static bool isAllOnes(SDValue V) {
8533  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8534  return C && C->isAllOnesValue();
8535}
8536
8537SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8538  bool addTest = true;
8539  SDValue Cond  = Op.getOperand(0);
8540  SDValue Op1 = Op.getOperand(1);
8541  SDValue Op2 = Op.getOperand(2);
8542  DebugLoc DL = Op.getDebugLoc();
8543  SDValue CC;
8544
8545  if (Cond.getOpcode() == ISD::SETCC) {
8546    SDValue NewCond = LowerSETCC(Cond, DAG);
8547    if (NewCond.getNode())
8548      Cond = NewCond;
8549  }
8550
8551  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8552  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8553  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8554  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8555  if (Cond.getOpcode() == X86ISD::SETCC &&
8556      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8557      isZero(Cond.getOperand(1).getOperand(1))) {
8558    SDValue Cmp = Cond.getOperand(1);
8559
8560    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8561
8562    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8563        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8564      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8565
8566      SDValue CmpOp0 = Cmp.getOperand(0);
8567      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8568                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8569
8570      SDValue Res =   // Res = 0 or -1.
8571        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8572                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8573
8574      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8575        Res = DAG.getNOT(DL, Res, Res.getValueType());
8576
8577      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8578      if (N2C == 0 || !N2C->isNullValue())
8579        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8580      return Res;
8581    }
8582  }
8583
8584  // Look past (and (setcc_carry (cmp ...)), 1).
8585  if (Cond.getOpcode() == ISD::AND &&
8586      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8587    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8588    if (C && C->getAPIntValue() == 1)
8589      Cond = Cond.getOperand(0);
8590  }
8591
8592  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8593  // setting operand in place of the X86ISD::SETCC.
8594  unsigned CondOpcode = Cond.getOpcode();
8595  if (CondOpcode == X86ISD::SETCC ||
8596      CondOpcode == X86ISD::SETCC_CARRY) {
8597    CC = Cond.getOperand(0);
8598
8599    SDValue Cmp = Cond.getOperand(1);
8600    unsigned Opc = Cmp.getOpcode();
8601    EVT VT = Op.getValueType();
8602
8603    bool IllegalFPCMov = false;
8604    if (VT.isFloatingPoint() && !VT.isVector() &&
8605        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8606      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8607
8608    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8609        Opc == X86ISD::BT) { // FIXME
8610      Cond = Cmp;
8611      addTest = false;
8612    }
8613  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8614             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8615             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8616              Cond.getOperand(0).getValueType() != MVT::i8)) {
8617    SDValue LHS = Cond.getOperand(0);
8618    SDValue RHS = Cond.getOperand(1);
8619    unsigned X86Opcode;
8620    unsigned X86Cond;
8621    SDVTList VTs;
8622    switch (CondOpcode) {
8623    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8624    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8625    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8626    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8627    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8628    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8629    default: llvm_unreachable("unexpected overflowing operator");
8630    }
8631    if (CondOpcode == ISD::UMULO)
8632      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8633                          MVT::i32);
8634    else
8635      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8636
8637    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8638
8639    if (CondOpcode == ISD::UMULO)
8640      Cond = X86Op.getValue(2);
8641    else
8642      Cond = X86Op.getValue(1);
8643
8644    CC = DAG.getConstant(X86Cond, MVT::i8);
8645    addTest = false;
8646  }
8647
8648  if (addTest) {
8649    // Look pass the truncate.
8650    if (Cond.getOpcode() == ISD::TRUNCATE)
8651      Cond = Cond.getOperand(0);
8652
8653    // We know the result of AND is compared against zero. Try to match
8654    // it to BT.
8655    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8656      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8657      if (NewSetCC.getNode()) {
8658        CC = NewSetCC.getOperand(0);
8659        Cond = NewSetCC.getOperand(1);
8660        addTest = false;
8661      }
8662    }
8663  }
8664
8665  if (addTest) {
8666    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8667    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8668  }
8669
8670  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8671  // a <  b ?  0 : -1 -> RES = setcc_carry
8672  // a >= b ? -1 :  0 -> RES = setcc_carry
8673  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8674  if (Cond.getOpcode() == X86ISD::CMP) {
8675    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8676
8677    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8678        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8679      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8680                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8681      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8682        return DAG.getNOT(DL, Res, Res.getValueType());
8683      return Res;
8684    }
8685  }
8686
8687  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8688  // condition is true.
8689  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8690  SDValue Ops[] = { Op2, Op1, CC, Cond };
8691  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8692}
8693
8694// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8695// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8696// from the AND / OR.
8697static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8698  Opc = Op.getOpcode();
8699  if (Opc != ISD::OR && Opc != ISD::AND)
8700    return false;
8701  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8702          Op.getOperand(0).hasOneUse() &&
8703          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8704          Op.getOperand(1).hasOneUse());
8705}
8706
8707// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8708// 1 and that the SETCC node has a single use.
8709static bool isXor1OfSetCC(SDValue Op) {
8710  if (Op.getOpcode() != ISD::XOR)
8711    return false;
8712  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8713  if (N1C && N1C->getAPIntValue() == 1) {
8714    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8715      Op.getOperand(0).hasOneUse();
8716  }
8717  return false;
8718}
8719
8720SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8721  bool addTest = true;
8722  SDValue Chain = Op.getOperand(0);
8723  SDValue Cond  = Op.getOperand(1);
8724  SDValue Dest  = Op.getOperand(2);
8725  DebugLoc dl = Op.getDebugLoc();
8726  SDValue CC;
8727  bool Inverted = false;
8728
8729  if (Cond.getOpcode() == ISD::SETCC) {
8730    // Check for setcc([su]{add,sub,mul}o == 0).
8731    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8732        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8733        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8734        Cond.getOperand(0).getResNo() == 1 &&
8735        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8736         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8737         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8738         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8739         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8740         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8741      Inverted = true;
8742      Cond = Cond.getOperand(0);
8743    } else {
8744      SDValue NewCond = LowerSETCC(Cond, DAG);
8745      if (NewCond.getNode())
8746        Cond = NewCond;
8747    }
8748  }
8749#if 0
8750  // FIXME: LowerXALUO doesn't handle these!!
8751  else if (Cond.getOpcode() == X86ISD::ADD  ||
8752           Cond.getOpcode() == X86ISD::SUB  ||
8753           Cond.getOpcode() == X86ISD::SMUL ||
8754           Cond.getOpcode() == X86ISD::UMUL)
8755    Cond = LowerXALUO(Cond, DAG);
8756#endif
8757
8758  // Look pass (and (setcc_carry (cmp ...)), 1).
8759  if (Cond.getOpcode() == ISD::AND &&
8760      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8761    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8762    if (C && C->getAPIntValue() == 1)
8763      Cond = Cond.getOperand(0);
8764  }
8765
8766  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8767  // setting operand in place of the X86ISD::SETCC.
8768  unsigned CondOpcode = Cond.getOpcode();
8769  if (CondOpcode == X86ISD::SETCC ||
8770      CondOpcode == X86ISD::SETCC_CARRY) {
8771    CC = Cond.getOperand(0);
8772
8773    SDValue Cmp = Cond.getOperand(1);
8774    unsigned Opc = Cmp.getOpcode();
8775    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8776    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8777      Cond = Cmp;
8778      addTest = false;
8779    } else {
8780      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8781      default: break;
8782      case X86::COND_O:
8783      case X86::COND_B:
8784        // These can only come from an arithmetic instruction with overflow,
8785        // e.g. SADDO, UADDO.
8786        Cond = Cond.getNode()->getOperand(1);
8787        addTest = false;
8788        break;
8789      }
8790    }
8791  }
8792  CondOpcode = Cond.getOpcode();
8793  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8794      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8795      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8796       Cond.getOperand(0).getValueType() != MVT::i8)) {
8797    SDValue LHS = Cond.getOperand(0);
8798    SDValue RHS = Cond.getOperand(1);
8799    unsigned X86Opcode;
8800    unsigned X86Cond;
8801    SDVTList VTs;
8802    switch (CondOpcode) {
8803    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8804    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8805    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8806    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8807    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8808    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8809    default: llvm_unreachable("unexpected overflowing operator");
8810    }
8811    if (Inverted)
8812      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8813    if (CondOpcode == ISD::UMULO)
8814      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8815                          MVT::i32);
8816    else
8817      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8818
8819    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8820
8821    if (CondOpcode == ISD::UMULO)
8822      Cond = X86Op.getValue(2);
8823    else
8824      Cond = X86Op.getValue(1);
8825
8826    CC = DAG.getConstant(X86Cond, MVT::i8);
8827    addTest = false;
8828  } else {
8829    unsigned CondOpc;
8830    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8831      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8832      if (CondOpc == ISD::OR) {
8833        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8834        // two branches instead of an explicit OR instruction with a
8835        // separate test.
8836        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8837            isX86LogicalCmp(Cmp)) {
8838          CC = Cond.getOperand(0).getOperand(0);
8839          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8840                              Chain, Dest, CC, Cmp);
8841          CC = Cond.getOperand(1).getOperand(0);
8842          Cond = Cmp;
8843          addTest = false;
8844        }
8845      } else { // ISD::AND
8846        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8847        // two branches instead of an explicit AND instruction with a
8848        // separate test. However, we only do this if this block doesn't
8849        // have a fall-through edge, because this requires an explicit
8850        // jmp when the condition is false.
8851        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8852            isX86LogicalCmp(Cmp) &&
8853            Op.getNode()->hasOneUse()) {
8854          X86::CondCode CCode =
8855            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8856          CCode = X86::GetOppositeBranchCondition(CCode);
8857          CC = DAG.getConstant(CCode, MVT::i8);
8858          SDNode *User = *Op.getNode()->use_begin();
8859          // Look for an unconditional branch following this conditional branch.
8860          // We need this because we need to reverse the successors in order
8861          // to implement FCMP_OEQ.
8862          if (User->getOpcode() == ISD::BR) {
8863            SDValue FalseBB = User->getOperand(1);
8864            SDNode *NewBR =
8865              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8866            assert(NewBR == User);
8867            (void)NewBR;
8868            Dest = FalseBB;
8869
8870            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8871                                Chain, Dest, CC, Cmp);
8872            X86::CondCode CCode =
8873              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8874            CCode = X86::GetOppositeBranchCondition(CCode);
8875            CC = DAG.getConstant(CCode, MVT::i8);
8876            Cond = Cmp;
8877            addTest = false;
8878          }
8879        }
8880      }
8881    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8882      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8883      // It should be transformed during dag combiner except when the condition
8884      // is set by a arithmetics with overflow node.
8885      X86::CondCode CCode =
8886        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8887      CCode = X86::GetOppositeBranchCondition(CCode);
8888      CC = DAG.getConstant(CCode, MVT::i8);
8889      Cond = Cond.getOperand(0).getOperand(1);
8890      addTest = false;
8891    } else if (Cond.getOpcode() == ISD::SETCC &&
8892               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8893      // For FCMP_OEQ, we can emit
8894      // two branches instead of an explicit AND instruction with a
8895      // separate test. However, we only do this if this block doesn't
8896      // have a fall-through edge, because this requires an explicit
8897      // jmp when the condition is false.
8898      if (Op.getNode()->hasOneUse()) {
8899        SDNode *User = *Op.getNode()->use_begin();
8900        // Look for an unconditional branch following this conditional branch.
8901        // We need this because we need to reverse the successors in order
8902        // to implement FCMP_OEQ.
8903        if (User->getOpcode() == ISD::BR) {
8904          SDValue FalseBB = User->getOperand(1);
8905          SDNode *NewBR =
8906            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8907          assert(NewBR == User);
8908          (void)NewBR;
8909          Dest = FalseBB;
8910
8911          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8912                                    Cond.getOperand(0), Cond.getOperand(1));
8913          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8914          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8915                              Chain, Dest, CC, Cmp);
8916          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8917          Cond = Cmp;
8918          addTest = false;
8919        }
8920      }
8921    } else if (Cond.getOpcode() == ISD::SETCC &&
8922               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8923      // For FCMP_UNE, we can emit
8924      // two branches instead of an explicit AND instruction with a
8925      // separate test. However, we only do this if this block doesn't
8926      // have a fall-through edge, because this requires an explicit
8927      // jmp when the condition is false.
8928      if (Op.getNode()->hasOneUse()) {
8929        SDNode *User = *Op.getNode()->use_begin();
8930        // Look for an unconditional branch following this conditional branch.
8931        // We need this because we need to reverse the successors in order
8932        // to implement FCMP_UNE.
8933        if (User->getOpcode() == ISD::BR) {
8934          SDValue FalseBB = User->getOperand(1);
8935          SDNode *NewBR =
8936            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8937          assert(NewBR == User);
8938          (void)NewBR;
8939
8940          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8941                                    Cond.getOperand(0), Cond.getOperand(1));
8942          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8943          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8944                              Chain, Dest, CC, Cmp);
8945          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8946          Cond = Cmp;
8947          addTest = false;
8948          Dest = FalseBB;
8949        }
8950      }
8951    }
8952  }
8953
8954  if (addTest) {
8955    // Look pass the truncate.
8956    if (Cond.getOpcode() == ISD::TRUNCATE)
8957      Cond = Cond.getOperand(0);
8958
8959    // We know the result of AND is compared against zero. Try to match
8960    // it to BT.
8961    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8962      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8963      if (NewSetCC.getNode()) {
8964        CC = NewSetCC.getOperand(0);
8965        Cond = NewSetCC.getOperand(1);
8966        addTest = false;
8967      }
8968    }
8969  }
8970
8971  if (addTest) {
8972    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8973    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8974  }
8975  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8976                     Chain, Dest, CC, Cond);
8977}
8978
8979
8980// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8981// Calls to _alloca is needed to probe the stack when allocating more than 4k
8982// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8983// that the guard pages used by the OS virtual memory manager are allocated in
8984// correct sequence.
8985SDValue
8986X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8987                                           SelectionDAG &DAG) const {
8988  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8989          getTargetMachine().Options.EnableSegmentedStacks) &&
8990         "This should be used only on Windows targets or when segmented stacks "
8991         "are being used");
8992  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8993  DebugLoc dl = Op.getDebugLoc();
8994
8995  // Get the inputs.
8996  SDValue Chain = Op.getOperand(0);
8997  SDValue Size  = Op.getOperand(1);
8998  // FIXME: Ensure alignment here
8999
9000  bool Is64Bit = Subtarget->is64Bit();
9001  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9002
9003  if (getTargetMachine().Options.EnableSegmentedStacks) {
9004    MachineFunction &MF = DAG.getMachineFunction();
9005    MachineRegisterInfo &MRI = MF.getRegInfo();
9006
9007    if (Is64Bit) {
9008      // The 64 bit implementation of segmented stacks needs to clobber both r10
9009      // r11. This makes it impossible to use it along with nested parameters.
9010      const Function *F = MF.getFunction();
9011
9012      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9013           I != E; I++)
9014        if (I->hasNestAttr())
9015          report_fatal_error("Cannot use segmented stacks with functions that "
9016                             "have nested arguments.");
9017    }
9018
9019    const TargetRegisterClass *AddrRegClass =
9020      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9021    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9022    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9023    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9024                                DAG.getRegister(Vreg, SPTy));
9025    SDValue Ops1[2] = { Value, Chain };
9026    return DAG.getMergeValues(Ops1, 2, dl);
9027  } else {
9028    SDValue Flag;
9029    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9030
9031    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9032    Flag = Chain.getValue(1);
9033    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9034
9035    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9036    Flag = Chain.getValue(1);
9037
9038    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9039
9040    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9041    return DAG.getMergeValues(Ops1, 2, dl);
9042  }
9043}
9044
9045SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9046  MachineFunction &MF = DAG.getMachineFunction();
9047  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9048
9049  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9050  DebugLoc DL = Op.getDebugLoc();
9051
9052  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9053    // vastart just stores the address of the VarArgsFrameIndex slot into the
9054    // memory location argument.
9055    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9056                                   getPointerTy());
9057    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9058                        MachinePointerInfo(SV), false, false, 0);
9059  }
9060
9061  // __va_list_tag:
9062  //   gp_offset         (0 - 6 * 8)
9063  //   fp_offset         (48 - 48 + 8 * 16)
9064  //   overflow_arg_area (point to parameters coming in memory).
9065  //   reg_save_area
9066  SmallVector<SDValue, 8> MemOps;
9067  SDValue FIN = Op.getOperand(1);
9068  // Store gp_offset
9069  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9070                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9071                                               MVT::i32),
9072                               FIN, MachinePointerInfo(SV), false, false, 0);
9073  MemOps.push_back(Store);
9074
9075  // Store fp_offset
9076  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9077                    FIN, DAG.getIntPtrConstant(4));
9078  Store = DAG.getStore(Op.getOperand(0), DL,
9079                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9080                                       MVT::i32),
9081                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9082  MemOps.push_back(Store);
9083
9084  // Store ptr to overflow_arg_area
9085  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9086                    FIN, DAG.getIntPtrConstant(4));
9087  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9088                                    getPointerTy());
9089  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9090                       MachinePointerInfo(SV, 8),
9091                       false, false, 0);
9092  MemOps.push_back(Store);
9093
9094  // Store ptr to reg_save_area.
9095  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9096                    FIN, DAG.getIntPtrConstant(8));
9097  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9098                                    getPointerTy());
9099  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9100                       MachinePointerInfo(SV, 16), false, false, 0);
9101  MemOps.push_back(Store);
9102  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9103                     &MemOps[0], MemOps.size());
9104}
9105
9106SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9107  assert(Subtarget->is64Bit() &&
9108         "LowerVAARG only handles 64-bit va_arg!");
9109  assert((Subtarget->isTargetLinux() ||
9110          Subtarget->isTargetDarwin()) &&
9111          "Unhandled target in LowerVAARG");
9112  assert(Op.getNode()->getNumOperands() == 4);
9113  SDValue Chain = Op.getOperand(0);
9114  SDValue SrcPtr = Op.getOperand(1);
9115  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9116  unsigned Align = Op.getConstantOperandVal(3);
9117  DebugLoc dl = Op.getDebugLoc();
9118
9119  EVT ArgVT = Op.getNode()->getValueType(0);
9120  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9121  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9122  uint8_t ArgMode;
9123
9124  // Decide which area this value should be read from.
9125  // TODO: Implement the AMD64 ABI in its entirety. This simple
9126  // selection mechanism works only for the basic types.
9127  if (ArgVT == MVT::f80) {
9128    llvm_unreachable("va_arg for f80 not yet implemented");
9129  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9130    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9131  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9132    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9133  } else {
9134    llvm_unreachable("Unhandled argument type in LowerVAARG");
9135  }
9136
9137  if (ArgMode == 2) {
9138    // Sanity Check: Make sure using fp_offset makes sense.
9139    assert(!getTargetMachine().Options.UseSoftFloat &&
9140           !(DAG.getMachineFunction()
9141                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9142           Subtarget->hasXMM());
9143  }
9144
9145  // Insert VAARG_64 node into the DAG
9146  // VAARG_64 returns two values: Variable Argument Address, Chain
9147  SmallVector<SDValue, 11> InstOps;
9148  InstOps.push_back(Chain);
9149  InstOps.push_back(SrcPtr);
9150  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9151  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9152  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9153  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9154  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9155                                          VTs, &InstOps[0], InstOps.size(),
9156                                          MVT::i64,
9157                                          MachinePointerInfo(SV),
9158                                          /*Align=*/0,
9159                                          /*Volatile=*/false,
9160                                          /*ReadMem=*/true,
9161                                          /*WriteMem=*/true);
9162  Chain = VAARG.getValue(1);
9163
9164  // Load the next argument and return it
9165  return DAG.getLoad(ArgVT, dl,
9166                     Chain,
9167                     VAARG,
9168                     MachinePointerInfo(),
9169                     false, false, false, 0);
9170}
9171
9172SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9173  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9174  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9175  SDValue Chain = Op.getOperand(0);
9176  SDValue DstPtr = Op.getOperand(1);
9177  SDValue SrcPtr = Op.getOperand(2);
9178  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9179  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9180  DebugLoc DL = Op.getDebugLoc();
9181
9182  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9183                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9184                       false,
9185                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9186}
9187
9188SDValue
9189X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9190  DebugLoc dl = Op.getDebugLoc();
9191  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9192  switch (IntNo) {
9193  default: return SDValue();    // Don't custom lower most intrinsics.
9194  // Comparison intrinsics.
9195  case Intrinsic::x86_sse_comieq_ss:
9196  case Intrinsic::x86_sse_comilt_ss:
9197  case Intrinsic::x86_sse_comile_ss:
9198  case Intrinsic::x86_sse_comigt_ss:
9199  case Intrinsic::x86_sse_comige_ss:
9200  case Intrinsic::x86_sse_comineq_ss:
9201  case Intrinsic::x86_sse_ucomieq_ss:
9202  case Intrinsic::x86_sse_ucomilt_ss:
9203  case Intrinsic::x86_sse_ucomile_ss:
9204  case Intrinsic::x86_sse_ucomigt_ss:
9205  case Intrinsic::x86_sse_ucomige_ss:
9206  case Intrinsic::x86_sse_ucomineq_ss:
9207  case Intrinsic::x86_sse2_comieq_sd:
9208  case Intrinsic::x86_sse2_comilt_sd:
9209  case Intrinsic::x86_sse2_comile_sd:
9210  case Intrinsic::x86_sse2_comigt_sd:
9211  case Intrinsic::x86_sse2_comige_sd:
9212  case Intrinsic::x86_sse2_comineq_sd:
9213  case Intrinsic::x86_sse2_ucomieq_sd:
9214  case Intrinsic::x86_sse2_ucomilt_sd:
9215  case Intrinsic::x86_sse2_ucomile_sd:
9216  case Intrinsic::x86_sse2_ucomigt_sd:
9217  case Intrinsic::x86_sse2_ucomige_sd:
9218  case Intrinsic::x86_sse2_ucomineq_sd: {
9219    unsigned Opc = 0;
9220    ISD::CondCode CC = ISD::SETCC_INVALID;
9221    switch (IntNo) {
9222    default: break;
9223    case Intrinsic::x86_sse_comieq_ss:
9224    case Intrinsic::x86_sse2_comieq_sd:
9225      Opc = X86ISD::COMI;
9226      CC = ISD::SETEQ;
9227      break;
9228    case Intrinsic::x86_sse_comilt_ss:
9229    case Intrinsic::x86_sse2_comilt_sd:
9230      Opc = X86ISD::COMI;
9231      CC = ISD::SETLT;
9232      break;
9233    case Intrinsic::x86_sse_comile_ss:
9234    case Intrinsic::x86_sse2_comile_sd:
9235      Opc = X86ISD::COMI;
9236      CC = ISD::SETLE;
9237      break;
9238    case Intrinsic::x86_sse_comigt_ss:
9239    case Intrinsic::x86_sse2_comigt_sd:
9240      Opc = X86ISD::COMI;
9241      CC = ISD::SETGT;
9242      break;
9243    case Intrinsic::x86_sse_comige_ss:
9244    case Intrinsic::x86_sse2_comige_sd:
9245      Opc = X86ISD::COMI;
9246      CC = ISD::SETGE;
9247      break;
9248    case Intrinsic::x86_sse_comineq_ss:
9249    case Intrinsic::x86_sse2_comineq_sd:
9250      Opc = X86ISD::COMI;
9251      CC = ISD::SETNE;
9252      break;
9253    case Intrinsic::x86_sse_ucomieq_ss:
9254    case Intrinsic::x86_sse2_ucomieq_sd:
9255      Opc = X86ISD::UCOMI;
9256      CC = ISD::SETEQ;
9257      break;
9258    case Intrinsic::x86_sse_ucomilt_ss:
9259    case Intrinsic::x86_sse2_ucomilt_sd:
9260      Opc = X86ISD::UCOMI;
9261      CC = ISD::SETLT;
9262      break;
9263    case Intrinsic::x86_sse_ucomile_ss:
9264    case Intrinsic::x86_sse2_ucomile_sd:
9265      Opc = X86ISD::UCOMI;
9266      CC = ISD::SETLE;
9267      break;
9268    case Intrinsic::x86_sse_ucomigt_ss:
9269    case Intrinsic::x86_sse2_ucomigt_sd:
9270      Opc = X86ISD::UCOMI;
9271      CC = ISD::SETGT;
9272      break;
9273    case Intrinsic::x86_sse_ucomige_ss:
9274    case Intrinsic::x86_sse2_ucomige_sd:
9275      Opc = X86ISD::UCOMI;
9276      CC = ISD::SETGE;
9277      break;
9278    case Intrinsic::x86_sse_ucomineq_ss:
9279    case Intrinsic::x86_sse2_ucomineq_sd:
9280      Opc = X86ISD::UCOMI;
9281      CC = ISD::SETNE;
9282      break;
9283    }
9284
9285    SDValue LHS = Op.getOperand(1);
9286    SDValue RHS = Op.getOperand(2);
9287    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9288    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9289    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9290    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9291                                DAG.getConstant(X86CC, MVT::i8), Cond);
9292    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9293  }
9294  // Arithmetic intrinsics.
9295  case Intrinsic::x86_sse3_hadd_ps:
9296  case Intrinsic::x86_sse3_hadd_pd:
9297  case Intrinsic::x86_avx_hadd_ps_256:
9298  case Intrinsic::x86_avx_hadd_pd_256:
9299    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9300                       Op.getOperand(1), Op.getOperand(2));
9301  case Intrinsic::x86_sse3_hsub_ps:
9302  case Intrinsic::x86_sse3_hsub_pd:
9303  case Intrinsic::x86_avx_hsub_ps_256:
9304  case Intrinsic::x86_avx_hsub_pd_256:
9305    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9306                       Op.getOperand(1), Op.getOperand(2));
9307  case Intrinsic::x86_avx2_psllv_d:
9308  case Intrinsic::x86_avx2_psllv_q:
9309  case Intrinsic::x86_avx2_psllv_d_256:
9310  case Intrinsic::x86_avx2_psllv_q_256:
9311    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9312                      Op.getOperand(1), Op.getOperand(2));
9313  case Intrinsic::x86_avx2_psrlv_d:
9314  case Intrinsic::x86_avx2_psrlv_q:
9315  case Intrinsic::x86_avx2_psrlv_d_256:
9316  case Intrinsic::x86_avx2_psrlv_q_256:
9317    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9318                      Op.getOperand(1), Op.getOperand(2));
9319  case Intrinsic::x86_avx2_psrav_d:
9320  case Intrinsic::x86_avx2_psrav_d_256:
9321    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9322                      Op.getOperand(1), Op.getOperand(2));
9323
9324  // ptest and testp intrinsics. The intrinsic these come from are designed to
9325  // return an integer value, not just an instruction so lower it to the ptest
9326  // or testp pattern and a setcc for the result.
