X86ISelLowering.cpp revision 814c6ced85e76c0e0ed0ffdea0c95b2f655847bb
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
173  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!UseSoftFloat) {
318    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
382  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
383  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
384  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
385  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
386  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
387  if (Subtarget->is64Bit()) {
388    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
389    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
390  }
391
392  if (Subtarget->hasPOPCNT()) {
393    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
394  } else {
395    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
396    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
397    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
400  }
401
402  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
403  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
404
405  // These should be promoted to a larger select which is supported.
406  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
407  // X86 wants to expand cmov itself.
408  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
409  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
412  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
413  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
415  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
418  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
419  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
420  if (Subtarget->is64Bit()) {
421    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
422    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
423  }
424  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
425
426  // Darwin ABI issue.
427  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
428  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
429  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
430  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
431  if (Subtarget->is64Bit())
432    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
433  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
434  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
435  if (Subtarget->is64Bit()) {
436    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
437    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
438    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
439    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
440    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
441  }
442  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
443  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
444  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
445  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
446  if (Subtarget->is64Bit()) {
447    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
448    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
449    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
450  }
451
452  if (Subtarget->hasXMM())
453    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
454
455  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
456  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
457
458  // On X86 and X86-64, atomic operations are lowered to locked instructions.
459  // Locked instructions, in turn, have implicit fence semantics (all memory
460  // operations are flushed before issuing the locked instruction, and they
461  // are not buffered), so we can fold away the common pattern of
462  // fence-atomic-fence.
463  setShouldFoldAtomicFences(true);
464
465  // Expand certain atomics
466  for (unsigned i = 0, e = 4; i != e; ++i) {
467    MVT VT = IntVTs[i];
468    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
469    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
470    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
471  }
472
473  if (!Subtarget->is64Bit()) {
474    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
479    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
480    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
481    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
482  }
483
484  if (Subtarget->hasCmpxchg16b()) {
485    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
486  }
487
488  // FIXME - use subtarget debug flags
489  if (!Subtarget->isTargetDarwin() &&
490      !Subtarget->isTargetELF() &&
491      !Subtarget->isTargetCygMing()) {
492    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
493  }
494
495  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
496  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
497  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
498  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
499  if (Subtarget->is64Bit()) {
500    setExceptionPointerRegister(X86::RAX);
501    setExceptionSelectorRegister(X86::RDX);
502  } else {
503    setExceptionPointerRegister(X86::EAX);
504    setExceptionSelectorRegister(X86::EDX);
505  }
506  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
507  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
508
509  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
510  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
511
512  setOperationAction(ISD::TRAP, MVT::Other, Legal);
513
514  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
515  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
516  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
517  if (Subtarget->is64Bit()) {
518    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
519    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
520  } else {
521    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
522    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
523  }
524
525  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
526  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
527
528  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
529    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
530                       MVT::i64 : MVT::i32, Custom);
531  else if (EnableSegmentedStacks)
532    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
533                       MVT::i64 : MVT::i32, Custom);
534  else
535    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
536                       MVT::i64 : MVT::i32, Expand);
537
538  if (!UseSoftFloat && X86ScalarSSEf64) {
539    // f32 and f64 use SSE.
540    // Set up the FP register classes.
541    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
542    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
543
544    // Use ANDPD to simulate FABS.
545    setOperationAction(ISD::FABS , MVT::f64, Custom);
546    setOperationAction(ISD::FABS , MVT::f32, Custom);
547
548    // Use XORP to simulate FNEG.
549    setOperationAction(ISD::FNEG , MVT::f64, Custom);
550    setOperationAction(ISD::FNEG , MVT::f32, Custom);
551
552    // Use ANDPD and ORPD to simulate FCOPYSIGN.
553    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
554    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
555
556    // Lower this to FGETSIGNx86 plus an AND.
557    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
558    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
559
560    // We don't support sin/cos/fmod
561    setOperationAction(ISD::FSIN , MVT::f64, Expand);
562    setOperationAction(ISD::FCOS , MVT::f64, Expand);
563    setOperationAction(ISD::FSIN , MVT::f32, Expand);
564    setOperationAction(ISD::FCOS , MVT::f32, Expand);
565
566    // Expand FP immediates into loads from the stack, except for the special
567    // cases we handle.
568    addLegalFPImmediate(APFloat(+0.0)); // xorpd
569    addLegalFPImmediate(APFloat(+0.0f)); // xorps
570  } else if (!UseSoftFloat && X86ScalarSSEf32) {
571    // Use SSE for f32, x87 for f64.
572    // Set up the FP register classes.
573    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
574    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
575
576    // Use ANDPS to simulate FABS.
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f32, Custom);
581
582    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
583
584    // Use ANDPS and ORPS to simulate FCOPYSIGN.
585    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
586    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
587
588    // We don't support sin/cos/fmod
589    setOperationAction(ISD::FSIN , MVT::f32, Expand);
590    setOperationAction(ISD::FCOS , MVT::f32, Expand);
591
592    // Special cases we handle for FP constants.
593    addLegalFPImmediate(APFloat(+0.0f)); // xorps
594    addLegalFPImmediate(APFloat(+0.0)); // FLD0
595    addLegalFPImmediate(APFloat(+1.0)); // FLD1
596    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
597    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603  } else if (!UseSoftFloat) {
604    // f32 and f64 in x87.
605    // Set up the FP register classes.
606    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
607    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
608
609    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
610    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
612    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
613
614    if (!UnsafeFPMath) {
615      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
616      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
617    }
618    addLegalFPImmediate(APFloat(+0.0)); // FLD0
619    addLegalFPImmediate(APFloat(+1.0)); // FLD1
620    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
621    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
622    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
623    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
624    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
625    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
626  }
627
628  // We don't support FMA.
629  setOperationAction(ISD::FMA, MVT::f64, Expand);
630  setOperationAction(ISD::FMA, MVT::f32, Expand);
631
632  // Long double always uses X87.
633  if (!UseSoftFloat) {
634    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
635    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
637    {
638      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
639      addLegalFPImmediate(TmpFlt);  // FLD0
640      TmpFlt.changeSign();
641      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
642
643      bool ignored;
644      APFloat TmpFlt2(+1.0);
645      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
646                      &ignored);
647      addLegalFPImmediate(TmpFlt2);  // FLD1
648      TmpFlt2.changeSign();
649      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
650    }
651
652    if (!UnsafeFPMath) {
653      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
654      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
655    }
656
657    setOperationAction(ISD::FMA, MVT::f80, Expand);
658  }
659
660  // Always use a library call for pow.
661  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
662  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
663  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
664
665  setOperationAction(ISD::FLOG, MVT::f80, Expand);
666  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
667  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
668  setOperationAction(ISD::FEXP, MVT::f80, Expand);
669  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
670
671  // First set operation action for all vector types to either promote
672  // (for widening) or expand (for scalarization). Then we will selectively
673  // turn on ones that can be effectively codegen'd.
674  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
675       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
676    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
678    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
691    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
693    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
694    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
726    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
730    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
731         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
732      setTruncStoreAction((MVT::SimpleValueType)VT,
733                          (MVT::SimpleValueType)InnerVT, Expand);
734    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
735    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
736    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
737  }
738
739  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
740  // with -msoft-float, disable use of MMX as well.
