X86ISelLowering.cpp revision 7bd6478cd6a1264f884b46f3694af3a68a6fab0a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "X86TargetObjectFile.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalAlias.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/VectorExtras.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Disable16Bit - 16-bit operations typically have a larger encoding than
51// corresponding 32-bit instructions, and 16-bit code is slow on some
52// processors. This is an experimental flag to disable 16-bit operations
53// (which forces them to be Legalized to 32-bit operations).
54static cl::opt<bool>
55Disable16Bit("disable-16bit", cl::Hidden,
56             cl::desc("Disable use of 16-bit instructions"));
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64  default: llvm_unreachable("unknown subtarget type");
65  case X86Subtarget::isDarwin:
66    if (TM.getSubtarget<X86Subtarget>().is64Bit())
67      return new X8664_MachoTargetObjectFile();
68    return new X8632_MachoTargetObjectFile();
69  case X86Subtarget::isELF:
70    return new TargetLoweringObjectFileELF();
71  case X86Subtarget::isMingw:
72  case X86Subtarget::isCygwin:
73  case X86Subtarget::isWindows:
74    return new TargetLoweringObjectFileCOFF();
75  }
76
77}
78
79X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
80  : TargetLowering(TM, createTLOF(TM)) {
81  Subtarget = &TM.getSubtarget<X86Subtarget>();
82  X86ScalarSSEf64 = Subtarget->hasSSE2();
83  X86ScalarSSEf32 = Subtarget->hasSSE1();
84  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
85
86  RegInfo = TM.getRegisterInfo();
87  TD = getTargetData();
88
89  // Set up the TargetLowering object.
90
91  // X86 is weird, it always uses i8 for shift amounts and setcc results.
92  setShiftAmountType(MVT::i8);
93  setBooleanContents(ZeroOrOneBooleanContent);
94  setSchedulingPreference(SchedulingForRegPressure);
95  setStackPointerRegisterToSaveRestore(X86StackPtr);
96
97  if (Subtarget->isTargetDarwin()) {
98    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
99    setUseUnderscoreSetJmp(false);
100    setUseUnderscoreLongJmp(false);
101  } else if (Subtarget->isTargetMingw()) {
102    // MS runtime is weird: it exports _setjmp, but longjmp!
103    setUseUnderscoreSetJmp(true);
104    setUseUnderscoreLongJmp(false);
105  } else {
106    setUseUnderscoreSetJmp(true);
107    setUseUnderscoreLongJmp(true);
108  }
109
110  // Set up the register classes.
111  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
112  if (!Disable16Bit)
113    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  if (!Disable16Bit)
123    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  if (!Disable16Bit)
126    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129
130  // SETOEQ and SETUNE require checking two conditions.
131  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
136  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137
138  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139  // operation.
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
143
144  if (Subtarget->is64Bit()) {
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147  } else if (!UseSoftFloat) {
148    if (X86ScalarSSEf64) {
149      // We have an impenetrably clever algorithm for ui64->double only.
150      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
151    }
152    // We have an algorithm for SSE2, and we turn this into a 64-bit
153    // FILD for other targets.
154    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
155  }
156
157  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
158  // this operation.
159  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
160  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
161
162  if (!UseSoftFloat) {
163    // SSE has no i16 to fp conversion, only i32
164    if (X86ScalarSSEf32) {
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
166      // f32 and f64 cases are Legal, f80 case is not
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    } else {
169      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
170      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
171    }
172  } else {
173    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
175  }
176
177  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
178  // are Legal, f80 is custom lowered.
179  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
180  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
181
182  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
183  // this operation.
184  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
185  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
186
187  if (X86ScalarSSEf32) {
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
189    // f32 and f64 cases are Legal, f80 case is not
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  } else {
192    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
193    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
194  }
195
196  // Handle FP_TO_UINT by promoting the destination to a larger signed
197  // conversion.
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
199  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
200  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
201
202  if (Subtarget->is64Bit()) {
203    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
204    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
205  } else if (!UseSoftFloat) {
206    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
207      // Expand FP_TO_UINT into a select.
208      // FIXME: We would like to use a Custom expander here eventually to do
209      // the optimal thing for SSE vs. the default expansion in the legalizer.
210      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
211    else
212      // With SSE3 we can use fisttpll to convert to a signed i64; without
213      // SSE, we're stuck with a fistpll.
214      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
215  }
216
217  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
218  if (!X86ScalarSSEf64) {
219    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
220    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
221  }
222
223  // Scalar integer divide and remainder are lowered to use operations that
224  // produce two results, to match the available instructions. This exposes
225  // the two-result form to trivial CSE, which is able to combine x/y and x%y
226  // into a single instruction.
227  //
228  // Scalar integer multiply-high is also lowered to use two-result
229  // operations, to match the available instructions. However, plain multiply
230  // (low) operations are left as Legal, as there are single-result
231  // instructions for this in x86. Using the two-result multiply instructions
232  // when both high and low results are needed must be arranged by dagcombine.
233  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
234  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
235  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
236  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
237  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
238  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
240  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
241  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
242  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
243  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
244  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
246  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
247  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
248  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
249  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
250  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
252  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
253  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
254  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
255  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
256  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
257
258  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
259  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
260  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
261  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
262  if (Subtarget->is64Bit())
263    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
264  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
267  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
268  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
269  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
270  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
271  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
272
273  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
274  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
275  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
276  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
277  if (Disable16Bit) {
278    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
279    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
280  } else {
281    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
282    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
283  }
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  if (Disable16Bit)
301    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
302  else
303    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
307  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
313  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
314  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
319    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
320  }
321  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
322
323  // Darwin ABI issue.
324  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
325  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
326  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
327  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
328  if (Subtarget->is64Bit())
329    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
330  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
331  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
332  if (Subtarget->is64Bit()) {
333    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
334    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
335    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
336    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
337    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
338  }
339  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
340  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
341  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
342  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
345    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
346    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
347  }
348
349  if (Subtarget->hasSSE1())
350    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
351
352  if (!Subtarget->hasSSE2())
353    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
354
355  // Expand certain atomics
356  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
360
361  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
365
366  if (!Subtarget->is64Bit()) {
367    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
374  }
375
376  // FIXME - use subtarget debug flags
377  if (!Subtarget->isTargetDarwin() &&
378      !Subtarget->isTargetELF() &&
379      !Subtarget->isTargetCygMing()) {
380    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
381  }
382
383  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
384  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
385  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
386  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
387  if (Subtarget->is64Bit()) {
388    setExceptionPointerRegister(X86::RAX);
389    setExceptionSelectorRegister(X86::RDX);
390  } else {
391    setExceptionPointerRegister(X86::EAX);
392    setExceptionSelectorRegister(X86::EDX);
393  }
394  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
396
397  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
398
399  setOperationAction(ISD::TRAP, MVT::Other, Legal);
400
401  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
402  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
403  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
404  if (Subtarget->is64Bit()) {
405    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
406    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
407  } else {
408    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
409    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
410  }
411
412  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
413  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
414  if (Subtarget->is64Bit())
415    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
416  if (Subtarget->isTargetCygMing())
417    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
418  else
419    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
420
421  if (!UseSoftFloat && X86ScalarSSEf64) {
422    // f32 and f64 use SSE.
423    // Set up the FP register classes.
424    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
425    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
426
427    // Use ANDPD to simulate FABS.
428    setOperationAction(ISD::FABS , MVT::f64, Custom);
429    setOperationAction(ISD::FABS , MVT::f32, Custom);
430
431    // Use XORP to simulate FNEG.
432    setOperationAction(ISD::FNEG , MVT::f64, Custom);
433    setOperationAction(ISD::FNEG , MVT::f32, Custom);
434
435    // Use ANDPD and ORPD to simulate FCOPYSIGN.
436    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
437    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
438
439    // We don't support sin/cos/fmod
440    setOperationAction(ISD::FSIN , MVT::f64, Expand);
441    setOperationAction(ISD::FCOS , MVT::f64, Expand);
442    setOperationAction(ISD::FSIN , MVT::f32, Expand);
443    setOperationAction(ISD::FCOS , MVT::f32, Expand);
444
445    // Expand FP immediates into loads from the stack, except for the special
446    // cases we handle.
447    addLegalFPImmediate(APFloat(+0.0)); // xorpd
448    addLegalFPImmediate(APFloat(+0.0f)); // xorps
449  } else if (!UseSoftFloat && X86ScalarSSEf32) {
450    // Use SSE for f32, x87 for f64.
451    // Set up the FP register classes.
452    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
453    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
454
455    // Use ANDPS to simulate FABS.
456    setOperationAction(ISD::FABS , MVT::f32, Custom);
457
458    // Use XORP to simulate FNEG.
459    setOperationAction(ISD::FNEG , MVT::f32, Custom);
460
461    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
462
463    // Use ANDPS and ORPS to simulate FCOPYSIGN.
464    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
466
467    // We don't support sin/cos/fmod
468    setOperationAction(ISD::FSIN , MVT::f32, Expand);
469    setOperationAction(ISD::FCOS , MVT::f32, Expand);
470
471    // Special cases we handle for FP constants.
472    addLegalFPImmediate(APFloat(+0.0f)); // xorps
473    addLegalFPImmediate(APFloat(+0.0)); // FLD0
474    addLegalFPImmediate(APFloat(+1.0)); // FLD1
475    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
476    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
477
478    if (!UnsafeFPMath) {
479      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
480      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
481    }
482  } else if (!UseSoftFloat) {
483    // f32 and f64 in x87.
484    // Set up the FP register classes.
485    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
486    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
487
488    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
489    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
490    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
492
493    if (!UnsafeFPMath) {
494      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
495      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
496    }
497    addLegalFPImmediate(APFloat(+0.0)); // FLD0
498    addLegalFPImmediate(APFloat(+1.0)); // FLD1
499    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
500    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
501    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
502    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
503    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
504    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
505  }
506
507  // Long double always uses X87.
508  if (!UseSoftFloat) {
509    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
510    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
511    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
512    {
513      bool ignored;
514      APFloat TmpFlt(+0.0);
515      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
516                     &ignored);
517      addLegalFPImmediate(TmpFlt);  // FLD0
518      TmpFlt.changeSign();
519      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
520      APFloat TmpFlt2(+1.0);
521      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
522                      &ignored);
523      addLegalFPImmediate(TmpFlt2);  // FLD1
524      TmpFlt2.changeSign();
525      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
526    }
527
528    if (!UnsafeFPMath) {
529      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
530      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
531    }
532  }
533
534  // Always use a library call for pow.
535  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
536  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
538
539  setOperationAction(ISD::FLOG, MVT::f80, Expand);
540  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
542  setOperationAction(ISD::FEXP, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
544
545  // First set operation action for all vector types to either promote
546  // (for widening) or expand (for scalarization). Then we will selectively
547  // turn on ones that can be effectively codegen'd.
548  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
549       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
550    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
565    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598  }
599
600  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
601  // with -msoft-float, disable use of MMX as well.
602  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
603    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
604    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
605    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
606    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
607    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
608
609    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
610    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
611    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
612    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
613
614    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
615    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
616    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
617    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
618
619    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
620    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
621
622    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
623    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
624    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
625    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
626    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
627    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
628    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
629
630    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
631    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
632    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
633    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
634    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
635    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
636    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
637
638    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
639    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
640    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
641    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
642    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
643    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
644    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
645
646    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
647    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
648    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
649    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
650    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
651    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
652    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
653    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
654    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
655
656    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
657    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
658    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
659    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
661
662    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
663    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
664    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
666
667    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
668    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
669    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
670    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
671
672    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
673
674    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
675    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
676    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
677    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
678    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
679    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
680    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
681    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
682    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
683  }
684
685  if (!UseSoftFloat && Subtarget->hasSSE1()) {
686    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
687
688    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
689    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
690    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
691    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
692    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
693    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
694    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
695    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
696    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
697    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
698    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
699    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
700  }
701
702  if (!UseSoftFloat && Subtarget->hasSSE2()) {
703    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
704
705    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
706    // registers cannot be used even for integer operations.
707    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
708    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
709    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
710    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
711
712    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
713    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
714    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
715    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
716    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
717    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
718    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
719    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
720    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
721    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
722    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
723    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
724    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
725    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
726    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
727    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
728
729    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
730    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
731    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
732    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
733
734    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
735    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
736    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
737    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
739
740    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
741    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
742      EVT VT = (MVT::SimpleValueType)i;
743      // Do not attempt to custom lower non-power-of-2 vectors
744      if (!isPowerOf2_32(VT.getVectorNumElements()))
745        continue;
746      // Do not attempt to custom lower non-128-bit vectors
747      if (!VT.is128BitVector())
748        continue;
749      setOperationAction(ISD::BUILD_VECTOR,
750                         VT.getSimpleVT().SimpleTy, Custom);
751      setOperationAction(ISD::VECTOR_SHUFFLE,
752                         VT.getSimpleVT().SimpleTy, Custom);
753      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
754                         VT.getSimpleVT().SimpleTy, Custom);
755    }
756
757    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
758    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
759    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
760    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
761    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
762    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
763
764    if (Subtarget->is64Bit()) {
765      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
766      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
767    }
768
769    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
770    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
771      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
772      EVT VT = SVT;
773
774      // Do not attempt to promote non-128-bit vectors
775      if (!VT.is128BitVector()) {
776        continue;
777      }
778      setOperationAction(ISD::AND,    SVT, Promote);
779      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
780      setOperationAction(ISD::OR,     SVT, Promote);
781      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
782      setOperationAction(ISD::XOR,    SVT, Promote);
783      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
784      setOperationAction(ISD::LOAD,   SVT, Promote);
785      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
786      setOperationAction(ISD::SELECT, SVT, Promote);
787      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
788    }
789
790    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
791
792    // Custom lower v2i64 and v2f64 selects.
793    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
794    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
795    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
796    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
797
798    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
799    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
800    if (!DisableMMX && Subtarget->hasMMX()) {
801      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
802      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
803    }
804  }
805
806  if (Subtarget->hasSSE41()) {
807    // FIXME: Do we need to handle scalar-to-vector here?
808    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
809
810    // i8 and i16 vectors are custom , because the source register and source
811    // source memory operand types are not the same width.  f32 vectors are
812    // custom since the immediate controlling the insert encodes additional
813    // information.
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
818
819    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
820    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
823
824    if (Subtarget->is64Bit()) {
825      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
826      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
827    }
828  }
829
830  if (Subtarget->hasSSE42()) {
831    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
832  }
833
834  if (!UseSoftFloat && Subtarget->hasAVX()) {
835    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
836    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
837    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
838    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
839
840    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
841    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
842    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
843    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
844    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
845    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
846    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
847    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
849    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
850    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
851    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
852    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
853    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
854    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
855
856    // Operations to consider commented out -v16i16 v32i8
857    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
858    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
859    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
860    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
861    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
862    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
863    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
864    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
865    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
866    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
867    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
868    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
870    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
871
872    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
873    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
874    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
875    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
876
877    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
878    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
879    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
880    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
882
883    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
884    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
885    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
886    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
887    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
888    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
889
890#if 0
891    // Not sure we want to do this since there are no 256-bit integer
892    // operations in AVX
893
894    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
895    // This includes 256-bit vectors
896    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
897      EVT VT = (MVT::SimpleValueType)i;
898
899      // Do not attempt to custom lower non-power-of-2 vectors
900      if (!isPowerOf2_32(VT.getVectorNumElements()))
901        continue;
902
903      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
904      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
906    }
907
908    if (Subtarget->is64Bit()) {
909      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
910      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
911    }
912#endif
913
914#if 0
915    // Not sure we want to do this since there are no 256-bit integer
916    // operations in AVX
917
918    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
919    // Including 256-bit vectors
920    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
921      EVT VT = (MVT::SimpleValueType)i;
922
923      if (!VT.is256BitVector()) {
924        continue;
925      }
926      setOperationAction(ISD::AND,    VT, Promote);
927      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
928      setOperationAction(ISD::OR,     VT, Promote);
929      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
930      setOperationAction(ISD::XOR,    VT, Promote);
931      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
932      setOperationAction(ISD::LOAD,   VT, Promote);
933      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
934      setOperationAction(ISD::SELECT, VT, Promote);
935      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
936    }
937
938    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
939#endif
940  }
941
942  // We want to custom lower some of our intrinsics.
943  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
944
945  // Add/Sub/Mul with overflow operations are custom lowered.
946  setOperationAction(ISD::SADDO, MVT::i32, Custom);
947  setOperationAction(ISD::SADDO, MVT::i64, Custom);
948  setOperationAction(ISD::UADDO, MVT::i32, Custom);
949  setOperationAction(ISD::UADDO, MVT::i64, Custom);
950  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
951  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
952  setOperationAction(ISD::USUBO, MVT::i32, Custom);
953  setOperationAction(ISD::USUBO, MVT::i64, Custom);
954  setOperationAction(ISD::SMULO, MVT::i32, Custom);
955  setOperationAction(ISD::SMULO, MVT::i64, Custom);
956
957  if (!Subtarget->is64Bit()) {
958    // These libcalls are not available in 32-bit.
959    setLibcallName(RTLIB::SHL_I128, 0);
960    setLibcallName(RTLIB::SRL_I128, 0);
961    setLibcallName(RTLIB::SRA_I128, 0);
962  }
963
964  // We have target-specific dag combine patterns for the following nodes:
965  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
966  setTargetDAGCombine(ISD::BUILD_VECTOR);
967  setTargetDAGCombine(ISD::SELECT);
968  setTargetDAGCombine(ISD::SHL);
969  setTargetDAGCombine(ISD::SRA);
970  setTargetDAGCombine(ISD::SRL);
971  setTargetDAGCombine(ISD::STORE);
972  setTargetDAGCombine(ISD::MEMBARRIER);
973  if (Subtarget->is64Bit())
974    setTargetDAGCombine(ISD::MUL);
975
976  computeRegisterProperties();
977
978  // Divide and reminder operations have no vector equivalent and can
979  // trap. Do a custom widening for these operations in which we never
980  // generate more divides/remainder than the original vector width.
981  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
982       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
983    if (!isTypeLegal((MVT::SimpleValueType)VT)) {
984      setOperationAction(ISD::SDIV, (MVT::SimpleValueType) VT, Custom);
985      setOperationAction(ISD::UDIV, (MVT::SimpleValueType) VT, Custom);
986      setOperationAction(ISD::SREM, (MVT::SimpleValueType) VT, Custom);
987      setOperationAction(ISD::UREM, (MVT::SimpleValueType) VT, Custom);
988    }
989  }
990
991  // FIXME: These should be based on subtarget info. Plus, the values should
992  // be smaller when we are in optimizing for size mode.
993  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
994  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
995  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
996  setPrefLoopAlignment(16);
997  benefitFromCodePlacementOpt = true;
998}
999
1000
1001MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1002  return MVT::i8;
1003}
1004
1005
1006/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1007/// the desired ByVal argument alignment.
1008static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1009  if (MaxAlign == 16)
1010    return;
1011  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1012    if (VTy->getBitWidth() == 128)
1013      MaxAlign = 16;
1014  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1015    unsigned EltAlign = 0;
1016    getMaxByValAlign(ATy->getElementType(), EltAlign);
1017    if (EltAlign > MaxAlign)
1018      MaxAlign = EltAlign;
1019  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1020    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1021      unsigned EltAlign = 0;
1022      getMaxByValAlign(STy->getElementType(i), EltAlign);
1023      if (EltAlign > MaxAlign)
1024        MaxAlign = EltAlign;
1025      if (MaxAlign == 16)
1026        break;
1027    }
1028  }
1029  return;
1030}
1031
1032/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1033/// function arguments in the caller parameter area. For X86, aggregates
1034/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1035/// are at 4-byte boundaries.
1036unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1037  if (Subtarget->is64Bit()) {
1038    // Max of 8 and alignment of type.
1039    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1040    if (TyAlign > 8)
1041      return TyAlign;
1042    return 8;
1043  }
1044
1045  unsigned Align = 4;
1046  if (Subtarget->hasSSE1())
1047    getMaxByValAlign(Ty, Align);
1048  return Align;
1049}
1050
1051/// getOptimalMemOpType - Returns the target specific optimal type for load
1052/// and store operations as a result of memset, memcpy, and memmove
1053/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1054/// determining it.
1055EVT
1056X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1057                                       bool isSrcConst, bool isSrcStr,
1058                                       SelectionDAG &DAG) const {
1059  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1060  // linux.  This is because the stack realignment code can't handle certain
1061  // cases like PR2962.  This should be removed when PR2962 is fixed.
1062  const Function *F = DAG.getMachineFunction().getFunction();
1063  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1064  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1065    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1066      return MVT::v4i32;
1067    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1068      return MVT::v4f32;
1069  }
1070  if (Subtarget->is64Bit() && Size >= 8)
1071    return MVT::i64;
1072  return MVT::i32;
1073}
1074
1075/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1076/// jumptable.
1077SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1078                                                      SelectionDAG &DAG) const {
1079  if (usesGlobalOffsetTable())
1080    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1081  if (!Subtarget->is64Bit())
1082    // This doesn't have DebugLoc associated with it, but is not really the
1083    // same as a Register.
1084    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1085                       getPointerTy());
1086  return Table;
1087}
1088
1089/// getFunctionAlignment - Return the Log2 alignment of this function.
1090unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1091  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1092}
1093
1094//===----------------------------------------------------------------------===//
1095//               Return Value Calling Convention Implementation
1096//===----------------------------------------------------------------------===//
1097
1098#include "X86GenCallingConv.inc"
1099
1100bool
1101X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1102                        const SmallVectorImpl<EVT> &OutTys,
1103                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1104                        SelectionDAG &DAG) {
1105  SmallVector<CCValAssign, 16> RVLocs;
1106  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1107                 RVLocs, *DAG.getContext());
1108  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1109}
1110
1111SDValue
1112X86TargetLowering::LowerReturn(SDValue Chain,
1113                               CallingConv::ID CallConv, bool isVarArg,
1114                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1115                               DebugLoc dl, SelectionDAG &DAG) {
1116
1117  SmallVector<CCValAssign, 16> RVLocs;
1118  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1119                 RVLocs, *DAG.getContext());
1120  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1121
1122  // If this is the first return lowered for this function, add the regs to the
1123  // liveout set for the function.
1124  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1125    for (unsigned i = 0; i != RVLocs.size(); ++i)
1126      if (RVLocs[i].isRegLoc())
1127        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1128  }
1129
1130  SDValue Flag;
1131
1132  SmallVector<SDValue, 6> RetOps;
1133  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1134  // Operand #1 = Bytes To Pop
1135  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1136
1137  // Copy the result values into the output registers.
1138  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1139    CCValAssign &VA = RVLocs[i];
1140    assert(VA.isRegLoc() && "Can only return in registers!");
1141    SDValue ValToCopy = Outs[i].Val;
1142
1143    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1144    // the RET instruction and handled by the FP Stackifier.
1145    if (VA.getLocReg() == X86::ST0 ||
1146        VA.getLocReg() == X86::ST1) {
1147      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1148      // change the value to the FP stack register class.
1149      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1150        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1151      RetOps.push_back(ValToCopy);
1152      // Don't emit a copytoreg.
1153      continue;
1154    }
1155
1156    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1157    // which is returned in RAX / RDX.
1158    if (Subtarget->is64Bit()) {
1159      EVT ValVT = ValToCopy.getValueType();
1160      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1161        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1162        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1163          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1164      }
1165    }
1166
1167    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1168    Flag = Chain.getValue(1);
1169  }
1170
1171  // The x86-64 ABI for returning structs by value requires that we copy
1172  // the sret argument into %rax for the return. We saved the argument into
1173  // a virtual register in the entry block, so now we copy the value out
1174  // and into %rax.
1175  if (Subtarget->is64Bit() &&
1176      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1177    MachineFunction &MF = DAG.getMachineFunction();
1178    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1179    unsigned Reg = FuncInfo->getSRetReturnReg();
1180    if (!Reg) {
1181      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1182      FuncInfo->setSRetReturnReg(Reg);
1183    }
1184    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1185
1186    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1187    Flag = Chain.getValue(1);
1188
1189    // RAX now acts like a return value.
1190    MF.getRegInfo().addLiveOut(X86::RAX);
1191  }
1192
1193  RetOps[0] = Chain;  // Update chain.
1194
1195  // Add the flag if we have it.
1196  if (Flag.getNode())
1197    RetOps.push_back(Flag);
1198
1199  return DAG.getNode(X86ISD::RET_FLAG, dl,
1200                     MVT::Other, &RetOps[0], RetOps.size());
1201}
1202
1203/// LowerCallResult - Lower the result values of a call into the
1204/// appropriate copies out of appropriate physical registers.
1205///
1206SDValue
1207X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1208                                   CallingConv::ID CallConv, bool isVarArg,
1209                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1210                                   DebugLoc dl, SelectionDAG &DAG,
1211                                   SmallVectorImpl<SDValue> &InVals) {
1212
1213  // Assign locations to each value returned by this call.
1214  SmallVector<CCValAssign, 16> RVLocs;
1215  bool Is64Bit = Subtarget->is64Bit();
1216  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1217                 RVLocs, *DAG.getContext());
1218  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1219
1220  // Copy all of the result registers out of their specified physreg.
1221  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1222    CCValAssign &VA = RVLocs[i];
1223    EVT CopyVT = VA.getValVT();
1224
1225    // If this is x86-64, and we disabled SSE, we can't return FP values
1226    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1227        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1228      llvm_report_error("SSE register return with SSE disabled");
1229    }
1230
1231    // If this is a call to a function that returns an fp value on the floating
1232    // point stack, but where we prefer to use the value in xmm registers, copy
1233    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1234    if ((VA.getLocReg() == X86::ST0 ||
1235         VA.getLocReg() == X86::ST1) &&
1236        isScalarFPTypeInSSEReg(VA.getValVT())) {
1237      CopyVT = MVT::f80;
1238    }
1239
1240    SDValue Val;
1241    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1242      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1243      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1244        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1245                                   MVT::v2i64, InFlag).getValue(1);
1246        Val = Chain.getValue(0);
1247        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1248                          Val, DAG.getConstant(0, MVT::i64));
1249      } else {
1250        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1251                                   MVT::i64, InFlag).getValue(1);
1252        Val = Chain.getValue(0);
1253      }
1254      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1255    } else {
1256      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1257                                 CopyVT, InFlag).getValue(1);
1258      Val = Chain.getValue(0);
1259    }
1260    InFlag = Chain.getValue(2);
1261
1262    if (CopyVT != VA.getValVT()) {
1263      // Round the F80 the right size, which also moves to the appropriate xmm
1264      // register.
1265      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1266                        // This truncation won't change the value.
1267                        DAG.getIntPtrConstant(1));
1268    }
1269
1270    InVals.push_back(Val);
1271  }
1272
1273  return Chain;
1274}
1275
1276
1277//===----------------------------------------------------------------------===//
1278//                C & StdCall & Fast Calling Convention implementation
1279//===----------------------------------------------------------------------===//
1280//  StdCall calling convention seems to be standard for many Windows' API
1281//  routines and around. It differs from C calling convention just a little:
1282//  callee should clean up the stack, not caller. Symbols should be also
1283//  decorated in some fancy way :) It doesn't support any vector arguments.
1284//  For info on fast calling convention see Fast Calling Convention (tail call)
1285//  implementation LowerX86_32FastCCCallTo.
1286
1287/// CallIsStructReturn - Determines whether a call uses struct return
1288/// semantics.
1289static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1290  if (Outs.empty())
1291    return false;
1292
1293  return Outs[0].Flags.isSRet();
1294}
1295
1296/// ArgsAreStructReturn - Determines whether a function uses struct
1297/// return semantics.
1298static bool
1299ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1300  if (Ins.empty())
1301    return false;
1302
1303  return Ins[0].Flags.isSRet();
1304}
1305
1306/// IsCalleePop - Determines whether the callee is required to pop its
1307/// own arguments. Callee pop is necessary to support tail calls.
1308bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1309  if (IsVarArg)
1310    return false;
1311
1312  switch (CallingConv) {
1313  default:
1314    return false;
1315  case CallingConv::X86_StdCall:
1316    return !Subtarget->is64Bit();
1317  case CallingConv::X86_FastCall:
1318    return !Subtarget->is64Bit();
1319  case CallingConv::Fast:
1320    return PerformTailCallOpt;
1321  }
1322}
1323
1324/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1325/// given CallingConvention value.
1326CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1327  if (Subtarget->is64Bit()) {
1328    if (Subtarget->isTargetWin64())
1329      return CC_X86_Win64_C;
1330    else
1331      return CC_X86_64_C;
1332  }
1333
1334  if (CC == CallingConv::X86_FastCall)
1335    return CC_X86_32_FastCall;
1336  else if (CC == CallingConv::Fast)
1337    return CC_X86_32_FastCC;
1338  else
1339    return CC_X86_32_C;
1340}
1341
1342/// NameDecorationForCallConv - Selects the appropriate decoration to
1343/// apply to a MachineFunction containing a given calling convention.
1344NameDecorationStyle
1345X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1346  if (CallConv == CallingConv::X86_FastCall)
1347    return FastCall;
1348  else if (CallConv == CallingConv::X86_StdCall)
1349    return StdCall;
1350  return None;
1351}
1352
1353
1354/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1355/// by "Src" to address "Dst" with size and alignment information specified by
1356/// the specific parameter attribute. The copy will be passed as a byval
1357/// function parameter.
1358static SDValue
1359CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1360                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1361                          DebugLoc dl) {
1362  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1363  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1364                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1365}
1366
1367SDValue
1368X86TargetLowering::LowerMemArgument(SDValue Chain,
1369                                    CallingConv::ID CallConv,
1370                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1371                                    DebugLoc dl, SelectionDAG &DAG,
1372                                    const CCValAssign &VA,
1373                                    MachineFrameInfo *MFI,
1374                                    unsigned i) {
1375
1376  // Create the nodes corresponding to a load from this parameter slot.
1377  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1378  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1379  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1380  EVT ValVT;
1381
1382  // If value is passed by pointer we have address passed instead of the value
1383  // itself.
1384  if (VA.getLocInfo() == CCValAssign::Indirect)
1385    ValVT = VA.getLocVT();
1386  else
1387    ValVT = VA.getValVT();
1388
1389  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1390  // changed with more analysis.
1391  // In case of tail call optimization mark all arguments mutable. Since they
1392  // could be overwritten by lowering of arguments in case of a tail call.
1393  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1394                                  VA.getLocMemOffset(), isImmutable, false);
1395  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1396  if (Flags.isByVal())
1397    return FIN;
1398  return DAG.getLoad(ValVT, dl, Chain, FIN,
1399                     PseudoSourceValue::getFixedStack(FI), 0);
1400}
1401
1402SDValue
1403X86TargetLowering::LowerFormalArguments(SDValue Chain,
1404                                        CallingConv::ID CallConv,
1405                                        bool isVarArg,
1406                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1407                                        DebugLoc dl,
1408                                        SelectionDAG &DAG,
1409                                        SmallVectorImpl<SDValue> &InVals) {
1410
1411  MachineFunction &MF = DAG.getMachineFunction();
1412  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1413
1414  const Function* Fn = MF.getFunction();
1415  if (Fn->hasExternalLinkage() &&
1416      Subtarget->isTargetCygMing() &&
1417      Fn->getName() == "main")
1418    FuncInfo->setForceFramePointer(true);
1419
1420  // Decorate the function name.
1421  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1422
1423  MachineFrameInfo *MFI = MF.getFrameInfo();
1424  bool Is64Bit = Subtarget->is64Bit();
1425  bool IsWin64 = Subtarget->isTargetWin64();
1426
1427  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1428         "Var args not supported with calling convention fastcc");
1429
1430  // Assign locations to all of the incoming arguments.
1431  SmallVector<CCValAssign, 16> ArgLocs;
1432  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1433                 ArgLocs, *DAG.getContext());
1434  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1435
1436  unsigned LastVal = ~0U;
1437  SDValue ArgValue;
1438  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1439    CCValAssign &VA = ArgLocs[i];
1440    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1441    // places.
1442    assert(VA.getValNo() != LastVal &&
1443           "Don't support value assigned to multiple locs yet");
1444    LastVal = VA.getValNo();
1445
1446    if (VA.isRegLoc()) {
1447      EVT RegVT = VA.getLocVT();
1448      TargetRegisterClass *RC = NULL;
1449      if (RegVT == MVT::i32)
1450        RC = X86::GR32RegisterClass;
1451      else if (Is64Bit && RegVT == MVT::i64)
1452        RC = X86::GR64RegisterClass;
1453      else if (RegVT == MVT::f32)
1454        RC = X86::FR32RegisterClass;
1455      else if (RegVT == MVT::f64)
1456        RC = X86::FR64RegisterClass;
1457      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1458        RC = X86::VR128RegisterClass;
1459      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1460        RC = X86::VR64RegisterClass;
1461      else
1462        llvm_unreachable("Unknown argument type!");
1463
1464      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1465      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1466
1467      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1468      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1469      // right size.
1470      if (VA.getLocInfo() == CCValAssign::SExt)
1471        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1472                               DAG.getValueType(VA.getValVT()));
1473      else if (VA.getLocInfo() == CCValAssign::ZExt)
1474        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1475                               DAG.getValueType(VA.getValVT()));
1476      else if (VA.getLocInfo() == CCValAssign::BCvt)
1477        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1478
1479      if (VA.isExtInLoc()) {
1480        // Handle MMX values passed in XMM regs.
1481        if (RegVT.isVector()) {
1482          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1483                                 ArgValue, DAG.getConstant(0, MVT::i64));
1484          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1485        } else
1486          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1487      }
1488    } else {
1489      assert(VA.isMemLoc());
1490      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1491    }
1492
1493    // If value is passed via pointer - do a load.
1494    if (VA.getLocInfo() == CCValAssign::Indirect)
1495      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1496
1497    InVals.push_back(ArgValue);
1498  }
1499
1500  // The x86-64 ABI for returning structs by value requires that we copy
1501  // the sret argument into %rax for the return. Save the argument into
1502  // a virtual register so that we can access it from the return points.
1503  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1504    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1505    unsigned Reg = FuncInfo->getSRetReturnReg();
1506    if (!Reg) {
1507      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1508      FuncInfo->setSRetReturnReg(Reg);
1509    }
1510    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1511    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1512  }
1513
1514  unsigned StackSize = CCInfo.getNextStackOffset();
1515  // align stack specially for tail calls
1516  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1517    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1518
1519  // If the function takes variable number of arguments, make a frame index for
1520  // the start of the first vararg value... for expansion of llvm.va_start.
1521  if (isVarArg) {
1522    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1523      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1524    }
1525    if (Is64Bit) {
1526      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1527
1528      // FIXME: We should really autogenerate these arrays
1529      static const unsigned GPR64ArgRegsWin64[] = {
1530        X86::RCX, X86::RDX, X86::R8,  X86::R9
1531      };
1532      static const unsigned XMMArgRegsWin64[] = {
1533        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1534      };
1535      static const unsigned GPR64ArgRegs64Bit[] = {
1536        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1537      };
1538      static const unsigned XMMArgRegs64Bit[] = {
1539        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1540        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1541      };
1542      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1543
1544      if (IsWin64) {
1545        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1546        GPR64ArgRegs = GPR64ArgRegsWin64;
1547        XMMArgRegs = XMMArgRegsWin64;
1548      } else {
1549        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1550        GPR64ArgRegs = GPR64ArgRegs64Bit;
1551        XMMArgRegs = XMMArgRegs64Bit;
1552      }
1553      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1554                                                       TotalNumIntRegs);
1555      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1556                                                       TotalNumXMMRegs);
1557
1558      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1559      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1560             "SSE register cannot be used when SSE is disabled!");
1561      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1562             "SSE register cannot be used when SSE is disabled!");
1563      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1564        // Kernel mode asks for SSE to be disabled, so don't push them
1565        // on the stack.
1566        TotalNumXMMRegs = 0;
1567
1568      // For X86-64, if there are vararg parameters that are passed via
1569      // registers, then we must store them to their spots on the stack so they
1570      // may be loaded by deferencing the result of va_next.