9327  case Intrinsic::x86_sse41_ptestz:
9328  case Intrinsic::x86_sse41_ptestc:
9329  case Intrinsic::x86_sse41_ptestnzc:
9330  case Intrinsic::x86_avx_ptestz_256:
9331  case Intrinsic::x86_avx_ptestc_256:
9332  case Intrinsic::x86_avx_ptestnzc_256:
9333  case Intrinsic::x86_avx_vtestz_ps:
9334  case Intrinsic::x86_avx_vtestc_ps:
9335  case Intrinsic::x86_avx_vtestnzc_ps:
9336  case Intrinsic::x86_avx_vtestz_pd:
9337  case Intrinsic::x86_avx_vtestc_pd:
9338  case Intrinsic::x86_avx_vtestnzc_pd:
9339  case Intrinsic::x86_avx_vtestz_ps_256:
9340  case Intrinsic::x86_avx_vtestc_ps_256:
9341  case Intrinsic::x86_avx_vtestnzc_ps_256:
9342  case Intrinsic::x86_avx_vtestz_pd_256:
9343  case Intrinsic::x86_avx_vtestc_pd_256:
9344  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9345    bool IsTestPacked = false;
9346    unsigned X86CC = 0;
9347    switch (IntNo) {
9348    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9349    case Intrinsic::x86_avx_vtestz_ps:
9350    case Intrinsic::x86_avx_vtestz_pd:
9351    case Intrinsic::x86_avx_vtestz_ps_256:
9352    case Intrinsic::x86_avx_vtestz_pd_256:
9353      IsTestPacked = true; // Fallthrough
9354    case Intrinsic::x86_sse41_ptestz:
9355    case Intrinsic::x86_avx_ptestz_256:
9356      // ZF = 1
9357      X86CC = X86::COND_E;
9358      break;
9359    case Intrinsic::x86_avx_vtestc_ps:
9360    case Intrinsic::x86_avx_vtestc_pd:
9361    case Intrinsic::x86_avx_vtestc_ps_256:
9362    case Intrinsic::x86_avx_vtestc_pd_256:
9363      IsTestPacked = true; // Fallthrough
9364    case Intrinsic::x86_sse41_ptestc:
9365    case Intrinsic::x86_avx_ptestc_256:
9366      // CF = 1
9367      X86CC = X86::COND_B;
9368      break;
9369    case Intrinsic::x86_avx_vtestnzc_ps:
9370    case Intrinsic::x86_avx_vtestnzc_pd:
9371    case Intrinsic::x86_avx_vtestnzc_ps_256:
9372    case Intrinsic::x86_avx_vtestnzc_pd_256:
9373      IsTestPacked = true; // Fallthrough
9374    case Intrinsic::x86_sse41_ptestnzc:
9375    case Intrinsic::x86_avx_ptestnzc_256:
9376      // ZF and CF = 0
9377      X86CC = X86::COND_A;
9378      break;
9379    }
9380
9381    SDValue LHS = Op.getOperand(1);
9382    SDValue RHS = Op.getOperand(2);
9383    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9384    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9385    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9386    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9387    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9388  }
9389
9390  // Fix vector shift instructions where the last operand is a non-immediate
9391  // i32 value.
9392  case Intrinsic::x86_avx2_pslli_w:
9393  case Intrinsic::x86_avx2_pslli_d:
9394  case Intrinsic::x86_avx2_pslli_q:
9395  case Intrinsic::x86_avx2_psrli_w:
9396  case Intrinsic::x86_avx2_psrli_d:
9397  case Intrinsic::x86_avx2_psrli_q:
9398  case Intrinsic::x86_avx2_psrai_w:
9399  case Intrinsic::x86_avx2_psrai_d:
9400  case Intrinsic::x86_sse2_pslli_w:
9401  case Intrinsic::x86_sse2_pslli_d:
9402  case Intrinsic::x86_sse2_pslli_q:
9403  case Intrinsic::x86_sse2_psrli_w:
9404  case Intrinsic::x86_sse2_psrli_d:
9405  case Intrinsic::x86_sse2_psrli_q:
9406  case Intrinsic::x86_sse2_psrai_w:
9407  case Intrinsic::x86_sse2_psrai_d:
9408  case Intrinsic::x86_mmx_pslli_w:
9409  case Intrinsic::x86_mmx_pslli_d:
9410  case Intrinsic::x86_mmx_pslli_q:
9411  case Intrinsic::x86_mmx_psrli_w:
9412  case Intrinsic::x86_mmx_psrli_d:
9413  case Intrinsic::x86_mmx_psrli_q:
9414  case Intrinsic::x86_mmx_psrai_w:
9415  case Intrinsic::x86_mmx_psrai_d: {
9416    SDValue ShAmt = Op.getOperand(2);
9417    if (isa<ConstantSDNode>(ShAmt))
9418      return SDValue();
9419
9420    unsigned NewIntNo = 0;
9421    EVT ShAmtVT = MVT::v4i32;
9422    switch (IntNo) {
9423    case Intrinsic::x86_sse2_pslli_w:
9424      NewIntNo = Intrinsic::x86_sse2_psll_w;
9425      break;
9426    case Intrinsic::x86_sse2_pslli_d:
9427      NewIntNo = Intrinsic::x86_sse2_psll_d;
9428      break;
9429    case Intrinsic::x86_sse2_pslli_q:
9430      NewIntNo = Intrinsic::x86_sse2_psll_q;
9431      break;
9432    case Intrinsic::x86_sse2_psrli_w:
9433      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9434      break;
9435    case Intrinsic::x86_sse2_psrli_d:
9436      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9437      break;
9438    case Intrinsic::x86_sse2_psrli_q:
9439      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9440      break;
9441    case Intrinsic::x86_sse2_psrai_w:
9442      NewIntNo = Intrinsic::x86_sse2_psra_w;
9443      break;
9444    case Intrinsic::x86_sse2_psrai_d:
9445      NewIntNo = Intrinsic::x86_sse2_psra_d;
9446      break;
9447    case Intrinsic::x86_avx2_pslli_w:
9448      NewIntNo = Intrinsic::x86_avx2_psll_w;
9449      break;
9450    case Intrinsic::x86_avx2_pslli_d:
9451      NewIntNo = Intrinsic::x86_avx2_psll_d;
9452      break;
9453    case Intrinsic::x86_avx2_pslli_q:
9454      NewIntNo = Intrinsic::x86_avx2_psll_q;
9455      break;
9456    case Intrinsic::x86_avx2_psrli_w:
9457      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9458      break;
9459    case Intrinsic::x86_avx2_psrli_d:
9460      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9461      break;
9462    case Intrinsic::x86_avx2_psrli_q:
9463      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9464      break;
9465    case Intrinsic::x86_avx2_psrai_w:
9466      NewIntNo = Intrinsic::x86_avx2_psra_w;
9467      break;
9468    case Intrinsic::x86_avx2_psrai_d:
9469      NewIntNo = Intrinsic::x86_avx2_psra_d;
9470      break;
9471    default: {
9472      ShAmtVT = MVT::v2i32;
9473      switch (IntNo) {
9474      case Intrinsic::x86_mmx_pslli_w:
9475        NewIntNo = Intrinsic::x86_mmx_psll_w;
9476        break;
9477      case Intrinsic::x86_mmx_pslli_d:
9478        NewIntNo = Intrinsic::x86_mmx_psll_d;
9479        break;
9480      case Intrinsic::x86_mmx_pslli_q:
9481        NewIntNo = Intrinsic::x86_mmx_psll_q;
9482        break;
9483      case Intrinsic::x86_mmx_psrli_w:
9484        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9485        break;
9486      case Intrinsic::x86_mmx_psrli_d:
9487        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9488        break;
9489      case Intrinsic::x86_mmx_psrli_q:
9490        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9491        break;
9492      case Intrinsic::x86_mmx_psrai_w:
9493        NewIntNo = Intrinsic::x86_mmx_psra_w;
9494        break;
9495      case Intrinsic::x86_mmx_psrai_d:
9496        NewIntNo = Intrinsic::x86_mmx_psra_d;
9497        break;
9498      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9499      }
9500      break;
9501    }
9502    }
9503
9504    // The vector shift intrinsics with scalars uses 32b shift amounts but
9505    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9506    // to be zero.
9507    SDValue ShOps[4];
9508    ShOps[0] = ShAmt;
9509    ShOps[1] = DAG.getConstant(0, MVT::i32);
9510    if (ShAmtVT == MVT::v4i32) {
9511      ShOps[2] = DAG.getUNDEF(MVT::i32);
9512      ShOps[3] = DAG.getUNDEF(MVT::i32);
9513      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9514    } else {
9515      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9516// FIXME this must be lowered to get rid of the invalid type.
9517    }
9518
9519    EVT VT = Op.getValueType();
9520    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9521    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9522                       DAG.getConstant(NewIntNo, MVT::i32),
9523                       Op.getOperand(1), ShAmt);
9524  }
9525  }
9526}
9527
9528SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9529                                           SelectionDAG &DAG) const {
9530  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9531  MFI->setReturnAddressIsTaken(true);
9532
9533  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9534  DebugLoc dl = Op.getDebugLoc();
9535
9536  if (Depth > 0) {
9537    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9538    SDValue Offset =
9539      DAG.getConstant(TD->getPointerSize(),
9540                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9541    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9542                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9543                                   FrameAddr, Offset),
9544                       MachinePointerInfo(), false, false, false, 0);
9545  }
9546
9547  // Just load the return address.
9548  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9549  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9550                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9551}
9552
9553SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9554  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9555  MFI->setFrameAddressIsTaken(true);
9556
9557  EVT VT = Op.getValueType();
9558  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9559  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9560  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9561  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9562  while (Depth--)
9563    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9564                            MachinePointerInfo(),
9565                            false, false, false, 0);
9566  return FrameAddr;
9567}
9568
9569SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9570                                                     SelectionDAG &DAG) const {
9571  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9572}
9573
9574SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9575  MachineFunction &MF = DAG.getMachineFunction();
9576  SDValue Chain     = Op.getOperand(0);
9577  SDValue Offset    = Op.getOperand(1);
9578  SDValue Handler   = Op.getOperand(2);
9579  DebugLoc dl       = Op.getDebugLoc();
9580
9581  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9582                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9583                                     getPointerTy());
9584  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9585
9586  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9587                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9588  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9589  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9590                       false, false, 0);
9591  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9592  MF.getRegInfo().addLiveOut(StoreAddrReg);
9593
9594  return DAG.getNode(X86ISD::EH_RETURN, dl,
9595                     MVT::Other,
9596                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9597}
9598
9599SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9600                                                  SelectionDAG &DAG) const {
9601  return Op.getOperand(0);
9602}
9603
9604SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9605                                                SelectionDAG &DAG) const {
9606  SDValue Root = Op.getOperand(0);
9607  SDValue Trmp = Op.getOperand(1); // trampoline
9608  SDValue FPtr = Op.getOperand(2); // nested function
9609  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9610  DebugLoc dl  = Op.getDebugLoc();
9611
9612  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9613
9614  if (Subtarget->is64Bit()) {
9615    SDValue OutChains[6];
9616
9617    // Large code-model.
9618    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9619    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9620
9621    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9622    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9623
9624    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9625
9626    // Load the pointer to the nested function into R11.
9627    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9628    SDValue Addr = Trmp;
9629    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9630                                Addr, MachinePointerInfo(TrmpAddr),
9631                                false, false, 0);
9632
9633    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9634                       DAG.getConstant(2, MVT::i64));
9635    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9636                                MachinePointerInfo(TrmpAddr, 2),
9637                                false, false, 2);
9638
9639    // Load the 'nest' parameter value into R10.
9640    // R10 is specified in X86CallingConv.td
9641    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9642    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9643                       DAG.getConstant(10, MVT::i64));
9644    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9645                                Addr, MachinePointerInfo(TrmpAddr, 10),
9646                                false, false, 0);
9647
9648    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9649                       DAG.getConstant(12, MVT::i64));
9650    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9651                                MachinePointerInfo(TrmpAddr, 12),
9652                                false, false, 2);
9653
9654    // Jump to the nested function.
9655    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9656    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9657                       DAG.getConstant(20, MVT::i64));
9658    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9659                                Addr, MachinePointerInfo(TrmpAddr, 20),
9660                                false, false, 0);
9661
9662    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9663    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9664                       DAG.getConstant(22, MVT::i64));
9665    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9666                                MachinePointerInfo(TrmpAddr, 22),
9667                                false, false, 0);
9668
9669    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9670  } else {
9671    const Function *Func =
9672      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9673    CallingConv::ID CC = Func->getCallingConv();
9674    unsigned NestReg;
9675
9676    switch (CC) {
9677    default:
9678      llvm_unreachable("Unsupported calling convention");
9679    case CallingConv::C:
9680    case CallingConv::X86_StdCall: {
9681      // Pass 'nest' parameter in ECX.
9682      // Must be kept in sync with X86CallingConv.td
9683      NestReg = X86::ECX;
9684
9685      // Check that ECX wasn't needed by an 'inreg' parameter.
9686      FunctionType *FTy = Func->getFunctionType();
9687      const AttrListPtr &Attrs = Func->getAttributes();
9688
9689      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9690        unsigned InRegCount = 0;
9691        unsigned Idx = 1;
9692
9693        for (FunctionType::param_iterator I = FTy->param_begin(),
9694             E = FTy->param_end(); I != E; ++I, ++Idx)
9695          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9696            // FIXME: should only count parameters that are lowered to integers.
9697            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9698
9699        if (InRegCount > 2) {
9700          report_fatal_error("Nest register in use - reduce number of inreg"
9701                             " parameters!");
9702        }
9703      }
9704      break;
9705    }
9706    case CallingConv::X86_FastCall:
9707    case CallingConv::X86_ThisCall:
9708    case CallingConv::Fast:
9709      // Pass 'nest' parameter in EAX.
9710      // Must be kept in sync with X86CallingConv.td
9711      NestReg = X86::EAX;
9712      break;
9713    }
9714
9715    SDValue OutChains[4];
9716    SDValue Addr, Disp;
9717
9718    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9719                       DAG.getConstant(10, MVT::i32));
9720    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9721
9722    // This is storing the opcode for MOV32ri.
9723    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9724    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9725    OutChains[0] = DAG.getStore(Root, dl,
9726                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9727                                Trmp, MachinePointerInfo(TrmpAddr),
9728                                false, false, 0);
9729
9730    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9731                       DAG.getConstant(1, MVT::i32));
9732    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9733                                MachinePointerInfo(TrmpAddr, 1),
9734                                false, false, 1);
9735
9736    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9737    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9738                       DAG.getConstant(5, MVT::i32));
9739    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9740                                MachinePointerInfo(TrmpAddr, 5),
9741                                false, false, 1);
9742
9743    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9744                       DAG.getConstant(6, MVT::i32));
9745    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9746                                MachinePointerInfo(TrmpAddr, 6),
9747                                false, false, 1);
9748
9749    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9750  }
9751}
9752
9753SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9754                                            SelectionDAG &DAG) const {
9755  /*
9756   The rounding mode is in bits 11:10 of FPSR, and has the following
9757   settings:
9758     00 Round to nearest
9759     01 Round to -inf
9760     10 Round to +inf
9761     11 Round to 0
9762
9763  FLT_ROUNDS, on the other hand, expects the following:
9764    -1 Undefined
9765     0 Round to 0
9766     1 Round to nearest
9767     2 Round to +inf
9768     3 Round to -inf
9769
9770  To perform the conversion, we do:
9771    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9772  */
9773
9774  MachineFunction &MF = DAG.getMachineFunction();
9775  const TargetMachine &TM = MF.getTarget();
9776  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9777  unsigned StackAlignment = TFI.getStackAlignment();
9778  EVT VT = Op.getValueType();
9779  DebugLoc DL = Op.getDebugLoc();
9780
9781  // Save FP Control Word to stack slot
9782  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9783  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9784
9785
9786  MachineMemOperand *MMO =
9787   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9788                           MachineMemOperand::MOStore, 2, 2);
9789
9790  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9791  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9792                                          DAG.getVTList(MVT::Other),
9793                                          Ops, 2, MVT::i16, MMO);
9794
9795  // Load FP Control Word from stack slot
9796  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9797                            MachinePointerInfo(), false, false, false, 0);
9798
9799  // Transform as necessary
9800  SDValue CWD1 =
9801    DAG.getNode(ISD::SRL, DL, MVT::i16,
9802                DAG.getNode(ISD::AND, DL, MVT::i16,
9803                            CWD, DAG.getConstant(0x800, MVT::i16)),
9804                DAG.getConstant(11, MVT::i8));
9805  SDValue CWD2 =
9806    DAG.getNode(ISD::SRL, DL, MVT::i16,
9807                DAG.getNode(ISD::AND, DL, MVT::i16,
9808                            CWD, DAG.getConstant(0x400, MVT::i16)),
9809                DAG.getConstant(9, MVT::i8));
9810
9811  SDValue RetVal =
9812    DAG.getNode(ISD::AND, DL, MVT::i16,
9813                DAG.getNode(ISD::ADD, DL, MVT::i16,
9814                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9815                            DAG.getConstant(1, MVT::i16)),
9816                DAG.getConstant(3, MVT::i16));
9817
9818
9819  return DAG.getNode((VT.getSizeInBits() < 16 ?
9820                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9821}
9822
9823SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9824  EVT VT = Op.getValueType();
9825  EVT OpVT = VT;
9826  unsigned NumBits = VT.getSizeInBits();
9827  DebugLoc dl = Op.getDebugLoc();
9828
9829  Op = Op.getOperand(0);
9830  if (VT == MVT::i8) {
9831    // Zero extend to i32 since there is not an i8 bsr.
9832    OpVT = MVT::i32;
9833    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9834  }
9835
9836  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9837  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9838  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9839
9840  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9841  SDValue Ops[] = {
9842    Op,
9843    DAG.getConstant(NumBits+NumBits-1, OpVT),
9844    DAG.getConstant(X86::COND_E, MVT::i8),
9845    Op.getValue(1)
9846  };
9847  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9848
9849  // Finally xor with NumBits-1.
9850  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9851
9852  if (VT == MVT::i8)
9853    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9854  return Op;
9855}
9856
9857SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9858                                                SelectionDAG &DAG) const {
9859  EVT VT = Op.getValueType();
9860  EVT OpVT = VT;
9861  unsigned NumBits = VT.getSizeInBits();
9862  DebugLoc dl = Op.getDebugLoc();
9863
9864  Op = Op.getOperand(0);
9865  if (VT == MVT::i8) {
9866    // Zero extend to i32 since there is not an i8 bsr.
9867    OpVT = MVT::i32;
9868    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9869  }
9870
9871  // Issue a bsr (scan bits in reverse).
9872  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9873  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9874
9875  // And xor with NumBits-1.
9876  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9877
9878  if (VT == MVT::i8)
9879    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9880  return Op;
9881}
9882
9883SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9884  EVT VT = Op.getValueType();
9885  unsigned NumBits = VT.getSizeInBits();
9886  DebugLoc dl = Op.getDebugLoc();
9887  Op = Op.getOperand(0);
9888
9889  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9890  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9891  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9892
9893  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9894  SDValue Ops[] = {
9895    Op,
9896    DAG.getConstant(NumBits, VT),
9897    DAG.getConstant(X86::COND_E, MVT::i8),
9898    Op.getValue(1)
9899  };
9900  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9901}
9902
9903// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9904// ones, and then concatenate the result back.
9905static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9906  EVT VT = Op.getValueType();
9907
9908  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9909         "Unsupported value type for operation");
9910
9911  int NumElems = VT.getVectorNumElements();
9912  DebugLoc dl = Op.getDebugLoc();
9913  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9914  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9915
9916  // Extract the LHS vectors
9917  SDValue LHS = Op.getOperand(0);
9918  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9919  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9920
9921  // Extract the RHS vectors
9922  SDValue RHS = Op.getOperand(1);
9923  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9924  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9925
9926  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9927  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9928
9929  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9930                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9931                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9932}
9933
9934SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9935  assert(Op.getValueType().getSizeInBits() == 256 &&
9936         Op.getValueType().isInteger() &&
9937         "Only handle AVX 256-bit vector integer operation");
9938  return Lower256IntArith(Op, DAG);
9939}
9940
9941SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9942  assert(Op.getValueType().getSizeInBits() == 256 &&
9943         Op.getValueType().isInteger() &&
9944         "Only handle AVX 256-bit vector integer operation");
9945  return Lower256IntArith(Op, DAG);
9946}
9947
9948SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9949  EVT VT = Op.getValueType();
9950
9951  // Decompose 256-bit ops into smaller 128-bit ops.
9952  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9953    return Lower256IntArith(Op, DAG);
9954
9955  DebugLoc dl = Op.getDebugLoc();
9956
9957  SDValue A = Op.getOperand(0);
9958  SDValue B = Op.getOperand(1);
9959
9960  if (VT == MVT::v4i64) {
9961    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9962
9963    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9964    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9965    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9966    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9967    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9968    //
9969    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9970    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9971    //  return AloBlo + AloBhi + AhiBlo;
9972
9973    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9974                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9975                         A, DAG.getConstant(32, MVT::i32));
9976    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9977                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9978                         B, DAG.getConstant(32, MVT::i32));
9979    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9980                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9981                         A, B);
9982    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9983                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9984                         A, Bhi);
9985    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9986                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9987                         Ahi, B);
9988    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9989                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9990                         AloBhi, DAG.getConstant(32, MVT::i32));
9991    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9992                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9993                         AhiBlo, DAG.getConstant(32, MVT::i32));
9994    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9995    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9996    return Res;
9997  }
9998
9999  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10000
10001  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10002  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10003  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10004  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10005  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10006  //
10007  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10008  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10009  //  return AloBlo + AloBhi + AhiBlo;
10010
10011  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10012                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10013                       A, DAG.getConstant(32, MVT::i32));
10014  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10015                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10016                       B, DAG.getConstant(32, MVT::i32));
10017  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10018                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10019                       A, B);
10020  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10021                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10022                       A, Bhi);
10023  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10024                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10025                       Ahi, B);
10026  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10027                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10028                       AloBhi, DAG.getConstant(32, MVT::i32));
10029  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10030                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10031                       AhiBlo, DAG.getConstant(32, MVT::i32));
10032  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10033  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10034  return Res;
10035}
10036
10037SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10038
10039  EVT VT = Op.getValueType();
10040  DebugLoc dl = Op.getDebugLoc();
10041  SDValue R = Op.getOperand(0);
10042  SDValue Amt = Op.getOperand(1);
10043  LLVMContext *Context = DAG.getContext();
10044
10045  if (!Subtarget->hasXMMInt())
10046    return SDValue();
10047
10048  // Optimize shl/srl/sra with constant shift amount.
10049  if (isSplatVector(Amt.getNode())) {
10050    SDValue SclrAmt = Amt->getOperand(0);
10051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10052      uint64_t ShiftAmt = C->getZExtValue();
10053
10054      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10055        // Make a large shift.
10056        SDValue SHL =
10057          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10058                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10059                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10060        // Zero out the rightmost bits.
10061        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10062                                                       MVT::i8));
10063        return DAG.getNode(ISD::AND, dl, VT, SHL,
10064                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10065      }
10066
10067      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10068       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10069                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10070                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10071
10072      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10073       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10074                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10075                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10076
10077      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10078       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10079                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10080                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10081
10082      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10083        // Make a large shift.
10084        SDValue SRL =
10085          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10086                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10087                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10088        // Zero out the leftmost bits.
10089        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10090                                                       MVT::i8));
10091        return DAG.getNode(ISD::AND, dl, VT, SRL,
10092                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10093      }
10094
10095      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10096       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10097                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10098                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10099
10100      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10101       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10102                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10103                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10104
10105      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10106       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10107                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10108                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10109
10110      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10111       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10112                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10113                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10114
10115      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10116       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10117                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10118                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10119
10120      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10121        if (ShiftAmt == 7) {
10122          // R s>> 7  ===  R s< 0
10123          SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10124          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10125        }
10126
10127        // R s>> a === ((R u>> a) ^ m) - m
10128        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10129        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10130                                                       MVT::i8));
10131        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10132        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10133        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10134        return Res;
10135      }
10136
10137      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10138        if (Op.getOpcode() == ISD::SHL) {
10139          // Make a large shift.
10140          SDValue SHL =
10141            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10142                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10143                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10144          // Zero out the rightmost bits.
10145          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10146                                                         MVT::i8));
10147          return DAG.getNode(ISD::AND, dl, VT, SHL,
10148                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10149        }
10150        if (Op.getOpcode() == ISD::SRL) {
10151          // Make a large shift.
10152          SDValue SRL =
10153            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10154                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10155                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10156          // Zero out the leftmost bits.
10157          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10158                                                         MVT::i8));
10159          return DAG.getNode(ISD::AND, dl, VT, SRL,
10160                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10161        }
10162        if (Op.getOpcode() == ISD::SRA) {
10163          if (ShiftAmt == 7) {
10164            // R s>> 7  ===  R s< 0
10165            SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10166            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10167          }
10168
10169          // R s>> a === ((R u>> a) ^ m) - m
10170          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10171          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10172                                                         MVT::i8));
10173          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10174          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10175          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10176          return Res;
10177        }
10178      }
10179    }
10180  }
10181
10182  // Lower SHL with variable shift amount.