741  if (!UseSoftFloat && Subtarget->hasMMX()) {
742    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
743    // No operations on x86mmx supported, everything uses intrinsics.
744  }
745
746  // MMX-sized vectors (other than x86mmx) are expected to be expanded
747  // into smaller operations.
748  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
749  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
750  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
751  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
752  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
753  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
754  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
755  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
756  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
757  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
758  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
759  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
760  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
761  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
762  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
763  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
764  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
765  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
766  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
767  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
768  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
769  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
770  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
771  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
772  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
773  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
774  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
775  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
776  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
777
778  if (!UseSoftFloat && Subtarget->hasXMM()) {
779    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
780
781    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
782    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
783    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
784    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
785    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
786    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
787    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
788    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
789    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
790    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
791    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
792    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
793  }
794
795  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
796    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
797
798    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
799    // registers cannot be used even for integer operations.
800    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
801    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
802    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
803    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
804
805    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
806    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
807    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
808    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
809    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
810    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
811    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
812    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
813    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
814    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
815    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
816    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
817    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
818    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
819    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
820    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
821
822    setOperationAction(ISD::SETCC,              MVT::v2f64, Custom);
823    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
824    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
826
827    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
828    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
829    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
830    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
831    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
832
833    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
834    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
835    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
836    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
837    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
838
839    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
840    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
841      EVT VT = (MVT::SimpleValueType)i;
842      // Do not attempt to custom lower non-power-of-2 vectors
843      if (!isPowerOf2_32(VT.getVectorNumElements()))
844        continue;
845      // Do not attempt to custom lower non-128-bit vectors
846      if (!VT.is128BitVector())
847        continue;
848      setOperationAction(ISD::BUILD_VECTOR,
849                         VT.getSimpleVT().SimpleTy, Custom);
850      setOperationAction(ISD::VECTOR_SHUFFLE,
851                         VT.getSimpleVT().SimpleTy, Custom);
852      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
853                         VT.getSimpleVT().SimpleTy, Custom);
854    }
855
856    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
857    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
858    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
859    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
860    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
861    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
862
863    if (Subtarget->is64Bit()) {
864      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
865      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
866    }
867
868    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
869    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
870      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
871      EVT VT = SVT;
872
873      // Do not attempt to promote non-128-bit vectors
874      if (!VT.is128BitVector())
875        continue;
876
877      setOperationAction(ISD::AND,    SVT, Promote);
878      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
879      setOperationAction(ISD::OR,     SVT, Promote);
880      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
881      setOperationAction(ISD::XOR,    SVT, Promote);
882      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
883      setOperationAction(ISD::LOAD,   SVT, Promote);
884      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
885      setOperationAction(ISD::SELECT, SVT, Promote);
886      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
887    }
888
889    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
890
891    // Custom lower v2i64 and v2f64 selects.
892    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
893    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
894    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
895    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
896
897    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
898    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
899  }
900
901  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
902    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
903    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
904    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
905    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
906    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
907    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
908    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
909    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
910    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
911    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
912
913    // FIXME: Do we need to handle scalar-to-vector here?
914    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
915
916    // Can turn SHL into an integer multiply.
917    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
918    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
919
920    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
921    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
922    setOperationAction(ISD::VSELECT,            MVT::v16i8, Custom);
923    setOperationAction(ISD::VSELECT,            MVT::v8i16, Custom);
924    setOperationAction(ISD::VSELECT,            MVT::v4i32, Custom);
925    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
926
927    // i8 and i16 vectors are custom , because the source register and source
928    // source memory operand types are not the same width.  f32 vectors are
929    // custom since the immediate controlling the insert encodes additional
930    // information.
931    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
932    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
933    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
934    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
935
936    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
937    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
938    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
939    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
940
941    if (Subtarget->is64Bit()) {
942      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
943      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
944    }
945  }
946
947  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
948    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
949    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
950    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
951    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
952
953    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
954    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
955    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
956
957    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
958    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
959  }
960
961  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
962    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
963
964  if (!UseSoftFloat && Subtarget->hasAVX()) {
965    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
966    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
967    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
968    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
969    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
970    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
971
972    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
973    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
974    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
975
976    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
977    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
978    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
979    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
980    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
981    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
982
983    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
984    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
985    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
986    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
987    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
988    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
989
990    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
991    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
992    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
993
994    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
995    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
996    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
997    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
998    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
999    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1000
1001    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1002    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1003    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1004    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1005
1006    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1007    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1008    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1009    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1010
1011    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1012    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1013
1014    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1015    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1016    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1017    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1018
1019    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1020    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1021    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1022
1023    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1024    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1025    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1026    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1027
1028    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1029    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1030    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1031    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1032
1033    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1034    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1035    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1036    // Don't lower v32i8 because there is no 128-bit byte mul
1037
1038    // Custom lower several nodes for 256-bit types.
1039    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1040                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1041      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1042      EVT VT = SVT;
1043
1044      // Extract subvector is special because the value type
1045      // (result) is 128-bit but the source is 256-bit wide.
1046      if (VT.is128BitVector())
1047        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1048
1049      // Do not attempt to custom lower other non-256-bit vectors
1050      if (!VT.is256BitVector())
1051        continue;
1052
1053      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1054      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1055      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1056      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1057      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1058      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1059    }
1060
1061    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1062    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1063      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1064      EVT VT = SVT;
1065
1066      // Do not attempt to promote non-256-bit vectors
1067      if (!VT.is256BitVector())
1068        continue;
1069
1070      setOperationAction(ISD::AND,    SVT, Promote);
1071      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1072      setOperationAction(ISD::OR,     SVT, Promote);
1073      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1074      setOperationAction(ISD::XOR,    SVT, Promote);
1075      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1076      setOperationAction(ISD::LOAD,   SVT, Promote);
1077      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1078      setOperationAction(ISD::SELECT, SVT, Promote);
1079      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1080    }
1081  }
1082
1083  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1084  // of this type with custom code.
1085  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1086         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1087    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1088  }
1089
1090  // We want to custom lower some of our intrinsics.
1091  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1092
1093
1094  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1095  // handle type legalization for these operations here.
1096  //
1097  // FIXME: We really should do custom legalization for addition and
1098  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1099  // than generic legalization for 64-bit multiplication-with-overflow, though.
1100  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1101    // Add/Sub/Mul with overflow operations are custom lowered.
1102    MVT VT = IntVTs[i];
1103    setOperationAction(ISD::SADDO, VT, Custom);
1104    setOperationAction(ISD::UADDO, VT, Custom);
1105    setOperationAction(ISD::SSUBO, VT, Custom);
1106    setOperationAction(ISD::USUBO, VT, Custom);
1107    setOperationAction(ISD::SMULO, VT, Custom);
1108    setOperationAction(ISD::UMULO, VT, Custom);
1109  }
1110
1111  // There are no 8-bit 3-address imul/mul instructions
1112  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1113  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1114
1115  if (!Subtarget->is64Bit()) {
1116    // These libcalls are not available in 32-bit.