1571      VarArgsGPOffset = NumIntRegs * 8;
1572      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1573      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1574                                                 TotalNumXMMRegs * 16, 16,
1575                                                 false);
1576
1577      // Store the integer parameter registers.
1578      SmallVector<SDValue, 8> MemOps;
1579      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1580      unsigned Offset = VarArgsGPOffset;
1581      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1582        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1583                                  DAG.getIntPtrConstant(Offset));
1584        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1585                                     X86::GR64RegisterClass);
1586        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1587        SDValue Store =
1588          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1589                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1590                       Offset);
1591        MemOps.push_back(Store);
1592        Offset += 8;
1593      }
1594
1595      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1596        // Now store the XMM (fp + vector) parameter registers.
1597        SmallVector<SDValue, 11> SaveXMMOps;
1598        SaveXMMOps.push_back(Chain);
1599
1600        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1601        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1602        SaveXMMOps.push_back(ALVal);
1603
1604        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1605        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1606
1607        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1608          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1609                                       X86::VR128RegisterClass);
1610          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1611          SaveXMMOps.push_back(Val);
1612        }
1613        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1614                                     MVT::Other,
1615                                     &SaveXMMOps[0], SaveXMMOps.size()));
1616      }
1617
1618      if (!MemOps.empty())
1619        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1620                            &MemOps[0], MemOps.size());
1621    }
1622  }
1623
1624  // Some CCs need callee pop.
1625  if (IsCalleePop(isVarArg, CallConv)) {
1626    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1627    BytesCallerReserves = 0;
1628  } else {
1629    BytesToPopOnReturn  = 0; // Callee pops nothing.
1630    // If this is an sret function, the return should pop the hidden pointer.
1631    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1632      BytesToPopOnReturn = 4;
1633    BytesCallerReserves = StackSize;
1634  }
1635
1636  if (!Is64Bit) {
1637    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1638    if (CallConv == CallingConv::X86_FastCall)
1639      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1640  }
1641
1642  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1643
1644  return Chain;
1645}
1646
1647SDValue
1648X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1649                                    SDValue StackPtr, SDValue Arg,
1650                                    DebugLoc dl, SelectionDAG &DAG,
1651                                    const CCValAssign &VA,
1652                                    ISD::ArgFlagsTy Flags) {
1653  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1654  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1655  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1656  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1657  if (Flags.isByVal()) {
1658    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1659  }
1660  return DAG.getStore(Chain, dl, Arg, PtrOff,
1661                      PseudoSourceValue::getStack(), LocMemOffset);
1662}
1663
1664/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1665/// optimization is performed and it is required.
1666SDValue
1667X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1668                                           SDValue &OutRetAddr,
1669                                           SDValue Chain,
1670                                           bool IsTailCall,
1671                                           bool Is64Bit,
1672                                           int FPDiff,
1673                                           DebugLoc dl) {
1674  if (!IsTailCall || FPDiff==0) return Chain;
1675
1676  // Adjust the Return address stack slot.
1677  EVT VT = getPointerTy();
1678  OutRetAddr = getReturnAddressFrameIndex(DAG);
1679
1680  // Load the "old" Return address.
1681  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1682  return SDValue(OutRetAddr.getNode(), 1);
1683}
1684
1685/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1686/// optimization is performed and it is required (FPDiff!=0).
1687static SDValue
1688EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1689                         SDValue Chain, SDValue RetAddrFrIdx,
1690                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1691  // Store the return address to the appropriate stack slot.
1692  if (!FPDiff) return Chain;
1693  // Calculate the new stack slot for the return address.
1694  int SlotSize = Is64Bit ? 8 : 4;
1695  int NewReturnAddrFI =
1696    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize,
1697                                         true, false);
1698  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1699  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1700  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1701                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1702  return Chain;
1703}
1704
1705SDValue
1706X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1707                             CallingConv::ID CallConv, bool isVarArg,
1708                             bool isTailCall,
1709                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1710                             const SmallVectorImpl<ISD::InputArg> &Ins,
1711                             DebugLoc dl, SelectionDAG &DAG,
1712                             SmallVectorImpl<SDValue> &InVals) {
1713
1714  MachineFunction &MF = DAG.getMachineFunction();
1715  bool Is64Bit        = Subtarget->is64Bit();
1716  bool IsStructRet    = CallIsStructReturn(Outs);
1717
1718  assert((!isTailCall ||
1719          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1720         "IsEligibleForTailCallOptimization missed a case!");
1721  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1722         "Var args not supported with calling convention fastcc");
1723
1724  // Analyze operands of the call, assigning locations to each operand.
1725  SmallVector<CCValAssign, 16> ArgLocs;
1726  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1727                 ArgLocs, *DAG.getContext());
1728  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1729
1730  // Get a count of how many bytes are to be pushed on the stack.
1731  unsigned NumBytes = CCInfo.getNextStackOffset();
1732  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1733    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1734
1735  int FPDiff = 0;
1736  if (isTailCall) {
1737    // Lower arguments at fp - stackoffset + fpdiff.
1738    unsigned NumBytesCallerPushed =
1739      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1740    FPDiff = NumBytesCallerPushed - NumBytes;
1741
1742    // Set the delta of movement of the returnaddr stackslot.
1743    // But only set if delta is greater than previous delta.
1744    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1745      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1746  }
1747
1748  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1749
1750  SDValue RetAddrFrIdx;
1751  // Load return adress for tail calls.
1752  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1753                                  FPDiff, dl);
1754
1755  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1756  SmallVector<SDValue, 8> MemOpChains;
1757  SDValue StackPtr;
1758
1759  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1760  // of tail call optimization arguments are handle later.
1761  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1762    CCValAssign &VA = ArgLocs[i];
1763    EVT RegVT = VA.getLocVT();
1764    SDValue Arg = Outs[i].Val;
1765    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1766    bool isByVal = Flags.isByVal();
1767
1768    // Promote the value if needed.
1769    switch (VA.getLocInfo()) {
1770    default: llvm_unreachable("Unknown loc info!");
1771    case CCValAssign::Full: break;
1772    case CCValAssign::SExt:
1773      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1774      break;
1775    case CCValAssign::ZExt:
1776      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1777      break;
1778    case CCValAssign::AExt:
1779      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1780        // Special case: passing MMX values in XMM registers.
1781        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1782        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1783        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1784      } else
1785        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1786      break;
1787    case CCValAssign::BCvt:
1788      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1789      break;
1790    case CCValAssign::Indirect: {
1791      // Store the argument.
1792      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1793      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1794      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1795                           PseudoSourceValue::getFixedStack(FI), 0);
1796      Arg = SpillSlot;
1797      break;
1798    }
1799    }
1800
1801    if (VA.isRegLoc()) {
1802      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1803    } else {
1804      if (!isTailCall || (isTailCall && isByVal)) {
1805        assert(VA.isMemLoc());
1806        if (StackPtr.getNode() == 0)
1807          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1808
1809        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1810                                               dl, DAG, VA, Flags));
1811      }
1812    }
1813  }
1814
1815  if (!MemOpChains.empty())
1816    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1817                        &MemOpChains[0], MemOpChains.size());
1818
1819  // Build a sequence of copy-to-reg nodes chained together with token chain
1820  // and flag operands which copy the outgoing args into registers.
1821  SDValue InFlag;
1822  // Tail call byval lowering might overwrite argument registers so in case of
1823  // tail call optimization the copies to registers are lowered later.
1824  if (!isTailCall)
1825    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1826      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1827                               RegsToPass[i].second, InFlag);
1828      InFlag = Chain.getValue(1);
1829    }
1830
1831
1832  if (Subtarget->isPICStyleGOT()) {
1833    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1834    // GOT pointer.
1835    if (!isTailCall) {
1836      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1837                               DAG.getNode(X86ISD::GlobalBaseReg,
1838                                           DebugLoc::getUnknownLoc(),
1839                                           getPointerTy()),
1840                               InFlag);
1841      InFlag = Chain.getValue(1);
1842    } else {
1843      // If we are tail calling and generating PIC/GOT style code load the
1844      // address of the callee into ECX. The value in ecx is used as target of
1845      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1846      // for tail calls on PIC/GOT architectures. Normally we would just put the
1847      // address of GOT into ebx and then call target@PLT. But for tail calls
1848      // ebx would be restored (since ebx is callee saved) before jumping to the
1849      // target@PLT.
1850
1851      // Note: The actual moving to ECX is done further down.
1852      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1853      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1854          !G->getGlobal()->hasProtectedVisibility())
1855        Callee = LowerGlobalAddress(Callee, DAG);
1856      else if (isa<ExternalSymbolSDNode>(Callee))
1857        Callee = LowerExternalSymbol(Callee, DAG);
1858    }
1859  }
1860
1861  if (Is64Bit && isVarArg) {
1862    // From AMD64 ABI document:
1863    // For calls that may call functions that use varargs or stdargs
1864    // (prototype-less calls or calls to functions containing ellipsis (...) in
1865    // the declaration) %al is used as hidden argument to specify the number
1866    // of SSE registers used. The contents of %al do not need to match exactly
1867    // the number of registers, but must be an ubound on the number of SSE
1868    // registers used and is in the range 0 - 8 inclusive.
1869
1870    // FIXME: Verify this on Win64
1871    // Count the number of XMM registers allocated.
1872    static const unsigned XMMArgRegs[] = {
1873      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1874      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1875    };
1876    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1877    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1878           && "SSE registers cannot be used when SSE is disabled");
1879
1880    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1881                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1882    InFlag = Chain.getValue(1);
1883  }
1884
1885
1886  // For tail calls lower the arguments to the 'real' stack slot.
1887  if (isTailCall) {
1888    // Force all the incoming stack arguments to be loaded from the stack
1889    // before any new outgoing arguments are stored to the stack, because the
1890    // outgoing stack slots may alias the incoming argument stack slots, and
1891    // the alias isn't otherwise explicit. This is slightly more conservative
1892    // than necessary, because it means that each store effectively depends
1893    // on every argument instead of just those arguments it would clobber.
1894    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1895
1896    SmallVector<SDValue, 8> MemOpChains2;
1897    SDValue FIN;
1898    int FI = 0;
1899    // Do not flag preceeding copytoreg stuff together with the following stuff.
1900    InFlag = SDValue();
1901    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1902      CCValAssign &VA = ArgLocs[i];
1903      if (!VA.isRegLoc()) {
1904        assert(VA.isMemLoc());
1905        SDValue Arg = Outs[i].Val;
1906        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1907        // Create frame index.
1908        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1909        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1910        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1911        FIN = DAG.getFrameIndex(FI, getPointerTy());
1912
1913        if (Flags.isByVal()) {
1914          // Copy relative to framepointer.
1915          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1916          if (StackPtr.getNode() == 0)
1917            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1918                                          getPointerTy());
1919          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1920
1921          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1922                                                           ArgChain,
1923                                                           Flags, DAG, dl));
1924        } else {
1925          // Store relative to framepointer.
1926          MemOpChains2.push_back(
1927            DAG.getStore(ArgChain, dl, Arg, FIN,
1928                         PseudoSourceValue::getFixedStack(FI), 0));
1929        }
1930      }
1931    }
1932
1933    if (!MemOpChains2.empty())
1934      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1935                          &MemOpChains2[0], MemOpChains2.size());
1936
1937    // Copy arguments to their registers.
1938    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1939      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1940                               RegsToPass[i].second, InFlag);
1941      InFlag = Chain.getValue(1);
1942    }
1943    InFlag =SDValue();
1944
1945    // Store the return address to the appropriate stack slot.
1946    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1947                                     FPDiff, dl);
1948  }
1949
1950  bool WasGlobalOrExternal = false;
1951  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
1952    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
1953    // In the 64-bit large code model, we have to make all calls
1954    // through a register, since the call instruction's 32-bit
1955    // pc-relative offset may not be large enough to hold the whole
1956    // address.
1957  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1958    WasGlobalOrExternal = true;
1959    // If the callee is a GlobalAddress node (quite common, every direct call
1960    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
1961    // it.
1962
1963    // We should use extra load for direct calls to dllimported functions in
1964    // non-JIT mode.
1965    GlobalValue *GV = G->getGlobal();
1966    if (!GV->hasDLLImportLinkage()) {
1967      unsigned char OpFlags = 0;
1968
1969      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1970      // external symbols most go through the PLT in PIC mode.  If the symbol
1971      // has hidden or protected visibility, or if it is static or local, then
1972      // we don't need to use the PLT - we can directly call it.
1973      if (Subtarget->isTargetELF() &&
1974          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1975          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1976        OpFlags = X86II::MO_PLT;
1977      } else if (Subtarget->isPICStyleStubAny() &&
1978               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1979               Subtarget->getDarwinVers() < 9) {
1980        // PC-relative references to external symbols should go through $stub,
1981        // unless we're building with the leopard linker or later, which
1982        // automatically synthesizes these stubs.
1983        OpFlags = X86II::MO_DARWIN_STUB;
1984      }
1985
1986      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1987                                          G->getOffset(), OpFlags);
1988    }
1989  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1990    WasGlobalOrExternal = true;
1991    unsigned char OpFlags = 0;
1992
1993    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1994    // symbols should go through the PLT.
1995    if (Subtarget->isTargetELF() &&
1996        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1997      OpFlags = X86II::MO_PLT;
1998    } else if (Subtarget->isPICStyleStubAny() &&
1999             Subtarget->getDarwinVers() < 9) {
2000      // PC-relative references to external symbols should go through $stub,
2001      // unless we're building with the leopard linker or later, which
2002      // automatically synthesizes these stubs.
2003      OpFlags = X86II::MO_DARWIN_STUB;
2004    }
2005
2006    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2007                                         OpFlags);
2008  }
2009
2010  if (isTailCall && !WasGlobalOrExternal) {
2011    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
2012
2013    Chain = DAG.getCopyToReg(Chain,  dl,
2014                             DAG.getRegister(Opc, getPointerTy()),
2015                             Callee,InFlag);
2016    Callee = DAG.getRegister(Opc, getPointerTy());
2017    // Add register as live out.
2018    MF.getRegInfo().addLiveOut(Opc);
2019  }
2020
2021  // Returns a chain & a flag for retval copy to use.
2022  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2023  SmallVector<SDValue, 8> Ops;
2024
2025  if (isTailCall) {
2026    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2027                           DAG.getIntPtrConstant(0, true), InFlag);
2028    InFlag = Chain.getValue(1);
2029  }
2030
2031  Ops.push_back(Chain);
2032  Ops.push_back(Callee);
2033
2034  if (isTailCall)
2035    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2036
2037  // Add argument registers to the end of the list so that they are known live
2038  // into the call.
2039  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2040    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2041                                  RegsToPass[i].second.getValueType()));
2042
2043  // Add an implicit use GOT pointer in EBX.
2044  if (!isTailCall && Subtarget->isPICStyleGOT())
2045    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2046
2047  // Add an implicit use of AL for x86 vararg functions.
2048  if (Is64Bit && isVarArg)
2049    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2050
2051  if (InFlag.getNode())
2052    Ops.push_back(InFlag);
2053
2054  if (isTailCall) {
2055    // If this is the first return lowered for this function, add the regs
2056    // to the liveout set for the function.
2057    if (MF.getRegInfo().liveout_empty()) {
2058      SmallVector<CCValAssign, 16> RVLocs;
2059      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2060                     *DAG.getContext());
2061      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2062      for (unsigned i = 0; i != RVLocs.size(); ++i)
2063        if (RVLocs[i].isRegLoc())
2064          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2065    }
2066
2067    assert(((Callee.getOpcode() == ISD::Register &&
2068               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2069                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2070              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2071              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2072             "Expecting an global address, external symbol, or register");
2073
2074    return DAG.getNode(X86ISD::TC_RETURN, dl,
2075                       NodeTys, &Ops[0], Ops.size());
2076  }
2077
2078  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2079  InFlag = Chain.getValue(1);
2080
2081  // Create the CALLSEQ_END node.
2082  unsigned NumBytesForCalleeToPush;
2083  if (IsCalleePop(isVarArg, CallConv))
2084    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2085  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2086    // If this is is a call to a struct-return function, the callee
2087    // pops the hidden struct pointer, so we have to push it back.
2088    // This is common for Darwin/X86, Linux & Mingw32 targets.
2089    NumBytesForCalleeToPush = 4;
2090  else
2091    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2092
2093  // Returns a flag for retval copy to use.
2094  Chain = DAG.getCALLSEQ_END(Chain,
2095                             DAG.getIntPtrConstant(NumBytes, true),
2096                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2097                                                   true),
2098                             InFlag);
2099  InFlag = Chain.getValue(1);
2100
2101  // Handle result values, copying them out of physregs into vregs that we
2102  // return.
2103  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2104                         Ins, dl, DAG, InVals);
2105}
2106
2107
2108//===----------------------------------------------------------------------===//
2109//                Fast Calling Convention (tail call) implementation
2110//===----------------------------------------------------------------------===//
2111
2112//  Like std call, callee cleans arguments, convention except that ECX is
2113//  reserved for storing the tail called function address. Only 2 registers are
2114//  free for argument passing (inreg). Tail call optimization is performed
2115//  provided:
2116//                * tailcallopt is enabled
2117//                * caller/callee are fastcc
2118//  On X86_64 architecture with GOT-style position independent code only local
2119//  (within module) calls are supported at the moment.
2120//  To keep the stack aligned according to platform abi the function
2121//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2122//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2123//  If a tail called function callee has more arguments than the caller the
2124//  caller needs to make sure that there is room to move the RETADDR to. This is
2125//  achieved by reserving an area the size of the argument delta right after the
2126//  original REtADDR, but before the saved framepointer or the spilled registers
2127//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2128//  stack layout:
2129//    arg1
2130//    arg2
2131//    RETADDR
2132//    [ new RETADDR
2133//      move area ]
2134//    (possible EBP)
2135//    ESI
2136//    EDI
2137//    local1 ..
2138
2139/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2140/// for a 16 byte align requirement.
2141unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2142                                                        SelectionDAG& DAG) {
2143  MachineFunction &MF = DAG.getMachineFunction();
2144  const TargetMachine &TM = MF.getTarget();
2145  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2146  unsigned StackAlignment = TFI.getStackAlignment();
2147  uint64_t AlignMask = StackAlignment - 1;
2148  int64_t Offset = StackSize;
2149  uint64_t SlotSize = TD->getPointerSize();
2150  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2151    // Number smaller than 12 so just add the difference.
2152    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2153  } else {
2154    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2155    Offset = ((~AlignMask) & Offset) + StackAlignment +
2156      (StackAlignment-SlotSize);
2157  }
2158  return Offset;
2159}
2160
2161/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2162/// for tail call optimization. Targets which want to do tail call
2163/// optimization should implement this function.
2164bool
2165X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2166                                                     CallingConv::ID CalleeCC,
2167                                                     bool isVarArg,
2168                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2169                                                     SelectionDAG& DAG) const {
2170  MachineFunction &MF = DAG.getMachineFunction();
2171  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2172  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2173}
2174
2175FastISel *
2176X86TargetLowering::createFastISel(MachineFunction &mf,
2177                                  MachineModuleInfo *mmo,
2178                                  DwarfWriter *dw,
2179                                  DenseMap<const Value *, unsigned> &vm,
2180                                  DenseMap<const BasicBlock *,
2181                                           MachineBasicBlock *> &bm,
2182                                  DenseMap<const AllocaInst *, int> &am
2183#ifndef NDEBUG
2184                                  , SmallSet<Instruction*, 8> &cil
2185#endif
2186                                  ) {
2187  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2188#ifndef NDEBUG
2189                             , cil
2190#endif
2191                             );
2192}
2193
2194
2195//===----------------------------------------------------------------------===//
2196//                           Other Lowering Hooks
2197//===----------------------------------------------------------------------===//
2198
2199
2200SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2201  MachineFunction &MF = DAG.getMachineFunction();
2202  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2203  int ReturnAddrIndex = FuncInfo->getRAIndex();
2204
2205  if (ReturnAddrIndex == 0) {
2206    // Set up a frame object for the return address.
2207    uint64_t SlotSize = TD->getPointerSize();
2208    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2209                                                           true, false);
2210    FuncInfo->setRAIndex(ReturnAddrIndex);
2211  }
2212
2213  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2214}
2215
2216
2217bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2218                                       bool hasSymbolicDisplacement) {
2219  // Offset should fit into 32 bit immediate field.
2220  if (!isInt32(Offset))
2221    return false;
2222
2223  // If we don't have a symbolic displacement - we don't have any extra
2224  // restrictions.
2225  if (!hasSymbolicDisplacement)
2226    return true;
2227
2228  // FIXME: Some tweaks might be needed for medium code model.
2229  if (M != CodeModel::Small && M != CodeModel::Kernel)
2230    return false;
2231
2232  // For small code model we assume that latest object is 16MB before end of 31
2233  // bits boundary. We may also accept pretty large negative constants knowing
2234  // that all objects are in the positive half of address space.
2235  if (M == CodeModel::Small && Offset < 16*1024*1024)
2236    return true;
2237
2238  // For kernel code model we know that all object resist in the negative half
2239  // of 32bits address space. We may not accept negative offsets, since they may
2240  // be just off and we may accept pretty large positive ones.
2241  if (M == CodeModel::Kernel && Offset > 0)
2242    return true;
2243
2244  return false;
2245}
2246
2247/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2248/// specific condition code, returning the condition code and the LHS/RHS of the
2249/// comparison to make.
2250static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2251                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2252  if (!isFP) {
2253    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2254      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2255        // X > -1   -> X == 0, jump !sign.
2256        RHS = DAG.getConstant(0, RHS.getValueType());
2257        return X86::COND_NS;
2258      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2259        // X < 0   -> X == 0, jump on sign.
2260        return X86::COND_S;
2261      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2262        // X < 1   -> X <= 0
2263        RHS = DAG.getConstant(0, RHS.getValueType());
2264        return X86::COND_LE;
2265      }
2266    }
2267
2268    switch (SetCCOpcode) {
2269    default: llvm_unreachable("Invalid integer condition!");
2270    case ISD::SETEQ:  return X86::COND_E;
2271    case ISD::SETGT:  return X86::COND_G;
2272    case ISD::SETGE:  return X86::COND_GE;
2273    case ISD::SETLT:  return X86::COND_L;
2274    case ISD::SETLE:  return X86::COND_LE;
2275    case ISD::SETNE:  return X86::COND_NE;
2276    case ISD::SETULT: return X86::COND_B;
2277    case ISD::SETUGT: return X86::COND_A;
2278    case ISD::SETULE: return X86::COND_BE;
2279    case ISD::SETUGE: return X86::COND_AE;
2280    }
2281  }
2282
2283  // First determine if it is required or is profitable to flip the operands.
2284
2285  // If LHS is a foldable load, but RHS is not, flip the condition.
2286  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2287      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2288    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2289    std::swap(LHS, RHS);
2290  }
2291
2292  switch (SetCCOpcode) {
2293  default: break;
2294  case ISD::SETOLT:
2295  case ISD::SETOLE:
2296  case ISD::SETUGT:
2297  case ISD::SETUGE:
2298    std::swap(LHS, RHS);
2299    break;
2300  }
2301
2302  // On a floating point condition, the flags are set as follows:
2303  // ZF  PF  CF   op
2304  //  0 | 0 | 0 | X > Y
2305  //  0 | 0 | 1 | X < Y
2306  //  1 | 0 | 0 | X == Y
2307  //  1 | 1 | 1 | unordered
2308  switch (SetCCOpcode) {
2309  default: llvm_unreachable("Condcode should be pre-legalized away");
2310  case ISD::SETUEQ:
2311  case ISD::SETEQ:   return X86::COND_E;
2312  case ISD::SETOLT:              // flipped
2313  case ISD::SETOGT:
2314  case ISD::SETGT:   return X86::COND_A;
2315  case ISD::SETOLE:              // flipped
2316  case ISD::SETOGE:
2317  case ISD::SETGE:   return X86::COND_AE;
2318  case ISD::SETUGT:              // flipped
2319  case ISD::SETULT:
2320  case ISD::SETLT:   return X86::COND_B;
2321  case ISD::SETUGE:              // flipped
2322  case ISD::SETULE:
2323  case ISD::SETLE:   return X86::COND_BE;
2324  case ISD::SETONE:
2325  case ISD::SETNE:   return X86::COND_NE;
2326  case ISD::SETUO:   return X86::COND_P;
2327  case ISD::SETO:    return X86::COND_NP;
2328  case ISD::SETOEQ:
2329  case ISD::SETUNE:  return X86::COND_INVALID;
2330  }
2331}
2332
2333/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2334/// code. Current x86 isa includes the following FP cmov instructions:
2335/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2336static bool hasFPCMov(unsigned X86CC) {
2337  switch (X86CC) {
2338  default:
2339    return false;
2340  case X86::COND_B:
2341  case X86::COND_BE:
2342  case X86::COND_E:
2343  case X86::COND_P:
2344  case X86::COND_A:
2345  case X86::COND_AE:
2346  case X86::COND_NE:
2347  case X86::COND_NP:
2348    return true;
2349  }
2350}
2351
2352/// isFPImmLegal - Returns true if the target can instruction select the
2353/// specified FP immediate natively. If false, the legalizer will
2354/// materialize the FP immediate as a load from a constant pool.
2355bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2356  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2357    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2358      return true;
2359  }
2360  return false;
2361}
2362
2363/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2364/// the specified range (L, H].
2365static bool isUndefOrInRange(int Val, int Low, int Hi) {
2366  return (Val < 0) || (Val >= Low && Val < Hi);
2367}
2368
2369/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2370/// specified value.
2371static bool isUndefOrEqual(int Val, int CmpVal) {
2372  if (Val < 0 || Val == CmpVal)
2373    return true;
2374  return false;
2375}
2376
2377/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2378/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2379/// the second operand.
2380static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2381  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2382    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2383  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2384    return (Mask[0] < 2 && Mask[1] < 2);
2385  return false;
2386}
2387
2388bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2389  SmallVector<int, 8> M;
2390  N->getMask(M);
2391  return ::isPSHUFDMask(M, N->getValueType(0));
2392}
2393
2394/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2395/// is suitable for input to PSHUFHW.
2396static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2397  if (VT != MVT::v8i16)
2398    return false;
2399
2400  // Lower quadword copied in order or undef.
2401  for (int i = 0; i != 4; ++i)
2402    if (Mask[i] >= 0 && Mask[i] != i)
2403      return false;
2404
2405  // Upper quadword shuffled.
2406  for (int i = 4; i != 8; ++i)
2407    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2408      return false;
2409
2410  return true;
2411}
2412
2413bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2414  SmallVector<int, 8> M;
2415  N->getMask(M);
2416  return ::isPSHUFHWMask(M, N->getValueType(0));
2417}
2418
2419/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2420/// is suitable for input to PSHUFLW.
2421static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2422  if (VT != MVT::v8i16)
2423    return false;
2424
2425  // Upper quadword copied in order.
2426  for (int i = 4; i != 8; ++i)
2427    if (Mask[i] >= 0 && Mask[i] != i)
2428      return false;
2429
2430  // Lower quadword shuffled.
2431  for (int i = 0; i != 4; ++i)
2432    if (Mask[i] >= 4)
2433      return false;
2434
2435  return true;
2436}
2437
2438bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2439  SmallVector<int, 8> M;
2440  N->getMask(M);
2441  return ::isPSHUFLWMask(M, N->getValueType(0));
2442}
2443
2444/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2445/// is suitable for input to PALIGNR.
2446static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2447                          bool hasSSSE3) {
2448  int i, e = VT.getVectorNumElements();
2449
2450  // Do not handle v2i64 / v2f64 shuffles with palignr.
2451  if (e < 4 || !hasSSSE3)
2452    return false;
2453
2454  for (i = 0; i != e; ++i)
2455    if (Mask[i] >= 0)
2456      break;
2457
2458  // All undef, not a palignr.
2459  if (i == e)
2460    return false;
2461
2462  // Determine if it's ok to perform a palignr with only the LHS, since we
2463  // don't have access to the actual shuffle elements to see if RHS is undef.
2464  bool Unary = Mask[i] < (int)e;
2465  bool NeedsUnary = false;
2466
2467  int s = Mask[i] - i;
2468
2469  // Check the rest of the elements to see if they are consecutive.
2470  for (++i; i != e; ++i) {
2471    int m = Mask[i];
2472    if (m < 0)
2473      continue;
2474
2475    Unary = Unary && (m < (int)e);
2476    NeedsUnary = NeedsUnary || (m < s);
2477
2478    if (NeedsUnary && !Unary)
2479      return false;
2480    if (Unary && m != ((s+i) & (e-1)))
2481      return false;
2482    if (!Unary && m != (s+i))
2483      return false;
2484  }
2485  return true;
2486}
2487
2488bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2489  SmallVector<int, 8> M;
2490  N->getMask(M);
2491  return ::isPALIGNRMask(M, N->getValueType(0), true);
2492}
2493
2494/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2495/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2496static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2497  int NumElems = VT.getVectorNumElements();
2498  if (NumElems != 2 && NumElems != 4)
2499    return false;
2500
2501  int Half = NumElems / 2;
2502  for (int i = 0; i < Half; ++i)
2503    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2504      return false;
2505  for (int i = Half; i < NumElems; ++i)
2506    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2507      return false;
2508
2509  return true;
2510}
2511
2512bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2513  SmallVector<int, 8> M;
2514  N->getMask(M);
2515  return ::isSHUFPMask(M, N->getValueType(0));
2516}
2517
2518/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2519/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2520/// half elements to come from vector 1 (which would equal the dest.) and
2521/// the upper half to come from vector 2.
2522static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2523  int NumElems = VT.getVectorNumElements();
2524
2525  if (NumElems != 2 && NumElems != 4)
2526    return false;
2527
2528  int Half = NumElems / 2;
2529  for (int i = 0; i < Half; ++i)
2530    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2531      return false;
2532  for (int i = Half; i < NumElems; ++i)
2533    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2534      return false;
2535  return true;
2536}
2537
2538static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2539  SmallVector<int, 8> M;
2540  N->getMask(M);
2541  return isCommutedSHUFPMask(M, N->getValueType(0));
2542}
2543
2544/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2545/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2546bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2547  if (N->getValueType(0).getVectorNumElements() != 4)
2548    return false;
2549
2550  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2551  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2552         isUndefOrEqual(N->getMaskElt(1), 7) &&
2553         isUndefOrEqual(N->getMaskElt(2), 2) &&
2554         isUndefOrEqual(N->getMaskElt(3), 3);
2555}
2556
2557/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2558/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2559/// <2, 3, 2, 3>
2560bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2561  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2562
2563  if (NumElems != 4)
2564    return false;
2565
2566  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2567  isUndefOrEqual(N->getMaskElt(1), 3) &&
2568  isUndefOrEqual(N->getMaskElt(2), 2) &&
2569  isUndefOrEqual(N->getMaskElt(3), 3);
2570}
2571
2572/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2573/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2574bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2575  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2576
2577  if (NumElems != 2 && NumElems != 4)
2578    return false;
2579
2580  for (unsigned i = 0; i < NumElems/2; ++i)
2581    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2582      return false;
2583
2584  for (unsigned i = NumElems/2; i < NumElems; ++i)
2585    if (!isUndefOrEqual(N->getMaskElt(i), i))
2586      return false;
2587
2588  return true;
2589}
2590
2591/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2592/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2593bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2594  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2595
2596  if (NumElems != 2 && NumElems != 4)
2597    return false;
2598
2599  for (unsigned i = 0; i < NumElems/2; ++i)
2600    if (!isUndefOrEqual(N->getMaskElt(i), i))
2601      return false;
2602
2603  for (unsigned i = 0; i < NumElems/2; ++i)
2604    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2605      return false;
2606
2607  return true;
2608}
2609
2610/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2611/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2612static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2613                         bool V2IsSplat = false) {
2614  int NumElts = VT.getVectorNumElements();
2615  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2616    return false;
2617
2618  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2619    int BitI  = Mask[i];
2620    int BitI1 = Mask[i+1];
2621    if (!isUndefOrEqual(BitI, j))
2622      return false;
2623    if (V2IsSplat) {
2624      if (!isUndefOrEqual(BitI1, NumElts))
2625        return false;
2626    } else {
2627      if (!isUndefOrEqual(BitI1, j + NumElts))
2628        return false;
2629    }
2630  }
2631  return true;
2632}
2633
2634bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2635  SmallVector<int, 8> M;
2636  N->getMask(M);
2637  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2638}
2639
2640/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2641/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2642static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2643                         bool V2IsSplat = false) {
2644  int NumElts = VT.getVectorNumElements();
2645  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2646    return false;
2647
2648  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2649    int BitI  = Mask[i];
2650    int BitI1 = Mask[i+1];
2651    if (!isUndefOrEqual(BitI, j + NumElts/2))
2652      return false;
2653    if (V2IsSplat) {
2654      if (isUndefOrEqual(BitI1, NumElts))
2655        return false;
2656    } else {
2657      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2658        return false;
2659    }
2660  }
2661  return true;
2662}
2663
2664bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2665  SmallVector<int, 8> M;
2666  N->getMask(M);
2667  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2668}
2669
2670/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2671/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2672/// <0, 0, 1, 1>
2673static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2674  int NumElems = VT.getVectorNumElements();
2675  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2676    return false;
2677
2678  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2679    int BitI  = Mask[i];
2680    int BitI1 = Mask[i+1];
2681    if (!isUndefOrEqual(BitI, j))
2682      return false;
2683    if (!isUndefOrEqual(BitI1, j))
2684      return false;
2685  }
2686  return true;
2687}
2688
2689bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2690  SmallVector<int, 8> M;
2691  N->getMask(M);
2692  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2693}
2694
2695/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2696/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2697/// <2, 2, 3, 3>
2698static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2699  int NumElems = VT.getVectorNumElements();
2700  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2701    return false;
2702
2703  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2704    int BitI  = Mask[i];
2705    int BitI1 = Mask[i+1];
2706    if (!isUndefOrEqual(BitI, j))
2707      return false;
2708    if (!isUndefOrEqual(BitI1, j))
2709      return false;
2710  }
2711  return true;
2712}
2713
2714bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2715  SmallVector<int, 8> M;
2716  N->getMask(M);
2717  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2718}
2719
2720/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2721/// specifies a shuffle of elements that is suitable for input to MOVSS,
2722/// MOVSD, and MOVD, i.e. setting the lowest element.
2723static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2724  if (VT.getVectorElementType().getSizeInBits() < 32)
2725    return false;
2726
2727  int NumElts = VT.getVectorNumElements();
2728
2729  if (!isUndefOrEqual(Mask[0], NumElts))
2730    return false;
2731
2732  for (int i = 1; i < NumElts; ++i)
2733    if (!isUndefOrEqual(Mask[i], i))
2734      return false;
2735
2736  return true;
2737}
2738
2739bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2740  SmallVector<int, 8> M;
2741  N->getMask(M);
2742  return ::isMOVLMask(M, N->getValueType(0));
2743}
2744
2745/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2746/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2747/// element of vector 2 and the other elements to come from vector 1 in order.
2748static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2749                               bool V2IsSplat = false, bool V2IsUndef = false) {
2750  int NumOps = VT.getVectorNumElements();
2751  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2752    return false;
2753
2754  if (!isUndefOrEqual(Mask[0], 0))
2755    return false;
2756
2757  for (int i = 1; i < NumOps; ++i)
2758    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2759          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2760          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2761      return false;
2762
2763  return true;
2764}
2765
2766static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2767                           bool V2IsUndef = false) {
2768  SmallVector<int, 8> M;
2769  N->getMask(M);
2770  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2771}
2772
2773/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2774/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2775bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2776  if (N->getValueType(0).getVectorNumElements() != 4)
2777    return false;
2778
2779  // Expect 1, 1, 3, 3
2780  for (unsigned i = 0; i < 2; ++i) {
2781    int Elt = N->getMaskElt(i);
2782    if (Elt >= 0 && Elt != 1)
2783      return false;
2784  }
2785
2786  bool HasHi = false;
2787  for (unsigned i = 2; i < 4; ++i) {
2788    int Elt = N->getMaskElt(i);
2789    if (Elt >= 0 && Elt != 3)
2790      return false;
2791    if (Elt == 3)
2792      HasHi = true;
2793  }
2794  // Don't use movshdup if it can be done with a shufps.
