X86ISelLowering.cpp revision 7e22977c0fab3bc46745c8aa4155db6c77663a58
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/ADT/StringExtras.h"
36using namespace llvm;
37
38// FIXME: temporary.
39static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
40                                  cl::desc("Enable fastcc on X86"));
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42  : TargetLowering(TM) {
43  Subtarget = &TM.getSubtarget<X86Subtarget>();
44  X86ScalarSSE = Subtarget->hasSSE2();
45  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47  // Set up the TargetLowering object.
48
49  // X86 is weird, it always uses i8 for shift amounts and setcc results.
50  setShiftAmountType(MVT::i8);
51  setSetCCResultType(MVT::i8);
52  setSetCCResultContents(ZeroOrOneSetCCResult);
53  setSchedulingPreference(SchedulingForRegPressure);
54  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
55  setStackPointerRegisterToSaveRestore(X86StackPtr);
56
57  if (Subtarget->isTargetDarwin()) {
58    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
59    setUseUnderscoreSetJmp(false);
60    setUseUnderscoreLongJmp(false);
61  } else if (Subtarget->isTargetMingw()) {
62    // MS runtime is weird: it exports _setjmp, but longjmp!
63    setUseUnderscoreSetJmp(true);
64    setUseUnderscoreLongJmp(false);
65  } else {
66    setUseUnderscoreSetJmp(true);
67    setUseUnderscoreLongJmp(true);
68  }
69
70  // Add legal addressing mode scale values.
71  addLegalAddressScale(8);
72  addLegalAddressScale(4);
73  addLegalAddressScale(2);
74  // Enter the ones which require both scale + index last. These are more
75  // expensive.
76  addLegalAddressScale(9);
77  addLegalAddressScale(5);
78  addLegalAddressScale(3);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
88
89  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
90  // operation.
91  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
92  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
93  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
94
95  if (Subtarget->is64Bit()) {
96    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
97    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
98  } else {
99    if (X86ScalarSSE)
100      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
101      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
102    else
103      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
104  }
105
106  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
107  // this operation.
108  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
109  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
110  // SSE has no i16 to fp conversion, only i32
111  if (X86ScalarSSE)
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
113  else {
114    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
115    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
116  }
117
118  if (!Subtarget->is64Bit()) {
119    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
122  }
123
124  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
127  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
128
129  if (X86ScalarSSE) {
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
131  } else {
132    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
133    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
134  }
135
136  // Handle FP_TO_UINT by promoting the destination to a larger signed
137  // conversion.
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
140  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
144    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
145  } else {
146    if (X86ScalarSSE && !Subtarget->hasSSE3())
147      // Expand FP_TO_UINT into a select.
148      // FIXME: We would like to use a Custom expander here eventually to do
149      // the optimal thing for SSE vs. the default expansion in the legalizer.
150      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
151    else
152      // With SSE3 we can use fisttpll to convert to a signed i64.
153      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
154  }
155
156  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
157  if (!X86ScalarSSE) {
158    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
159    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
160  }
161
162  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
163  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
164  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
165  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
166  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
167  if (Subtarget->is64Bit())
168    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
169  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
170  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
172  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
173  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
174
175  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
176  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
177  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
178  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
179  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
180  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
181  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
182  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
183  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
184  if (Subtarget->is64Bit()) {
185    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
186    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
187    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
188  }
189
190  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
191  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
192
193  // These should be promoted to a larger select which is supported.
194  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
195  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
196  // X86 wants to expand cmov itself.
197  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
198  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
199  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
200  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
201  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
202  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
203  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
204  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
205  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
208    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
209  }
210  // X86 ret instruction may pop stack.
211  setOperationAction(ISD::RET             , MVT::Other, Custom);
212  // Darwin ABI issue.
213  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
214  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
215  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
216  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
217  if (Subtarget->is64Bit()) {
218    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
219    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
220    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
221    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
222  }
223  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
224  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
225  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
227  // X86 wants to expand memset / memcpy itself.
228  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
229  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
230
231  // We don't have line number support yet.
232  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
233  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234  // FIXME - use subtarget debug flags
235  if (!Subtarget->isTargetDarwin() &&
236      !Subtarget->isTargetELF() &&
237      !Subtarget->isTargetCygMing())
238    setOperationAction(ISD::LABEL, MVT::Other, Expand);
239
240  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
241  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
242
243  // Use the default implementation.
244  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
245  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
246  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
247  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
248  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
249  if (Subtarget->is64Bit())
250    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
251  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
252
253  if (X86ScalarSSE) {
254    // Set up the FP register classes.
255    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
256    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
257
258    // Use ANDPD to simulate FABS.
259    setOperationAction(ISD::FABS , MVT::f64, Custom);
260    setOperationAction(ISD::FABS , MVT::f32, Custom);
261
262    // Use XORP to simulate FNEG.
263    setOperationAction(ISD::FNEG , MVT::f64, Custom);
264    setOperationAction(ISD::FNEG , MVT::f32, Custom);
265
266    // Use ANDPD and ORPD to simulate FCOPYSIGN.
267    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
268    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
269
270    // We don't support sin/cos/fmod
271    setOperationAction(ISD::FSIN , MVT::f64, Expand);
272    setOperationAction(ISD::FCOS , MVT::f64, Expand);
273    setOperationAction(ISD::FREM , MVT::f64, Expand);
274    setOperationAction(ISD::FSIN , MVT::f32, Expand);
275    setOperationAction(ISD::FCOS , MVT::f32, Expand);
276    setOperationAction(ISD::FREM , MVT::f32, Expand);
277
278    // Expand FP immediates into loads from the stack, except for the special
279    // cases we handle.
280    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
281    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
282    addLegalFPImmediate(+0.0); // xorps / xorpd
283  } else {
284    // Set up the FP register classes.
285    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
286
287    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
288    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
289    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
290
291    if (!UnsafeFPMath) {
292      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
293      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
294    }
295
296    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
297    addLegalFPImmediate(+0.0); // FLD0
298    addLegalFPImmediate(+1.0); // FLD1
299    addLegalFPImmediate(-0.0); // FLD0/FCHS
300    addLegalFPImmediate(-1.0); // FLD1/FCHS
301  }
302
303  // First set operation action for all vector types to expand. Then we
304  // will selectively turn on ones that can be effectively codegen'd.
305  for (unsigned VT = (unsigned)MVT::Vector + 1;
306       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
307    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
308    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
314    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
319    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
320    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
321    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
322  }
323
324  if (Subtarget->hasMMX()) {
325    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
326    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
327    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
328
329    // FIXME: add MMX packed arithmetics
330    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
331    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
332    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
333  }
334
335  if (Subtarget->hasSSE1()) {
336    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
337
338    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
339    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
340    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
341    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
342    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
343    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
344    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
345    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
346    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
347  }
348
349  if (Subtarget->hasSSE2()) {
350    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
351    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
352    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
353    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
354    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
355
356    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
357    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
358    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
359    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
360    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
361    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
362    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
363    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
364    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
365    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
366    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
367
368    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
369    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
370    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
371    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
372    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
373    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
374
375    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
376    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
377      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
378      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
379      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
380    }
381    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
382    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
383    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
384    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
385    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
386    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
387
388    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
389    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
390      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
391      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
392      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
393      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
394      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
395      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
396      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
397      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
398      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
399      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
400    }
401
402    // Custom lower v2i64 and v2f64 selects.
403    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
404    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
405    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
406    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
407  }
408
409  // We want to custom lower some of our intrinsics.
410  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
411
412  // We have target-specific dag combine patterns for the following nodes:
413  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
414  setTargetDAGCombine(ISD::SELECT);
415
416  computeRegisterProperties();
417
418  // FIXME: These should be based on subtarget info. Plus, the values should
419  // be smaller when we are in optimizing for size mode.
420  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
421  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
422  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
423  allowUnalignedMemoryAccesses = true; // x86 supports it!
424}
425
426
427//===----------------------------------------------------------------------===//
428//               Return Value Calling Convention Implementation
429//===----------------------------------------------------------------------===//
430
431/// GetRetValueLocs - If we are returning a set of values with the specified
432/// value types, determine the set of registers each one will land in.  This
433/// sets one element of the ResultRegs array for each element in the VTs array.
434static void GetRetValueLocs(const MVT::ValueType *VTs, unsigned NumVTs,
435                            unsigned *ResultRegs,
436                            const X86Subtarget *Subtarget,
437                            unsigned CC) {
438  if (NumVTs == 0) return;
439
440  if (NumVTs == 2) {
441    ResultRegs[0] = VTs[0] == MVT::i64 ? X86::RAX : X86::EAX;
442    ResultRegs[1] = VTs[1] == MVT::i64 ? X86::RDX : X86::EDX;
443    return;
444  }
445
446  // Otherwise, NumVTs is 1.
447  MVT::ValueType ArgVT = VTs[0];
448
449  unsigned Reg;
450  switch (ArgVT) {
451  case MVT::i8:  Reg = X86::AL; break;
452  case MVT::i16: Reg = X86::AX; break;
453  case MVT::i32: Reg = X86::EAX; break;
454  case MVT::i64: Reg = X86::RAX; break;
455  case MVT::f32:
456  case MVT::f64:
457    if (Subtarget->is64Bit())
458      Reg = X86::XMM0;         // FP values in X86-64 go in XMM0.
459    else if (CC == CallingConv::Fast && Subtarget->hasSSE2())
460      Reg = X86::XMM0;         // FP values in X86-32 with fastcc go in XMM0.
461    else
462      Reg = X86::ST0;          // FP values in X86-32 go in ST0.
463    break;
464  default:
465    assert(MVT::isVector(ArgVT) && "Unknown return value type!");
466    Reg = X86::XMM0; // Int/FP vector result -> XMM0.
467    break;
468  }
469  ResultRegs[0] = Reg;
470}
471
472/// LowerRET - Lower an ISD::RET node.
473SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
474  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
475
476  // Support up returning up to two registers.
477  MVT::ValueType VTs[2];
478  unsigned DestRegs[2];
479  unsigned NumRegs = Op.getNumOperands() / 2;
480  assert(NumRegs <= 2 && "Can only return up to two regs!");
481
482  for (unsigned i = 0; i != NumRegs; ++i)
483    VTs[i] = Op.getOperand(i*2+1).getValueType();
484
485  // Determine which register each value should be copied into.
486  GetRetValueLocs(VTs, NumRegs, DestRegs, Subtarget,
487                  DAG.getMachineFunction().getFunction()->getCallingConv());
488
489  // If this is the first return lowered for this function, add the regs to the
490  // liveout set for the function.
491  if (DAG.getMachineFunction().liveout_empty()) {
492    for (unsigned i = 0; i != NumRegs; ++i)
493      DAG.getMachineFunction().addLiveOut(DestRegs[i]);
494  }
495
496  SDOperand Chain = Op.getOperand(0);
497  SDOperand Flag;
498
499  // Copy the result values into the output registers.
500  if (NumRegs != 1 || DestRegs[0] != X86::ST0) {
501    for (unsigned i = 0; i != NumRegs; ++i) {
502      Chain = DAG.getCopyToReg(Chain, DestRegs[i], Op.getOperand(i*2+1), Flag);
503      Flag = Chain.getValue(1);
504    }
505  } else {
506    // We need to handle a destination of ST0 specially, because it isn't really
507    // a register.
508    SDOperand Value = Op.getOperand(1);
509
510    // If this is an FP return with ScalarSSE, we need to move the value from
511    // an XMM register onto the fp-stack.
512    if (X86ScalarSSE) {
513      SDOperand MemLoc;
514
515      // If this is a load into a scalarsse value, don't store the loaded value
516      // back to the stack, only to reload it: just replace the scalar-sse load.
517      if (ISD::isNON_EXTLoad(Value.Val) &&
518          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
519        Chain  = Value.getOperand(0);
520        MemLoc = Value.getOperand(1);
521      } else {
522        // Spill the value to memory and reload it into top of stack.
523        unsigned Size = MVT::getSizeInBits(VTs[0])/8;
524        MachineFunction &MF = DAG.getMachineFunction();
525        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
526        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
527        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
528      }
529      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
530      SDOperand Ops[] = { Chain, MemLoc, DAG.getValueType(VTs[0]) };
531      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
532      Chain = Value.getValue(1);
533    }
534
535    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
536    SDOperand Ops[] = { Chain, Value };
537    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
538    Flag = Chain.getValue(1);
539  }
540
541  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
542  if (Flag.Val)
543    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
544  else
545    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
546}
547
548
549/// LowerCallResult - Lower the result values of an ISD::CALL into the
550/// appropriate copies out of appropriate physical registers.  This assumes that
551/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
552/// being lowered.  The returns a SDNode with the same number of values as the
553/// ISD::CALL.
554SDNode *X86TargetLowering::
555LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
556                unsigned CallingConv, SelectionDAG &DAG) {
557  SmallVector<SDOperand, 8> ResultVals;
558
559  // We support returning up to two registers.
560  MVT::ValueType VTs[2];
561  unsigned DestRegs[2];
562  unsigned NumRegs = TheCall->getNumValues() - 1;
563  assert(NumRegs <= 2 && "Can only return up to two regs!");
564
565  for (unsigned i = 0; i != NumRegs; ++i)
566    VTs[i] = TheCall->getValueType(i);
567
568  // Determine which register each value should be copied into.
569  GetRetValueLocs(VTs, NumRegs, DestRegs, Subtarget, CallingConv);
570
571  // Copy all of the result registers out of their specified physreg.
572  if (NumRegs != 1 || DestRegs[0] != X86::ST0) {
573    for (unsigned i = 0; i != NumRegs; ++i) {
574      Chain = DAG.getCopyFromReg(Chain, DestRegs[i], VTs[i],
575                                 InFlag).getValue(1);
576      InFlag = Chain.getValue(2);
577      ResultVals.push_back(Chain.getValue(0));
578    }
579  } else {
580    // Copies from the FP stack are special, as ST0 isn't a valid register
581    // before the fp stackifier runs.
582
583    // Copy ST0 into an RFP register with FP_GET_RESULT.
584    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
585    SDOperand GROps[] = { Chain, InFlag };
586    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
587    Chain  = RetVal.getValue(1);
588    InFlag = RetVal.getValue(2);
589
590    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
591    // an XMM register.
592    if (X86ScalarSSE) {
593      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
594      // shouldn't be necessary except that RFP cannot be live across
595      // multiple blocks. When stackifier is fixed, they can be uncoupled.
596      MachineFunction &MF = DAG.getMachineFunction();
597      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
598      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
599      SDOperand Ops[] = {
600        Chain, RetVal, StackSlot, DAG.getValueType(VTs[0]), InFlag
601      };
602      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
603      RetVal = DAG.getLoad(VTs[0], Chain, StackSlot, NULL, 0);
604      Chain = RetVal.getValue(1);
605    }
606
607    if (VTs[0] == MVT::f32 && !X86ScalarSSE)
608      // FIXME: we would really like to remember that this FP_ROUND
609      // operation is okay to eliminate if we allow excess FP precision.
610      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
611    ResultVals.push_back(RetVal);
612  }
613
614  // Merge everything together with a MERGE_VALUES node.
615  ResultVals.push_back(Chain);
616  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
617                     &ResultVals[0], ResultVals.size()).Val;
618}
619
620
621//===----------------------------------------------------------------------===//
622//                C & StdCall Calling Convention implementation
623//===----------------------------------------------------------------------===//
624//  StdCall calling convention seems to be standard for many Windows' API
625//  routines and around. It differs from C calling convention just a little:
626//  callee should clean up the stack, not caller. Symbols should be also
627//  decorated in some fancy way :) It doesn't support any vector arguments.
628
629/// AddLiveIn - This helper function adds the specified physical register to the
630/// MachineFunction as a live in value.  It also creates a corresponding virtual
631/// register for it.
632static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
633                          const TargetRegisterClass *RC) {
634  assert(RC->contains(PReg) && "Not the correct regclass!");
635  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
636  MF.addLiveIn(PReg, VReg);
637  return VReg;
638}
639
640/// HowToPassArgument - Returns how an formal argument of the specified type
641/// should be passed. If it is through stack, returns the size of the stack
642/// slot; if it is through integer or XMM register, returns the number of
643/// integer or XMM registers are needed.
644static void
645HowToPassCallArgument(MVT::ValueType ObjectVT,
646                      bool ArgInReg,
647                      unsigned NumIntRegs, unsigned NumXMMRegs,
648                      unsigned MaxNumIntRegs,
649                      unsigned &ObjSize, unsigned &ObjIntRegs,
650                      unsigned &ObjXMMRegs) {
651  ObjSize = 0;
652  ObjIntRegs = 0;
653  ObjXMMRegs = 0;
654
655  if (MaxNumIntRegs>3) {
656    // We don't have too much registers on ia32! :)
657    MaxNumIntRegs = 3;
658  }
659
660  switch (ObjectVT) {
661  default: assert(0 && "Unhandled argument type!");
662  case MVT::i8:
663   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
664     ObjIntRegs = 1;
665   else
666     ObjSize = 1;
667   break;
668  case MVT::i16:
669   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
670     ObjIntRegs = 1;
671   else
672     ObjSize = 2;
673   break;
674  case MVT::i32:
675   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
676     ObjIntRegs = 1;
677   else
678     ObjSize = 4;
679   break;
680  case MVT::i64:
681   if (ArgInReg && (NumIntRegs+2 <= MaxNumIntRegs)) {
682     ObjIntRegs = 2;
683   } else if (ArgInReg && (NumIntRegs+1 <= MaxNumIntRegs)) {
684     ObjIntRegs = 1;
685     ObjSize = 4;
686   } else
687     ObjSize = 8;
688  case MVT::f32:
689    ObjSize = 4;
690    break;
691  case MVT::f64:
692    ObjSize = 8;
693    break;
694  case MVT::v16i8:
695  case MVT::v8i16:
696  case MVT::v4i32:
697  case MVT::v2i64:
698  case MVT::v4f32:
699  case MVT::v2f64:
700    if (NumXMMRegs < 4)
701      ObjXMMRegs = 1;
702    else
703      ObjSize = 16;
704    break;
705  }
706}
707
708SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
709                                               bool isStdCall) {
710  unsigned NumArgs = Op.Val->getNumValues() - 1;
711  MachineFunction &MF = DAG.getMachineFunction();
712  MachineFrameInfo *MFI = MF.getFrameInfo();
713  SDOperand Root = Op.getOperand(0);
714  SmallVector<SDOperand, 8> ArgValues;
715  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
716
717  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
718  // the stack frame looks like this:
719  //
720  // [ESP] -- return address
721  // [ESP + 4] -- first argument (leftmost lexically)
722  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
723  //    ...
724  //
725  unsigned ArgOffset   = 0; // Frame mechanisms handle retaddr slot
726  unsigned NumSRetBytes= 0; // How much bytes on stack used for struct return
727  unsigned NumXMMRegs  = 0; // XMM regs used for parameter passing.