1117    setLibcallName(RTLIB::SHL_I128, 0);
1118    setLibcallName(RTLIB::SRL_I128, 0);
1119    setLibcallName(RTLIB::SRA_I128, 0);
1120  }
1121
1122  // We have target-specific dag combine patterns for the following nodes:
1123  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1124  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1125  setTargetDAGCombine(ISD::BUILD_VECTOR);
1126  setTargetDAGCombine(ISD::SELECT);
1127  setTargetDAGCombine(ISD::SHL);
1128  setTargetDAGCombine(ISD::SRA);
1129  setTargetDAGCombine(ISD::SRL);
1130  setTargetDAGCombine(ISD::OR);
1131  setTargetDAGCombine(ISD::AND);
1132  setTargetDAGCombine(ISD::ADD);
1133  setTargetDAGCombine(ISD::SUB);
1134  setTargetDAGCombine(ISD::STORE);
1135  setTargetDAGCombine(ISD::ZERO_EXTEND);
1136  setTargetDAGCombine(ISD::SINT_TO_FP);
1137  if (Subtarget->is64Bit())
1138    setTargetDAGCombine(ISD::MUL);
1139
1140  computeRegisterProperties();
1141
1142  // On Darwin, -Os means optimize for size without hurting performance,
1143  // do not reduce the limit.
1144  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1145  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1146  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1147  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1148  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1149  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1150  setPrefLoopAlignment(16);
1151  benefitFromCodePlacementOpt = true;
1152
1153  setPrefFunctionAlignment(4);
1154}
1155
1156
1157EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1158  if (!VT.isVector()) return MVT::i8;
1159  return VT.changeVectorElementTypeToInteger();
1160}
1161
1162
1163/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1164/// the desired ByVal argument alignment.
1165static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1166  if (MaxAlign == 16)
1167    return;
1168  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1169    if (VTy->getBitWidth() == 128)
1170      MaxAlign = 16;
1171  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1172    unsigned EltAlign = 0;
1173    getMaxByValAlign(ATy->getElementType(), EltAlign);
1174    if (EltAlign > MaxAlign)
1175      MaxAlign = EltAlign;
1176  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1177    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1178      unsigned EltAlign = 0;
1179      getMaxByValAlign(STy->getElementType(i), EltAlign);
1180      if (EltAlign > MaxAlign)
1181        MaxAlign = EltAlign;
1182      if (MaxAlign == 16)
1183        break;
1184    }
1185  }
1186  return;
1187}
1188
1189/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1190/// function arguments in the caller parameter area. For X86, aggregates
1191/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1192/// are at 4-byte boundaries.
1193unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1194  if (Subtarget->is64Bit()) {
1195    // Max of 8 and alignment of type.
1196    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1197    if (TyAlign > 8)
1198      return TyAlign;
1199    return 8;
1200  }
1201
1202  unsigned Align = 4;
1203  if (Subtarget->hasXMM())
1204    getMaxByValAlign(Ty, Align);
1205  return Align;
1206}
1207
1208/// getOptimalMemOpType - Returns the target specific optimal type for load
1209/// and store operations as a result of memset, memcpy, and memmove
1210/// lowering. If DstAlign is zero that means it's safe to destination
1211/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1212/// means there isn't a need to check it against alignment requirement,
1213/// probably because the source does not need to be loaded. If
1214/// 'NonScalarIntSafe' is true, that means it's safe to return a
1215/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1216/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1217/// constant so it does not need to be loaded.
1218/// It returns EVT::Other if the type should be determined using generic
1219/// target-independent logic.
1220EVT
1221X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1222                                       unsigned DstAlign, unsigned SrcAlign,
1223                                       bool NonScalarIntSafe,
1224                                       bool MemcpyStrSrc,
1225                                       MachineFunction &MF) const {
1226  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1227  // linux.  This is because the stack realignment code can't handle certain
1228  // cases like PR2962.  This should be removed when PR2962 is fixed.
1229  const Function *F = MF.getFunction();
1230  if (NonScalarIntSafe &&
1231      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1232    if (Size >= 16 &&
1233        (Subtarget->isUnalignedMemAccessFast() ||
1234         ((DstAlign == 0 || DstAlign >= 16) &&
1235          (SrcAlign == 0 || SrcAlign >= 16))) &&
1236        Subtarget->getStackAlignment() >= 16) {
1237      if (Subtarget->hasSSE2())
1238        return MVT::v4i32;
1239      if (Subtarget->hasSSE1())
1240        return MVT::v4f32;
1241    } else if (!MemcpyStrSrc && Size >= 8 &&
1242               !Subtarget->is64Bit() &&
1243               Subtarget->getStackAlignment() >= 8 &&
1244               Subtarget->hasXMMInt()) {
1245      // Do not use f64 to lower memcpy if source is string constant. It's
1246      // better to use i32 to avoid the loads.
1247      return MVT::f64;
1248    }
1249  }
1250  if (Subtarget->is64Bit() && Size >= 8)
1251    return MVT::i64;
1252  return MVT::i32;
1253}
1254
1255/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1256/// current function.  The returned value is a member of the
1257/// MachineJumpTableInfo::JTEntryKind enum.
1258unsigned X86TargetLowering::getJumpTableEncoding() const {
1259  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1260  // symbol.
1261  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1262      Subtarget->isPICStyleGOT())
1263    return MachineJumpTableInfo::EK_Custom32;
1264
1265  // Otherwise, use the normal jump table encoding heuristics.
1266  return TargetLowering::getJumpTableEncoding();
1267}
1268
1269const MCExpr *
1270X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1271                                             const MachineBasicBlock *MBB,
1272                                             unsigned uid,MCContext &Ctx) const{
1273  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1274         Subtarget->isPICStyleGOT());
1275  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1276  // entries.
1277  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1278                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1279}
1280
1281/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1282/// jumptable.
1283SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1284                                                    SelectionDAG &DAG) const {
1285  if (!Subtarget->is64Bit())
1286    // This doesn't have DebugLoc associated with it, but is not really the
1287    // same as a Register.
1288    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1289  return Table;
1290}
1291
1292/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1293/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1294/// MCExpr.
1295const MCExpr *X86TargetLowering::
1296getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1297                             MCContext &Ctx) const {
1298  // X86-64 uses RIP relative addressing based on the jump table label.
1299  if (Subtarget->isPICStyleRIPRel())
1300    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1301
1302  // Otherwise, the reference is relative to the PIC base.
1303  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1304}
1305
1306// FIXME: Why this routine is here? Move to RegInfo!