2795  // FIXME: verify that matching u, u, 3, 3 is what we want.
2796  return HasHi;
2797}
2798
2799/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2800/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2801bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2802  if (N->getValueType(0).getVectorNumElements() != 4)
2803    return false;
2804
2805  // Expect 0, 0, 2, 2
2806  for (unsigned i = 0; i < 2; ++i)
2807    if (N->getMaskElt(i) > 0)
2808      return false;
2809
2810  bool HasHi = false;
2811  for (unsigned i = 2; i < 4; ++i) {
2812    int Elt = N->getMaskElt(i);
2813    if (Elt >= 0 && Elt != 2)
2814      return false;
2815    if (Elt == 2)
2816      HasHi = true;
2817  }
2818  // Don't use movsldup if it can be done with a shufps.
2819  return HasHi;
2820}
2821
2822/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2823/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2824bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2825  int e = N->getValueType(0).getVectorNumElements() / 2;
2826
2827  for (int i = 0; i < e; ++i)
2828    if (!isUndefOrEqual(N->getMaskElt(i), i))
2829      return false;
2830  for (int i = 0; i < e; ++i)
2831    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2832      return false;
2833  return true;
2834}
2835
2836/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2837/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
2838unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2839  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2840  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2841
2842  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2843  unsigned Mask = 0;
2844  for (int i = 0; i < NumOperands; ++i) {
2845    int Val = SVOp->getMaskElt(NumOperands-i-1);
2846    if (Val < 0) Val = 0;
2847    if (Val >= NumOperands) Val -= NumOperands;
2848    Mask |= Val;
2849    if (i != NumOperands - 1)
2850      Mask <<= Shift;
2851  }
2852  return Mask;
2853}
2854
2855/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2856/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
2857unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2858  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2859  unsigned Mask = 0;
2860  // 8 nodes, but we only care about the last 4.
2861  for (unsigned i = 7; i >= 4; --i) {
2862    int Val = SVOp->getMaskElt(i);
2863    if (Val >= 0)
2864      Mask |= (Val - 4);
2865    if (i != 4)
2866      Mask <<= 2;
2867  }
2868  return Mask;
2869}
2870
2871/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2872/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
2873unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2874  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2875  unsigned Mask = 0;
2876  // 8 nodes, but we only care about the first 4.
2877  for (int i = 3; i >= 0; --i) {
2878    int Val = SVOp->getMaskElt(i);
2879    if (Val >= 0)
2880      Mask |= Val;
2881    if (i != 0)
2882      Mask <<= 2;
2883  }
2884  return Mask;
2885}
2886
2887/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
2888/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
2889unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
2890  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2891  EVT VVT = N->getValueType(0);
2892  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
2893  int Val = 0;
2894
2895  unsigned i, e;
2896  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
2897    Val = SVOp->getMaskElt(i);
2898    if (Val >= 0)
2899      break;
2900  }
2901  return (Val - i) * EltSize;
2902}
2903
2904/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2905/// constant +0.0.
2906bool X86::isZeroNode(SDValue Elt) {
2907  return ((isa<ConstantSDNode>(Elt) &&
2908           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2909          (isa<ConstantFPSDNode>(Elt) &&
2910           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2911}
2912
2913/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2914/// their permute mask.
2915static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2916                                    SelectionDAG &DAG) {
2917  EVT VT = SVOp->getValueType(0);
2918  unsigned NumElems = VT.getVectorNumElements();
2919  SmallVector<int, 8> MaskVec;
2920
2921  for (unsigned i = 0; i != NumElems; ++i) {
2922    int idx = SVOp->getMaskElt(i);
2923    if (idx < 0)
2924      MaskVec.push_back(idx);
2925    else if (idx < (int)NumElems)
2926      MaskVec.push_back(idx + NumElems);
2927    else
2928      MaskVec.push_back(idx - NumElems);
2929  }
2930  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2931                              SVOp->getOperand(0), &MaskVec[0]);
2932}
2933
2934/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2935/// the two vector operands have swapped position.
2936static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2937  unsigned NumElems = VT.getVectorNumElements();
2938  for (unsigned i = 0; i != NumElems; ++i) {
2939    int idx = Mask[i];
2940    if (idx < 0)
2941      continue;
2942    else if (idx < (int)NumElems)
2943      Mask[i] = idx + NumElems;
2944    else
2945      Mask[i] = idx - NumElems;
2946  }
2947}
2948
2949/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2950/// match movhlps. The lower half elements should come from upper half of
2951/// V1 (and in order), and the upper half elements should come from the upper
2952/// half of V2 (and in order).
2953static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2954  if (Op->getValueType(0).getVectorNumElements() != 4)
2955    return false;
2956  for (unsigned i = 0, e = 2; i != e; ++i)
2957    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2958      return false;
2959  for (unsigned i = 2; i != 4; ++i)
2960    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2961      return false;
2962  return true;
2963}
2964
2965/// isScalarLoadToVector - Returns true if the node is a scalar load that
2966/// is promoted to a vector. It also returns the LoadSDNode by reference if
2967/// required.
2968static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2969  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2970    return false;
2971  N = N->getOperand(0).getNode();
2972  if (!ISD::isNON_EXTLoad(N))
2973    return false;
2974  if (LD)
2975    *LD = cast<LoadSDNode>(N);
2976  return true;
2977}
2978
2979/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2980/// match movlp{s|d}. The lower half elements should come from lower half of
2981/// V1 (and in order), and the upper half elements should come from the upper
2982/// half of V2 (and in order). And since V1 will become the source of the
2983/// MOVLP, it must be either a vector load or a scalar load to vector.
2984static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2985                               ShuffleVectorSDNode *Op) {
2986  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2987    return false;
2988  // Is V2 is a vector load, don't do this transformation. We will try to use
2989  // load folding shufps op.
2990  if (ISD::isNON_EXTLoad(V2))
2991    return false;
2992
2993  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2994
2995  if (NumElems != 2 && NumElems != 4)
2996    return false;
2997  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2998    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2999      return false;
3000  for (unsigned i = NumElems/2; i != NumElems; ++i)
3001    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3002      return false;
3003  return true;
3004}
3005
3006/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3007/// all the same.
3008static bool isSplatVector(SDNode *N) {
3009  if (N->getOpcode() != ISD::BUILD_VECTOR)
3010    return false;
3011
3012  SDValue SplatValue = N->getOperand(0);
3013  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3014    if (N->getOperand(i) != SplatValue)
3015      return false;
3016  return true;
3017}
3018
3019/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3020/// to an zero vector.
3021/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3022static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3023  SDValue V1 = N->getOperand(0);
3024  SDValue V2 = N->getOperand(1);
3025  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3026  for (unsigned i = 0; i != NumElems; ++i) {
3027    int Idx = N->getMaskElt(i);
3028    if (Idx >= (int)NumElems) {
3029      unsigned Opc = V2.getOpcode();
3030      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3031        continue;
3032      if (Opc != ISD::BUILD_VECTOR ||
3033          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3034        return false;
3035    } else if (Idx >= 0) {
3036      unsigned Opc = V1.getOpcode();
3037      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3038        continue;
3039      if (Opc != ISD::BUILD_VECTOR ||
3040          !X86::isZeroNode(V1.getOperand(Idx)))
3041        return false;
3042    }
3043  }
3044  return true;
3045}
3046
3047/// getZeroVector - Returns a vector of specified type with all zero elements.
3048///
3049static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3050                             DebugLoc dl) {
3051  assert(VT.isVector() && "Expected a vector type");
3052
3053  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3054  // type.  This ensures they get CSE'd.
3055  SDValue Vec;
3056  if (VT.getSizeInBits() == 64) { // MMX
3057    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3058    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3059  } else if (HasSSE2) {  // SSE2
3060    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3061    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3062  } else { // SSE1
3063    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3064    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3065  }
3066  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3067}
3068
3069/// getOnesVector - Returns a vector of specified type with all bits set.
3070///
3071static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3072  assert(VT.isVector() && "Expected a vector type");
3073
3074  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3075  // type.  This ensures they get CSE'd.
3076  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3077  SDValue Vec;
3078  if (VT.getSizeInBits() == 64)  // MMX
3079    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3080  else                                              // SSE
3081    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3082  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3083}
3084
3085
3086/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3087/// that point to V2 points to its first element.
3088static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3089  EVT VT = SVOp->getValueType(0);
3090  unsigned NumElems = VT.getVectorNumElements();
3091
3092  bool Changed = false;
3093  SmallVector<int, 8> MaskVec;
3094  SVOp->getMask(MaskVec);
3095
3096  for (unsigned i = 0; i != NumElems; ++i) {
3097    if (MaskVec[i] > (int)NumElems) {
3098      MaskVec[i] = NumElems;
3099      Changed = true;
3100    }
3101  }
3102  if (Changed)
3103    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3104                                SVOp->getOperand(1), &MaskVec[0]);
3105  return SDValue(SVOp, 0);
3106}
3107
3108/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3109/// operation of specified width.
3110static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3111                       SDValue V2) {
3112  unsigned NumElems = VT.getVectorNumElements();
3113  SmallVector<int, 8> Mask;
3114  Mask.push_back(NumElems);
3115  for (unsigned i = 1; i != NumElems; ++i)
3116    Mask.push_back(i);
3117  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3118}
3119
3120/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3121static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3122                          SDValue V2) {
3123  unsigned NumElems = VT.getVectorNumElements();
3124  SmallVector<int, 8> Mask;
3125  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3126    Mask.push_back(i);
3127    Mask.push_back(i + NumElems);
3128  }
3129  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3130}
3131
3132/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3133static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3134                          SDValue V2) {
3135  unsigned NumElems = VT.getVectorNumElements();
3136  unsigned Half = NumElems/2;
3137  SmallVector<int, 8> Mask;
3138  for (unsigned i = 0; i != Half; ++i) {
3139    Mask.push_back(i + Half);
3140    Mask.push_back(i + NumElems + Half);
3141  }
3142  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3143}
3144
3145/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3146static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3147                            bool HasSSE2) {
3148  if (SV->getValueType(0).getVectorNumElements() <= 4)
3149    return SDValue(SV, 0);
3150
3151  EVT PVT = MVT::v4f32;
3152  EVT VT = SV->getValueType(0);
3153  DebugLoc dl = SV->getDebugLoc();
3154  SDValue V1 = SV->getOperand(0);
3155  int NumElems = VT.getVectorNumElements();
3156  int EltNo = SV->getSplatIndex();
3157
3158  // unpack elements to the correct location
3159  while (NumElems > 4) {
3160    if (EltNo < NumElems/2) {
3161      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3162    } else {
3163      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3164      EltNo -= NumElems/2;
3165    }
3166    NumElems >>= 1;
3167  }
3168
3169  // Perform the splat.
3170  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3171  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3172  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3173  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3174}
3175
3176/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3177/// vector of zero or undef vector.  This produces a shuffle where the low
3178/// element of V2 is swizzled into the zero/undef vector, landing at element
3179/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3180static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3181                                             bool isZero, bool HasSSE2,
3182                                             SelectionDAG &DAG) {
3183  EVT VT = V2.getValueType();
3184  SDValue V1 = isZero
3185    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3186  unsigned NumElems = VT.getVectorNumElements();
3187  SmallVector<int, 16> MaskVec;
3188  for (unsigned i = 0; i != NumElems; ++i)
3189    // If this is the insertion idx, put the low elt of V2 here.
3190    MaskVec.push_back(i == Idx ? NumElems : i);
3191  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3192}
3193
3194/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3195/// a shuffle that is zero.
3196static
3197unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3198                                  bool Low, SelectionDAG &DAG) {
3199  unsigned NumZeros = 0;
3200  for (int i = 0; i < NumElems; ++i) {
3201    unsigned Index = Low ? i : NumElems-i-1;
3202    int Idx = SVOp->getMaskElt(Index);
3203    if (Idx < 0) {
3204      ++NumZeros;
3205      continue;
3206    }
3207    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3208    if (Elt.getNode() && X86::isZeroNode(Elt))
3209      ++NumZeros;
3210    else
3211      break;
3212  }
3213  return NumZeros;
3214}
3215
3216/// isVectorShift - Returns true if the shuffle can be implemented as a
3217/// logical left or right shift of a vector.
3218/// FIXME: split into pslldqi, psrldqi, palignr variants.
3219static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3220                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3221  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3222
3223  isLeft = true;
3224  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3225  if (!NumZeros) {
3226    isLeft = false;
3227    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3228    if (!NumZeros)
3229      return false;
3230  }
3231  bool SeenV1 = false;
3232  bool SeenV2 = false;
3233  for (int i = NumZeros; i < NumElems; ++i) {
3234    int Val = isLeft ? (i - NumZeros) : i;
3235    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3236    if (Idx < 0)
3237      continue;
3238    if (Idx < NumElems)
3239      SeenV1 = true;
3240    else {
3241      Idx -= NumElems;
3242      SeenV2 = true;
3243    }
3244    if (Idx != Val)
3245      return false;
3246  }
3247  if (SeenV1 && SeenV2)
3248    return false;
3249
3250  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3251  ShAmt = NumZeros;
3252  return true;
3253}
3254
3255
3256/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3257///
3258static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3259                                       unsigned NumNonZero, unsigned NumZero,
3260                                       SelectionDAG &DAG, TargetLowering &TLI) {
3261  if (NumNonZero > 8)
3262    return SDValue();
3263
3264  DebugLoc dl = Op.getDebugLoc();
3265  SDValue V(0, 0);
3266  bool First = true;
3267  for (unsigned i = 0; i < 16; ++i) {
3268    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3269    if (ThisIsNonZero && First) {
3270      if (NumZero)
3271        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3272      else
3273        V = DAG.getUNDEF(MVT::v8i16);
3274      First = false;
3275    }
3276
3277    if ((i & 1) != 0) {
3278      SDValue ThisElt(0, 0), LastElt(0, 0);
3279      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3280      if (LastIsNonZero) {
3281        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3282                              MVT::i16, Op.getOperand(i-1));
3283      }
3284      if (ThisIsNonZero) {
3285        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3286        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3287                              ThisElt, DAG.getConstant(8, MVT::i8));
3288        if (LastIsNonZero)
3289          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3290      } else
3291        ThisElt = LastElt;
3292
3293      if (ThisElt.getNode())
3294        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3295                        DAG.getIntPtrConstant(i/2));
3296    }
3297  }
3298
3299  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3300}
3301
3302/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3303///
3304static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3305                                       unsigned NumNonZero, unsigned NumZero,
3306                                       SelectionDAG &DAG, TargetLowering &TLI) {
3307  if (NumNonZero > 4)
3308    return SDValue();
3309
3310  DebugLoc dl = Op.getDebugLoc();
3311  SDValue V(0, 0);
3312  bool First = true;
3313  for (unsigned i = 0; i < 8; ++i) {
3314    bool isNonZero = (NonZeros & (1 << i)) != 0;
3315    if (isNonZero) {
3316      if (First) {
3317        if (NumZero)
3318          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3319        else
3320          V = DAG.getUNDEF(MVT::v8i16);
3321        First = false;
3322      }
3323      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3324                      MVT::v8i16, V, Op.getOperand(i),
3325                      DAG.getIntPtrConstant(i));
3326    }
3327  }
3328
3329  return V;
3330}
3331
3332/// getVShift - Return a vector logical shift node.
3333///
3334static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3335                         unsigned NumBits, SelectionDAG &DAG,
3336                         const TargetLowering &TLI, DebugLoc dl) {
3337  bool isMMX = VT.getSizeInBits() == 64;
3338  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3339  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3340  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3341  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3342                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3343                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3344}
3345
3346SDValue
3347X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3348  DebugLoc dl = Op.getDebugLoc();
3349  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3350  if (ISD::isBuildVectorAllZeros(Op.getNode())
3351      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3352    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3353    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3354    // eliminated on x86-32 hosts.
3355    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3356      return Op;
3357
3358    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3359      return getOnesVector(Op.getValueType(), DAG, dl);
3360    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3361  }
3362
3363  EVT VT = Op.getValueType();
3364  EVT ExtVT = VT.getVectorElementType();
3365  unsigned EVTBits = ExtVT.getSizeInBits();
3366
3367  unsigned NumElems = Op.getNumOperands();
3368  unsigned NumZero  = 0;
3369  unsigned NumNonZero = 0;
3370  unsigned NonZeros = 0;
3371  bool IsAllConstants = true;
3372  SmallSet<SDValue, 8> Values;
3373  for (unsigned i = 0; i < NumElems; ++i) {
3374    SDValue Elt = Op.getOperand(i);
3375    if (Elt.getOpcode() == ISD::UNDEF)
3376      continue;
3377    Values.insert(Elt);
3378    if (Elt.getOpcode() != ISD::Constant &&
3379        Elt.getOpcode() != ISD::ConstantFP)
3380      IsAllConstants = false;
3381    if (X86::isZeroNode(Elt))
3382      NumZero++;
3383    else {
3384      NonZeros |= (1 << i);
3385      NumNonZero++;
3386    }
3387  }
3388
3389  if (NumNonZero == 0) {
3390    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3391    return DAG.getUNDEF(VT);
3392  }
3393
3394  // Special case for single non-zero, non-undef, element.
3395  if (NumNonZero == 1) {
3396    unsigned Idx = CountTrailingZeros_32(NonZeros);
3397    SDValue Item = Op.getOperand(Idx);
3398
3399    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3400    // the value are obviously zero, truncate the value to i32 and do the
3401    // insertion that way.  Only do this if the value is non-constant or if the
3402    // value is a constant being inserted into element 0.  It is cheaper to do
3403    // a constant pool load than it is to do a movd + shuffle.
3404    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3405        (!IsAllConstants || Idx == 0)) {
3406      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3407        // Handle MMX and SSE both.
3408        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3409        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3410
3411        // Truncate the value (which may itself be a constant) to i32, and
3412        // convert it to a vector with movd (S2V+shuffle to zero extend).
3413        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3414        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3415        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3416                                           Subtarget->hasSSE2(), DAG);
3417
3418        // Now we have our 32-bit value zero extended in the low element of
3419        // a vector.  If Idx != 0, swizzle it into place.
3420        if (Idx != 0) {
3421          SmallVector<int, 4> Mask;
3422          Mask.push_back(Idx);
3423          for (unsigned i = 1; i != VecElts; ++i)
3424            Mask.push_back(i);
3425          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3426                                      DAG.getUNDEF(Item.getValueType()),
3427                                      &Mask[0]);
3428        }
3429        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3430      }
3431    }
3432
3433    // If we have a constant or non-constant insertion into the low element of
3434    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3435    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3436    // depending on what the source datatype is.
3437    if (Idx == 0) {
3438      if (NumZero == 0) {
3439        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3440      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3441          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3442        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3443        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3444        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3445                                           DAG);
3446      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3447        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3448        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3449        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3450        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3451                                           Subtarget->hasSSE2(), DAG);
3452        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3453      }
3454    }
3455
3456    // Is it a vector logical left shift?
3457    if (NumElems == 2 && Idx == 1 &&
3458        X86::isZeroNode(Op.getOperand(0)) &&
3459        !X86::isZeroNode(Op.getOperand(1))) {
3460      unsigned NumBits = VT.getSizeInBits();
3461      return getVShift(true, VT,
3462                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3463                                   VT, Op.getOperand(1)),
3464                       NumBits/2, DAG, *this, dl);
3465    }
3466
3467    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3468      return SDValue();
3469
3470    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3471    // is a non-constant being inserted into an element other than the low one,
3472    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3473    // movd/movss) to move this into the low element, then shuffle it into
3474    // place.
3475    if (EVTBits == 32) {
3476      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3477
3478      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3479      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3480                                         Subtarget->hasSSE2(), DAG);
3481      SmallVector<int, 8> MaskVec;
3482      for (unsigned i = 0; i < NumElems; i++)
3483        MaskVec.push_back(i == Idx ? 0 : 1);
3484      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3485    }
3486  }
3487
3488  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3489  if (Values.size() == 1)
3490    return SDValue();
3491
3492  // A vector full of immediates; various special cases are already
3493  // handled, so this is best done with a single constant-pool load.
3494  if (IsAllConstants)
3495    return SDValue();
3496
3497  // Let legalizer expand 2-wide build_vectors.
3498  if (EVTBits == 64) {
3499    if (NumNonZero == 1) {
3500      // One half is zero or undef.
3501      unsigned Idx = CountTrailingZeros_32(NonZeros);
3502      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3503                                 Op.getOperand(Idx));
3504      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3505                                         Subtarget->hasSSE2(), DAG);
3506    }
3507    return SDValue();
3508  }
3509
3510  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3511  if (EVTBits == 8 && NumElems == 16) {
3512    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3513                                        *this);
3514    if (V.getNode()) return V;
3515  }
3516
3517  if (EVTBits == 16 && NumElems == 8) {
3518    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3519                                        *this);
3520    if (V.getNode()) return V;
3521  }
3522
3523  // If element VT is == 32 bits, turn it into a number of shuffles.
3524  SmallVector<SDValue, 8> V;
3525  V.resize(NumElems);
3526  if (NumElems == 4 && NumZero > 0) {
3527    for (unsigned i = 0; i < 4; ++i) {
3528      bool isZero = !(NonZeros & (1 << i));
3529      if (isZero)
3530        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3531      else
3532        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3533    }
3534
3535    for (unsigned i = 0; i < 2; ++i) {
3536      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3537        default: break;
3538        case 0:
3539          V[i] = V[i*2];  // Must be a zero vector.
3540          break;
3541        case 1:
3542          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3543          break;
3544        case 2:
3545          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3546          break;
3547        case 3:
3548          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3549          break;
3550      }
3551    }
3552
3553    SmallVector<int, 8> MaskVec;
3554    bool Reverse = (NonZeros & 0x3) == 2;
3555    for (unsigned i = 0; i < 2; ++i)
3556      MaskVec.push_back(Reverse ? 1-i : i);
3557    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3558    for (unsigned i = 0; i < 2; ++i)
3559      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3560    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3561  }
3562
3563  if (Values.size() > 2) {
3564    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3565    // values to be inserted is equal to the number of elements, in which case
3566    // use the unpack code below in the hopes of matching the consecutive elts
3567    // load merge pattern for shuffles.
3568    // FIXME: We could probably just check that here directly.
3569    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3570        getSubtarget()->hasSSE41()) {
3571      V[0] = DAG.getUNDEF(VT);
3572      for (unsigned i = 0; i < NumElems; ++i)
3573        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3574          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3575                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3576      return V[0];
3577    }
3578    // Expand into a number of unpckl*.
3579    // e.g. for v4f32
3580    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3581    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3582    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3583    for (unsigned i = 0; i < NumElems; ++i)
3584      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3585    NumElems >>= 1;
3586    while (NumElems != 0) {
3587      for (unsigned i = 0; i < NumElems; ++i)
3588        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3589      NumElems >>= 1;
3590    }
3591    return V[0];
3592  }
3593
3594  return SDValue();
3595}
3596
3597// v8i16 shuffles - Prefer shuffles in the following order:
3598// 1. [all]   pshuflw, pshufhw, optional move
3599// 2. [ssse3] 1 x pshufb
3600// 3. [ssse3] 2 x pshufb + 1 x por
3601// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3602static
3603SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3604                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3605  SDValue V1 = SVOp->getOperand(0);
3606  SDValue V2 = SVOp->getOperand(1);
3607  DebugLoc dl = SVOp->getDebugLoc();
3608  SmallVector<int, 8> MaskVals;
3609
3610  // Determine if more than 1 of the words in each of the low and high quadwords
3611  // of the result come from the same quadword of one of the two inputs.  Undef
3612  // mask values count as coming from any quadword, for better codegen.
3613  SmallVector<unsigned, 4> LoQuad(4);
3614  SmallVector<unsigned, 4> HiQuad(4);
3615  BitVector InputQuads(4);
3616  for (unsigned i = 0; i < 8; ++i) {
3617    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3618    int EltIdx = SVOp->getMaskElt(i);
3619    MaskVals.push_back(EltIdx);
3620    if (EltIdx < 0) {
3621      ++Quad[0];
3622      ++Quad[1];
3623      ++Quad[2];
3624      ++Quad[3];
3625      continue;
3626    }
3627    ++Quad[EltIdx / 4];
3628    InputQuads.set(EltIdx / 4);
3629  }
3630
3631  int BestLoQuad = -1;
3632  unsigned MaxQuad = 1;
3633  for (unsigned i = 0; i < 4; ++i) {
3634    if (LoQuad[i] > MaxQuad) {
3635      BestLoQuad = i;
3636      MaxQuad = LoQuad[i];
3637    }
3638  }
3639
3640  int BestHiQuad = -1;
3641  MaxQuad = 1;
3642  for (unsigned i = 0; i < 4; ++i) {
3643    if (HiQuad[i] > MaxQuad) {
3644      BestHiQuad = i;
3645      MaxQuad = HiQuad[i];
3646    }
3647  }
3648
3649  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3650  // of the two input vectors, shuffle them into one input vector so only a
3651  // single pshufb instruction is necessary. If There are more than 2 input
3652  // quads, disable the next transformation since it does not help SSSE3.
3653  bool V1Used = InputQuads[0] || InputQuads[1];
3654  bool V2Used = InputQuads[2] || InputQuads[3];
3655  if (TLI.getSubtarget()->hasSSSE3()) {
3656    if (InputQuads.count() == 2 && V1Used && V2Used) {
3657      BestLoQuad = InputQuads.find_first();
3658      BestHiQuad = InputQuads.find_next(BestLoQuad);
3659    }
3660    if (InputQuads.count() > 2) {
3661      BestLoQuad = -1;
3662      BestHiQuad = -1;
3663    }
3664  }
3665
3666  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3667  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3668  // words from all 4 input quadwords.
3669  SDValue NewV;
3670  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3671    SmallVector<int, 8> MaskV;
3672    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3673    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3674    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3675                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3676                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3677    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3678
3679    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3680    // source words for the shuffle, to aid later transformations.
3681    bool AllWordsInNewV = true;
3682    bool InOrder[2] = { true, true };
3683    for (unsigned i = 0; i != 8; ++i) {
3684      int idx = MaskVals[i];
3685      if (idx != (int)i)
3686        InOrder[i/4] = false;
3687      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3688        continue;
3689      AllWordsInNewV = false;
3690      break;
3691    }
3692
3693    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3694    if (AllWordsInNewV) {
3695      for (int i = 0; i != 8; ++i) {
3696        int idx = MaskVals[i];
3697        if (idx < 0)
3698          continue;
3699        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3700        if ((idx != i) && idx < 4)
3701          pshufhw = false;
3702        if ((idx != i) && idx > 3)
3703          pshuflw = false;
3704      }
3705      V1 = NewV;
3706      V2Used = false;
3707      BestLoQuad = 0;
3708      BestHiQuad = 1;
3709    }
3710
3711    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3712    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3713    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3714      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3715                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3716    }
3717  }
3718
3719  // If we have SSSE3, and all words of the result are from 1 input vector,
3720  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3721  // is present, fall back to case 4.
3722  if (TLI.getSubtarget()->hasSSSE3()) {
3723    SmallVector<SDValue,16> pshufbMask;
3724
3725    // If we have elements from both input vectors, set the high bit of the
3726    // shuffle mask element to zero out elements that come from V2 in the V1
3727    // mask, and elements that come from V1 in the V2 mask, so that the two
3728    // results can be OR'd together.
3729    bool TwoInputs = V1Used && V2Used;
3730    for (unsigned i = 0; i != 8; ++i) {
3731      int EltIdx = MaskVals[i] * 2;
3732      if (TwoInputs && (EltIdx >= 16)) {
3733        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3734        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3735        continue;
3736      }
3737      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3738      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3739    }
3740    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3741    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3742                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3743                                 MVT::v16i8, &pshufbMask[0], 16));
3744    if (!TwoInputs)
3745      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3746
3747    // Calculate the shuffle mask for the second input, shuffle it, and
3748    // OR it with the first shuffled input.
3749    pshufbMask.clear();
3750    for (unsigned i = 0; i != 8; ++i) {
3751      int EltIdx = MaskVals[i] * 2;
3752      if (EltIdx < 16) {
3753        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3754        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3755        continue;
3756      }
3757      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3758      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3759    }
3760    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3761    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3762                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3763                                 MVT::v16i8, &pshufbMask[0], 16));
3764    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3765    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3766  }
3767
3768  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3769  // and update MaskVals with new element order.
3770  BitVector InOrder(8);
3771  if (BestLoQuad >= 0) {
3772    SmallVector<int, 8> MaskV;
3773    for (int i = 0; i != 4; ++i) {
3774      int idx = MaskVals[i];
3775      if (idx < 0) {
3776        MaskV.push_back(-1);
3777        InOrder.set(i);
3778      } else if ((idx / 4) == BestLoQuad) {
3779        MaskV.push_back(idx & 3);
3780        InOrder.set(i);
3781      } else {
3782        MaskV.push_back(-1);
3783      }
3784    }
3785    for (unsigned i = 4; i != 8; ++i)
3786      MaskV.push_back(i);
3787    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3788                                &MaskV[0]);
3789  }
3790
3791  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3792  // and update MaskVals with the new element order.
3793  if (BestHiQuad >= 0) {
3794    SmallVector<int, 8> MaskV;
3795    for (unsigned i = 0; i != 4; ++i)
3796      MaskV.push_back(i);
3797    for (unsigned i = 4; i != 8; ++i) {
3798      int idx = MaskVals[i];
3799      if (idx < 0) {
3800        MaskV.push_back(-1);
3801        InOrder.set(i);
3802      } else if ((idx / 4) == BestHiQuad) {
3803        MaskV.push_back((idx & 3) + 4);
3804        InOrder.set(i);
3805      } else {
3806        MaskV.push_back(-1);
3807      }
3808    }
3809    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3810                                &MaskV[0]);
3811  }
3812
3813  // In case BestHi & BestLo were both -1, which means each quadword has a word
3814  // from each of the four input quadwords, calculate the InOrder bitvector now
3815  // before falling through to the insert/extract cleanup.
3816  if (BestLoQuad == -1 && BestHiQuad == -1) {
3817    NewV = V1;
3818    for (int i = 0; i != 8; ++i)
3819      if (MaskVals[i] < 0 || MaskVals[i] == i)
3820        InOrder.set(i);
3821  }
3822
3823  // The other elements are put in the right place using pextrw and pinsrw.
3824  for (unsigned i = 0; i != 8; ++i) {
3825    if (InOrder[i])
3826      continue;
3827    int EltIdx = MaskVals[i];
3828    if (EltIdx < 0)
3829      continue;
3830    SDValue ExtOp = (EltIdx < 8)
3831    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3832                  DAG.getIntPtrConstant(EltIdx))
3833    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3834                  DAG.getIntPtrConstant(EltIdx - 8));
3835    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3836                       DAG.getIntPtrConstant(i));
3837  }
3838  return NewV;
3839}
3840
3841// v16i8 shuffles - Prefer shuffles in the following order:
3842// 1. [ssse3] 1 x pshufb
3843// 2. [ssse3] 2 x pshufb + 1 x por
3844// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3845static
3846SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3847                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3848  SDValue V1 = SVOp->getOperand(0);
3849  SDValue V2 = SVOp->getOperand(1);
3850  DebugLoc dl = SVOp->getDebugLoc();
3851  SmallVector<int, 16> MaskVals;
3852  SVOp->getMask(MaskVals);
3853
3854  // If we have SSSE3, case 1 is generated when all result bytes come from
3855  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3856  // present, fall back to case 3.
3857  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3858  bool V1Only = true;
3859  bool V2Only = true;
3860  for (unsigned i = 0; i < 16; ++i) {
3861    int EltIdx = MaskVals[i];
3862    if (EltIdx < 0)
3863      continue;
3864    if (EltIdx < 16)
3865      V2Only = false;
3866    else
3867      V1Only = false;
3868  }
3869
3870  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3871  if (TLI.getSubtarget()->hasSSSE3()) {
3872    SmallVector<SDValue,16> pshufbMask;
3873
3874    // If all result elements are from one input vector, then only translate
3875    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3876    //
3877    // Otherwise, we have elements from both input vectors, and must zero out
3878    // elements that come from V2 in the first mask, and V1 in the second mask
3879    // so that we can OR them together.
3880    bool TwoInputs = !(V1Only || V2Only);
3881    for (unsigned i = 0; i != 16; ++i) {
3882      int EltIdx = MaskVals[i];
3883      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3884        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3885        continue;
3886      }
3887      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3888    }
3889    // If all the elements are from V2, assign it to V1 and return after
3890    // building the first pshufb.
3891    if (V2Only)
3892      V1 = V2;
3893    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3894                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3895                                 MVT::v16i8, &pshufbMask[0], 16));
3896    if (!TwoInputs)
3897      return V1;
3898
3899    // Calculate the shuffle mask for the second input, shuffle it, and
3900    // OR it with the first shuffled input.
3901    pshufbMask.clear();
3902    for (unsigned i = 0; i != 16; ++i) {
3903      int EltIdx = MaskVals[i];
3904      if (EltIdx < 16) {
3905        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3906        continue;
3907      }
3908      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3909    }
3910    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3911                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3912                                 MVT::v16i8, &pshufbMask[0], 16));
3913    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3914  }
3915
3916  // No SSSE3 - Calculate in place words and then fix all out of place words
3917  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3918  // the 16 different words that comprise the two doublequadword input vectors.
3919  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3920  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3921  SDValue NewV = V2Only ? V2 : V1;
3922  for (int i = 0; i != 8; ++i) {
3923    int Elt0 = MaskVals[i*2];
3924    int Elt1 = MaskVals[i*2+1];
3925
3926    // This word of the result is all undef, skip it.
3927    if (Elt0 < 0 && Elt1 < 0)
3928      continue;
3929
3930    // This word of the result is already in the correct place, skip it.
3931    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3932      continue;
3933    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3934      continue;
3935
3936    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3937    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3938    SDValue InsElt;
3939
3940    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3941    // using a single extract together, load it and store it.
3942    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3943      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3944                           DAG.getIntPtrConstant(Elt1 / 2));
3945      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3946                        DAG.getIntPtrConstant(i));
3947      continue;
3948    }
3949
3950    // If Elt1 is defined, extract it from the appropriate source.  If the
3951    // source byte is not also odd, shift the extracted word left 8 bits
3952    // otherwise clear the bottom 8 bits if we need to do an or.
3953    if (Elt1 >= 0) {
3954      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3955                           DAG.getIntPtrConstant(Elt1 / 2));
3956      if ((Elt1 & 1) == 0)
3957        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3958                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3959      else if (Elt0 >= 0)
3960        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3961                             DAG.getConstant(0xFF00, MVT::i16));
3962    }
3963    // If Elt0 is defined, extract it from the appropriate source.  If the
3964    // source byte is not also even, shift the extracted word right 8 bits. If
3965    // Elt1 was also defined, OR the extracted values together before
3966    // inserting them in the result.
3967    if (Elt0 >= 0) {
3968      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3969                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3970      if ((Elt0 & 1) != 0)
3971        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3972                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3973      else if (Elt1 >= 0)
3974        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3975                             DAG.getConstant(0x00FF, MVT::i16));
3976      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3977                         : InsElt0;
3978    }
3979    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3980                       DAG.getIntPtrConstant(i));
3981  }
3982  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3983}
3984
3985/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3986/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3987/// done when every pair / quad of shuffle mask elements point to elements in
3988/// the right sequence. e.g.