728  unsigned NumIntRegs  = 0; // Integer regs used for parameter passing
729
730  static const unsigned XMMArgRegs[] = {
731    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
732  };
733  static const unsigned GPRArgRegs[][3] = {
734    { X86::AL,  X86::DL,  X86::CL  },
735    { X86::AX,  X86::DX,  X86::CX  },
736    { X86::EAX, X86::EDX, X86::ECX }
737  };
738  static const TargetRegisterClass* GPRClasses[3] = {
739    X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass
740  };
741
742  // Handle regparm attribute
743  SmallVector<bool, 8> ArgInRegs(NumArgs, false);
744  SmallVector<bool, 8> SRetArgs(NumArgs, false);
745  if (!isVarArg) {
746    for (unsigned i = 0; i<NumArgs; ++i) {
747      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
748      ArgInRegs[i]   = (Flags >> 1) & 1;
749      SRetArgs[i]    = (Flags >> 2) & 1;
750    }
751  }
752
753  for (unsigned i = 0; i < NumArgs; ++i) {
754    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
755    unsigned ArgIncrement = 4;
756    unsigned ObjSize = 0;
757    unsigned ObjXMMRegs = 0;
758    unsigned ObjIntRegs = 0;
759    unsigned Reg = 0;
760    SDOperand ArgValue;
761
762    HowToPassCallArgument(ObjectVT,
763                          ArgInRegs[i],
764                          NumIntRegs, NumXMMRegs, 3,
765                          ObjSize, ObjIntRegs, ObjXMMRegs);
766
767    if (ObjSize > 4)
768      ArgIncrement = ObjSize;
769
770    if (ObjIntRegs || ObjXMMRegs) {
771      switch (ObjectVT) {
772      default: assert(0 && "Unhandled argument type!");
773      case MVT::i8:
774      case MVT::i16:
775      case MVT::i32: {
776       unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][NumIntRegs];
777       Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]);
778       ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
779       break;
780      }
781      case MVT::v16i8:
782      case MVT::v8i16:
783      case MVT::v4i32:
784      case MVT::v2i64:
785      case MVT::v4f32:
786      case MVT::v2f64:
787       assert(!isStdCall && "Unhandled argument type!");
788       Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
789       ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
790       break;
791      }
792      NumIntRegs += ObjIntRegs;
793      NumXMMRegs += ObjXMMRegs;
794    }
795    if (ObjSize) {
796      // XMM arguments have to be aligned on 16-byte boundary.
797      if (ObjSize == 16)
798        ArgOffset = ((ArgOffset + 15) / 16) * 16;
799      // Create the SelectionDAG nodes corresponding to a load from this
800      // parameter.
801      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
802      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
803      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
804
805      ArgOffset += ArgIncrement;   // Move on to the next argument.
806      if (SRetArgs[i])
807        NumSRetBytes += ArgIncrement;
808    }
809
810    ArgValues.push_back(ArgValue);
811  }
812
813  ArgValues.push_back(Root);
814
815  // If the function takes variable number of arguments, make a frame index for
816  // the start of the first vararg value... for expansion of llvm.va_start.
817  if (isVarArg)
818    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
819
820  if (isStdCall && !isVarArg) {
821    BytesToPopOnReturn  = ArgOffset;    // Callee pops everything..
822    BytesCallerReserves = 0;
823  } else {
824    BytesToPopOnReturn  = NumSRetBytes; // Callee pops hidden struct pointer.
825    BytesCallerReserves = ArgOffset;
826  }
827
828  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
829  ReturnAddrIndex = 0;            // No return address slot generated yet.
830
831
832  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
833
834  // Return the new list of results.
835  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
836                     &ArgValues[0], ArgValues.size());
837}
838
839SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
840                                            unsigned CC) {
841  SDOperand Chain     = Op.getOperand(0);
842  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
843  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
844  SDOperand Callee    = Op.getOperand(4);
845  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
846
847  static const unsigned XMMArgRegs[] = {
848    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
849  };
850  static const unsigned GPR32ArgRegs[] = {
851    X86::EAX, X86::EDX,  X86::ECX
852  };
853
854  // Count how many bytes are to be pushed on the stack.
855  unsigned NumBytes   = 0;
856  // Keep track of the number of integer regs passed so far.
857  unsigned NumIntRegs = 0;
858  // Keep track of the number of XMM regs passed so far.
859  unsigned NumXMMRegs = 0;
860  // How much bytes on stack used for struct return
861  unsigned NumSRetBytes= 0;
862
863  // Handle regparm attribute
864  SmallVector<bool, 8> ArgInRegs(NumOps, false);
865  SmallVector<bool, 8> SRetArgs(NumOps, false);
866  for (unsigned i = 0; i<NumOps; ++i) {
867    unsigned Flags =
868      dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
869    ArgInRegs[i] = (Flags >> 1) & 1;
870    SRetArgs[i]  = (Flags >> 2) & 1;
871  }
872
873  // Calculate stack frame size
874  for (unsigned i = 0; i != NumOps; ++i) {
875    SDOperand Arg = Op.getOperand(5+2*i);
876    unsigned ArgIncrement = 4;
877    unsigned ObjSize = 0;
878    unsigned ObjIntRegs = 0;
879    unsigned ObjXMMRegs = 0;
880
881    HowToPassCallArgument(Arg.getValueType(),
882                          ArgInRegs[i],
883                          NumIntRegs, NumXMMRegs, 3,
884                          ObjSize, ObjIntRegs, ObjXMMRegs);
885    if (ObjSize > 4)
886      ArgIncrement = ObjSize;
887
888    NumIntRegs += ObjIntRegs;
889    NumXMMRegs += ObjXMMRegs;
890    if (ObjSize) {
891      // XMM arguments have to be aligned on 16-byte boundary.
892      if (ObjSize == 16)
893        NumBytes = ((NumBytes + 15) / 16) * 16;
894      NumBytes += ArgIncrement;
895    }
896  }
897
898  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
899
900  // Arguments go on the stack in reverse order, as specified by the ABI.
901  unsigned ArgOffset = 0;
902  NumXMMRegs = 0;
903  NumIntRegs = 0;
904  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
905  SmallVector<SDOperand, 8> MemOpChains;
906  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
907  for (unsigned i = 0; i != NumOps; ++i) {
908    SDOperand Arg = Op.getOperand(5+2*i);
909    unsigned ArgIncrement = 4;
910    unsigned ObjSize = 0;
911    unsigned ObjIntRegs = 0;
912    unsigned ObjXMMRegs = 0;
913
914    HowToPassCallArgument(Arg.getValueType(),
915                          ArgInRegs[i],
916                          NumIntRegs, NumXMMRegs, 3,
917                          ObjSize, ObjIntRegs, ObjXMMRegs);
918
919    if (ObjSize > 4)
920      ArgIncrement = ObjSize;
921
922    if (Arg.getValueType() == MVT::i8 || Arg.getValueType() == MVT::i16) {
923      // Promote the integer to 32 bits.  If the input type is signed use a
924      // sign extend, otherwise use a zero extend.
925      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
926
927      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
928      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
929    }
930
931    if (ObjIntRegs || ObjXMMRegs) {
932      switch (Arg.getValueType()) {
933      default: assert(0 && "Unhandled argument type!");
934      case MVT::i32:
935       RegsToPass.push_back(std::make_pair(GPR32ArgRegs[NumIntRegs], Arg));
936       break;
937      case MVT::v16i8:
938      case MVT::v8i16:
939      case MVT::v4i32:
940      case MVT::v2i64:
941      case MVT::v4f32:
942      case MVT::v2f64:
943       RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
944       break;
945      }
946
947      NumIntRegs += ObjIntRegs;
948      NumXMMRegs += ObjXMMRegs;
949    }
950    if (ObjSize) {
951      // XMM arguments have to be aligned on 16-byte boundary.
952      if (ObjSize == 16)
953        ArgOffset = ((ArgOffset + 15) / 16) * 16;
954
955      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
956      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
957      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
958
959      ArgOffset += ArgIncrement;   // Move on to the next argument.
960      if (SRetArgs[i])
961        NumSRetBytes += ArgIncrement;
962    }
963  }
964
965  // Sanity check: we haven't seen NumSRetBytes > 4
966  assert((NumSRetBytes<=4) &&
967         "Too much space for struct-return pointer requested");
968
969  if (!MemOpChains.empty())
970    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
971                        &MemOpChains[0], MemOpChains.size());
972
973  // Build a sequence of copy-to-reg nodes chained together with token chain
974  // and flag operands which copy the outgoing args into registers.
975  SDOperand InFlag;
976  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
977    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
978                             InFlag);
979    InFlag = Chain.getValue(1);
980  }
981
982  // ELF / PIC requires GOT in the EBX register before function calls via PLT
983  // GOT pointer.
984  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
985      Subtarget->isPICStyleGOT()) {
986    Chain = DAG.getCopyToReg(Chain, X86::EBX,
987                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
988                             InFlag);
989    InFlag = Chain.getValue(1);
990  }
991
992  // If the callee is a GlobalAddress node (quite common, every direct call is)
993  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
994  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
995    // We should use extra load for direct calls to dllimported functions in
996    // non-JIT mode.
997    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
998                                        getTargetMachine(), true))
999      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1000  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1001    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1002
1003  // Returns a chain & a flag for retval copy to use.
1004  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1005  SmallVector<SDOperand, 8> Ops;
1006  Ops.push_back(Chain);
1007  Ops.push_back(Callee);
1008
1009  // Add argument registers to the end of the list so that they are known live
1010  // into the call.
1011  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1012    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1013                                  RegsToPass[i].second.getValueType()));
1014
1015  // Add an implicit use GOT pointer in EBX.
1016  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1017      Subtarget->isPICStyleGOT())
1018    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1019
1020  if (InFlag.Val)
1021    Ops.push_back(InFlag);
1022
1023  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1024                      NodeTys, &Ops[0], Ops.size());
1025  InFlag = Chain.getValue(1);
1026
1027  // Create the CALLSEQ_END node.
1028  unsigned NumBytesForCalleeToPush = 0;
1029
1030  if (CC == CallingConv::X86_StdCall) {
1031    if (isVarArg)
1032      NumBytesForCalleeToPush = NumSRetBytes;
1033    else
1034      NumBytesForCalleeToPush = NumBytes;
1035  } else {
1036    // If this is is a call to a struct-return function, the callee
1037    // pops the hidden struct pointer, so we have to push it back.
1038    // This is common for Darwin/X86, Linux & Mingw32 targets.
1039    NumBytesForCalleeToPush = NumSRetBytes;
1040  }
1041
1042  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1043  Ops.clear();
1044  Ops.push_back(Chain);
1045  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1046  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1047  Ops.push_back(InFlag);
1048  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1049  InFlag = Chain.getValue(1);
1050
1051  // Handle result values, copying them out of physregs into vregs that we
1052  // return.
1053  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1054}
1055
1056
1057//===----------------------------------------------------------------------===//
1058//                 X86-64 C Calling Convention implementation
1059//===----------------------------------------------------------------------===//
1060
1061/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
1062/// type should be passed. If it is through stack, returns the size of the stack
1063/// slot; if it is through integer or XMM register, returns the number of
1064/// integer or XMM registers are needed.
1065static void
1066HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
1067                           unsigned NumIntRegs, unsigned NumXMMRegs,
1068                           unsigned &ObjSize, unsigned &ObjIntRegs,
1069                           unsigned &ObjXMMRegs) {
1070  ObjSize = 0;
1071  ObjIntRegs = 0;
1072  ObjXMMRegs = 0;
1073
1074  switch (ObjectVT) {
1075  default: assert(0 && "Unhandled argument type!");
1076  case MVT::i8:
1077  case MVT::i16:
1078  case MVT::i32:
1079  case MVT::i64:
1080    if (NumIntRegs < 6)
1081      ObjIntRegs = 1;
1082    else {
1083      switch (ObjectVT) {
1084      default: break;
1085      case MVT::i8:  ObjSize = 1; break;
1086      case MVT::i16: ObjSize = 2; break;
1087      case MVT::i32: ObjSize = 4; break;
1088      case MVT::i64: ObjSize = 8; break;
1089      }
1090    }
1091    break;
1092  case MVT::f32:
1093  case MVT::f64:
1094  case MVT::v16i8:
1095  case MVT::v8i16:
1096  case MVT::v4i32:
1097  case MVT::v2i64:
1098  case MVT::v4f32:
1099  case MVT::v2f64:
1100    if (NumXMMRegs < 8)
1101      ObjXMMRegs = 1;
1102    else {
1103      switch (ObjectVT) {
1104      default: break;
1105      case MVT::f32:  ObjSize = 4; break;
1106      case MVT::f64:  ObjSize = 8; break;
1107      case MVT::v16i8:
1108      case MVT::v8i16:
1109      case MVT::v4i32:
1110      case MVT::v2i64:
1111      case MVT::v4f32:
1112      case MVT::v2f64: ObjSize = 16; break;
1113    }
1114    break;
1115  }
1116  }
1117}
1118
1119SDOperand
1120X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1121  unsigned NumArgs = Op.Val->getNumValues() - 1;
1122  MachineFunction &MF = DAG.getMachineFunction();
1123  MachineFrameInfo *MFI = MF.getFrameInfo();
1124  SDOperand Root = Op.getOperand(0);
1125  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1126  SmallVector<SDOperand, 8> ArgValues;
1127
1128  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
1129  // the stack frame looks like this:
1130  //
1131  // [RSP] -- return address
1132  // [RSP + 8] -- first nonreg argument (leftmost lexically)
1133  // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
1134  //    ...
1135  //
1136  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1137  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1138  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1139
1140  static const unsigned GPR8ArgRegs[] = {
1141    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1142  };
1143  static const unsigned GPR16ArgRegs[] = {
1144    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1145  };
1146  static const unsigned GPR32ArgRegs[] = {
1147    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1148  };
1149  static const unsigned GPR64ArgRegs[] = {
1150    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1151  };
1152  static const unsigned XMMArgRegs[] = {
1153    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1154    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1155  };
1156
1157  for (unsigned i = 0; i < NumArgs; ++i) {
1158    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1159    unsigned ArgIncrement = 8;
1160    unsigned ObjSize = 0;
1161    unsigned ObjIntRegs = 0;
1162    unsigned ObjXMMRegs = 0;
1163
1164    // FIXME: __int128 and long double support?
1165    HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
1166                               ObjSize, ObjIntRegs, ObjXMMRegs);
1167    if (ObjSize > 8)
1168      ArgIncrement = ObjSize;
1169
1170    unsigned Reg = 0;
1171    SDOperand ArgValue;
1172    if (ObjIntRegs || ObjXMMRegs) {
1173      switch (ObjectVT) {
1174      default: assert(0 && "Unhandled argument type!");
1175      case MVT::i8:
1176      case MVT::i16:
1177      case MVT::i32:
1178      case MVT::i64: {
1179        TargetRegisterClass *RC = NULL;
1180        switch (ObjectVT) {
1181        default: break;
1182        case MVT::i8:
1183          RC = X86::GR8RegisterClass;
1184          Reg = GPR8ArgRegs[NumIntRegs];
1185          break;
1186        case MVT::i16:
1187          RC = X86::GR16RegisterClass;
1188          Reg = GPR16ArgRegs[NumIntRegs];
1189          break;
1190        case MVT::i32:
1191          RC = X86::GR32RegisterClass;
1192          Reg = GPR32ArgRegs[NumIntRegs];
1193          break;
1194        case MVT::i64:
1195          RC = X86::GR64RegisterClass;
1196          Reg = GPR64ArgRegs[NumIntRegs];
1197          break;
1198        }
1199        Reg = AddLiveIn(MF, Reg, RC);
1200        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1201        break;
1202      }
1203      case MVT::f32:
1204      case MVT::f64:
1205      case MVT::v16i8:
1206      case MVT::v8i16:
1207      case MVT::v4i32:
1208      case MVT::v2i64:
1209      case MVT::v4f32:
1210      case MVT::v2f64: {
1211        TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
1212          X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
1213                              X86::FR64RegisterClass : X86::VR128RegisterClass);
1214        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
1215        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1216        break;
1217      }
1218      }
1219      NumIntRegs += ObjIntRegs;
1220      NumXMMRegs += ObjXMMRegs;
1221    } else if (ObjSize) {
1222      // XMM arguments have to be aligned on 16-byte boundary.
1223      if (ObjSize == 16)
1224        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1225      // Create the SelectionDAG nodes corresponding to a load from this
1226      // parameter.
1227      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1228      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1229      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1230      ArgOffset += ArgIncrement;   // Move on to the next argument.
1231    }
1232
1233    ArgValues.push_back(ArgValue);
1234  }
1235
1236  // If the function takes variable number of arguments, make a frame index for
1237  // the start of the first vararg value... for expansion of llvm.va_start.
1238  if (isVarArg) {
1239    // For X86-64, if there are vararg parameters that are passed via
1240    // registers, then we must store them to their spots on the stack so they
1241    // may be loaded by deferencing the result of va_next.
1242    VarArgsGPOffset = NumIntRegs * 8;
1243    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1244    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1245    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1246
1247    // Store the integer parameter registers.
1248    SmallVector<SDOperand, 8> MemOps;
1249    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1250    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1251                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1252    for (; NumIntRegs != 6; ++NumIntRegs) {
1253      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1254                                X86::GR64RegisterClass);
1255      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1256      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1257      MemOps.push_back(Store);
1258      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1259                        DAG.getConstant(8, getPointerTy()));
1260    }
1261
1262    // Now store the XMM (fp + vector) parameter registers.
1263    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1264                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1265    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1266      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1267                                X86::VR128RegisterClass);
1268      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1269      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1270      MemOps.push_back(Store);
1271      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1272                        DAG.getConstant(16, getPointerTy()));
1273    }
1274    if (!MemOps.empty())
1275        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1276                           &MemOps[0], MemOps.size());
1277  }
1278
1279  ArgValues.push_back(Root);
1280
1281  ReturnAddrIndex = 0;     // No return address slot generated yet.
1282  BytesToPopOnReturn = 0;  // Callee pops nothing.
1283  BytesCallerReserves = ArgOffset;
1284
1285  // Return the new list of results.
1286  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1287                     &ArgValues[0], ArgValues.size());
1288}
1289
1290SDOperand
1291X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1292                                        unsigned CC) {
1293  SDOperand Chain     = Op.getOperand(0);
1294  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1295  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1296  SDOperand Callee    = Op.getOperand(4);
1297  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1298
1299  // Count how many bytes are to be pushed on the stack.