1307std::pair<const TargetRegisterClass*, uint8_t>
1308X86TargetLowering::findRepresentativeClass(EVT VT) const{
1309  const TargetRegisterClass *RRC = 0;
1310  uint8_t Cost = 1;
1311  switch (VT.getSimpleVT().SimpleTy) {
1312  default:
1313    return TargetLowering::findRepresentativeClass(VT);
1314  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1315    RRC = (Subtarget->is64Bit()
1316           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1317    break;
1318  case MVT::x86mmx:
1319    RRC = X86::VR64RegisterClass;
1320    break;
1321  case MVT::f32: case MVT::f64:
1322  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1323  case MVT::v4f32: case MVT::v2f64:
1324  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1325  case MVT::v4f64:
1326    RRC = X86::VR128RegisterClass;
1327    break;
1328  }
1329  return std::make_pair(RRC, Cost);
1330}
1331
1332bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1333                                               unsigned &Offset) const {
1334  if (!Subtarget->isTargetLinux())
1335    return false;
1336
1337  if (Subtarget->is64Bit()) {
1338    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1339    Offset = 0x28;
1340    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1341      AddressSpace = 256;
1342    else
1343      AddressSpace = 257;
1344  } else {
1345    // %gs:0x14 on i386
1346    Offset = 0x14;
1347    AddressSpace = 256;
1348  }
1349  return true;
1350}
1351
1352
1353//===----------------------------------------------------------------------===//
1354//               Return Value Calling Convention Implementation
1355//===----------------------------------------------------------------------===//
1356
1357#include "X86GenCallingConv.inc"
1358
1359bool
1360X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1361				  MachineFunction &MF, bool isVarArg,
1362                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1363                        LLVMContext &Context) const {
1364  SmallVector<CCValAssign, 16> RVLocs;
1365  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1366                 RVLocs, Context);
1367  return CCInfo.CheckReturn(Outs, RetCC_X86);
1368}
1369
1370SDValue
1371X86TargetLowering::LowerReturn(SDValue Chain,
1372                               CallingConv::ID CallConv, bool isVarArg,
1373                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1374                               const SmallVectorImpl<SDValue> &OutVals,
1375                               DebugLoc dl, SelectionDAG &DAG) const {
1376  MachineFunction &MF = DAG.getMachineFunction();
1377  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1378
1379  SmallVector<CCValAssign, 16> RVLocs;
1380  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1381                 RVLocs, *DAG.getContext());
1382  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1383
1384  // Add the regs to the liveout set for the function.
1385  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1386  for (unsigned i = 0; i != RVLocs.size(); ++i)
1387    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1388      MRI.addLiveOut(RVLocs[i].getLocReg());
1389
1390  SDValue Flag;
1391
1392  SmallVector<SDValue, 6> RetOps;
1393  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1394  // Operand #1 = Bytes To Pop
1395  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1396                   MVT::i16));
1397
1398  // Copy the result values into the output registers.
1399  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1400    CCValAssign &VA = RVLocs[i];
1401    assert(VA.isRegLoc() && "Can only return in registers!");
1402    SDValue ValToCopy = OutVals[i];
1403    EVT ValVT = ValToCopy.getValueType();
1404
1405    // If this is x86-64, and we disabled SSE, we can't return FP values,
1406    // or SSE or MMX vectors.
1407    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1408         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1409          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1410      report_fatal_error("SSE register return with SSE disabled");
1411    }
1412    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1413    // llvm-gcc has never done it right and no one has noticed, so this
1414    // should be OK for now.
1415    if (ValVT == MVT::f64 &&
1416        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1417      report_fatal_error("SSE2 register return with SSE2 disabled");
1418
1419    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1420    // the RET instruction and handled by the FP Stackifier.
1421    if (VA.getLocReg() == X86::ST0 ||
1422        VA.getLocReg() == X86::ST1) {
1423      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1424      // change the value to the FP stack register class.
1425      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1426        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1427      RetOps.push_back(ValToCopy);
1428      // Don't emit a copytoreg.
1429      continue;
1430    }
1431
1432    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1433    // which is returned in RAX / RDX.
1434    if (Subtarget->is64Bit()) {
1435      if (ValVT == MVT::x86mmx) {
1436        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1437          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1438          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1439                                  ValToCopy);
1440          // If we don't have SSE2 available, convert to v4f32 so the generated
1441          // register is legal.
1442          if (!Subtarget->hasSSE2())
1443            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1444        }
1445      }
1446    }
1447
1448    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1449    Flag = Chain.getValue(1);
1450  }
1451
1452  // The x86-64 ABI for returning structs by value requires that we copy
1453  // the sret argument into %rax for the return. We saved the argument into
1454  // a virtual register in the entry block, so now we copy the value out
1455  // and into %rax.
1456  if (Subtarget->is64Bit() &&
1457      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1458    MachineFunction &MF = DAG.getMachineFunction();
1459    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1460    unsigned Reg = FuncInfo->getSRetReturnReg();
1461    assert(Reg &&
1462           "SRetReturnReg should have been set in LowerFormalArguments().");
1463    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1464
1465    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1466    Flag = Chain.getValue(1);
1467
1468    // RAX now acts like a return value.
1469    MRI.addLiveOut(X86::RAX);
1470  }
1471
1472  RetOps[0] = Chain;  // Update chain.
1473
1474  // Add the flag if we have it.
1475  if (Flag.getNode())
1476    RetOps.push_back(Flag);
1477
1478  return DAG.getNode(X86ISD::RET_FLAG, dl,
1479                     MVT::Other, &RetOps[0], RetOps.size());
1480}
1481
1482bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1483  if (N->getNumValues() != 1)
1484    return false;
1485  if (!N->hasNUsesOfValue(1, 0))
1486    return false;
1487
1488  SDNode *Copy = *N->use_begin();
1489  if (Copy->getOpcode() != ISD::CopyToReg &&
1490      Copy->getOpcode() != ISD::FP_EXTEND)
1491    return false;
1492
1493  bool HasRet = false;
1494  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1495       UI != UE; ++UI) {
1496    if (UI->getOpcode() != X86ISD::RET_FLAG)
1497      return false;
1498    HasRet = true;
1499  }
1500
1501  return HasRet;
1502}
1503
1504EVT
1505X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1506                                            ISD::NodeType ExtendKind) const {
1507  MVT ReturnMVT;
1508  // TODO: Is this also valid on 32-bit?
1509  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1510    ReturnMVT = MVT::i8;
1511  else
1512    ReturnMVT = MVT::i32;
1513
1514  EVT MinVT = getRegisterType(Context, ReturnMVT);
1515  return VT.bitsLT(MinVT) ? MinVT : VT;
1516}
1517
1518/// LowerCallResult - Lower the result values of a call into the
1519/// appropriate copies out of appropriate physical registers.
1520///
1521SDValue
1522X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1523                                   CallingConv::ID CallConv, bool isVarArg,
1524                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1525                                   DebugLoc dl, SelectionDAG &DAG,
1526                                   SmallVectorImpl<SDValue> &InVals) const {
1527
1528  // Assign locations to each value returned by this call.
1529  SmallVector<CCValAssign, 16> RVLocs;
1530  bool Is64Bit = Subtarget->is64Bit();
1531  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1532		 getTargetMachine(), RVLocs, *DAG.getContext());
1533  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1534
1535  // Copy all of the result registers out of their specified physreg.
1536  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1537    CCValAssign &VA = RVLocs[i];
1538    EVT CopyVT = VA.getValVT();
1539
1540    // If this is x86-64, and we disabled SSE, we can't return FP values
1541    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1542        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1543      report_fatal_error("SSE register return with SSE disabled");
1544    }
1545
1546    SDValue Val;
1547
1548    // If this is a call to a function that returns an fp value on the floating
1549    // point stack, we must guarantee the the value is popped from the stack, so
1550    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1551    // if the return value is not used. We use the FpPOP_RETVAL instruction
1552    // instead.
1553    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1554      // If we prefer to use the value in xmm registers, copy it out as f80 and
1555      // use a truncate to move it from fp stack reg to xmm reg.
1556      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1557      SDValue Ops[] = { Chain, InFlag };
1558      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1559                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1560      Val = Chain.getValue(0);
1561
1562      // Round the f80 to the right size, which also moves it to the appropriate
1563      // xmm register.