3989/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3990static
3991SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3992                                 SelectionDAG &DAG,
3993                                 TargetLowering &TLI, DebugLoc dl) {
3994  EVT VT = SVOp->getValueType(0);
3995  SDValue V1 = SVOp->getOperand(0);
3996  SDValue V2 = SVOp->getOperand(1);
3997  unsigned NumElems = VT.getVectorNumElements();
3998  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3999  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4000  EVT MaskEltVT = MaskVT.getVectorElementType();
4001  EVT NewVT = MaskVT;
4002  switch (VT.getSimpleVT().SimpleTy) {
4003  default: assert(false && "Unexpected!");
4004  case MVT::v4f32: NewVT = MVT::v2f64; break;
4005  case MVT::v4i32: NewVT = MVT::v2i64; break;
4006  case MVT::v8i16: NewVT = MVT::v4i32; break;
4007  case MVT::v16i8: NewVT = MVT::v4i32; break;
4008  }
4009
4010  if (NewWidth == 2) {
4011    if (VT.isInteger())
4012      NewVT = MVT::v2i64;
4013    else
4014      NewVT = MVT::v2f64;
4015  }
4016  int Scale = NumElems / NewWidth;
4017  SmallVector<int, 8> MaskVec;
4018  for (unsigned i = 0; i < NumElems; i += Scale) {
4019    int StartIdx = -1;
4020    for (int j = 0; j < Scale; ++j) {
4021      int EltIdx = SVOp->getMaskElt(i+j);
4022      if (EltIdx < 0)
4023        continue;
4024      if (StartIdx == -1)
4025        StartIdx = EltIdx - (EltIdx % Scale);
4026      if (EltIdx != StartIdx + j)
4027        return SDValue();
4028    }
4029    if (StartIdx == -1)
4030      MaskVec.push_back(-1);
4031    else
4032      MaskVec.push_back(StartIdx / Scale);
4033  }
4034
4035  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4036  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4037  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4038}
4039
4040/// getVZextMovL - Return a zero-extending vector move low node.
4041///
4042static SDValue getVZextMovL(EVT VT, EVT OpVT,
4043                            SDValue SrcOp, SelectionDAG &DAG,
4044                            const X86Subtarget *Subtarget, DebugLoc dl) {
4045  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4046    LoadSDNode *LD = NULL;
4047    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4048      LD = dyn_cast<LoadSDNode>(SrcOp);
4049    if (!LD) {
4050      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4051      // instead.
4052      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4053      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4054          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4055          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4056          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4057        // PR2108
4058        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4059        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4060                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4061                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4062                                                   OpVT,
4063                                                   SrcOp.getOperand(0)
4064                                                          .getOperand(0))));
4065      }
4066    }
4067  }
4068
4069  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4070                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4071                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4072                                             OpVT, SrcOp)));
4073}
4074
4075/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4076/// shuffles.
4077static SDValue
4078LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4079  SDValue V1 = SVOp->getOperand(0);
4080  SDValue V2 = SVOp->getOperand(1);
4081  DebugLoc dl = SVOp->getDebugLoc();
4082  EVT VT = SVOp->getValueType(0);
4083
4084  SmallVector<std::pair<int, int>, 8> Locs;
4085  Locs.resize(4);
4086  SmallVector<int, 8> Mask1(4U, -1);
4087  SmallVector<int, 8> PermMask;
4088  SVOp->getMask(PermMask);
4089
4090  unsigned NumHi = 0;
4091  unsigned NumLo = 0;
4092  for (unsigned i = 0; i != 4; ++i) {
4093    int Idx = PermMask[i];
4094    if (Idx < 0) {
4095      Locs[i] = std::make_pair(-1, -1);
4096    } else {
4097      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4098      if (Idx < 4) {
4099        Locs[i] = std::make_pair(0, NumLo);
4100        Mask1[NumLo] = Idx;
4101        NumLo++;
4102      } else {
4103        Locs[i] = std::make_pair(1, NumHi);
4104        if (2+NumHi < 4)
4105          Mask1[2+NumHi] = Idx;
4106        NumHi++;
4107      }
4108    }
4109  }
4110
4111  if (NumLo <= 2 && NumHi <= 2) {
4112    // If no more than two elements come from either vector. This can be
4113    // implemented with two shuffles. First shuffle gather the elements.
4114    // The second shuffle, which takes the first shuffle as both of its
4115    // vector operands, put the elements into the right order.
4116    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4117
4118    SmallVector<int, 8> Mask2(4U, -1);
4119
4120    for (unsigned i = 0; i != 4; ++i) {
4121      if (Locs[i].first == -1)
4122        continue;
4123      else {
4124        unsigned Idx = (i < 2) ? 0 : 4;
4125        Idx += Locs[i].first * 2 + Locs[i].second;
4126        Mask2[i] = Idx;
4127      }
4128    }
4129
4130    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4131  } else if (NumLo == 3 || NumHi == 3) {
4132    // Otherwise, we must have three elements from one vector, call it X, and
4133    // one element from the other, call it Y.  First, use a shufps to build an
4134    // intermediate vector with the one element from Y and the element from X
4135    // that will be in the same half in the final destination (the indexes don't
4136    // matter). Then, use a shufps to build the final vector, taking the half
4137    // containing the element from Y from the intermediate, and the other half
4138    // from X.
4139    if (NumHi == 3) {
4140      // Normalize it so the 3 elements come from V1.
4141      CommuteVectorShuffleMask(PermMask, VT);
4142      std::swap(V1, V2);
4143    }
4144
4145    // Find the element from V2.
4146    unsigned HiIndex;
4147    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4148      int Val = PermMask[HiIndex];
4149      if (Val < 0)
4150        continue;
4151      if (Val >= 4)
4152        break;
4153    }
4154
4155    Mask1[0] = PermMask[HiIndex];
4156    Mask1[1] = -1;
4157    Mask1[2] = PermMask[HiIndex^1];
4158    Mask1[3] = -1;
4159    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4160
4161    if (HiIndex >= 2) {
4162      Mask1[0] = PermMask[0];
4163      Mask1[1] = PermMask[1];
4164      Mask1[2] = HiIndex & 1 ? 6 : 4;
4165      Mask1[3] = HiIndex & 1 ? 4 : 6;
4166      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4167    } else {
4168      Mask1[0] = HiIndex & 1 ? 2 : 0;
4169      Mask1[1] = HiIndex & 1 ? 0 : 2;
4170      Mask1[2] = PermMask[2];
4171      Mask1[3] = PermMask[3];
4172      if (Mask1[2] >= 0)
4173        Mask1[2] += 4;
4174      if (Mask1[3] >= 0)
4175        Mask1[3] += 4;
4176      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4177    }
4178  }
4179
4180  // Break it into (shuffle shuffle_hi, shuffle_lo).
4181  Locs.clear();
4182  SmallVector<int,8> LoMask(4U, -1);
4183  SmallVector<int,8> HiMask(4U, -1);
4184
4185  SmallVector<int,8> *MaskPtr = &LoMask;
4186  unsigned MaskIdx = 0;
4187  unsigned LoIdx = 0;
4188  unsigned HiIdx = 2;
4189  for (unsigned i = 0; i != 4; ++i) {
4190    if (i == 2) {
4191      MaskPtr = &HiMask;
4192      MaskIdx = 1;
4193      LoIdx = 0;
4194      HiIdx = 2;
4195    }
4196    int Idx = PermMask[i];
4197    if (Idx < 0) {
4198      Locs[i] = std::make_pair(-1, -1);
4199    } else if (Idx < 4) {
4200      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4201      (*MaskPtr)[LoIdx] = Idx;
4202      LoIdx++;
4203    } else {
4204      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4205      (*MaskPtr)[HiIdx] = Idx;
4206      HiIdx++;
4207    }
4208  }
4209
4210  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4211  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4212  SmallVector<int, 8> MaskOps;
4213  for (unsigned i = 0; i != 4; ++i) {
4214    if (Locs[i].first == -1) {
4215      MaskOps.push_back(-1);
4216    } else {
4217      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4218      MaskOps.push_back(Idx);
4219    }
4220  }
4221  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4222}
4223
4224SDValue
4225X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4226  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4227  SDValue V1 = Op.getOperand(0);
4228  SDValue V2 = Op.getOperand(1);
4229  EVT VT = Op.getValueType();
4230  DebugLoc dl = Op.getDebugLoc();
4231  unsigned NumElems = VT.getVectorNumElements();
4232  bool isMMX = VT.getSizeInBits() == 64;
4233  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4234  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4235  bool V1IsSplat = false;
4236  bool V2IsSplat = false;
4237
4238  if (isZeroShuffle(SVOp))
4239    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4240
4241  // Promote splats to v4f32.
4242  if (SVOp->isSplat()) {
4243    if (isMMX || NumElems < 4)
4244      return Op;
4245    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4246  }
4247
4248  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4249  // do it!
4250  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4251    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4252    if (NewOp.getNode())
4253      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4254                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4255  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4256    // FIXME: Figure out a cleaner way to do this.
4257    // Try to make use of movq to zero out the top part.
4258    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4259      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4260      if (NewOp.getNode()) {
4261        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4262          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4263                              DAG, Subtarget, dl);
4264      }
4265    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4266      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4267      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4268        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4269                            DAG, Subtarget, dl);
4270    }
4271  }
4272
4273  if (X86::isPSHUFDMask(SVOp))
4274    return Op;
4275
4276  // Check if this can be converted into a logical shift.
4277  bool isLeft = false;
4278  unsigned ShAmt = 0;
4279  SDValue ShVal;
4280  bool isShift = getSubtarget()->hasSSE2() &&
4281  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4282  if (isShift && ShVal.hasOneUse()) {
4283    // If the shifted value has multiple uses, it may be cheaper to use
4284    // v_set0 + movlhps or movhlps, etc.
4285    EVT EltVT = VT.getVectorElementType();
4286    ShAmt *= EltVT.getSizeInBits();
4287    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4288  }
4289
4290  if (X86::isMOVLMask(SVOp)) {
4291    if (V1IsUndef)
4292      return V2;
4293    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4294      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4295    if (!isMMX)
4296      return Op;
4297  }
4298
4299  // FIXME: fold these into legal mask.
4300  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4301                 X86::isMOVSLDUPMask(SVOp) ||
4302                 X86::isMOVHLPSMask(SVOp) ||
4303                 X86::isMOVLHPSMask(SVOp) ||
4304                 X86::isMOVLPMask(SVOp)))
4305    return Op;
4306
4307  if (ShouldXformToMOVHLPS(SVOp) ||
4308      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4309    return CommuteVectorShuffle(SVOp, DAG);
4310
4311  if (isShift) {
4312    // No better options. Use a vshl / vsrl.
4313    EVT EltVT = VT.getVectorElementType();
4314    ShAmt *= EltVT.getSizeInBits();
4315    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4316  }
4317
4318  bool Commuted = false;
4319  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4320  // 1,1,1,1 -> v8i16 though.
4321  V1IsSplat = isSplatVector(V1.getNode());
4322  V2IsSplat = isSplatVector(V2.getNode());
4323
4324  // Canonicalize the splat or undef, if present, to be on the RHS.
4325  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4326    Op = CommuteVectorShuffle(SVOp, DAG);
4327    SVOp = cast<ShuffleVectorSDNode>(Op);
4328    V1 = SVOp->getOperand(0);
4329    V2 = SVOp->getOperand(1);
4330    std::swap(V1IsSplat, V2IsSplat);
4331    std::swap(V1IsUndef, V2IsUndef);
4332    Commuted = true;
4333  }
4334
4335  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4336    // Shuffling low element of v1 into undef, just return v1.
4337    if (V2IsUndef)
4338      return V1;
4339    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4340    // the instruction selector will not match, so get a canonical MOVL with
4341    // swapped operands to undo the commute.
4342    return getMOVL(DAG, dl, VT, V2, V1);
4343  }
4344
4345  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4346      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4347      X86::isUNPCKLMask(SVOp) ||
4348      X86::isUNPCKHMask(SVOp))
4349    return Op;
4350
4351  if (V2IsSplat) {
4352    // Normalize mask so all entries that point to V2 points to its first
4353    // element then try to match unpck{h|l} again. If match, return a
4354    // new vector_shuffle with the corrected mask.
4355    SDValue NewMask = NormalizeMask(SVOp, DAG);
4356    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4357    if (NSVOp != SVOp) {
4358      if (X86::isUNPCKLMask(NSVOp, true)) {
4359        return NewMask;
4360      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4361        return NewMask;
4362      }
4363    }
4364  }
4365
4366  if (Commuted) {
4367    // Commute is back and try unpck* again.
4368    // FIXME: this seems wrong.
4369    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4370    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4371    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4372        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4373        X86::isUNPCKLMask(NewSVOp) ||
4374        X86::isUNPCKHMask(NewSVOp))
4375      return NewOp;
4376  }
4377
4378  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4379
4380  // Normalize the node to match x86 shuffle ops if needed
4381  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4382    return CommuteVectorShuffle(SVOp, DAG);
4383
4384  // Check for legal shuffle and return?
4385  SmallVector<int, 16> PermMask;
4386  SVOp->getMask(PermMask);
4387  if (isShuffleMaskLegal(PermMask, VT))
4388    return Op;
4389
4390  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4391  if (VT == MVT::v8i16) {
4392    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4393    if (NewOp.getNode())
4394      return NewOp;
4395  }
4396
4397  if (VT == MVT::v16i8) {
4398    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4399    if (NewOp.getNode())
4400      return NewOp;
4401  }
4402
4403  // Handle all 4 wide cases with a number of shuffles except for MMX.
4404  if (NumElems == 4 && !isMMX)
4405    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4406
4407  return SDValue();
4408}
4409
4410SDValue
4411X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4412                                                SelectionDAG &DAG) {
4413  EVT VT = Op.getValueType();
4414  DebugLoc dl = Op.getDebugLoc();
4415  if (VT.getSizeInBits() == 8) {
4416    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4417                                    Op.getOperand(0), Op.getOperand(1));
4418    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4419                                    DAG.getValueType(VT));
4420    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4421  } else if (VT.getSizeInBits() == 16) {
4422    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4423    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4424    if (Idx == 0)
4425      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4426                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4427                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4428                                                 MVT::v4i32,
4429                                                 Op.getOperand(0)),
4430                                     Op.getOperand(1)));
4431    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4432                                    Op.getOperand(0), Op.getOperand(1));
4433    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4434                                    DAG.getValueType(VT));
4435    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4436  } else if (VT == MVT::f32) {
4437    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4438    // the result back to FR32 register. It's only worth matching if the
4439    // result has a single use which is a store or a bitcast to i32.  And in
4440    // the case of a store, it's not worth it if the index is a constant 0,
4441    // because a MOVSSmr can be used instead, which is smaller and faster.
4442    if (!Op.hasOneUse())
4443      return SDValue();
4444    SDNode *User = *Op.getNode()->use_begin();
4445    if ((User->getOpcode() != ISD::STORE ||
4446         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4447          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4448        (User->getOpcode() != ISD::BIT_CONVERT ||
4449         User->getValueType(0) != MVT::i32))
4450      return SDValue();
4451    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4452                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4453                                              Op.getOperand(0)),
4454                                              Op.getOperand(1));
4455    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4456  } else if (VT == MVT::i32) {
4457    // ExtractPS works with constant index.
4458    if (isa<ConstantSDNode>(Op.getOperand(1)))
4459      return Op;
4460  }
4461  return SDValue();
4462}
4463
4464
4465SDValue
4466X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4467  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4468    return SDValue();
4469
4470  if (Subtarget->hasSSE41()) {
4471    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4472    if (Res.getNode())
4473      return Res;
4474  }
4475
4476  EVT VT = Op.getValueType();
4477  DebugLoc dl = Op.getDebugLoc();
4478  // TODO: handle v16i8.
4479  if (VT.getSizeInBits() == 16) {
4480    SDValue Vec = Op.getOperand(0);
4481    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4482    if (Idx == 0)
4483      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4484                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4485                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4486                                                 MVT::v4i32, Vec),
4487                                     Op.getOperand(1)));
4488    // Transform it so it match pextrw which produces a 32-bit result.
4489    EVT EltVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4490    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4491                                    Op.getOperand(0), Op.getOperand(1));
4492    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4493                                    DAG.getValueType(VT));
4494    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4495  } else if (VT.getSizeInBits() == 32) {
4496    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4497    if (Idx == 0)
4498      return Op;
4499
4500    // SHUFPS the element to the lowest double word, then movss.
4501    int Mask[4] = { Idx, -1, -1, -1 };
4502    EVT VVT = Op.getOperand(0).getValueType();
4503    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4504                                       DAG.getUNDEF(VVT), Mask);
4505    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4506                       DAG.getIntPtrConstant(0));
4507  } else if (VT.getSizeInBits() == 64) {
4508    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4509    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4510    //        to match extract_elt for f64.
4511    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4512    if (Idx == 0)
4513      return Op;
4514
4515    // UNPCKHPD the element to the lowest double word, then movsd.
4516    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4517    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4518    int Mask[2] = { 1, -1 };
4519    EVT VVT = Op.getOperand(0).getValueType();
4520    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4521                                       DAG.getUNDEF(VVT), Mask);
4522    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4523                       DAG.getIntPtrConstant(0));
4524  }
4525
4526  return SDValue();
4527}
4528
4529SDValue
4530X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4531  EVT VT = Op.getValueType();
4532  EVT EltVT = VT.getVectorElementType();
4533  DebugLoc dl = Op.getDebugLoc();
4534
4535  SDValue N0 = Op.getOperand(0);
4536  SDValue N1 = Op.getOperand(1);
4537  SDValue N2 = Op.getOperand(2);
4538
4539  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4540      isa<ConstantSDNode>(N2)) {
4541    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4542                                                : X86ISD::PINSRW;
4543    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4544    // argument.
4545    if (N1.getValueType() != MVT::i32)
4546      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4547    if (N2.getValueType() != MVT::i32)
4548      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4549    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4550  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4551    // Bits [7:6] of the constant are the source select.  This will always be
4552    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4553    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4554    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4555    // Bits [5:4] of the constant are the destination select.  This is the
4556    //  value of the incoming immediate.
4557    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4558    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4559    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4560    // Create this as a scalar to vector..
4561    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4562    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4563  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4564    // PINSR* works with constant index.
4565    return Op;
4566  }
4567  return SDValue();
4568}
4569
4570SDValue
4571X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4572  EVT VT = Op.getValueType();
4573  EVT EltVT = VT.getVectorElementType();
4574
4575  if (Subtarget->hasSSE41())
4576    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4577
4578  if (EltVT == MVT::i8)
4579    return SDValue();
4580
4581  DebugLoc dl = Op.getDebugLoc();
4582  SDValue N0 = Op.getOperand(0);
4583  SDValue N1 = Op.getOperand(1);
4584  SDValue N2 = Op.getOperand(2);
4585
4586  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4587    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4588    // as its second argument.
4589    if (N1.getValueType() != MVT::i32)
4590      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4591    if (N2.getValueType() != MVT::i32)
4592      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4593    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4594  }
4595  return SDValue();
4596}
4597
4598SDValue
4599X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4600  DebugLoc dl = Op.getDebugLoc();
4601  if (Op.getValueType() == MVT::v2f32)
4602    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4603                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4604                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4605                                               Op.getOperand(0))));
4606
4607  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4608    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4609
4610  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4611  EVT VT = MVT::v2i32;
4612  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4613  default: break;
4614  case MVT::v16i8:
4615  case MVT::v8i16:
4616    VT = MVT::v4i32;
4617    break;
4618  }
4619  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4620                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4621}
4622
4623// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4624// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4625// one of the above mentioned nodes. It has to be wrapped because otherwise
4626// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4627// be used to form addressing mode. These wrapped nodes will be selected
4628// into MOV32ri.
4629SDValue
4630X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4631  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4632
4633  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4634  // global base reg.
4635  unsigned char OpFlag = 0;
4636  unsigned WrapperKind = X86ISD::Wrapper;
4637  CodeModel::Model M = getTargetMachine().getCodeModel();
4638
4639  if (Subtarget->isPICStyleRIPRel() &&
4640      (M == CodeModel::Small || M == CodeModel::Kernel))
4641    WrapperKind = X86ISD::WrapperRIP;
4642  else if (Subtarget->isPICStyleGOT())
4643    OpFlag = X86II::MO_GOTOFF;
4644  else if (Subtarget->isPICStyleStubPIC())
4645    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4646
4647  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4648                                             CP->getAlignment(),
4649                                             CP->getOffset(), OpFlag);
4650  DebugLoc DL = CP->getDebugLoc();
4651  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4652  // With PIC, the address is actually $g + Offset.
4653  if (OpFlag) {
4654    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4655                         DAG.getNode(X86ISD::GlobalBaseReg,
4656                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4657                         Result);
4658  }
4659
4660  return Result;
4661}
4662
4663SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4664  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4665
4666  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4667  // global base reg.
4668  unsigned char OpFlag = 0;
4669  unsigned WrapperKind = X86ISD::Wrapper;
4670  CodeModel::Model M = getTargetMachine().getCodeModel();
4671
4672  if (Subtarget->isPICStyleRIPRel() &&
4673      (M == CodeModel::Small || M == CodeModel::Kernel))
4674    WrapperKind = X86ISD::WrapperRIP;
4675  else if (Subtarget->isPICStyleGOT())
4676    OpFlag = X86II::MO_GOTOFF;
4677  else if (Subtarget->isPICStyleStubPIC())
4678    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4679
4680  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4681                                          OpFlag);
4682  DebugLoc DL = JT->getDebugLoc();
4683  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4684
4685  // With PIC, the address is actually $g + Offset.
4686  if (OpFlag) {
4687    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4688                         DAG.getNode(X86ISD::GlobalBaseReg,
4689                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4690                         Result);
4691  }
4692
4693  return Result;
4694}
4695
4696SDValue
4697X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4698  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4699
4700  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4701  // global base reg.
4702  unsigned char OpFlag = 0;
4703  unsigned WrapperKind = X86ISD::Wrapper;
4704  CodeModel::Model M = getTargetMachine().getCodeModel();
4705
4706  if (Subtarget->isPICStyleRIPRel() &&
4707      (M == CodeModel::Small || M == CodeModel::Kernel))
4708    WrapperKind = X86ISD::WrapperRIP;
4709  else if (Subtarget->isPICStyleGOT())
4710    OpFlag = X86II::MO_GOTOFF;
4711  else if (Subtarget->isPICStyleStubPIC())
4712    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4713
4714  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4715
4716  DebugLoc DL = Op.getDebugLoc();
4717  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4718
4719
4720  // With PIC, the address is actually $g + Offset.
4721  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4722      !Subtarget->is64Bit()) {
4723    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4724                         DAG.getNode(X86ISD::GlobalBaseReg,
4725                                     DebugLoc::getUnknownLoc(),
4726                                     getPointerTy()),
4727                         Result);
4728  }
4729
4730  return Result;
4731}
4732
4733SDValue
4734X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
4735  // Create the TargetBlockAddressAddress node.
4736  unsigned char OpFlags =
4737    Subtarget->ClassifyBlockAddressReference();
4738  CodeModel::Model M = getTargetMachine().getCodeModel();
4739  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4740  DebugLoc dl = Op.getDebugLoc();
4741  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
4742                                       /*isTarget=*/true, OpFlags);
4743
4744  if (Subtarget->isPICStyleRIPRel() &&
4745      (M == CodeModel::Small || M == CodeModel::Kernel))
4746    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4747  else
4748    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4749
4750  // With PIC, the address is actually $g + Offset.
4751  if (isGlobalRelativeToPICBase(OpFlags)) {
4752    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4753                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4754                         Result);
4755  }
4756
4757  return Result;
4758}
4759
4760SDValue
4761X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4762                                      int64_t Offset,
4763                                      SelectionDAG &DAG) const {
4764  // Create the TargetGlobalAddress node, folding in the constant
4765  // offset if it is legal.
4766  unsigned char OpFlags =
4767    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4768  CodeModel::Model M = getTargetMachine().getCodeModel();
4769  SDValue Result;
4770  if (OpFlags == X86II::MO_NO_FLAG &&
4771      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4772    // A direct static reference to a global.
4773    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4774    Offset = 0;
4775  } else {
4776    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4777  }
4778
4779  if (Subtarget->isPICStyleRIPRel() &&
4780      (M == CodeModel::Small || M == CodeModel::Kernel))
4781    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4782  else
4783    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4784
4785  // With PIC, the address is actually $g + Offset.
4786  if (isGlobalRelativeToPICBase(OpFlags)) {
4787    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4788                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4789                         Result);
4790  }
4791
4792  // For globals that require a load from a stub to get the address, emit the
4793  // load.
4794  if (isGlobalStubReference(OpFlags))
4795    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4796                         PseudoSourceValue::getGOT(), 0);
4797
4798  // If there was a non-zero offset that we didn't fold, create an explicit
4799  // addition for it.
4800  if (Offset != 0)
4801    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4802                         DAG.getConstant(Offset, getPointerTy()));
4803
4804  return Result;
4805}
4806
4807SDValue
4808X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4809  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4810  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4811  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4812}
4813
4814static SDValue
4815GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4816           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4817           unsigned char OperandFlags) {
4818  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4819  DebugLoc dl = GA->getDebugLoc();
4820  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4821                                           GA->getValueType(0),
4822                                           GA->getOffset(),
4823                                           OperandFlags);
4824  if (InFlag) {
4825    SDValue Ops[] = { Chain,  TGA, *InFlag };
4826    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4827  } else {
4828    SDValue Ops[]  = { Chain, TGA };
4829    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4830  }
4831  SDValue Flag = Chain.getValue(1);
4832  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4833}
4834
4835// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4836static SDValue
4837LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4838                                const EVT PtrVT) {
4839  SDValue InFlag;
4840  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4841  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4842                                     DAG.getNode(X86ISD::GlobalBaseReg,
4843                                                 DebugLoc::getUnknownLoc(),
4844                                                 PtrVT), InFlag);
4845  InFlag = Chain.getValue(1);
4846
4847  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4848}
4849
4850// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4851static SDValue
4852LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4853                                const EVT PtrVT) {
4854  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4855                    X86::RAX, X86II::MO_TLSGD);
4856}
4857
4858// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4859// "local exec" model.
4860static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4861                                   const EVT PtrVT, TLSModel::Model model,
4862                                   bool is64Bit) {
4863  DebugLoc dl = GA->getDebugLoc();
4864  // Get the Thread Pointer
4865  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4866                             DebugLoc::getUnknownLoc(), PtrVT,
4867                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4868                                             MVT::i32));
4869
4870  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4871                                      NULL, 0);
4872
4873  unsigned char OperandFlags = 0;
4874  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4875  // initialexec.
4876  unsigned WrapperKind = X86ISD::Wrapper;
4877  if (model == TLSModel::LocalExec) {
4878    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4879  } else if (is64Bit) {
4880    assert(model == TLSModel::InitialExec);
4881    OperandFlags = X86II::MO_GOTTPOFF;
4882    WrapperKind = X86ISD::WrapperRIP;
4883  } else {
4884    assert(model == TLSModel::InitialExec);
4885    OperandFlags = X86II::MO_INDNTPOFF;
4886  }
4887
4888  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4889  // exec)
4890  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4891                                           GA->getOffset(), OperandFlags);
4892  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4893
4894  if (model == TLSModel::InitialExec)
4895    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4896                         PseudoSourceValue::getGOT(), 0);
4897
4898  // The address of the thread local variable is the add of the thread
4899  // pointer with the offset of the variable.
4900  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4901}
4902
4903SDValue
4904X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4905  // TODO: implement the "local dynamic" model
4906  // TODO: implement the "initial exec"model for pic executables
4907  assert(Subtarget->isTargetELF() &&
4908         "TLS not implemented for non-ELF targets");
4909  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4910  const GlobalValue *GV = GA->getGlobal();
4911
4912  // If GV is an alias then use the aliasee for determining
4913  // thread-localness.
4914  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4915    GV = GA->resolveAliasedGlobal(false);
4916
4917  TLSModel::Model model = getTLSModel(GV,
4918                                      getTargetMachine().getRelocationModel());
4919
4920  switch (model) {
4921  case TLSModel::GeneralDynamic:
4922  case TLSModel::LocalDynamic: // not implemented
4923    if (Subtarget->is64Bit())
4924      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4925    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4926
4927  case TLSModel::InitialExec:
4928  case TLSModel::LocalExec:
4929    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4930                               Subtarget->is64Bit());
4931  }
4932
4933  llvm_unreachable("Unreachable");
4934  return SDValue();
4935}
4936
4937
4938/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4939/// take a 2 x i32 value to shift plus a shift amount.
4940SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4941  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4942  EVT VT = Op.getValueType();
4943  unsigned VTBits = VT.getSizeInBits();
4944  DebugLoc dl = Op.getDebugLoc();
4945  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4946  SDValue ShOpLo = Op.getOperand(0);
4947  SDValue ShOpHi = Op.getOperand(1);
4948  SDValue ShAmt  = Op.getOperand(2);
4949  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4950                                     DAG.getConstant(VTBits - 1, MVT::i8))
4951                       : DAG.getConstant(0, VT);
4952
4953  SDValue Tmp2, Tmp3;
4954  if (Op.getOpcode() == ISD::SHL_PARTS) {
4955    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4956    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4957  } else {
4958    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4959    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4960  }
4961
4962  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4963                                DAG.getConstant(VTBits, MVT::i8));
4964  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4965                             AndNode, DAG.getConstant(0, MVT::i8));
4966
4967  SDValue Hi, Lo;
4968  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4969  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4970  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4971
4972  if (Op.getOpcode() == ISD::SHL_PARTS) {
4973    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4974    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4975  } else {
4976    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4977    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4978  }
4979
4980  SDValue Ops[2] = { Lo, Hi };
4981  return DAG.getMergeValues(Ops, 2, dl);
4982}
4983
4984SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4985  EVT SrcVT = Op.getOperand(0).getValueType();
4986
4987  if (SrcVT.isVector()) {
4988    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4989      return Op;
4990    }
4991    return SDValue();
4992  }
4993
4994  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4995         "Unknown SINT_TO_FP to lower!");
4996
4997  // These are really Legal; return the operand so the caller accepts it as
4998  // Legal.
4999  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5000    return Op;
5001  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5002      Subtarget->is64Bit()) {
5003    return Op;
5004  }
5005
5006  DebugLoc dl = Op.getDebugLoc();
5007  unsigned Size = SrcVT.getSizeInBits()/8;
5008  MachineFunction &MF = DAG.getMachineFunction();
5009  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5010  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5011  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5012                               StackSlot,
5013                               PseudoSourceValue::getFixedStack(SSFI), 0);
5014  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5015}
5016
5017SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5018                                     SDValue StackSlot,
5019                                     SelectionDAG &DAG) {
5020  // Build the FILD
5021  DebugLoc dl = Op.getDebugLoc();
5022  SDVTList Tys;
5023  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5024  if (useSSE)
5025    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5026  else
5027    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5028  SmallVector<SDValue, 8> Ops;
5029  Ops.push_back(Chain);
5030  Ops.push_back(StackSlot);
5031  Ops.push_back(DAG.getValueType(SrcVT));
5032  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5033                                 Tys, &Ops[0], Ops.size());
5034
5035  if (useSSE) {
5036    Chain = Result.getValue(1);
5037    SDValue InFlag = Result.getValue(2);
5038
5039    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5040    // shouldn't be necessary except that RFP cannot be live across
5041    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5042    MachineFunction &MF = DAG.getMachineFunction();
5043    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5044    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5045    Tys = DAG.getVTList(MVT::Other);
5046    SmallVector<SDValue, 8> Ops;
5047    Ops.push_back(Chain);
5048    Ops.push_back(Result);
5049    Ops.push_back(StackSlot);
5050    Ops.push_back(DAG.getValueType(Op.getValueType()));
5051    Ops.push_back(InFlag);
5052    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
5053    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5054                         PseudoSourceValue::getFixedStack(SSFI), 0);
5055  }
5056
5057  return Result;
5058}
5059
5060// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5061SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5062  // This algorithm is not obvious. Here it is in C code, more or less:
5063  /*
5064    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5065      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5066      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5067
5068      // Copy ints to xmm registers.
5069      __m128i xh = _mm_cvtsi32_si128( hi );
5070      __m128i xl = _mm_cvtsi32_si128( lo );
5071
5072      // Combine into low half of a single xmm register.
5073      __m128i x = _mm_unpacklo_epi32( xh, xl );
5074      __m128d d;
5075      double sd;
5076
5077      // Merge in appropriate exponents to give the integer bits the right
5078      // magnitude.
5079      x = _mm_unpacklo_epi32( x, exp );
5080
5081      // Subtract away the biases to deal with the IEEE-754 double precision
5082      // implicit 1.
5083      d = _mm_sub_pd( (__m128d) x, bias );
5084
5085      // All conversions up to here are exact. The correctly rounded result is
5086      // calculated using the current rounding mode using the following
5087      // horizontal add.
5088      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5089      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5090                                // store doesn't really need to be here (except
5091                                // maybe to zero the other double)
5092      return sd;
5093    }
5094  */
5095
5096  DebugLoc dl = Op.getDebugLoc();
5097  LLVMContext *Context = DAG.getContext();
5098
5099  // Build some magic constants.
5100  std::vector<Constant*> CV0;
5101  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5102  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5103  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5104  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5105  Constant *C0 = ConstantVector::get(CV0);
5106  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5107
5108  std::vector<Constant*> CV1;
5109  CV1.push_back(
5110    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5111  CV1.push_back(
5112    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5113  Constant *C1 = ConstantVector::get(CV1);
5114  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5115
5116  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5117                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5118                                        Op.getOperand(0),
5119                                        DAG.getIntPtrConstant(1)));
5120  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5121                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5122                                        Op.getOperand(0),
5123                                        DAG.getIntPtrConstant(0)));
5124  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5125  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5126                              PseudoSourceValue::getConstantPool(), 0,
5127                              false, 16);
5128  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5129  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5130  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5131                              PseudoSourceValue::getConstantPool(), 0,
5132                              false, 16);
5133  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5134
5135  // Add the halves; easiest way is to swap them into another reg first.
5136  int ShufMask[2] = { 1, -1 };
5137  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5138                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5139  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5140  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5141                     DAG.getIntPtrConstant(0));
5142}
5143
5144// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5145SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5146  DebugLoc dl = Op.getDebugLoc();
5147  // FP constant to bias correct the final result.
5148  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5149                                   MVT::f64);
5150
5151  // Load the 32-bit value into an XMM register.
5152  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5153                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5154                                         Op.getOperand(0),
5155                                         DAG.getIntPtrConstant(0)));
5156
5157  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5158                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5159                     DAG.getIntPtrConstant(0));
5160
5161  // Or the load with the bias.
5162  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5163                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5164                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5165                                                   MVT::v2f64, Load)),
5166                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5167                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5168                                                   MVT::v2f64, Bias)));
5169  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5170                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5171                   DAG.getIntPtrConstant(0));
5172
5173  // Subtract the bias.
5174  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5175
5176  // Handle final rounding.
5177  EVT DestVT = Op.getValueType();
5178
5179  if (DestVT.bitsLT(MVT::f64)) {
5180    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5181                       DAG.getIntPtrConstant(0));
5182  } else if (DestVT.bitsGT(MVT::f64)) {
5183    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5184  }
5185
5186  // Handle final rounding.
5187  return Sub;
5188}
5189
5190SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5191  SDValue N0 = Op.getOperand(0);
5192  DebugLoc dl = Op.getDebugLoc();
5193
5194  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5195  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5196  // the optimization here.
5197  if (DAG.SignBitIsZero(N0))
5198    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5199
5200  EVT SrcVT = N0.getValueType();
5201  if (SrcVT == MVT::i64) {
5202    // We only handle SSE2 f64 target here; caller can expand the rest.
5203    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5204      return SDValue();
5205
5206    return LowerUINT_TO_FP_i64(Op, DAG);
5207  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5208    return LowerUINT_TO_FP_i32(Op, DAG);
5209  }
5210
5211  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5212
5213  // Make a 64-bit buffer, and use it to build an FILD.
5214  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5215  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5216  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5217                                   getPointerTy(), StackSlot, WordOff);
5218  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5219                                StackSlot, NULL, 0);
5220  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5221                                OffsetSlot, NULL, 0);
5222  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5223}
5224
5225std::pair<SDValue,SDValue> X86TargetLowering::
5226FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5227  DebugLoc dl = Op.getDebugLoc();
5228
5229  EVT DstTy = Op.getValueType();
5230
5231  if (!IsSigned) {
5232    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5233    DstTy = MVT::i64;
5234  }
5235
5236  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5237         DstTy.getSimpleVT() >= MVT::i16 &&
5238         "Unknown FP_TO_SINT to lower!");
5239
5240  // These are really Legal.