10183  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10184    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10185                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10186                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10187
10188    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10189
10190    std::vector<Constant*> CV(4, CI);
10191    Constant *C = ConstantVector::get(CV);
10192    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10193    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10194                                 MachinePointerInfo::getConstantPool(),
10195                                 false, false, false, 16);
10196
10197    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10198    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10199    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10200    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10201  }
10202  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10203    assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10204            "Need SSE2 for pslli/pcmpeq.");
10205
10206    // a = a << 5;
10207    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10208                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10209                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10210
10211    // Turn 'a' into a mask suitable for VSELECT
10212    SDValue VSelM = DAG.getConstant(0x80, VT);
10213    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10214    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10215                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10216                        OpVSel, VSelM);
10217
10218    SDValue CM1 = DAG.getConstant(0x0f, VT);
10219    SDValue CM2 = DAG.getConstant(0x3f, VT);
10220
10221    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10222    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10223    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10224                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10225                    DAG.getConstant(4, MVT::i32));
10226    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10227
10228    // a += a
10229    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10230    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10231    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10232                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10233                        OpVSel, VSelM);
10234
10235    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10236    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10237    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10238                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10239                    DAG.getConstant(2, MVT::i32));
10240    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10241
10242    // a += a
10243    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10244    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10245    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10246                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10247                        OpVSel, VSelM);
10248
10249    // return VSELECT(r, r+r, a);
10250    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10251                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10252    return R;
10253  }
10254
10255  // Decompose 256-bit shifts into smaller 128-bit shifts.
10256  if (VT.getSizeInBits() == 256) {
10257    int NumElems = VT.getVectorNumElements();
10258    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10259    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10260
10261    // Extract the two vectors
10262    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10263    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10264                                     DAG, dl);
10265
10266    // Recreate the shift amount vectors
10267    SDValue Amt1, Amt2;
10268    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10269      // Constant shift amount
10270      SmallVector<SDValue, 4> Amt1Csts;
10271      SmallVector<SDValue, 4> Amt2Csts;
10272      for (int i = 0; i < NumElems/2; ++i)
10273        Amt1Csts.push_back(Amt->getOperand(i));
10274      for (int i = NumElems/2; i < NumElems; ++i)
10275        Amt2Csts.push_back(Amt->getOperand(i));
10276
10277      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10278                                 &Amt1Csts[0], NumElems/2);
10279      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10280                                 &Amt2Csts[0], NumElems/2);
10281    } else {
10282      // Variable shift amount
10283      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10284      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10285                                 DAG, dl);
10286    }
10287
10288    // Issue new vector shifts for the smaller types
10289    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10290    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10291
10292    // Concatenate the result back
10293    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10294  }
10295
10296  return SDValue();
10297}
10298
10299SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10300  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10301  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10302  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10303  // has only one use.
10304  SDNode *N = Op.getNode();
10305  SDValue LHS = N->getOperand(0);
10306  SDValue RHS = N->getOperand(1);
10307  unsigned BaseOp = 0;
10308  unsigned Cond = 0;
10309  DebugLoc DL = Op.getDebugLoc();
10310  switch (Op.getOpcode()) {
10311  default: llvm_unreachable("Unknown ovf instruction!");
10312  case ISD::SADDO:
10313    // A subtract of one will be selected as a INC. Note that INC doesn't
10314    // set CF, so we can't do this for UADDO.
10315    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10316      if (C->isOne()) {
10317        BaseOp = X86ISD::INC;
10318        Cond = X86::COND_O;
10319        break;
10320      }
10321    BaseOp = X86ISD::ADD;
10322    Cond = X86::COND_O;
10323    break;
10324  case ISD::UADDO:
10325    BaseOp = X86ISD::ADD;
10326    Cond = X86::COND_B;
10327    break;
10328  case ISD::SSUBO:
10329    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10330    // set CF, so we can't do this for USUBO.
10331    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10332      if (C->isOne()) {
10333        BaseOp = X86ISD::DEC;
10334        Cond = X86::COND_O;
10335        break;
10336      }
10337    BaseOp = X86ISD::SUB;
10338    Cond = X86::COND_O;
10339    break;
10340  case ISD::USUBO:
10341    BaseOp = X86ISD::SUB;
10342    Cond = X86::COND_B;
10343    break;
10344  case ISD::SMULO:
10345    BaseOp = X86ISD::SMUL;
10346    Cond = X86::COND_O;
10347    break;
10348  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10349    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10350                                 MVT::i32);
10351    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10352
10353    SDValue SetCC =
10354      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10355                  DAG.getConstant(X86::COND_O, MVT::i32),
10356                  SDValue(Sum.getNode(), 2));
10357
10358    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10359  }
10360  }
10361
10362  // Also sets EFLAGS.
10363  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10364  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10365
10366  SDValue SetCC =
10367    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10368                DAG.getConstant(Cond, MVT::i32),
10369                SDValue(Sum.getNode(), 1));
10370
10371  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10372}
10373
10374SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10375                                                  SelectionDAG &DAG) const {
10376  DebugLoc dl = Op.getDebugLoc();
10377  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10378  EVT VT = Op.getValueType();
10379
10380  if (Subtarget->hasXMMInt() && VT.isVector()) {
10381    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10382                        ExtraVT.getScalarType().getSizeInBits();
10383    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10384
10385    unsigned SHLIntrinsicsID = 0;
10386    unsigned SRAIntrinsicsID = 0;
10387    switch (VT.getSimpleVT().SimpleTy) {
10388      default:
10389        return SDValue();
10390      case MVT::v4i32:
10391        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10392        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10393        break;
10394      case MVT::v8i16:
10395        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10396        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10397        break;
10398      case MVT::v8i32:
10399      case MVT::v16i16:
10400        if (!Subtarget->hasAVX())
10401          return SDValue();
10402        if (!Subtarget->hasAVX2()) {
10403          // needs to be split
10404          int NumElems = VT.getVectorNumElements();
10405          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10406          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10407
10408          // Extract the LHS vectors
10409          SDValue LHS = Op.getOperand(0);
10410          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10411          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10412
10413          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10414          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10415
10416          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10417          int ExtraNumElems = ExtraVT.getVectorNumElements();
10418          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10419                                     ExtraNumElems/2);
10420          SDValue Extra = DAG.getValueType(ExtraVT);
10421
10422          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10423          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10424
10425          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10426        }
10427        if (VT == MVT::v8i32) {
10428          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10429          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10430        } else {
10431          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10432          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10433        }
10434    }
10435
10436    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10437                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10438                         Op.getOperand(0), ShAmt);
10439
10440    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10441                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10442                       Tmp1, ShAmt);
10443  }
10444
10445  return SDValue();
10446}
10447
10448
10449SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10450  DebugLoc dl = Op.getDebugLoc();
10451
10452  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10453  // There isn't any reason to disable it if the target processor supports it.
10454  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10455    SDValue Chain = Op.getOperand(0);
10456    SDValue Zero = DAG.getConstant(0, MVT::i32);
10457    SDValue Ops[] = {
10458      DAG.getRegister(X86::ESP, MVT::i32), // Base
10459      DAG.getTargetConstant(1, MVT::i8),   // Scale
10460      DAG.getRegister(0, MVT::i32),        // Index
10461      DAG.getTargetConstant(0, MVT::i32),  // Disp
10462      DAG.getRegister(0, MVT::i32),        // Segment.
10463      Zero,
10464      Chain
10465    };
10466    SDNode *Res =
10467      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10468                          array_lengthof(Ops));
10469    return SDValue(Res, 0);
10470  }
10471
10472  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10473  if (!isDev)
10474    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10475
10476  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10477  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10478  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10479  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10480
10481  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10482  if (!Op1 && !Op2 && !Op3 && Op4)
10483    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10484
10485  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10486  if (Op1 && !Op2 && !Op3 && !Op4)
10487    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10488
10489  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10490  //           (MFENCE)>;
10491  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10492}
10493
10494SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10495                                             SelectionDAG &DAG) const {
10496  DebugLoc dl = Op.getDebugLoc();
10497  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10498    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10499  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10500    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10501
10502  // The only fence that needs an instruction is a sequentially-consistent
10503  // cross-thread fence.
10504  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10505    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10506    // no-sse2). There isn't any reason to disable it if the target processor
10507    // supports it.
10508    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10509      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10510
10511    SDValue Chain = Op.getOperand(0);
10512    SDValue Zero = DAG.getConstant(0, MVT::i32);
10513    SDValue Ops[] = {
10514      DAG.getRegister(X86::ESP, MVT::i32), // Base
10515      DAG.getTargetConstant(1, MVT::i8),   // Scale
10516      DAG.getRegister(0, MVT::i32),        // Index
10517      DAG.getTargetConstant(0, MVT::i32),  // Disp
10518      DAG.getRegister(0, MVT::i32),        // Segment.
10519      Zero,
10520      Chain
10521    };
10522    SDNode *Res =
10523      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10524                         array_lengthof(Ops));
10525    return SDValue(Res, 0);
10526  }
10527
10528  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10529  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10530}
10531
10532
10533SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10534  EVT T = Op.getValueType();
10535  DebugLoc DL = Op.getDebugLoc();
10536  unsigned Reg = 0;
10537  unsigned size = 0;
10538  switch(T.getSimpleVT().SimpleTy) {
10539  default:
10540    assert(false && "Invalid value type!");
10541  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10542  case MVT::i16: Reg = X86::AX;  size = 2; break;
10543  case MVT::i32: Reg = X86::EAX; size = 4; break;
10544  case MVT::i64:
10545    assert(Subtarget->is64Bit() && "Node not type legal!");
10546    Reg = X86::RAX; size = 8;
10547    break;
10548  }
10549  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10550                                    Op.getOperand(2), SDValue());
10551  SDValue Ops[] = { cpIn.getValue(0),
10552                    Op.getOperand(1),
10553                    Op.getOperand(3),
10554                    DAG.getTargetConstant(size, MVT::i8),
10555                    cpIn.getValue(1) };
10556  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10557  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10558  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10559                                           Ops, 5, T, MMO);
10560  SDValue cpOut =
10561    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10562  return cpOut;
10563}
10564
10565SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10566                                                 SelectionDAG &DAG) const {
10567  assert(Subtarget->is64Bit() && "Result not type legalized?");
10568  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10569  SDValue TheChain = Op.getOperand(0);
10570  DebugLoc dl = Op.getDebugLoc();
10571  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10572  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10573  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10574                                   rax.getValue(2));
10575  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10576                            DAG.getConstant(32, MVT::i8));
10577  SDValue Ops[] = {
10578    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10579    rdx.getValue(1)
10580  };
10581  return DAG.getMergeValues(Ops, 2, dl);
10582}
10583
10584SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10585                                            SelectionDAG &DAG) const {
10586  EVT SrcVT = Op.getOperand(0).getValueType();
10587  EVT DstVT = Op.getValueType();
10588  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10589         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10590  assert((DstVT == MVT::i64 ||
10591          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10592         "Unexpected custom BITCAST");
10593  // i64 <=> MMX conversions are Legal.
10594  if (SrcVT==MVT::i64 && DstVT.isVector())
10595    return Op;
10596  if (DstVT==MVT::i64 && SrcVT.isVector())
10597    return Op;
10598  // MMX <=> MMX conversions are Legal.
10599  if (SrcVT.isVector() && DstVT.isVector())
10600    return Op;
10601  // All other conversions need to be expanded.
10602  return SDValue();
10603}
10604
10605SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10606  SDNode *Node = Op.getNode();
10607  DebugLoc dl = Node->getDebugLoc();
10608  EVT T = Node->getValueType(0);
10609  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10610                              DAG.getConstant(0, T), Node->getOperand(2));
10611  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10612                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10613                       Node->getOperand(0),
10614                       Node->getOperand(1), negOp,
10615                       cast<AtomicSDNode>(Node)->getSrcValue(),
10616                       cast<AtomicSDNode>(Node)->getAlignment(),
10617                       cast<AtomicSDNode>(Node)->getOrdering(),
10618                       cast<AtomicSDNode>(Node)->getSynchScope());
10619}
10620
10621static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10622  SDNode *Node = Op.getNode();
10623  DebugLoc dl = Node->getDebugLoc();
10624  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10625
10626  // Convert seq_cst store -> xchg
10627  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10628  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10629  //        (The only way to get a 16-byte store is cmpxchg16b)
10630  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10631  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10632      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10633    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10634                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10635                                 Node->getOperand(0),
10636                                 Node->getOperand(1), Node->getOperand(2),
10637                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10638                                 cast<AtomicSDNode>(Node)->getOrdering(),
10639                                 cast<AtomicSDNode>(Node)->getSynchScope());
10640    return Swap.getValue(1);
10641  }
10642  // Other atomic stores have a simple pattern.
10643  return Op;
10644}
10645
10646static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10647  EVT VT = Op.getNode()->getValueType(0);
10648
10649  // Let legalize expand this if it isn't a legal type yet.
10650  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10651    return SDValue();
10652
10653  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10654
10655  unsigned Opc;
10656  bool ExtraOp = false;
10657  switch (Op.getOpcode()) {
10658  default: assert(0 && "Invalid code");
10659  case ISD::ADDC: Opc = X86ISD::ADD; break;
10660  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10661  case ISD::SUBC: Opc = X86ISD::SUB; break;
10662  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10663  }
10664
10665  if (!ExtraOp)
10666    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10667                       Op.getOperand(1));
10668  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10669                     Op.getOperand(1), Op.getOperand(2));
10670}
10671
10672/// LowerOperation - Provide custom lowering hooks for some operations.
10673///
10674SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10675  switch (Op.getOpcode()) {
10676  default: llvm_unreachable("Should not custom lower this!");
10677  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10678  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10679  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10680  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10681  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10682  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10683  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10684  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10685  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10686  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10687  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10688  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10689  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10690  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10691  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10692  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10693  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10694  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10695  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10696  case ISD::SHL_PARTS:
10697  case ISD::SRA_PARTS:
10698  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10699  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10700  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10701  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10702  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10703  case ISD::FABS:               return LowerFABS(Op, DAG);
10704  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10705  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10706  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10707  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10708  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10709  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10710  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10711  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10712  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10713  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10714  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10715  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10716  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10717  case ISD::FRAME_TO_ARGS_OFFSET:
10718                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10719  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10720  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10721  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10722  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10723  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10724  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10725  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10726  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10727  case ISD::MUL:                return LowerMUL(Op, DAG);
10728  case ISD::SRA:
10729  case ISD::SRL:
10730  case ISD::SHL:                return LowerShift(Op, DAG);
10731  case ISD::SADDO:
10732  case ISD::UADDO:
10733  case ISD::SSUBO:
10734  case ISD::USUBO:
10735  case ISD::SMULO:
10736  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10737  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10738  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10739  case ISD::ADDC:
10740  case ISD::ADDE:
10741  case ISD::SUBC:
10742  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10743  case ISD::ADD:                return LowerADD(Op, DAG);
10744  case ISD::SUB:                return LowerSUB(Op, DAG);
10745  }
10746}
10747
10748static void ReplaceATOMIC_LOAD(SDNode *Node,
10749                                  SmallVectorImpl<SDValue> &Results,
10750                                  SelectionDAG &DAG) {
10751  DebugLoc dl = Node->getDebugLoc();
10752  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10753
10754  // Convert wide load -> cmpxchg8b/cmpxchg16b
10755  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10756  //        (The only way to get a 16-byte load is cmpxchg16b)
10757  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10758  SDValue Zero = DAG.getConstant(0, VT);
10759  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10760                               Node->getOperand(0),
10761                               Node->getOperand(1), Zero, Zero,
10762                               cast<AtomicSDNode>(Node)->getMemOperand(),
10763                               cast<AtomicSDNode>(Node)->getOrdering(),
10764                               cast<AtomicSDNode>(Node)->getSynchScope());
10765  Results.push_back(Swap.getValue(0));
10766  Results.push_back(Swap.getValue(1));
10767}
10768
10769void X86TargetLowering::
10770ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10771                        SelectionDAG &DAG, unsigned NewOp) const {
10772  DebugLoc dl = Node->getDebugLoc();
10773  assert (Node->getValueType(0) == MVT::i64 &&
10774          "Only know how to expand i64 atomics");
10775
10776  SDValue Chain = Node->getOperand(0);
10777  SDValue In1 = Node->getOperand(1);
10778  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10779                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10780  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10781                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10782  SDValue Ops[] = { Chain, In1, In2L, In2H };
10783  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10784  SDValue Result =
10785    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10786                            cast<MemSDNode>(Node)->getMemOperand());
10787  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10788  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10789  Results.push_back(Result.getValue(2));
10790}
10791
10792/// ReplaceNodeResults - Replace a node with an illegal result type
10793/// with a new node built out of custom code.
10794void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10795                                           SmallVectorImpl<SDValue>&Results,
10796                                           SelectionDAG &DAG) const {
10797  DebugLoc dl = N->getDebugLoc();
10798  switch (N->getOpcode()) {
10799  default:
10800    assert(false && "Do not know how to custom type legalize this operation!");
10801    return;
10802  case ISD::SIGN_EXTEND_INREG:
10803  case ISD::ADDC:
10804  case ISD::ADDE:
10805  case ISD::SUBC:
10806  case ISD::SUBE:
10807    // We don't want to expand or promote these.
10808    return;
10809  case ISD::FP_TO_SINT: {
10810    std::pair<SDValue,SDValue> Vals =
10811        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10812    SDValue FIST = Vals.first, StackSlot = Vals.second;
10813    if (FIST.getNode() != 0) {
10814      EVT VT = N->getValueType(0);
10815      // Return a load from the stack slot.
10816      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10817                                    MachinePointerInfo(),
10818                                    false, false, false, 0));
10819    }
10820    return;
10821  }
10822  case ISD::READCYCLECOUNTER: {
10823    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10824    SDValue TheChain = N->getOperand(0);
10825    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10826    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10827                                     rd.getValue(1));
10828    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10829                                     eax.getValue(2));
10830    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10831    SDValue Ops[] = { eax, edx };
10832    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10833    Results.push_back(edx.getValue(1));
10834    return;
10835  }
10836  case ISD::ATOMIC_CMP_SWAP: {
10837    EVT T = N->getValueType(0);
10838    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10839    bool Regs64bit = T == MVT::i128;
10840    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10841    SDValue cpInL, cpInH;
10842    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10843                        DAG.getConstant(0, HalfT));
10844    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10845                        DAG.getConstant(1, HalfT));
10846    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10847                             Regs64bit ? X86::RAX : X86::EAX,
10848                             cpInL, SDValue());
10849    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10850                             Regs64bit ? X86::RDX : X86::EDX,
10851                             cpInH, cpInL.getValue(1));
10852    SDValue swapInL, swapInH;
10853    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10854                          DAG.getConstant(0, HalfT));
10855    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10856                          DAG.getConstant(1, HalfT));
10857    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10858                               Regs64bit ? X86::RBX : X86::EBX,
10859                               swapInL, cpInH.getValue(1));
10860    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10861                               Regs64bit ? X86::RCX : X86::ECX,
10862                               swapInH, swapInL.getValue(1));
10863    SDValue Ops[] = { swapInH.getValue(0),
10864                      N->getOperand(1),
10865                      swapInH.getValue(1) };
10866    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10867    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10868    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10869                                  X86ISD::LCMPXCHG8_DAG;
10870    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10871                                             Ops, 3, T, MMO);
10872    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10873                                        Regs64bit ? X86::RAX : X86::EAX,
10874                                        HalfT, Result.getValue(1));
10875    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10876                                        Regs64bit ? X86::RDX : X86::EDX,
10877                                        HalfT, cpOutL.getValue(2));
10878    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10879    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10880    Results.push_back(cpOutH.getValue(1));
10881    return;
10882  }
10883  case ISD::ATOMIC_LOAD_ADD:
10884    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10885    return;
10886  case ISD::ATOMIC_LOAD_AND:
10887    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10888    return;
10889  case ISD::ATOMIC_LOAD_NAND:
10890    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10891    return;
10892  case ISD::ATOMIC_LOAD_OR:
10893    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10894    return;
10895  case ISD::ATOMIC_LOAD_SUB:
10896    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10897    return;
10898  case ISD::ATOMIC_LOAD_XOR:
10899    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10900    return;
10901  case ISD::ATOMIC_SWAP:
10902    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10903    return;
10904  case ISD::ATOMIC_LOAD:
10905    ReplaceATOMIC_LOAD(N, Results, DAG);
10906  }
10907}
10908
10909const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10910  switch (Opcode) {
10911  default: return NULL;
10912  case X86ISD::BSF:                return "X86ISD::BSF";
10913  case X86ISD::BSR:                return "X86ISD::BSR";
10914  case X86ISD::SHLD:               return "X86ISD::SHLD";
10915  case X86ISD::SHRD:               return "X86ISD::SHRD";
10916  case X86ISD::FAND:               return "X86ISD::FAND";
10917  case X86ISD::FOR:                return "X86ISD::FOR";
10918  case X86ISD::FXOR:               return "X86ISD::FXOR";
10919  case X86ISD::FSRL:               return "X86ISD::FSRL";
10920  case X86ISD::FILD:               return "X86ISD::FILD";
10921  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10922  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10923  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10924  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10925  case X86ISD::FLD:                return "X86ISD::FLD";
10926  case X86ISD::FST:                return "X86ISD::FST";
10927  case X86ISD::CALL:               return "X86ISD::CALL";
10928  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10929  case X86ISD::BT:                 return "X86ISD::BT";
10930  case X86ISD::CMP:                return "X86ISD::CMP";
10931  case X86ISD::COMI:               return "X86ISD::COMI";
10932  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10933  case X86ISD::SETCC:              return "X86ISD::SETCC";
10934  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10935  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10936  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10937  case X86ISD::CMOV:               return "X86ISD::CMOV";
10938  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10939  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10940  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10941  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10942  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10943  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10944  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10945  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10946  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10947  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10948  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10949  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10950  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10951  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10952  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10953  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10954  case X86ISD::HADD:               return "X86ISD::HADD";
10955  case X86ISD::HSUB:               return "X86ISD::HSUB";
10956  case X86ISD::FHADD:              return "X86ISD::FHADD";
10957  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10958  case X86ISD::FMAX:               return "X86ISD::FMAX";
10959  case X86ISD::FMIN:               return "X86ISD::FMIN";
10960  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10961  case X86ISD::FRCP:               return "X86ISD::FRCP";
10962  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10963  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10964  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10965  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10966  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10967  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10968  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10969  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10970  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10971  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10972  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10973  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10974  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10975  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10976  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10977  case X86ISD::VSHL:               return "X86ISD::VSHL";
10978  case X86ISD::VSRL:               return "X86ISD::VSRL";
10979  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10980  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10981  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10982  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10983  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10984  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10985  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10986  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10987  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10988  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10989  case X86ISD::ADD:                return "X86ISD::ADD";
10990  case X86ISD::SUB:                return "X86ISD::SUB";
10991  case X86ISD::ADC:                return "X86ISD::ADC";
10992  case X86ISD::SBB:                return "X86ISD::SBB";
10993  case X86ISD::SMUL:               return "X86ISD::SMUL";
10994  case X86ISD::UMUL:               return "X86ISD::UMUL";
10995  case X86ISD::INC:                return "X86ISD::INC";
10996  case X86ISD::DEC:                return "X86ISD::DEC";
10997  case X86ISD::OR:                 return "X86ISD::OR";
10998  case X86ISD::XOR:                return "X86ISD::XOR";
10999  case X86ISD::AND:                return "X86ISD::AND";
11000  case X86ISD::ANDN:               return "X86ISD::ANDN";
11001  case X86ISD::BLSI:               return "X86ISD::BLSI";
11002  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11003  case X86ISD::BLSR:               return "X86ISD::BLSR";
11004  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11005  case X86ISD::PTEST:              return "X86ISD::PTEST";
11006  case X86ISD::TESTP:              return "X86ISD::TESTP";
11007  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11008  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11009  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11010  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
11011  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11012  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
11013  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
11014  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
11015  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11016  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11017  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11018  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11019  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11020  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11021  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11022  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11023  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
11024  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
11025  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11026  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11027  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11028  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11029  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11030  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11031  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11032  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11033  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11034  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11035  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11036  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11037  }
11038}
11039
11040// isLegalAddressingMode - Return true if the addressing mode represented
11041// by AM is legal for this target, for a load/store of the specified type.
11042bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11043                                              Type *Ty) const {
11044  // X86 supports extremely general addressing modes.
11045  CodeModel::Model M = getTargetMachine().getCodeModel();
11046  Reloc::Model R = getTargetMachine().getRelocationModel();
11047
11048  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11049  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11050    return false;
11051
11052  if (AM.BaseGV) {
11053    unsigned GVFlags =
11054      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11055
11056    // If a reference to this global requires an extra load, we can't fold it.
11057    if (isGlobalStubReference(GVFlags))
11058      return false;
11059
11060    // If BaseGV requires a register for the PIC base, we cannot also have a
11061    // BaseReg specified.
11062    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11063      return false;
11064
11065    // If lower 4G is not available, then we must use rip-relative addressing.
11066    if ((M != CodeModel::Small || R != Reloc::Static) &&
11067        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11068      return false;
11069  }
11070
11071  switch (AM.Scale) {
11072  case 0:
11073  case 1:
11074  case 2:
11075  case 4:
11076  case 8:
11077    // These scales always work.
11078    break;
11079  case 3:
11080  case 5:
11081  case 9:
11082    // These scales are formed with basereg+scalereg.  Only accept if there is
11083    // no basereg yet.
11084    if (AM.HasBaseReg)
11085      return false;
11086    break;
11087  default:  // Other stuff never works.
11088    return false;
11089  }
11090
11091  return true;
11092}
11093
11094
11095bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11096  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11097    return false;
11098  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11099  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11100  if (NumBits1 <= NumBits2)
11101    return false;
11102  return true;
11103}
11104
11105bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11106  if (!VT1.isInteger() || !VT2.isInteger())
11107    return false;
11108  unsigned NumBits1 = VT1.getSizeInBits();
11109  unsigned NumBits2 = VT2.getSizeInBits();
11110  if (NumBits1 <= NumBits2)
11111    return false;
11112  return true;
11113}
11114
11115bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11116  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11117  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11118}
11119
11120bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11121  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11122  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11123}
11124
11125bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11126  // i16 instructions are longer (0x66 prefix) and potentially slower.
11127  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11128}
11129
11130/// isShuffleMaskLegal - Targets can use this to indicate that they only
11131/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11132/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11133/// are assumed to be legal.
11134bool
11135X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11136                                      EVT VT) const {
11137  // Very little shuffling can be done for 64-bit vectors right now.
11138  if (VT.getSizeInBits() == 64)
11139    return false;
11140
11141  // FIXME: pshufb, blends, shifts.