1564      if (CopyVT != VA.getValVT())
1565        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1566                          // This truncation won't change the value.
1567                          DAG.getIntPtrConstant(1));
1568    } else {
1569      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1570                                 CopyVT, InFlag).getValue(1);
1571      Val = Chain.getValue(0);
1572    }
1573    InFlag = Chain.getValue(2);
1574    InVals.push_back(Val);
1575  }
1576
1577  return Chain;
1578}
1579
1580
1581//===----------------------------------------------------------------------===//
1582//                C & StdCall & Fast Calling Convention implementation
1583//===----------------------------------------------------------------------===//
1584//  StdCall calling convention seems to be standard for many Windows' API
1585//  routines and around. It differs from C calling convention just a little:
1586//  callee should clean up the stack, not caller. Symbols should be also
1587//  decorated in some fancy way :) It doesn't support any vector arguments.
1588//  For info on fast calling convention see Fast Calling Convention (tail call)
1589//  implementation LowerX86_32FastCCCallTo.
1590
1591/// CallIsStructReturn - Determines whether a call uses struct return
1592/// semantics.
1593static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1594  if (Outs.empty())
1595    return false;
1596
1597  return Outs[0].Flags.isSRet();
1598}
1599
1600/// ArgsAreStructReturn - Determines whether a function uses struct
1601/// return semantics.
1602static bool
1603ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1604  if (Ins.empty())
1605    return false;
1606
1607  return Ins[0].Flags.isSRet();
1608}
1609
1610/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1611/// by "Src" to address "Dst" with size and alignment information specified by
1612/// the specific parameter attribute. The copy will be passed as a byval
1613/// function parameter.
1614static SDValue
1615CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1616                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1617                          DebugLoc dl) {
1618  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1619
1620  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1621                       /*isVolatile*/false, /*AlwaysInline=*/true,
1622                       MachinePointerInfo(), MachinePointerInfo());
1623}
1624
1625/// IsTailCallConvention - Return true if the calling convention is one that
1626/// supports tail call optimization.
1627static bool IsTailCallConvention(CallingConv::ID CC) {
1628  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1629}
1630
1631bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1632  if (!CI->isTailCall())
1633    return false;
1634
1635  CallSite CS(CI);
1636  CallingConv::ID CalleeCC = CS.getCallingConv();
1637  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1638    return false;
1639
1640  return true;
1641}
1642
1643/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1644/// a tailcall target by changing its ABI.
1645static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1646  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1647}
1648
1649SDValue
1650X86TargetLowering::LowerMemArgument(SDValue Chain,
1651                                    CallingConv::ID CallConv,
1652                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1653                                    DebugLoc dl, SelectionDAG &DAG,
1654                                    const CCValAssign &VA,
1655                                    MachineFrameInfo *MFI,
1656                                    unsigned i) const {
1657  // Create the nodes corresponding to a load from this parameter slot.
1658  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1659  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1660  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1661  EVT ValVT;
1662
1663  // If value is passed by pointer we have address passed instead of the value
1664  // itself.
1665  if (VA.getLocInfo() == CCValAssign::Indirect)
1666    ValVT = VA.getLocVT();
1667  else
1668    ValVT = VA.getValVT();
1669
1670  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1671  // changed with more analysis.
1672  // In case of tail call optimization mark all arguments mutable. Since they
1673  // could be overwritten by lowering of arguments in case of a tail call.
1674  if (Flags.isByVal()) {
1675    unsigned Bytes = Flags.getByValSize();
1676    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1677    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1678    return DAG.getFrameIndex(FI, getPointerTy());
1679  } else {
1680    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1681                                    VA.getLocMemOffset(), isImmutable);
1682    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1683    return DAG.getLoad(ValVT, dl, Chain, FIN,
1684                       MachinePointerInfo::getFixedStack(FI),
1685                       false, false, 0);
1686  }
1687}
1688
1689SDValue
1690X86TargetLowering::LowerFormalArguments(SDValue Chain,
1691                                        CallingConv::ID CallConv,
1692                                        bool isVarArg,
1693                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1694                                        DebugLoc dl,
1695                                        SelectionDAG &DAG,
1696                                        SmallVectorImpl<SDValue> &InVals)
1697                                          const {
1698  MachineFunction &MF = DAG.getMachineFunction();
1699  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1700
1701  const Function* Fn = MF.getFunction();
1702  if (Fn->hasExternalLinkage() &&
1703      Subtarget->isTargetCygMing() &&
1704      Fn->getName() == "main")
1705    FuncInfo->setForceFramePointer(true);
1706
1707  MachineFrameInfo *MFI = MF.getFrameInfo();
1708  bool Is64Bit = Subtarget->is64Bit();
1709  bool IsWin64 = Subtarget->isTargetWin64();
1710
1711  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1712         "Var args not supported with calling convention fastcc or ghc");
1713
1714  // Assign locations to all of the incoming arguments.
1715  SmallVector<CCValAssign, 16> ArgLocs;
1716  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1717                 ArgLocs, *DAG.getContext());
1718
1719  // Allocate shadow area for Win64
1720  if (IsWin64) {
1721    CCInfo.AllocateStack(32, 8);
1722  }
1723
1724  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1725
1726  unsigned LastVal = ~0U;
1727  SDValue ArgValue;
1728  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1729    CCValAssign &VA = ArgLocs[i];
1730    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1731    // places.
1732    assert(VA.getValNo() != LastVal &&
1733           "Don't support value assigned to multiple locs yet");
1734    LastVal = VA.getValNo();
1735
1736    if (VA.isRegLoc()) {
1737      EVT RegVT = VA.getLocVT();
1738      TargetRegisterClass *RC = NULL;
1739      if (RegVT == MVT::i32)
1740        RC = X86::GR32RegisterClass;
1741      else if (Is64Bit && RegVT == MVT::i64)
1742        RC = X86::GR64RegisterClass;
1743      else if (RegVT == MVT::f32)
1744        RC = X86::FR32RegisterClass;
1745      else if (RegVT == MVT::f64)
1746        RC = X86::FR64RegisterClass;
1747      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1748        RC = X86::VR256RegisterClass;
1749      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1750        RC = X86::VR128RegisterClass;
1751      else if (RegVT == MVT::x86mmx)
1752        RC = X86::VR64RegisterClass;
1753      else
1754        llvm_unreachable("Unknown argument type!");
1755
1756      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1757      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1758
1759      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1760      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1761      // right size.
1762      if (VA.getLocInfo() == CCValAssign::SExt)
1763        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1764                               DAG.getValueType(VA.getValVT()));
1765      else if (VA.getLocInfo() == CCValAssign::ZExt)
1766        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1767                               DAG.getValueType(VA.getValVT()));
1768      else if (VA.getLocInfo() == CCValAssign::BCvt)
1769        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1770
1771      if (VA.isExtInLoc()) {
1772        // Handle MMX values passed in XMM regs.
1773        if (RegVT.isVector()) {
1774          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1775                                 ArgValue);
1776        } else
1777          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1778      }
1779    } else {
1780      assert(VA.isMemLoc());
1781      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1782    }
1783
1784    // If value is passed via pointer - do a load.