5241  if (DstTy == MVT::i32 &&
5242      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5243    return std::make_pair(SDValue(), SDValue());
5244  if (Subtarget->is64Bit() &&
5245      DstTy == MVT::i64 &&
5246      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5247    return std::make_pair(SDValue(), SDValue());
5248
5249  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5250  // stack slot.
5251  MachineFunction &MF = DAG.getMachineFunction();
5252  unsigned MemSize = DstTy.getSizeInBits()/8;
5253  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5254  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5255
5256  unsigned Opc;
5257  switch (DstTy.getSimpleVT().SimpleTy) {
5258  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5259  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5260  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5261  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5262  }
5263
5264  SDValue Chain = DAG.getEntryNode();
5265  SDValue Value = Op.getOperand(0);
5266  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5267    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5268    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5269                         PseudoSourceValue::getFixedStack(SSFI), 0);
5270    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5271    SDValue Ops[] = {
5272      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5273    };
5274    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5275    Chain = Value.getValue(1);
5276    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5277    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5278  }
5279
5280  // Build the FP_TO_INT*_IN_MEM
5281  SDValue Ops[] = { Chain, Value, StackSlot };
5282  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5283
5284  return std::make_pair(FIST, StackSlot);
5285}
5286
5287SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5288  if (Op.getValueType().isVector()) {
5289    if (Op.getValueType() == MVT::v2i32 &&
5290        Op.getOperand(0).getValueType() == MVT::v2f64) {
5291      return Op;
5292    }
5293    return SDValue();
5294  }
5295
5296  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5297  SDValue FIST = Vals.first, StackSlot = Vals.second;
5298  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5299  if (FIST.getNode() == 0) return Op;
5300
5301  // Load the result.
5302  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5303                     FIST, StackSlot, NULL, 0);
5304}
5305
5306SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5307  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5308  SDValue FIST = Vals.first, StackSlot = Vals.second;
5309  assert(FIST.getNode() && "Unexpected failure");
5310
5311  // Load the result.
5312  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5313                     FIST, StackSlot, NULL, 0);
5314}
5315
5316SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5317  LLVMContext *Context = DAG.getContext();
5318  DebugLoc dl = Op.getDebugLoc();
5319  EVT VT = Op.getValueType();
5320  EVT EltVT = VT;
5321  if (VT.isVector())
5322    EltVT = VT.getVectorElementType();
5323  std::vector<Constant*> CV;
5324  if (EltVT == MVT::f64) {
5325    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5326    CV.push_back(C);
5327    CV.push_back(C);
5328  } else {
5329    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5330    CV.push_back(C);
5331    CV.push_back(C);
5332    CV.push_back(C);
5333    CV.push_back(C);
5334  }
5335  Constant *C = ConstantVector::get(CV);
5336  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5337  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5338                               PseudoSourceValue::getConstantPool(), 0,
5339                               false, 16);
5340  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5341}
5342
5343SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5344  LLVMContext *Context = DAG.getContext();
5345  DebugLoc dl = Op.getDebugLoc();
5346  EVT VT = Op.getValueType();
5347  EVT EltVT = VT;
5348  if (VT.isVector())
5349    EltVT = VT.getVectorElementType();
5350  std::vector<Constant*> CV;
5351  if (EltVT == MVT::f64) {
5352    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5353    CV.push_back(C);
5354    CV.push_back(C);
5355  } else {
5356    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5357    CV.push_back(C);
5358    CV.push_back(C);
5359    CV.push_back(C);
5360    CV.push_back(C);
5361  }
5362  Constant *C = ConstantVector::get(CV);
5363  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5364  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5365                               PseudoSourceValue::getConstantPool(), 0,
5366                               false, 16);
5367  if (VT.isVector()) {
5368    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5369                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5370                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5371                                Op.getOperand(0)),
5372                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5373  } else {
5374    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5375  }
5376}
5377
5378SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5379  LLVMContext *Context = DAG.getContext();
5380  SDValue Op0 = Op.getOperand(0);
5381  SDValue Op1 = Op.getOperand(1);
5382  DebugLoc dl = Op.getDebugLoc();
5383  EVT VT = Op.getValueType();
5384  EVT SrcVT = Op1.getValueType();
5385
5386  // If second operand is smaller, extend it first.
5387  if (SrcVT.bitsLT(VT)) {
5388    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5389    SrcVT = VT;
5390  }
5391  // And if it is bigger, shrink it first.
5392  if (SrcVT.bitsGT(VT)) {
5393    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5394    SrcVT = VT;
5395  }
5396
5397  // At this point the operands and the result should have the same
5398  // type, and that won't be f80 since that is not custom lowered.
5399
5400  // First get the sign bit of second operand.
5401  std::vector<Constant*> CV;
5402  if (SrcVT == MVT::f64) {
5403    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5404    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5405  } else {
5406    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5407    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5408    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5409    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5410  }
5411  Constant *C = ConstantVector::get(CV);
5412  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5413  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5414                                PseudoSourceValue::getConstantPool(), 0,
5415                                false, 16);
5416  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5417
5418  // Shift sign bit right or left if the two operands have different types.
5419  if (SrcVT.bitsGT(VT)) {
5420    // Op0 is MVT::f32, Op1 is MVT::f64.
5421    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5422    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5423                          DAG.getConstant(32, MVT::i32));
5424    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5425    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5426                          DAG.getIntPtrConstant(0));
5427  }
5428
5429  // Clear first operand sign bit.
5430  CV.clear();
5431  if (VT == MVT::f64) {
5432    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5433    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5434  } else {
5435    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5436    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5437    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5438    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5439  }
5440  C = ConstantVector::get(CV);
5441  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5442  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5443                                PseudoSourceValue::getConstantPool(), 0,
5444                                false, 16);
5445  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5446
5447  // Or the value with the sign bit.
5448  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5449}
5450
5451/// Emit nodes that will be selected as "test Op0,Op0", or something
5452/// equivalent.
5453SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5454                                    SelectionDAG &DAG) {
5455  DebugLoc dl = Op.getDebugLoc();
5456
5457  // CF and OF aren't always set the way we want. Determine which
5458  // of these we need.
5459  bool NeedCF = false;
5460  bool NeedOF = false;
5461  switch (X86CC) {
5462  case X86::COND_A: case X86::COND_AE:
5463  case X86::COND_B: case X86::COND_BE:
5464    NeedCF = true;
5465    break;
5466  case X86::COND_G: case X86::COND_GE:
5467  case X86::COND_L: case X86::COND_LE:
5468  case X86::COND_O: case X86::COND_NO:
5469    NeedOF = true;
5470    break;
5471  default: break;
5472  }
5473
5474  // See if we can use the EFLAGS value from the operand instead of
5475  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5476  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5477  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5478    unsigned Opcode = 0;
5479    unsigned NumOperands = 0;
5480    switch (Op.getNode()->getOpcode()) {
5481    case ISD::ADD:
5482      // Due to an isel shortcoming, be conservative if this add is likely to
5483      // be selected as part of a load-modify-store instruction. When the root
5484      // node in a match is a store, isel doesn't know how to remap non-chain
5485      // non-flag uses of other nodes in the match, such as the ADD in this
5486      // case. This leads to the ADD being left around and reselected, with
5487      // the result being two adds in the output.
5488      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5489           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5490        if (UI->getOpcode() == ISD::STORE)
5491          goto default_case;
5492      if (ConstantSDNode *C =
5493            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5494        // An add of one will be selected as an INC.
5495        if (C->getAPIntValue() == 1) {
5496          Opcode = X86ISD::INC;
5497          NumOperands = 1;
5498          break;
5499        }
5500        // An add of negative one (subtract of one) will be selected as a DEC.
5501        if (C->getAPIntValue().isAllOnesValue()) {
5502          Opcode = X86ISD::DEC;
5503          NumOperands = 1;
5504          break;
5505        }
5506      }
5507      // Otherwise use a regular EFLAGS-setting add.
5508      Opcode = X86ISD::ADD;
5509      NumOperands = 2;
5510      break;
5511    case ISD::AND: {
5512      // If the primary and result isn't used, don't bother using X86ISD::AND,
5513      // because a TEST instruction will be better.
5514      bool NonFlagUse = false;
5515      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5516           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5517        if (UI->getOpcode() != ISD::BRCOND &&
5518            UI->getOpcode() != ISD::SELECT &&
5519            UI->getOpcode() != ISD::SETCC) {
5520          NonFlagUse = true;
5521          break;
5522        }
5523      if (!NonFlagUse)
5524        break;
5525    }
5526    // FALL THROUGH
5527    case ISD::SUB:
5528    case ISD::OR:
5529    case ISD::XOR:
5530      // Due to the ISEL shortcoming noted above, be conservative if this op is
5531      // likely to be selected as part of a load-modify-store instruction.
5532      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5533           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5534        if (UI->getOpcode() == ISD::STORE)
5535          goto default_case;
5536      // Otherwise use a regular EFLAGS-setting instruction.
5537      switch (Op.getNode()->getOpcode()) {
5538      case ISD::SUB: Opcode = X86ISD::SUB; break;
5539      case ISD::OR:  Opcode = X86ISD::OR;  break;
5540      case ISD::XOR: Opcode = X86ISD::XOR; break;
5541      case ISD::AND: Opcode = X86ISD::AND; break;
5542      default: llvm_unreachable("unexpected operator!");
5543      }
5544      NumOperands = 2;
5545      break;
5546    case X86ISD::ADD:
5547    case X86ISD::SUB:
5548    case X86ISD::INC:
5549    case X86ISD::DEC:
5550    case X86ISD::OR:
5551    case X86ISD::XOR:
5552    case X86ISD::AND:
5553      return SDValue(Op.getNode(), 1);
5554    default:
5555    default_case:
5556      break;
5557    }
5558    if (Opcode != 0) {
5559      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5560      SmallVector<SDValue, 4> Ops;
5561      for (unsigned i = 0; i != NumOperands; ++i)
5562        Ops.push_back(Op.getOperand(i));
5563      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5564      DAG.ReplaceAllUsesWith(Op, New);
5565      return SDValue(New.getNode(), 1);
5566    }
5567  }
5568
5569  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5570  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5571                     DAG.getConstant(0, Op.getValueType()));
5572}
5573
5574/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5575/// equivalent.
5576SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5577                                   SelectionDAG &DAG) {
5578  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5579    if (C->getAPIntValue() == 0)
5580      return EmitTest(Op0, X86CC, DAG);
5581
5582  DebugLoc dl = Op0.getDebugLoc();
5583  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5584}
5585
5586SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5587  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5588  SDValue Op0 = Op.getOperand(0);
5589  SDValue Op1 = Op.getOperand(1);
5590  DebugLoc dl = Op.getDebugLoc();
5591  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5592
5593  // Lower (X & (1 << N)) == 0 to BT(X, N).
5594  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5595  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5596  if (Op0.getOpcode() == ISD::AND &&
5597      Op0.hasOneUse() &&
5598      Op1.getOpcode() == ISD::Constant &&
5599      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5600      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5601    SDValue LHS, RHS;
5602    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5603      if (ConstantSDNode *Op010C =
5604            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5605        if (Op010C->getZExtValue() == 1) {
5606          LHS = Op0.getOperand(0);
5607          RHS = Op0.getOperand(1).getOperand(1);
5608        }
5609    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5610      if (ConstantSDNode *Op000C =
5611            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5612        if (Op000C->getZExtValue() == 1) {
5613          LHS = Op0.getOperand(1);
5614          RHS = Op0.getOperand(0).getOperand(1);
5615        }
5616    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5617      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5618      SDValue AndLHS = Op0.getOperand(0);
5619      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5620        LHS = AndLHS.getOperand(0);
5621        RHS = AndLHS.getOperand(1);
5622      }
5623    }
5624
5625    if (LHS.getNode()) {
5626      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5627      // instruction.  Since the shift amount is in-range-or-undefined, we know
5628      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5629      // the encoding for the i16 version is larger than the i32 version.
5630      if (LHS.getValueType() == MVT::i8)
5631        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5632
5633      // If the operand types disagree, extend the shift amount to match.  Since
5634      // BT ignores high bits (like shifts) we can use anyextend.
5635      if (LHS.getValueType() != RHS.getValueType())
5636        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5637
5638      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5639      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5640      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5641                         DAG.getConstant(Cond, MVT::i8), BT);
5642    }
5643  }
5644
5645  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5646  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5647  if (X86CC == X86::COND_INVALID)
5648    return SDValue();
5649
5650  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5651  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5652                     DAG.getConstant(X86CC, MVT::i8), Cond);
5653}
5654
5655SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5656  SDValue Cond;
5657  SDValue Op0 = Op.getOperand(0);
5658  SDValue Op1 = Op.getOperand(1);
5659  SDValue CC = Op.getOperand(2);
5660  EVT VT = Op.getValueType();
5661  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5662  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5663  DebugLoc dl = Op.getDebugLoc();
5664
5665  if (isFP) {
5666    unsigned SSECC = 8;
5667    EVT VT0 = Op0.getValueType();
5668    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5669    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5670    bool Swap = false;
5671
5672    switch (SetCCOpcode) {
5673    default: break;
5674    case ISD::SETOEQ:
5675    case ISD::SETEQ:  SSECC = 0; break;
5676    case ISD::SETOGT:
5677    case ISD::SETGT: Swap = true; // Fallthrough
5678    case ISD::SETLT:
5679    case ISD::SETOLT: SSECC = 1; break;
5680    case ISD::SETOGE:
5681    case ISD::SETGE: Swap = true; // Fallthrough
5682    case ISD::SETLE:
5683    case ISD::SETOLE: SSECC = 2; break;
5684    case ISD::SETUO:  SSECC = 3; break;
5685    case ISD::SETUNE:
5686    case ISD::SETNE:  SSECC = 4; break;
5687    case ISD::SETULE: Swap = true;
5688    case ISD::SETUGE: SSECC = 5; break;
5689    case ISD::SETULT: Swap = true;
5690    case ISD::SETUGT: SSECC = 6; break;
5691    case ISD::SETO:   SSECC = 7; break;
5692    }
5693    if (Swap)
5694      std::swap(Op0, Op1);
5695
5696    // In the two special cases we can't handle, emit two comparisons.
5697    if (SSECC == 8) {
5698      if (SetCCOpcode == ISD::SETUEQ) {
5699        SDValue UNORD, EQ;
5700        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5701        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5702        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5703      }
5704      else if (SetCCOpcode == ISD::SETONE) {
5705        SDValue ORD, NEQ;
5706        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5707        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5708        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5709      }
5710      llvm_unreachable("Illegal FP comparison");
5711    }
5712    // Handle all other FP comparisons here.
5713    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5714  }
5715
5716  // We are handling one of the integer comparisons here.  Since SSE only has
5717  // GT and EQ comparisons for integer, swapping operands and multiple
5718  // operations may be required for some comparisons.
5719  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5720  bool Swap = false, Invert = false, FlipSigns = false;
5721
5722  switch (VT.getSimpleVT().SimpleTy) {
5723  default: break;
5724  case MVT::v8i8:
5725  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5726  case MVT::v4i16:
5727  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5728  case MVT::v2i32:
5729  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5730  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5731  }
5732
5733  switch (SetCCOpcode) {
5734  default: break;
5735  case ISD::SETNE:  Invert = true;
5736  case ISD::SETEQ:  Opc = EQOpc; break;
5737  case ISD::SETLT:  Swap = true;
5738  case ISD::SETGT:  Opc = GTOpc; break;
5739  case ISD::SETGE:  Swap = true;
5740  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5741  case ISD::SETULT: Swap = true;
5742  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5743  case ISD::SETUGE: Swap = true;
5744  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5745  }
5746  if (Swap)
5747    std::swap(Op0, Op1);
5748
5749  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5750  // bits of the inputs before performing those operations.
5751  if (FlipSigns) {
5752    EVT EltVT = VT.getVectorElementType();
5753    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5754                                      EltVT);
5755    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5756    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5757                                    SignBits.size());
5758    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5759    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5760  }
5761
5762  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5763
5764  // If the logical-not of the result is required, perform that now.
5765  if (Invert)
5766    Result = DAG.getNOT(dl, Result, VT);
5767
5768  return Result;
5769}
5770
5771// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5772static bool isX86LogicalCmp(SDValue Op) {
5773  unsigned Opc = Op.getNode()->getOpcode();
5774  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5775    return true;
5776  if (Op.getResNo() == 1 &&
5777      (Opc == X86ISD::ADD ||
5778       Opc == X86ISD::SUB ||
5779       Opc == X86ISD::SMUL ||
5780       Opc == X86ISD::UMUL ||
5781       Opc == X86ISD::INC ||
5782       Opc == X86ISD::DEC ||
5783       Opc == X86ISD::OR ||
5784       Opc == X86ISD::XOR ||
5785       Opc == X86ISD::AND))
5786    return true;
5787
5788  return false;
5789}
5790
5791SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5792  bool addTest = true;
5793  SDValue Cond  = Op.getOperand(0);
5794  DebugLoc dl = Op.getDebugLoc();
5795  SDValue CC;
5796
5797  if (Cond.getOpcode() == ISD::SETCC) {
5798    SDValue NewCond = LowerSETCC(Cond, DAG);
5799    if (NewCond.getNode())
5800      Cond = NewCond;
5801  }
5802
5803  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5804  // setting operand in place of the X86ISD::SETCC.
5805  if (Cond.getOpcode() == X86ISD::SETCC) {
5806    CC = Cond.getOperand(0);
5807
5808    SDValue Cmp = Cond.getOperand(1);
5809    unsigned Opc = Cmp.getOpcode();
5810    EVT VT = Op.getValueType();
5811
5812    bool IllegalFPCMov = false;
5813    if (VT.isFloatingPoint() && !VT.isVector() &&
5814        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5815      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5816
5817    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5818        Opc == X86ISD::BT) { // FIXME
5819      Cond = Cmp;
5820      addTest = false;
5821    }
5822  }
5823
5824  if (addTest) {
5825    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5826    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5827  }
5828
5829  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5830  SmallVector<SDValue, 4> Ops;
5831  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5832  // condition is true.
5833  Ops.push_back(Op.getOperand(2));
5834  Ops.push_back(Op.getOperand(1));
5835  Ops.push_back(CC);
5836  Ops.push_back(Cond);
5837  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5838}
5839
5840// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5841// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5842// from the AND / OR.
5843static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5844  Opc = Op.getOpcode();
5845  if (Opc != ISD::OR && Opc != ISD::AND)
5846    return false;
5847  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5848          Op.getOperand(0).hasOneUse() &&
5849          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5850          Op.getOperand(1).hasOneUse());
5851}
5852
5853// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5854// 1 and that the SETCC node has a single use.
5855static bool isXor1OfSetCC(SDValue Op) {
5856  if (Op.getOpcode() != ISD::XOR)
5857    return false;
5858  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5859  if (N1C && N1C->getAPIntValue() == 1) {
5860    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5861      Op.getOperand(0).hasOneUse();
5862  }
5863  return false;
5864}
5865
5866SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5867  bool addTest = true;
5868  SDValue Chain = Op.getOperand(0);
5869  SDValue Cond  = Op.getOperand(1);
5870  SDValue Dest  = Op.getOperand(2);
5871  DebugLoc dl = Op.getDebugLoc();
5872  SDValue CC;
5873
5874  if (Cond.getOpcode() == ISD::SETCC) {
5875    SDValue NewCond = LowerSETCC(Cond, DAG);
5876    if (NewCond.getNode())
5877      Cond = NewCond;
5878  }
5879#if 0
5880  // FIXME: LowerXALUO doesn't handle these!!
5881  else if (Cond.getOpcode() == X86ISD::ADD  ||
5882           Cond.getOpcode() == X86ISD::SUB  ||
5883           Cond.getOpcode() == X86ISD::SMUL ||
5884           Cond.getOpcode() == X86ISD::UMUL)
5885    Cond = LowerXALUO(Cond, DAG);
5886#endif
5887
5888  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5889  // setting operand in place of the X86ISD::SETCC.
5890  if (Cond.getOpcode() == X86ISD::SETCC) {
5891    CC = Cond.getOperand(0);
5892
5893    SDValue Cmp = Cond.getOperand(1);
5894    unsigned Opc = Cmp.getOpcode();
5895    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5896    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5897      Cond = Cmp;
5898      addTest = false;
5899    } else {
5900      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5901      default: break;
5902      case X86::COND_O:
5903      case X86::COND_B:
5904        // These can only come from an arithmetic instruction with overflow,
5905        // e.g. SADDO, UADDO.
5906        Cond = Cond.getNode()->getOperand(1);
5907        addTest = false;
5908        break;
5909      }
5910    }
5911  } else {
5912    unsigned CondOpc;
5913    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5914      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5915      if (CondOpc == ISD::OR) {
5916        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5917        // two branches instead of an explicit OR instruction with a
5918        // separate test.
5919        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5920            isX86LogicalCmp(Cmp)) {
5921          CC = Cond.getOperand(0).getOperand(0);
5922          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5923                              Chain, Dest, CC, Cmp);
5924          CC = Cond.getOperand(1).getOperand(0);
5925          Cond = Cmp;
5926          addTest = false;
5927        }
5928      } else { // ISD::AND
5929        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5930        // two branches instead of an explicit AND instruction with a
5931        // separate test. However, we only do this if this block doesn't
5932        // have a fall-through edge, because this requires an explicit
5933        // jmp when the condition is false.
5934        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5935            isX86LogicalCmp(Cmp) &&
5936            Op.getNode()->hasOneUse()) {
5937          X86::CondCode CCode =
5938            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5939          CCode = X86::GetOppositeBranchCondition(CCode);
5940          CC = DAG.getConstant(CCode, MVT::i8);
5941          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5942          // Look for an unconditional branch following this conditional branch.
5943          // We need this because we need to reverse the successors in order
5944          // to implement FCMP_OEQ.
5945          if (User.getOpcode() == ISD::BR) {
5946            SDValue FalseBB = User.getOperand(1);
5947            SDValue NewBR =
5948              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5949            assert(NewBR == User);
5950            Dest = FalseBB;
5951
5952            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5953                                Chain, Dest, CC, Cmp);
5954            X86::CondCode CCode =
5955              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5956            CCode = X86::GetOppositeBranchCondition(CCode);
5957            CC = DAG.getConstant(CCode, MVT::i8);
5958            Cond = Cmp;
5959            addTest = false;
5960          }
5961        }
5962      }
5963    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5964      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5965      // It should be transformed during dag combiner except when the condition
5966      // is set by a arithmetics with overflow node.
5967      X86::CondCode CCode =
5968        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5969      CCode = X86::GetOppositeBranchCondition(CCode);
5970      CC = DAG.getConstant(CCode, MVT::i8);
5971      Cond = Cond.getOperand(0).getOperand(1);
5972      addTest = false;
5973    }
5974  }
5975
5976  if (addTest) {
5977    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5978    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5979  }
5980  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5981                     Chain, Dest, CC, Cond);
5982}
5983
5984
5985// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5986// Calls to _alloca is needed to probe the stack when allocating more than 4k
5987// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5988// that the guard pages used by the OS virtual memory manager are allocated in
5989// correct sequence.
5990SDValue
5991X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5992                                           SelectionDAG &DAG) {
5993  assert(Subtarget->isTargetCygMing() &&
5994         "This should be used only on Cygwin/Mingw targets");
5995  DebugLoc dl = Op.getDebugLoc();
5996
5997  // Get the inputs.
5998  SDValue Chain = Op.getOperand(0);
5999  SDValue Size  = Op.getOperand(1);
6000  // FIXME: Ensure alignment here
6001
6002  SDValue Flag;
6003
6004  EVT IntPtr = getPointerTy();
6005  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6006
6007  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
6008
6009  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6010  Flag = Chain.getValue(1);
6011
6012  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6013  SDValue Ops[] = { Chain,
6014                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
6015                      DAG.getRegister(X86::EAX, IntPtr),
6016                      DAG.getRegister(X86StackPtr, SPTy),
6017                      Flag };
6018  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6019  Flag = Chain.getValue(1);
6020
6021  Chain = DAG.getCALLSEQ_END(Chain,
6022                             DAG.getIntPtrConstant(0, true),
6023                             DAG.getIntPtrConstant(0, true),
6024                             Flag);
6025
6026  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6027
6028  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6029  return DAG.getMergeValues(Ops1, 2, dl);
6030}
6031
6032SDValue
6033X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6034                                           SDValue Chain,
6035                                           SDValue Dst, SDValue Src,
6036                                           SDValue Size, unsigned Align,
6037                                           const Value *DstSV,
6038                                           uint64_t DstSVOff) {
6039  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6040
6041  // If not DWORD aligned or size is more than the threshold, call the library.
6042  // The libc version is likely to be faster for these cases. It can use the
6043  // address value and run time information about the CPU.
6044  if ((Align & 3) != 0 ||
6045      !ConstantSize ||
6046      ConstantSize->getZExtValue() >
6047        getSubtarget()->getMaxInlineSizeThreshold()) {
6048    SDValue InFlag(0, 0);
6049
6050    // Check to see if there is a specialized entry-point for memory zeroing.
6051    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6052
6053    if (const char *bzeroEntry =  V &&
6054        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6055      EVT IntPtr = getPointerTy();
6056      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6057      TargetLowering::ArgListTy Args;
6058      TargetLowering::ArgListEntry Entry;
6059      Entry.Node = Dst;
6060      Entry.Ty = IntPtrTy;
6061      Args.push_back(Entry);
6062      Entry.Node = Size;
6063      Args.push_back(Entry);
6064      std::pair<SDValue,SDValue> CallResult =
6065        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6066                    false, false, false, false,
6067                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6068                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6069      return CallResult.second;
6070    }
6071
6072    // Otherwise have the target-independent code call memset.
6073    return SDValue();
6074  }
6075
6076  uint64_t SizeVal = ConstantSize->getZExtValue();
6077  SDValue InFlag(0, 0);
6078  EVT AVT;
6079  SDValue Count;
6080  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6081  unsigned BytesLeft = 0;
6082  bool TwoRepStos = false;
6083  if (ValC) {
6084    unsigned ValReg;
6085    uint64_t Val = ValC->getZExtValue() & 255;
6086
6087    // If the value is a constant, then we can potentially use larger sets.
6088    switch (Align & 3) {
6089    case 2:   // WORD aligned
6090      AVT = MVT::i16;
6091      ValReg = X86::AX;
6092      Val = (Val << 8) | Val;
6093      break;
6094    case 0:  // DWORD aligned
6095      AVT = MVT::i32;
6096      ValReg = X86::EAX;
6097      Val = (Val << 8)  | Val;
6098      Val = (Val << 16) | Val;
6099      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6100        AVT = MVT::i64;
6101        ValReg = X86::RAX;
6102        Val = (Val << 32) | Val;
6103      }
6104      break;
6105    default:  // Byte aligned
6106      AVT = MVT::i8;
6107      ValReg = X86::AL;
6108      Count = DAG.getIntPtrConstant(SizeVal);
6109      break;
6110    }
6111
6112    if (AVT.bitsGT(MVT::i8)) {
6113      unsigned UBytes = AVT.getSizeInBits() / 8;
6114      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6115      BytesLeft = SizeVal % UBytes;
6116    }
6117
6118    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6119                              InFlag);
6120    InFlag = Chain.getValue(1);
6121  } else {
6122    AVT = MVT::i8;
6123    Count  = DAG.getIntPtrConstant(SizeVal);
6124    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6125    InFlag = Chain.getValue(1);
6126  }
6127
6128  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6129                                                              X86::ECX,
6130                            Count, InFlag);
6131  InFlag = Chain.getValue(1);
6132  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6133                                                              X86::EDI,
6134                            Dst, InFlag);
6135  InFlag = Chain.getValue(1);
6136
6137  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6138  SmallVector<SDValue, 8> Ops;
6139  Ops.push_back(Chain);
6140  Ops.push_back(DAG.getValueType(AVT));
6141  Ops.push_back(InFlag);
6142  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6143
6144  if (TwoRepStos) {
6145    InFlag = Chain.getValue(1);
6146    Count  = Size;
6147    EVT CVT = Count.getValueType();
6148    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6149                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6150    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6151                                                             X86::ECX,
6152                              Left, InFlag);
6153    InFlag = Chain.getValue(1);
6154    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6155    Ops.clear();
6156    Ops.push_back(Chain);
6157    Ops.push_back(DAG.getValueType(MVT::i8));
6158    Ops.push_back(InFlag);
6159    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6160  } else if (BytesLeft) {
6161    // Handle the last 1 - 7 bytes.
6162    unsigned Offset = SizeVal - BytesLeft;
6163    EVT AddrVT = Dst.getValueType();
6164    EVT SizeVT = Size.getValueType();
6165
6166    Chain = DAG.getMemset(Chain, dl,
6167                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6168                                      DAG.getConstant(Offset, AddrVT)),
6169                          Src,
6170                          DAG.getConstant(BytesLeft, SizeVT),
6171                          Align, DstSV, DstSVOff + Offset);
6172  }
6173
6174  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6175  return Chain;
6176}
6177
6178SDValue
6179X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6180                                      SDValue Chain, SDValue Dst, SDValue Src,
6181                                      SDValue Size, unsigned Align,
6182                                      bool AlwaysInline,
6183                                      const Value *DstSV, uint64_t DstSVOff,
6184                                      const Value *SrcSV, uint64_t SrcSVOff) {
6185  // This requires the copy size to be a constant, preferrably
6186  // within a subtarget-specific limit.
6187  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6188  if (!ConstantSize)
6189    return SDValue();
6190  uint64_t SizeVal = ConstantSize->getZExtValue();
6191  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6192    return SDValue();
6193
6194  /// If not DWORD aligned, call the library.
6195  if ((Align & 3) != 0)
6196    return SDValue();
6197
6198  // DWORD aligned
6199  EVT AVT = MVT::i32;
6200  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6201    AVT = MVT::i64;
6202
6203  unsigned UBytes = AVT.getSizeInBits() / 8;
6204  unsigned CountVal = SizeVal / UBytes;
6205  SDValue Count = DAG.getIntPtrConstant(CountVal);
6206  unsigned BytesLeft = SizeVal % UBytes;
6207
6208  SDValue InFlag(0, 0);
6209  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6210                                                              X86::ECX,
6211                            Count, InFlag);
6212  InFlag = Chain.getValue(1);
6213  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6214                                                             X86::EDI,
6215                            Dst, InFlag);
6216  InFlag = Chain.getValue(1);
6217  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6218                                                              X86::ESI,
6219                            Src, InFlag);
6220  InFlag = Chain.getValue(1);
6221
6222  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6223  SmallVector<SDValue, 8> Ops;
6224  Ops.push_back(Chain);
6225  Ops.push_back(DAG.getValueType(AVT));
6226  Ops.push_back(InFlag);
6227  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6228
6229  SmallVector<SDValue, 4> Results;
6230  Results.push_back(RepMovs);
6231  if (BytesLeft) {
6232    // Handle the last 1 - 7 bytes.
6233    unsigned Offset = SizeVal - BytesLeft;
6234    EVT DstVT = Dst.getValueType();
6235    EVT SrcVT = Src.getValueType();
6236    EVT SizeVT = Size.getValueType();
6237    Results.push_back(DAG.getMemcpy(Chain, dl,
6238                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6239                                                DAG.getConstant(Offset, DstVT)),
6240                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6241                                                DAG.getConstant(Offset, SrcVT)),
6242                                    DAG.getConstant(BytesLeft, SizeVT),
6243                                    Align, AlwaysInline,
6244                                    DstSV, DstSVOff + Offset,
6245                                    SrcSV, SrcSVOff + Offset));
6246  }
6247
6248  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6249                     &Results[0], Results.size());
6250}
6251
6252SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6253  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6254  DebugLoc dl = Op.getDebugLoc();
6255
6256  if (!Subtarget->is64Bit()) {
6257    // vastart just stores the address of the VarArgsFrameIndex slot into the
6258    // memory location argument.
6259    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6260    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6261  }
6262
6263  // __va_list_tag:
6264  //   gp_offset         (0 - 6 * 8)
6265  //   fp_offset         (48 - 48 + 8 * 16)
6266  //   overflow_arg_area (point to parameters coming in memory).
6267  //   reg_save_area
6268  SmallVector<SDValue, 8> MemOps;
6269  SDValue FIN = Op.getOperand(1);
6270  // Store gp_offset
6271  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6272                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6273                                 FIN, SV, 0);
6274  MemOps.push_back(Store);
6275
6276  // Store fp_offset
6277  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6278                    FIN, DAG.getIntPtrConstant(4));
6279  Store = DAG.getStore(Op.getOperand(0), dl,
6280                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6281                       FIN, SV, 0);
6282  MemOps.push_back(Store);
6283
6284  // Store ptr to overflow_arg_area
6285  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6286                    FIN, DAG.getIntPtrConstant(4));
6287  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6288  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6289  MemOps.push_back(Store);
6290
6291  // Store ptr to reg_save_area.
6292  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6293                    FIN, DAG.getIntPtrConstant(8));
6294  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6295  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6296  MemOps.push_back(Store);
6297  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6298                     &MemOps[0], MemOps.size());
6299}
6300
6301SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6302  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6303  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6304  SDValue Chain = Op.getOperand(0);
6305  SDValue SrcPtr = Op.getOperand(1);
6306  SDValue SrcSV = Op.getOperand(2);
6307
6308  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6309  return SDValue();
6310}
6311
6312SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6313  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6314  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6315  SDValue Chain = Op.getOperand(0);
6316  SDValue DstPtr = Op.getOperand(1);
6317  SDValue SrcPtr = Op.getOperand(2);
6318  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6319  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6320  DebugLoc dl = Op.getDebugLoc();
6321
6322  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6323                       DAG.getIntPtrConstant(24), 8, false,
6324                       DstSV, 0, SrcSV, 0);
6325}
6326
6327SDValue
6328X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6329  DebugLoc dl = Op.getDebugLoc();
6330  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6331  switch (IntNo) {
6332  default: return SDValue();    // Don't custom lower most intrinsics.
6333  // Comparison intrinsics.