11142  return (VT.getVectorNumElements() == 2 ||
11143          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11144          isMOVLMask(M, VT) ||
11145          isSHUFPMask(M, VT) ||
11146          isPSHUFDMask(M, VT) ||
11147          isPSHUFHWMask(M, VT) ||
11148          isPSHUFLWMask(M, VT) ||
11149          isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()) ||
11150          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11151          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11152          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11153          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11154}
11155
11156bool
11157X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11158                                          EVT VT) const {
11159  unsigned NumElts = VT.getVectorNumElements();
11160  // FIXME: This collection of masks seems suspect.
11161  if (NumElts == 2)
11162    return true;
11163  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11164    return (isMOVLMask(Mask, VT)  ||
11165            isCommutedMOVLMask(Mask, VT, true) ||
11166            isSHUFPMask(Mask, VT) ||
11167            isSHUFPMask(Mask, VT, /* Commuted */ true));
11168  }
11169  return false;
11170}
11171
11172//===----------------------------------------------------------------------===//
11173//                           X86 Scheduler Hooks
11174//===----------------------------------------------------------------------===//
11175
11176// private utility function
11177MachineBasicBlock *
11178X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11179                                                       MachineBasicBlock *MBB,
11180                                                       unsigned regOpc,
11181                                                       unsigned immOpc,
11182                                                       unsigned LoadOpc,
11183                                                       unsigned CXchgOpc,
11184                                                       unsigned notOpc,
11185                                                       unsigned EAXreg,
11186                                                       TargetRegisterClass *RC,
11187                                                       bool invSrc) const {
11188  // For the atomic bitwise operator, we generate
11189  //   thisMBB:
11190  //   newMBB:
11191  //     ld  t1 = [bitinstr.addr]
11192  //     op  t2 = t1, [bitinstr.val]
11193  //     mov EAX = t1
11194  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11195  //     bz  newMBB
11196  //     fallthrough -->nextMBB
11197  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11198  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11199  MachineFunction::iterator MBBIter = MBB;
11200  ++MBBIter;
11201
11202  /// First build the CFG
11203  MachineFunction *F = MBB->getParent();
11204  MachineBasicBlock *thisMBB = MBB;
11205  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11206  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11207  F->insert(MBBIter, newMBB);
11208  F->insert(MBBIter, nextMBB);
11209
11210  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11211  nextMBB->splice(nextMBB->begin(), thisMBB,
11212                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11213                  thisMBB->end());
11214  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11215
11216  // Update thisMBB to fall through to newMBB
11217  thisMBB->addSuccessor(newMBB);
11218
11219  // newMBB jumps to itself and fall through to nextMBB
11220  newMBB->addSuccessor(nextMBB);
11221  newMBB->addSuccessor(newMBB);
11222
11223  // Insert instructions into newMBB based on incoming instruction
11224  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11225         "unexpected number of operands");
11226  DebugLoc dl = bInstr->getDebugLoc();
11227  MachineOperand& destOper = bInstr->getOperand(0);
11228  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11229  int numArgs = bInstr->getNumOperands() - 1;
11230  for (int i=0; i < numArgs; ++i)
11231    argOpers[i] = &bInstr->getOperand(i+1);
11232
11233  // x86 address has 4 operands: base, index, scale, and displacement
11234  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11235  int valArgIndx = lastAddrIndx + 1;
11236
11237  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11238  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11239  for (int i=0; i <= lastAddrIndx; ++i)
11240    (*MIB).addOperand(*argOpers[i]);
11241
11242  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11243  if (invSrc) {
11244    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11245  }
11246  else
11247    tt = t1;
11248
11249  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11250  assert((argOpers[valArgIndx]->isReg() ||
11251          argOpers[valArgIndx]->isImm()) &&
11252         "invalid operand");
11253  if (argOpers[valArgIndx]->isReg())
11254    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11255  else
11256    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11257  MIB.addReg(tt);
11258  (*MIB).addOperand(*argOpers[valArgIndx]);
11259
11260  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11261  MIB.addReg(t1);
11262
11263  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11264  for (int i=0; i <= lastAddrIndx; ++i)
11265    (*MIB).addOperand(*argOpers[i]);
11266  MIB.addReg(t2);
11267  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11268  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11269                    bInstr->memoperands_end());
11270
11271  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11272  MIB.addReg(EAXreg);
11273
11274  // insert branch
11275  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11276
11277  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11278  return nextMBB;
11279}
11280
11281// private utility function:  64 bit atomics on 32 bit host.
11282MachineBasicBlock *
11283X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11284                                                       MachineBasicBlock *MBB,
11285                                                       unsigned regOpcL,
11286                                                       unsigned regOpcH,
11287                                                       unsigned immOpcL,
11288                                                       unsigned immOpcH,
11289                                                       bool invSrc) const {
11290  // For the atomic bitwise operator, we generate
11291  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11292  //     ld t1,t2 = [bitinstr.addr]
11293  //   newMBB:
11294  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11295  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11296  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11297  //     mov ECX, EBX <- t5, t6
11298  //     mov EAX, EDX <- t1, t2
11299  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11300  //     mov t3, t4 <- EAX, EDX
11301  //     bz  newMBB
11302  //     result in out1, out2
11303  //     fallthrough -->nextMBB
11304
11305  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11306  const unsigned LoadOpc = X86::MOV32rm;
11307  const unsigned NotOpc = X86::NOT32r;
11308  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11309  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11310  MachineFunction::iterator MBBIter = MBB;
11311  ++MBBIter;
11312
11313  /// First build the CFG
11314  MachineFunction *F = MBB->getParent();
11315  MachineBasicBlock *thisMBB = MBB;
11316  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11317  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11318  F->insert(MBBIter, newMBB);
11319  F->insert(MBBIter, nextMBB);
11320
11321  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11322  nextMBB->splice(nextMBB->begin(), thisMBB,
11323                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11324                  thisMBB->end());
11325  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11326
11327  // Update thisMBB to fall through to newMBB
11328  thisMBB->addSuccessor(newMBB);
11329
11330  // newMBB jumps to itself and fall through to nextMBB
11331  newMBB->addSuccessor(nextMBB);
11332  newMBB->addSuccessor(newMBB);
11333
11334  DebugLoc dl = bInstr->getDebugLoc();
11335  // Insert instructions into newMBB based on incoming instruction
11336  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11337  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11338         "unexpected number of operands");
11339  MachineOperand& dest1Oper = bInstr->getOperand(0);
11340  MachineOperand& dest2Oper = bInstr->getOperand(1);
11341  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11342  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11343    argOpers[i] = &bInstr->getOperand(i+2);
11344
11345    // We use some of the operands multiple times, so conservatively just
11346    // clear any kill flags that might be present.
11347    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11348      argOpers[i]->setIsKill(false);
11349  }
11350
11351  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11352  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11353
11354  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11355  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11356  for (int i=0; i <= lastAddrIndx; ++i)
11357    (*MIB).addOperand(*argOpers[i]);
11358  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11359  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11360  // add 4 to displacement.
11361  for (int i=0; i <= lastAddrIndx-2; ++i)
11362    (*MIB).addOperand(*argOpers[i]);
11363  MachineOperand newOp3 = *(argOpers[3]);
11364  if (newOp3.isImm())
11365    newOp3.setImm(newOp3.getImm()+4);
11366  else
11367    newOp3.setOffset(newOp3.getOffset()+4);
11368  (*MIB).addOperand(newOp3);
11369  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11370
11371  // t3/4 are defined later, at the bottom of the loop
11372  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11373  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11374  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11375    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11376  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11377    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11378
11379  // The subsequent operations should be using the destination registers of
11380  //the PHI instructions.
11381  if (invSrc) {
11382    t1 = F->getRegInfo().createVirtualRegister(RC);
11383    t2 = F->getRegInfo().createVirtualRegister(RC);
11384    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11385    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11386  } else {
11387    t1 = dest1Oper.getReg();
11388    t2 = dest2Oper.getReg();
11389  }
11390
11391  int valArgIndx = lastAddrIndx + 1;
11392  assert((argOpers[valArgIndx]->isReg() ||
11393          argOpers[valArgIndx]->isImm()) &&
11394         "invalid operand");
11395  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11396  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11397  if (argOpers[valArgIndx]->isReg())
11398    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11399  else
11400    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11401  if (regOpcL != X86::MOV32rr)
11402    MIB.addReg(t1);
11403  (*MIB).addOperand(*argOpers[valArgIndx]);
11404  assert(argOpers[valArgIndx + 1]->isReg() ==
11405         argOpers[valArgIndx]->isReg());
11406  assert(argOpers[valArgIndx + 1]->isImm() ==
11407         argOpers[valArgIndx]->isImm());
11408  if (argOpers[valArgIndx + 1]->isReg())
11409    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11410  else
11411    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11412  if (regOpcH != X86::MOV32rr)
11413    MIB.addReg(t2);
11414  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11415
11416  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11417  MIB.addReg(t1);
11418  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11419  MIB.addReg(t2);
11420
11421  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11422  MIB.addReg(t5);
11423  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11424  MIB.addReg(t6);
11425
11426  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11427  for (int i=0; i <= lastAddrIndx; ++i)
11428    (*MIB).addOperand(*argOpers[i]);
11429
11430  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11431  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11432                    bInstr->memoperands_end());
11433
11434  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11435  MIB.addReg(X86::EAX);
11436  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11437  MIB.addReg(X86::EDX);
11438
11439  // insert branch
11440  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11441
11442  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11443  return nextMBB;
11444}
11445
11446// private utility function
11447MachineBasicBlock *
11448X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11449                                                      MachineBasicBlock *MBB,
11450                                                      unsigned cmovOpc) const {
11451  // For the atomic min/max operator, we generate
11452  //   thisMBB:
11453  //   newMBB:
11454  //     ld t1 = [min/max.addr]
11455  //     mov t2 = [min/max.val]
11456  //     cmp  t1, t2
11457  //     cmov[cond] t2 = t1
11458  //     mov EAX = t1
11459  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11460  //     bz   newMBB
11461  //     fallthrough -->nextMBB
11462  //
11463  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11464  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11465  MachineFunction::iterator MBBIter = MBB;
11466  ++MBBIter;
11467
11468  /// First build the CFG
11469  MachineFunction *F = MBB->getParent();
11470  MachineBasicBlock *thisMBB = MBB;
11471  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11472  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11473  F->insert(MBBIter, newMBB);
11474  F->insert(MBBIter, nextMBB);
11475
11476  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11477  nextMBB->splice(nextMBB->begin(), thisMBB,
11478                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11479                  thisMBB->end());
11480  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11481
11482  // Update thisMBB to fall through to newMBB
11483  thisMBB->addSuccessor(newMBB);
11484
11485  // newMBB jumps to newMBB and fall through to nextMBB
11486  newMBB->addSuccessor(nextMBB);
11487  newMBB->addSuccessor(newMBB);
11488
11489  DebugLoc dl = mInstr->getDebugLoc();
11490  // Insert instructions into newMBB based on incoming instruction
11491  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11492         "unexpected number of operands");
11493  MachineOperand& destOper = mInstr->getOperand(0);
11494  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11495  int numArgs = mInstr->getNumOperands() - 1;
11496  for (int i=0; i < numArgs; ++i)
11497    argOpers[i] = &mInstr->getOperand(i+1);
11498
11499  // x86 address has 4 operands: base, index, scale, and displacement
11500  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11501  int valArgIndx = lastAddrIndx + 1;
11502
11503  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11504  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11505  for (int i=0; i <= lastAddrIndx; ++i)
11506    (*MIB).addOperand(*argOpers[i]);
11507
11508  // We only support register and immediate values
11509  assert((argOpers[valArgIndx]->isReg() ||
11510          argOpers[valArgIndx]->isImm()) &&
11511         "invalid operand");
11512
11513  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11514  if (argOpers[valArgIndx]->isReg())
11515    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11516  else
11517    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11518  (*MIB).addOperand(*argOpers[valArgIndx]);
11519
11520  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11521  MIB.addReg(t1);
11522
11523  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11524  MIB.addReg(t1);
11525  MIB.addReg(t2);
11526
11527  // Generate movc
11528  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11529  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11530  MIB.addReg(t2);
11531  MIB.addReg(t1);
11532
11533  // Cmp and exchange if none has modified the memory location
11534  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11535  for (int i=0; i <= lastAddrIndx; ++i)
11536    (*MIB).addOperand(*argOpers[i]);
11537  MIB.addReg(t3);
11538  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11539  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11540                    mInstr->memoperands_end());
11541
11542  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11543  MIB.addReg(X86::EAX);
11544
11545  // insert branch
11546  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11547
11548  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11549  return nextMBB;
11550}
11551
11552// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11553// or XMM0_V32I8 in AVX all of this code can be replaced with that
11554// in the .td file.
11555MachineBasicBlock *
11556X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11557                            unsigned numArgs, bool memArg) const {
11558  assert(Subtarget->hasSSE42orAVX() &&
11559         "Target must have SSE4.2 or AVX features enabled");
11560
11561  DebugLoc dl = MI->getDebugLoc();
11562  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11563  unsigned Opc;
11564  if (!Subtarget->hasAVX()) {
11565    if (memArg)
11566      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11567    else
11568      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11569  } else {
11570    if (memArg)
11571      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11572    else
11573      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11574  }
11575
11576  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11577  for (unsigned i = 0; i < numArgs; ++i) {
11578    MachineOperand &Op = MI->getOperand(i+1);
11579    if (!(Op.isReg() && Op.isImplicit()))
11580      MIB.addOperand(Op);
11581  }
11582  BuildMI(*BB, MI, dl,
11583    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11584             MI->getOperand(0).getReg())
11585    .addReg(X86::XMM0);
11586
11587  MI->eraseFromParent();
11588  return BB;
11589}
11590
11591MachineBasicBlock *
11592X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11593  DebugLoc dl = MI->getDebugLoc();
11594  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11595
11596  // Address into RAX/EAX, other two args into ECX, EDX.
11597  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11598  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11599  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11600  for (int i = 0; i < X86::AddrNumOperands; ++i)
11601    MIB.addOperand(MI->getOperand(i));
11602
11603  unsigned ValOps = X86::AddrNumOperands;
11604  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11605    .addReg(MI->getOperand(ValOps).getReg());
11606  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11607    .addReg(MI->getOperand(ValOps+1).getReg());
11608
11609  // The instruction doesn't actually take any operands though.
11610  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11611
11612  MI->eraseFromParent(); // The pseudo is gone now.
11613  return BB;
11614}
11615
11616MachineBasicBlock *
11617X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11618  DebugLoc dl = MI->getDebugLoc();
11619  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11620
11621  // First arg in ECX, the second in EAX.
11622  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11623    .addReg(MI->getOperand(0).getReg());
11624  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11625    .addReg(MI->getOperand(1).getReg());
11626
11627  // The instruction doesn't actually take any operands though.
11628  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11629
11630  MI->eraseFromParent(); // The pseudo is gone now.
11631  return BB;
11632}
11633
11634MachineBasicBlock *
11635X86TargetLowering::EmitVAARG64WithCustomInserter(
11636                   MachineInstr *MI,
11637                   MachineBasicBlock *MBB) const {
11638  // Emit va_arg instruction on X86-64.
11639
11640  // Operands to this pseudo-instruction:
11641  // 0  ) Output        : destination address (reg)
11642  // 1-5) Input         : va_list address (addr, i64mem)
11643  // 6  ) ArgSize       : Size (in bytes) of vararg type
11644  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11645  // 8  ) Align         : Alignment of type
11646  // 9  ) EFLAGS (implicit-def)
11647
11648  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11649  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11650
11651  unsigned DestReg = MI->getOperand(0).getReg();
11652  MachineOperand &Base = MI->getOperand(1);
11653  MachineOperand &Scale = MI->getOperand(2);
11654  MachineOperand &Index = MI->getOperand(3);
11655  MachineOperand &Disp = MI->getOperand(4);
11656  MachineOperand &Segment = MI->getOperand(5);
11657  unsigned ArgSize = MI->getOperand(6).getImm();
11658  unsigned ArgMode = MI->getOperand(7).getImm();
11659  unsigned Align = MI->getOperand(8).getImm();
11660
11661  // Memory Reference
11662  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11663  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11664  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11665
11666  // Machine Information
11667  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11668  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11669  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11670  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11671  DebugLoc DL = MI->getDebugLoc();
11672
11673  // struct va_list {
11674  //   i32   gp_offset
11675  //   i32   fp_offset
11676  //   i64   overflow_area (address)
11677  //   i64   reg_save_area (address)
11678  // }
11679  // sizeof(va_list) = 24
11680  // alignment(va_list) = 8
11681
11682  unsigned TotalNumIntRegs = 6;
11683  unsigned TotalNumXMMRegs = 8;
11684  bool UseGPOffset = (ArgMode == 1);
11685  bool UseFPOffset = (ArgMode == 2);
11686  unsigned MaxOffset = TotalNumIntRegs * 8 +
11687                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11688
11689  /* Align ArgSize to a multiple of 8 */
11690  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11691  bool NeedsAlign = (Align > 8);
11692
11693  MachineBasicBlock *thisMBB = MBB;
11694  MachineBasicBlock *overflowMBB;
11695  MachineBasicBlock *offsetMBB;
11696  MachineBasicBlock *endMBB;
11697
11698  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11699  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11700  unsigned OffsetReg = 0;
11701
11702  if (!UseGPOffset && !UseFPOffset) {
11703    // If we only pull from the overflow region, we don't create a branch.
11704    // We don't need to alter control flow.
11705    OffsetDestReg = 0; // unused
11706    OverflowDestReg = DestReg;
11707
11708    offsetMBB = NULL;
11709    overflowMBB = thisMBB;
11710    endMBB = thisMBB;
11711  } else {
11712    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11713    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11714    // If not, pull from overflow_area. (branch to overflowMBB)
11715    //
11716    //       thisMBB
11717    //         |     .
11718    //         |        .
11719    //     offsetMBB   overflowMBB
11720    //         |        .
11721    //         |     .
11722    //        endMBB
11723
11724    // Registers for the PHI in endMBB
11725    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11726    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11727
11728    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11729    MachineFunction *MF = MBB->getParent();
11730    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11731    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11732    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11733
11734    MachineFunction::iterator MBBIter = MBB;
11735    ++MBBIter;
11736
11737    // Insert the new basic blocks
11738    MF->insert(MBBIter, offsetMBB);
11739    MF->insert(MBBIter, overflowMBB);
11740    MF->insert(MBBIter, endMBB);
11741
11742    // Transfer the remainder of MBB and its successor edges to endMBB.
11743    endMBB->splice(endMBB->begin(), thisMBB,
11744                    llvm::next(MachineBasicBlock::iterator(MI)),
11745                    thisMBB->end());
11746    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11747
11748    // Make offsetMBB and overflowMBB successors of thisMBB
11749    thisMBB->addSuccessor(offsetMBB);
11750    thisMBB->addSuccessor(overflowMBB);
11751
11752    // endMBB is a successor of both offsetMBB and overflowMBB
11753    offsetMBB->addSuccessor(endMBB);
11754    overflowMBB->addSuccessor(endMBB);
11755
11756    // Load the offset value into a register
11757    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11758    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11759      .addOperand(Base)
11760      .addOperand(Scale)
11761      .addOperand(Index)
11762      .addDisp(Disp, UseFPOffset ? 4 : 0)
11763      .addOperand(Segment)
11764      .setMemRefs(MMOBegin, MMOEnd);
11765
11766    // Check if there is enough room left to pull this argument.
11767    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11768      .addReg(OffsetReg)
11769      .addImm(MaxOffset + 8 - ArgSizeA8);
11770
11771    // Branch to "overflowMBB" if offset >= max
11772    // Fall through to "offsetMBB" otherwise
11773    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11774      .addMBB(overflowMBB);
11775  }
11776
11777  // In offsetMBB, emit code to use the reg_save_area.
11778  if (offsetMBB) {
11779    assert(OffsetReg != 0);
11780
11781    // Read the reg_save_area address.
11782    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11783    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11784      .addOperand(Base)
11785      .addOperand(Scale)
11786      .addOperand(Index)
11787      .addDisp(Disp, 16)
11788      .addOperand(Segment)
11789      .setMemRefs(MMOBegin, MMOEnd);
11790
11791    // Zero-extend the offset
11792    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11793      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11794        .addImm(0)
11795        .addReg(OffsetReg)
11796        .addImm(X86::sub_32bit);
11797
11798    // Add the offset to the reg_save_area to get the final address.
11799    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11800      .addReg(OffsetReg64)
11801      .addReg(RegSaveReg);
11802
11803    // Compute the offset for the next argument
11804    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11805    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11806      .addReg(OffsetReg)
11807      .addImm(UseFPOffset ? 16 : 8);
11808
11809    // Store it back into the va_list.
11810    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11811      .addOperand(Base)
11812      .addOperand(Scale)
11813      .addOperand(Index)
11814      .addDisp(Disp, UseFPOffset ? 4 : 0)
11815      .addOperand(Segment)
11816      .addReg(NextOffsetReg)
11817      .setMemRefs(MMOBegin, MMOEnd);
11818
11819    // Jump to endMBB
11820    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11821      .addMBB(endMBB);
11822  }
11823
11824  //
11825  // Emit code to use overflow area
11826  //
11827
11828  // Load the overflow_area address into a register.
11829  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11830  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11831    .addOperand(Base)
11832    .addOperand(Scale)
11833    .addOperand(Index)
11834    .addDisp(Disp, 8)
11835    .addOperand(Segment)
11836    .setMemRefs(MMOBegin, MMOEnd);
11837
11838  // If we need to align it, do so. Otherwise, just copy the address
11839  // to OverflowDestReg.
11840  if (NeedsAlign) {
11841    // Align the overflow address
11842    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11843    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11844
11845    // aligned_addr = (addr + (align-1)) & ~(align-1)
11846    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11847      .addReg(OverflowAddrReg)
11848      .addImm(Align-1);
11849
11850    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11851      .addReg(TmpReg)
11852      .addImm(~(uint64_t)(Align-1));
11853  } else {
11854    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11855      .addReg(OverflowAddrReg);
11856  }
11857
11858  // Compute the next overflow address after this argument.
11859  // (the overflow address should be kept 8-byte aligned)
11860  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11861  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11862    .addReg(OverflowDestReg)
11863    .addImm(ArgSizeA8);
11864
11865  // Store the new overflow address.
11866  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11867    .addOperand(Base)
11868    .addOperand(Scale)
11869    .addOperand(Index)
11870    .addDisp(Disp, 8)
11871    .addOperand(Segment)
11872    .addReg(NextAddrReg)
11873    .setMemRefs(MMOBegin, MMOEnd);
11874
11875  // If we branched, emit the PHI to the front of endMBB.
11876  if (offsetMBB) {
11877    BuildMI(*endMBB, endMBB->begin(), DL,
11878            TII->get(X86::PHI), DestReg)
11879      .addReg(OffsetDestReg).addMBB(offsetMBB)
11880      .addReg(OverflowDestReg).addMBB(overflowMBB);
11881  }
11882
11883  // Erase the pseudo instruction
11884  MI->eraseFromParent();
11885
11886  return endMBB;
11887}
11888
11889MachineBasicBlock *
11890X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11891                                                 MachineInstr *MI,
11892                                                 MachineBasicBlock *MBB) const {
11893  // Emit code to save XMM registers to the stack. The ABI says that the
11894  // number of registers to save is given in %al, so it's theoretically
11895  // possible to do an indirect jump trick to avoid saving all of them,
11896  // however this code takes a simpler approach and just executes all
11897  // of the stores if %al is non-zero. It's less code, and it's probably
11898  // easier on the hardware branch predictor, and stores aren't all that
11899  // expensive anyway.
11900
11901  // Create the new basic blocks. One block contains all the XMM stores,
11902  // and one block is the final destination regardless of whether any
11903  // stores were performed.
11904  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11905  MachineFunction *F = MBB->getParent();
11906  MachineFunction::iterator MBBIter = MBB;
11907  ++MBBIter;
11908  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11909  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11910  F->insert(MBBIter, XMMSaveMBB);
11911  F->insert(MBBIter, EndMBB);
11912
11913  // Transfer the remainder of MBB and its successor edges to EndMBB.
11914  EndMBB->splice(EndMBB->begin(), MBB,
11915                 llvm::next(MachineBasicBlock::iterator(MI)),
11916                 MBB->end());
11917  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11918
11919  // The original block will now fall through to the XMM save block.
11920  MBB->addSuccessor(XMMSaveMBB);
11921  // The XMMSaveMBB will fall through to the end block.
11922  XMMSaveMBB->addSuccessor(EndMBB);
11923
11924  // Now add the instructions.
11925  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11926  DebugLoc DL = MI->getDebugLoc();
11927
11928  unsigned CountReg = MI->getOperand(0).getReg();
11929  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11930  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11931
11932  if (!Subtarget->isTargetWin64()) {
11933    // If %al is 0, branch around the XMM save block.
11934    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11935    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11936    MBB->addSuccessor(EndMBB);
11937  }
11938
11939  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11940  // In the XMM save block, save all the XMM argument registers.
11941  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11942    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11943    MachineMemOperand *MMO =
11944      F->getMachineMemOperand(
11945          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11946        MachineMemOperand::MOStore,
11947        /*Size=*/16, /*Align=*/16);
11948    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11949      .addFrameIndex(RegSaveFrameIndex)
11950      .addImm(/*Scale=*/1)
11951      .addReg(/*IndexReg=*/0)
11952      .addImm(/*Disp=*/Offset)
11953      .addReg(/*Segment=*/0)
11954      .addReg(MI->getOperand(i).getReg())
11955      .addMemOperand(MMO);
11956  }
11957
11958  MI->eraseFromParent();   // The pseudo instruction is gone now.
11959
11960  return EndMBB;
11961}
11962
11963MachineBasicBlock *
11964X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11965                                     MachineBasicBlock *BB) const {
11966  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11967  DebugLoc DL = MI->getDebugLoc();
11968
11969  // To "insert" a SELECT_CC instruction, we actually have to insert the
11970  // diamond control-flow pattern.  The incoming instruction knows the
11971  // destination vreg to set, the condition code register to branch on, the
11972  // true/false values to select between, and a branch opcode to use.
11973  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11974  MachineFunction::iterator It = BB;
11975  ++It;
11976
11977  //  thisMBB:
11978  //  ...
11979  //   TrueVal = ...