1785    if (VA.getLocInfo() == CCValAssign::Indirect)
1786      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1787                             MachinePointerInfo(), false, false, 0);
1788
1789    InVals.push_back(ArgValue);
1790  }
1791
1792  // The x86-64 ABI for returning structs by value requires that we copy
1793  // the sret argument into %rax for the return. Save the argument into
1794  // a virtual register so that we can access it from the return points.
1795  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1796    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1797    unsigned Reg = FuncInfo->getSRetReturnReg();
1798    if (!Reg) {
1799      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1800      FuncInfo->setSRetReturnReg(Reg);
1801    }
1802    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1803    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1804  }
1805
1806  unsigned StackSize = CCInfo.getNextStackOffset();
1807  // Align stack specially for tail calls.
1808  if (FuncIsMadeTailCallSafe(CallConv))
1809    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1810
1811  // If the function takes variable number of arguments, make a frame index for
1812  // the start of the first vararg value... for expansion of llvm.va_start.
1813  if (isVarArg) {
1814    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1815                    CallConv != CallingConv::X86_ThisCall)) {
1816      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1817    }
1818    if (Is64Bit) {
1819      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1820
1821      // FIXME: We should really autogenerate these arrays
1822      static const unsigned GPR64ArgRegsWin64[] = {
1823        X86::RCX, X86::RDX, X86::R8,  X86::R9
1824      };
1825      static const unsigned GPR64ArgRegs64Bit[] = {
1826        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1827      };
1828      static const unsigned XMMArgRegs64Bit[] = {
1829        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1830        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1831      };
1832      const unsigned *GPR64ArgRegs;
1833      unsigned NumXMMRegs = 0;
1834
1835      if (IsWin64) {
1836        // The XMM registers which might contain var arg parameters are shadowed
1837        // in their paired GPR.  So we only need to save the GPR to their home
1838        // slots.
1839        TotalNumIntRegs = 4;
1840        GPR64ArgRegs = GPR64ArgRegsWin64;
1841      } else {
1842        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1843        GPR64ArgRegs = GPR64ArgRegs64Bit;
1844
1845        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1846      }
1847      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1848                                                       TotalNumIntRegs);
1849
1850      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1851      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1852             "SSE register cannot be used when SSE is disabled!");
1853      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1854             "SSE register cannot be used when SSE is disabled!");
1855      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1856        // Kernel mode asks for SSE to be disabled, so don't push them
1857        // on the stack.
1858        TotalNumXMMRegs = 0;
1859
1860      if (IsWin64) {
1861        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1862        // Get to the caller-allocated home save location.  Add 8 to account
1863        // for the return address.
1864        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1865        FuncInfo->setRegSaveFrameIndex(
1866          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1867        // Fixup to set vararg frame on shadow area (4 x i64).
1868        if (NumIntRegs < 4)
1869          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1870      } else {
1871        // For X86-64, if there are vararg parameters that are passed via
1872        // registers, then we must store them to their spots on the stack so they
1873        // may be loaded by deferencing the result of va_next.
1874        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1875        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1876        FuncInfo->setRegSaveFrameIndex(
1877          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1878                               false));
1879      }
1880
1881      // Store the integer parameter registers.
1882      SmallVector<SDValue, 8> MemOps;
1883      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1884                                        getPointerTy());
1885      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1886      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1887        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1888                                  DAG.getIntPtrConstant(Offset));
1889        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1890                                     X86::GR64RegisterClass);
1891        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1892        SDValue Store =
1893          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1894                       MachinePointerInfo::getFixedStack(
1895                         FuncInfo->getRegSaveFrameIndex(), Offset),
1896                       false, false, 0);
1897        MemOps.push_back(Store);
1898        Offset += 8;
1899      }
1900
1901      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1902        // Now store the XMM (fp + vector) parameter registers.
1903        SmallVector<SDValue, 11> SaveXMMOps;
1904        SaveXMMOps.push_back(Chain);
1905
1906        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1907        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1908        SaveXMMOps.push_back(ALVal);
1909
1910        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1911                               FuncInfo->getRegSaveFrameIndex()));
1912        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1913                               FuncInfo->getVarArgsFPOffset()));
1914
1915        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1916          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1917                                       X86::VR128RegisterClass);
1918          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1919          SaveXMMOps.push_back(Val);
1920        }
1921        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1922                                     MVT::Other,
1923                                     &SaveXMMOps[0], SaveXMMOps.size()));
1924      }
1925
1926      if (!MemOps.empty())
1927        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1928                            &MemOps[0], MemOps.size());
1929    }
1930  }
1931
1932  // Some CCs need callee pop.
1933  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1934    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1935  } else {
1936    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1937    // If this is an sret function, the return should pop the hidden pointer.
1938    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1939      FuncInfo->setBytesToPopOnReturn(4);
1940  }
1941
1942  if (!Is64Bit) {
1943    // RegSaveFrameIndex is X86-64 only.
1944    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1945    if (CallConv == CallingConv::X86_FastCall ||
1946        CallConv == CallingConv::X86_ThisCall)
1947      // fastcc functions can't have varargs.
1948      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1949  }
1950
1951  FuncInfo->setArgumentStackSize(StackSize);
1952
1953  return Chain;
1954}
1955
1956SDValue
1957X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1958                                    SDValue StackPtr, SDValue Arg,
1959                                    DebugLoc dl, SelectionDAG &DAG,
1960                                    const CCValAssign &VA,
1961                                    ISD::ArgFlagsTy Flags) const {
1962  unsigned LocMemOffset = VA.getLocMemOffset();
1963  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1964  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1965  if (Flags.isByVal())
1966    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1967
1968  return DAG.getStore(Chain, dl, Arg, PtrOff,
1969                      MachinePointerInfo::getStack(LocMemOffset),
1970                      false, false, 0);
1971}
1972
1973/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1974/// optimization is performed and it is required.
1975SDValue
1976X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1977                                           SDValue &OutRetAddr, SDValue Chain,
1978                                           bool IsTailCall, bool Is64Bit,
1979                                           int FPDiff, DebugLoc dl) const {
1980  // Adjust the Return address stack slot.
1981  EVT VT = getPointerTy();
1982  OutRetAddr = getReturnAddressFrameIndex(DAG);
1983
1984  // Load the "old" Return address.
1985  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1986                           false, false, 0);
1987  return SDValue(OutRetAddr.getNode(), 1);
1988}
1989
1990/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1991/// optimization is performed and it is required (FPDiff!=0).
1992static SDValue
1993EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1994                         SDValue Chain, SDValue RetAddrFrIdx,
1995                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1996  // Store the return address to the appropriate stack slot.
1997  if (!FPDiff) return Chain;
1998  // Calculate the new stack slot for the return address.
1999  int SlotSize = Is64Bit ? 8 : 4;
2000  int NewReturnAddrFI =
2001    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2002  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2003  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2004  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2005                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2006                       false, false, 0);
2007  return Chain;
2008}
2009
2010SDValue
2011X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2012                             CallingConv::ID CallConv, bool isVarArg,
2013                             bool &isTailCall,
2014                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2015                             const SmallVectorImpl<SDValue> &OutVals,
2016                             const SmallVectorImpl<ISD::InputArg> &Ins,
2017                             DebugLoc dl, SelectionDAG &DAG,
2018                             SmallVectorImpl<SDValue> &InVals) const {
2019  MachineFunction &MF = DAG.getMachineFunction();
2020  bool Is64Bit        = Subtarget->is64Bit();
2021  bool IsWin64        = Subtarget->isTargetWin64();
2022  bool IsStructRet    = CallIsStructReturn(Outs);
2023  bool IsSibcall      = false;
2024
2025  if (isTailCall) {
2026    // Check if it's really possible to do a tail call.