1300  unsigned NumBytes = 0;
1301  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1302  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1303
1304  static const unsigned GPR8ArgRegs[] = {
1305    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1306  };
1307  static const unsigned GPR16ArgRegs[] = {
1308    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1309  };
1310  static const unsigned GPR32ArgRegs[] = {
1311    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1312  };
1313  static const unsigned GPR64ArgRegs[] = {
1314    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1315  };
1316  static const unsigned XMMArgRegs[] = {
1317    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1318    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1319  };
1320
1321  for (unsigned i = 0; i != NumOps; ++i) {
1322    SDOperand Arg = Op.getOperand(5+2*i);
1323    MVT::ValueType ArgVT = Arg.getValueType();
1324
1325    switch (ArgVT) {
1326    default: assert(0 && "Unknown value type!");
1327    case MVT::i8:
1328    case MVT::i16:
1329    case MVT::i32:
1330    case MVT::i64:
1331      if (NumIntRegs < 6)
1332        ++NumIntRegs;
1333      else
1334        NumBytes += 8;
1335      break;
1336    case MVT::f32:
1337    case MVT::f64:
1338    case MVT::v16i8:
1339    case MVT::v8i16:
1340    case MVT::v4i32:
1341    case MVT::v2i64:
1342    case MVT::v4f32:
1343    case MVT::v2f64:
1344      if (NumXMMRegs < 8)
1345        NumXMMRegs++;
1346      else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1347        NumBytes += 8;
1348      else {
1349        // XMM arguments have to be aligned on 16-byte boundary.
1350        NumBytes = ((NumBytes + 15) / 16) * 16;
1351        NumBytes += 16;
1352      }
1353      break;
1354    }
1355  }
1356
1357  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1358
1359  // Arguments go on the stack in reverse order, as specified by the ABI.
1360  unsigned ArgOffset = 0;
1361  NumIntRegs = 0;
1362  NumXMMRegs = 0;
1363  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1364  SmallVector<SDOperand, 8> MemOpChains;
1365  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1366  for (unsigned i = 0; i != NumOps; ++i) {
1367    SDOperand Arg = Op.getOperand(5+2*i);
1368    MVT::ValueType ArgVT = Arg.getValueType();
1369
1370    switch (ArgVT) {
1371    default: assert(0 && "Unexpected ValueType for argument!");
1372    case MVT::i8:
1373    case MVT::i16:
1374    case MVT::i32:
1375    case MVT::i64:
1376      if (NumIntRegs < 6) {
1377        unsigned Reg = 0;
1378        switch (ArgVT) {
1379        default: break;
1380        case MVT::i8:  Reg = GPR8ArgRegs[NumIntRegs];  break;
1381        case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
1382        case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
1383        case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
1384        }
1385        RegsToPass.push_back(std::make_pair(Reg, Arg));
1386        ++NumIntRegs;
1387      } else {
1388        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1389        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1390        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1391        ArgOffset += 8;
1392      }
1393      break;
1394    case MVT::f32:
1395    case MVT::f64:
1396    case MVT::v16i8:
1397    case MVT::v8i16:
1398    case MVT::v4i32:
1399    case MVT::v2i64:
1400    case MVT::v4f32:
1401    case MVT::v2f64:
1402      if (NumXMMRegs < 8) {
1403        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1404        NumXMMRegs++;
1405      } else {
1406        if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
1407          // XMM arguments have to be aligned on 16-byte boundary.
1408          ArgOffset = ((ArgOffset + 15) / 16) * 16;
1409        }
1410        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1411        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1412        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1413        if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1414          ArgOffset += 8;
1415        else
1416          ArgOffset += 16;
1417      }
1418    }
1419  }
1420
1421  if (!MemOpChains.empty())
1422    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1423                        &MemOpChains[0], MemOpChains.size());
1424
1425  // Build a sequence of copy-to-reg nodes chained together with token chain
1426  // and flag operands which copy the outgoing args into registers.
1427  SDOperand InFlag;
1428  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1429    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1430                             InFlag);
1431    InFlag = Chain.getValue(1);
1432  }
1433
1434  if (isVarArg) {
1435    // From AMD64 ABI document:
1436    // For calls that may call functions that use varargs or stdargs
1437    // (prototype-less calls or calls to functions containing ellipsis (...) in
1438    // the declaration) %al is used as hidden argument to specify the number
1439    // of SSE registers used. The contents of %al do not need to match exactly
1440    // the number of registers, but must be an ubound on the number of SSE
1441    // registers used and is in the range 0 - 8 inclusive.
1442    Chain = DAG.getCopyToReg(Chain, X86::AL,
1443                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1444    InFlag = Chain.getValue(1);
1445  }
1446
1447  // If the callee is a GlobalAddress node (quite common, every direct call is)
1448  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1449  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1450    // We should use extra load for direct calls to dllimported functions in
1451    // non-JIT mode.
1452    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1453                                        getTargetMachine(), true))
1454      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1455  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1456    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1457
1458  // Returns a chain & a flag for retval copy to use.
1459  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1460  SmallVector<SDOperand, 8> Ops;
1461  Ops.push_back(Chain);
1462  Ops.push_back(Callee);
1463
1464  // Add argument registers to the end of the list so that they are known live
1465  // into the call.
1466  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1467    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1468                                  RegsToPass[i].second.getValueType()));
1469
1470  if (InFlag.Val)
1471    Ops.push_back(InFlag);
1472
1473  // FIXME: Do not generate X86ISD::TAILCALL for now.
1474  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1475                      NodeTys, &Ops[0], Ops.size());
1476  InFlag = Chain.getValue(1);
1477
1478  // Returns a flag for retval copy to use.
1479  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1480  Ops.clear();
1481  Ops.push_back(Chain);
1482  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1483  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1484  Ops.push_back(InFlag);
1485  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1486  InFlag = Chain.getValue(1);
1487
1488  // Handle result values, copying them out of physregs into vregs that we
1489  // return.
1490  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1491}
1492
1493//===----------------------------------------------------------------------===//
1494//                 Fast & FastCall Calling Convention implementation
1495//===----------------------------------------------------------------------===//
1496//
1497// The X86 'fast' calling convention passes up to two integer arguments in
1498// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1499// and requires that the callee pop its arguments off the stack (allowing proper
1500// tail calls), and has the same return value conventions as C calling convs.
1501//
1502// This calling convention always arranges for the callee pop value to be 8n+4
1503// bytes, which is needed for tail recursion elimination and stack alignment
1504// reasons.
1505//
1506// Note that this can be enhanced in the future to pass fp vals in registers
1507// (when we have a global fp allocator) and do other tricks.
1508//
1509//===----------------------------------------------------------------------===//
1510// The X86 'fastcall' calling convention passes up to two integer arguments in
1511// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1512// and requires that the callee pop its arguments off the stack (allowing proper
1513// tail calls), and has the same return value conventions as C calling convs.
1514//
1515// This calling convention always arranges for the callee pop value to be 8n+4
1516// bytes, which is needed for tail recursion elimination and stack alignment
1517// reasons.
1518
1519
1520SDOperand
1521X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG,
1522                                        bool isFastCall) {
1523  unsigned NumArgs = Op.Val->getNumValues()-1;
1524  MachineFunction &MF = DAG.getMachineFunction();
1525  MachineFrameInfo *MFI = MF.getFrameInfo();
1526  SDOperand Root = Op.getOperand(0);
1527  SmallVector<SDOperand, 8> ArgValues;
1528
1529  // Add DAG nodes to load the arguments...  On entry to a function the stack
1530  // frame looks like this:
1531  //
1532  // [ESP] -- return address
1533  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1534  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1535  //    ...
1536  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1537
1538  // Keep track of the number of integer regs passed so far.  This can be either
1539  // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX
1540  // are both used).
1541  unsigned NumIntRegs = 0;
1542  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1543
1544  static const unsigned XMMArgRegs[] = {
1545    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1546  };
1547
1548  static const unsigned GPRArgRegs[][2][2] = {
1549    {{ X86::AL,  X86::DL },  { X86::CL,  X86::DL }},
1550    {{ X86::AX,  X86::DX },  { X86::CX,  X86::DX }},
1551    {{ X86::EAX, X86::EDX }, { X86::ECX,  X86::EDX }}
1552  };
1553
1554  static const TargetRegisterClass* GPRClasses[3] = {
1555    X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass
1556  };
1557
1558  unsigned GPRInd = (isFastCall ? 1 : 0);
1559  for (unsigned i = 0; i < NumArgs; ++i) {
1560    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1561    unsigned ArgIncrement = 4;
1562    unsigned ObjSize = 0;
1563    unsigned ObjXMMRegs = 0;
1564    unsigned ObjIntRegs = 0;
1565    unsigned Reg = 0;
1566    SDOperand ArgValue;
1567
1568    HowToPassCallArgument(ObjectVT,
1569                          true, // Use as much registers as possible
1570                          NumIntRegs, NumXMMRegs,
1571                          (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS),
1572                          ObjSize, ObjIntRegs, ObjXMMRegs);
1573
1574    if (ObjSize > 4)
1575      ArgIncrement = ObjSize;
1576
1577    if (ObjIntRegs || ObjXMMRegs) {
1578      switch (ObjectVT) {
1579      default: assert(0 && "Unhandled argument type!");
1580      case MVT::i8:
1581      case MVT::i16:
1582      case MVT::i32: {
1583        unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][GPRInd][NumIntRegs];
1584        Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]);
1585        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1586        break;
1587      }
1588      case MVT::v16i8:
1589      case MVT::v8i16:
1590      case MVT::v4i32:
1591      case MVT::v2i64:
1592      case MVT::v4f32:
1593      case MVT::v2f64: {
1594        assert(!isFastCall && "Unhandled argument type!");
1595        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1596        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1597        break;
1598      }
1599      }
1600      NumIntRegs += ObjIntRegs;
1601      NumXMMRegs += ObjXMMRegs;
1602    }
1603    if (ObjSize) {
1604      // XMM arguments have to be aligned on 16-byte boundary.
1605      if (ObjSize == 16)
1606        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1607      // Create the SelectionDAG nodes corresponding to a load from this
1608      // parameter.
1609      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1610      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1611      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1612
1613      ArgOffset += ArgIncrement;   // Move on to the next argument.
1614    }
1615
1616    ArgValues.push_back(ArgValue);
1617  }
1618
1619  ArgValues.push_back(Root);
1620
1621  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1622  // arguments and the arguments after the retaddr has been pushed are aligned.
1623  if ((ArgOffset & 7) == 0)
1624    ArgOffset += 4;
1625
1626  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1627  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1628  ReturnAddrIndex = 0;             // No return address slot generated yet.
1629  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1630  BytesCallerReserves = 0;
1631
1632  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1633
1634  // Finally, inform the code generator which regs we return values in.
1635  switch (getValueType(MF.getFunction()->getReturnType())) {
1636  default: assert(0 && "Unknown type!");
1637  case MVT::isVoid: break;
1638  case MVT::i1:
1639  case MVT::i8:
1640  case MVT::i16:
1641  case MVT::i32:
1642    MF.addLiveOut(X86::EAX);
1643    break;
1644  case MVT::i64:
1645    MF.addLiveOut(X86::EAX);
1646    MF.addLiveOut(X86::EDX);
1647    break;
1648  case MVT::f32:
1649  case MVT::f64:
1650    MF.addLiveOut(X86::ST0);
1651    break;
1652  case MVT::v16i8:
1653  case MVT::v8i16:
1654  case MVT::v4i32:
1655  case MVT::v2i64:
1656  case MVT::v4f32:
1657  case MVT::v2f64:
1658    assert(!isFastCall && "Unknown result type");
1659    MF.addLiveOut(X86::XMM0);
1660    break;
1661  }
1662
1663  // Return the new list of results.
1664  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1665                     &ArgValues[0], ArgValues.size());
1666}
1667
1668SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1669                                               unsigned CC) {
1670  SDOperand Chain     = Op.getOperand(0);
1671  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1672  SDOperand Callee    = Op.getOperand(4);
1673  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1674
1675  // Count how many bytes are to be pushed on the stack.
1676  unsigned NumBytes = 0;
1677
1678  // Keep track of the number of integer regs passed so far.  This can be either
1679  // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX
1680  // are both used).
1681  unsigned NumIntRegs = 0;
1682  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1683
1684  static const unsigned GPRArgRegs[][2][2] = {
1685    {{ X86::AL,  X86::DL },  { X86::CL,  X86::DL }},
1686    {{ X86::AX,  X86::DX },  { X86::CX,  X86::DX }},
1687    {{ X86::EAX, X86::EDX }, { X86::ECX,  X86::EDX }}
1688  };
1689  static const unsigned XMMArgRegs[] = {
1690    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1691  };
1692
1693  bool isFastCall = CC == CallingConv::X86_FastCall;
1694  unsigned GPRInd = isFastCall ? 1 : 0;
1695  for (unsigned i = 0; i != NumOps; ++i) {
1696    SDOperand Arg = Op.getOperand(5+2*i);
1697
1698    switch (Arg.getValueType()) {
1699    default: assert(0 && "Unknown value type!");
1700    case MVT::i8:
1701    case MVT::i16:
1702    case MVT::i32: {
1703     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1704     if (NumIntRegs < MaxNumIntRegs) {
1705       ++NumIntRegs;
1706       break;
1707     }
1708     } // Fall through
1709    case MVT::f32:
1710      NumBytes += 4;
1711      break;
1712    case MVT::f64:
1713      NumBytes += 8;
1714      break;
1715    case MVT::v16i8:
1716    case MVT::v8i16:
1717    case MVT::v4i32:
1718    case MVT::v2i64:
1719    case MVT::v4f32:
1720    case MVT::v2f64:
1721      assert(!isFastCall && "Unknown value type!");
1722      if (NumXMMRegs < 4)
1723        NumXMMRegs++;
1724      else {
1725        // XMM arguments have to be aligned on 16-byte boundary.
1726        NumBytes = ((NumBytes + 15) / 16) * 16;
1727        NumBytes += 16;
1728      }
1729      break;
1730    }
1731  }
1732
1733  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1734  // arguments and the arguments after the retaddr has been pushed are aligned.
1735  if ((NumBytes & 7) == 0)
1736    NumBytes += 4;
1737
1738  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1739
1740  // Arguments go on the stack in reverse order, as specified by the ABI.
1741  unsigned ArgOffset = 0;
1742  NumIntRegs = 0;
1743  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1744  SmallVector<SDOperand, 8> MemOpChains;
1745  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1746  for (unsigned i = 0; i != NumOps; ++i) {
1747    SDOperand Arg = Op.getOperand(5+2*i);
1748
1749    switch (Arg.getValueType()) {
1750    default: assert(0 && "Unexpected ValueType for argument!");
1751    case MVT::i8:
1752    case MVT::i16:
1753    case MVT::i32: {
1754     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1755     if (NumIntRegs < MaxNumIntRegs) {
1756       unsigned RegToUse =
1757         GPRArgRegs[Arg.getValueType()-MVT::i8][GPRInd][NumIntRegs];
1758       RegsToPass.push_back(std::make_pair(RegToUse, Arg));
1759       ++NumIntRegs;
1760       break;
1761     }
1762    } // Fall through
1763    case MVT::f32: {
1764      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1765      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1766      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1767      ArgOffset += 4;
1768      break;
1769    }
1770    case MVT::f64: {
1771      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1772      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1773      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1774      ArgOffset += 8;
1775      break;
1776    }
1777    case MVT::v16i8:
1778    case MVT::v8i16:
1779    case MVT::v4i32:
1780    case MVT::v2i64:
1781    case MVT::v4f32:
1782    case MVT::v2f64:
1783      assert(!isFastCall && "Unexpected ValueType for argument!");
1784      if (NumXMMRegs < 4) {
1785        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1786        NumXMMRegs++;
1787      } else {
1788        // XMM arguments have to be aligned on 16-byte boundary.
1789        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1790        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1791        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1792        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1793        ArgOffset += 16;
1794      }
1795      break;
1796    }
1797  }
1798
1799  if (!MemOpChains.empty())
1800    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1801                        &MemOpChains[0], MemOpChains.size());
1802
1803  // Build a sequence of copy-to-reg nodes chained together with token chain
1804  // and flag operands which copy the outgoing args into registers.
1805  SDOperand InFlag;
1806  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1807    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1808                             InFlag);
1809    InFlag = Chain.getValue(1);
1810  }
1811
1812  // If the callee is a GlobalAddress node (quite common, every direct call is)
1813  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1814  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1815    // We should use extra load for direct calls to dllimported functions in
1816    // non-JIT mode.
1817    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1818                                        getTargetMachine(), true))
1819      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1820  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1821    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1822
1823  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1824  // GOT pointer.
1825  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1826      Subtarget->isPICStyleGOT()) {
1827    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1828                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1829                             InFlag);
1830    InFlag = Chain.getValue(1);
1831  }
1832
1833  // Returns a chain & a flag for retval copy to use.
1834  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1835  SmallVector<SDOperand, 8> Ops;
1836  Ops.push_back(Chain);
1837  Ops.push_back(Callee);
1838
1839  // Add argument registers to the end of the list so that they are known live
1840  // into the call.
1841  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1842    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1843                                  RegsToPass[i].second.getValueType()));
1844
1845  // Add an implicit use GOT pointer in EBX.
1846  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1847      Subtarget->isPICStyleGOT())
1848    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1849
1850  if (InFlag.Val)
1851    Ops.push_back(InFlag);
1852
1853  // FIXME: Do not generate X86ISD::TAILCALL for now.
1854  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1855                      NodeTys, &Ops[0], Ops.size());
1856  InFlag = Chain.getValue(1);
1857
1858  // Returns a flag for retval copy to use.
1859  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1860  Ops.clear();
1861  Ops.push_back(Chain);
1862  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1863  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1864  Ops.push_back(InFlag);
1865  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1866  InFlag = Chain.getValue(1);
1867
1868  // Handle result values, copying them out of physregs into vregs that we
1869  // return.
1870  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1871}
1872
1873SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1874  if (ReturnAddrIndex == 0) {
1875    // Set up a frame object for the return address.
1876    MachineFunction &MF = DAG.getMachineFunction();
1877    if (Subtarget->is64Bit())
1878      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1879    else
1880      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1881  }
1882
1883  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1884}
1885
1886
1887
1888/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1889/// specific condition code. It returns a false if it cannot do a direct
1890/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1891/// needed.
1892static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1893                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1894                           SelectionDAG &DAG) {
1895  X86CC = X86::COND_INVALID;
1896  if (!isFP) {
1897    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1898      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1899        // X > -1   -> X == 0, jump !sign.
1900        RHS = DAG.getConstant(0, RHS.getValueType());
1901        X86CC = X86::COND_NS;
1902        return true;
1903      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1904        // X < 0   -> X == 0, jump on sign.