6334  case Intrinsic::x86_sse_comieq_ss:
6335  case Intrinsic::x86_sse_comilt_ss:
6336  case Intrinsic::x86_sse_comile_ss:
6337  case Intrinsic::x86_sse_comigt_ss:
6338  case Intrinsic::x86_sse_comige_ss:
6339  case Intrinsic::x86_sse_comineq_ss:
6340  case Intrinsic::x86_sse_ucomieq_ss:
6341  case Intrinsic::x86_sse_ucomilt_ss:
6342  case Intrinsic::x86_sse_ucomile_ss:
6343  case Intrinsic::x86_sse_ucomigt_ss:
6344  case Intrinsic::x86_sse_ucomige_ss:
6345  case Intrinsic::x86_sse_ucomineq_ss:
6346  case Intrinsic::x86_sse2_comieq_sd:
6347  case Intrinsic::x86_sse2_comilt_sd:
6348  case Intrinsic::x86_sse2_comile_sd:
6349  case Intrinsic::x86_sse2_comigt_sd:
6350  case Intrinsic::x86_sse2_comige_sd:
6351  case Intrinsic::x86_sse2_comineq_sd:
6352  case Intrinsic::x86_sse2_ucomieq_sd:
6353  case Intrinsic::x86_sse2_ucomilt_sd:
6354  case Intrinsic::x86_sse2_ucomile_sd:
6355  case Intrinsic::x86_sse2_ucomigt_sd:
6356  case Intrinsic::x86_sse2_ucomige_sd:
6357  case Intrinsic::x86_sse2_ucomineq_sd: {
6358    unsigned Opc = 0;
6359    ISD::CondCode CC = ISD::SETCC_INVALID;
6360    switch (IntNo) {
6361    default: break;
6362    case Intrinsic::x86_sse_comieq_ss:
6363    case Intrinsic::x86_sse2_comieq_sd:
6364      Opc = X86ISD::COMI;
6365      CC = ISD::SETEQ;
6366      break;
6367    case Intrinsic::x86_sse_comilt_ss:
6368    case Intrinsic::x86_sse2_comilt_sd:
6369      Opc = X86ISD::COMI;
6370      CC = ISD::SETLT;
6371      break;
6372    case Intrinsic::x86_sse_comile_ss:
6373    case Intrinsic::x86_sse2_comile_sd:
6374      Opc = X86ISD::COMI;
6375      CC = ISD::SETLE;
6376      break;
6377    case Intrinsic::x86_sse_comigt_ss:
6378    case Intrinsic::x86_sse2_comigt_sd:
6379      Opc = X86ISD::COMI;
6380      CC = ISD::SETGT;
6381      break;
6382    case Intrinsic::x86_sse_comige_ss:
6383    case Intrinsic::x86_sse2_comige_sd:
6384      Opc = X86ISD::COMI;
6385      CC = ISD::SETGE;
6386      break;
6387    case Intrinsic::x86_sse_comineq_ss:
6388    case Intrinsic::x86_sse2_comineq_sd:
6389      Opc = X86ISD::COMI;
6390      CC = ISD::SETNE;
6391      break;
6392    case Intrinsic::x86_sse_ucomieq_ss:
6393    case Intrinsic::x86_sse2_ucomieq_sd:
6394      Opc = X86ISD::UCOMI;
6395      CC = ISD::SETEQ;
6396      break;
6397    case Intrinsic::x86_sse_ucomilt_ss:
6398    case Intrinsic::x86_sse2_ucomilt_sd:
6399      Opc = X86ISD::UCOMI;
6400      CC = ISD::SETLT;
6401      break;
6402    case Intrinsic::x86_sse_ucomile_ss:
6403    case Intrinsic::x86_sse2_ucomile_sd:
6404      Opc = X86ISD::UCOMI;
6405      CC = ISD::SETLE;
6406      break;
6407    case Intrinsic::x86_sse_ucomigt_ss:
6408    case Intrinsic::x86_sse2_ucomigt_sd:
6409      Opc = X86ISD::UCOMI;
6410      CC = ISD::SETGT;
6411      break;
6412    case Intrinsic::x86_sse_ucomige_ss:
6413    case Intrinsic::x86_sse2_ucomige_sd:
6414      Opc = X86ISD::UCOMI;
6415      CC = ISD::SETGE;
6416      break;
6417    case Intrinsic::x86_sse_ucomineq_ss:
6418    case Intrinsic::x86_sse2_ucomineq_sd:
6419      Opc = X86ISD::UCOMI;
6420      CC = ISD::SETNE;
6421      break;
6422    }
6423
6424    SDValue LHS = Op.getOperand(1);
6425    SDValue RHS = Op.getOperand(2);
6426    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6427    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6428    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6429    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6430                                DAG.getConstant(X86CC, MVT::i8), Cond);
6431    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6432  }
6433  // ptest intrinsics. The intrinsic these come from are designed to return
6434  // an integer value, not just an instruction so lower it to the ptest
6435  // pattern and a setcc for the result.
6436  case Intrinsic::x86_sse41_ptestz:
6437  case Intrinsic::x86_sse41_ptestc:
6438  case Intrinsic::x86_sse41_ptestnzc:{
6439    unsigned X86CC = 0;
6440    switch (IntNo) {
6441    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6442    case Intrinsic::x86_sse41_ptestz:
6443      // ZF = 1
6444      X86CC = X86::COND_E;
6445      break;
6446    case Intrinsic::x86_sse41_ptestc:
6447      // CF = 1
6448      X86CC = X86::COND_B;
6449      break;
6450    case Intrinsic::x86_sse41_ptestnzc:
6451      // ZF and CF = 0
6452      X86CC = X86::COND_A;
6453      break;
6454    }
6455
6456    SDValue LHS = Op.getOperand(1);
6457    SDValue RHS = Op.getOperand(2);
6458    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6459    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6460    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6461    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6462  }
6463
6464  // Fix vector shift instructions where the last operand is a non-immediate
6465  // i32 value.
6466  case Intrinsic::x86_sse2_pslli_w:
6467  case Intrinsic::x86_sse2_pslli_d:
6468  case Intrinsic::x86_sse2_pslli_q:
6469  case Intrinsic::x86_sse2_psrli_w:
6470  case Intrinsic::x86_sse2_psrli_d:
6471  case Intrinsic::x86_sse2_psrli_q:
6472  case Intrinsic::x86_sse2_psrai_w:
6473  case Intrinsic::x86_sse2_psrai_d:
6474  case Intrinsic::x86_mmx_pslli_w:
6475  case Intrinsic::x86_mmx_pslli_d:
6476  case Intrinsic::x86_mmx_pslli_q:
6477  case Intrinsic::x86_mmx_psrli_w:
6478  case Intrinsic::x86_mmx_psrli_d:
6479  case Intrinsic::x86_mmx_psrli_q:
6480  case Intrinsic::x86_mmx_psrai_w:
6481  case Intrinsic::x86_mmx_psrai_d: {
6482    SDValue ShAmt = Op.getOperand(2);
6483    if (isa<ConstantSDNode>(ShAmt))
6484      return SDValue();
6485
6486    unsigned NewIntNo = 0;
6487    EVT ShAmtVT = MVT::v4i32;
6488    switch (IntNo) {
6489    case Intrinsic::x86_sse2_pslli_w:
6490      NewIntNo = Intrinsic::x86_sse2_psll_w;
6491      break;
6492    case Intrinsic::x86_sse2_pslli_d:
6493      NewIntNo = Intrinsic::x86_sse2_psll_d;
6494      break;
6495    case Intrinsic::x86_sse2_pslli_q:
6496      NewIntNo = Intrinsic::x86_sse2_psll_q;
6497      break;
6498    case Intrinsic::x86_sse2_psrli_w:
6499      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6500      break;
6501    case Intrinsic::x86_sse2_psrli_d:
6502      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6503      break;
6504    case Intrinsic::x86_sse2_psrli_q:
6505      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6506      break;
6507    case Intrinsic::x86_sse2_psrai_w:
6508      NewIntNo = Intrinsic::x86_sse2_psra_w;
6509      break;
6510    case Intrinsic::x86_sse2_psrai_d:
6511      NewIntNo = Intrinsic::x86_sse2_psra_d;
6512      break;
6513    default: {
6514      ShAmtVT = MVT::v2i32;
6515      switch (IntNo) {
6516      case Intrinsic::x86_mmx_pslli_w:
6517        NewIntNo = Intrinsic::x86_mmx_psll_w;
6518        break;
6519      case Intrinsic::x86_mmx_pslli_d:
6520        NewIntNo = Intrinsic::x86_mmx_psll_d;
6521        break;
6522      case Intrinsic::x86_mmx_pslli_q:
6523        NewIntNo = Intrinsic::x86_mmx_psll_q;
6524        break;
6525      case Intrinsic::x86_mmx_psrli_w:
6526        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6527        break;
6528      case Intrinsic::x86_mmx_psrli_d:
6529        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6530        break;
6531      case Intrinsic::x86_mmx_psrli_q:
6532        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6533        break;
6534      case Intrinsic::x86_mmx_psrai_w:
6535        NewIntNo = Intrinsic::x86_mmx_psra_w;
6536        break;
6537      case Intrinsic::x86_mmx_psrai_d:
6538        NewIntNo = Intrinsic::x86_mmx_psra_d;
6539        break;
6540      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6541      }
6542      break;
6543    }
6544    }
6545
6546    // The vector shift intrinsics with scalars uses 32b shift amounts but
6547    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6548    // to be zero.
6549    SDValue ShOps[4];
6550    ShOps[0] = ShAmt;
6551    ShOps[1] = DAG.getConstant(0, MVT::i32);
6552    if (ShAmtVT == MVT::v4i32) {
6553      ShOps[2] = DAG.getUNDEF(MVT::i32);
6554      ShOps[3] = DAG.getUNDEF(MVT::i32);
6555      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6556    } else {
6557      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6558    }
6559
6560    EVT VT = Op.getValueType();
6561    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6562    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6563                       DAG.getConstant(NewIntNo, MVT::i32),
6564                       Op.getOperand(1), ShAmt);
6565  }
6566  }
6567}
6568
6569SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6570  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6571  DebugLoc dl = Op.getDebugLoc();
6572
6573  if (Depth > 0) {
6574    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6575    SDValue Offset =
6576      DAG.getConstant(TD->getPointerSize(),
6577                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6578    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6579                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6580                                   FrameAddr, Offset),
6581                       NULL, 0);
6582  }
6583
6584  // Just load the return address.
6585  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6586  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6587                     RetAddrFI, NULL, 0);
6588}
6589
6590SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6591  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6592  MFI->setFrameAddressIsTaken(true);
6593  EVT VT = Op.getValueType();
6594  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6595  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6596  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6597  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6598  while (Depth--)
6599    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6600  return FrameAddr;
6601}
6602
6603SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6604                                                     SelectionDAG &DAG) {
6605  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6606}
6607
6608SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6609{
6610  MachineFunction &MF = DAG.getMachineFunction();
6611  SDValue Chain     = Op.getOperand(0);
6612  SDValue Offset    = Op.getOperand(1);
6613  SDValue Handler   = Op.getOperand(2);
6614  DebugLoc dl       = Op.getDebugLoc();
6615
6616  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6617                                  getPointerTy());
6618  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6619
6620  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6621                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6622  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6623  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6624  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6625  MF.getRegInfo().addLiveOut(StoreAddrReg);
6626
6627  return DAG.getNode(X86ISD::EH_RETURN, dl,
6628                     MVT::Other,
6629                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6630}
6631
6632SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6633                                             SelectionDAG &DAG) {
6634  SDValue Root = Op.getOperand(0);
6635  SDValue Trmp = Op.getOperand(1); // trampoline
6636  SDValue FPtr = Op.getOperand(2); // nested function
6637  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6638  DebugLoc dl  = Op.getDebugLoc();
6639
6640  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6641
6642  const X86InstrInfo *TII =
6643    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6644
6645  if (Subtarget->is64Bit()) {
6646    SDValue OutChains[6];
6647
6648    // Large code-model.
6649
6650    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6651    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6652
6653    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6654    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6655
6656    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6657
6658    // Load the pointer to the nested function into R11.
6659    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6660    SDValue Addr = Trmp;
6661    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6662                                Addr, TrmpAddr, 0);
6663
6664    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6665                       DAG.getConstant(2, MVT::i64));
6666    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6667
6668    // Load the 'nest' parameter value into R10.
6669    // R10 is specified in X86CallingConv.td
6670    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6671    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6672                       DAG.getConstant(10, MVT::i64));
6673    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6674                                Addr, TrmpAddr, 10);
6675
6676    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6677                       DAG.getConstant(12, MVT::i64));
6678    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6679
6680    // Jump to the nested function.
6681    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6682    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6683                       DAG.getConstant(20, MVT::i64));
6684    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6685                                Addr, TrmpAddr, 20);
6686
6687    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6688    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6689                       DAG.getConstant(22, MVT::i64));
6690    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6691                                TrmpAddr, 22);
6692
6693    SDValue Ops[] =
6694      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6695    return DAG.getMergeValues(Ops, 2, dl);
6696  } else {
6697    const Function *Func =
6698      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6699    CallingConv::ID CC = Func->getCallingConv();
6700    unsigned NestReg;
6701
6702    switch (CC) {
6703    default:
6704      llvm_unreachable("Unsupported calling convention");
6705    case CallingConv::C:
6706    case CallingConv::X86_StdCall: {
6707      // Pass 'nest' parameter in ECX.
6708      // Must be kept in sync with X86CallingConv.td
6709      NestReg = X86::ECX;
6710
6711      // Check that ECX wasn't needed by an 'inreg' parameter.
6712      const FunctionType *FTy = Func->getFunctionType();
6713      const AttrListPtr &Attrs = Func->getAttributes();
6714
6715      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6716        unsigned InRegCount = 0;
6717        unsigned Idx = 1;
6718
6719        for (FunctionType::param_iterator I = FTy->param_begin(),
6720             E = FTy->param_end(); I != E; ++I, ++Idx)
6721          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6722            // FIXME: should only count parameters that are lowered to integers.
6723            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6724
6725        if (InRegCount > 2) {
6726          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6727        }
6728      }
6729      break;
6730    }
6731    case CallingConv::X86_FastCall:
6732    case CallingConv::Fast:
6733      // Pass 'nest' parameter in EAX.
6734      // Must be kept in sync with X86CallingConv.td
6735      NestReg = X86::EAX;
6736      break;
6737    }
6738
6739    SDValue OutChains[4];
6740    SDValue Addr, Disp;
6741
6742    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6743                       DAG.getConstant(10, MVT::i32));
6744    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6745
6746    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6747    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6748    OutChains[0] = DAG.getStore(Root, dl,
6749                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6750                                Trmp, TrmpAddr, 0);
6751
6752    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6753                       DAG.getConstant(1, MVT::i32));
6754    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6755
6756    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6757    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6758                       DAG.getConstant(5, MVT::i32));
6759    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6760                                TrmpAddr, 5, false, 1);
6761
6762    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6763                       DAG.getConstant(6, MVT::i32));
6764    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6765
6766    SDValue Ops[] =
6767      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6768    return DAG.getMergeValues(Ops, 2, dl);
6769  }
6770}
6771
6772SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6773  /*
6774   The rounding mode is in bits 11:10 of FPSR, and has the following
6775   settings:
6776     00 Round to nearest
6777     01 Round to -inf
6778     10 Round to +inf
6779     11 Round to 0
6780
6781  FLT_ROUNDS, on the other hand, expects the following:
6782    -1 Undefined
6783     0 Round to 0
6784     1 Round to nearest
6785     2 Round to +inf
6786     3 Round to -inf
6787
6788  To perform the conversion, we do:
6789    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6790  */
6791
6792  MachineFunction &MF = DAG.getMachineFunction();
6793  const TargetMachine &TM = MF.getTarget();
6794  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6795  unsigned StackAlignment = TFI.getStackAlignment();
6796  EVT VT = Op.getValueType();
6797  DebugLoc dl = Op.getDebugLoc();
6798
6799  // Save FP Control Word to stack slot
6800  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
6801  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6802
6803  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6804                              DAG.getEntryNode(), StackSlot);
6805
6806  // Load FP Control Word from stack slot
6807  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6808
6809  // Transform as necessary
6810  SDValue CWD1 =
6811    DAG.getNode(ISD::SRL, dl, MVT::i16,
6812                DAG.getNode(ISD::AND, dl, MVT::i16,
6813                            CWD, DAG.getConstant(0x800, MVT::i16)),
6814                DAG.getConstant(11, MVT::i8));
6815  SDValue CWD2 =
6816    DAG.getNode(ISD::SRL, dl, MVT::i16,
6817                DAG.getNode(ISD::AND, dl, MVT::i16,
6818                            CWD, DAG.getConstant(0x400, MVT::i16)),
6819                DAG.getConstant(9, MVT::i8));
6820
6821  SDValue RetVal =
6822    DAG.getNode(ISD::AND, dl, MVT::i16,
6823                DAG.getNode(ISD::ADD, dl, MVT::i16,
6824                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6825                            DAG.getConstant(1, MVT::i16)),
6826                DAG.getConstant(3, MVT::i16));
6827
6828
6829  return DAG.getNode((VT.getSizeInBits() < 16 ?
6830                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6831}
6832
6833SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6834  EVT VT = Op.getValueType();
6835  EVT OpVT = VT;
6836  unsigned NumBits = VT.getSizeInBits();
6837  DebugLoc dl = Op.getDebugLoc();
6838
6839  Op = Op.getOperand(0);
6840  if (VT == MVT::i8) {
6841    // Zero extend to i32 since there is not an i8 bsr.
6842    OpVT = MVT::i32;
6843    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6844  }
6845
6846  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6847  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6848  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6849
6850  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6851  SmallVector<SDValue, 4> Ops;
6852  Ops.push_back(Op);
6853  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6854  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6855  Ops.push_back(Op.getValue(1));
6856  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6857
6858  // Finally xor with NumBits-1.
6859  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6860
6861  if (VT == MVT::i8)
6862    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6863  return Op;
6864}
6865
6866SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6867  EVT VT = Op.getValueType();
6868  EVT OpVT = VT;
6869  unsigned NumBits = VT.getSizeInBits();
6870  DebugLoc dl = Op.getDebugLoc();
6871
6872  Op = Op.getOperand(0);
6873  if (VT == MVT::i8) {
6874    OpVT = MVT::i32;
6875    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6876  }
6877
6878  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6879  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6880  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6881
6882  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6883  SmallVector<SDValue, 4> Ops;
6884  Ops.push_back(Op);
6885  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6886  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6887  Ops.push_back(Op.getValue(1));
6888  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6889
6890  if (VT == MVT::i8)
6891    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6892  return Op;
6893}
6894
6895SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6896  EVT VT = Op.getValueType();
6897  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6898  DebugLoc dl = Op.getDebugLoc();
6899
6900  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6901  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6902  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6903  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6904  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6905  //
6906  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6907  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6908  //  return AloBlo + AloBhi + AhiBlo;
6909
6910  SDValue A = Op.getOperand(0);
6911  SDValue B = Op.getOperand(1);
6912
6913  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6914                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6915                       A, DAG.getConstant(32, MVT::i32));
6916  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6917                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6918                       B, DAG.getConstant(32, MVT::i32));
6919  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6920                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6921                       A, B);
6922  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6923                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6924                       A, Bhi);
6925  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6926                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6927                       Ahi, B);
6928  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6929                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6930                       AloBhi, DAG.getConstant(32, MVT::i32));
6931  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6932                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6933                       AhiBlo, DAG.getConstant(32, MVT::i32));
6934  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6935  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6936  return Res;
6937}
6938
6939
6940SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6941  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6942  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6943  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6944  // has only one use.
6945  SDNode *N = Op.getNode();
6946  SDValue LHS = N->getOperand(0);
6947  SDValue RHS = N->getOperand(1);
6948  unsigned BaseOp = 0;
6949  unsigned Cond = 0;
6950  DebugLoc dl = Op.getDebugLoc();
6951
6952  switch (Op.getOpcode()) {
6953  default: llvm_unreachable("Unknown ovf instruction!");
6954  case ISD::SADDO:
6955    // A subtract of one will be selected as a INC. Note that INC doesn't
6956    // set CF, so we can't do this for UADDO.
6957    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6958      if (C->getAPIntValue() == 1) {
6959        BaseOp = X86ISD::INC;
6960        Cond = X86::COND_O;
6961        break;
6962      }
6963    BaseOp = X86ISD::ADD;
6964    Cond = X86::COND_O;
6965    break;
6966  case ISD::UADDO:
6967    BaseOp = X86ISD::ADD;
6968    Cond = X86::COND_B;
6969    break;
6970  case ISD::SSUBO:
6971    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6972    // set CF, so we can't do this for USUBO.
6973    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6974      if (C->getAPIntValue() == 1) {
6975        BaseOp = X86ISD::DEC;
6976        Cond = X86::COND_O;
6977        break;
6978      }
6979    BaseOp = X86ISD::SUB;
6980    Cond = X86::COND_O;
6981    break;
6982  case ISD::USUBO:
6983    BaseOp = X86ISD::SUB;
6984    Cond = X86::COND_B;
6985    break;
6986  case ISD::SMULO:
6987    BaseOp = X86ISD::SMUL;
6988    Cond = X86::COND_O;
6989    break;
6990  case ISD::UMULO:
6991    BaseOp = X86ISD::UMUL;
6992    Cond = X86::COND_B;
6993    break;
6994  }
6995
6996  // Also sets EFLAGS.
6997  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6998  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6999
7000  SDValue SetCC =
7001    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7002                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7003
7004  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7005  return Sum;
7006}
7007
7008SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7009  EVT T = Op.getValueType();
7010  DebugLoc dl = Op.getDebugLoc();
7011  unsigned Reg = 0;
7012  unsigned size = 0;
7013  switch(T.getSimpleVT().SimpleTy) {
7014  default:
7015    assert(false && "Invalid value type!");
7016  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7017  case MVT::i16: Reg = X86::AX;  size = 2; break;
7018  case MVT::i32: Reg = X86::EAX; size = 4; break;
7019  case MVT::i64:
7020    assert(Subtarget->is64Bit() && "Node not type legal!");
7021    Reg = X86::RAX; size = 8;
7022    break;
7023  }
7024  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7025                                    Op.getOperand(2), SDValue());
7026  SDValue Ops[] = { cpIn.getValue(0),
7027                    Op.getOperand(1),
7028                    Op.getOperand(3),
7029                    DAG.getTargetConstant(size, MVT::i8),
7030                    cpIn.getValue(1) };
7031  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7032  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7033  SDValue cpOut =
7034    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7035  return cpOut;
7036}
7037
7038SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7039                                                 SelectionDAG &DAG) {
7040  assert(Subtarget->is64Bit() && "Result not type legalized?");
7041  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7042  SDValue TheChain = Op.getOperand(0);
7043  DebugLoc dl = Op.getDebugLoc();
7044  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7045  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7046  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7047                                   rax.getValue(2));
7048  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7049                            DAG.getConstant(32, MVT::i8));
7050  SDValue Ops[] = {
7051    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7052    rdx.getValue(1)
7053  };
7054  return DAG.getMergeValues(Ops, 2, dl);
7055}
7056
7057SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7058  SDNode *Node = Op.getNode();
7059  DebugLoc dl = Node->getDebugLoc();
7060  EVT T = Node->getValueType(0);
7061  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7062                              DAG.getConstant(0, T), Node->getOperand(2));
7063  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7064                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7065                       Node->getOperand(0),
7066                       Node->getOperand(1), negOp,
7067                       cast<AtomicSDNode>(Node)->getSrcValue(),
7068                       cast<AtomicSDNode>(Node)->getAlignment());
7069}
7070
7071/// LowerOperation - Provide custom lowering hooks for some operations.
7072///
7073SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7074  switch (Op.getOpcode()) {
7075  default: llvm_unreachable("Should not custom lower this!");
7076  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7077  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7078  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7079  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7080  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7081  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7082  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7083  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7084  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7085  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7086  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7087  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7088  case ISD::SHL_PARTS:
7089  case ISD::SRA_PARTS:
7090  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7091  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7092  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7093  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7094  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7095  case ISD::FABS:               return LowerFABS(Op, DAG);
7096  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7097  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7098  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7099  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7100  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7101  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7102  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7103  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7104  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7105  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7106  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7107  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7108  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7109  case ISD::FRAME_TO_ARGS_OFFSET:
7110                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7111  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7112  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7113  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7114  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7115  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7116  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7117  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7118  case ISD::SADDO:
7119  case ISD::UADDO:
7120  case ISD::SSUBO:
7121  case ISD::USUBO:
7122  case ISD::SMULO:
7123  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7124  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7125  }
7126}
7127
7128void X86TargetLowering::
7129ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7130                        SelectionDAG &DAG, unsigned NewOp) {
7131  EVT T = Node->getValueType(0);
7132  DebugLoc dl = Node->getDebugLoc();
7133  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7134
7135  SDValue Chain = Node->getOperand(0);
7136  SDValue In1 = Node->getOperand(1);
7137  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7138                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7139  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7140                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7141  SDValue Ops[] = { Chain, In1, In2L, In2H };
7142  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7143  SDValue Result =
7144    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7145                            cast<MemSDNode>(Node)->getMemOperand());
7146  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7147  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7148  Results.push_back(Result.getValue(2));
7149}
7150
7151/// ReplaceNodeResults - Replace a node with an illegal result type
7152/// with a new node built out of custom code.
7153void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7154                                           SmallVectorImpl<SDValue>&Results,
7155                                           SelectionDAG &DAG) {
7156  DebugLoc dl = N->getDebugLoc();
7157  switch (N->getOpcode()) {
7158  default:
7159    assert(false && "Do not know how to custom type legalize this operation!");
7160    return;
7161  case ISD::FP_TO_SINT: {
7162    std::pair<SDValue,SDValue> Vals =
7163        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7164    SDValue FIST = Vals.first, StackSlot = Vals.second;
7165    if (FIST.getNode() != 0) {
7166      EVT VT = N->getValueType(0);
7167      // Return a load from the stack slot.
7168      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7169    }
7170    return;
7171  }
7172  case ISD::READCYCLECOUNTER: {
7173    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7174    SDValue TheChain = N->getOperand(0);
7175    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7176    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7177                                     rd.getValue(1));
7178    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7179                                     eax.getValue(2));
7180    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7181    SDValue Ops[] = { eax, edx };
7182    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7183    Results.push_back(edx.getValue(1));
7184    return;
7185  }
7186  case ISD::SDIV:
7187  case ISD::UDIV:
7188  case ISD::SREM:
7189  case ISD::UREM: {
7190    EVT WidenVT = getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
7191    Results.push_back(DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements()));
7192    return;
7193  }
7194  case ISD::ATOMIC_CMP_SWAP: {
7195    EVT T = N->getValueType(0);
7196    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7197    SDValue cpInL, cpInH;
7198    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7199                        DAG.getConstant(0, MVT::i32));
7200    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7201                        DAG.getConstant(1, MVT::i32));
7202    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7203    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7204                             cpInL.getValue(1));
7205    SDValue swapInL, swapInH;
7206    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7207                          DAG.getConstant(0, MVT::i32));
7208    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7209                          DAG.getConstant(1, MVT::i32));
7210    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7211                               cpInH.getValue(1));
7212    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7213                               swapInL.getValue(1));
7214    SDValue Ops[] = { swapInH.getValue(0),
7215                      N->getOperand(1),
7216                      swapInH.getValue(1) };
7217    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7218    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7219    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7220                                        MVT::i32, Result.getValue(1));
7221    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7222                                        MVT::i32, cpOutL.getValue(2));
7223    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7224    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7225    Results.push_back(cpOutH.getValue(1));
7226    return;
7227  }
7228  case ISD::ATOMIC_LOAD_ADD:
7229    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7230    return;
7231  case ISD::ATOMIC_LOAD_AND:
7232    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7233    return;
7234  case ISD::ATOMIC_LOAD_NAND:
7235    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7236    return;
7237  case ISD::ATOMIC_LOAD_OR:
7238    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7239    return;
7240  case ISD::ATOMIC_LOAD_SUB:
7241    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7242    return;
7243  case ISD::ATOMIC_LOAD_XOR:
7244    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7245    return;
7246  case ISD::ATOMIC_SWAP:
7247    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7248    return;
7249  }
7250}
7251
7252const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7253  switch (Opcode) {
7254  default: return NULL;
7255  case X86ISD::BSF:                return "X86ISD::BSF";
7256  case X86ISD::BSR:                return "X86ISD::BSR";
7257  case X86ISD::SHLD:               return "X86ISD::SHLD";
7258  case X86ISD::SHRD:               return "X86ISD::SHRD";
7259  case X86ISD::FAND:               return "X86ISD::FAND";
7260  case X86ISD::FOR:                return "X86ISD::FOR";
7261  case X86ISD::FXOR:               return "X86ISD::FXOR";
7262  case X86ISD::FSRL:               return "X86ISD::FSRL";
7263  case X86ISD::FILD:               return "X86ISD::FILD";
7264  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7265  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7266  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7267  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7268  case X86ISD::FLD:                return "X86ISD::FLD";
7269  case X86ISD::FST:                return "X86ISD::FST";
7270  case X86ISD::CALL:               return "X86ISD::CALL";
7271  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7272  case X86ISD::BT:                 return "X86ISD::BT";
7273  case X86ISD::CMP:                return "X86ISD::CMP";
7274  case X86ISD::COMI:               return "X86ISD::COMI";
7275  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7276  case X86ISD::SETCC:              return "X86ISD::SETCC";
7277  case X86ISD::CMOV:               return "X86ISD::CMOV";
7278  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7279  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7280  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7281  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7282  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7283  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7284  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7285  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7286  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7287  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7288  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7289  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7290  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7291  case X86ISD::FMAX:               return "X86ISD::FMAX";
7292  case X86ISD::FMIN:               return "X86ISD::FMIN";
7293  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7294  case X86ISD::FRCP:               return "X86ISD::FRCP";
7295  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7296  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7297  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7298  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7299  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7300  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7301  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7302  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7303  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7304  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7305  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7306  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7307  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7308  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7309  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7310  case X86ISD::VSHL:               return "X86ISD::VSHL";
7311  case X86ISD::VSRL:               return "X86ISD::VSRL";
7312  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7313  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7314  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7315  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7316  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7317  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7318  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7319  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7320  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7321  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7322  case X86ISD::ADD:                return "X86ISD::ADD";
7323  case X86ISD::SUB:                return "X86ISD::SUB";
7324  case X86ISD::SMUL:               return "X86ISD::SMUL";
7325  case X86ISD::UMUL:               return "X86ISD::UMUL";
7326  case X86ISD::INC:                return "X86ISD::INC";
7327  case X86ISD::DEC:                return "X86ISD::DEC";
7328  case X86ISD::OR:                 return "X86ISD::OR";
7329  case X86ISD::XOR:                return "X86ISD::XOR";
7330  case X86ISD::AND:                return "X86ISD::AND";
7331  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7332  case X86ISD::PTEST:              return "X86ISD::PTEST";
7333  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7334  }
7335}
7336
7337// isLegalAddressingMode - Return true if the addressing mode represented
7338// by AM is legal for this target, for a load/store of the specified type.
7339bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7340                                              const Type *Ty) const {
7341  // X86 supports extremely general addressing modes.
7342  CodeModel::Model M = getTargetMachine().getCodeModel();
7343
7344  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7345  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7346    return false;
7347
7348  if (AM.BaseGV) {
7349    unsigned GVFlags =
7350      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7351
7352    // If a reference to this global requires an extra load, we can't fold it.
7353    if (isGlobalStubReference(GVFlags))
7354      return false;
7355
7356    // If BaseGV requires a register for the PIC base, we cannot also have a
7357    // BaseReg specified.
7358    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7359      return false;
7360
7361    // If lower 4G is not available, then we must use rip-relative addressing.
7362    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7363      return false;
7364  }
7365
7366  switch (AM.Scale) {
7367  case 0:
7368  case 1:
7369  case 2:
7370  case 4:
7371  case 8:
7372    // These scales always work.
7373    break;
7374  case 3:
7375  case 5:
7376  case 9:
7377    // These scales are formed with basereg+scalereg.  Only accept if there is
7378    // no basereg yet.
7379    if (AM.HasBaseReg)
7380      return false;
7381    break;
7382  default:  // Other stuff never works.
7383    return false;
7384  }
7385
7386  return true;
7387}
7388
7389
7390bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7391  if (!Ty1->isInteger() || !Ty2->isInteger())
7392    return false;
7393  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7394  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7395  if (NumBits1 <= NumBits2)
7396    return false;
7397  return Subtarget->is64Bit() || NumBits1 < 64;
7398}
7399
7400bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7401  if (!VT1.isInteger() || !VT2.isInteger())
7402    return false;
7403  unsigned NumBits1 = VT1.getSizeInBits();
7404  unsigned NumBits2 = VT2.getSizeInBits();
7405  if (NumBits1 <= NumBits2)
7406    return false;
7407  return Subtarget->is64Bit() || NumBits1 < 64;
7408}
7409
7410bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7411  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7412  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7413         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7414}
7415
7416bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7417  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7418  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7419}
7420
7421bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7422  // i16 instructions are longer (0x66 prefix) and potentially slower.
7423  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7424}
7425
7426/// isShuffleMaskLegal - Targets can use this to indicate that they only
7427/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7428/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7429/// are assumed to be legal.
7430bool
7431X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7432                                      EVT VT) const {
7433  // Only do shuffles on 128-bit vector types for now.
7434  if (VT.getSizeInBits() == 64)
7435    return false;
7436
7437  // FIXME: pshufb, blends, shifts.
7438  return (VT.getVectorNumElements() == 2 ||
7439          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7440          isMOVLMask(M, VT) ||
7441          isSHUFPMask(M, VT) ||
7442          isPSHUFDMask(M, VT) ||
7443          isPSHUFHWMask(M, VT) ||
7444          isPSHUFLWMask(M, VT) ||
7445          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7446          isUNPCKLMask(M, VT) ||
7447          isUNPCKHMask(M, VT) ||
7448          isUNPCKL_v_undef_Mask(M, VT) ||
7449          isUNPCKH_v_undef_Mask(M, VT));
7450}
7451
7452bool
7453X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7454                                          EVT VT) const {
7455  unsigned NumElts = VT.getVectorNumElements();
7456  // FIXME: This collection of masks seems suspect.
7457  if (NumElts == 2)
7458    return true;
7459  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7460    return (isMOVLMask(Mask, VT)  ||
7461            isCommutedMOVLMask(Mask, VT, true) ||
7462            isSHUFPMask(Mask, VT) ||
7463            isCommutedSHUFPMask(Mask, VT));
7464  }
7465  return false;
7466}
7467
7468//===----------------------------------------------------------------------===//
7469//                           X86 Scheduler Hooks
7470//===----------------------------------------------------------------------===//
7471
7472// private utility function
7473MachineBasicBlock *
7474X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7475                                                       MachineBasicBlock *MBB,
7476                                                       unsigned regOpc,
7477                                                       unsigned immOpc,
7478                                                       unsigned LoadOpc,
7479                                                       unsigned CXchgOpc,
7480                                                       unsigned copyOpc,
7481                                                       unsigned notOpc,
7482                                                       unsigned EAXreg,
7483                                                       TargetRegisterClass *RC,
7484                                                       bool invSrc) const {
7485  // For the atomic bitwise operator, we generate
7486  //   thisMBB:
7487  //   newMBB:
7488  //     ld  t1 = [bitinstr.addr]
7489  //     op  t2 = t1, [bitinstr.val]
7490  //     mov EAX = t1
7491  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7492  //     bz  newMBB
7493  //     fallthrough -->nextMBB
7494  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7495  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7496  MachineFunction::iterator MBBIter = MBB;
7497  ++MBBIter;
7498
7499  /// First build the CFG
7500  MachineFunction *F = MBB->getParent();
7501  MachineBasicBlock *thisMBB = MBB;
7502  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7503  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7504  F->insert(MBBIter, newMBB);
7505  F->insert(MBBIter, nextMBB);
7506
7507  // Move all successors to thisMBB to nextMBB
7508  nextMBB->transferSuccessors(thisMBB);
7509
7510  // Update thisMBB to fall through to newMBB
7511  thisMBB->addSuccessor(newMBB);
7512
7513  // newMBB jumps to itself and fall through to nextMBB
7514  newMBB->addSuccessor(nextMBB);
7515  newMBB->addSuccessor(newMBB);
7516
7517  // Insert instructions into newMBB based on incoming instruction
7518  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7519         "unexpected number of operands");
7520  DebugLoc dl = bInstr->getDebugLoc();
7521  MachineOperand& destOper = bInstr->getOperand(0);
7522  MachineOperand* argOpers[2 + X86AddrNumOperands];
7523  int numArgs = bInstr->getNumOperands() - 1;
7524  for (int i=0; i < numArgs; ++i)
7525    argOpers[i] = &bInstr->getOperand(i+1);
7526
7527  // x86 address has 4 operands: base, index, scale, and displacement
7528  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7529  int valArgIndx = lastAddrIndx + 1;
7530
7531  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7532  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7533  for (int i=0; i <= lastAddrIndx; ++i)
7534    (*MIB).addOperand(*argOpers[i]);
7535
7536  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7537  if (invSrc) {
7538    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7539  }
7540  else
7541    tt = t1;
7542
7543  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7544  assert((argOpers[valArgIndx]->isReg() ||
7545          argOpers[valArgIndx]->isImm()) &&
7546         "invalid operand");
7547  if (argOpers[valArgIndx]->isReg())
7548    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7549  else
7550    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7551  MIB.addReg(tt);
7552  (*MIB).addOperand(*argOpers[valArgIndx]);
7553
7554  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7555  MIB.addReg(t1);
7556
7557  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7558  for (int i=0; i <= lastAddrIndx; ++i)
7559    (*MIB).addOperand(*argOpers[i]);
7560  MIB.addReg(t2);
7561  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7562  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7563                    bInstr->memoperands_end());
7564
7565  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7566  MIB.addReg(EAXreg);
7567
7568  // insert branch
7569  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7570
7571  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7572  return nextMBB;
7573}
7574
7575// private utility function:  64 bit atomics on 32 bit host.