11980  //   cmpTY ccX, r1, r2
11981  //   bCC copy1MBB
11982  //   fallthrough --> copy0MBB
11983  MachineBasicBlock *thisMBB = BB;
11984  MachineFunction *F = BB->getParent();
11985  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11986  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11987  F->insert(It, copy0MBB);
11988  F->insert(It, sinkMBB);
11989
11990  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11991  // live into the sink and copy blocks.
11992  if (!MI->killsRegister(X86::EFLAGS)) {
11993    copy0MBB->addLiveIn(X86::EFLAGS);
11994    sinkMBB->addLiveIn(X86::EFLAGS);
11995  }
11996
11997  // Transfer the remainder of BB and its successor edges to sinkMBB.
11998  sinkMBB->splice(sinkMBB->begin(), BB,
11999                  llvm::next(MachineBasicBlock::iterator(MI)),
12000                  BB->end());
12001  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12002
12003  // Add the true and fallthrough blocks as its successors.
12004  BB->addSuccessor(copy0MBB);
12005  BB->addSuccessor(sinkMBB);
12006
12007  // Create the conditional branch instruction.
12008  unsigned Opc =
12009    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12010  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12011
12012  //  copy0MBB:
12013  //   %FalseValue = ...
12014  //   # fallthrough to sinkMBB
12015  copy0MBB->addSuccessor(sinkMBB);
12016
12017  //  sinkMBB:
12018  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12019  //  ...
12020  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12021          TII->get(X86::PHI), MI->getOperand(0).getReg())
12022    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12023    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12024
12025  MI->eraseFromParent();   // The pseudo instruction is gone now.
12026  return sinkMBB;
12027}
12028
12029MachineBasicBlock *
12030X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12031                                        bool Is64Bit) const {
12032  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12033  DebugLoc DL = MI->getDebugLoc();
12034  MachineFunction *MF = BB->getParent();
12035  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12036
12037  assert(getTargetMachine().Options.EnableSegmentedStacks);
12038
12039  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12040  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12041
12042  // BB:
12043  //  ... [Till the alloca]
12044  // If stacklet is not large enough, jump to mallocMBB
12045  //
12046  // bumpMBB:
12047  //  Allocate by subtracting from RSP
12048  //  Jump to continueMBB
12049  //
12050  // mallocMBB:
12051  //  Allocate by call to runtime
12052  //
12053  // continueMBB:
12054  //  ...
12055  //  [rest of original BB]
12056  //
12057
12058  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12059  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12060  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12061
12062  MachineRegisterInfo &MRI = MF->getRegInfo();
12063  const TargetRegisterClass *AddrRegClass =
12064    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12065
12066  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12067    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12068    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12069    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12070    sizeVReg = MI->getOperand(1).getReg(),
12071    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12072
12073  MachineFunction::iterator MBBIter = BB;
12074  ++MBBIter;
12075
12076  MF->insert(MBBIter, bumpMBB);
12077  MF->insert(MBBIter, mallocMBB);
12078  MF->insert(MBBIter, continueMBB);
12079
12080  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12081                      (MachineBasicBlock::iterator(MI)), BB->end());
12082  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12083
12084  // Add code to the main basic block to check if the stack limit has been hit,
12085  // and if so, jump to mallocMBB otherwise to bumpMBB.
12086  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12087  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12088    .addReg(tmpSPVReg).addReg(sizeVReg);
12089  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12090    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12091    .addReg(SPLimitVReg);
12092  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12093
12094  // bumpMBB simply decreases the stack pointer, since we know the current
12095  // stacklet has enough space.
12096  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12097    .addReg(SPLimitVReg);
12098  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12099    .addReg(SPLimitVReg);
12100  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12101
12102  // Calls into a routine in libgcc to allocate more space from the heap.
12103  if (Is64Bit) {
12104    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12105      .addReg(sizeVReg);
12106    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12107    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12108  } else {
12109    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12110      .addImm(12);
12111    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12112    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12113      .addExternalSymbol("__morestack_allocate_stack_space");
12114  }
12115
12116  if (!Is64Bit)
12117    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12118      .addImm(16);
12119
12120  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12121    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12122  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12123
12124  // Set up the CFG correctly.
12125  BB->addSuccessor(bumpMBB);
12126  BB->addSuccessor(mallocMBB);
12127  mallocMBB->addSuccessor(continueMBB);
12128  bumpMBB->addSuccessor(continueMBB);
12129
12130  // Take care of the PHI nodes.
12131  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12132          MI->getOperand(0).getReg())
12133    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12134    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12135
12136  // Delete the original pseudo instruction.
12137  MI->eraseFromParent();
12138
12139  // And we're done.
12140  return continueMBB;
12141}
12142
12143MachineBasicBlock *
12144X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12145                                          MachineBasicBlock *BB) const {
12146  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12147  DebugLoc DL = MI->getDebugLoc();
12148
12149  assert(!Subtarget->isTargetEnvMacho());
12150
12151  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12152  // non-trivial part is impdef of ESP.
12153
12154  if (Subtarget->isTargetWin64()) {
12155    if (Subtarget->isTargetCygMing()) {
12156      // ___chkstk(Mingw64):
12157      // Clobbers R10, R11, RAX and EFLAGS.
12158      // Updates RSP.
12159      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12160        .addExternalSymbol("___chkstk")
12161        .addReg(X86::RAX, RegState::Implicit)
12162        .addReg(X86::RSP, RegState::Implicit)
12163        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12164        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12165        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12166    } else {
12167      // __chkstk(MSVCRT): does not update stack pointer.
12168      // Clobbers R10, R11 and EFLAGS.
12169      // FIXME: RAX(allocated size) might be reused and not killed.
12170      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12171        .addExternalSymbol("__chkstk")
12172        .addReg(X86::RAX, RegState::Implicit)
12173        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12174      // RAX has the offset to subtracted from RSP.
12175      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12176        .addReg(X86::RSP)
12177        .addReg(X86::RAX);
12178    }
12179  } else {
12180    const char *StackProbeSymbol =
12181      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12182
12183    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12184      .addExternalSymbol(StackProbeSymbol)
12185      .addReg(X86::EAX, RegState::Implicit)
12186      .addReg(X86::ESP, RegState::Implicit)
12187      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12188      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12189      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12190  }
12191
12192  MI->eraseFromParent();   // The pseudo instruction is gone now.
12193  return BB;
12194}
12195
12196MachineBasicBlock *
12197X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12198                                      MachineBasicBlock *BB) const {
12199  // This is pretty easy.  We're taking the value that we received from
12200  // our load from the relocation, sticking it in either RDI (x86-64)
12201  // or EAX and doing an indirect call.  The return value will then
12202  // be in the normal return register.
12203  const X86InstrInfo *TII
12204    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12205  DebugLoc DL = MI->getDebugLoc();
12206  MachineFunction *F = BB->getParent();
12207
12208  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12209  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12210
12211  if (Subtarget->is64Bit()) {
12212    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12213                                      TII->get(X86::MOV64rm), X86::RDI)
12214    .addReg(X86::RIP)
12215    .addImm(0).addReg(0)
12216    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12217                      MI->getOperand(3).getTargetFlags())
12218    .addReg(0);
12219    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12220    addDirectMem(MIB, X86::RDI);
12221  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12222    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12223                                      TII->get(X86::MOV32rm), X86::EAX)
12224    .addReg(0)
12225    .addImm(0).addReg(0)
12226    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12227                      MI->getOperand(3).getTargetFlags())
12228    .addReg(0);
12229    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12230    addDirectMem(MIB, X86::EAX);
12231  } else {
12232    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12233                                      TII->get(X86::MOV32rm), X86::EAX)
12234    .addReg(TII->getGlobalBaseReg(F))
12235    .addImm(0).addReg(0)
12236    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12237                      MI->getOperand(3).getTargetFlags())
12238    .addReg(0);
12239    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12240    addDirectMem(MIB, X86::EAX);
12241  }
12242
12243  MI->eraseFromParent(); // The pseudo instruction is gone now.
12244  return BB;
12245}
12246
12247MachineBasicBlock *
12248X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12249                                               MachineBasicBlock *BB) const {
12250  switch (MI->getOpcode()) {
12251  default: assert(0 && "Unexpected instr type to insert");
12252  case X86::TAILJMPd64:
12253  case X86::TAILJMPr64:
12254  case X86::TAILJMPm64:
12255    assert(0 && "TAILJMP64 would not be touched here.");
12256  case X86::TCRETURNdi64:
12257  case X86::TCRETURNri64:
12258  case X86::TCRETURNmi64:
12259    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12260    // On AMD64, additional defs should be added before register allocation.
12261    if (!Subtarget->isTargetWin64()) {
12262      MI->addRegisterDefined(X86::RSI);
12263      MI->addRegisterDefined(X86::RDI);
12264      MI->addRegisterDefined(X86::XMM6);
12265      MI->addRegisterDefined(X86::XMM7);
12266      MI->addRegisterDefined(X86::XMM8);
12267      MI->addRegisterDefined(X86::XMM9);
12268      MI->addRegisterDefined(X86::XMM10);
12269      MI->addRegisterDefined(X86::XMM11);
12270      MI->addRegisterDefined(X86::XMM12);
12271      MI->addRegisterDefined(X86::XMM13);
12272      MI->addRegisterDefined(X86::XMM14);
12273      MI->addRegisterDefined(X86::XMM15);
12274    }
12275    return BB;
12276  case X86::WIN_ALLOCA:
12277    return EmitLoweredWinAlloca(MI, BB);
12278  case X86::SEG_ALLOCA_32:
12279    return EmitLoweredSegAlloca(MI, BB, false);
12280  case X86::SEG_ALLOCA_64:
12281    return EmitLoweredSegAlloca(MI, BB, true);
12282  case X86::TLSCall_32:
12283  case X86::TLSCall_64:
12284    return EmitLoweredTLSCall(MI, BB);
12285  case X86::CMOV_GR8:
12286  case X86::CMOV_FR32:
12287  case X86::CMOV_FR64:
12288  case X86::CMOV_V4F32:
12289  case X86::CMOV_V2F64:
12290  case X86::CMOV_V2I64:
12291  case X86::CMOV_V8F32:
12292  case X86::CMOV_V4F64:
12293  case X86::CMOV_V4I64:
12294  case X86::CMOV_GR16:
12295  case X86::CMOV_GR32:
12296  case X86::CMOV_RFP32:
12297  case X86::CMOV_RFP64:
12298  case X86::CMOV_RFP80:
12299    return EmitLoweredSelect(MI, BB);
12300
12301  case X86::FP32_TO_INT16_IN_MEM:
12302  case X86::FP32_TO_INT32_IN_MEM:
12303  case X86::FP32_TO_INT64_IN_MEM:
12304  case X86::FP64_TO_INT16_IN_MEM:
12305  case X86::FP64_TO_INT32_IN_MEM:
12306  case X86::FP64_TO_INT64_IN_MEM:
12307  case X86::FP80_TO_INT16_IN_MEM:
12308  case X86::FP80_TO_INT32_IN_MEM:
12309  case X86::FP80_TO_INT64_IN_MEM: {
12310    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12311    DebugLoc DL = MI->getDebugLoc();
12312
12313    // Change the floating point control register to use "round towards zero"
12314    // mode when truncating to an integer value.
12315    MachineFunction *F = BB->getParent();
12316    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12317    addFrameReference(BuildMI(*BB, MI, DL,
12318                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12319
12320    // Load the old value of the high byte of the control word...
12321    unsigned OldCW =
12322      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12323    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12324                      CWFrameIdx);
12325
12326    // Set the high part to be round to zero...
12327    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12328      .addImm(0xC7F);
12329
12330    // Reload the modified control word now...
12331    addFrameReference(BuildMI(*BB, MI, DL,
12332                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12333
12334    // Restore the memory image of control word to original value
12335    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12336      .addReg(OldCW);
12337
12338    // Get the X86 opcode to use.
12339    unsigned Opc;
12340    switch (MI->getOpcode()) {
12341    default: llvm_unreachable("illegal opcode!");
12342    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12343    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12344    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12345    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12346    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12347    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12348    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12349    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12350    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12351    }
12352
12353    X86AddressMode AM;
12354    MachineOperand &Op = MI->getOperand(0);
12355    if (Op.isReg()) {
12356      AM.BaseType = X86AddressMode::RegBase;
12357      AM.Base.Reg = Op.getReg();
12358    } else {
12359      AM.BaseType = X86AddressMode::FrameIndexBase;
12360      AM.Base.FrameIndex = Op.getIndex();
12361    }
12362    Op = MI->getOperand(1);
12363    if (Op.isImm())
12364      AM.Scale = Op.getImm();
12365    Op = MI->getOperand(2);
12366    if (Op.isImm())
12367      AM.IndexReg = Op.getImm();
12368    Op = MI->getOperand(3);
12369    if (Op.isGlobal()) {
12370      AM.GV = Op.getGlobal();
12371    } else {
12372      AM.Disp = Op.getImm();
12373    }
12374    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12375                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12376
12377    // Reload the original control word now.
12378    addFrameReference(BuildMI(*BB, MI, DL,
12379                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12380
12381    MI->eraseFromParent();   // The pseudo instruction is gone now.
12382    return BB;
12383  }
12384    // String/text processing lowering.
12385  case X86::PCMPISTRM128REG:
12386  case X86::VPCMPISTRM128REG:
12387    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12388  case X86::PCMPISTRM128MEM:
12389  case X86::VPCMPISTRM128MEM:
12390    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12391  case X86::PCMPESTRM128REG:
12392  case X86::VPCMPESTRM128REG:
12393    return EmitPCMP(MI, BB, 5, false /* in mem */);
12394  case X86::PCMPESTRM128MEM:
12395  case X86::VPCMPESTRM128MEM:
12396    return EmitPCMP(MI, BB, 5, true /* in mem */);
12397
12398    // Thread synchronization.
12399  case X86::MONITOR:
12400    return EmitMonitor(MI, BB);
12401  case X86::MWAIT:
12402    return EmitMwait(MI, BB);
12403
12404    // Atomic Lowering.
12405  case X86::ATOMAND32:
12406    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12407                                               X86::AND32ri, X86::MOV32rm,
12408                                               X86::LCMPXCHG32,
12409                                               X86::NOT32r, X86::EAX,
12410                                               X86::GR32RegisterClass);
12411  case X86::ATOMOR32:
12412    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12413                                               X86::OR32ri, X86::MOV32rm,
12414                                               X86::LCMPXCHG32,
12415                                               X86::NOT32r, X86::EAX,
12416                                               X86::GR32RegisterClass);
12417  case X86::ATOMXOR32:
12418    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12419                                               X86::XOR32ri, X86::MOV32rm,
12420                                               X86::LCMPXCHG32,
12421                                               X86::NOT32r, X86::EAX,
12422                                               X86::GR32RegisterClass);
12423  case X86::ATOMNAND32:
12424    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12425                                               X86::AND32ri, X86::MOV32rm,
12426                                               X86::LCMPXCHG32,
12427                                               X86::NOT32r, X86::EAX,
12428                                               X86::GR32RegisterClass, true);
12429  case X86::ATOMMIN32:
12430    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12431  case X86::ATOMMAX32:
12432    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12433  case X86::ATOMUMIN32:
12434    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12435  case X86::ATOMUMAX32:
12436    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12437
12438  case X86::ATOMAND16:
12439    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12440                                               X86::AND16ri, X86::MOV16rm,
12441                                               X86::LCMPXCHG16,
12442                                               X86::NOT16r, X86::AX,
12443                                               X86::GR16RegisterClass);
12444  case X86::ATOMOR16:
12445    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12446                                               X86::OR16ri, X86::MOV16rm,
12447                                               X86::LCMPXCHG16,
12448                                               X86::NOT16r, X86::AX,
12449                                               X86::GR16RegisterClass);
12450  case X86::ATOMXOR16:
12451    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12452                                               X86::XOR16ri, X86::MOV16rm,
12453                                               X86::LCMPXCHG16,
12454                                               X86::NOT16r, X86::AX,
12455                                               X86::GR16RegisterClass);
12456  case X86::ATOMNAND16:
12457    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12458                                               X86::AND16ri, X86::MOV16rm,
12459                                               X86::LCMPXCHG16,
12460                                               X86::NOT16r, X86::AX,
12461                                               X86::GR16RegisterClass, true);
12462  case X86::ATOMMIN16:
12463    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12464  case X86::ATOMMAX16:
12465    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12466  case X86::ATOMUMIN16:
12467    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12468  case X86::ATOMUMAX16:
12469    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12470
12471  case X86::ATOMAND8:
12472    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12473                                               X86::AND8ri, X86::MOV8rm,
12474                                               X86::LCMPXCHG8,
12475                                               X86::NOT8r, X86::AL,
12476                                               X86::GR8RegisterClass);
12477  case X86::ATOMOR8:
12478    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12479                                               X86::OR8ri, X86::MOV8rm,
12480                                               X86::LCMPXCHG8,
12481                                               X86::NOT8r, X86::AL,
12482                                               X86::GR8RegisterClass);
12483  case X86::ATOMXOR8:
12484    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12485                                               X86::XOR8ri, X86::MOV8rm,
12486                                               X86::LCMPXCHG8,
12487                                               X86::NOT8r, X86::AL,
12488                                               X86::GR8RegisterClass);
12489  case X86::ATOMNAND8:
12490    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12491                                               X86::AND8ri, X86::MOV8rm,
12492                                               X86::LCMPXCHG8,
12493                                               X86::NOT8r, X86::AL,
12494                                               X86::GR8RegisterClass, true);
12495  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12496  // This group is for 64-bit host.
12497  case X86::ATOMAND64:
12498    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12499                                               X86::AND64ri32, X86::MOV64rm,
12500                                               X86::LCMPXCHG64,
12501                                               X86::NOT64r, X86::RAX,
12502                                               X86::GR64RegisterClass);
12503  case X86::ATOMOR64:
12504    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12505                                               X86::OR64ri32, X86::MOV64rm,
12506                                               X86::LCMPXCHG64,
12507                                               X86::NOT64r, X86::RAX,
12508                                               X86::GR64RegisterClass);
12509  case X86::ATOMXOR64:
12510    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12511                                               X86::XOR64ri32, X86::MOV64rm,
12512                                               X86::LCMPXCHG64,
12513                                               X86::NOT64r, X86::RAX,
12514                                               X86::GR64RegisterClass);
12515  case X86::ATOMNAND64:
12516    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12517                                               X86::AND64ri32, X86::MOV64rm,
12518                                               X86::LCMPXCHG64,
12519                                               X86::NOT64r, X86::RAX,
12520                                               X86::GR64RegisterClass, true);
12521  case X86::ATOMMIN64:
12522    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12523  case X86::ATOMMAX64:
12524    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12525  case X86::ATOMUMIN64:
12526    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12527  case X86::ATOMUMAX64:
12528    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12529
12530  // This group does 64-bit operations on a 32-bit host.
12531  case X86::ATOMAND6432:
12532    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12533                                               X86::AND32rr, X86::AND32rr,
12534                                               X86::AND32ri, X86::AND32ri,
12535                                               false);
12536  case X86::ATOMOR6432:
12537    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12538                                               X86::OR32rr, X86::OR32rr,
12539                                               X86::OR32ri, X86::OR32ri,
12540                                               false);
12541  case X86::ATOMXOR6432:
12542    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12543                                               X86::XOR32rr, X86::XOR32rr,
12544                                               X86::XOR32ri, X86::XOR32ri,
12545                                               false);
12546  case X86::ATOMNAND6432:
12547    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12548                                               X86::AND32rr, X86::AND32rr,
12549                                               X86::AND32ri, X86::AND32ri,
12550                                               true);
12551  case X86::ATOMADD6432:
12552    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12553                                               X86::ADD32rr, X86::ADC32rr,
12554                                               X86::ADD32ri, X86::ADC32ri,
12555                                               false);
12556  case X86::ATOMSUB6432:
12557    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12558                                               X86::SUB32rr, X86::SBB32rr,
12559                                               X86::SUB32ri, X86::SBB32ri,
12560                                               false);
12561  case X86::ATOMSWAP6432:
12562    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12563                                               X86::MOV32rr, X86::MOV32rr,
12564                                               X86::MOV32ri, X86::MOV32ri,
12565                                               false);
12566  case X86::VASTART_SAVE_XMM_REGS:
12567    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12568
12569  case X86::VAARG_64:
12570    return EmitVAARG64WithCustomInserter(MI, BB);
12571  }
12572}
12573
12574//===----------------------------------------------------------------------===//
12575//                           X86 Optimization Hooks
12576//===----------------------------------------------------------------------===//
12577
12578void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12579                                                       const APInt &Mask,
12580                                                       APInt &KnownZero,
12581                                                       APInt &KnownOne,
12582                                                       const SelectionDAG &DAG,
12583                                                       unsigned Depth) const {
12584  unsigned Opc = Op.getOpcode();
12585  assert((Opc >= ISD::BUILTIN_OP_END ||
12586          Opc == ISD::INTRINSIC_WO_CHAIN ||
12587          Opc == ISD::INTRINSIC_W_CHAIN ||
12588          Opc == ISD::INTRINSIC_VOID) &&
12589         "Should use MaskedValueIsZero if you don't know whether Op"
12590         " is a target node!");
12591
12592  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12593  switch (Opc) {
12594  default: break;
12595  case X86ISD::ADD:
12596  case X86ISD::SUB:
12597  case X86ISD::ADC:
12598  case X86ISD::SBB:
12599  case X86ISD::SMUL:
12600  case X86ISD::UMUL:
12601  case X86ISD::INC:
12602  case X86ISD::DEC:
12603  case X86ISD::OR:
12604  case X86ISD::XOR:
12605  case X86ISD::AND:
12606    // These nodes' second result is a boolean.
12607    if (Op.getResNo() == 0)
12608      break;
12609    // Fallthrough
12610  case X86ISD::SETCC:
12611    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12612                                       Mask.getBitWidth() - 1);
12613    break;
12614  case ISD::INTRINSIC_WO_CHAIN: {
12615    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12616    unsigned NumLoBits = 0;
12617    switch (IntId) {
12618    default: break;
12619    case Intrinsic::x86_sse_movmsk_ps:
12620    case Intrinsic::x86_avx_movmsk_ps_256:
12621    case Intrinsic::x86_sse2_movmsk_pd:
12622    case Intrinsic::x86_avx_movmsk_pd_256:
12623    case Intrinsic::x86_mmx_pmovmskb:
12624    case Intrinsic::x86_sse2_pmovmskb_128: {
12625      // High bits of movmskp{s|d}, pmovmskb are known zero.
12626      switch (IntId) {
12627        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12628        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12629        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12630        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12631        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12632        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12633      }
12634      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12635                                        Mask.getBitWidth() - NumLoBits);
12636      break;
12637    }
12638    }
12639    break;
12640  }
12641  }
12642}
12643
12644unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12645                                                         unsigned Depth) const {
12646  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12647  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12648    return Op.getValueType().getScalarType().getSizeInBits();
12649
12650  // Fallback case.
12651  return 1;
12652}
12653
12654/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12655/// node is a GlobalAddress + offset.
12656bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12657                                       const GlobalValue* &GA,
12658                                       int64_t &Offset) const {
12659  if (N->getOpcode() == X86ISD::Wrapper) {
12660    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12661      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12662      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12663      return true;
12664    }
12665  }
12666  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12667}
12668
12669/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12670/// same as extracting the high 128-bit part of 256-bit vector and then
12671/// inserting the result into the low part of a new 256-bit vector
12672static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12673  EVT VT = SVOp->getValueType(0);
12674  int NumElems = VT.getVectorNumElements();
12675
12676  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12677  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12678    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12679        SVOp->getMaskElt(j) >= 0)
12680      return false;
12681
12682  return true;
12683}
12684
12685/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12686/// same as extracting the low 128-bit part of 256-bit vector and then
12687/// inserting the result into the high part of a new 256-bit vector
12688static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12689  EVT VT = SVOp->getValueType(0);
12690  int NumElems = VT.getVectorNumElements();
12691
12692  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12693  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12694    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12695        SVOp->getMaskElt(j) >= 0)
12696      return false;
12697
12698  return true;
12699}
12700
12701/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12702static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12703                                        TargetLowering::DAGCombinerInfo &DCI) {
12704  DebugLoc dl = N->getDebugLoc();
12705  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12706  SDValue V1 = SVOp->getOperand(0);
12707  SDValue V2 = SVOp->getOperand(1);
12708  EVT VT = SVOp->getValueType(0);
12709  int NumElems = VT.getVectorNumElements();
12710
12711  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12712      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12713    //
12714    //                   0,0,0,...
12715    //                      |
12716    //    V      UNDEF    BUILD_VECTOR    UNDEF
12717    //     \      /           \           /
12718    //  CONCAT_VECTOR         CONCAT_VECTOR
12719    //         \                  /
12720    //          \                /
12721    //          RESULT: V + zero extended
12722    //
12723    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12724        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12725        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12726      return SDValue();
12727
12728    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12729      return SDValue();
12730
12731    // To match the shuffle mask, the first half of the mask should
12732    // be exactly the first vector, and all the rest a splat with the
12733    // first element of the second one.
12734    for (int i = 0; i < NumElems/2; ++i)
12735      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12736          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12737        return SDValue();
12738
12739    // Emit a zeroed vector and insert the desired subvector on its
12740    // first half.
12741    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12742    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12743                         DAG.getConstant(0, MVT::i32), DAG, dl);
12744    return DCI.CombineTo(N, InsV);
12745  }
12746
12747  //===--------------------------------------------------------------------===//
12748  // Combine some shuffles into subvector extracts and inserts:
12749  //
12750
12751  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12752  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12753    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12754                                    DAG, dl);
12755    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12756                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12757    return DCI.CombineTo(N, InsV);
12758  }
12759
12760  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12761  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12762    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12763    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12764                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12765    return DCI.CombineTo(N, InsV);
12766  }
12767
12768  return SDValue();
12769}
12770
12771/// PerformShuffleCombine - Performs several different shuffle combines.
12772static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12773                                     TargetLowering::DAGCombinerInfo &DCI,
12774                                     const X86Subtarget *Subtarget) {
12775  DebugLoc dl = N->getDebugLoc();
12776  EVT VT = N->getValueType(0);
12777
12778  // Don't create instructions with illegal types after legalize types has run.
12779  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12780  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12781    return SDValue();
12782
12783  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12784  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12785      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12786    return PerformShuffleCombine256(N, DAG, DCI);
12787
12788  // Only handle 128 wide vector from here on.