1905        X86CC = X86::COND_S;
1906        return true;
1907      }
1908    }
1909
1910    switch (SetCCOpcode) {
1911    default: break;
1912    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1913    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1914    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1915    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1916    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1917    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1918    case ISD::SETULT: X86CC = X86::COND_B;  break;
1919    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1920    case ISD::SETULE: X86CC = X86::COND_BE; break;
1921    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1922    }
1923  } else {
1924    // On a floating point condition, the flags are set as follows:
1925    // ZF  PF  CF   op
1926    //  0 | 0 | 0 | X > Y
1927    //  0 | 0 | 1 | X < Y
1928    //  1 | 0 | 0 | X == Y
1929    //  1 | 1 | 1 | unordered
1930    bool Flip = false;
1931    switch (SetCCOpcode) {
1932    default: break;
1933    case ISD::SETUEQ:
1934    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1935    case ISD::SETOLT: Flip = true; // Fallthrough
1936    case ISD::SETOGT:
1937    case ISD::SETGT: X86CC = X86::COND_A;  break;
1938    case ISD::SETOLE: Flip = true; // Fallthrough
1939    case ISD::SETOGE:
1940    case ISD::SETGE: X86CC = X86::COND_AE; break;
1941    case ISD::SETUGT: Flip = true; // Fallthrough
1942    case ISD::SETULT:
1943    case ISD::SETLT: X86CC = X86::COND_B;  break;
1944    case ISD::SETUGE: Flip = true; // Fallthrough
1945    case ISD::SETULE:
1946    case ISD::SETLE: X86CC = X86::COND_BE; break;
1947    case ISD::SETONE:
1948    case ISD::SETNE: X86CC = X86::COND_NE; break;
1949    case ISD::SETUO: X86CC = X86::COND_P;  break;
1950    case ISD::SETO:  X86CC = X86::COND_NP; break;
1951    }
1952    if (Flip)
1953      std::swap(LHS, RHS);
1954  }
1955
1956  return X86CC != X86::COND_INVALID;
1957}
1958
1959/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1960/// code. Current x86 isa includes the following FP cmov instructions:
1961/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1962static bool hasFPCMov(unsigned X86CC) {
1963  switch (X86CC) {
1964  default:
1965    return false;
1966  case X86::COND_B:
1967  case X86::COND_BE:
1968  case X86::COND_E:
1969  case X86::COND_P:
1970  case X86::COND_A:
1971  case X86::COND_AE:
1972  case X86::COND_NE:
1973  case X86::COND_NP:
1974    return true;
1975  }
1976}
1977
1978/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1979/// true if Op is undef or if its value falls within the specified range (L, H].
1980static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1981  if (Op.getOpcode() == ISD::UNDEF)
1982    return true;
1983
1984  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1985  return (Val >= Low && Val < Hi);
1986}
1987
1988/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1989/// true if Op is undef or if its value equal to the specified value.
1990static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1991  if (Op.getOpcode() == ISD::UNDEF)
1992    return true;
1993  return cast<ConstantSDNode>(Op)->getValue() == Val;
1994}
1995
1996/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1997/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1998bool X86::isPSHUFDMask(SDNode *N) {
1999  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2000
2001  if (N->getNumOperands() != 4)
2002    return false;
2003
2004  // Check if the value doesn't reference the second vector.
2005  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2006    SDOperand Arg = N->getOperand(i);
2007    if (Arg.getOpcode() == ISD::UNDEF) continue;
2008    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2009    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
2010      return false;
2011  }
2012
2013  return true;
2014}
2015
2016/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2017/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2018bool X86::isPSHUFHWMask(SDNode *N) {
2019  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2020
2021  if (N->getNumOperands() != 8)
2022    return false;
2023
2024  // Lower quadword copied in order.
2025  for (unsigned i = 0; i != 4; ++i) {
2026    SDOperand Arg = N->getOperand(i);
2027    if (Arg.getOpcode() == ISD::UNDEF) continue;
2028    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2029    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2030      return false;
2031  }
2032
2033  // Upper quadword shuffled.
2034  for (unsigned i = 4; i != 8; ++i) {
2035    SDOperand Arg = N->getOperand(i);
2036    if (Arg.getOpcode() == ISD::UNDEF) continue;
2037    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2038    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2039    if (Val < 4 || Val > 7)
2040      return false;
2041  }
2042
2043  return true;
2044}
2045
2046/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2047/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2048bool X86::isPSHUFLWMask(SDNode *N) {
2049  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2050
2051  if (N->getNumOperands() != 8)
2052    return false;
2053
2054  // Upper quadword copied in order.
2055  for (unsigned i = 4; i != 8; ++i)
2056    if (!isUndefOrEqual(N->getOperand(i), i))
2057      return false;
2058
2059  // Lower quadword shuffled.
2060  for (unsigned i = 0; i != 4; ++i)
2061    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2062      return false;
2063
2064  return true;
2065}
2066
2067/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2068/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2069static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2070  if (NumElems != 2 && NumElems != 4) return false;
2071
2072  unsigned Half = NumElems / 2;
2073  for (unsigned i = 0; i < Half; ++i)
2074    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2075      return false;
2076  for (unsigned i = Half; i < NumElems; ++i)
2077    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2078      return false;
2079
2080  return true;
2081}
2082
2083bool X86::isSHUFPMask(SDNode *N) {
2084  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2085  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2086}
2087
2088/// isCommutedSHUFP - Returns true if the shuffle mask is except
2089/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2090/// half elements to come from vector 1 (which would equal the dest.) and
2091/// the upper half to come from vector 2.
2092static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2093  if (NumOps != 2 && NumOps != 4) return false;
2094
2095  unsigned Half = NumOps / 2;
2096  for (unsigned i = 0; i < Half; ++i)
2097    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2098      return false;
2099  for (unsigned i = Half; i < NumOps; ++i)
2100    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2101      return false;
2102  return true;
2103}
2104
2105static bool isCommutedSHUFP(SDNode *N) {
2106  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2107  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2108}
2109
2110/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2111/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2112bool X86::isMOVHLPSMask(SDNode *N) {
2113  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2114
2115  if (N->getNumOperands() != 4)
2116    return false;
2117
2118  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2119  return isUndefOrEqual(N->getOperand(0), 6) &&
2120         isUndefOrEqual(N->getOperand(1), 7) &&
2121         isUndefOrEqual(N->getOperand(2), 2) &&
2122         isUndefOrEqual(N->getOperand(3), 3);
2123}
2124
2125/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2126/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2127/// <2, 3, 2, 3>
2128bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2129  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2130
2131  if (N->getNumOperands() != 4)
2132    return false;
2133
2134  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2135  return isUndefOrEqual(N->getOperand(0), 2) &&
2136         isUndefOrEqual(N->getOperand(1), 3) &&
2137         isUndefOrEqual(N->getOperand(2), 2) &&
2138         isUndefOrEqual(N->getOperand(3), 3);
2139}
2140
2141/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2142/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2143bool X86::isMOVLPMask(SDNode *N) {
2144  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2145
2146  unsigned NumElems = N->getNumOperands();
2147  if (NumElems != 2 && NumElems != 4)
2148    return false;
2149
2150  for (unsigned i = 0; i < NumElems/2; ++i)
2151    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2152      return false;
2153
2154  for (unsigned i = NumElems/2; i < NumElems; ++i)
2155    if (!isUndefOrEqual(N->getOperand(i), i))
2156      return false;
2157
2158  return true;
2159}
2160
2161/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2162/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2163/// and MOVLHPS.
2164bool X86::isMOVHPMask(SDNode *N) {
2165  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2166
2167  unsigned NumElems = N->getNumOperands();
2168  if (NumElems != 2 && NumElems != 4)
2169    return false;
2170
2171  for (unsigned i = 0; i < NumElems/2; ++i)
2172    if (!isUndefOrEqual(N->getOperand(i), i))
2173      return false;
2174
2175  for (unsigned i = 0; i < NumElems/2; ++i) {
2176    SDOperand Arg = N->getOperand(i + NumElems/2);
2177    if (!isUndefOrEqual(Arg, i + NumElems))
2178      return false;
2179  }
2180
2181  return true;
2182}
2183
2184/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2185/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2186bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2187                         bool V2IsSplat = false) {
2188  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2189    return false;
2190
2191  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2192    SDOperand BitI  = Elts[i];
2193    SDOperand BitI1 = Elts[i+1];
2194    if (!isUndefOrEqual(BitI, j))
2195      return false;
2196    if (V2IsSplat) {
2197      if (isUndefOrEqual(BitI1, NumElts))
2198        return false;
2199    } else {
2200      if (!isUndefOrEqual(BitI1, j + NumElts))
2201        return false;
2202    }
2203  }
2204
2205  return true;
2206}
2207
2208bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2209  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2210  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2211}
2212
2213/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2214/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2215bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2216                         bool V2IsSplat = false) {
2217  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2218    return false;
2219
2220  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2221    SDOperand BitI  = Elts[i];
2222    SDOperand BitI1 = Elts[i+1];
2223    if (!isUndefOrEqual(BitI, j + NumElts/2))
2224      return false;
2225    if (V2IsSplat) {
2226      if (isUndefOrEqual(BitI1, NumElts))
2227        return false;
2228    } else {
2229      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2230        return false;
2231    }
2232  }
2233
2234  return true;
2235}
2236
2237bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2238  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2239  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2240}
2241
2242/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2243/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2244/// <0, 0, 1, 1>
2245bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2246  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2247
2248  unsigned NumElems = N->getNumOperands();
2249  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2250    return false;
2251
2252  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2253    SDOperand BitI  = N->getOperand(i);
2254    SDOperand BitI1 = N->getOperand(i+1);
2255
2256    if (!isUndefOrEqual(BitI, j))
2257      return false;
2258    if (!isUndefOrEqual(BitI1, j))
2259      return false;
2260  }
2261
2262  return true;
2263}
2264
2265/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2266/// specifies a shuffle of elements that is suitable for input to MOVSS,
2267/// MOVSD, and MOVD, i.e. setting the lowest element.
2268static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2269  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2270    return false;
2271
2272  if (!isUndefOrEqual(Elts[0], NumElts))
2273    return false;
2274
2275  for (unsigned i = 1; i < NumElts; ++i) {
2276    if (!isUndefOrEqual(Elts[i], i))
2277      return false;
2278  }
2279
2280  return true;
2281}
2282
2283bool X86::isMOVLMask(SDNode *N) {
2284  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2285  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2286}
2287
2288/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2289/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2290/// element of vector 2 and the other elements to come from vector 1 in order.
2291static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2292                           bool V2IsSplat = false,
2293                           bool V2IsUndef = false) {
2294  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2295    return false;
2296
2297  if (!isUndefOrEqual(Ops[0], 0))
2298    return false;
2299
2300  for (unsigned i = 1; i < NumOps; ++i) {
2301    SDOperand Arg = Ops[i];
2302    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2303          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2304          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2305      return false;
2306  }
2307
2308  return true;
2309}
2310
2311static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2312                           bool V2IsUndef = false) {
2313  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2314  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2315                        V2IsSplat, V2IsUndef);
2316}
2317
2318/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2319/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2320bool X86::isMOVSHDUPMask(SDNode *N) {
2321  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2322
2323  if (N->getNumOperands() != 4)
2324    return false;
2325
2326  // Expect 1, 1, 3, 3
2327  for (unsigned i = 0; i < 2; ++i) {
2328    SDOperand Arg = N->getOperand(i);
2329    if (Arg.getOpcode() == ISD::UNDEF) continue;
2330    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2331    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2332    if (Val != 1) return false;
2333  }
2334
2335  bool HasHi = false;
2336  for (unsigned i = 2; i < 4; ++i) {
2337    SDOperand Arg = N->getOperand(i);
2338    if (Arg.getOpcode() == ISD::UNDEF) continue;
2339    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2340    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2341    if (Val != 3) return false;
2342    HasHi = true;
2343  }
2344
2345  // Don't use movshdup if it can be done with a shufps.
2346  return HasHi;
2347}
2348
2349/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2350/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2351bool X86::isMOVSLDUPMask(SDNode *N) {
2352  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2353
2354  if (N->getNumOperands() != 4)
2355    return false;
2356
2357  // Expect 0, 0, 2, 2
2358  for (unsigned i = 0; i < 2; ++i) {
2359    SDOperand Arg = N->getOperand(i);
2360    if (Arg.getOpcode() == ISD::UNDEF) continue;
2361    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2362    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2363    if (Val != 0) return false;
2364  }
2365
2366  bool HasHi = false;
2367  for (unsigned i = 2; i < 4; ++i) {
2368    SDOperand Arg = N->getOperand(i);
2369    if (Arg.getOpcode() == ISD::UNDEF) continue;
2370    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2371    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2372    if (Val != 2) return false;
2373    HasHi = true;
2374  }
2375
2376  // Don't use movshdup if it can be done with a shufps.
2377  return HasHi;
2378}
2379
2380/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2381/// a splat of a single element.
2382static bool isSplatMask(SDNode *N) {
2383  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2384
2385  // This is a splat operation if each element of the permute is the same, and
2386  // if the value doesn't reference the second vector.
2387  unsigned NumElems = N->getNumOperands();
2388  SDOperand ElementBase;
2389  unsigned i = 0;
2390  for (; i != NumElems; ++i) {
2391    SDOperand Elt = N->getOperand(i);
2392    if (isa<ConstantSDNode>(Elt)) {
2393      ElementBase = Elt;
2394      break;
2395    }
2396  }
2397
2398  if (!ElementBase.Val)
2399    return false;
2400
2401  for (; i != NumElems; ++i) {
2402    SDOperand Arg = N->getOperand(i);
2403    if (Arg.getOpcode() == ISD::UNDEF) continue;
2404    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2405    if (Arg != ElementBase) return false;
2406  }
2407
2408  // Make sure it is a splat of the first vector operand.
2409  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2410}
2411
2412/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2413/// a splat of a single element and it's a 2 or 4 element mask.
2414bool X86::isSplatMask(SDNode *N) {
2415  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2416
2417  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2418  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2419    return false;
2420  return ::isSplatMask(N);
2421}
2422
2423/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2424/// specifies a splat of zero element.
2425bool X86::isSplatLoMask(SDNode *N) {
2426  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2427
2428  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2429    if (!isUndefOrEqual(N->getOperand(i), 0))
2430      return false;
2431  return true;
2432}
2433
2434/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2435/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2436/// instructions.
2437unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2438  unsigned NumOperands = N->getNumOperands();
2439  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2440  unsigned Mask = 0;
2441  for (unsigned i = 0; i < NumOperands; ++i) {
2442    unsigned Val = 0;
2443    SDOperand Arg = N->getOperand(NumOperands-i-1);
2444    if (Arg.getOpcode() != ISD::UNDEF)
2445      Val = cast<ConstantSDNode>(Arg)->getValue();
2446    if (Val >= NumOperands) Val -= NumOperands;
2447    Mask |= Val;
2448    if (i != NumOperands - 1)
2449      Mask <<= Shift;
2450  }
2451
2452  return Mask;
2453}
2454
2455/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2456/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2457/// instructions.
2458unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2459  unsigned Mask = 0;
2460  // 8 nodes, but we only care about the last 4.
2461  for (unsigned i = 7; i >= 4; --i) {
2462    unsigned Val = 0;
2463    SDOperand Arg = N->getOperand(i);
2464    if (Arg.getOpcode() != ISD::UNDEF)
2465      Val = cast<ConstantSDNode>(Arg)->getValue();
2466    Mask |= (Val - 4);
2467    if (i != 4)
2468      Mask <<= 2;
2469  }
2470
2471  return Mask;
2472}
2473
2474/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2475/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2476/// instructions.
2477unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2478  unsigned Mask = 0;
2479  // 8 nodes, but we only care about the first 4.
2480  for (int i = 3; i >= 0; --i) {
2481    unsigned Val = 0;
2482    SDOperand Arg = N->getOperand(i);
2483    if (Arg.getOpcode() != ISD::UNDEF)
2484      Val = cast<ConstantSDNode>(Arg)->getValue();
2485    Mask |= Val;
2486    if (i != 0)
2487      Mask <<= 2;
2488  }
2489
2490  return Mask;
2491}
2492
2493/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2494/// specifies a 8 element shuffle that can be broken into a pair of
2495/// PSHUFHW and PSHUFLW.
2496static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2497  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2498
2499  if (N->getNumOperands() != 8)
2500    return false;
2501
2502  // Lower quadword shuffled.
2503  for (unsigned i = 0; i != 4; ++i) {
2504    SDOperand Arg = N->getOperand(i);
2505    if (Arg.getOpcode() == ISD::UNDEF) continue;
2506    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2507    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2508    if (Val > 4)
2509      return false;
2510  }
2511
2512  // Upper quadword shuffled.
2513  for (unsigned i = 4; i != 8; ++i) {
2514    SDOperand Arg = N->getOperand(i);
2515    if (Arg.getOpcode() == ISD::UNDEF) continue;
2516    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2517    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2518    if (Val < 4 || Val > 7)
2519      return false;
2520  }
2521
2522  return true;
2523}
2524
2525/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2526/// values in ther permute mask.
2527static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2528                                      SDOperand &V2, SDOperand &Mask,
2529                                      SelectionDAG &DAG) {
2530  MVT::ValueType VT = Op.getValueType();
2531  MVT::ValueType MaskVT = Mask.getValueType();
2532  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2533  unsigned NumElems = Mask.getNumOperands();
2534  SmallVector<SDOperand, 8> MaskVec;
2535
2536  for (unsigned i = 0; i != NumElems; ++i) {
2537    SDOperand Arg = Mask.getOperand(i);
2538    if (Arg.getOpcode() == ISD::UNDEF) {
2539      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2540      continue;
2541    }
2542    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2543    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2544    if (Val < NumElems)
2545      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2546    else
2547      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2548  }
2549
2550  std::swap(V1, V2);
2551  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2552  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2553}
2554
2555/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2556/// match movhlps. The lower half elements should come from upper half of
2557/// V1 (and in order), and the upper half elements should come from the upper
2558/// half of V2 (and in order).
2559static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2560  unsigned NumElems = Mask->getNumOperands();
2561  if (NumElems != 4)
2562    return false;
2563  for (unsigned i = 0, e = 2; i != e; ++i)
2564    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2565      return false;
2566  for (unsigned i = 2; i != 4; ++i)
2567    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2568      return false;
2569  return true;
2570}
2571
2572/// isScalarLoadToVector - Returns true if the node is a scalar load that
2573/// is promoted to a vector.
2574static inline bool isScalarLoadToVector(SDNode *N) {
2575  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2576    N = N->getOperand(0).Val;
2577    return ISD::isNON_EXTLoad(N);
2578  }
2579  return false;
2580}
2581
2582/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2583/// match movlp{s|d}. The lower half elements should come from lower half of
2584/// V1 (and in order), and the upper half elements should come from the upper
2585/// half of V2 (and in order). And since V1 will become the source of the
2586/// MOVLP, it must be either a vector load or a scalar load to vector.
2587static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2588  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2589    return false;
2590  // Is V2 is a vector load, don't do this transformation. We will try to use
2591  // load folding shufps op.
2592  if (ISD::isNON_EXTLoad(V2))
2593    return false;
2594
2595  unsigned NumElems = Mask->getNumOperands();
2596  if (NumElems != 2 && NumElems != 4)
2597    return false;
2598  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2599    if (!isUndefOrEqual(Mask->getOperand(i), i))
2600      return false;
2601  for (unsigned i = NumElems/2; i != NumElems; ++i)
2602    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2603      return false;
2604  return true;
2605}
2606
2607/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2608/// all the same.
2609static bool isSplatVector(SDNode *N) {
2610  if (N->getOpcode() != ISD::BUILD_VECTOR)
2611    return false;
2612
2613  SDOperand SplatValue = N->getOperand(0);
2614  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2615    if (N->getOperand(i) != SplatValue)
2616      return false;
2617  return true;
2618}
2619
2620/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2621/// to an undef.