2027    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2028                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2029                                                   Outs, OutVals, Ins, DAG);
2030
2031    // Sibcalls are automatically detected tailcalls which do not require
2032    // ABI changes.
2033    if (!GuaranteedTailCallOpt && isTailCall)
2034      IsSibcall = true;
2035
2036    if (isTailCall)
2037      ++NumTailCalls;
2038  }
2039
2040  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2041         "Var args not supported with calling convention fastcc or ghc");
2042
2043  // Analyze operands of the call, assigning locations to each operand.
2044  SmallVector<CCValAssign, 16> ArgLocs;
2045  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2046                 ArgLocs, *DAG.getContext());
2047
2048  // Allocate shadow area for Win64
2049  if (IsWin64) {
2050    CCInfo.AllocateStack(32, 8);
2051  }
2052
2053  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2054
2055  // Get a count of how many bytes are to be pushed on the stack.
2056  unsigned NumBytes = CCInfo.getNextStackOffset();
2057  if (IsSibcall)
2058    // This is a sibcall. The memory operands are available in caller's
2059    // own caller's stack.
2060    NumBytes = 0;
2061  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2062    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2063
2064  int FPDiff = 0;
2065  if (isTailCall && !IsSibcall) {
2066    // Lower arguments at fp - stackoffset + fpdiff.
2067    unsigned NumBytesCallerPushed =
2068      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2069    FPDiff = NumBytesCallerPushed - NumBytes;
2070
2071    // Set the delta of movement of the returnaddr stackslot.
2072    // But only set if delta is greater than previous delta.
2073    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2074      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2075  }
2076
2077  if (!IsSibcall)
2078    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2079
2080  SDValue RetAddrFrIdx;
2081  // Load return address for tail calls.
2082  if (isTailCall && FPDiff)
2083    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2084                                    Is64Bit, FPDiff, dl);
2085
2086  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2087  SmallVector<SDValue, 8> MemOpChains;
2088  SDValue StackPtr;
2089
2090  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2091  // of tail call optimization arguments are handle later.
2092  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2093    CCValAssign &VA = ArgLocs[i];
2094    EVT RegVT = VA.getLocVT();
2095    SDValue Arg = OutVals[i];
2096    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2097    bool isByVal = Flags.isByVal();
2098
2099    // Promote the value if needed.
2100    switch (VA.getLocInfo()) {
2101    default: llvm_unreachable("Unknown loc info!");
2102    case CCValAssign::Full: break;
2103    case CCValAssign::SExt:
2104      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2105      break;
2106    case CCValAssign::ZExt:
2107      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2108      break;
2109    case CCValAssign::AExt:
2110      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2111        // Special case: passing MMX values in XMM registers.
2112        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2113        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2114        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2115      } else
2116        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2117      break;
2118    case CCValAssign::BCvt:
2119      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2120      break;
2121    case CCValAssign::Indirect: {
2122      // Store the argument.
2123      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2124      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2125      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2126                           MachinePointerInfo::getFixedStack(FI),
2127                           false, false, 0);
2128      Arg = SpillSlot;
2129      break;
2130    }
2131    }
2132
2133    if (VA.isRegLoc()) {
2134      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2135      if (isVarArg && IsWin64) {
2136        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2137        // shadow reg if callee is a varargs function.
2138        unsigned ShadowReg = 0;
2139        switch (VA.getLocReg()) {
2140        case X86::XMM0: ShadowReg = X86::RCX; break;
2141        case X86::XMM1: ShadowReg = X86::RDX; break;
2142        case X86::XMM2: ShadowReg = X86::R8; break;
2143        case X86::XMM3: ShadowReg = X86::R9; break;
2144        }
2145        if (ShadowReg)
2146          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2147      }
2148    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2149      assert(VA.isMemLoc());
2150      if (StackPtr.getNode() == 0)
2151        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2152      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2153                                             dl, DAG, VA, Flags));
2154    }
2155  }
2156
2157  if (!MemOpChains.empty())
2158    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2159                        &MemOpChains[0], MemOpChains.size());
2160
2161  // Build a sequence of copy-to-reg nodes chained together with token chain
2162  // and flag operands which copy the outgoing args into registers.
2163  SDValue InFlag;
2164  // Tail call byval lowering might overwrite argument registers so in case of
2165  // tail call optimization the copies to registers are lowered later.
2166  if (!isTailCall)
2167    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2168      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2169                               RegsToPass[i].second, InFlag);
2170      InFlag = Chain.getValue(1);
2171    }
2172
2173  if (Subtarget->isPICStyleGOT()) {
2174    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2175    // GOT pointer.
2176    if (!isTailCall) {
2177      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2178                               DAG.getNode(X86ISD::GlobalBaseReg,
2179                                           DebugLoc(), getPointerTy()),
2180                               InFlag);
2181      InFlag = Chain.getValue(1);
2182    } else {
2183      // If we are tail calling and generating PIC/GOT style code load the
2184      // address of the callee into ECX. The value in ecx is used as target of
2185      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2186      // for tail calls on PIC/GOT architectures. Normally we would just put the
2187      // address of GOT into ebx and then call target@PLT. But for tail calls
2188      // ebx would be restored (since ebx is callee saved) before jumping to the
2189      // target@PLT.
2190
2191      // Note: The actual moving to ECX is done further down.
2192      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2193      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2194          !G->getGlobal()->hasProtectedVisibility())
2195        Callee = LowerGlobalAddress(Callee, DAG);
2196      else if (isa<ExternalSymbolSDNode>(Callee))
2197        Callee = LowerExternalSymbol(Callee, DAG);
2198    }
2199  }
2200
2201  if (Is64Bit && isVarArg && !IsWin64) {
2202    // From AMD64 ABI document:
2203    // For calls that may call functions that use varargs or stdargs
2204    // (prototype-less calls or calls to functions containing ellipsis (...) in
2205    // the declaration) %al is used as hidden argument to specify the number
2206    // of SSE registers used. The contents of %al do not need to match exactly
2207    // the number of registers, but must be an ubound on the number of SSE
2208    // registers used and is in the range 0 - 8 inclusive.
2209
2210    // Count the number of XMM registers allocated.
2211    static const unsigned XMMArgRegs[] = {
2212      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2213      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2214    };
2215    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2216    assert((Subtarget->hasXMM() || !NumXMMRegs)
2217           && "SSE registers cannot be used when SSE is disabled");
2218
2219    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2220                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2221    InFlag = Chain.getValue(1);
2222  }
2223
2224
2225  // For tail calls lower the arguments to the 'real' stack slot.
2226  if (isTailCall) {
2227    // Force all the incoming stack arguments to be loaded from the stack
2228    // before any new outgoing arguments are stored to the stack, because the
2229    // outgoing stack slots may alias the incoming argument stack slots, and
2230    // the alias isn't otherwise explicit. This is slightly more conservative
2231    // than necessary, because it means that each store effectively depends
2232    // on every argument instead of just those arguments it would clobber.