12789  if (VT.getSizeInBits() != 128)
12790    return SDValue();
12791
12792  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12793  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12794  // consecutive, non-overlapping, and in the right order.
12795  SmallVector<SDValue, 16> Elts;
12796  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12797    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12798
12799  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12800}
12801
12802/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12803/// generation and convert it from being a bunch of shuffles and extracts
12804/// to a simple store and scalar loads to extract the elements.
12805static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12806                                                const TargetLowering &TLI) {
12807  SDValue InputVector = N->getOperand(0);
12808
12809  // Only operate on vectors of 4 elements, where the alternative shuffling
12810  // gets to be more expensive.
12811  if (InputVector.getValueType() != MVT::v4i32)
12812    return SDValue();
12813
12814  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12815  // single use which is a sign-extend or zero-extend, and all elements are
12816  // used.
12817  SmallVector<SDNode *, 4> Uses;
12818  unsigned ExtractedElements = 0;
12819  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12820       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12821    if (UI.getUse().getResNo() != InputVector.getResNo())
12822      return SDValue();
12823
12824    SDNode *Extract = *UI;
12825    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12826      return SDValue();
12827
12828    if (Extract->getValueType(0) != MVT::i32)
12829      return SDValue();
12830    if (!Extract->hasOneUse())
12831      return SDValue();
12832    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12833        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12834      return SDValue();
12835    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12836      return SDValue();
12837
12838    // Record which element was extracted.
12839    ExtractedElements |=
12840      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12841
12842    Uses.push_back(Extract);
12843  }
12844
12845  // If not all the elements were used, this may not be worthwhile.
12846  if (ExtractedElements != 15)
12847    return SDValue();
12848
12849  // Ok, we've now decided to do the transformation.
12850  DebugLoc dl = InputVector.getDebugLoc();
12851
12852  // Store the value to a temporary stack slot.
12853  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12854  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12855                            MachinePointerInfo(), false, false, 0);
12856
12857  // Replace each use (extract) with a load of the appropriate element.
12858  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12859       UE = Uses.end(); UI != UE; ++UI) {
12860    SDNode *Extract = *UI;
12861
12862    // cOMpute the element's address.
12863    SDValue Idx = Extract->getOperand(1);
12864    unsigned EltSize =
12865        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12866    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12867    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12868
12869    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12870                                     StackPtr, OffsetVal);
12871
12872    // Load the scalar.
12873    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12874                                     ScalarAddr, MachinePointerInfo(),
12875                                     false, false, false, 0);
12876
12877    // Replace the exact with the load.
12878    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12879  }
12880
12881  // The replacement was made in place; don't return anything.
12882  return SDValue();
12883}
12884
12885/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12886/// nodes.
12887static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12888                                    const X86Subtarget *Subtarget) {
12889  DebugLoc DL = N->getDebugLoc();
12890  SDValue Cond = N->getOperand(0);
12891  // Get the LHS/RHS of the select.
12892  SDValue LHS = N->getOperand(1);
12893  SDValue RHS = N->getOperand(2);
12894  EVT VT = LHS.getValueType();
12895
12896  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12897  // instructions match the semantics of the common C idiom x<y?x:y but not
12898  // x<=y?x:y, because of how they handle negative zero (which can be
12899  // ignored in unsafe-math mode).
12900  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12901      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12902      (Subtarget->hasXMMInt() ||
12903       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12904    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12905
12906    unsigned Opcode = 0;
12907    // Check for x CC y ? x : y.
12908    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12909        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12910      switch (CC) {
12911      default: break;
12912      case ISD::SETULT:
12913        // Converting this to a min would handle NaNs incorrectly, and swapping
12914        // the operands would cause it to handle comparisons between positive
12915        // and negative zero incorrectly.
12916        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12917          if (!DAG.getTarget().Options.UnsafeFPMath &&
12918              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12919            break;
12920          std::swap(LHS, RHS);
12921        }
12922        Opcode = X86ISD::FMIN;
12923        break;
12924      case ISD::SETOLE:
12925        // Converting this to a min would handle comparisons between positive
12926        // and negative zero incorrectly.
12927        if (!DAG.getTarget().Options.UnsafeFPMath &&
12928            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12929          break;
12930        Opcode = X86ISD::FMIN;
12931        break;
12932      case ISD::SETULE:
12933        // Converting this to a min would handle both negative zeros and NaNs
12934        // incorrectly, but we can swap the operands to fix both.
12935        std::swap(LHS, RHS);
12936      case ISD::SETOLT:
12937      case ISD::SETLT:
12938      case ISD::SETLE:
12939        Opcode = X86ISD::FMIN;
12940        break;
12941
12942      case ISD::SETOGE:
12943        // Converting this to a max would handle comparisons between positive
12944        // and negative zero incorrectly.
12945        if (!DAG.getTarget().Options.UnsafeFPMath &&
12946            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12947          break;
12948        Opcode = X86ISD::FMAX;
12949        break;
12950      case ISD::SETUGT:
12951        // Converting this to a max would handle NaNs incorrectly, and swapping
12952        // the operands would cause it to handle comparisons between positive
12953        // and negative zero incorrectly.
12954        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12955          if (!DAG.getTarget().Options.UnsafeFPMath &&
12956              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12957            break;
12958          std::swap(LHS, RHS);
12959        }
12960        Opcode = X86ISD::FMAX;
12961        break;
12962      case ISD::SETUGE:
12963        // Converting this to a max would handle both negative zeros and NaNs
12964        // incorrectly, but we can swap the operands to fix both.
12965        std::swap(LHS, RHS);
12966      case ISD::SETOGT:
12967      case ISD::SETGT:
12968      case ISD::SETGE:
12969        Opcode = X86ISD::FMAX;
12970        break;
12971      }
12972    // Check for x CC y ? y : x -- a min/max with reversed arms.
12973    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12974               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12975      switch (CC) {
12976      default: break;
12977      case ISD::SETOGE:
12978        // Converting this to a min would handle comparisons between positive
12979        // and negative zero incorrectly, and swapping the operands would
12980        // cause it to handle NaNs incorrectly.
12981        if (!DAG.getTarget().Options.UnsafeFPMath &&
12982            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12983          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12984            break;
12985          std::swap(LHS, RHS);
12986        }
12987        Opcode = X86ISD::FMIN;
12988        break;
12989      case ISD::SETUGT:
12990        // Converting this to a min would handle NaNs incorrectly.
12991        if (!DAG.getTarget().Options.UnsafeFPMath &&
12992            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12993          break;
12994        Opcode = X86ISD::FMIN;
12995        break;
12996      case ISD::SETUGE:
12997        // Converting this to a min would handle both negative zeros and NaNs
12998        // incorrectly, but we can swap the operands to fix both.
12999        std::swap(LHS, RHS);
13000      case ISD::SETOGT:
13001      case ISD::SETGT:
13002      case ISD::SETGE:
13003        Opcode = X86ISD::FMIN;
13004        break;
13005
13006      case ISD::SETULT:
13007        // Converting this to a max would handle NaNs incorrectly.
13008        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13009          break;
13010        Opcode = X86ISD::FMAX;
13011        break;
13012      case ISD::SETOLE:
13013        // Converting this to a max would handle comparisons between positive
13014        // and negative zero incorrectly, and swapping the operands would
13015        // cause it to handle NaNs incorrectly.
13016        if (!DAG.getTarget().Options.UnsafeFPMath &&
13017            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13018          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13019            break;
13020          std::swap(LHS, RHS);
13021        }
13022        Opcode = X86ISD::FMAX;
13023        break;
13024      case ISD::SETULE:
13025        // Converting this to a max would handle both negative zeros and NaNs
13026        // incorrectly, but we can swap the operands to fix both.
13027        std::swap(LHS, RHS);
13028      case ISD::SETOLT:
13029      case ISD::SETLT:
13030      case ISD::SETLE:
13031        Opcode = X86ISD::FMAX;
13032        break;
13033      }
13034    }
13035
13036    if (Opcode)
13037      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13038  }
13039
13040  // If this is a select between two integer constants, try to do some
13041  // optimizations.
13042  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13043    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13044      // Don't do this for crazy integer types.
13045      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13046        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13047        // so that TrueC (the true value) is larger than FalseC.
13048        bool NeedsCondInvert = false;
13049
13050        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13051            // Efficiently invertible.
13052            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13053             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13054              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13055          NeedsCondInvert = true;
13056          std::swap(TrueC, FalseC);
13057        }
13058
13059        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13060        if (FalseC->getAPIntValue() == 0 &&
13061            TrueC->getAPIntValue().isPowerOf2()) {
13062          if (NeedsCondInvert) // Invert the condition if needed.
13063            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13064                               DAG.getConstant(1, Cond.getValueType()));
13065
13066          // Zero extend the condition if needed.
13067          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13068
13069          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13070          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13071                             DAG.getConstant(ShAmt, MVT::i8));
13072        }
13073
13074        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13075        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13076          if (NeedsCondInvert) // Invert the condition if needed.
13077            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13078                               DAG.getConstant(1, Cond.getValueType()));
13079
13080          // Zero extend the condition if needed.
13081          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13082                             FalseC->getValueType(0), Cond);
13083          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13084                             SDValue(FalseC, 0));
13085        }
13086
13087        // Optimize cases that will turn into an LEA instruction.  This requires
13088        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13089        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13090          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13091          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13092
13093          bool isFastMultiplier = false;
13094          if (Diff < 10) {
13095            switch ((unsigned char)Diff) {
13096              default: break;
13097              case 1:  // result = add base, cond
13098              case 2:  // result = lea base(    , cond*2)
13099              case 3:  // result = lea base(cond, cond*2)
13100              case 4:  // result = lea base(    , cond*4)
13101              case 5:  // result = lea base(cond, cond*4)
13102              case 8:  // result = lea base(    , cond*8)
13103              case 9:  // result = lea base(cond, cond*8)
13104                isFastMultiplier = true;
13105                break;
13106            }
13107          }
13108
13109          if (isFastMultiplier) {
13110            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13111            if (NeedsCondInvert) // Invert the condition if needed.
13112              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13113                                 DAG.getConstant(1, Cond.getValueType()));
13114
13115            // Zero extend the condition if needed.
13116            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13117                               Cond);
13118            // Scale the condition by the difference.
13119            if (Diff != 1)
13120              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13121                                 DAG.getConstant(Diff, Cond.getValueType()));
13122
13123            // Add the base if non-zero.
13124            if (FalseC->getAPIntValue() != 0)
13125              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13126                                 SDValue(FalseC, 0));
13127            return Cond;
13128          }
13129        }
13130      }
13131  }
13132
13133  return SDValue();
13134}
13135
13136/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13137static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13138                                  TargetLowering::DAGCombinerInfo &DCI) {
13139  DebugLoc DL = N->getDebugLoc();
13140
13141  // If the flag operand isn't dead, don't touch this CMOV.
13142  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13143    return SDValue();
13144
13145  SDValue FalseOp = N->getOperand(0);
13146  SDValue TrueOp = N->getOperand(1);
13147  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13148  SDValue Cond = N->getOperand(3);
13149  if (CC == X86::COND_E || CC == X86::COND_NE) {
13150    switch (Cond.getOpcode()) {
13151    default: break;
13152    case X86ISD::BSR:
13153    case X86ISD::BSF:
13154      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13155      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13156        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13157    }
13158  }
13159
13160  // If this is a select between two integer constants, try to do some
13161  // optimizations.  Note that the operands are ordered the opposite of SELECT
13162  // operands.
13163  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13164    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13165      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13166      // larger than FalseC (the false value).
13167      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13168        CC = X86::GetOppositeBranchCondition(CC);
13169        std::swap(TrueC, FalseC);
13170      }
13171
13172      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13173      // This is efficient for any integer data type (including i8/i16) and
13174      // shift amount.
13175      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13176        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13177                           DAG.getConstant(CC, MVT::i8), Cond);
13178
13179        // Zero extend the condition if needed.
13180        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13181
13182        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13183        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13184                           DAG.getConstant(ShAmt, MVT::i8));
13185        if (N->getNumValues() == 2)  // Dead flag value?
13186          return DCI.CombineTo(N, Cond, SDValue());
13187        return Cond;
13188      }
13189
13190      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13191      // for any integer data type, including i8/i16.
13192      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13193        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13194                           DAG.getConstant(CC, MVT::i8), Cond);
13195
13196        // Zero extend the condition if needed.
13197        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13198                           FalseC->getValueType(0), Cond);
13199        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13200                           SDValue(FalseC, 0));
13201
13202        if (N->getNumValues() == 2)  // Dead flag value?
13203          return DCI.CombineTo(N, Cond, SDValue());
13204        return Cond;
13205      }
13206
13207      // Optimize cases that will turn into an LEA instruction.  This requires
13208      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13209      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13210        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13211        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13212
13213        bool isFastMultiplier = false;
13214        if (Diff < 10) {
13215          switch ((unsigned char)Diff) {
13216          default: break;
13217          case 1:  // result = add base, cond
13218          case 2:  // result = lea base(    , cond*2)
13219          case 3:  // result = lea base(cond, cond*2)
13220          case 4:  // result = lea base(    , cond*4)
13221          case 5:  // result = lea base(cond, cond*4)
13222          case 8:  // result = lea base(    , cond*8)
13223          case 9:  // result = lea base(cond, cond*8)
13224            isFastMultiplier = true;
13225            break;
13226          }
13227        }
13228
13229        if (isFastMultiplier) {
13230          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13231          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13232                             DAG.getConstant(CC, MVT::i8), Cond);
13233          // Zero extend the condition if needed.
13234          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13235                             Cond);
13236          // Scale the condition by the difference.
13237          if (Diff != 1)
13238            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13239                               DAG.getConstant(Diff, Cond.getValueType()));
13240
13241          // Add the base if non-zero.
13242          if (FalseC->getAPIntValue() != 0)
13243            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13244                               SDValue(FalseC, 0));
13245          if (N->getNumValues() == 2)  // Dead flag value?
13246            return DCI.CombineTo(N, Cond, SDValue());
13247          return Cond;
13248        }
13249      }
13250    }
13251  }
13252  return SDValue();
13253}
13254
13255
13256/// PerformMulCombine - Optimize a single multiply with constant into two
13257/// in order to implement it with two cheaper instructions, e.g.
13258/// LEA + SHL, LEA + LEA.
13259static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13260                                 TargetLowering::DAGCombinerInfo &DCI) {
13261  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13262    return SDValue();
13263
13264  EVT VT = N->getValueType(0);
13265  if (VT != MVT::i64)
13266    return SDValue();
13267
13268  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13269  if (!C)
13270    return SDValue();
13271  uint64_t MulAmt = C->getZExtValue();
13272  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13273    return SDValue();
13274
13275  uint64_t MulAmt1 = 0;
13276  uint64_t MulAmt2 = 0;
13277  if ((MulAmt % 9) == 0) {
13278    MulAmt1 = 9;
13279    MulAmt2 = MulAmt / 9;
13280  } else if ((MulAmt % 5) == 0) {
13281    MulAmt1 = 5;
13282    MulAmt2 = MulAmt / 5;
13283  } else if ((MulAmt % 3) == 0) {
13284    MulAmt1 = 3;
13285    MulAmt2 = MulAmt / 3;
13286  }
13287  if (MulAmt2 &&
13288      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13289    DebugLoc DL = N->getDebugLoc();
13290
13291    if (isPowerOf2_64(MulAmt2) &&
13292        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13293      // If second multiplifer is pow2, issue it first. We want the multiply by
13294      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13295      // is an add.
13296      std::swap(MulAmt1, MulAmt2);
13297
13298    SDValue NewMul;
13299    if (isPowerOf2_64(MulAmt1))
13300      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13301                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13302    else
13303      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13304                           DAG.getConstant(MulAmt1, VT));
13305
13306    if (isPowerOf2_64(MulAmt2))
13307      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13308                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13309    else
13310      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13311                           DAG.getConstant(MulAmt2, VT));
13312
13313    // Do not add new nodes to DAG combiner worklist.
13314    DCI.CombineTo(N, NewMul, false);
13315  }
13316  return SDValue();
13317}
13318
13319static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13320  SDValue N0 = N->getOperand(0);
13321  SDValue N1 = N->getOperand(1);
13322  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13323  EVT VT = N0.getValueType();
13324
13325  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13326  // since the result of setcc_c is all zero's or all ones.
13327  if (VT.isInteger() && !VT.isVector() &&
13328      N1C && N0.getOpcode() == ISD::AND &&
13329      N0.getOperand(1).getOpcode() == ISD::Constant) {
13330    SDValue N00 = N0.getOperand(0);
13331    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13332        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13333          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13334         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13335      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13336      APInt ShAmt = N1C->getAPIntValue();
13337      Mask = Mask.shl(ShAmt);
13338      if (Mask != 0)
13339        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13340                           N00, DAG.getConstant(Mask, VT));
13341    }
13342  }
13343
13344
13345  // Hardware support for vector shifts is sparse which makes us scalarize the
13346  // vector operations in many cases. Also, on sandybridge ADD is faster than
13347  // shl.
13348  // (shl V, 1) -> add V,V
13349  if (isSplatVector(N1.getNode())) {
13350    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13351    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13352    // We shift all of the values by one. In many cases we do not have
13353    // hardware support for this operation. This is better expressed as an ADD
13354    // of two values.
13355    if (N1C && (1 == N1C->getZExtValue())) {
13356      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13357    }
13358  }
13359
13360  return SDValue();
13361}
13362
13363/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13364///                       when possible.
13365static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13366                                   const X86Subtarget *Subtarget) {
13367  EVT VT = N->getValueType(0);
13368  if (N->getOpcode() == ISD::SHL) {
13369    SDValue V = PerformSHLCombine(N, DAG);
13370    if (V.getNode()) return V;
13371  }
13372
13373  // On X86 with SSE2 support, we can transform this to a vector shift if
13374  // all elements are shifted by the same amount.  We can't do this in legalize
13375  // because the a constant vector is typically transformed to a constant pool
13376  // so we have no knowledge of the shift amount.
13377  if (!Subtarget->hasXMMInt())
13378    return SDValue();
13379
13380  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13381      (!Subtarget->hasAVX2() ||
13382       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13383    return SDValue();
13384
13385  SDValue ShAmtOp = N->getOperand(1);
13386  EVT EltVT = VT.getVectorElementType();
13387  DebugLoc DL = N->getDebugLoc();
13388  SDValue BaseShAmt = SDValue();
13389  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13390    unsigned NumElts = VT.getVectorNumElements();
13391    unsigned i = 0;
13392    for (; i != NumElts; ++i) {
13393      SDValue Arg = ShAmtOp.getOperand(i);
13394      if (Arg.getOpcode() == ISD::UNDEF) continue;
13395      BaseShAmt = Arg;
13396      break;
13397    }
13398    for (; i != NumElts; ++i) {
13399      SDValue Arg = ShAmtOp.getOperand(i);
13400      if (Arg.getOpcode() == ISD::UNDEF) continue;
13401      if (Arg != BaseShAmt) {
13402        return SDValue();
13403      }
13404    }
13405  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13406             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13407    SDValue InVec = ShAmtOp.getOperand(0);
13408    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13409      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13410      unsigned i = 0;
13411      for (; i != NumElts; ++i) {
13412        SDValue Arg = InVec.getOperand(i);
13413        if (Arg.getOpcode() == ISD::UNDEF) continue;
13414        BaseShAmt = Arg;
13415        break;
13416      }
13417    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13418       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13419         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13420         if (C->getZExtValue() == SplatIdx)
13421           BaseShAmt = InVec.getOperand(1);
13422       }
13423    }
13424    if (BaseShAmt.getNode() == 0)
13425      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13426                              DAG.getIntPtrConstant(0));
13427  } else
13428    return SDValue();
13429
13430  // The shift amount is an i32.
13431  if (EltVT.bitsGT(MVT::i32))
13432    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13433  else if (EltVT.bitsLT(MVT::i32))
13434    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13435
13436  // The shift amount is identical so we can do a vector shift.
13437  SDValue  ValOp = N->getOperand(0);
13438  switch (N->getOpcode()) {
13439  default:
13440    llvm_unreachable("Unknown shift opcode!");
13441    break;
13442  case ISD::SHL:
13443    if (VT == MVT::v2i64)
13444      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13445                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13446                         ValOp, BaseShAmt);
13447    if (VT == MVT::v4i32)
13448      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13449                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13450                         ValOp, BaseShAmt);
13451    if (VT == MVT::v8i16)
13452      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13453                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13454                         ValOp, BaseShAmt);
13455    if (VT == MVT::v4i64)
13456      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13457                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13458                         ValOp, BaseShAmt);
13459    if (VT == MVT::v8i32)
13460      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13461                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13462                         ValOp, BaseShAmt);
13463    if (VT == MVT::v16i16)
13464      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13465                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13466                         ValOp, BaseShAmt);
13467    break;
13468  case ISD::SRA:
13469    if (VT == MVT::v4i32)
13470      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13471                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13472                         ValOp, BaseShAmt);
13473    if (VT == MVT::v8i16)
13474      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13475                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13476                         ValOp, BaseShAmt);
13477    if (VT == MVT::v8i32)
13478      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13479                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13480                         ValOp, BaseShAmt);
13481    if (VT == MVT::v16i16)
13482      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13483                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13484                         ValOp, BaseShAmt);
13485    break;
13486  case ISD::SRL:
13487    if (VT == MVT::v2i64)
13488      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13489                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13490                         ValOp, BaseShAmt);
13491    if (VT == MVT::v4i32)
13492      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13493                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13494                         ValOp, BaseShAmt);
13495    if (VT ==  MVT::v8i16)
13496      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13497                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13498                         ValOp, BaseShAmt);
13499    if (VT == MVT::v4i64)
13500      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13501                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13502                         ValOp, BaseShAmt);
13503    if (VT == MVT::v8i32)
13504      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13505                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13506                         ValOp, BaseShAmt);
13507    if (VT ==  MVT::v16i16)
13508      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13509                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13510                         ValOp, BaseShAmt);
13511    break;
13512  }
13513  return SDValue();
13514}
13515
13516
13517// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13518// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13519// and friends.  Likewise for OR -> CMPNEQSS.
13520static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13521                            TargetLowering::DAGCombinerInfo &DCI,
13522                            const X86Subtarget *Subtarget) {
13523  unsigned opcode;
13524
13525  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13526  // we're requiring SSE2 for both.
13527  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13528    SDValue N0 = N->getOperand(0);
13529    SDValue N1 = N->getOperand(1);
13530    SDValue CMP0 = N0->getOperand(1);
13531    SDValue CMP1 = N1->getOperand(1);
13532    DebugLoc DL = N->getDebugLoc();
13533
13534    // The SETCCs should both refer to the same CMP.
13535    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13536      return SDValue();
13537
13538    SDValue CMP00 = CMP0->getOperand(0);
13539    SDValue CMP01 = CMP0->getOperand(1);
13540    EVT     VT    = CMP00.getValueType();
13541
13542    if (VT == MVT::f32 || VT == MVT::f64) {
13543      bool ExpectingFlags = false;
13544      // Check for any users that want flags:
13545      for (SDNode::use_iterator UI = N->use_begin(),
13546             UE = N->use_end();
13547           !ExpectingFlags && UI != UE; ++UI)
13548        switch (UI->getOpcode()) {
13549        default:
13550        case ISD::BR_CC:
13551        case ISD::BRCOND:
13552        case ISD::SELECT:
13553          ExpectingFlags = true;
13554          break;
13555        case ISD::CopyToReg:
13556        case ISD::SIGN_EXTEND:
13557        case ISD::ZERO_EXTEND:
13558        case ISD::ANY_EXTEND:
13559          break;
13560        }
13561
13562      if (!ExpectingFlags) {
13563        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13564        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13565
13566        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13567          X86::CondCode tmp = cc0;
13568          cc0 = cc1;
13569          cc1 = tmp;
13570        }
13571
13572        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13573            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13574          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13575          X86ISD::NodeType NTOperator = is64BitFP ?
13576            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13577          // FIXME: need symbolic constants for these magic numbers.
13578          // See X86ATTInstPrinter.cpp:printSSECC().
13579          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13580          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13581                                              DAG.getConstant(x86cc, MVT::i8));
13582          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13583                                              OnesOrZeroesF);
13584          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13585                                      DAG.getConstant(1, MVT::i32));
13586          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13587          return OneBitOfTruth;
13588        }
13589      }
13590    }
13591  }
13592  return SDValue();
13593}
13594
13595/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13596/// so it can be folded inside ANDNP.
13597static bool CanFoldXORWithAllOnes(const SDNode *N) {
13598  EVT VT = N->getValueType(0);
13599
13600  // Match direct AllOnes for 128 and 256-bit vectors
13601  if (ISD::isBuildVectorAllOnes(N))
13602    return true;
13603
13604  // Look through a bit convert.
13605  if (N->getOpcode() == ISD::BITCAST)
13606    N = N->getOperand(0).getNode();
13607
13608  // Sometimes the operand may come from a insert_subvector building a 256-bit
13609  // allones vector
13610  if (VT.getSizeInBits() == 256 &&
13611      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13612    SDValue V1 = N->getOperand(0);
13613    SDValue V2 = N->getOperand(1);
13614
13615    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13616        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13617        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13618        ISD::isBuildVectorAllOnes(V2.getNode()))
13619      return true;
13620  }
13621
13622  return false;
13623}
13624
13625static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13626                                 TargetLowering::DAGCombinerInfo &DCI,
13627                                 const X86Subtarget *Subtarget) {
13628  if (DCI.isBeforeLegalizeOps())
13629    return SDValue();
13630
13631  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13632  if (R.getNode())
13633    return R;
13634
13635  EVT VT = N->getValueType(0);
13636
13637  // Create ANDN, BLSI, and BLSR instructions
13638  // BLSI is X & (-X)
13639  // BLSR is X & (X-1)
13640  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13641    SDValue N0 = N->getOperand(0);
13642    SDValue N1 = N->getOperand(1);
13643    DebugLoc DL = N->getDebugLoc();
13644
13645    // Check LHS for not
13646    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13647      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13648    // Check RHS for not
13649    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13650      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13651
13652    // Check LHS for neg
13653    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13654        isZero(N0.getOperand(0)))
13655      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13656
13657    // Check RHS for neg
13658    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13659        isZero(N1.getOperand(0)))
13660      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13661
13662    // Check LHS for X-1
13663    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13664        isAllOnes(N0.getOperand(1)))
13665      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13666
13667    // Check RHS for X-1
13668    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13669        isAllOnes(N1.getOperand(1)))
13670      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13671
13672    return SDValue();
13673  }
13674
13675  // Want to form ANDNP nodes:
13676  // 1) In the hopes of then easily combining them with OR and AND nodes
13677  //    to form PBLEND/PSIGN.