7576MachineBasicBlock *
7577X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7578                                                       MachineBasicBlock *MBB,
7579                                                       unsigned regOpcL,
7580                                                       unsigned regOpcH,
7581                                                       unsigned immOpcL,
7582                                                       unsigned immOpcH,
7583                                                       bool invSrc) const {
7584  // For the atomic bitwise operator, we generate
7585  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7586  //     ld t1,t2 = [bitinstr.addr]
7587  //   newMBB:
7588  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7589  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7590  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7591  //     mov ECX, EBX <- t5, t6
7592  //     mov EAX, EDX <- t1, t2
7593  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7594  //     mov t3, t4 <- EAX, EDX
7595  //     bz  newMBB
7596  //     result in out1, out2
7597  //     fallthrough -->nextMBB
7598
7599  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7600  const unsigned LoadOpc = X86::MOV32rm;
7601  const unsigned copyOpc = X86::MOV32rr;
7602  const unsigned NotOpc = X86::NOT32r;
7603  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7604  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7605  MachineFunction::iterator MBBIter = MBB;
7606  ++MBBIter;
7607
7608  /// First build the CFG
7609  MachineFunction *F = MBB->getParent();
7610  MachineBasicBlock *thisMBB = MBB;
7611  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7612  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7613  F->insert(MBBIter, newMBB);
7614  F->insert(MBBIter, nextMBB);
7615
7616  // Move all successors to thisMBB to nextMBB
7617  nextMBB->transferSuccessors(thisMBB);
7618
7619  // Update thisMBB to fall through to newMBB
7620  thisMBB->addSuccessor(newMBB);
7621
7622  // newMBB jumps to itself and fall through to nextMBB
7623  newMBB->addSuccessor(nextMBB);
7624  newMBB->addSuccessor(newMBB);
7625
7626  DebugLoc dl = bInstr->getDebugLoc();
7627  // Insert instructions into newMBB based on incoming instruction
7628  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7629  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7630         "unexpected number of operands");
7631  MachineOperand& dest1Oper = bInstr->getOperand(0);
7632  MachineOperand& dest2Oper = bInstr->getOperand(1);
7633  MachineOperand* argOpers[2 + X86AddrNumOperands];
7634  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7635    argOpers[i] = &bInstr->getOperand(i+2);
7636
7637  // x86 address has 4 operands: base, index, scale, and displacement
7638  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7639
7640  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7641  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7642  for (int i=0; i <= lastAddrIndx; ++i)
7643    (*MIB).addOperand(*argOpers[i]);
7644  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7645  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7646  // add 4 to displacement.
7647  for (int i=0; i <= lastAddrIndx-2; ++i)
7648    (*MIB).addOperand(*argOpers[i]);
7649  MachineOperand newOp3 = *(argOpers[3]);
7650  if (newOp3.isImm())
7651    newOp3.setImm(newOp3.getImm()+4);
7652  else
7653    newOp3.setOffset(newOp3.getOffset()+4);
7654  (*MIB).addOperand(newOp3);
7655  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7656
7657  // t3/4 are defined later, at the bottom of the loop
7658  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7659  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7660  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7661    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7662  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7663    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7664
7665  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7666  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7667  if (invSrc) {
7668    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7669    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7670  } else {
7671    tt1 = t1;
7672    tt2 = t2;
7673  }
7674
7675  int valArgIndx = lastAddrIndx + 1;
7676  assert((argOpers[valArgIndx]->isReg() ||
7677          argOpers[valArgIndx]->isImm()) &&
7678         "invalid operand");
7679  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7680  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7681  if (argOpers[valArgIndx]->isReg())
7682    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7683  else
7684    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7685  if (regOpcL != X86::MOV32rr)
7686    MIB.addReg(tt1);
7687  (*MIB).addOperand(*argOpers[valArgIndx]);
7688  assert(argOpers[valArgIndx + 1]->isReg() ==
7689         argOpers[valArgIndx]->isReg());
7690  assert(argOpers[valArgIndx + 1]->isImm() ==
7691         argOpers[valArgIndx]->isImm());
7692  if (argOpers[valArgIndx + 1]->isReg())
7693    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7694  else
7695    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7696  if (regOpcH != X86::MOV32rr)
7697    MIB.addReg(tt2);
7698  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7699
7700  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7701  MIB.addReg(t1);
7702  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7703  MIB.addReg(t2);
7704
7705  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7706  MIB.addReg(t5);
7707  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7708  MIB.addReg(t6);
7709
7710  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7711  for (int i=0; i <= lastAddrIndx; ++i)
7712    (*MIB).addOperand(*argOpers[i]);
7713
7714  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7715  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7716                    bInstr->memoperands_end());
7717
7718  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7719  MIB.addReg(X86::EAX);
7720  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7721  MIB.addReg(X86::EDX);
7722
7723  // insert branch
7724  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7725
7726  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7727  return nextMBB;
7728}
7729
7730// private utility function
7731MachineBasicBlock *
7732X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7733                                                      MachineBasicBlock *MBB,
7734                                                      unsigned cmovOpc) const {
7735  // For the atomic min/max operator, we generate
7736  //   thisMBB:
7737  //   newMBB:
7738  //     ld t1 = [min/max.addr]
7739  //     mov t2 = [min/max.val]
7740  //     cmp  t1, t2
7741  //     cmov[cond] t2 = t1
7742  //     mov EAX = t1
7743  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7744  //     bz   newMBB
7745  //     fallthrough -->nextMBB
7746  //
7747  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7748  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7749  MachineFunction::iterator MBBIter = MBB;
7750  ++MBBIter;
7751
7752  /// First build the CFG
7753  MachineFunction *F = MBB->getParent();
7754  MachineBasicBlock *thisMBB = MBB;
7755  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7756  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7757  F->insert(MBBIter, newMBB);
7758  F->insert(MBBIter, nextMBB);
7759
7760  // Move all successors of thisMBB to nextMBB
7761  nextMBB->transferSuccessors(thisMBB);
7762
7763  // Update thisMBB to fall through to newMBB
7764  thisMBB->addSuccessor(newMBB);
7765
7766  // newMBB jumps to newMBB and fall through to nextMBB
7767  newMBB->addSuccessor(nextMBB);
7768  newMBB->addSuccessor(newMBB);
7769
7770  DebugLoc dl = mInstr->getDebugLoc();
7771  // Insert instructions into newMBB based on incoming instruction
7772  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7773         "unexpected number of operands");
7774  MachineOperand& destOper = mInstr->getOperand(0);
7775  MachineOperand* argOpers[2 + X86AddrNumOperands];
7776  int numArgs = mInstr->getNumOperands() - 1;
7777  for (int i=0; i < numArgs; ++i)
7778    argOpers[i] = &mInstr->getOperand(i+1);
7779
7780  // x86 address has 4 operands: base, index, scale, and displacement
7781  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7782  int valArgIndx = lastAddrIndx + 1;
7783
7784  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7785  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7786  for (int i=0; i <= lastAddrIndx; ++i)
7787    (*MIB).addOperand(*argOpers[i]);
7788
7789  // We only support register and immediate values
7790  assert((argOpers[valArgIndx]->isReg() ||
7791          argOpers[valArgIndx]->isImm()) &&
7792         "invalid operand");
7793
7794  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7795  if (argOpers[valArgIndx]->isReg())
7796    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7797  else
7798    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7799  (*MIB).addOperand(*argOpers[valArgIndx]);
7800
7801  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7802  MIB.addReg(t1);
7803
7804  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7805  MIB.addReg(t1);
7806  MIB.addReg(t2);
7807
7808  // Generate movc
7809  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7810  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7811  MIB.addReg(t2);
7812  MIB.addReg(t1);
7813
7814  // Cmp and exchange if none has modified the memory location
7815  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7816  for (int i=0; i <= lastAddrIndx; ++i)
7817    (*MIB).addOperand(*argOpers[i]);
7818  MIB.addReg(t3);
7819  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7820  (*MIB).setMemRefs(mInstr->memoperands_begin(),
7821                    mInstr->memoperands_end());
7822
7823  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7824  MIB.addReg(X86::EAX);
7825
7826  // insert branch
7827  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7828
7829  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7830  return nextMBB;
7831}
7832
7833// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7834// all of this code can be replaced with that in the .td file.
7835MachineBasicBlock *
7836X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7837                            unsigned numArgs, bool memArg) const {
7838
7839  MachineFunction *F = BB->getParent();
7840  DebugLoc dl = MI->getDebugLoc();
7841  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7842
7843  unsigned Opc;
7844  if (memArg)
7845    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
7846  else
7847    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
7848
7849  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7850
7851  for (unsigned i = 0; i < numArgs; ++i) {
7852    MachineOperand &Op = MI->getOperand(i+1);
7853
7854    if (!(Op.isReg() && Op.isImplicit()))
7855      MIB.addOperand(Op);
7856  }
7857
7858  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7859    .addReg(X86::XMM0);
7860
7861  F->DeleteMachineInstr(MI);
7862
7863  return BB;
7864}
7865
7866MachineBasicBlock *
7867X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7868                                                 MachineInstr *MI,
7869                                                 MachineBasicBlock *MBB) const {
7870  // Emit code to save XMM registers to the stack. The ABI says that the
7871  // number of registers to save is given in %al, so it's theoretically
7872  // possible to do an indirect jump trick to avoid saving all of them,
7873  // however this code takes a simpler approach and just executes all
7874  // of the stores if %al is non-zero. It's less code, and it's probably
7875  // easier on the hardware branch predictor, and stores aren't all that
7876  // expensive anyway.
7877
7878  // Create the new basic blocks. One block contains all the XMM stores,
7879  // and one block is the final destination regardless of whether any
7880  // stores were performed.
7881  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7882  MachineFunction *F = MBB->getParent();
7883  MachineFunction::iterator MBBIter = MBB;
7884  ++MBBIter;
7885  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7886  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7887  F->insert(MBBIter, XMMSaveMBB);
7888  F->insert(MBBIter, EndMBB);
7889
7890  // Set up the CFG.
7891  // Move any original successors of MBB to the end block.
7892  EndMBB->transferSuccessors(MBB);
7893  // The original block will now fall through to the XMM save block.
7894  MBB->addSuccessor(XMMSaveMBB);
7895  // The XMMSaveMBB will fall through to the end block.
7896  XMMSaveMBB->addSuccessor(EndMBB);
7897
7898  // Now add the instructions.
7899  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7900  DebugLoc DL = MI->getDebugLoc();
7901
7902  unsigned CountReg = MI->getOperand(0).getReg();
7903  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7904  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7905
7906  if (!Subtarget->isTargetWin64()) {
7907    // If %al is 0, branch around the XMM save block.
7908    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7909    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7910    MBB->addSuccessor(EndMBB);
7911  }
7912
7913  // In the XMM save block, save all the XMM argument registers.
7914  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7915    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7916    MachineMemOperand *MMO =
7917      F->getMachineMemOperand(
7918        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7919        MachineMemOperand::MOStore, Offset,
7920        /*Size=*/16, /*Align=*/16);
7921    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7922      .addFrameIndex(RegSaveFrameIndex)
7923      .addImm(/*Scale=*/1)
7924      .addReg(/*IndexReg=*/0)
7925      .addImm(/*Disp=*/Offset)
7926      .addReg(/*Segment=*/0)
7927      .addReg(MI->getOperand(i).getReg())
7928      .addMemOperand(MMO);
7929  }
7930
7931  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7932
7933  return EndMBB;
7934}
7935
7936MachineBasicBlock *
7937X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7938                                     MachineBasicBlock *BB,
7939                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7940  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7941  DebugLoc DL = MI->getDebugLoc();
7942
7943  // To "insert" a SELECT_CC instruction, we actually have to insert the
7944  // diamond control-flow pattern.  The incoming instruction knows the
7945  // destination vreg to set, the condition code register to branch on, the
7946  // true/false values to select between, and a branch opcode to use.
7947  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7948  MachineFunction::iterator It = BB;
7949  ++It;
7950
7951  //  thisMBB:
7952  //  ...
7953  //   TrueVal = ...
7954  //   cmpTY ccX, r1, r2
7955  //   bCC copy1MBB
7956  //   fallthrough --> copy0MBB
7957  MachineBasicBlock *thisMBB = BB;
7958  MachineFunction *F = BB->getParent();
7959  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7960  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7961  unsigned Opc =
7962    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7963  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7964  F->insert(It, copy0MBB);
7965  F->insert(It, sinkMBB);
7966  // Update machine-CFG edges by first adding all successors of the current
7967  // block to the new block which will contain the Phi node for the select.
7968  // Also inform sdisel of the edge changes.
7969  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
7970         E = BB->succ_end(); I != E; ++I) {
7971    EM->insert(std::make_pair(*I, sinkMBB));
7972    sinkMBB->addSuccessor(*I);
7973  }
7974  // Next, remove all successors of the current block, and add the true
7975  // and fallthrough blocks as its successors.
7976  while (!BB->succ_empty())
7977    BB->removeSuccessor(BB->succ_begin());
7978  // Add the true and fallthrough blocks as its successors.
7979  BB->addSuccessor(copy0MBB);
7980  BB->addSuccessor(sinkMBB);
7981
7982  //  copy0MBB:
7983  //   %FalseValue = ...
7984  //   # fallthrough to sinkMBB
7985  BB = copy0MBB;
7986
7987  // Update machine-CFG edges
7988  BB->addSuccessor(sinkMBB);
7989
7990  //  sinkMBB:
7991  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7992  //  ...
7993  BB = sinkMBB;
7994  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7995    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7996    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7997
7998  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7999  return BB;
8000}
8001
8002
8003MachineBasicBlock *
8004X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8005                                               MachineBasicBlock *BB,
8006                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8007  switch (MI->getOpcode()) {
8008  default: assert(false && "Unexpected instr type to insert");
8009  case X86::CMOV_GR8:
8010  case X86::CMOV_V1I64:
8011  case X86::CMOV_FR32:
8012  case X86::CMOV_FR64:
8013  case X86::CMOV_V4F32:
8014  case X86::CMOV_V2F64:
8015  case X86::CMOV_V2I64:
8016    return EmitLoweredSelect(MI, BB, EM);
8017
8018  case X86::FP32_TO_INT16_IN_MEM:
8019  case X86::FP32_TO_INT32_IN_MEM:
8020  case X86::FP32_TO_INT64_IN_MEM:
8021  case X86::FP64_TO_INT16_IN_MEM:
8022  case X86::FP64_TO_INT32_IN_MEM:
8023  case X86::FP64_TO_INT64_IN_MEM:
8024  case X86::FP80_TO_INT16_IN_MEM:
8025  case X86::FP80_TO_INT32_IN_MEM:
8026  case X86::FP80_TO_INT64_IN_MEM: {
8027    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8028    DebugLoc DL = MI->getDebugLoc();
8029
8030    // Change the floating point control register to use "round towards zero"
8031    // mode when truncating to an integer value.
8032    MachineFunction *F = BB->getParent();
8033    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8034    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8035
8036    // Load the old value of the high byte of the control word...
8037    unsigned OldCW =
8038      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8039    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8040                      CWFrameIdx);
8041
8042    // Set the high part to be round to zero...
8043    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8044      .addImm(0xC7F);
8045
8046    // Reload the modified control word now...
8047    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8048
8049    // Restore the memory image of control word to original value
8050    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8051      .addReg(OldCW);
8052
8053    // Get the X86 opcode to use.
8054    unsigned Opc;
8055    switch (MI->getOpcode()) {
8056    default: llvm_unreachable("illegal opcode!");
8057    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8058    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8059    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8060    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8061    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8062    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8063    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8064    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8065    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8066    }
8067
8068    X86AddressMode AM;
8069    MachineOperand &Op = MI->getOperand(0);
8070    if (Op.isReg()) {
8071      AM.BaseType = X86AddressMode::RegBase;
8072      AM.Base.Reg = Op.getReg();
8073    } else {
8074      AM.BaseType = X86AddressMode::FrameIndexBase;
8075      AM.Base.FrameIndex = Op.getIndex();
8076    }
8077    Op = MI->getOperand(1);
8078    if (Op.isImm())
8079      AM.Scale = Op.getImm();
8080    Op = MI->getOperand(2);
8081    if (Op.isImm())
8082      AM.IndexReg = Op.getImm();
8083    Op = MI->getOperand(3);
8084    if (Op.isGlobal()) {
8085      AM.GV = Op.getGlobal();
8086    } else {
8087      AM.Disp = Op.getImm();
8088    }
8089    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8090                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8091
8092    // Reload the original control word now.
8093    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8094
8095    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8096    return BB;
8097  }
8098    // String/text processing lowering.
8099  case X86::PCMPISTRM128REG:
8100    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8101  case X86::PCMPISTRM128MEM:
8102    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8103  case X86::PCMPESTRM128REG:
8104    return EmitPCMP(MI, BB, 5, false /* in mem */);
8105  case X86::PCMPESTRM128MEM:
8106    return EmitPCMP(MI, BB, 5, true /* in mem */);
8107
8108    // Atomic Lowering.
8109  case X86::ATOMAND32:
8110    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8111                                               X86::AND32ri, X86::MOV32rm,
8112                                               X86::LCMPXCHG32, X86::MOV32rr,
8113                                               X86::NOT32r, X86::EAX,
8114                                               X86::GR32RegisterClass);
8115  case X86::ATOMOR32:
8116    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8117                                               X86::OR32ri, X86::MOV32rm,
8118                                               X86::LCMPXCHG32, X86::MOV32rr,
8119                                               X86::NOT32r, X86::EAX,
8120                                               X86::GR32RegisterClass);
8121  case X86::ATOMXOR32:
8122    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8123                                               X86::XOR32ri, X86::MOV32rm,
8124                                               X86::LCMPXCHG32, X86::MOV32rr,
8125                                               X86::NOT32r, X86::EAX,
8126                                               X86::GR32RegisterClass);
8127  case X86::ATOMNAND32:
8128    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8129                                               X86::AND32ri, X86::MOV32rm,
8130                                               X86::LCMPXCHG32, X86::MOV32rr,
8131                                               X86::NOT32r, X86::EAX,
8132                                               X86::GR32RegisterClass, true);
8133  case X86::ATOMMIN32:
8134    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8135  case X86::ATOMMAX32:
8136    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8137  case X86::ATOMUMIN32:
8138    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8139  case X86::ATOMUMAX32:
8140    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8141
8142  case X86::ATOMAND16:
8143    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8144                                               X86::AND16ri, X86::MOV16rm,
8145                                               X86::LCMPXCHG16, X86::MOV16rr,
8146                                               X86::NOT16r, X86::AX,
8147                                               X86::GR16RegisterClass);
8148  case X86::ATOMOR16:
8149    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8150                                               X86::OR16ri, X86::MOV16rm,
8151                                               X86::LCMPXCHG16, X86::MOV16rr,
8152                                               X86::NOT16r, X86::AX,
8153                                               X86::GR16RegisterClass);
8154  case X86::ATOMXOR16:
8155    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8156                                               X86::XOR16ri, X86::MOV16rm,
8157                                               X86::LCMPXCHG16, X86::MOV16rr,
8158                                               X86::NOT16r, X86::AX,
8159                                               X86::GR16RegisterClass);
8160  case X86::ATOMNAND16:
8161    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8162                                               X86::AND16ri, X86::MOV16rm,
8163                                               X86::LCMPXCHG16, X86::MOV16rr,
8164                                               X86::NOT16r, X86::AX,
8165                                               X86::GR16RegisterClass, true);
8166  case X86::ATOMMIN16:
8167    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8168  case X86::ATOMMAX16:
8169    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8170  case X86::ATOMUMIN16:
8171    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8172  case X86::ATOMUMAX16:
8173    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8174
8175  case X86::ATOMAND8:
8176    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8177                                               X86::AND8ri, X86::MOV8rm,
8178                                               X86::LCMPXCHG8, X86::MOV8rr,
8179                                               X86::NOT8r, X86::AL,
8180                                               X86::GR8RegisterClass);
8181  case X86::ATOMOR8:
8182    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8183                                               X86::OR8ri, X86::MOV8rm,
8184                                               X86::LCMPXCHG8, X86::MOV8rr,
8185                                               X86::NOT8r, X86::AL,
8186                                               X86::GR8RegisterClass);
8187  case X86::ATOMXOR8:
8188    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8189                                               X86::XOR8ri, X86::MOV8rm,
8190                                               X86::LCMPXCHG8, X86::MOV8rr,
8191                                               X86::NOT8r, X86::AL,
8192                                               X86::GR8RegisterClass);
8193  case X86::ATOMNAND8:
8194    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8195                                               X86::AND8ri, X86::MOV8rm,
8196                                               X86::LCMPXCHG8, X86::MOV8rr,
8197                                               X86::NOT8r, X86::AL,
8198                                               X86::GR8RegisterClass, true);
8199  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8200  // This group is for 64-bit host.
8201  case X86::ATOMAND64:
8202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8203                                               X86::AND64ri32, X86::MOV64rm,
8204                                               X86::LCMPXCHG64, X86::MOV64rr,
8205                                               X86::NOT64r, X86::RAX,
8206                                               X86::GR64RegisterClass);
8207  case X86::ATOMOR64:
8208    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8209                                               X86::OR64ri32, X86::MOV64rm,
8210                                               X86::LCMPXCHG64, X86::MOV64rr,
8211                                               X86::NOT64r, X86::RAX,
8212                                               X86::GR64RegisterClass);
8213  case X86::ATOMXOR64:
8214    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8215                                               X86::XOR64ri32, X86::MOV64rm,
8216                                               X86::LCMPXCHG64, X86::MOV64rr,
8217                                               X86::NOT64r, X86::RAX,
8218                                               X86::GR64RegisterClass);
8219  case X86::ATOMNAND64:
8220    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8221                                               X86::AND64ri32, X86::MOV64rm,
8222                                               X86::LCMPXCHG64, X86::MOV64rr,
8223                                               X86::NOT64r, X86::RAX,
8224                                               X86::GR64RegisterClass, true);
8225  case X86::ATOMMIN64:
8226    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8227  case X86::ATOMMAX64:
8228    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8229  case X86::ATOMUMIN64:
8230    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8231  case X86::ATOMUMAX64:
8232    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8233
8234  // This group does 64-bit operations on a 32-bit host.
8235  case X86::ATOMAND6432:
8236    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8237                                               X86::AND32rr, X86::AND32rr,
8238                                               X86::AND32ri, X86::AND32ri,
8239                                               false);
8240  case X86::ATOMOR6432:
8241    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8242                                               X86::OR32rr, X86::OR32rr,
8243                                               X86::OR32ri, X86::OR32ri,
8244                                               false);
8245  case X86::ATOMXOR6432:
8246    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8247                                               X86::XOR32rr, X86::XOR32rr,
8248                                               X86::XOR32ri, X86::XOR32ri,
8249                                               false);
8250  case X86::ATOMNAND6432:
8251    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8252                                               X86::AND32rr, X86::AND32rr,
8253                                               X86::AND32ri, X86::AND32ri,
8254                                               true);
8255  case X86::ATOMADD6432:
8256    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8257                                               X86::ADD32rr, X86::ADC32rr,
8258                                               X86::ADD32ri, X86::ADC32ri,
8259                                               false);
8260  case X86::ATOMSUB6432:
8261    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8262                                               X86::SUB32rr, X86::SBB32rr,
8263                                               X86::SUB32ri, X86::SBB32ri,
8264                                               false);
8265  case X86::ATOMSWAP6432:
8266    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8267                                               X86::MOV32rr, X86::MOV32rr,
8268                                               X86::MOV32ri, X86::MOV32ri,
8269                                               false);
8270  case X86::VASTART_SAVE_XMM_REGS:
8271    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8272  }
8273}
8274
8275//===----------------------------------------------------------------------===//
8276//                           X86 Optimization Hooks
8277//===----------------------------------------------------------------------===//
8278
8279void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8280                                                       const APInt &Mask,
8281                                                       APInt &KnownZero,
8282                                                       APInt &KnownOne,
8283                                                       const SelectionDAG &DAG,
8284                                                       unsigned Depth) const {
8285  unsigned Opc = Op.getOpcode();
8286  assert((Opc >= ISD::BUILTIN_OP_END ||
8287          Opc == ISD::INTRINSIC_WO_CHAIN ||
8288          Opc == ISD::INTRINSIC_W_CHAIN ||
8289          Opc == ISD::INTRINSIC_VOID) &&
8290         "Should use MaskedValueIsZero if you don't know whether Op"
8291         " is a target node!");
8292
8293  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8294  switch (Opc) {
8295  default: break;
8296  case X86ISD::ADD:
8297  case X86ISD::SUB:
8298  case X86ISD::SMUL:
8299  case X86ISD::UMUL:
8300  case X86ISD::INC:
8301  case X86ISD::DEC:
8302  case X86ISD::OR:
8303  case X86ISD::XOR:
8304  case X86ISD::AND:
8305    // These nodes' second result is a boolean.
8306    if (Op.getResNo() == 0)
8307      break;
8308    // Fallthrough
8309  case X86ISD::SETCC:
8310    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8311                                       Mask.getBitWidth() - 1);
8312    break;
8313  }
8314}
8315
8316/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8317/// node is a GlobalAddress + offset.
8318bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8319                                       GlobalValue* &GA, int64_t &Offset) const{
8320  if (N->getOpcode() == X86ISD::Wrapper) {
8321    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8322      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8323      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8324      return true;
8325    }
8326  }
8327  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8328}
8329
8330static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8331                                     EVT EltVT, LoadSDNode *&LDBase,
8332                                     unsigned &LastLoadedElt,
8333                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8334                                     const TargetLowering &TLI) {
8335  LDBase = NULL;
8336  LastLoadedElt = -1U;
8337  for (unsigned i = 0; i < NumElems; ++i) {
8338    if (N->getMaskElt(i) < 0) {
8339      if (!LDBase)
8340        return false;
8341      continue;
8342    }
8343
8344    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8345    if (!Elt.getNode() ||
8346        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8347      return false;
8348    if (!LDBase) {
8349      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8350        return false;
8351      LDBase = cast<LoadSDNode>(Elt.getNode());
8352      LastLoadedElt = i;
8353      continue;
8354    }
8355    if (Elt.getOpcode() == ISD::UNDEF)
8356      continue;
8357
8358    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8359    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8360      return false;
8361    LastLoadedElt = i;
8362  }
8363  return true;
8364}
8365
8366/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8367/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8368/// if the load addresses are consecutive, non-overlapping, and in the right
8369/// order.  In the case of v2i64, it will see if it can rewrite the
8370/// shuffle to be an appropriate build vector so it can take advantage of
8371// performBuildVectorCombine.
8372static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8373                                     const TargetLowering &TLI) {
8374  DebugLoc dl = N->getDebugLoc();
8375  EVT VT = N->getValueType(0);
8376  EVT EltVT = VT.getVectorElementType();
8377  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8378  unsigned NumElems = VT.getVectorNumElements();
8379
8380  if (VT.getSizeInBits() != 128)
8381    return SDValue();
8382
8383  // Try to combine a vector_shuffle into a 128-bit load.
8384  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8385  LoadSDNode *LD = NULL;
8386  unsigned LastLoadedElt;
8387  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8388                                MFI, TLI))
8389    return SDValue();
8390
8391  if (LastLoadedElt == NumElems - 1) {
8392    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8393      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8394                         LD->getSrcValue(), LD->getSrcValueOffset(),
8395                         LD->isVolatile());
8396    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8397                       LD->getSrcValue(), LD->getSrcValueOffset(),
8398                       LD->isVolatile(), LD->getAlignment());
8399  } else if (NumElems == 4 && LastLoadedElt == 1) {
8400    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8401    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8402    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8403    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8404  }
8405  return SDValue();
8406}
8407
8408/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8409static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8410                                    const X86Subtarget *Subtarget) {
8411  DebugLoc DL = N->getDebugLoc();
8412  SDValue Cond = N->getOperand(0);
8413  // Get the LHS/RHS of the select.
8414  SDValue LHS = N->getOperand(1);
8415  SDValue RHS = N->getOperand(2);
8416
8417  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8418  // instructions have the peculiarity that if either operand is a NaN,
8419  // they chose what we call the RHS operand (and as such are not symmetric).
8420  // It happens that this matches the semantics of the common C idiom
8421  // x<y?x:y and related forms, so we can recognize these cases.
8422  if (Subtarget->hasSSE2() &&
8423      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8424      Cond.getOpcode() == ISD::SETCC) {
8425    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8426
8427    unsigned Opcode = 0;
8428    // Check for x CC y ? x : y.
8429    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8430      switch (CC) {
8431      default: break;
8432      case ISD::SETULT:
8433        // This can be a min if we can prove that at least one of the operands
8434        // is not a nan.
8435        if (!FiniteOnlyFPMath()) {
8436          if (DAG.isKnownNeverNaN(RHS)) {
8437            // Put the potential NaN in the RHS so that SSE will preserve it.
8438            std::swap(LHS, RHS);
8439          } else if (!DAG.isKnownNeverNaN(LHS))
8440            break;
8441        }
8442        Opcode = X86ISD::FMIN;
8443        break;
8444      case ISD::SETOLE:
8445        // This can be a min if we can prove that at least one of the operands
8446        // is not a nan.
8447        if (!FiniteOnlyFPMath()) {
8448          if (DAG.isKnownNeverNaN(LHS)) {
8449            // Put the potential NaN in the RHS so that SSE will preserve it.
8450            std::swap(LHS, RHS);
8451          } else if (!DAG.isKnownNeverNaN(RHS))
8452            break;
8453        }
8454        Opcode = X86ISD::FMIN;
8455        break;
8456      case ISD::SETULE:
8457        // This can be a min, but if either operand is a NaN we need it to
8458        // preserve the original LHS.
8459        std::swap(LHS, RHS);
8460      case ISD::SETOLT:
8461      case ISD::SETLT:
8462      case ISD::SETLE:
8463        Opcode = X86ISD::FMIN;
8464        break;
8465
8466      case ISD::SETOGE:
8467        // This can be a max if we can prove that at least one of the operands
8468        // is not a nan.
8469        if (!FiniteOnlyFPMath()) {
8470          if (DAG.isKnownNeverNaN(LHS)) {
8471            // Put the potential NaN in the RHS so that SSE will preserve it.
8472            std::swap(LHS, RHS);
8473          } else if (!DAG.isKnownNeverNaN(RHS))
8474            break;
8475        }
8476        Opcode = X86ISD::FMAX;
8477        break;
8478      case ISD::SETUGT:
8479        // This can be a max if we can prove that at least one of the operands
8480        // is not a nan.
8481        if (!FiniteOnlyFPMath()) {
8482          if (DAG.isKnownNeverNaN(RHS)) {
8483            // Put the potential NaN in the RHS so that SSE will preserve it.
8484            std::swap(LHS, RHS);
8485          } else if (!DAG.isKnownNeverNaN(LHS))
8486            break;
8487        }
8488        Opcode = X86ISD::FMAX;
8489        break;
8490      case ISD::SETUGE:
8491        // This can be a max, but if either operand is a NaN we need it to
8492        // preserve the original LHS.
8493        std::swap(LHS, RHS);
8494      case ISD::SETOGT:
8495      case ISD::SETGT:
8496      case ISD::SETGE:
8497        Opcode = X86ISD::FMAX;
8498        break;
8499      }
8500    // Check for x CC y ? y : x -- a min/max with reversed arms.
8501    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8502      switch (CC) {
8503      default: break;
8504      case ISD::SETOGE:
8505        // This can be a min if we can prove that at least one of the operands
8506        // is not a nan.
8507        if (!FiniteOnlyFPMath()) {
8508          if (DAG.isKnownNeverNaN(RHS)) {
8509            // Put the potential NaN in the RHS so that SSE will preserve it.
8510            std::swap(LHS, RHS);
8511          } else if (!DAG.isKnownNeverNaN(LHS))
8512            break;
8513        }
8514        Opcode = X86ISD::FMIN;
8515        break;
8516      case ISD::SETUGT:
8517        // This can be a min if we can prove that at least one of the operands
8518        // is not a nan.
8519        if (!FiniteOnlyFPMath()) {
8520          if (DAG.isKnownNeverNaN(LHS)) {
8521            // Put the potential NaN in the RHS so that SSE will preserve it.
8522            std::swap(LHS, RHS);
8523          } else if (!DAG.isKnownNeverNaN(RHS))
8524            break;
8525        }
8526        Opcode = X86ISD::FMIN;
8527        break;
8528      case ISD::SETUGE:
8529        // This can be a min, but if either operand is a NaN we need it to
8530        // preserve the original LHS.
8531        std::swap(LHS, RHS);
8532      case ISD::SETOGT:
8533      case ISD::SETGT:
8534      case ISD::SETGE:
8535        Opcode = X86ISD::FMIN;
8536        break;
8537
8538      case ISD::SETULT:
8539        // This can be a max if we can prove that at least one of the operands
8540        // is not a nan.
8541        if (!FiniteOnlyFPMath()) {
8542          if (DAG.isKnownNeverNaN(LHS)) {
8543            // Put the potential NaN in the RHS so that SSE will preserve it.
8544            std::swap(LHS, RHS);
8545          } else if (!DAG.isKnownNeverNaN(RHS))
8546            break;
8547        }
8548        Opcode = X86ISD::FMAX;
8549        break;
8550      case ISD::SETOLE:
8551        // This can be a max if we can prove that at least one of the operands
8552        // is not a nan.
8553        if (!FiniteOnlyFPMath()) {
8554          if (DAG.isKnownNeverNaN(RHS)) {
8555            // Put the potential NaN in the RHS so that SSE will preserve it.
8556            std::swap(LHS, RHS);
8557          } else if (!DAG.isKnownNeverNaN(LHS))
8558            break;
8559        }
8560        Opcode = X86ISD::FMAX;
8561        break;
8562      case ISD::SETULE:
8563        // This can be a max, but if either operand is a NaN we need it to
8564        // preserve the original LHS.
8565        std::swap(LHS, RHS);
8566      case ISD::SETOLT:
8567      case ISD::SETLT:
8568      case ISD::SETLE:
8569        Opcode = X86ISD::FMAX;
8570        break;
8571      }
8572    }
8573
8574    if (Opcode)
8575      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8576  }
8577
8578  // If this is a select between two integer constants, try to do some
8579  // optimizations.
8580  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8581    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8582      // Don't do this for crazy integer types.
8583      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8584        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8585        // so that TrueC (the true value) is larger than FalseC.
8586        bool NeedsCondInvert = false;
8587
8588        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8589            // Efficiently invertible.
8590            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8591             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8592              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8593          NeedsCondInvert = true;
8594          std::swap(TrueC, FalseC);
8595        }
8596
8597        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8598        if (FalseC->getAPIntValue() == 0 &&
8599            TrueC->getAPIntValue().isPowerOf2()) {
8600          if (NeedsCondInvert) // Invert the condition if needed.
8601            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8602                               DAG.getConstant(1, Cond.getValueType()));
8603
8604          // Zero extend the condition if needed.
8605          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8606
8607          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8608          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8609                             DAG.getConstant(ShAmt, MVT::i8));
8610        }
8611
8612        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8613        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8614          if (NeedsCondInvert) // Invert the condition if needed.
8615            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8616                               DAG.getConstant(1, Cond.getValueType()));
8617
8618          // Zero extend the condition if needed.
8619          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8620                             FalseC->getValueType(0), Cond);
8621          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8622                             SDValue(FalseC, 0));
8623        }
8624
8625        // Optimize cases that will turn into an LEA instruction.  This requires
8626        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8627        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8628          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8629          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8630
8631          bool isFastMultiplier = false;
8632          if (Diff < 10) {
8633            switch ((unsigned char)Diff) {
8634              default: break;
8635              case 1:  // result = add base, cond
8636              case 2:  // result = lea base(    , cond*2)
8637              case 3:  // result = lea base(cond, cond*2)
8638              case 4:  // result = lea base(    , cond*4)
8639              case 5:  // result = lea base(cond, cond*4)
8640              case 8:  // result = lea base(    , cond*8)
8641              case 9:  // result = lea base(cond, cond*8)
8642                isFastMultiplier = true;
8643                break;
8644            }
8645          }
8646
8647          if (isFastMultiplier) {
8648            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8649            if (NeedsCondInvert) // Invert the condition if needed.