2622static bool isUndefShuffle(SDNode *N) {
2623  if (N->getOpcode() != ISD::BUILD_VECTOR)
2624    return false;
2625
2626  SDOperand V1 = N->getOperand(0);
2627  SDOperand V2 = N->getOperand(1);
2628  SDOperand Mask = N->getOperand(2);
2629  unsigned NumElems = Mask.getNumOperands();
2630  for (unsigned i = 0; i != NumElems; ++i) {
2631    SDOperand Arg = Mask.getOperand(i);
2632    if (Arg.getOpcode() != ISD::UNDEF) {
2633      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2634      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2635        return false;
2636      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2637        return false;
2638    }
2639  }
2640  return true;
2641}
2642
2643/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2644/// that point to V2 points to its first element.
2645static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2646  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2647
2648  bool Changed = false;
2649  SmallVector<SDOperand, 8> MaskVec;
2650  unsigned NumElems = Mask.getNumOperands();
2651  for (unsigned i = 0; i != NumElems; ++i) {
2652    SDOperand Arg = Mask.getOperand(i);
2653    if (Arg.getOpcode() != ISD::UNDEF) {
2654      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2655      if (Val > NumElems) {
2656        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2657        Changed = true;
2658      }
2659    }
2660    MaskVec.push_back(Arg);
2661  }
2662
2663  if (Changed)
2664    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2665                       &MaskVec[0], MaskVec.size());
2666  return Mask;
2667}
2668
2669/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2670/// operation of specified width.
2671static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2672  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2673  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2674
2675  SmallVector<SDOperand, 8> MaskVec;
2676  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2677  for (unsigned i = 1; i != NumElems; ++i)
2678    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2679  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2680}
2681
2682/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2683/// of specified width.
2684static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2685  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2686  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2687  SmallVector<SDOperand, 8> MaskVec;
2688  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2689    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2690    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2691  }
2692  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2693}
2694
2695/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2696/// of specified width.
2697static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2698  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2699  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2700  unsigned Half = NumElems/2;
2701  SmallVector<SDOperand, 8> MaskVec;
2702  for (unsigned i = 0; i != Half; ++i) {
2703    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2704    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2705  }
2706  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2707}
2708
2709/// getZeroVector - Returns a vector of specified type with all zero elements.
2710///
2711static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2712  assert(MVT::isVector(VT) && "Expected a vector type");
2713  unsigned NumElems = getVectorNumElements(VT);
2714  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2715  bool isFP = MVT::isFloatingPoint(EVT);
2716  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2717  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2718  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2719}
2720
2721/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2722///
2723static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2724  SDOperand V1 = Op.getOperand(0);
2725  SDOperand Mask = Op.getOperand(2);
2726  MVT::ValueType VT = Op.getValueType();
2727  unsigned NumElems = Mask.getNumOperands();
2728  Mask = getUnpacklMask(NumElems, DAG);
2729  while (NumElems != 4) {
2730    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2731    NumElems >>= 1;
2732  }
2733  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2734
2735  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2736  Mask = getZeroVector(MaskVT, DAG);
2737  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2738                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2739  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2740}
2741
2742/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2743/// constant +0.0.
2744static inline bool isZeroNode(SDOperand Elt) {
2745  return ((isa<ConstantSDNode>(Elt) &&
2746           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2747          (isa<ConstantFPSDNode>(Elt) &&
2748           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2749}
2750
2751/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2752/// vector and zero or undef vector.
2753static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2754                                             unsigned NumElems, unsigned Idx,
2755                                             bool isZero, SelectionDAG &DAG) {
2756  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2757  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2758  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2759  SDOperand Zero = DAG.getConstant(0, EVT);
2760  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2761  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2762  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2763                               &MaskVec[0], MaskVec.size());
2764  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2765}
2766
2767/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2768///
2769static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2770                                       unsigned NumNonZero, unsigned NumZero,
2771                                       SelectionDAG &DAG, TargetLowering &TLI) {
2772  if (NumNonZero > 8)
2773    return SDOperand();
2774
2775  SDOperand V(0, 0);
2776  bool First = true;
2777  for (unsigned i = 0; i < 16; ++i) {
2778    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2779    if (ThisIsNonZero && First) {
2780      if (NumZero)
2781        V = getZeroVector(MVT::v8i16, DAG);
2782      else
2783        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2784      First = false;
2785    }
2786
2787    if ((i & 1) != 0) {
2788      SDOperand ThisElt(0, 0), LastElt(0, 0);
2789      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2790      if (LastIsNonZero) {
2791        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2792      }
2793      if (ThisIsNonZero) {
2794        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2795        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2796                              ThisElt, DAG.getConstant(8, MVT::i8));
2797        if (LastIsNonZero)
2798          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2799      } else
2800        ThisElt = LastElt;
2801
2802      if (ThisElt.Val)
2803        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2804                        DAG.getConstant(i/2, TLI.getPointerTy()));
2805    }
2806  }
2807
2808  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2809}
2810
2811/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
2812///
2813static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2814                                       unsigned NumNonZero, unsigned NumZero,
2815                                       SelectionDAG &DAG, TargetLowering &TLI) {
2816  if (NumNonZero > 4)
2817    return SDOperand();
2818
2819  SDOperand V(0, 0);
2820  bool First = true;
2821  for (unsigned i = 0; i < 8; ++i) {
2822    bool isNonZero = (NonZeros & (1 << i)) != 0;
2823    if (isNonZero) {
2824      if (First) {
2825        if (NumZero)
2826          V = getZeroVector(MVT::v8i16, DAG);
2827        else
2828          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2829        First = false;
2830      }
2831      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2832                      DAG.getConstant(i, TLI.getPointerTy()));
2833    }
2834  }
2835
2836  return V;
2837}
2838
2839SDOperand
2840X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2841  // All zero's are handled with pxor.
2842  if (ISD::isBuildVectorAllZeros(Op.Val))
2843    return Op;
2844
2845  // All one's are handled with pcmpeqd.
2846  if (ISD::isBuildVectorAllOnes(Op.Val))
2847    return Op;
2848
2849  MVT::ValueType VT = Op.getValueType();
2850  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2851  unsigned EVTBits = MVT::getSizeInBits(EVT);
2852
2853  unsigned NumElems = Op.getNumOperands();
2854  unsigned NumZero  = 0;
2855  unsigned NumNonZero = 0;
2856  unsigned NonZeros = 0;
2857  std::set<SDOperand> Values;
2858  for (unsigned i = 0; i < NumElems; ++i) {
2859    SDOperand Elt = Op.getOperand(i);
2860    if (Elt.getOpcode() != ISD::UNDEF) {
2861      Values.insert(Elt);
2862      if (isZeroNode(Elt))
2863        NumZero++;
2864      else {
2865        NonZeros |= (1 << i);
2866        NumNonZero++;
2867      }
2868    }
2869  }
2870
2871  if (NumNonZero == 0)
2872    // Must be a mix of zero and undef. Return a zero vector.
2873    return getZeroVector(VT, DAG);
2874
2875  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2876  if (Values.size() == 1)
2877    return SDOperand();
2878
2879  // Special case for single non-zero element.
2880  if (NumNonZero == 1) {
2881    unsigned Idx = CountTrailingZeros_32(NonZeros);
2882    SDOperand Item = Op.getOperand(Idx);
2883    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2884    if (Idx == 0)
2885      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2886      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2887                                         NumZero > 0, DAG);
2888
2889    if (EVTBits == 32) {
2890      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2891      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2892                                         DAG);
2893      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2894      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2895      SmallVector<SDOperand, 8> MaskVec;
2896      for (unsigned i = 0; i < NumElems; i++)
2897        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2898      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2899                                   &MaskVec[0], MaskVec.size());
2900      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2901                         DAG.getNode(ISD::UNDEF, VT), Mask);
2902    }
2903  }
2904
2905  // Let legalizer expand 2-wide build_vector's.
2906  if (EVTBits == 64)
2907    return SDOperand();
2908
2909  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2910  if (EVTBits == 8) {
2911    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2912                                        *this);
2913    if (V.Val) return V;
2914  }
2915
2916  if (EVTBits == 16) {
2917    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2918                                        *this);
2919    if (V.Val) return V;
2920  }
2921
2922  // If element VT is == 32 bits, turn it into a number of shuffles.
2923  SmallVector<SDOperand, 8> V;
2924  V.resize(NumElems);
2925  if (NumElems == 4 && NumZero > 0) {
2926    for (unsigned i = 0; i < 4; ++i) {
2927      bool isZero = !(NonZeros & (1 << i));
2928      if (isZero)
2929        V[i] = getZeroVector(VT, DAG);
2930      else
2931        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2932    }
2933
2934    for (unsigned i = 0; i < 2; ++i) {
2935      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2936        default: break;
2937        case 0:
2938          V[i] = V[i*2];  // Must be a zero vector.
2939          break;
2940        case 1:
2941          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2942                             getMOVLMask(NumElems, DAG));
2943          break;
2944        case 2:
2945          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2946                             getMOVLMask(NumElems, DAG));
2947          break;
2948        case 3:
2949          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2950                             getUnpacklMask(NumElems, DAG));
2951          break;
2952      }
2953    }
2954
2955    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2956    // clears the upper bits.
2957    // FIXME: we can do the same for v4f32 case when we know both parts of
2958    // the lower half come from scalar_to_vector (loadf32). We should do
2959    // that in post legalizer dag combiner with target specific hooks.
2960    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2961      return V[0];
2962    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2963    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2964    SmallVector<SDOperand, 8> MaskVec;
2965    bool Reverse = (NonZeros & 0x3) == 2;
2966    for (unsigned i = 0; i < 2; ++i)
2967      if (Reverse)
2968        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2969      else
2970        MaskVec.push_back(DAG.getConstant(i, EVT));
2971    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2972    for (unsigned i = 0; i < 2; ++i)
2973      if (Reverse)
2974        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2975      else
2976        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2977    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2978                                     &MaskVec[0], MaskVec.size());
2979    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2980  }
2981
2982  if (Values.size() > 2) {
2983    // Expand into a number of unpckl*.
2984    // e.g. for v4f32
2985    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2986    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2987    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2988    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2989    for (unsigned i = 0; i < NumElems; ++i)
2990      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2991    NumElems >>= 1;
2992    while (NumElems != 0) {
2993      for (unsigned i = 0; i < NumElems; ++i)
2994        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2995                           UnpckMask);
2996      NumElems >>= 1;
2997    }
2998    return V[0];
2999  }
3000
3001  return SDOperand();
3002}
3003
3004SDOperand
3005X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3006  SDOperand V1 = Op.getOperand(0);
3007  SDOperand V2 = Op.getOperand(1);
3008  SDOperand PermMask = Op.getOperand(2);
3009  MVT::ValueType VT = Op.getValueType();
3010  unsigned NumElems = PermMask.getNumOperands();
3011  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3012  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3013  bool V1IsSplat = false;
3014  bool V2IsSplat = false;
3015
3016  if (isUndefShuffle(Op.Val))
3017    return DAG.getNode(ISD::UNDEF, VT);
3018
3019  if (isSplatMask(PermMask.Val)) {
3020    if (NumElems <= 4) return Op;
3021    // Promote it to a v4i32 splat.
3022    return PromoteSplat(Op, DAG);
3023  }
3024
3025  if (X86::isMOVLMask(PermMask.Val))
3026    return (V1IsUndef) ? V2 : Op;
3027
3028  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3029      X86::isMOVSLDUPMask(PermMask.Val) ||
3030      X86::isMOVHLPSMask(PermMask.Val) ||
3031      X86::isMOVHPMask(PermMask.Val) ||
3032      X86::isMOVLPMask(PermMask.Val))
3033    return Op;
3034
3035  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3036      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3037    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3038
3039  bool Commuted = false;
3040  V1IsSplat = isSplatVector(V1.Val);
3041  V2IsSplat = isSplatVector(V2.Val);
3042  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3043    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3044    std::swap(V1IsSplat, V2IsSplat);
3045    std::swap(V1IsUndef, V2IsUndef);
3046    Commuted = true;
3047  }
3048
3049  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3050    if (V2IsUndef) return V1;
3051    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3052    if (V2IsSplat) {
3053      // V2 is a splat, so the mask may be malformed. That is, it may point
3054      // to any V2 element. The instruction selectior won't like this. Get
3055      // a corrected mask and commute to form a proper MOVS{S|D}.
3056      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3057      if (NewMask.Val != PermMask.Val)
3058        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3059    }
3060    return Op;
3061  }
3062
3063  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3064      X86::isUNPCKLMask(PermMask.Val) ||
3065      X86::isUNPCKHMask(PermMask.Val))
3066    return Op;
3067
3068  if (V2IsSplat) {
3069    // Normalize mask so all entries that point to V2 points to its first
3070    // element then try to match unpck{h|l} again. If match, return a
3071    // new vector_shuffle with the corrected mask.
3072    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3073    if (NewMask.Val != PermMask.Val) {
3074      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3075        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3076        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3077      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3078        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3079        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3080      }
3081    }
3082  }
3083
3084  // Normalize the node to match x86 shuffle ops if needed
3085  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3086      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3087
3088  if (Commuted) {
3089    // Commute is back and try unpck* again.
3090    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3091    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3092        X86::isUNPCKLMask(PermMask.Val) ||
3093        X86::isUNPCKHMask(PermMask.Val))
3094      return Op;
3095  }
3096
3097  // If VT is integer, try PSHUF* first, then SHUFP*.
3098  if (MVT::isInteger(VT)) {
3099    if (X86::isPSHUFDMask(PermMask.Val) ||
3100        X86::isPSHUFHWMask(PermMask.Val) ||
3101        X86::isPSHUFLWMask(PermMask.Val)) {
3102      if (V2.getOpcode() != ISD::UNDEF)
3103        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3104                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3105      return Op;
3106    }
3107
3108    if (X86::isSHUFPMask(PermMask.Val))
3109      return Op;
3110
3111    // Handle v8i16 shuffle high / low shuffle node pair.
3112    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3113      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3114      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3115      SmallVector<SDOperand, 8> MaskVec;
3116      for (unsigned i = 0; i != 4; ++i)
3117        MaskVec.push_back(PermMask.getOperand(i));
3118      for (unsigned i = 4; i != 8; ++i)
3119        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3120      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3121                                   &MaskVec[0], MaskVec.size());
3122      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3123      MaskVec.clear();
3124      for (unsigned i = 0; i != 4; ++i)
3125        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3126      for (unsigned i = 4; i != 8; ++i)
3127        MaskVec.push_back(PermMask.getOperand(i));
3128      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3129      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3130    }
3131  } else {
3132    // Floating point cases in the other order.
3133    if (X86::isSHUFPMask(PermMask.Val))
3134      return Op;
3135    if (X86::isPSHUFDMask(PermMask.Val) ||
3136        X86::isPSHUFHWMask(PermMask.Val) ||
3137        X86::isPSHUFLWMask(PermMask.Val)) {
3138      if (V2.getOpcode() != ISD::UNDEF)
3139        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3140                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3141      return Op;
3142    }
3143  }
3144
3145  if (NumElems == 4) {
3146    MVT::ValueType MaskVT = PermMask.getValueType();
3147    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3148    SmallVector<std::pair<int, int>, 8> Locs;
3149    Locs.reserve(NumElems);
3150    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3151    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3152    unsigned NumHi = 0;
3153    unsigned NumLo = 0;
3154    // If no more than two elements come from either vector. This can be
3155    // implemented with two shuffles. First shuffle gather the elements.
3156    // The second shuffle, which takes the first shuffle as both of its
3157    // vector operands, put the elements into the right order.
3158    for (unsigned i = 0; i != NumElems; ++i) {
3159      SDOperand Elt = PermMask.getOperand(i);
3160      if (Elt.getOpcode() == ISD::UNDEF) {
3161        Locs[i] = std::make_pair(-1, -1);
3162      } else {
3163        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3164        if (Val < NumElems) {
3165          Locs[i] = std::make_pair(0, NumLo);
3166          Mask1[NumLo] = Elt;
3167          NumLo++;
3168        } else {
3169          Locs[i] = std::make_pair(1, NumHi);
3170          if (2+NumHi < NumElems)
3171            Mask1[2+NumHi] = Elt;
3172          NumHi++;
3173        }
3174      }
3175    }
3176    if (NumLo <= 2 && NumHi <= 2) {
3177      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3178                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3179                                   &Mask1[0], Mask1.size()));
3180      for (unsigned i = 0; i != NumElems; ++i) {
3181        if (Locs[i].first == -1)
3182          continue;
3183        else {
3184          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3185          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3186          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3187        }
3188      }
3189
3190      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3191                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3192                                     &Mask2[0], Mask2.size()));
3193    }
3194
3195    // Break it into (shuffle shuffle_hi, shuffle_lo).
3196    Locs.clear();
3197    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3198    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3199    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3200    unsigned MaskIdx = 0;
3201    unsigned LoIdx = 0;
3202    unsigned HiIdx = NumElems/2;
3203    for (unsigned i = 0; i != NumElems; ++i) {
3204      if (i == NumElems/2) {
3205        MaskPtr = &HiMask;
3206        MaskIdx = 1;
3207        LoIdx = 0;
3208        HiIdx = NumElems/2;
3209      }
3210      SDOperand Elt = PermMask.getOperand(i);
3211      if (Elt.getOpcode() == ISD::UNDEF) {
3212        Locs[i] = std::make_pair(-1, -1);
3213      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3214        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3215        (*MaskPtr)[LoIdx] = Elt;
3216        LoIdx++;
3217      } else {
3218        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3219        (*MaskPtr)[HiIdx] = Elt;
3220        HiIdx++;
3221      }
3222    }
3223
3224    SDOperand LoShuffle =
3225      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3226                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3227                              &LoMask[0], LoMask.size()));
3228    SDOperand HiShuffle =
3229      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3230                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3231                              &HiMask[0], HiMask.size()));
3232    SmallVector<SDOperand, 8> MaskOps;
3233    for (unsigned i = 0; i != NumElems; ++i) {
3234      if (Locs[i].first == -1) {
3235        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3236      } else {
3237        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3238        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3239      }
3240    }
3241    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3242                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3243                                   &MaskOps[0], MaskOps.size()));
3244  }
3245
3246  return SDOperand();
3247}
3248
3249SDOperand
3250X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3251  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3252    return SDOperand();
3253
3254  MVT::ValueType VT = Op.getValueType();
3255  // TODO: handle v16i8.
3256  if (MVT::getSizeInBits(VT) == 16) {
3257    // Transform it so it match pextrw which produces a 32-bit result.
3258    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3259    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3260                                    Op.getOperand(0), Op.getOperand(1));
3261    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3262                                    DAG.getValueType(VT));
3263    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3264  } else if (MVT::getSizeInBits(VT) == 32) {
3265    SDOperand Vec = Op.getOperand(0);
3266    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3267    if (Idx == 0)
3268      return Op;
3269    // SHUFPS the element to the lowest double word, then movss.