13678  // 2) To match ANDN packed intrinsics
13679  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13680    return SDValue();
13681
13682  SDValue N0 = N->getOperand(0);
13683  SDValue N1 = N->getOperand(1);
13684  DebugLoc DL = N->getDebugLoc();
13685
13686  // Check LHS for vnot
13687  if (N0.getOpcode() == ISD::XOR &&
13688      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13689      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13690    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13691
13692  // Check RHS for vnot
13693  if (N1.getOpcode() == ISD::XOR &&
13694      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13695      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13696    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13697
13698  return SDValue();
13699}
13700
13701static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13702                                TargetLowering::DAGCombinerInfo &DCI,
13703                                const X86Subtarget *Subtarget) {
13704  if (DCI.isBeforeLegalizeOps())
13705    return SDValue();
13706
13707  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13708  if (R.getNode())
13709    return R;
13710
13711  EVT VT = N->getValueType(0);
13712
13713  SDValue N0 = N->getOperand(0);
13714  SDValue N1 = N->getOperand(1);
13715
13716  // look for psign/blend
13717  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13718    if (!Subtarget->hasSSSE3orAVX() ||
13719        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13720      return SDValue();
13721
13722    // Canonicalize pandn to RHS
13723    if (N0.getOpcode() == X86ISD::ANDNP)
13724      std::swap(N0, N1);
13725    // or (and (m, x), (pandn m, y))
13726    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13727      SDValue Mask = N1.getOperand(0);
13728      SDValue X    = N1.getOperand(1);
13729      SDValue Y;
13730      if (N0.getOperand(0) == Mask)
13731        Y = N0.getOperand(1);
13732      if (N0.getOperand(1) == Mask)
13733        Y = N0.getOperand(0);
13734
13735      // Check to see if the mask appeared in both the AND and ANDNP and
13736      if (!Y.getNode())
13737        return SDValue();
13738
13739      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13740      if (Mask.getOpcode() != ISD::BITCAST ||
13741          X.getOpcode() != ISD::BITCAST ||
13742          Y.getOpcode() != ISD::BITCAST)
13743        return SDValue();
13744
13745      // Look through mask bitcast.
13746      Mask = Mask.getOperand(0);
13747      EVT MaskVT = Mask.getValueType();
13748
13749      // Validate that the Mask operand is a vector sra node.  The sra node
13750      // will be an intrinsic.
13751      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13752        return SDValue();
13753
13754      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13755      // there is no psrai.b
13756      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13757      case Intrinsic::x86_sse2_psrai_w:
13758      case Intrinsic::x86_sse2_psrai_d:
13759      case Intrinsic::x86_avx2_psrai_w:
13760      case Intrinsic::x86_avx2_psrai_d:
13761        break;
13762      default: return SDValue();
13763      }
13764
13765      // Check that the SRA is all signbits.
13766      SDValue SraC = Mask.getOperand(2);
13767      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13768      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13769      if ((SraAmt + 1) != EltBits)
13770        return SDValue();
13771
13772      DebugLoc DL = N->getDebugLoc();
13773
13774      // Now we know we at least have a plendvb with the mask val.  See if
13775      // we can form a psignb/w/d.
13776      // psign = x.type == y.type == mask.type && y = sub(0, x);
13777      X = X.getOperand(0);
13778      Y = Y.getOperand(0);
13779      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13780          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13781          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13782          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13783        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13784                                   Mask.getOperand(1));
13785        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13786      }
13787      // PBLENDVB only available on SSE 4.1
13788      if (!Subtarget->hasSSE41orAVX())
13789        return SDValue();
13790
13791      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13792
13793      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13794      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13795      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13796      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13797      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13798    }
13799  }
13800
13801  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13802    return SDValue();
13803
13804  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13805  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13806    std::swap(N0, N1);
13807  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13808    return SDValue();
13809  if (!N0.hasOneUse() || !N1.hasOneUse())
13810    return SDValue();
13811
13812  SDValue ShAmt0 = N0.getOperand(1);
13813  if (ShAmt0.getValueType() != MVT::i8)
13814    return SDValue();
13815  SDValue ShAmt1 = N1.getOperand(1);
13816  if (ShAmt1.getValueType() != MVT::i8)
13817    return SDValue();
13818  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13819    ShAmt0 = ShAmt0.getOperand(0);
13820  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13821    ShAmt1 = ShAmt1.getOperand(0);
13822
13823  DebugLoc DL = N->getDebugLoc();
13824  unsigned Opc = X86ISD::SHLD;
13825  SDValue Op0 = N0.getOperand(0);
13826  SDValue Op1 = N1.getOperand(0);
13827  if (ShAmt0.getOpcode() == ISD::SUB) {
13828    Opc = X86ISD::SHRD;
13829    std::swap(Op0, Op1);
13830    std::swap(ShAmt0, ShAmt1);
13831  }
13832
13833  unsigned Bits = VT.getSizeInBits();
13834  if (ShAmt1.getOpcode() == ISD::SUB) {
13835    SDValue Sum = ShAmt1.getOperand(0);
13836    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13837      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13838      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13839        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13840      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13841        return DAG.getNode(Opc, DL, VT,
13842                           Op0, Op1,
13843                           DAG.getNode(ISD::TRUNCATE, DL,
13844                                       MVT::i8, ShAmt0));
13845    }
13846  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13847    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13848    if (ShAmt0C &&
13849        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13850      return DAG.getNode(Opc, DL, VT,
13851                         N0.getOperand(0), N1.getOperand(0),
13852                         DAG.getNode(ISD::TRUNCATE, DL,
13853                                       MVT::i8, ShAmt0));
13854  }
13855
13856  return SDValue();
13857}
13858
13859static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13860                                 TargetLowering::DAGCombinerInfo &DCI,
13861                                 const X86Subtarget *Subtarget) {
13862  if (DCI.isBeforeLegalizeOps())
13863    return SDValue();
13864
13865  EVT VT = N->getValueType(0);
13866
13867  if (VT != MVT::i32 && VT != MVT::i64)
13868    return SDValue();
13869
13870  // Create BLSMSK instructions by finding X ^ (X-1)
13871  SDValue N0 = N->getOperand(0);
13872  SDValue N1 = N->getOperand(1);
13873  DebugLoc DL = N->getDebugLoc();
13874
13875  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13876      isAllOnes(N0.getOperand(1)))
13877    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13878
13879  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13880      isAllOnes(N1.getOperand(1)))
13881    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13882
13883  return SDValue();
13884}
13885
13886/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13887static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13888                                   const X86Subtarget *Subtarget) {
13889  LoadSDNode *Ld = cast<LoadSDNode>(N);
13890  EVT RegVT = Ld->getValueType(0);
13891  EVT MemVT = Ld->getMemoryVT();
13892  DebugLoc dl = Ld->getDebugLoc();
13893  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13894
13895  ISD::LoadExtType Ext = Ld->getExtensionType();
13896
13897  // If this is a vector EXT Load then attempt to optimize it using a
13898  // shuffle. We need SSE4 for the shuffles.
13899  // TODO: It is possible to support ZExt by zeroing the undef values
13900  // during the shuffle phase or after the shuffle.
13901  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13902    assert(MemVT != RegVT && "Cannot extend to the same type");
13903    assert(MemVT.isVector() && "Must load a vector from memory");
13904
13905    unsigned NumElems = RegVT.getVectorNumElements();
13906    unsigned RegSz = RegVT.getSizeInBits();
13907    unsigned MemSz = MemVT.getSizeInBits();
13908    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13909    // All sizes must be a power of two
13910    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13911
13912    // Attempt to load the original value using a single load op.
13913    // Find a scalar type which is equal to the loaded word size.
13914    MVT SclrLoadTy = MVT::i8;
13915    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13916         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13917      MVT Tp = (MVT::SimpleValueType)tp;
13918      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13919        SclrLoadTy = Tp;
13920        break;
13921      }
13922    }
13923
13924    // Proceed if a load word is found.
13925    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13926
13927    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13928      RegSz/SclrLoadTy.getSizeInBits());
13929
13930    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13931                                  RegSz/MemVT.getScalarType().getSizeInBits());
13932    // Can't shuffle using an illegal type.
13933    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13934
13935    // Perform a single load.
13936    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13937                                  Ld->getBasePtr(),
13938                                  Ld->getPointerInfo(), Ld->isVolatile(),
13939                                  Ld->isNonTemporal(), Ld->isInvariant(),
13940                                  Ld->getAlignment());
13941
13942    // Insert the word loaded into a vector.
13943    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13944      LoadUnitVecVT, ScalarLoad);
13945
13946    // Bitcast the loaded value to a vector of the original element type, in
13947    // the size of the target vector type.
13948    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13949    unsigned SizeRatio = RegSz/MemSz;
13950
13951    // Redistribute the loaded elements into the different locations.
13952    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13953    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13954
13955    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13956                                DAG.getUNDEF(SlicedVec.getValueType()),
13957                                ShuffleVec.data());
13958
13959    // Bitcast to the requested type.
13960    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13961    // Replace the original load with the new sequence
13962    // and return the new chain.
13963    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13964    return SDValue(ScalarLoad.getNode(), 1);
13965  }
13966
13967  return SDValue();
13968}
13969
13970/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13971static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13972                                   const X86Subtarget *Subtarget) {
13973  StoreSDNode *St = cast<StoreSDNode>(N);
13974  EVT VT = St->getValue().getValueType();
13975  EVT StVT = St->getMemoryVT();
13976  DebugLoc dl = St->getDebugLoc();
13977  SDValue StoredVal = St->getOperand(1);
13978  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13979
13980  // If we are saving a concatenation of two XMM registers, perform two stores.
13981  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13982  // 128-bit ones. If in the future the cost becomes only one memory access the
13983  // first version would be better.
13984  if (VT.getSizeInBits() == 256 &&
13985    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13986    StoredVal.getNumOperands() == 2) {
13987
13988    SDValue Value0 = StoredVal.getOperand(0);
13989    SDValue Value1 = StoredVal.getOperand(1);
13990
13991    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13992    SDValue Ptr0 = St->getBasePtr();
13993    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13994
13995    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13996                                St->getPointerInfo(), St->isVolatile(),
13997                                St->isNonTemporal(), St->getAlignment());
13998    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13999                                St->getPointerInfo(), St->isVolatile(),
14000                                St->isNonTemporal(), St->getAlignment());
14001    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14002  }
14003
14004  // Optimize trunc store (of multiple scalars) to shuffle and store.
14005  // First, pack all of the elements in one place. Next, store to memory
14006  // in fewer chunks.
14007  if (St->isTruncatingStore() && VT.isVector()) {
14008    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14009    unsigned NumElems = VT.getVectorNumElements();
14010    assert(StVT != VT && "Cannot truncate to the same type");
14011    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14012    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14013
14014    // From, To sizes and ElemCount must be pow of two
14015    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14016    // We are going to use the original vector elt for storing.
14017    // Accumulated smaller vector elements must be a multiple of the store size.
14018    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14019
14020    unsigned SizeRatio  = FromSz / ToSz;
14021
14022    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14023
14024    // Create a type on which we perform the shuffle
14025    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14026            StVT.getScalarType(), NumElems*SizeRatio);
14027
14028    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14029
14030    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14031    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14032    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14033
14034    // Can't shuffle using an illegal type
14035    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14036
14037    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14038                                DAG.getUNDEF(WideVec.getValueType()),
14039                                ShuffleVec.data());
14040    // At this point all of the data is stored at the bottom of the
14041    // register. We now need to save it to mem.
14042
14043    // Find the largest store unit
14044    MVT StoreType = MVT::i8;
14045    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14046         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14047      MVT Tp = (MVT::SimpleValueType)tp;
14048      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14049        StoreType = Tp;
14050    }
14051
14052    // Bitcast the original vector into a vector of store-size units
14053    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14054            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14055    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14056    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14057    SmallVector<SDValue, 8> Chains;
14058    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14059                                        TLI.getPointerTy());
14060    SDValue Ptr = St->getBasePtr();
14061
14062    // Perform one or more big stores into memory.
14063    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14064      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14065                                   StoreType, ShuffWide,
14066                                   DAG.getIntPtrConstant(i));
14067      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14068                                St->getPointerInfo(), St->isVolatile(),
14069                                St->isNonTemporal(), St->getAlignment());
14070      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14071      Chains.push_back(Ch);
14072    }
14073
14074    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14075                               Chains.size());
14076  }
14077
14078
14079  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14080  // the FP state in cases where an emms may be missing.
14081  // A preferable solution to the general problem is to figure out the right
14082  // places to insert EMMS.  This qualifies as a quick hack.
14083
14084  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14085  if (VT.getSizeInBits() != 64)
14086    return SDValue();
14087
14088  const Function *F = DAG.getMachineFunction().getFunction();
14089  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14090  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14091                     && Subtarget->hasXMMInt();
14092  if ((VT.isVector() ||
14093       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14094      isa<LoadSDNode>(St->getValue()) &&
14095      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14096      St->getChain().hasOneUse() && !St->isVolatile()) {
14097    SDNode* LdVal = St->getValue().getNode();
14098    LoadSDNode *Ld = 0;
14099    int TokenFactorIndex = -1;
14100    SmallVector<SDValue, 8> Ops;
14101    SDNode* ChainVal = St->getChain().getNode();
14102    // Must be a store of a load.  We currently handle two cases:  the load
14103    // is a direct child, and it's under an intervening TokenFactor.  It is
14104    // possible to dig deeper under nested TokenFactors.
14105    if (ChainVal == LdVal)
14106      Ld = cast<LoadSDNode>(St->getChain());
14107    else if (St->getValue().hasOneUse() &&
14108             ChainVal->getOpcode() == ISD::TokenFactor) {
14109      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14110        if (ChainVal->getOperand(i).getNode() == LdVal) {
14111          TokenFactorIndex = i;
14112          Ld = cast<LoadSDNode>(St->getValue());
14113        } else
14114          Ops.push_back(ChainVal->getOperand(i));
14115      }
14116    }
14117
14118    if (!Ld || !ISD::isNormalLoad(Ld))
14119      return SDValue();
14120
14121    // If this is not the MMX case, i.e. we are just turning i64 load/store
14122    // into f64 load/store, avoid the transformation if there are multiple
14123    // uses of the loaded value.
14124    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14125      return SDValue();
14126
14127    DebugLoc LdDL = Ld->getDebugLoc();
14128    DebugLoc StDL = N->getDebugLoc();
14129    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14130    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14131    // pair instead.
14132    if (Subtarget->is64Bit() || F64IsLegal) {
14133      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14134      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14135                                  Ld->getPointerInfo(), Ld->isVolatile(),
14136                                  Ld->isNonTemporal(), Ld->isInvariant(),
14137                                  Ld->getAlignment());
14138      SDValue NewChain = NewLd.getValue(1);
14139      if (TokenFactorIndex != -1) {
14140        Ops.push_back(NewChain);
14141        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14142                               Ops.size());
14143      }
14144      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14145                          St->getPointerInfo(),
14146                          St->isVolatile(), St->isNonTemporal(),
14147                          St->getAlignment());
14148    }
14149
14150    // Otherwise, lower to two pairs of 32-bit loads / stores.
14151    SDValue LoAddr = Ld->getBasePtr();
14152    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14153                                 DAG.getConstant(4, MVT::i32));
14154
14155    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14156                               Ld->getPointerInfo(),
14157                               Ld->isVolatile(), Ld->isNonTemporal(),
14158                               Ld->isInvariant(), Ld->getAlignment());
14159    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14160                               Ld->getPointerInfo().getWithOffset(4),
14161                               Ld->isVolatile(), Ld->isNonTemporal(),
14162                               Ld->isInvariant(),
14163                               MinAlign(Ld->getAlignment(), 4));
14164
14165    SDValue NewChain = LoLd.getValue(1);
14166    if (TokenFactorIndex != -1) {
14167      Ops.push_back(LoLd);
14168      Ops.push_back(HiLd);
14169      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14170                             Ops.size());
14171    }
14172
14173    LoAddr = St->getBasePtr();
14174    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14175                         DAG.getConstant(4, MVT::i32));
14176
14177    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14178                                St->getPointerInfo(),
14179                                St->isVolatile(), St->isNonTemporal(),
14180                                St->getAlignment());
14181    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14182                                St->getPointerInfo().getWithOffset(4),
14183                                St->isVolatile(),
14184                                St->isNonTemporal(),
14185                                MinAlign(St->getAlignment(), 4));
14186    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14187  }
14188  return SDValue();
14189}
14190
14191/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14192/// and return the operands for the horizontal operation in LHS and RHS.  A
14193/// horizontal operation performs the binary operation on successive elements
14194/// of its first operand, then on successive elements of its second operand,
14195/// returning the resulting values in a vector.  For example, if
14196///   A = < float a0, float a1, float a2, float a3 >
14197/// and
14198///   B = < float b0, float b1, float b2, float b3 >
14199/// then the result of doing a horizontal operation on A and B is
14200///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14201/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14202/// A horizontal-op B, for some already available A and B, and if so then LHS is
14203/// set to A, RHS to B, and the routine returns 'true'.
14204/// Note that the binary operation should have the property that if one of the
14205/// operands is UNDEF then the result is UNDEF.
14206static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14207  // Look for the following pattern: if
14208  //   A = < float a0, float a1, float a2, float a3 >
14209  //   B = < float b0, float b1, float b2, float b3 >
14210  // and
14211  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14212  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14213  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14214  // which is A horizontal-op B.
14215
14216  // At least one of the operands should be a vector shuffle.
14217  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14218      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14219    return false;
14220
14221  EVT VT = LHS.getValueType();
14222
14223  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14224         "Unsupported vector type for horizontal add/sub");
14225
14226  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14227  // operate independently on 128-bit lanes.
14228  unsigned NumElts = VT.getVectorNumElements();
14229  unsigned NumLanes = VT.getSizeInBits()/128;
14230  unsigned NumLaneElts = NumElts / NumLanes;
14231  assert((NumLaneElts % 2 == 0) &&
14232         "Vector type should have an even number of elements in each lane");
14233  unsigned HalfLaneElts = NumLaneElts/2;
14234
14235  // View LHS in the form
14236  //   LHS = VECTOR_SHUFFLE A, B, LMask
14237  // If LHS is not a shuffle then pretend it is the shuffle
14238  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14239  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14240  // type VT.
14241  SDValue A, B;
14242  SmallVector<int, 16> LMask(NumElts);
14243  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14244    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14245      A = LHS.getOperand(0);
14246    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14247      B = LHS.getOperand(1);
14248    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14249  } else {
14250    if (LHS.getOpcode() != ISD::UNDEF)
14251      A = LHS;
14252    for (unsigned i = 0; i != NumElts; ++i)
14253      LMask[i] = i;
14254  }
14255
14256  // Likewise, view RHS in the form
14257  //   RHS = VECTOR_SHUFFLE C, D, RMask
14258  SDValue C, D;
14259  SmallVector<int, 16> RMask(NumElts);
14260  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14261    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14262      C = RHS.getOperand(0);
14263    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14264      D = RHS.getOperand(1);
14265    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14266  } else {
14267    if (RHS.getOpcode() != ISD::UNDEF)
14268      C = RHS;
14269    for (unsigned i = 0; i != NumElts; ++i)
14270      RMask[i] = i;
14271  }
14272
14273  // Check that the shuffles are both shuffling the same vectors.
14274  if (!(A == C && B == D) && !(A == D && B == C))
14275    return false;
14276
14277  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14278  if (!A.getNode() && !B.getNode())
14279    return false;
14280
14281  // If A and B occur in reverse order in RHS, then "swap" them (which means
14282  // rewriting the mask).
14283  if (A != C)
14284    CommuteVectorShuffleMask(RMask, NumElts);
14285
14286  // At this point LHS and RHS are equivalent to
14287  //   LHS = VECTOR_SHUFFLE A, B, LMask
14288  //   RHS = VECTOR_SHUFFLE A, B, RMask
14289  // Check that the masks correspond to performing a horizontal operation.
14290  for (unsigned i = 0; i != NumElts; ++i) {
14291    int LIdx = LMask[i], RIdx = RMask[i];
14292
14293    // Ignore any UNDEF components.
14294    if (LIdx < 0 || RIdx < 0 ||
14295        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14296        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14297      continue;
14298
14299    // Check that successive elements are being operated on.  If not, this is
14300    // not a horizontal operation.
14301    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14302    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14303    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14304    if (!(LIdx == Index && RIdx == Index + 1) &&
14305        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14306      return false;
14307  }
14308
14309  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14310  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14311  return true;
14312}
14313
14314/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14315static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14316                                  const X86Subtarget *Subtarget) {
14317  EVT VT = N->getValueType(0);
14318  SDValue LHS = N->getOperand(0);
14319  SDValue RHS = N->getOperand(1);
14320
14321  // Try to synthesize horizontal adds from adds of shuffles.
14322  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14323       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14324      isHorizontalBinOp(LHS, RHS, true))
14325    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14326  return SDValue();
14327}
14328
14329/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14330static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14331                                  const X86Subtarget *Subtarget) {
14332  EVT VT = N->getValueType(0);
14333  SDValue LHS = N->getOperand(0);
14334  SDValue RHS = N->getOperand(1);
14335
14336  // Try to synthesize horizontal subs from subs of shuffles.
14337  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14338       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14339      isHorizontalBinOp(LHS, RHS, false))
14340    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14341  return SDValue();
14342}
14343
14344/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14345/// X86ISD::FXOR nodes.
14346static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14347  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14348  // F[X]OR(0.0, x) -> x
14349  // F[X]OR(x, 0.0) -> x
14350  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14351    if (C->getValueAPF().isPosZero())
14352      return N->getOperand(1);
14353  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14354    if (C->getValueAPF().isPosZero())
14355      return N->getOperand(0);
14356  return SDValue();
14357}
14358
14359/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14360static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14361  // FAND(0.0, x) -> 0.0
14362  // FAND(x, 0.0) -> 0.0
14363  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14364    if (C->getValueAPF().isPosZero())
14365      return N->getOperand(0);
14366  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14367    if (C->getValueAPF().isPosZero())
14368      return N->getOperand(1);
14369  return SDValue();
14370}
14371
14372static SDValue PerformBTCombine(SDNode *N,
14373                                SelectionDAG &DAG,
14374                                TargetLowering::DAGCombinerInfo &DCI) {
14375  // BT ignores high bits in the bit index operand.
14376  SDValue Op1 = N->getOperand(1);
14377  if (Op1.hasOneUse()) {
14378    unsigned BitWidth = Op1.getValueSizeInBits();
14379    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14380    APInt KnownZero, KnownOne;
14381    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14382                                          !DCI.isBeforeLegalizeOps());
14383    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14384    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14385        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14386      DCI.CommitTargetLoweringOpt(TLO);
14387  }
14388  return SDValue();
14389}
14390
14391static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14392  SDValue Op = N->getOperand(0);
14393  if (Op.getOpcode() == ISD::BITCAST)
14394    Op = Op.getOperand(0);
14395  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14396  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14397      VT.getVectorElementType().getSizeInBits() ==
14398      OpVT.getVectorElementType().getSizeInBits()) {
14399    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14400  }
14401  return SDValue();
14402}
14403
14404static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14405  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14406  //           (and (i32 x86isd::setcc_carry), 1)
14407  // This eliminates the zext. This transformation is necessary because
14408  // ISD::SETCC is always legalized to i8.
14409  DebugLoc dl = N->getDebugLoc();
14410  SDValue N0 = N->getOperand(0);
14411  EVT VT = N->getValueType(0);
14412  if (N0.getOpcode() == ISD::AND &&
14413      N0.hasOneUse() &&
14414      N0.getOperand(0).hasOneUse()) {
14415    SDValue N00 = N0.getOperand(0);
14416    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14417      return SDValue();
14418    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14419    if (!C || C->getZExtValue() != 1)
14420      return SDValue();
14421    return DAG.getNode(ISD::AND, dl, VT,
14422                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14423                                   N00.getOperand(0), N00.getOperand(1)),
14424                       DAG.getConstant(1, VT));
14425  }
14426
14427  return SDValue();
14428}
14429
14430// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14431static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14432  unsigned X86CC = N->getConstantOperandVal(0);
14433  SDValue EFLAG = N->getOperand(1);
14434  DebugLoc DL = N->getDebugLoc();
14435
14436  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14437  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14438  // cases.
14439  if (X86CC == X86::COND_B)
14440    return DAG.getNode(ISD::AND, DL, MVT::i8,
14441                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14442                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14443                       DAG.getConstant(1, MVT::i8));
14444
14445  return SDValue();
14446}
14447
14448static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14449                                        const X86TargetLowering *XTLI) {
14450  SDValue Op0 = N->getOperand(0);
14451  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14452  // a 32-bit target where SSE doesn't support i64->FP operations.
14453  if (Op0.getOpcode() == ISD::LOAD) {
14454    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14455    EVT VT = Ld->getValueType(0);
14456    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14457        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14458        !XTLI->getSubtarget()->is64Bit() &&
14459        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14460      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14461                                          Ld->getChain(), Op0, DAG);
14462      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14463      return FILDChain;
14464    }
14465  }
14466  return SDValue();
14467}
14468
14469// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14470static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14471                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14472  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14473  // the result is either zero or one (depending on the input carry bit).
14474  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14475  if (X86::isZeroNode(N->getOperand(0)) &&
14476      X86::isZeroNode(N->getOperand(1)) &&
14477      // We don't have a good way to replace an EFLAGS use, so only do this when
14478      // dead right now.
14479      SDValue(N, 1).use_empty()) {
14480    DebugLoc DL = N->getDebugLoc();
14481    EVT VT = N->getValueType(0);
14482    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14483    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14484                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14485                                           DAG.getConstant(X86::COND_B,MVT::i8),
14486                                           N->getOperand(2)),
14487                               DAG.getConstant(1, VT));
14488    return DCI.CombineTo(N, Res1, CarryOut);
14489  }
14490
14491  return SDValue();
14492}
14493
14494// fold (add Y, (sete  X, 0)) -> adc  0, Y
14495//      (add Y, (setne X, 0)) -> sbb -1, Y
14496//      (sub (sete  X, 0), Y) -> sbb  0, Y
14497//      (sub (setne X, 0), Y) -> adc -1, Y
14498static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14499  DebugLoc DL = N->getDebugLoc();
14500
14501  // Look through ZExts.