8650              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8651                                 DAG.getConstant(1, Cond.getValueType()));
8652
8653            // Zero extend the condition if needed.
8654            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8655                               Cond);
8656            // Scale the condition by the difference.
8657            if (Diff != 1)
8658              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8659                                 DAG.getConstant(Diff, Cond.getValueType()));
8660
8661            // Add the base if non-zero.
8662            if (FalseC->getAPIntValue() != 0)
8663              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8664                                 SDValue(FalseC, 0));
8665            return Cond;
8666          }
8667        }
8668      }
8669  }
8670
8671  return SDValue();
8672}
8673
8674/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8675static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8676                                  TargetLowering::DAGCombinerInfo &DCI) {
8677  DebugLoc DL = N->getDebugLoc();
8678
8679  // If the flag operand isn't dead, don't touch this CMOV.
8680  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8681    return SDValue();
8682
8683  // If this is a select between two integer constants, try to do some
8684  // optimizations.  Note that the operands are ordered the opposite of SELECT
8685  // operands.
8686  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8687    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8688      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8689      // larger than FalseC (the false value).
8690      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8691
8692      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8693        CC = X86::GetOppositeBranchCondition(CC);
8694        std::swap(TrueC, FalseC);
8695      }
8696
8697      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8698      // This is efficient for any integer data type (including i8/i16) and
8699      // shift amount.
8700      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8701        SDValue Cond = N->getOperand(3);
8702        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8703                           DAG.getConstant(CC, MVT::i8), Cond);
8704
8705        // Zero extend the condition if needed.
8706        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8707
8708        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8709        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8710                           DAG.getConstant(ShAmt, MVT::i8));
8711        if (N->getNumValues() == 2)  // Dead flag value?
8712          return DCI.CombineTo(N, Cond, SDValue());
8713        return Cond;
8714      }
8715
8716      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8717      // for any integer data type, including i8/i16.
8718      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8719        SDValue Cond = N->getOperand(3);
8720        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8721                           DAG.getConstant(CC, MVT::i8), Cond);
8722
8723        // Zero extend the condition if needed.
8724        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8725                           FalseC->getValueType(0), Cond);
8726        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8727                           SDValue(FalseC, 0));
8728
8729        if (N->getNumValues() == 2)  // Dead flag value?
8730          return DCI.CombineTo(N, Cond, SDValue());
8731        return Cond;
8732      }
8733
8734      // Optimize cases that will turn into an LEA instruction.  This requires
8735      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8736      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8737        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8738        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8739
8740        bool isFastMultiplier = false;
8741        if (Diff < 10) {
8742          switch ((unsigned char)Diff) {
8743          default: break;
8744          case 1:  // result = add base, cond
8745          case 2:  // result = lea base(    , cond*2)
8746          case 3:  // result = lea base(cond, cond*2)
8747          case 4:  // result = lea base(    , cond*4)
8748          case 5:  // result = lea base(cond, cond*4)
8749          case 8:  // result = lea base(    , cond*8)
8750          case 9:  // result = lea base(cond, cond*8)
8751            isFastMultiplier = true;
8752            break;
8753          }
8754        }
8755
8756        if (isFastMultiplier) {
8757          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8758          SDValue Cond = N->getOperand(3);
8759          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8760                             DAG.getConstant(CC, MVT::i8), Cond);
8761          // Zero extend the condition if needed.
8762          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8763                             Cond);
8764          // Scale the condition by the difference.
8765          if (Diff != 1)
8766            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8767                               DAG.getConstant(Diff, Cond.getValueType()));
8768
8769          // Add the base if non-zero.
8770          if (FalseC->getAPIntValue() != 0)
8771            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8772                               SDValue(FalseC, 0));
8773          if (N->getNumValues() == 2)  // Dead flag value?
8774            return DCI.CombineTo(N, Cond, SDValue());
8775          return Cond;
8776        }
8777      }
8778    }
8779  }
8780  return SDValue();
8781}
8782
8783
8784/// PerformMulCombine - Optimize a single multiply with constant into two
8785/// in order to implement it with two cheaper instructions, e.g.
8786/// LEA + SHL, LEA + LEA.
8787static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8788                                 TargetLowering::DAGCombinerInfo &DCI) {
8789  if (DAG.getMachineFunction().
8790      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8791    return SDValue();
8792
8793  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8794    return SDValue();
8795
8796  EVT VT = N->getValueType(0);
8797  if (VT != MVT::i64)
8798    return SDValue();
8799
8800  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8801  if (!C)
8802    return SDValue();
8803  uint64_t MulAmt = C->getZExtValue();
8804  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8805    return SDValue();
8806
8807  uint64_t MulAmt1 = 0;
8808  uint64_t MulAmt2 = 0;
8809  if ((MulAmt % 9) == 0) {
8810    MulAmt1 = 9;
8811    MulAmt2 = MulAmt / 9;
8812  } else if ((MulAmt % 5) == 0) {
8813    MulAmt1 = 5;
8814    MulAmt2 = MulAmt / 5;
8815  } else if ((MulAmt % 3) == 0) {
8816    MulAmt1 = 3;
8817    MulAmt2 = MulAmt / 3;
8818  }
8819  if (MulAmt2 &&
8820      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8821    DebugLoc DL = N->getDebugLoc();
8822
8823    if (isPowerOf2_64(MulAmt2) &&
8824        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8825      // If second multiplifer is pow2, issue it first. We want the multiply by
8826      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8827      // is an add.
8828      std::swap(MulAmt1, MulAmt2);
8829
8830    SDValue NewMul;
8831    if (isPowerOf2_64(MulAmt1))
8832      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8833                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8834    else
8835      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8836                           DAG.getConstant(MulAmt1, VT));
8837
8838    if (isPowerOf2_64(MulAmt2))
8839      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8840                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8841    else
8842      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8843                           DAG.getConstant(MulAmt2, VT));
8844
8845    // Do not add new nodes to DAG combiner worklist.
8846    DCI.CombineTo(N, NewMul, false);
8847  }
8848  return SDValue();
8849}
8850
8851
8852/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8853///                       when possible.
8854static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8855                                   const X86Subtarget *Subtarget) {
8856  // On X86 with SSE2 support, we can transform this to a vector shift if
8857  // all elements are shifted by the same amount.  We can't do this in legalize
8858  // because the a constant vector is typically transformed to a constant pool
8859  // so we have no knowledge of the shift amount.
8860  if (!Subtarget->hasSSE2())
8861    return SDValue();
8862
8863  EVT VT = N->getValueType(0);
8864  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8865    return SDValue();
8866
8867  SDValue ShAmtOp = N->getOperand(1);
8868  EVT EltVT = VT.getVectorElementType();
8869  DebugLoc DL = N->getDebugLoc();
8870  SDValue BaseShAmt = SDValue();
8871  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8872    unsigned NumElts = VT.getVectorNumElements();
8873    unsigned i = 0;
8874    for (; i != NumElts; ++i) {
8875      SDValue Arg = ShAmtOp.getOperand(i);
8876      if (Arg.getOpcode() == ISD::UNDEF) continue;
8877      BaseShAmt = Arg;
8878      break;
8879    }
8880    for (; i != NumElts; ++i) {
8881      SDValue Arg = ShAmtOp.getOperand(i);
8882      if (Arg.getOpcode() == ISD::UNDEF) continue;
8883      if (Arg != BaseShAmt) {
8884        return SDValue();
8885      }
8886    }
8887  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8888             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8889    SDValue InVec = ShAmtOp.getOperand(0);
8890    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8891      unsigned NumElts = InVec.getValueType().getVectorNumElements();
8892      unsigned i = 0;
8893      for (; i != NumElts; ++i) {
8894        SDValue Arg = InVec.getOperand(i);
8895        if (Arg.getOpcode() == ISD::UNDEF) continue;
8896        BaseShAmt = Arg;
8897        break;
8898      }
8899    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8900       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8901         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8902         if (C->getZExtValue() == SplatIdx)
8903           BaseShAmt = InVec.getOperand(1);
8904       }
8905    }
8906    if (BaseShAmt.getNode() == 0)
8907      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8908                              DAG.getIntPtrConstant(0));
8909  } else
8910    return SDValue();
8911
8912  // The shift amount is an i32.
8913  if (EltVT.bitsGT(MVT::i32))
8914    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8915  else if (EltVT.bitsLT(MVT::i32))
8916    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8917
8918  // The shift amount is identical so we can do a vector shift.
8919  SDValue  ValOp = N->getOperand(0);
8920  switch (N->getOpcode()) {
8921  default:
8922    llvm_unreachable("Unknown shift opcode!");
8923    break;
8924  case ISD::SHL:
8925    if (VT == MVT::v2i64)
8926      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8927                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8928                         ValOp, BaseShAmt);
8929    if (VT == MVT::v4i32)
8930      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8931                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8932                         ValOp, BaseShAmt);
8933    if (VT == MVT::v8i16)
8934      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8935                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8936                         ValOp, BaseShAmt);
8937    break;
8938  case ISD::SRA:
8939    if (VT == MVT::v4i32)
8940      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8941                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8942                         ValOp, BaseShAmt);
8943    if (VT == MVT::v8i16)
8944      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8945                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8946                         ValOp, BaseShAmt);
8947    break;
8948  case ISD::SRL:
8949    if (VT == MVT::v2i64)
8950      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8951                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8952                         ValOp, BaseShAmt);
8953    if (VT == MVT::v4i32)
8954      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8955                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8956                         ValOp, BaseShAmt);
8957    if (VT ==  MVT::v8i16)
8958      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8959                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8960                         ValOp, BaseShAmt);
8961    break;
8962  }
8963  return SDValue();
8964}
8965
8966/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8967static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8968                                   const X86Subtarget *Subtarget) {
8969  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8970  // the FP state in cases where an emms may be missing.
8971  // A preferable solution to the general problem is to figure out the right
8972  // places to insert EMMS.  This qualifies as a quick hack.
8973
8974  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8975  StoreSDNode *St = cast<StoreSDNode>(N);
8976  EVT VT = St->getValue().getValueType();
8977  if (VT.getSizeInBits() != 64)
8978    return SDValue();
8979
8980  const Function *F = DAG.getMachineFunction().getFunction();
8981  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8982  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8983    && Subtarget->hasSSE2();
8984  if ((VT.isVector() ||
8985       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8986      isa<LoadSDNode>(St->getValue()) &&
8987      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8988      St->getChain().hasOneUse() && !St->isVolatile()) {
8989    SDNode* LdVal = St->getValue().getNode();
8990    LoadSDNode *Ld = 0;
8991    int TokenFactorIndex = -1;
8992    SmallVector<SDValue, 8> Ops;
8993    SDNode* ChainVal = St->getChain().getNode();
8994    // Must be a store of a load.  We currently handle two cases:  the load
8995    // is a direct child, and it's under an intervening TokenFactor.  It is
8996    // possible to dig deeper under nested TokenFactors.
8997    if (ChainVal == LdVal)
8998      Ld = cast<LoadSDNode>(St->getChain());
8999    else if (St->getValue().hasOneUse() &&
9000             ChainVal->getOpcode() == ISD::TokenFactor) {
9001      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9002        if (ChainVal->getOperand(i).getNode() == LdVal) {
9003          TokenFactorIndex = i;
9004          Ld = cast<LoadSDNode>(St->getValue());
9005        } else
9006          Ops.push_back(ChainVal->getOperand(i));
9007      }
9008    }
9009
9010    if (!Ld || !ISD::isNormalLoad(Ld))
9011      return SDValue();
9012
9013    // If this is not the MMX case, i.e. we are just turning i64 load/store
9014    // into f64 load/store, avoid the transformation if there are multiple
9015    // uses of the loaded value.
9016    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9017      return SDValue();
9018
9019    DebugLoc LdDL = Ld->getDebugLoc();
9020    DebugLoc StDL = N->getDebugLoc();
9021    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9022    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9023    // pair instead.
9024    if (Subtarget->is64Bit() || F64IsLegal) {
9025      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9026      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9027                                  Ld->getBasePtr(), Ld->getSrcValue(),
9028                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9029                                  Ld->getAlignment());
9030      SDValue NewChain = NewLd.getValue(1);
9031      if (TokenFactorIndex != -1) {
9032        Ops.push_back(NewChain);
9033        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9034                               Ops.size());
9035      }
9036      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9037                          St->getSrcValue(), St->getSrcValueOffset(),
9038                          St->isVolatile(), St->getAlignment());
9039    }
9040
9041    // Otherwise, lower to two pairs of 32-bit loads / stores.
9042    SDValue LoAddr = Ld->getBasePtr();
9043    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9044                                 DAG.getConstant(4, MVT::i32));
9045
9046    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9047                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9048                               Ld->isVolatile(), Ld->getAlignment());
9049    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9050                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9051                               Ld->isVolatile(),
9052                               MinAlign(Ld->getAlignment(), 4));
9053
9054    SDValue NewChain = LoLd.getValue(1);
9055    if (TokenFactorIndex != -1) {
9056      Ops.push_back(LoLd);
9057      Ops.push_back(HiLd);
9058      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9059                             Ops.size());
9060    }
9061
9062    LoAddr = St->getBasePtr();
9063    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9064                         DAG.getConstant(4, MVT::i32));
9065
9066    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9067                                St->getSrcValue(), St->getSrcValueOffset(),
9068                                St->isVolatile(), St->getAlignment());
9069    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9070                                St->getSrcValue(),
9071                                St->getSrcValueOffset() + 4,
9072                                St->isVolatile(),
9073                                MinAlign(St->getAlignment(), 4));
9074    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9075  }
9076  return SDValue();
9077}
9078
9079/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9080/// X86ISD::FXOR nodes.
9081static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9082  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9083  // F[X]OR(0.0, x) -> x
9084  // F[X]OR(x, 0.0) -> x
9085  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9086    if (C->getValueAPF().isPosZero())
9087      return N->getOperand(1);
9088  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9089    if (C->getValueAPF().isPosZero())
9090      return N->getOperand(0);
9091  return SDValue();
9092}
9093
9094/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9095static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9096  // FAND(0.0, x) -> 0.0
9097  // FAND(x, 0.0) -> 0.0
9098  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9099    if (C->getValueAPF().isPosZero())
9100      return N->getOperand(0);
9101  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9102    if (C->getValueAPF().isPosZero())
9103      return N->getOperand(1);
9104  return SDValue();
9105}
9106
9107static SDValue PerformBTCombine(SDNode *N,
9108                                SelectionDAG &DAG,
9109                                TargetLowering::DAGCombinerInfo &DCI) {
9110  // BT ignores high bits in the bit index operand.
9111  SDValue Op1 = N->getOperand(1);
9112  if (Op1.hasOneUse()) {
9113    unsigned BitWidth = Op1.getValueSizeInBits();
9114    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9115    APInt KnownZero, KnownOne;
9116    TargetLowering::TargetLoweringOpt TLO(DAG);
9117    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9118    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9119        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9120      DCI.CommitTargetLoweringOpt(TLO);
9121  }
9122  return SDValue();
9123}
9124
9125static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9126  SDValue Op = N->getOperand(0);
9127  if (Op.getOpcode() == ISD::BIT_CONVERT)
9128    Op = Op.getOperand(0);
9129  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9130  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9131      VT.getVectorElementType().getSizeInBits() ==
9132      OpVT.getVectorElementType().getSizeInBits()) {
9133    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9134  }
9135  return SDValue();
9136}
9137
9138// On X86 and X86-64, atomic operations are lowered to locked instructions.
9139// Locked instructions, in turn, have implicit fence semantics (all memory
9140// operations are flushed before issuing the locked instruction, and the
9141// are not buffered), so we can fold away the common pattern of
9142// fence-atomic-fence.
9143static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9144  SDValue atomic = N->getOperand(0);
9145  switch (atomic.getOpcode()) {
9146    case ISD::ATOMIC_CMP_SWAP:
9147    case ISD::ATOMIC_SWAP:
9148    case ISD::ATOMIC_LOAD_ADD:
9149    case ISD::ATOMIC_LOAD_SUB:
9150    case ISD::ATOMIC_LOAD_AND:
9151    case ISD::ATOMIC_LOAD_OR:
9152    case ISD::ATOMIC_LOAD_XOR:
9153    case ISD::ATOMIC_LOAD_NAND:
9154    case ISD::ATOMIC_LOAD_MIN:
9155    case ISD::ATOMIC_LOAD_MAX:
9156    case ISD::ATOMIC_LOAD_UMIN:
9157    case ISD::ATOMIC_LOAD_UMAX:
9158      break;
9159    default:
9160      return SDValue();
9161  }
9162
9163  SDValue fence = atomic.getOperand(0);
9164  if (fence.getOpcode() != ISD::MEMBARRIER)
9165    return SDValue();
9166
9167  switch (atomic.getOpcode()) {
9168    case ISD::ATOMIC_CMP_SWAP:
9169      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9170                                    atomic.getOperand(1), atomic.getOperand(2),
9171                                    atomic.getOperand(3));
9172    case ISD::ATOMIC_SWAP:
9173    case ISD::ATOMIC_LOAD_ADD:
9174    case ISD::ATOMIC_LOAD_SUB:
9175    case ISD::ATOMIC_LOAD_AND:
9176    case ISD::ATOMIC_LOAD_OR:
9177    case ISD::ATOMIC_LOAD_XOR:
9178    case ISD::ATOMIC_LOAD_NAND:
9179    case ISD::ATOMIC_LOAD_MIN:
9180    case ISD::ATOMIC_LOAD_MAX:
9181    case ISD::ATOMIC_LOAD_UMIN:
9182    case ISD::ATOMIC_LOAD_UMAX:
9183      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9184                                    atomic.getOperand(1), atomic.getOperand(2));
9185    default:
9186      return SDValue();
9187  }
9188}
9189
9190SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9191                                             DAGCombinerInfo &DCI) const {
9192  SelectionDAG &DAG = DCI.DAG;
9193  switch (N->getOpcode()) {
9194  default: break;
9195  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9196  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9197  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9198  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9199  case ISD::SHL:
9200  case ISD::SRA:
9201  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9202  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9203  case X86ISD::FXOR:
9204  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9205  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9206  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9207  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9208  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9209  }
9210
9211  return SDValue();
9212}
9213
9214//===----------------------------------------------------------------------===//
9215//                           X86 Inline Assembly Support
9216//===----------------------------------------------------------------------===//
9217
9218static bool LowerToBSwap(CallInst *CI) {
9219  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9220  // we will turn this bswap into something that will be lowered to logical ops
9221  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9222  // so don't worry about this.
9223
9224  // Verify this is a simple bswap.
9225  if (CI->getNumOperands() != 2 ||
9226      CI->getType() != CI->getOperand(1)->getType() ||
9227      !CI->getType()->isInteger())
9228    return false;
9229
9230  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9231  if (!Ty || Ty->getBitWidth() % 16 != 0)
9232    return false;
9233
9234  // Okay, we can do this xform, do so now.
9235  const Type *Tys[] = { Ty };
9236  Module *M = CI->getParent()->getParent()->getParent();
9237  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9238
9239  Value *Op = CI->getOperand(1);
9240  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9241
9242  CI->replaceAllUsesWith(Op);
9243  CI->eraseFromParent();
9244  return true;
9245}
9246
9247bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9248  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9249  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9250
9251  std::string AsmStr = IA->getAsmString();
9252
9253  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9254  std::vector<std::string> AsmPieces;
9255  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9256
9257  switch (AsmPieces.size()) {
9258  default: return false;
9259  case 1:
9260    AsmStr = AsmPieces[0];
9261    AsmPieces.clear();
9262    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9263
9264    // bswap $0
9265    if (AsmPieces.size() == 2 &&
9266        (AsmPieces[0] == "bswap" ||
9267         AsmPieces[0] == "bswapq" ||
9268         AsmPieces[0] == "bswapl") &&
9269        (AsmPieces[1] == "$0" ||
9270         AsmPieces[1] == "${0:q}")) {
9271      // No need to check constraints, nothing other than the equivalent of
9272      // "=r,0" would be valid here.
9273      return LowerToBSwap(CI);
9274    }
9275    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9276    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
9277        AsmPieces.size() == 3 &&
9278        AsmPieces[0] == "rorw" &&
9279        AsmPieces[1] == "$$8," &&
9280        AsmPieces[2] == "${0:w}" &&
9281        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9282      return LowerToBSwap(CI);
9283    }
9284    break;
9285  case 3:
9286    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9287        Constraints.size() >= 2 &&
9288        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9289        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9290      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9291      std::vector<std::string> Words;
9292      SplitString(AsmPieces[0], Words, " \t");
9293      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9294        Words.clear();
9295        SplitString(AsmPieces[1], Words, " \t");
9296        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9297          Words.clear();
9298          SplitString(AsmPieces[2], Words, " \t,");
9299          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9300              Words[2] == "%edx") {
9301            return LowerToBSwap(CI);
9302          }
9303        }
9304      }
9305    }
9306    break;
9307  }
9308  return false;
9309}
9310
9311
9312
9313/// getConstraintType - Given a constraint letter, return the type of
9314/// constraint it is for this target.
9315X86TargetLowering::ConstraintType
9316X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9317  if (Constraint.size() == 1) {
9318    switch (Constraint[0]) {
9319    case 'A':
9320      return C_Register;
9321    case 'f':
9322    case 'r':
9323    case 'R':
9324    case 'l':
9325    case 'q':
9326    case 'Q':
9327    case 'x':
9328    case 'y':
9329    case 'Y':
9330      return C_RegisterClass;
9331    case 'e':
9332    case 'Z':
9333      return C_Other;
9334    default:
9335      break;
9336    }
9337  }
9338  return TargetLowering::getConstraintType(Constraint);
9339}
9340
9341/// LowerXConstraint - try to replace an X constraint, which matches anything,
9342/// with another that has more specific requirements based on the type of the
9343/// corresponding operand.
9344const char *X86TargetLowering::
9345LowerXConstraint(EVT ConstraintVT) const {
9346  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9347  // 'f' like normal targets.
9348  if (ConstraintVT.isFloatingPoint()) {
9349    if (Subtarget->hasSSE2())
9350      return "Y";
9351    if (Subtarget->hasSSE1())
9352      return "x";
9353  }
9354
9355  return TargetLowering::LowerXConstraint(ConstraintVT);
9356}
9357
9358/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9359/// vector.  If it is invalid, don't add anything to Ops.
9360void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9361                                                     char Constraint,
9362                                                     bool hasMemory,
9363                                                     std::vector<SDValue>&Ops,
9364                                                     SelectionDAG &DAG) const {
9365  SDValue Result(0, 0);
9366
9367  switch (Constraint) {
9368  default: break;
9369  case 'I':
9370    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9371      if (C->getZExtValue() <= 31) {
9372        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9373        break;
9374      }
9375    }
9376    return;
9377  case 'J':
9378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9379      if (C->getZExtValue() <= 63) {
9380        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9381        break;
9382      }
9383    }
9384    return;
9385  case 'K':
9386    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9387      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9388        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9389        break;
9390      }
9391    }
9392    return;
9393  case 'N':
9394    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9395      if (C->getZExtValue() <= 255) {
9396        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9397        break;
9398      }
9399    }
9400    return;
9401  case 'e': {
9402    // 32-bit signed value
9403    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9404      const ConstantInt *CI = C->getConstantIntValue();
9405      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9406                                  C->getSExtValue())) {
9407        // Widen to 64 bits here to get it sign extended.
9408        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9409        break;
9410      }
9411    // FIXME gcc accepts some relocatable values here too, but only in certain
9412    // memory models; it's complicated.
9413    }
9414    return;
9415  }
9416  case 'Z': {
9417    // 32-bit unsigned value
9418    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9419      const ConstantInt *CI = C->getConstantIntValue();
9420      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9421                                  C->getZExtValue())) {
9422        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9423        break;
9424      }
9425    }
9426    // FIXME gcc accepts some relocatable values here too, but only in certain
9427    // memory models; it's complicated.
9428    return;
9429  }
9430  case 'i': {
9431    // Literal immediates are always ok.
9432    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9433      // Widen to 64 bits here to get it sign extended.
9434      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9435      break;
9436    }
9437
9438    // If we are in non-pic codegen mode, we allow the address of a global (with
9439    // an optional displacement) to be used with 'i'.
9440    GlobalAddressSDNode *GA = 0;
9441    int64_t Offset = 0;
9442
9443    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9444    while (1) {
9445      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9446        Offset += GA->getOffset();
9447        break;
9448      } else if (Op.getOpcode() == ISD::ADD) {
9449        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9450          Offset += C->getZExtValue();
9451          Op = Op.getOperand(0);
9452          continue;
9453        }
9454      } else if (Op.getOpcode() == ISD::SUB) {
9455        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9456          Offset += -C->getZExtValue();
9457          Op = Op.getOperand(0);
9458          continue;
9459        }
9460      }
9461
9462      // Otherwise, this isn't something we can handle, reject it.
9463      return;
9464    }
9465
9466    GlobalValue *GV = GA->getGlobal();
9467    // If we require an extra load to get this address, as in PIC mode, we
9468    // can't accept it.
9469    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9470                                                        getTargetMachine())))
9471      return;
9472
9473    if (hasMemory)
9474      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9475    else
9476      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9477    Result = Op;
9478    break;
9479  }
9480  }
9481
9482  if (Result.getNode()) {
9483    Ops.push_back(Result);
9484    return;
9485  }
9486  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9487                                                      Ops, DAG);
9488}
9489
9490std::vector<unsigned> X86TargetLowering::
9491getRegClassForInlineAsmConstraint(const std::string &Constraint,
9492                                  EVT VT) const {
9493  if (Constraint.size() == 1) {
9494    // FIXME: not handling fp-stack yet!
9495    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9496    default: break;  // Unknown constraint letter
9497    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9498      if (Subtarget->is64Bit()) {
9499        if (VT == MVT::i32)
9500          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9501                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9502                                       X86::R10D,X86::R11D,X86::R12D,
9503                                       X86::R13D,X86::R14D,X86::R15D,
9504                                       X86::EBP, X86::ESP, 0);
9505        else if (VT == MVT::i16)
9506          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9507                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9508                                       X86::R10W,X86::R11W,X86::R12W,
9509                                       X86::R13W,X86::R14W,X86::R15W,
9510                                       X86::BP,  X86::SP, 0);
9511        else if (VT == MVT::i8)
9512          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9513                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9514                                       X86::R10B,X86::R11B,X86::R12B,
9515                                       X86::R13B,X86::R14B,X86::R15B,
9516                                       X86::BPL, X86::SPL, 0);
9517
9518        else if (VT == MVT::i64)
9519          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9520                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9521                                       X86::R10, X86::R11, X86::R12,
9522                                       X86::R13, X86::R14, X86::R15,
9523                                       X86::RBP, X86::RSP, 0);
9524
9525        break;
9526      }
9527      // 32-bit fallthrough
9528    case 'Q':   // Q_REGS
9529      if (VT == MVT::i32)
9530        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9531      else if (VT == MVT::i16)
9532        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9533      else if (VT == MVT::i8)
9534        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9535      else if (VT == MVT::i64)
9536        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9537      break;
9538    }
9539  }
9540
9541  return std::vector<unsigned>();
9542}
9543
9544std::pair<unsigned, const TargetRegisterClass*>
9545X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9546                                                EVT VT) const {
9547  // First, see if this is a constraint that directly corresponds to an LLVM
9548  // register class.
9549  if (Constraint.size() == 1) {
9550    // GCC Constraint Letters
9551    switch (Constraint[0]) {
9552    default: break;
9553    case 'r':   // GENERAL_REGS
9554    case 'l':   // INDEX_REGS
9555      if (VT == MVT::i8)
9556        return std::make_pair(0U, X86::GR8RegisterClass);
9557      if (VT == MVT::i16)
9558        return std::make_pair(0U, X86::GR16RegisterClass);
9559      if (VT == MVT::i32 || !Subtarget->is64Bit())
9560        return std::make_pair(0U, X86::GR32RegisterClass);
9561      return std::make_pair(0U, X86::GR64RegisterClass);
9562    case 'R':   // LEGACY_REGS
9563      if (VT == MVT::i8)
9564        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
9565      if (VT == MVT::i16)
9566        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
9567      if (VT == MVT::i32 || !Subtarget->is64Bit())
9568        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
9569      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
9570    case 'f':  // FP Stack registers.
9571      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9572      // value to the correct fpstack register class.
9573      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9574        return std::make_pair(0U, X86::RFP32RegisterClass);
9575      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9576        return std::make_pair(0U, X86::RFP64RegisterClass);
9577      return std::make_pair(0U, X86::RFP80RegisterClass);
9578    case 'y':   // MMX_REGS if MMX allowed.
9579      if (!Subtarget->hasMMX()) break;
9580      return std::make_pair(0U, X86::VR64RegisterClass);
9581    case 'Y':   // SSE_REGS if SSE2 allowed
9582      if (!Subtarget->hasSSE2()) break;
9583      // FALL THROUGH.
9584    case 'x':   // SSE_REGS if SSE1 allowed
9585      if (!Subtarget->hasSSE1()) break;
9586
9587      switch (VT.getSimpleVT().SimpleTy) {
9588      default: break;
9589      // Scalar SSE types.
9590      case MVT::f32:
9591      case MVT::i32:
9592        return std::make_pair(0U, X86::FR32RegisterClass);
9593      case MVT::f64:
9594      case MVT::i64:
9595        return std::make_pair(0U, X86::FR64RegisterClass);
9596      // Vector types.
9597      case MVT::v16i8:
9598      case MVT::v8i16:
9599      case MVT::v4i32:
9600      case MVT::v2i64:
9601      case MVT::v4f32:
9602      case MVT::v2f64:
9603        return std::make_pair(0U, X86::VR128RegisterClass);
9604      }
9605      break;
9606    }
9607  }
9608
9609  // Use the default implementation in TargetLowering to convert the register
9610  // constraint into a member of a register class.
9611  std::pair<unsigned, const TargetRegisterClass*> Res;
9612  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9613
9614  // Not found as a standard register?
9615  if (Res.second == 0) {
9616    // Map st(0) -> st(7) -> ST0
9617    if (Constraint.size() == 7 && Constraint[0] == '{' &&
9618        tolower(Constraint[1]) == 's' &&
9619        tolower(Constraint[2]) == 't' &&
9620        Constraint[3] == '(' &&
9621        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9622        Constraint[5] == ')' &&
9623        Constraint[6] == '}') {
9624
9625      Res.first = X86::ST0+Constraint[4]-'0';
9626      Res.second = X86::RFP80RegisterClass;
9627      return Res;
9628    }
9629
9630    // GCC allows "st(0)" to be called just plain "st".
9631    if (StringRef("{st}").equals_lower(Constraint)) {
9632      Res.first = X86::ST0;
9633      Res.second = X86::RFP80RegisterClass;
9634      return Res;
9635    }
9636
9637    // flags -> EFLAGS
9638    if (StringRef("{flags}").equals_lower(Constraint)) {
9639      Res.first = X86::EFLAGS;
9640      Res.second = X86::CCRRegisterClass;
9641      return Res;
9642    }
9643
9644    // 'A' means EAX + EDX.
9645    if (Constraint == "A") {
9646      Res.first = X86::EAX;
9647      Res.second = X86::GR32_ADRegisterClass;
9648      return Res;
9649    }
9650    return Res;
9651  }
9652
9653  // Otherwise, check to see if this is a register class of the wrong value
9654  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9655  // turn into {ax},{dx}.
9656  if (Res.second->hasType(VT))
9657    return Res;   // Correct type already, nothing to do.
9658
9659  // All of the single-register GCC register classes map their values onto
9660  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9661  // really want an 8-bit or 32-bit register, map to the appropriate register
9662  // class and return the appropriate register.
9663  if (Res.second == X86::GR16RegisterClass) {
9664    if (VT == MVT::i8) {
9665      unsigned DestReg = 0;
9666      switch (Res.first) {
9667      default: break;
9668      case X86::AX: DestReg = X86::AL; break;
9669      case X86::DX: DestReg = X86::DL; break;
9670      case X86::CX: DestReg = X86::CL; break;
9671      case X86::BX: DestReg = X86::BL; break;
9672      }
9673      if (DestReg) {
9674        Res.first = DestReg;
9675        Res.second = X86::GR8RegisterClass;
9676      }
9677    } else if (VT == MVT::i32) {
9678      unsigned DestReg = 0;
9679      switch (Res.first) {
9680      default: break;
9681      case X86::AX: DestReg = X86::EAX; break;
9682      case X86::DX: DestReg = X86::EDX; break;
9683      case X86::CX: DestReg = X86::ECX; break;
9684      case X86::BX: DestReg = X86::EBX; break;
9685      case X86::SI: DestReg = X86::ESI; break;
9686      case X86::DI: DestReg = X86::EDI; break;
9687      case X86::BP: DestReg = X86::EBP; break;
9688      case X86::SP: DestReg = X86::ESP; break;
9689      }
9690      if (DestReg) {
9691        Res.first = DestReg;
9692        Res.second = X86::GR32RegisterClass;
9693      }
9694    } else if (VT == MVT::i64) {
9695      unsigned DestReg = 0;
9696      switch (Res.first) {
9697      default: break;
9698      case X86::AX: DestReg = X86::RAX; break;
9699      case X86::DX: DestReg = X86::RDX; break;
9700      case X86::CX: DestReg = X86::RCX; break;
9701      case X86::BX: DestReg = X86::RBX; break;
9702      case X86::SI: DestReg = X86::RSI; break;
9703      case X86::DI: DestReg = X86::RDI; break;
9704      case X86::BP: DestReg = X86::RBP; break;
9705      case X86::SP: DestReg = X86::RSP; break;
9706      }
9707      if (DestReg) {
9708        Res.first = DestReg;
9709        Res.second = X86::GR64RegisterClass;
9710      }
9711    }
9712  } else if (Res.second == X86::FR32RegisterClass ||
9713             Res.second == X86::FR64RegisterClass ||
9714             Res.second == X86::VR128RegisterClass) {
9715    // Handle references to XMM physical registers that got mapped into the
9716    // wrong class.  This can happen with constraints like {xmm0} where the
9717    // target independent register mapper will just pick the first match it can
9718    // find, ignoring the required type.
9719    if (VT == MVT::f32)
9720      Res.second = X86::FR32RegisterClass;
9721    else if (VT == MVT::f64)
9722      Res.second = X86::FR64RegisterClass;
9723    else if (X86::VR128RegisterClass->hasType(VT))
9724      Res.second = X86::VR128RegisterClass;
9725  }
9726
9727  return Res;
9728}
9729
9730//===----------------------------------------------------------------------===//
9731//                           X86 Widen vector type
9732//===----------------------------------------------------------------------===//
9733
9734/// getWidenVectorType: given a vector type, returns the type to widen
9735/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9736/// If there is no vector type that we want to widen to, returns MVT::Other
9737/// When and where to widen is target dependent based on the cost of
9738/// scalarizing vs using the wider vector type.
9739
9740EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9741  assert(VT.isVector());
9742  if (isTypeLegal(VT))
9743    return VT;
9744
9745  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9746  //       type based on element type.  This would speed up our search (though
9747  //       it may not be worth it since the size of the list is relatively
9748  //       small).
9749  EVT EltVT = VT.getVectorElementType();
9750  unsigned NElts = VT.getVectorNumElements();
9751
9752  // On X86, it make sense to widen any vector wider than 1
9753  if (NElts <= 1)
9754    return MVT::Other;
9755
9756  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9757       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9758    EVT SVT = (MVT::SimpleValueType)nVT;
9759
9760    if (isTypeLegal(SVT) &&
9761        SVT.getVectorElementType() == EltVT &&
9762        SVT.getVectorNumElements() > NElts)
9763      return SVT;
9764  }
9765  return MVT::Other;
9766}
9767