3270    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3271    SmallVector<SDOperand, 8> IdxVec;
3272    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3273    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3274    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3275    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3276    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3277                                 &IdxVec[0], IdxVec.size());
3278    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3279                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3280    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3281                       DAG.getConstant(0, getPointerTy()));
3282  } else if (MVT::getSizeInBits(VT) == 64) {
3283    SDOperand Vec = Op.getOperand(0);
3284    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3285    if (Idx == 0)
3286      return Op;
3287
3288    // UNPCKHPD the element to the lowest double word, then movsd.
3289    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3290    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3291    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3292    SmallVector<SDOperand, 8> IdxVec;
3293    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3294    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3295    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3296                                 &IdxVec[0], IdxVec.size());
3297    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3298                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3299    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3300                       DAG.getConstant(0, getPointerTy()));
3301  }
3302
3303  return SDOperand();
3304}
3305
3306SDOperand
3307X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3308  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3309  // as its second argument.
3310  MVT::ValueType VT = Op.getValueType();
3311  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3312  SDOperand N0 = Op.getOperand(0);
3313  SDOperand N1 = Op.getOperand(1);
3314  SDOperand N2 = Op.getOperand(2);
3315  if (MVT::getSizeInBits(BaseVT) == 16) {
3316    if (N1.getValueType() != MVT::i32)
3317      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3318    if (N2.getValueType() != MVT::i32)
3319      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3320    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3321  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3322    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3323    if (Idx == 0) {
3324      // Use a movss.
3325      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3326      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3327      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3328      SmallVector<SDOperand, 8> MaskVec;
3329      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3330      for (unsigned i = 1; i <= 3; ++i)
3331        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3332      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3333                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3334                                     &MaskVec[0], MaskVec.size()));
3335    } else {
3336      // Use two pinsrw instructions to insert a 32 bit value.
3337      Idx <<= 1;
3338      if (MVT::isFloatingPoint(N1.getValueType())) {
3339        if (ISD::isNON_EXTLoad(N1.Val)) {
3340          // Just load directly from f32mem to GR32.
3341          LoadSDNode *LD = cast<LoadSDNode>(N1);
3342          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3343                           LD->getSrcValue(), LD->getSrcValueOffset());
3344        } else {
3345          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3346          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3347          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3348                           DAG.getConstant(0, getPointerTy()));
3349        }
3350      }
3351      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3352      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3353                       DAG.getConstant(Idx, getPointerTy()));
3354      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3355      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3356                       DAG.getConstant(Idx+1, getPointerTy()));
3357      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3358    }
3359  }
3360
3361  return SDOperand();
3362}
3363
3364SDOperand
3365X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3366  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3367  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3368}
3369
3370// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3371// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3372// one of the above mentioned nodes. It has to be wrapped because otherwise
3373// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3374// be used to form addressing mode. These wrapped nodes will be selected
3375// into MOV32ri.
3376SDOperand
3377X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3378  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3379  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3380                                               getPointerTy(),
3381                                               CP->getAlignment());
3382  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3383  // With PIC, the address is actually $g + Offset.
3384  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3385      !Subtarget->isPICStyleRIPRel()) {
3386    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3387                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3388                         Result);
3389  }
3390
3391  return Result;
3392}
3393
3394SDOperand
3395X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3396  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3397  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3398  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3399  // With PIC, the address is actually $g + Offset.
3400  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3401      !Subtarget->isPICStyleRIPRel()) {
3402    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3403                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3404                         Result);
3405  }
3406
3407  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3408  // load the value at address GV, not the value of GV itself. This means that
3409  // the GlobalAddress must be in the base or index register of the address, not
3410  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3411  // The same applies for external symbols during PIC codegen
3412  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3413    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3414
3415  return Result;
3416}
3417
3418SDOperand
3419X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3420  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3421  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3422  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3423  // With PIC, the address is actually $g + Offset.
3424  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3425      !Subtarget->isPICStyleRIPRel()) {
3426    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3427                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3428                         Result);
3429  }
3430
3431  return Result;
3432}
3433
3434SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3435  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3436  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3437  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3438  // With PIC, the address is actually $g + Offset.
3439  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3440      !Subtarget->isPICStyleRIPRel()) {
3441    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3442                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3443                         Result);
3444  }
3445
3446  return Result;
3447}
3448
3449SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3450    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3451           "Not an i64 shift!");
3452    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3453    SDOperand ShOpLo = Op.getOperand(0);
3454    SDOperand ShOpHi = Op.getOperand(1);
3455    SDOperand ShAmt  = Op.getOperand(2);
3456    SDOperand Tmp1 = isSRA ?
3457      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3458      DAG.getConstant(0, MVT::i32);
3459
3460    SDOperand Tmp2, Tmp3;
3461    if (Op.getOpcode() == ISD::SHL_PARTS) {
3462      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3463      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3464    } else {
3465      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3466      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3467    }
3468
3469    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3470    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3471                                    DAG.getConstant(32, MVT::i8));
3472    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3473    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3474
3475    SDOperand Hi, Lo;
3476    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3477
3478    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3479    SmallVector<SDOperand, 4> Ops;
3480    if (Op.getOpcode() == ISD::SHL_PARTS) {
3481      Ops.push_back(Tmp2);
3482      Ops.push_back(Tmp3);
3483      Ops.push_back(CC);
3484      Ops.push_back(InFlag);
3485      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3486      InFlag = Hi.getValue(1);
3487
3488      Ops.clear();
3489      Ops.push_back(Tmp3);
3490      Ops.push_back(Tmp1);
3491      Ops.push_back(CC);
3492      Ops.push_back(InFlag);
3493      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3494    } else {
3495      Ops.push_back(Tmp2);
3496      Ops.push_back(Tmp3);
3497      Ops.push_back(CC);
3498      Ops.push_back(InFlag);
3499      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3500      InFlag = Lo.getValue(1);
3501
3502      Ops.clear();
3503      Ops.push_back(Tmp3);
3504      Ops.push_back(Tmp1);
3505      Ops.push_back(CC);
3506      Ops.push_back(InFlag);
3507      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3508    }
3509
3510    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3511    Ops.clear();
3512    Ops.push_back(Lo);
3513    Ops.push_back(Hi);
3514    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3515}
3516
3517SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3518  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3519         Op.getOperand(0).getValueType() >= MVT::i16 &&
3520         "Unknown SINT_TO_FP to lower!");
3521
3522  SDOperand Result;
3523  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3524  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3525  MachineFunction &MF = DAG.getMachineFunction();
3526  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3527  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3528  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3529                                 StackSlot, NULL, 0);
3530
3531  // Build the FILD
3532  SDVTList Tys;
3533  if (X86ScalarSSE)
3534    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3535  else
3536    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3537  SmallVector<SDOperand, 8> Ops;
3538  Ops.push_back(Chain);
3539  Ops.push_back(StackSlot);
3540  Ops.push_back(DAG.getValueType(SrcVT));
3541  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3542                       Tys, &Ops[0], Ops.size());
3543
3544  if (X86ScalarSSE) {
3545    Chain = Result.getValue(1);
3546    SDOperand InFlag = Result.getValue(2);
3547
3548    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3549    // shouldn't be necessary except that RFP cannot be live across
3550    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3551    MachineFunction &MF = DAG.getMachineFunction();
3552    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3553    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3554    Tys = DAG.getVTList(MVT::Other);
3555    SmallVector<SDOperand, 8> Ops;
3556    Ops.push_back(Chain);
3557    Ops.push_back(Result);
3558    Ops.push_back(StackSlot);
3559    Ops.push_back(DAG.getValueType(Op.getValueType()));
3560    Ops.push_back(InFlag);
3561    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3562    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3563  }
3564
3565  return Result;
3566}
3567
3568SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3569  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3570         "Unknown FP_TO_SINT to lower!");
3571  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3572  // stack slot.
3573  MachineFunction &MF = DAG.getMachineFunction();
3574  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3575  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3576  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3577
3578  unsigned Opc;
3579  switch (Op.getValueType()) {
3580    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3581    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3582    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3583    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3584  }
3585
3586  SDOperand Chain = DAG.getEntryNode();
3587  SDOperand Value = Op.getOperand(0);
3588  if (X86ScalarSSE) {
3589    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3590    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3591    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3592    SDOperand Ops[] = {
3593      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3594    };
3595    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3596    Chain = Value.getValue(1);
3597    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3598    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3599  }
3600
3601  // Build the FP_TO_INT*_IN_MEM
3602  SDOperand Ops[] = { Chain, Value, StackSlot };
3603  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3604
3605  // Load the result.
3606  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3607}
3608
3609SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3610  MVT::ValueType VT = Op.getValueType();
3611  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3612  std::vector<Constant*> CV;
3613  if (VT == MVT::f64) {
3614    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3615    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3616  } else {
3617    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3618    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3619    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3620    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3621  }
3622  Constant *CS = ConstantStruct::get(CV);
3623  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3624  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3625  SmallVector<SDOperand, 3> Ops;
3626  Ops.push_back(DAG.getEntryNode());
3627  Ops.push_back(CPIdx);
3628  Ops.push_back(DAG.getSrcValue(NULL));
3629  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3630  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3631}
3632
3633SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3634  MVT::ValueType VT = Op.getValueType();
3635  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3636  std::vector<Constant*> CV;
3637  if (VT == MVT::f64) {
3638    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3639    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3640  } else {
3641    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3642    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3643    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3644    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3645  }
3646  Constant *CS = ConstantStruct::get(CV);
3647  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3648  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3649  SmallVector<SDOperand, 3> Ops;
3650  Ops.push_back(DAG.getEntryNode());
3651  Ops.push_back(CPIdx);
3652  Ops.push_back(DAG.getSrcValue(NULL));
3653  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3654  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3655}
3656
3657SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3658  SDOperand Op0 = Op.getOperand(0);
3659  SDOperand Op1 = Op.getOperand(1);
3660  MVT::ValueType VT = Op.getValueType();
3661  MVT::ValueType SrcVT = Op1.getValueType();
3662  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3663
3664  // If second operand is smaller, extend it first.
3665  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3666    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3667    SrcVT = VT;
3668  }
3669
3670  // First get the sign bit of second operand.
3671  std::vector<Constant*> CV;
3672  if (SrcVT == MVT::f64) {
3673    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3674    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3675  } else {
3676    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3677    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3678    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3679    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3680  }
3681  Constant *CS = ConstantStruct::get(CV);
3682  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3683  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3684  SmallVector<SDOperand, 3> Ops;
3685  Ops.push_back(DAG.getEntryNode());
3686  Ops.push_back(CPIdx);
3687  Ops.push_back(DAG.getSrcValue(NULL));
3688  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3689  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3690
3691  // Shift sign bit right or left if the two operands have different types.
3692  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3693    // Op0 is MVT::f32, Op1 is MVT::f64.
3694    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3695    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3696                          DAG.getConstant(32, MVT::i32));
3697    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3698    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3699                          DAG.getConstant(0, getPointerTy()));
3700  }
3701
3702  // Clear first operand sign bit.
3703  CV.clear();
3704  if (VT == MVT::f64) {
3705    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3706    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3707  } else {
3708    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3709    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3710    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3711    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3712  }
3713  CS = ConstantStruct::get(CV);
3714  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3715  Tys = DAG.getVTList(VT, MVT::Other);
3716  Ops.clear();
3717  Ops.push_back(DAG.getEntryNode());
3718  Ops.push_back(CPIdx);
3719  Ops.push_back(DAG.getSrcValue(NULL));
3720  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3721  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3722
3723  // Or the value with the sign bit.
3724  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3725}
3726
3727SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3728                                        SDOperand Chain) {
3729  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3730  SDOperand Cond;
3731  SDOperand Op0 = Op.getOperand(0);
3732  SDOperand Op1 = Op.getOperand(1);
3733  SDOperand CC = Op.getOperand(2);
3734  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3735  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3736  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3737  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3738  unsigned X86CC;
3739
3740  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3741                     Op0, Op1, DAG)) {
3742    SDOperand Ops1[] = { Chain, Op0, Op1 };
3743    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3744    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3745    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3746  }
3747
3748  assert(isFP && "Illegal integer SetCC!");
3749
3750  SDOperand COps[] = { Chain, Op0, Op1 };
3751  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3752
3753  switch (SetCCOpcode) {
3754  default: assert(false && "Illegal floating point SetCC!");
3755  case ISD::SETOEQ: {  // !PF & ZF
3756    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3757    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3758    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3759                         Tmp1.getValue(1) };
3760    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3761    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3762  }
3763  case ISD::SETUNE: {  // PF | !ZF
3764    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3765    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3766    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3767                         Tmp1.getValue(1) };
3768    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3769    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3770  }
3771  }
3772}
3773
3774SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3775  bool addTest = true;
3776  SDOperand Chain = DAG.getEntryNode();
3777  SDOperand Cond  = Op.getOperand(0);
3778  SDOperand CC;
3779  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3780
3781  if (Cond.getOpcode() == ISD::SETCC)
3782    Cond = LowerSETCC(Cond, DAG, Chain);
3783
3784  if (Cond.getOpcode() == X86ISD::SETCC) {
3785    CC = Cond.getOperand(0);
3786
3787    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3788    // (since flag operand cannot be shared). Use it as the condition setting
3789    // operand in place of the X86ISD::SETCC.
3790    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3791    // to use a test instead of duplicating the X86ISD::CMP (for register
3792    // pressure reason)?
3793    SDOperand Cmp = Cond.getOperand(1);
3794    unsigned Opc = Cmp.getOpcode();
3795    bool IllegalFPCMov = !X86ScalarSSE &&
3796      MVT::isFloatingPoint(Op.getValueType()) &&
3797      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3798    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3799        !IllegalFPCMov) {
3800      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3801      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3802      addTest = false;
3803    }
3804  }
3805
3806  if (addTest) {
3807    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3808    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3809    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3810  }
3811
3812  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3813  SmallVector<SDOperand, 4> Ops;
3814  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3815  // condition is true.
3816  Ops.push_back(Op.getOperand(2));
3817  Ops.push_back(Op.getOperand(1));
3818  Ops.push_back(CC);
3819  Ops.push_back(Cond.getValue(1));
3820  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3821}
3822
3823SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3824  bool addTest = true;
3825  SDOperand Chain = Op.getOperand(0);
3826  SDOperand Cond  = Op.getOperand(1);
3827  SDOperand Dest  = Op.getOperand(2);
3828  SDOperand CC;
3829  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3830
3831  if (Cond.getOpcode() == ISD::SETCC)
3832    Cond = LowerSETCC(Cond, DAG, Chain);
3833
3834  if (Cond.getOpcode() == X86ISD::SETCC) {
3835    CC = Cond.getOperand(0);
3836
3837    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3838    // (since flag operand cannot be shared). Use it as the condition setting
3839    // operand in place of the X86ISD::SETCC.
3840    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3841    // to use a test instead of duplicating the X86ISD::CMP (for register
3842    // pressure reason)?
3843    SDOperand Cmp = Cond.getOperand(1);
3844    unsigned Opc = Cmp.getOpcode();
3845    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3846      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3847      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3848      addTest = false;
3849    }
3850  }
3851
3852  if (addTest) {
3853    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3854    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3855    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3856  }
3857  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3858                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3859}
3860
3861SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3862  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3863
3864  if (Subtarget->is64Bit())
3865    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3866  else
3867    switch (CallingConv) {
3868    default:
3869      assert(0 && "Unsupported calling convention");
3870    case CallingConv::Fast:
3871      if (EnableFastCC)
3872        return LowerFastCCCallTo(Op, DAG, CallingConv);
3873      // Falls through
3874    case CallingConv::C:
3875    case CallingConv::X86_StdCall:
3876      return LowerCCCCallTo(Op, DAG, CallingConv);
3877    case CallingConv::X86_FastCall:
3878      return LowerFastCCCallTo(Op, DAG, CallingConv);
3879    }
3880}
3881
3882SDOperand
3883X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3884  MachineFunction &MF = DAG.getMachineFunction();
3885  const Function* Fn = MF.getFunction();
3886  if (Fn->hasExternalLinkage() &&
3887      Subtarget->isTargetCygMing() &&
3888      Fn->getName() == "main")
3889    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
3890
3891  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3892  if (Subtarget->is64Bit())
3893    return LowerX86_64CCCArguments(Op, DAG);
3894  else
3895    switch(CC) {
3896    default:
3897      assert(0 && "Unsupported calling convention");
3898    case CallingConv::Fast:
3899      if (EnableFastCC) {
3900        return LowerFastCCArguments(Op, DAG);
3901      }
3902      // Falls through
3903    case CallingConv::C:
3904      return LowerCCCArguments(Op, DAG);
3905    case CallingConv::X86_StdCall:
3906      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
3907      return LowerCCCArguments(Op, DAG, true);
3908    case CallingConv::X86_FastCall:
3909      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
3910      return LowerFastCCArguments(Op, DAG, true);
3911    }
3912}
3913
3914SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3915  SDOperand InFlag(0, 0);
3916  SDOperand Chain = Op.getOperand(0);
3917  unsigned Align =
3918    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3919  if (Align == 0) Align = 1;
3920
3921  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3922  // If not DWORD aligned, call memset if size is less than the threshold.
3923  // It knows how to align to the right boundary first.
3924  if ((Align & 3) != 0 ||
3925      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3926    MVT::ValueType IntPtr = getPointerTy();
3927    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3928    TargetLowering::ArgListTy Args;
3929    TargetLowering::ArgListEntry Entry;
3930    Entry.Node = Op.getOperand(1);
3931    Entry.Ty = IntPtrTy;
3932    Entry.isSigned = false;
3933    Entry.isInReg = false;
3934    Entry.isSRet = false;
3935    Args.push_back(Entry);
3936    // Extend the unsigned i8 argument to be an int value for the call.
3937    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3938    Entry.Ty = IntPtrTy;
3939    Entry.isSigned = false;
3940    Entry.isInReg = false;
3941    Entry.isSRet = false;
3942    Args.push_back(Entry);
3943    Entry.Node = Op.getOperand(3);
3944    Args.push_back(Entry);
3945    std::pair<SDOperand,SDOperand> CallResult =
3946      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3947                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3948    return CallResult.second;
3949  }
3950
3951  MVT::ValueType AVT;
3952  SDOperand Count;
3953  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3954  unsigned BytesLeft = 0;
3955  bool TwoRepStos = false;
3956  if (ValC) {
3957    unsigned ValReg;
3958    uint64_t Val = ValC->getValue() & 255;
3959
3960    // If the value is a constant, then we can potentially use larger sets.