14502  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14503  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14504    return SDValue();
14505
14506  SDValue SetCC = Ext.getOperand(0);
14507  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14508    return SDValue();
14509
14510  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14511  if (CC != X86::COND_E && CC != X86::COND_NE)
14512    return SDValue();
14513
14514  SDValue Cmp = SetCC.getOperand(1);
14515  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14516      !X86::isZeroNode(Cmp.getOperand(1)) ||
14517      !Cmp.getOperand(0).getValueType().isInteger())
14518    return SDValue();
14519
14520  SDValue CmpOp0 = Cmp.getOperand(0);
14521  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14522                               DAG.getConstant(1, CmpOp0.getValueType()));
14523
14524  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14525  if (CC == X86::COND_NE)
14526    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14527                       DL, OtherVal.getValueType(), OtherVal,
14528                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14529  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14530                     DL, OtherVal.getValueType(), OtherVal,
14531                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14532}
14533
14534/// PerformADDCombine - Do target-specific dag combines on integer adds.
14535static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14536                                 const X86Subtarget *Subtarget) {
14537  EVT VT = N->getValueType(0);
14538  SDValue Op0 = N->getOperand(0);
14539  SDValue Op1 = N->getOperand(1);
14540
14541  // Try to synthesize horizontal adds from adds of shuffles.
14542  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14543       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14544      isHorizontalBinOp(Op0, Op1, true))
14545    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14546
14547  return OptimizeConditionalInDecrement(N, DAG);
14548}
14549
14550static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14551                                 const X86Subtarget *Subtarget) {
14552  SDValue Op0 = N->getOperand(0);
14553  SDValue Op1 = N->getOperand(1);
14554
14555  // X86 can't encode an immediate LHS of a sub. See if we can push the
14556  // negation into a preceding instruction.
14557  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14558    // If the RHS of the sub is a XOR with one use and a constant, invert the
14559    // immediate. Then add one to the LHS of the sub so we can turn
14560    // X-Y -> X+~Y+1, saving one register.
14561    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14562        isa<ConstantSDNode>(Op1.getOperand(1))) {
14563      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14564      EVT VT = Op0.getValueType();
14565      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14566                                   Op1.getOperand(0),
14567                                   DAG.getConstant(~XorC, VT));
14568      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14569                         DAG.getConstant(C->getAPIntValue()+1, VT));
14570    }
14571  }
14572
14573  // Try to synthesize horizontal adds from adds of shuffles.
14574  EVT VT = N->getValueType(0);
14575  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14576       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14577      isHorizontalBinOp(Op0, Op1, true))
14578    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14579
14580  return OptimizeConditionalInDecrement(N, DAG);
14581}
14582
14583SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14584                                             DAGCombinerInfo &DCI) const {
14585  SelectionDAG &DAG = DCI.DAG;
14586  switch (N->getOpcode()) {
14587  default: break;
14588  case ISD::EXTRACT_VECTOR_ELT:
14589    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14590  case ISD::VSELECT:
14591  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14592  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14593  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14594  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14595  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14596  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14597  case ISD::SHL:
14598  case ISD::SRA:
14599  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14600  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14601  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14602  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14603  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14604  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14605  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14606  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14607  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14608  case X86ISD::FXOR:
14609  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14610  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14611  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14612  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14613  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14614  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14615  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14616  case X86ISD::SHUFPD:
14617  case X86ISD::PALIGN:
14618  case X86ISD::UNPCKH:
14619  case X86ISD::UNPCKL:
14620  case X86ISD::MOVHLPS:
14621  case X86ISD::MOVLHPS:
14622  case X86ISD::PSHUFD:
14623  case X86ISD::PSHUFHW:
14624  case X86ISD::PSHUFLW:
14625  case X86ISD::MOVSS:
14626  case X86ISD::MOVSD:
14627  case X86ISD::VPERMILP:
14628  case X86ISD::VPERM2X128:
14629  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14630  }
14631
14632  return SDValue();
14633}
14634
14635/// isTypeDesirableForOp - Return true if the target has native support for
14636/// the specified value type and it is 'desirable' to use the type for the
14637/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14638/// instruction encodings are longer and some i16 instructions are slow.
14639bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14640  if (!isTypeLegal(VT))
14641    return false;
14642  if (VT != MVT::i16)
14643    return true;
14644
14645  switch (Opc) {
14646  default:
14647    return true;
14648  case ISD::LOAD:
14649  case ISD::SIGN_EXTEND:
14650  case ISD::ZERO_EXTEND:
14651  case ISD::ANY_EXTEND:
14652  case ISD::SHL:
14653  case ISD::SRL:
14654  case ISD::SUB:
14655  case ISD::ADD:
14656  case ISD::MUL:
14657  case ISD::AND:
14658  case ISD::OR:
14659  case ISD::XOR:
14660    return false;
14661  }
14662}
14663
14664/// IsDesirableToPromoteOp - This method query the target whether it is
14665/// beneficial for dag combiner to promote the specified node. If true, it
14666/// should return the desired promotion type by reference.
14667bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14668  EVT VT = Op.getValueType();
14669  if (VT != MVT::i16)
14670    return false;
14671
14672  bool Promote = false;
14673  bool Commute = false;
14674  switch (Op.getOpcode()) {
14675  default: break;
14676  case ISD::LOAD: {
14677    LoadSDNode *LD = cast<LoadSDNode>(Op);
14678    // If the non-extending load has a single use and it's not live out, then it
14679    // might be folded.
14680    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14681                                                     Op.hasOneUse()*/) {
14682      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14683             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14684        // The only case where we'd want to promote LOAD (rather then it being
14685        // promoted as an operand is when it's only use is liveout.
14686        if (UI->getOpcode() != ISD::CopyToReg)
14687          return false;
14688      }
14689    }
14690    Promote = true;
14691    break;
14692  }
14693  case ISD::SIGN_EXTEND:
14694  case ISD::ZERO_EXTEND:
14695  case ISD::ANY_EXTEND:
14696    Promote = true;
14697    break;
14698  case ISD::SHL:
14699  case ISD::SRL: {
14700    SDValue N0 = Op.getOperand(0);
14701    // Look out for (store (shl (load), x)).
14702    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14703      return false;
14704    Promote = true;
14705    break;
14706  }
14707  case ISD::ADD:
14708  case ISD::MUL:
14709  case ISD::AND:
14710  case ISD::OR:
14711  case ISD::XOR:
14712    Commute = true;
14713    // fallthrough
14714  case ISD::SUB: {
14715    SDValue N0 = Op.getOperand(0);
14716    SDValue N1 = Op.getOperand(1);
14717    if (!Commute && MayFoldLoad(N1))
14718      return false;
14719    // Avoid disabling potential load folding opportunities.
14720    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14721      return false;
14722    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14723      return false;
14724    Promote = true;
14725  }
14726  }
14727
14728  PVT = MVT::i32;
14729  return Promote;
14730}
14731
14732//===----------------------------------------------------------------------===//
14733//                           X86 Inline Assembly Support
14734//===----------------------------------------------------------------------===//
14735
14736namespace {
14737  // Helper to match a string separated by whitespace.
14738  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14739    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14740
14741    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14742      StringRef piece(*args[i]);
14743      if (!s.startswith(piece)) // Check if the piece matches.
14744        return false;
14745
14746      s = s.substr(piece.size());
14747      StringRef::size_type pos = s.find_first_not_of(" \t");
14748      if (pos == 0) // We matched a prefix.
14749        return false;
14750
14751      s = s.substr(pos);
14752    }
14753
14754    return s.empty();
14755  }
14756  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14757}
14758
14759bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14760  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14761
14762  std::string AsmStr = IA->getAsmString();
14763
14764  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14765  if (!Ty || Ty->getBitWidth() % 16 != 0)
14766    return false;
14767
14768  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14769  SmallVector<StringRef, 4> AsmPieces;
14770  SplitString(AsmStr, AsmPieces, ";\n");
14771
14772  switch (AsmPieces.size()) {
14773  default: return false;
14774  case 1:
14775    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14776    // we will turn this bswap into something that will be lowered to logical
14777    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14778    // lower so don't worry about this.
14779    // bswap $0
14780    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14781        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14782        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14783        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14784        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14785        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14786      // No need to check constraints, nothing other than the equivalent of
14787      // "=r,0" would be valid here.
14788      return IntrinsicLowering::LowerToByteSwap(CI);
14789    }
14790
14791    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14792    if (CI->getType()->isIntegerTy(16) &&
14793        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14794        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14795         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14796      AsmPieces.clear();
14797      const std::string &ConstraintsStr = IA->getConstraintString();
14798      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14799      std::sort(AsmPieces.begin(), AsmPieces.end());
14800      if (AsmPieces.size() == 4 &&
14801          AsmPieces[0] == "~{cc}" &&
14802          AsmPieces[1] == "~{dirflag}" &&
14803          AsmPieces[2] == "~{flags}" &&
14804          AsmPieces[3] == "~{fpsr}")
14805      return IntrinsicLowering::LowerToByteSwap(CI);
14806    }
14807    break;
14808  case 3:
14809    if (CI->getType()->isIntegerTy(32) &&
14810        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14811        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14812        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14813        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14814      AsmPieces.clear();
14815      const std::string &ConstraintsStr = IA->getConstraintString();
14816      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14817      std::sort(AsmPieces.begin(), AsmPieces.end());
14818      if (AsmPieces.size() == 4 &&
14819          AsmPieces[0] == "~{cc}" &&
14820          AsmPieces[1] == "~{dirflag}" &&
14821          AsmPieces[2] == "~{flags}" &&
14822          AsmPieces[3] == "~{fpsr}")
14823        return IntrinsicLowering::LowerToByteSwap(CI);
14824    }
14825
14826    if (CI->getType()->isIntegerTy(64)) {
14827      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14828      if (Constraints.size() >= 2 &&
14829          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14830          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14831        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14832        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14833            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14834            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14835          return IntrinsicLowering::LowerToByteSwap(CI);
14836      }
14837    }
14838    break;
14839  }
14840  return false;
14841}
14842
14843
14844
14845/// getConstraintType - Given a constraint letter, return the type of
14846/// constraint it is for this target.
14847X86TargetLowering::ConstraintType
14848X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14849  if (Constraint.size() == 1) {
14850    switch (Constraint[0]) {
14851    case 'R':
14852    case 'q':
14853    case 'Q':
14854    case 'f':
14855    case 't':
14856    case 'u':
14857    case 'y':
14858    case 'x':
14859    case 'Y':
14860    case 'l':
14861      return C_RegisterClass;
14862    case 'a':
14863    case 'b':
14864    case 'c':
14865    case 'd':
14866    case 'S':
14867    case 'D':
14868    case 'A':
14869      return C_Register;
14870    case 'I':
14871    case 'J':
14872    case 'K':
14873    case 'L':
14874    case 'M':
14875    case 'N':
14876    case 'G':
14877    case 'C':
14878    case 'e':
14879    case 'Z':
14880      return C_Other;
14881    default:
14882      break;
14883    }
14884  }
14885  return TargetLowering::getConstraintType(Constraint);
14886}
14887
14888/// Examine constraint type and operand type and determine a weight value.
14889/// This object must already have been set up with the operand type
14890/// and the current alternative constraint selected.
14891TargetLowering::ConstraintWeight
14892  X86TargetLowering::getSingleConstraintMatchWeight(
14893    AsmOperandInfo &info, const char *constraint) const {
14894  ConstraintWeight weight = CW_Invalid;
14895  Value *CallOperandVal = info.CallOperandVal;
14896    // If we don't have a value, we can't do a match,
14897    // but allow it at the lowest weight.
14898  if (CallOperandVal == NULL)
14899    return CW_Default;
14900  Type *type = CallOperandVal->getType();
14901  // Look at the constraint type.
14902  switch (*constraint) {
14903  default:
14904    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14905  case 'R':
14906  case 'q':
14907  case 'Q':
14908  case 'a':
14909  case 'b':
14910  case 'c':
14911  case 'd':
14912  case 'S':
14913  case 'D':
14914  case 'A':
14915    if (CallOperandVal->getType()->isIntegerTy())
14916      weight = CW_SpecificReg;
14917    break;
14918  case 'f':
14919  case 't':
14920  case 'u':
14921      if (type->isFloatingPointTy())
14922        weight = CW_SpecificReg;
14923      break;
14924  case 'y':
14925      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14926        weight = CW_SpecificReg;
14927      break;
14928  case 'x':
14929  case 'Y':
14930    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14931      weight = CW_Register;
14932    break;
14933  case 'I':
14934    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14935      if (C->getZExtValue() <= 31)
14936        weight = CW_Constant;
14937    }
14938    break;
14939  case 'J':
14940    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14941      if (C->getZExtValue() <= 63)
14942        weight = CW_Constant;
14943    }
14944    break;
14945  case 'K':
14946    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14947      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14948        weight = CW_Constant;
14949    }
14950    break;
14951  case 'L':
14952    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14953      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14954        weight = CW_Constant;
14955    }
14956    break;
14957  case 'M':
14958    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14959      if (C->getZExtValue() <= 3)
14960        weight = CW_Constant;
14961    }
14962    break;
14963  case 'N':
14964    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14965      if (C->getZExtValue() <= 0xff)
14966        weight = CW_Constant;
14967    }
14968    break;
14969  case 'G':
14970  case 'C':
14971    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14972      weight = CW_Constant;
14973    }
14974    break;
14975  case 'e':
14976    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14977      if ((C->getSExtValue() >= -0x80000000LL) &&
14978          (C->getSExtValue() <= 0x7fffffffLL))
14979        weight = CW_Constant;
14980    }
14981    break;
14982  case 'Z':
14983    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14984      if (C->getZExtValue() <= 0xffffffff)
14985        weight = CW_Constant;
14986    }
14987    break;
14988  }
14989  return weight;
14990}
14991
14992/// LowerXConstraint - try to replace an X constraint, which matches anything,
14993/// with another that has more specific requirements based on the type of the
14994/// corresponding operand.
14995const char *X86TargetLowering::
14996LowerXConstraint(EVT ConstraintVT) const {
14997  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14998  // 'f' like normal targets.
14999  if (ConstraintVT.isFloatingPoint()) {
15000    if (Subtarget->hasXMMInt())
15001      return "Y";
15002    if (Subtarget->hasXMM())
15003      return "x";
15004  }
15005
15006  return TargetLowering::LowerXConstraint(ConstraintVT);
15007}
15008
15009/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15010/// vector.  If it is invalid, don't add anything to Ops.
15011void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15012                                                     std::string &Constraint,
15013                                                     std::vector<SDValue>&Ops,
15014                                                     SelectionDAG &DAG) const {
15015  SDValue Result(0, 0);
15016
15017  // Only support length 1 constraints for now.
15018  if (Constraint.length() > 1) return;
15019
15020  char ConstraintLetter = Constraint[0];
15021  switch (ConstraintLetter) {
15022  default: break;
15023  case 'I':
15024    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15025      if (C->getZExtValue() <= 31) {
15026        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15027        break;
15028      }
15029    }
15030    return;
15031  case 'J':
15032    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15033      if (C->getZExtValue() <= 63) {
15034        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15035        break;
15036      }
15037    }
15038    return;
15039  case 'K':
15040    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15041      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15042        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15043        break;
15044      }
15045    }
15046    return;
15047  case 'N':
15048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15049      if (C->getZExtValue() <= 255) {
15050        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15051        break;
15052      }
15053    }
15054    return;
15055  case 'e': {
15056    // 32-bit signed value
15057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15058      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15059                                           C->getSExtValue())) {
15060        // Widen to 64 bits here to get it sign extended.
15061        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15062        break;
15063      }
15064    // FIXME gcc accepts some relocatable values here too, but only in certain
15065    // memory models; it's complicated.
15066    }
15067    return;
15068  }
15069  case 'Z': {
15070    // 32-bit unsigned value
15071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15072      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15073                                           C->getZExtValue())) {
15074        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15075        break;
15076      }
15077    }
15078    // FIXME gcc accepts some relocatable values here too, but only in certain
15079    // memory models; it's complicated.
15080    return;
15081  }
15082  case 'i': {
15083    // Literal immediates are always ok.
15084    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15085      // Widen to 64 bits here to get it sign extended.
15086      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15087      break;
15088    }
15089
15090    // In any sort of PIC mode addresses need to be computed at runtime by
15091    // adding in a register or some sort of table lookup.  These can't
15092    // be used as immediates.
15093    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15094      return;
15095
15096    // If we are in non-pic codegen mode, we allow the address of a global (with
15097    // an optional displacement) to be used with 'i'.
15098    GlobalAddressSDNode *GA = 0;
15099    int64_t Offset = 0;
15100
15101    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15102    while (1) {
15103      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15104        Offset += GA->getOffset();
15105        break;
15106      } else if (Op.getOpcode() == ISD::ADD) {
15107        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15108          Offset += C->getZExtValue();
15109          Op = Op.getOperand(0);
15110          continue;
15111        }
15112      } else if (Op.getOpcode() == ISD::SUB) {
15113        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15114          Offset += -C->getZExtValue();
15115          Op = Op.getOperand(0);
15116          continue;
15117        }
15118      }
15119
15120      // Otherwise, this isn't something we can handle, reject it.
15121      return;
15122    }
15123
15124    const GlobalValue *GV = GA->getGlobal();
15125    // If we require an extra load to get this address, as in PIC mode, we
15126    // can't accept it.
15127    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15128                                                        getTargetMachine())))
15129      return;
15130
15131    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15132                                        GA->getValueType(0), Offset);
15133    break;
15134  }
15135  }
15136
15137  if (Result.getNode()) {
15138    Ops.push_back(Result);
15139    return;
15140  }
15141  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15142}
15143
15144std::pair<unsigned, const TargetRegisterClass*>
15145X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15146                                                EVT VT) const {
15147  // First, see if this is a constraint that directly corresponds to an LLVM
15148  // register class.
15149  if (Constraint.size() == 1) {
15150    // GCC Constraint Letters
15151    switch (Constraint[0]) {
15152    default: break;
15153      // TODO: Slight differences here in allocation order and leaving
15154      // RIP in the class. Do they matter any more here than they do
15155      // in the normal allocation?
15156    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15157      if (Subtarget->is64Bit()) {
15158	if (VT == MVT::i32 || VT == MVT::f32)
15159	  return std::make_pair(0U, X86::GR32RegisterClass);
15160	else if (VT == MVT::i16)
15161	  return std::make_pair(0U, X86::GR16RegisterClass);
15162	else if (VT == MVT::i8 || VT == MVT::i1)
15163	  return std::make_pair(0U, X86::GR8RegisterClass);
15164	else if (VT == MVT::i64 || VT == MVT::f64)
15165	  return std::make_pair(0U, X86::GR64RegisterClass);
15166	break;
15167      }
15168      // 32-bit fallthrough
15169    case 'Q':   // Q_REGS
15170      if (VT == MVT::i32 || VT == MVT::f32)
15171	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15172      else if (VT == MVT::i16)
15173	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15174      else if (VT == MVT::i8 || VT == MVT::i1)
15175	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15176      else if (VT == MVT::i64)
15177	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15178      break;
15179    case 'r':   // GENERAL_REGS
15180    case 'l':   // INDEX_REGS
15181      if (VT == MVT::i8 || VT == MVT::i1)
15182        return std::make_pair(0U, X86::GR8RegisterClass);
15183      if (VT == MVT::i16)
15184        return std::make_pair(0U, X86::GR16RegisterClass);
15185      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15186        return std::make_pair(0U, X86::GR32RegisterClass);
15187      return std::make_pair(0U, X86::GR64RegisterClass);
15188    case 'R':   // LEGACY_REGS
15189      if (VT == MVT::i8 || VT == MVT::i1)
15190        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15191      if (VT == MVT::i16)
15192        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15193      if (VT == MVT::i32 || !Subtarget->is64Bit())
15194        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15195      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15196    case 'f':  // FP Stack registers.
15197      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15198      // value to the correct fpstack register class.
15199      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15200        return std::make_pair(0U, X86::RFP32RegisterClass);
15201      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15202        return std::make_pair(0U, X86::RFP64RegisterClass);
15203      return std::make_pair(0U, X86::RFP80RegisterClass);
15204    case 'y':   // MMX_REGS if MMX allowed.
15205      if (!Subtarget->hasMMX()) break;
15206      return std::make_pair(0U, X86::VR64RegisterClass);
15207    case 'Y':   // SSE_REGS if SSE2 allowed
15208      if (!Subtarget->hasXMMInt()) break;
15209      // FALL THROUGH.
15210    case 'x':   // SSE_REGS if SSE1 allowed
15211      if (!Subtarget->hasXMM()) break;
15212
15213      switch (VT.getSimpleVT().SimpleTy) {
15214      default: break;
15215      // Scalar SSE types.
15216      case MVT::f32:
15217      case MVT::i32:
15218        return std::make_pair(0U, X86::FR32RegisterClass);
15219      case MVT::f64:
15220      case MVT::i64:
15221        return std::make_pair(0U, X86::FR64RegisterClass);
15222      // Vector types.
15223      case MVT::v16i8:
15224      case MVT::v8i16:
15225      case MVT::v4i32:
15226      case MVT::v2i64:
15227      case MVT::v4f32:
15228      case MVT::v2f64:
15229        return std::make_pair(0U, X86::VR128RegisterClass);
15230      }
15231      break;
15232    }
15233  }
15234
15235  // Use the default implementation in TargetLowering to convert the register
15236  // constraint into a member of a register class.
15237  std::pair<unsigned, const TargetRegisterClass*> Res;
15238  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15239
15240  // Not found as a standard register?
15241  if (Res.second == 0) {
15242    // Map st(0) -> st(7) -> ST0
15243    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15244        tolower(Constraint[1]) == 's' &&
15245        tolower(Constraint[2]) == 't' &&
15246        Constraint[3] == '(' &&
15247        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15248        Constraint[5] == ')' &&
15249        Constraint[6] == '}') {
15250
15251      Res.first = X86::ST0+Constraint[4]-'0';
15252      Res.second = X86::RFP80RegisterClass;
15253      return Res;
15254    }
15255
15256    // GCC allows "st(0)" to be called just plain "st".
15257    if (StringRef("{st}").equals_lower(Constraint)) {
15258      Res.first = X86::ST0;
15259      Res.second = X86::RFP80RegisterClass;
15260      return Res;
15261    }
15262
15263    // flags -> EFLAGS
15264    if (StringRef("{flags}").equals_lower(Constraint)) {
15265      Res.first = X86::EFLAGS;
15266      Res.second = X86::CCRRegisterClass;
15267      return Res;
15268    }
15269
15270    // 'A' means EAX + EDX.
15271    if (Constraint == "A") {
15272      Res.first = X86::EAX;
15273      Res.second = X86::GR32_ADRegisterClass;
15274      return Res;
15275    }
15276    return Res;
15277  }
15278
15279  // Otherwise, check to see if this is a register class of the wrong value
15280  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15281  // turn into {ax},{dx}.
15282  if (Res.second->hasType(VT))
15283    return Res;   // Correct type already, nothing to do.
15284
15285  // All of the single-register GCC register classes map their values onto
15286  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15287  // really want an 8-bit or 32-bit register, map to the appropriate register
15288  // class and return the appropriate register.
15289  if (Res.second == X86::GR16RegisterClass) {
15290    if (VT == MVT::i8) {
15291      unsigned DestReg = 0;
15292      switch (Res.first) {
15293      default: break;
15294      case X86::AX: DestReg = X86::AL; break;
15295      case X86::DX: DestReg = X86::DL; break;
15296      case X86::CX: DestReg = X86::CL; break;
15297      case X86::BX: DestReg = X86::BL; break;
15298      }
15299      if (DestReg) {
15300        Res.first = DestReg;
15301        Res.second = X86::GR8RegisterClass;
15302      }
15303    } else if (VT == MVT::i32) {
15304      unsigned DestReg = 0;
15305      switch (Res.first) {
15306      default: break;
15307      case X86::AX: DestReg = X86::EAX; break;
15308      case X86::DX: DestReg = X86::EDX; break;
15309      case X86::CX: DestReg = X86::ECX; break;
15310      case X86::BX: DestReg = X86::EBX; break;
15311      case X86::SI: DestReg = X86::ESI; break;
15312      case X86::DI: DestReg = X86::EDI; break;
15313      case X86::BP: DestReg = X86::EBP; break;
15314      case X86::SP: DestReg = X86::ESP; break;
15315      }
15316      if (DestReg) {
15317        Res.first = DestReg;
15318        Res.second = X86::GR32RegisterClass;
15319      }
15320    } else if (VT == MVT::i64) {
15321      unsigned DestReg = 0;
15322      switch (Res.first) {
15323      default: break;
15324      case X86::AX: DestReg = X86::RAX; break;
15325      case X86::DX: DestReg = X86::RDX; break;
15326      case X86::CX: DestReg = X86::RCX; break;
15327      case X86::BX: DestReg = X86::RBX; break;
15328      case X86::SI: DestReg = X86::RSI; break;
15329      case X86::DI: DestReg = X86::RDI; break;
15330      case X86::BP: DestReg = X86::RBP; break;
15331      case X86::SP: DestReg = X86::RSP; break;
15332      }
15333      if (DestReg) {
15334        Res.first = DestReg;
15335        Res.second = X86::GR64RegisterClass;
15336      }
15337    }
15338  } else if (Res.second == X86::FR32RegisterClass ||
15339             Res.second == X86::FR64RegisterClass ||
15340             Res.second == X86::VR128RegisterClass) {
15341    // Handle references to XMM physical registers that got mapped into the
15342    // wrong class.  This can happen with constraints like {xmm0} where the
15343    // target independent register mapper will just pick the first match it can
15344    // find, ignoring the required type.
15345    if (VT == MVT::f32)
15346      Res.second = X86::FR32RegisterClass;
15347    else if (VT == MVT::f64)
15348      Res.second = X86::FR64RegisterClass;
15349    else if (X86::VR128RegisterClass->hasType(VT))
15350      Res.second = X86::VR128RegisterClass;
15351  }
15352
15353  return Res;
15354}
15355