3961    switch (Align & 3) {
3962      case 2:   // WORD aligned
3963        AVT = MVT::i16;
3964        ValReg = X86::AX;
3965        Val = (Val << 8) | Val;
3966        break;
3967      case 0:  // DWORD aligned
3968        AVT = MVT::i32;
3969        ValReg = X86::EAX;
3970        Val = (Val << 8)  | Val;
3971        Val = (Val << 16) | Val;
3972        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3973          AVT = MVT::i64;
3974          ValReg = X86::RAX;
3975          Val = (Val << 32) | Val;
3976        }
3977        break;
3978      default:  // Byte aligned
3979        AVT = MVT::i8;
3980        ValReg = X86::AL;
3981        Count = Op.getOperand(3);
3982        break;
3983    }
3984
3985    if (AVT > MVT::i8) {
3986      if (I) {
3987        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3988        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3989        BytesLeft = I->getValue() % UBytes;
3990      } else {
3991        assert(AVT >= MVT::i32 &&
3992               "Do not use rep;stos if not at least DWORD aligned");
3993        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3994                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3995        TwoRepStos = true;
3996      }
3997    }
3998
3999    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4000                              InFlag);
4001    InFlag = Chain.getValue(1);
4002  } else {
4003    AVT = MVT::i8;
4004    Count  = Op.getOperand(3);
4005    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4006    InFlag = Chain.getValue(1);
4007  }
4008
4009  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4010                            Count, InFlag);
4011  InFlag = Chain.getValue(1);
4012  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4013                            Op.getOperand(1), InFlag);
4014  InFlag = Chain.getValue(1);
4015
4016  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4017  SmallVector<SDOperand, 8> Ops;
4018  Ops.push_back(Chain);
4019  Ops.push_back(DAG.getValueType(AVT));
4020  Ops.push_back(InFlag);
4021  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4022
4023  if (TwoRepStos) {
4024    InFlag = Chain.getValue(1);
4025    Count = Op.getOperand(3);
4026    MVT::ValueType CVT = Count.getValueType();
4027    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4028                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4029    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4030                              Left, InFlag);
4031    InFlag = Chain.getValue(1);
4032    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4033    Ops.clear();
4034    Ops.push_back(Chain);
4035    Ops.push_back(DAG.getValueType(MVT::i8));
4036    Ops.push_back(InFlag);
4037    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4038  } else if (BytesLeft) {
4039    // Issue stores for the last 1 - 7 bytes.
4040    SDOperand Value;
4041    unsigned Val = ValC->getValue() & 255;
4042    unsigned Offset = I->getValue() - BytesLeft;
4043    SDOperand DstAddr = Op.getOperand(1);
4044    MVT::ValueType AddrVT = DstAddr.getValueType();
4045    if (BytesLeft >= 4) {
4046      Val = (Val << 8)  | Val;
4047      Val = (Val << 16) | Val;
4048      Value = DAG.getConstant(Val, MVT::i32);
4049      Chain = DAG.getStore(Chain, Value,
4050                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4051                                       DAG.getConstant(Offset, AddrVT)),
4052                           NULL, 0);
4053      BytesLeft -= 4;
4054      Offset += 4;
4055    }
4056    if (BytesLeft >= 2) {
4057      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4058      Chain = DAG.getStore(Chain, Value,
4059                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4060                                       DAG.getConstant(Offset, AddrVT)),
4061                           NULL, 0);
4062      BytesLeft -= 2;
4063      Offset += 2;
4064    }
4065    if (BytesLeft == 1) {
4066      Value = DAG.getConstant(Val, MVT::i8);
4067      Chain = DAG.getStore(Chain, Value,
4068                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4069                                       DAG.getConstant(Offset, AddrVT)),
4070                           NULL, 0);
4071    }
4072  }
4073
4074  return Chain;
4075}
4076
4077SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4078  SDOperand Chain = Op.getOperand(0);
4079  unsigned Align =
4080    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4081  if (Align == 0) Align = 1;
4082
4083  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4084  // If not DWORD aligned, call memcpy if size is less than the threshold.
4085  // It knows how to align to the right boundary first.
4086  if ((Align & 3) != 0 ||
4087      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4088    MVT::ValueType IntPtr = getPointerTy();
4089    TargetLowering::ArgListTy Args;
4090    TargetLowering::ArgListEntry Entry;
4091    Entry.Ty = getTargetData()->getIntPtrType();
4092    Entry.isSigned = false;
4093    Entry.isInReg = false;
4094    Entry.isSRet = false;
4095    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4096    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4097    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4098    std::pair<SDOperand,SDOperand> CallResult =
4099      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4100                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4101    return CallResult.second;
4102  }
4103
4104  MVT::ValueType AVT;
4105  SDOperand Count;
4106  unsigned BytesLeft = 0;
4107  bool TwoRepMovs = false;
4108  switch (Align & 3) {
4109    case 2:   // WORD aligned
4110      AVT = MVT::i16;
4111      break;
4112    case 0:  // DWORD aligned
4113      AVT = MVT::i32;
4114      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4115        AVT = MVT::i64;
4116      break;
4117    default:  // Byte aligned
4118      AVT = MVT::i8;
4119      Count = Op.getOperand(3);
4120      break;
4121  }
4122
4123  if (AVT > MVT::i8) {
4124    if (I) {
4125      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4126      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4127      BytesLeft = I->getValue() % UBytes;
4128    } else {
4129      assert(AVT >= MVT::i32 &&
4130             "Do not use rep;movs if not at least DWORD aligned");
4131      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4132                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4133      TwoRepMovs = true;
4134    }
4135  }
4136
4137  SDOperand InFlag(0, 0);
4138  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4139                            Count, InFlag);
4140  InFlag = Chain.getValue(1);
4141  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4142                            Op.getOperand(1), InFlag);
4143  InFlag = Chain.getValue(1);
4144  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4145                            Op.getOperand(2), InFlag);
4146  InFlag = Chain.getValue(1);
4147
4148  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4149  SmallVector<SDOperand, 8> Ops;
4150  Ops.push_back(Chain);
4151  Ops.push_back(DAG.getValueType(AVT));
4152  Ops.push_back(InFlag);
4153  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4154
4155  if (TwoRepMovs) {
4156    InFlag = Chain.getValue(1);
4157    Count = Op.getOperand(3);
4158    MVT::ValueType CVT = Count.getValueType();
4159    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4160                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4161    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4162                              Left, InFlag);
4163    InFlag = Chain.getValue(1);
4164    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4165    Ops.clear();
4166    Ops.push_back(Chain);
4167    Ops.push_back(DAG.getValueType(MVT::i8));
4168    Ops.push_back(InFlag);
4169    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4170  } else if (BytesLeft) {
4171    // Issue loads and stores for the last 1 - 7 bytes.
4172    unsigned Offset = I->getValue() - BytesLeft;
4173    SDOperand DstAddr = Op.getOperand(1);
4174    MVT::ValueType DstVT = DstAddr.getValueType();
4175    SDOperand SrcAddr = Op.getOperand(2);
4176    MVT::ValueType SrcVT = SrcAddr.getValueType();
4177    SDOperand Value;
4178    if (BytesLeft >= 4) {
4179      Value = DAG.getLoad(MVT::i32, Chain,
4180                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4181                                      DAG.getConstant(Offset, SrcVT)),
4182                          NULL, 0);
4183      Chain = Value.getValue(1);
4184      Chain = DAG.getStore(Chain, Value,
4185                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4186                                       DAG.getConstant(Offset, DstVT)),
4187                           NULL, 0);
4188      BytesLeft -= 4;
4189      Offset += 4;
4190    }
4191    if (BytesLeft >= 2) {
4192      Value = DAG.getLoad(MVT::i16, Chain,
4193                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4194                                      DAG.getConstant(Offset, SrcVT)),
4195                          NULL, 0);
4196      Chain = Value.getValue(1);
4197      Chain = DAG.getStore(Chain, Value,
4198                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4199                                       DAG.getConstant(Offset, DstVT)),
4200                           NULL, 0);
4201      BytesLeft -= 2;
4202      Offset += 2;
4203    }
4204
4205    if (BytesLeft == 1) {
4206      Value = DAG.getLoad(MVT::i8, Chain,
4207                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4208                                      DAG.getConstant(Offset, SrcVT)),
4209                          NULL, 0);
4210      Chain = Value.getValue(1);
4211      Chain = DAG.getStore(Chain, Value,
4212                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4213                                       DAG.getConstant(Offset, DstVT)),
4214                           NULL, 0);
4215    }
4216  }
4217
4218  return Chain;
4219}
4220
4221SDOperand
4222X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4223  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4224  SDOperand TheOp = Op.getOperand(0);
4225  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4226  if (Subtarget->is64Bit()) {
4227    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4228    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4229                                         MVT::i64, Copy1.getValue(2));
4230    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4231                                DAG.getConstant(32, MVT::i8));
4232    SDOperand Ops[] = {
4233      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4234    };
4235
4236    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4237    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4238  }
4239
4240  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4241  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4242                                       MVT::i32, Copy1.getValue(2));
4243  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4244  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4245  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4246}
4247
4248SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4249  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4250
4251  if (!Subtarget->is64Bit()) {
4252    // vastart just stores the address of the VarArgsFrameIndex slot into the
4253    // memory location argument.
4254    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4255    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4256                        SV->getOffset());
4257  }
4258
4259  // __va_list_tag:
4260  //   gp_offset         (0 - 6 * 8)
4261  //   fp_offset         (48 - 48 + 8 * 16)
4262  //   overflow_arg_area (point to parameters coming in memory).
4263  //   reg_save_area
4264  SmallVector<SDOperand, 8> MemOps;
4265  SDOperand FIN = Op.getOperand(1);
4266  // Store gp_offset
4267  SDOperand Store = DAG.getStore(Op.getOperand(0),
4268                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4269                                 FIN, SV->getValue(), SV->getOffset());
4270  MemOps.push_back(Store);
4271
4272  // Store fp_offset
4273  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4274                    DAG.getConstant(4, getPointerTy()));
4275  Store = DAG.getStore(Op.getOperand(0),
4276                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4277                       FIN, SV->getValue(), SV->getOffset());
4278  MemOps.push_back(Store);
4279
4280  // Store ptr to overflow_arg_area
4281  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4282                    DAG.getConstant(4, getPointerTy()));
4283  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4284  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4285                       SV->getOffset());
4286  MemOps.push_back(Store);
4287
4288  // Store ptr to reg_save_area.
4289  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4290                    DAG.getConstant(8, getPointerTy()));
4291  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4292  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4293                       SV->getOffset());
4294  MemOps.push_back(Store);
4295  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4296}
4297
4298SDOperand
4299X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4300  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4301  switch (IntNo) {
4302  default: return SDOperand();    // Don't custom lower most intrinsics.
4303    // Comparison intrinsics.
4304  case Intrinsic::x86_sse_comieq_ss:
4305  case Intrinsic::x86_sse_comilt_ss:
4306  case Intrinsic::x86_sse_comile_ss:
4307  case Intrinsic::x86_sse_comigt_ss:
4308  case Intrinsic::x86_sse_comige_ss:
4309  case Intrinsic::x86_sse_comineq_ss:
4310  case Intrinsic::x86_sse_ucomieq_ss:
4311  case Intrinsic::x86_sse_ucomilt_ss:
4312  case Intrinsic::x86_sse_ucomile_ss:
4313  case Intrinsic::x86_sse_ucomigt_ss:
4314  case Intrinsic::x86_sse_ucomige_ss:
4315  case Intrinsic::x86_sse_ucomineq_ss:
4316  case Intrinsic::x86_sse2_comieq_sd:
4317  case Intrinsic::x86_sse2_comilt_sd:
4318  case Intrinsic::x86_sse2_comile_sd:
4319  case Intrinsic::x86_sse2_comigt_sd:
4320  case Intrinsic::x86_sse2_comige_sd:
4321  case Intrinsic::x86_sse2_comineq_sd:
4322  case Intrinsic::x86_sse2_ucomieq_sd:
4323  case Intrinsic::x86_sse2_ucomilt_sd:
4324  case Intrinsic::x86_sse2_ucomile_sd:
4325  case Intrinsic::x86_sse2_ucomigt_sd:
4326  case Intrinsic::x86_sse2_ucomige_sd:
4327  case Intrinsic::x86_sse2_ucomineq_sd: {
4328    unsigned Opc = 0;
4329    ISD::CondCode CC = ISD::SETCC_INVALID;
4330    switch (IntNo) {
4331    default: break;
4332    case Intrinsic::x86_sse_comieq_ss:
4333    case Intrinsic::x86_sse2_comieq_sd:
4334      Opc = X86ISD::COMI;
4335      CC = ISD::SETEQ;
4336      break;
4337    case Intrinsic::x86_sse_comilt_ss:
4338    case Intrinsic::x86_sse2_comilt_sd:
4339      Opc = X86ISD::COMI;
4340      CC = ISD::SETLT;
4341      break;
4342    case Intrinsic::x86_sse_comile_ss:
4343    case Intrinsic::x86_sse2_comile_sd:
4344      Opc = X86ISD::COMI;
4345      CC = ISD::SETLE;
4346      break;
4347    case Intrinsic::x86_sse_comigt_ss:
4348    case Intrinsic::x86_sse2_comigt_sd:
4349      Opc = X86ISD::COMI;
4350      CC = ISD::SETGT;
4351      break;
4352    case Intrinsic::x86_sse_comige_ss:
4353    case Intrinsic::x86_sse2_comige_sd:
4354      Opc = X86ISD::COMI;
4355      CC = ISD::SETGE;
4356      break;
4357    case Intrinsic::x86_sse_comineq_ss:
4358    case Intrinsic::x86_sse2_comineq_sd:
4359      Opc = X86ISD::COMI;
4360      CC = ISD::SETNE;
4361      break;
4362    case Intrinsic::x86_sse_ucomieq_ss:
4363    case Intrinsic::x86_sse2_ucomieq_sd:
4364      Opc = X86ISD::UCOMI;
4365      CC = ISD::SETEQ;
4366      break;
4367    case Intrinsic::x86_sse_ucomilt_ss:
4368    case Intrinsic::x86_sse2_ucomilt_sd:
4369      Opc = X86ISD::UCOMI;
4370      CC = ISD::SETLT;
4371      break;
4372    case Intrinsic::x86_sse_ucomile_ss:
4373    case Intrinsic::x86_sse2_ucomile_sd:
4374      Opc = X86ISD::UCOMI;
4375      CC = ISD::SETLE;
4376      break;
4377    case Intrinsic::x86_sse_ucomigt_ss:
4378    case Intrinsic::x86_sse2_ucomigt_sd:
4379      Opc = X86ISD::UCOMI;
4380      CC = ISD::SETGT;
4381      break;
4382    case Intrinsic::x86_sse_ucomige_ss:
4383    case Intrinsic::x86_sse2_ucomige_sd:
4384      Opc = X86ISD::UCOMI;
4385      CC = ISD::SETGE;
4386      break;
4387    case Intrinsic::x86_sse_ucomineq_ss:
4388    case Intrinsic::x86_sse2_ucomineq_sd:
4389      Opc = X86ISD::UCOMI;
4390      CC = ISD::SETNE;
4391      break;
4392    }
4393
4394    unsigned X86CC;
4395    SDOperand LHS = Op.getOperand(1);
4396    SDOperand RHS = Op.getOperand(2);
4397    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4398
4399    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4400    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4401    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4402    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4403    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4404    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4405    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4406  }
4407  }
4408}
4409
4410SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4411  // Depths > 0 not supported yet!
4412  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4413    return SDOperand();
4414
4415  // Just load the return address
4416  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4417  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4418}
4419
4420SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4421  // Depths > 0 not supported yet!
4422  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4423    return SDOperand();
4424
4425  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4426  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4427                     DAG.getConstant(4, getPointerTy()));
4428}
4429
4430/// LowerOperation - Provide custom lowering hooks for some operations.
4431///
4432SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4433  switch (Op.getOpcode()) {
4434  default: assert(0 && "Should not custom lower this!");
4435  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4436  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4437  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4438  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4439  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4440  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4441  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4442  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4443  case ISD::SHL_PARTS:
4444  case ISD::SRA_PARTS:
4445  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4446  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4447  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4448  case ISD::FABS:               return LowerFABS(Op, DAG);
4449  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4450  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4451  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4452  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4453  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4454  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4455  case ISD::CALL:               return LowerCALL(Op, DAG);
4456  case ISD::RET:                return LowerRET(Op, DAG);
4457  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4458  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4459  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4460  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4461  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4462  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4463  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4464  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4465  }
4466  return SDOperand();
4467}
4468
4469const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4470  switch (Opcode) {
4471  default: return NULL;
4472  case X86ISD::SHLD:               return "X86ISD::SHLD";
4473  case X86ISD::SHRD:               return "X86ISD::SHRD";
4474  case X86ISD::FAND:               return "X86ISD::FAND";
4475  case X86ISD::FOR:                return "X86ISD::FOR";
4476  case X86ISD::FXOR:               return "X86ISD::FXOR";
4477  case X86ISD::FSRL:               return "X86ISD::FSRL";
4478  case X86ISD::FILD:               return "X86ISD::FILD";
4479  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4480  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4481  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4482  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4483  case X86ISD::FLD:                return "X86ISD::FLD";
4484  case X86ISD::FST:                return "X86ISD::FST";
4485  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4486  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4487  case X86ISD::CALL:               return "X86ISD::CALL";
4488  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4489  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4490  case X86ISD::CMP:                return "X86ISD::CMP";
4491  case X86ISD::COMI:               return "X86ISD::COMI";
4492  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4493  case X86ISD::SETCC:              return "X86ISD::SETCC";
4494  case X86ISD::CMOV:               return "X86ISD::CMOV";
4495  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4496  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4497  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4498  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4499  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4500  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4501  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4502  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4503  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4504  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4505  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4506  case X86ISD::FMAX:               return "X86ISD::FMAX";
4507  case X86ISD::FMIN:               return "X86ISD::FMIN";
4508  }
4509}
4510
4511/// isLegalAddressImmediate - Return true if the integer value or
4512/// GlobalValue can be used as the offset of the target addressing mode.
4513bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
4514  // X86 allows a sign-extended 32-bit immediate field.
4515  return (V > -(1LL << 32) && V < (1LL << 32)-1);
4516}
4517
4518bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
4519  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
4520  // field unless we are in small code model.
4521  if (Subtarget->is64Bit() &&
4522      getTargetMachine().getCodeModel() != CodeModel::Small)
4523    return false;
4524
4525  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
4526}
4527
4528/// isShuffleMaskLegal - Targets can use this to indicate that they only
4529/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4530/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4531/// are assumed to be legal.
4532bool
4533X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4534  // Only do shuffles on 128-bit vector types for now.
4535  if (MVT::getSizeInBits(VT) == 64) return false;
4536  return (Mask.Val->getNumOperands() <= 4 ||
4537          isSplatMask(Mask.Val)  ||
4538          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4539          X86::isUNPCKLMask(Mask.Val) ||
4540          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4541          X86::isUNPCKHMask(Mask.Val));
4542}
4543
4544bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4545                                               MVT::ValueType EVT,
4546                                               SelectionDAG &DAG) const {
4547  unsigned NumElts = BVOps.size();
4548  // Only do shuffles on 128-bit vector types for now.
4549  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4550  if (NumElts == 2) return true;
4551  if (NumElts == 4) {
4552    return (isMOVLMask(&BVOps[0], 4)  ||
4553            isCommutedMOVL(&BVOps[0], 4, true) ||
4554            isSHUFPMask(&BVOps[0], 4) ||
4555            isCommutedSHUFP(&BVOps[0], 4));
4556  }
4557  return false;
4558}
4559
4560//===----------------------------------------------------------------------===//
4561//                           X86 Scheduler Hooks
4562//===----------------------------------------------------------------------===//
4563
4564MachineBasicBlock *
4565X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4566                                           MachineBasicBlock *BB) {
4567  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4568  switch (MI->getOpcode()) {
4569  default: assert(false && "Unexpected instr type to insert");
4570  case X86::CMOV_FR32:
4571  case X86::CMOV_FR64:
4572  case X86::CMOV_V4F32:
4573  case X86::CMOV_V2F64:
4574  case X86::CMOV_V2I64: {
4575    // To "insert" a SELECT_CC instruction, we actually have to insert the
4576    // diamond control-flow pattern.  The incoming instruction knows the
4577    // destination vreg to set, the condition code register to branch on, the
4578    // true/false values to select between, and a branch opcode to use.
4579    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4580    ilist<MachineBasicBlock>::iterator It = BB;
4581    ++It;
4582
4583    //  thisMBB:
4584    //  ...
4585    //   TrueVal = ...
4586    //   cmpTY ccX, r1, r2
4587    //   bCC copy1MBB
4588    //   fallthrough --> copy0MBB
4589    MachineBasicBlock *thisMBB = BB;
4590    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4591    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4592    unsigned Opc =
4593      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4594    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4595    MachineFunction *F = BB->getParent();
4596    F->getBasicBlockList().insert(It, copy0MBB);
4597    F->getBasicBlockList().insert(It, sinkMBB);
4598    // Update machine-CFG edges by first adding all successors of the current
4599    // block to the new block which will contain the Phi node for the select.
4600    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4601        e = BB->succ_end(); i != e; ++i)
4602      sinkMBB->addSuccessor(*i);
4603    // Next, remove all successors of the current block, and add the true
4604    // and fallthrough blocks as its successors.
4605    while(!BB->succ_empty())
4606      BB->removeSuccessor(BB->succ_begin());
4607    BB->addSuccessor(copy0MBB);
4608    BB->addSuccessor(sinkMBB);
4609
4610    //  copy0MBB:
4611    //   %FalseValue = ...
4612    //   # fallthrough to sinkMBB
4613    BB = copy0MBB;
4614
4615    // Update machine-CFG edges
4616    BB->addSuccessor(sinkMBB);
4617
4618    //  sinkMBB:
4619    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4620    //  ...
4621    BB = sinkMBB;
4622    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4623      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4624      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4625
4626    delete MI;   // The pseudo instruction is gone now.
4627    return BB;
4628  }
4629
4630  case X86::FP_TO_INT16_IN_MEM:
4631  case X86::FP_TO_INT32_IN_MEM:
4632  case X86::FP_TO_INT64_IN_MEM: {
4633    // Change the floating point control register to use "round towards zero"
4634    // mode when truncating to an integer value.
4635    MachineFunction *F = BB->getParent();
4636    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4637    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4638
4639    // Load the old value of the high byte of the control word...
4640    unsigned OldCW =
4641      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4642    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4643
4644    // Set the high part to be round to zero...
4645    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4646      .addImm(0xC7F);
4647
4648    // Reload the modified control word now...
4649    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4650
4651    // Restore the memory image of control word to original value
4652    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4653      .addReg(OldCW);
4654
4655    // Get the X86 opcode to use.
4656    unsigned Opc;
4657    switch (MI->getOpcode()) {
4658    default: assert(0 && "illegal opcode!");
4659    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4660    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4661    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4662    }
4663
4664    X86AddressMode AM;
4665    MachineOperand &Op = MI->getOperand(0);
4666    if (Op.isRegister()) {
4667      AM.BaseType = X86AddressMode::RegBase;
4668      AM.Base.Reg = Op.getReg();
4669    } else {
4670      AM.BaseType = X86AddressMode::FrameIndexBase;
4671      AM.Base.FrameIndex = Op.getFrameIndex();
4672    }
4673    Op = MI->getOperand(1);
4674    if (Op.isImmediate())
4675      AM.Scale = Op.getImm();
4676    Op = MI->getOperand(2);
4677    if (Op.isImmediate())
4678      AM.IndexReg = Op.getImm();
4679    Op = MI->getOperand(3);
4680    if (Op.isGlobalAddress()) {
4681      AM.GV = Op.getGlobal();
4682    } else {
4683      AM.Disp = Op.getImm();
4684    }
4685    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4686                      .addReg(MI->getOperand(4).getReg());
4687
4688    // Reload the original control word now.
4689    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4690
4691    delete MI;   // The pseudo instruction is gone now.
4692    return BB;
4693  }
4694  }
4695}
4696
4697//===----------------------------------------------------------------------===//
4698//                           X86 Optimization Hooks
4699//===----------------------------------------------------------------------===//
4700
4701void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4702                                                       uint64_t Mask,
4703                                                       uint64_t &KnownZero,
4704                                                       uint64_t &KnownOne,
4705                                                       unsigned Depth) const {
4706  unsigned Opc = Op.getOpcode();
4707  assert((Opc >= ISD::BUILTIN_OP_END ||
4708          Opc == ISD::INTRINSIC_WO_CHAIN ||
4709          Opc == ISD::INTRINSIC_W_CHAIN ||
4710          Opc == ISD::INTRINSIC_VOID) &&
4711         "Should use MaskedValueIsZero if you don't know whether Op"
4712         " is a target node!");
4713
4714  KnownZero = KnownOne = 0;   // Don't know anything.
4715  switch (Opc) {
4716  default: break;
4717  case X86ISD::SETCC:
4718    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4719    break;
4720  }
4721}
4722
4723/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4724/// element of the result of the vector shuffle.
4725static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4726  MVT::ValueType VT = N->getValueType(0);
4727  SDOperand PermMask = N->getOperand(2);
4728  unsigned NumElems = PermMask.getNumOperands();
4729  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4730  i %= NumElems;
4731  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4732    return (i == 0)
4733      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4734  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4735    SDOperand Idx = PermMask.getOperand(i);
4736    if (Idx.getOpcode() == ISD::UNDEF)
4737      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4738    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4739  }
4740  return SDOperand();
4741}
4742
4743/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4744/// node is a GlobalAddress + an offset.
4745static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4746  unsigned Opc = N->getOpcode();
4747  if (Opc == X86ISD::Wrapper) {
4748    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4749      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4750      return true;
4751    }
4752  } else if (Opc == ISD::ADD) {
4753    SDOperand N1 = N->getOperand(0);
4754    SDOperand N2 = N->getOperand(1);
4755    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4756      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4757      if (V) {
4758        Offset += V->getSignExtended();
4759        return true;
4760      }
4761    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4762      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4763      if (V) {
4764        Offset += V->getSignExtended();
4765        return true;
4766      }
4767    }
4768  }
4769  return false;
4770}
4771
4772/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4773/// + Dist * Size.
4774static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4775                              MachineFrameInfo *MFI) {
4776  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4777    return false;
4778
4779  SDOperand Loc = N->getOperand(1);
4780  SDOperand BaseLoc = Base->getOperand(1);
4781  if (Loc.getOpcode() == ISD::FrameIndex) {
4782    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4783      return false;
4784    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4785    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4786    int FS  = MFI->getObjectSize(FI);
4787    int BFS = MFI->getObjectSize(BFI);
4788    if (FS != BFS || FS != Size) return false;
4789    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4790  } else {
4791    GlobalValue *GV1 = NULL;
4792    GlobalValue *GV2 = NULL;
4793    int64_t Offset1 = 0;
4794    int64_t Offset2 = 0;
4795    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4796    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4797    if (isGA1 && isGA2 && GV1 == GV2)
4798      return Offset1 == (Offset2 + Dist*Size);
4799  }
4800
4801  return false;
4802}
4803
4804static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4805                              const X86Subtarget *Subtarget) {
4806  GlobalValue *GV;
4807  int64_t Offset;
4808  if (isGAPlusOffset(Base, GV, Offset))
4809    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4810  else {
4811    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4812    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4813    if (BFI < 0)
4814      // Fixed objects do not specify alignment, however the offsets are known.
4815      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4816              (MFI->getObjectOffset(BFI) % 16) == 0);
4817    else
4818      return MFI->getObjectAlignment(BFI) >= 16;
4819  }
4820  return false;
4821}
4822
4823
4824/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4825/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4826/// if the load addresses are consecutive, non-overlapping, and in the right
4827/// order.
4828static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4829                                       const X86Subtarget *Subtarget) {
4830  MachineFunction &MF = DAG.getMachineFunction();
4831  MachineFrameInfo *MFI = MF.getFrameInfo();
4832  MVT::ValueType VT = N->getValueType(0);
4833  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
4834  SDOperand PermMask = N->getOperand(2);
4835  int NumElems = (int)PermMask.getNumOperands();
4836  SDNode *Base = NULL;
4837  for (int i = 0; i < NumElems; ++i) {
4838    SDOperand Idx = PermMask.getOperand(i);
4839    if (Idx.getOpcode() == ISD::UNDEF) {
4840      if (!Base) return SDOperand();
4841    } else {
4842      SDOperand Arg =
4843        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4844      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4845        return SDOperand();
4846      if (!Base)
4847        Base = Arg.Val;
4848      else if (!isConsecutiveLoad(Arg.Val, Base,
4849                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4850        return SDOperand();
4851    }
4852  }
4853
4854  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4855  if (isAlign16) {
4856    LoadSDNode *LD = cast<LoadSDNode>(Base);
4857    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4858                       LD->getSrcValueOffset());
4859  } else {
4860    // Just use movups, it's shorter.
4861    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4862    SmallVector<SDOperand, 3> Ops;
4863    Ops.push_back(Base->getOperand(0));
4864    Ops.push_back(Base->getOperand(1));
4865    Ops.push_back(Base->getOperand(2));
4866    return DAG.getNode(ISD::BIT_CONVERT, VT,
4867                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4868  }
4869}
4870
4871/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4872static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4873                                      const X86Subtarget *Subtarget) {
4874  SDOperand Cond = N->getOperand(0);
4875
4876  // If we have SSE[12] support, try to form min/max nodes.
4877  if (Subtarget->hasSSE2() &&
4878      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4879    if (Cond.getOpcode() == ISD::SETCC) {
4880      // Get the LHS/RHS of the select.
4881      SDOperand LHS = N->getOperand(1);
4882      SDOperand RHS = N->getOperand(2);
4883      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4884
4885      unsigned Opcode = 0;
4886      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4887        switch (CC) {
4888        default: break;
4889        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4890        case ISD::SETULE:
4891        case ISD::SETLE:
4892          if (!UnsafeFPMath) break;
4893          // FALL THROUGH.
4894        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4895        case ISD::SETLT:
4896          Opcode = X86ISD::FMIN;
4897          break;
4898
4899        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4900        case ISD::SETUGT:
4901        case ISD::SETGT:
4902          if (!UnsafeFPMath) break;
4903          // FALL THROUGH.
4904        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4905        case ISD::SETGE:
4906          Opcode = X86ISD::FMAX;
4907          break;
4908        }
4909      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4910        switch (CC) {
4911        default: break;
4912        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4913        case ISD::SETUGT:
4914        case ISD::SETGT:
4915          if (!UnsafeFPMath) break;
4916          // FALL THROUGH.
4917        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4918        case ISD::SETGE:
4919          Opcode = X86ISD::FMIN;
4920          break;
4921
4922        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4923        case ISD::SETULE:
4924        case ISD::SETLE:
4925          if (!UnsafeFPMath) break;
4926          // FALL THROUGH.
4927        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4928        case ISD::SETLT:
4929          Opcode = X86ISD::FMAX;
4930          break;
4931        }
4932      }
4933
4934      if (Opcode)
4935        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4936    }
4937
4938  }
4939
4940  return SDOperand();
4941}
4942
4943
4944SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4945                                               DAGCombinerInfo &DCI) const {
4946  SelectionDAG &DAG = DCI.DAG;
4947  switch (N->getOpcode()) {
4948  default: break;
4949  case ISD::VECTOR_SHUFFLE:
4950    return PerformShuffleCombine(N, DAG, Subtarget);
4951  case ISD::SELECT:
4952    return PerformSELECTCombine(N, DAG, Subtarget);
4953  }
4954
4955  return SDOperand();
4956}
4957
4958//===----------------------------------------------------------------------===//
4959//                           X86 Inline Assembly Support
4960//===----------------------------------------------------------------------===//
4961
4962/// getConstraintType - Given a constraint letter, return the type of
4963/// constraint it is for this target.
4964X86TargetLowering::ConstraintType
4965X86TargetLowering::getConstraintType(char ConstraintLetter) const {
4966  switch (ConstraintLetter) {
4967  case 'A':
4968  case 'r':
4969  case 'R':
4970  case 'l':
4971  case 'q':
4972  case 'Q':
4973  case 'x':
4974  case 'Y':
4975    return C_RegisterClass;
4976  default: return TargetLowering::getConstraintType(ConstraintLetter);
4977  }
4978}
4979
4980/// isOperandValidForConstraint - Return the specified operand (possibly
4981/// modified) if the specified SDOperand is valid for the specified target
4982/// constraint letter, otherwise return null.
4983SDOperand X86TargetLowering::
4984isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4985  switch (Constraint) {
4986  default: break;
4987  case 'i':
4988    // Literal immediates are always ok.
4989    if (isa<ConstantSDNode>(Op)) return Op;
4990
4991    // If we are in non-pic codegen mode, we allow the address of a global to
4992    // be used with 'i'.
4993    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4994      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4995        return SDOperand(0, 0);
4996
4997      if (GA->getOpcode() != ISD::TargetGlobalAddress)
4998        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4999                                        GA->getOffset());
5000      return Op;
5001    }
5002
5003    // Otherwise, not valid for this mode.
5004    return SDOperand(0, 0);
5005  }
5006  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
5007}
5008
5009
5010std::vector<unsigned> X86TargetLowering::
5011getRegClassForInlineAsmConstraint(const std::string &Constraint,
5012                                  MVT::ValueType VT) const {
5013  if (Constraint.size() == 1) {
5014    // FIXME: not handling fp-stack yet!
5015    // FIXME: not handling MMX registers yet ('y' constraint).
5016    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5017    default: break;  // Unknown constraint letter
5018    case 'A':   // EAX/EDX
5019      if (VT == MVT::i32 || VT == MVT::i64)
5020        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5021      break;
5022    case 'r':   // GENERAL_REGS
5023    case 'R':   // LEGACY_REGS
5024      if (VT == MVT::i64 && Subtarget->is64Bit())
5025        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
5026                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
5027                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
5028                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
5029      if (VT == MVT::i32)
5030        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5031                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
5032      else if (VT == MVT::i16)
5033        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5034                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
5035      else if (VT == MVT::i8)
5036        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5037      break;
5038    case 'l':   // INDEX_REGS
5039      if (VT == MVT::i32)
5040        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5041                                     X86::ESI, X86::EDI, X86::EBP, 0);
5042      else if (VT == MVT::i16)
5043        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5044                                     X86::SI, X86::DI, X86::BP, 0);
5045      else if (VT == MVT::i8)
5046        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5047      break;
5048    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5049    case 'Q':   // Q_REGS
5050      if (VT == MVT::i32)
5051        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5052      else if (VT == MVT::i16)
5053        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5054      else if (VT == MVT::i8)
5055        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5056        break;
5057    case 'x':   // SSE_REGS if SSE1 allowed
5058      if (Subtarget->hasSSE1())
5059        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5060                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5061                                     0);
5062      return std::vector<unsigned>();
5063    case 'Y':   // SSE_REGS if SSE2 allowed
5064      if (Subtarget->hasSSE2())
5065        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5066                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5067                                     0);
5068      return std::vector<unsigned>();
5069    }
5070  }
5071
5072  return std::vector<unsigned>();
5073}
5074
5075std::pair<unsigned, const TargetRegisterClass*>
5076X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5077                                                MVT::ValueType VT) const {
5078  // Use the default implementation in TargetLowering to convert the register
5079  // constraint into a member of a register class.
5080  std::pair<unsigned, const TargetRegisterClass*> Res;
5081  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5082
5083  // Not found as a standard register?
5084  if (Res.second == 0) {
5085    // GCC calls "st(0)" just plain "st".
5086    if (StringsEqualNoCase("{st}", Constraint)) {
5087      Res.first = X86::ST0;
5088      Res.second = X86::RSTRegisterClass;
5089    }
5090
5091    return Res;
5092  }
5093
5094  // Otherwise, check to see if this is a register class of the wrong value
5095  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5096  // turn into {ax},{dx}.
5097  if (Res.second->hasType(VT))
5098    return Res;   // Correct type already, nothing to do.
5099
5100  // All of the single-register GCC register classes map their values onto
5101  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5102  // really want an 8-bit or 32-bit register, map to the appropriate register
5103  // class and return the appropriate register.
5104  if (Res.second != X86::GR16RegisterClass)
5105    return Res;
5106
5107  if (VT == MVT::i8) {
5108    unsigned DestReg = 0;
5109    switch (Res.first) {
5110    default: break;
5111    case X86::AX: DestReg = X86::AL; break;
5112    case X86::DX: DestReg = X86::DL; break;
5113    case X86::CX: DestReg = X86::CL; break;
5114    case X86::BX: DestReg = X86::BL; break;
5115    }
5116    if (DestReg) {
5117      Res.first = DestReg;
5118      Res.second = Res.second = X86::GR8RegisterClass;
5119    }
5120  } else if (VT == MVT::i32) {
5121    unsigned DestReg = 0;
5122    switch (Res.first) {
5123    default: break;
5124    case X86::AX: DestReg = X86::EAX; break;
5125    case X86::DX: DestReg = X86::EDX; break;
5126    case X86::CX: DestReg = X86::ECX; break;
5127    case X86::BX: DestReg = X86::EBX; break;
5128    case X86::SI: DestReg = X86::ESI; break;
5129    case X86::DI: DestReg = X86::EDI; break;
5130    case X86::BP: DestReg = X86::EBP; break;
5131    case X86::SP: DestReg = X86::ESP; break;
5132    }
5133    if (DestReg) {
5134      Res.first = DestReg;
5135      Res.second = Res.second = X86::GR32RegisterClass;
5136    }
5137  } else if (VT == MVT::i64) {
5138    unsigned DestReg = 0;
5139    switch (Res.first) {
5140    default: break;
5141    case X86::AX: DestReg = X86::RAX; break;
5142    case X86::DX: DestReg = X86::RDX; break;
5143    case X86::CX: DestReg = X86::RCX; break;
5144    case X86::BX: DestReg = X86::RBX; break;
5145    case X86::SI: DestReg = X86::RSI; break;
5146    case X86::DI: DestReg = X86::RDI; break;
5147    case X86::BP: DestReg = X86::RBP; break;
5148    case X86::SP: DestReg = X86::RSP; break;
5149    }
5150    if (DestReg) {
5151      Res.first = DestReg;
5152      Res.second = Res.second = X86::GR64RegisterClass;
5153    }
5154  }
5155
5156  return Res;
5157}
5158