2233    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2234
2235    SmallVector<SDValue, 8> MemOpChains2;
2236    SDValue FIN;
2237    int FI = 0;
2238    // Do not flag preceding copytoreg stuff together with the following stuff.
2239    InFlag = SDValue();
2240    if (GuaranteedTailCallOpt) {
2241      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2242        CCValAssign &VA = ArgLocs[i];
2243        if (VA.isRegLoc())
2244          continue;
2245        assert(VA.isMemLoc());
2246        SDValue Arg = OutVals[i];
2247        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2248        // Create frame index.
2249        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2250        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2251        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2252        FIN = DAG.getFrameIndex(FI, getPointerTy());
2253
2254        if (Flags.isByVal()) {
2255          // Copy relative to framepointer.
2256          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2257          if (StackPtr.getNode() == 0)
2258            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2259                                          getPointerTy());
2260          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2261
2262          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2263                                                           ArgChain,
2264                                                           Flags, DAG, dl));
2265        } else {
2266          // Store relative to framepointer.
2267          MemOpChains2.push_back(
2268            DAG.getStore(ArgChain, dl, Arg, FIN,
2269                         MachinePointerInfo::getFixedStack(FI),
2270                         false, false, 0));
2271        }
2272      }
2273    }
2274
2275    if (!MemOpChains2.empty())
2276      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277                          &MemOpChains2[0], MemOpChains2.size());
2278
2279    // Copy arguments to their registers.
2280    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2281      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2282                               RegsToPass[i].second, InFlag);
2283      InFlag = Chain.getValue(1);
2284    }
2285    InFlag =SDValue();
2286
2287    // Store the return address to the appropriate stack slot.
2288    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2289                                     FPDiff, dl);
2290  }
2291
2292  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2293    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2294    // In the 64-bit large code model, we have to make all calls
2295    // through a register, since the call instruction's 32-bit
2296    // pc-relative offset may not be large enough to hold the whole
2297    // address.
2298  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2299    // If the callee is a GlobalAddress node (quite common, every direct call
2300    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2301    // it.
2302
2303    // We should use extra load for direct calls to dllimported functions in
2304    // non-JIT mode.
2305    const GlobalValue *GV = G->getGlobal();
2306    if (!GV->hasDLLImportLinkage()) {
2307      unsigned char OpFlags = 0;
2308      bool ExtraLoad = false;
2309      unsigned WrapperKind = ISD::DELETED_NODE;
2310
2311      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2312      // external symbols most go through the PLT in PIC mode.  If the symbol
2313      // has hidden or protected visibility, or if it is static or local, then
2314      // we don't need to use the PLT - we can directly call it.
2315      if (Subtarget->isTargetELF() &&
2316          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2317          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2318        OpFlags = X86II::MO_PLT;
2319      } else if (Subtarget->isPICStyleStubAny() &&
2320                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2321                 (!Subtarget->getTargetTriple().isMacOSX() ||
2322                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2323        // PC-relative references to external symbols should go through $stub,
2324        // unless we're building with the leopard linker or later, which
2325        // automatically synthesizes these stubs.
2326        OpFlags = X86II::MO_DARWIN_STUB;
2327      } else if (Subtarget->isPICStyleRIPRel() &&
2328                 isa<Function>(GV) &&
2329                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2330        // If the function is marked as non-lazy, generate an indirect call
2331        // which loads from the GOT directly. This avoids runtime overhead
2332        // at the cost of eager binding (and one extra byte of encoding).
2333        OpFlags = X86II::MO_GOTPCREL;
2334        WrapperKind = X86ISD::WrapperRIP;
2335        ExtraLoad = true;
2336      }
2337
2338      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2339                                          G->getOffset(), OpFlags);
2340
2341      // Add a wrapper if needed.
2342      if (WrapperKind != ISD::DELETED_NODE)
2343        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2344      // Add extra indirection if needed.
2345      if (ExtraLoad)
2346        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2347                             MachinePointerInfo::getGOT(),
2348                             false, false, 0);
2349    }
2350  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2351    unsigned char OpFlags = 0;
2352
2353    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2354    // external symbols should go through the PLT.
2355    if (Subtarget->isTargetELF() &&
2356        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2357      OpFlags = X86II::MO_PLT;
2358    } else if (Subtarget->isPICStyleStubAny() &&
2359               (!Subtarget->getTargetTriple().isMacOSX() ||
2360                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2361      // PC-relative references to external symbols should go through $stub,
2362      // unless we're building with the leopard linker or later, which
2363      // automatically synthesizes these stubs.
2364      OpFlags = X86II::MO_DARWIN_STUB;
2365    }
2366
2367    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2368                                         OpFlags);
2369  }
2370
2371  // Returns a chain & a flag for retval copy to use.
2372  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2373  SmallVector<SDValue, 8> Ops;
2374
2375  if (!IsSibcall && isTailCall) {
2376    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2377                           DAG.getIntPtrConstant(0, true), InFlag);
2378    InFlag = Chain.getValue(1);
2379  }
2380
2381  Ops.push_back(Chain);
2382  Ops.push_back(Callee);
2383
2384  if (isTailCall)
2385    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2386
2387  // Add argument registers to the end of the list so that they are known live
2388  // into the call.
2389  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2390    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2391                                  RegsToPass[i].second.getValueType()));
2392
2393  // Add an implicit use GOT pointer in EBX.
2394  if (!isTailCall && Subtarget->isPICStyleGOT())
2395    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2396
2397  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2398  if (Is64Bit && isVarArg && !IsWin64)
2399    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2400
2401  if (InFlag.getNode())
2402    Ops.push_back(InFlag);
2403
2404  if (isTailCall) {
2405    // We used to do:
2406    //// If this is the first return lowered for this function, add the regs
2407    //// to the liveout set for the function.
2408    // This isn't right, although it's probably harmless on x86; liveouts
2409    // should be computed from returns not tail calls.  Consider a void
2410    // function making a tail call to a function returning int.
2411    return DAG.getNode(X86ISD::TC_RETURN, dl,
2412                       NodeTys, &Ops[0], Ops.size());
2413  }
2414
2415  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2416  InFlag = Chain.getValue(1);
2417
2418  // Create the CALLSEQ_END node.
2419  unsigned NumBytesForCalleeToPush;
2420  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2421    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2422  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2423    // If this is a call to a struct-return function, the callee
2424    // pops the hidden struct pointer, so we have to push it back.
2425    // This is common for Darwin/X86, Linux & Mingw32 targets.
2426    NumBytesForCalleeToPush = 4;
2427  else
2428    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2429
2430  // Returns a flag for retval copy to use.
2431  if (!IsSibcall) {
2432    Chain = DAG.getCALLSEQ_END(Chain,
2433                               DAG.getIntPtrConstant(NumBytes, true),
2434                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2435                                                     true),
2436                               InFlag);
2437    InFlag = Chain.getValue(1);
2438  }
2439
2440  // Handle result values, copying them out of physregs into vregs that we
2441  // return.
2442  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2443                         Ins, dl, DAG, InVals);
2444}
2445
2446
2447//===----------------------------------------------------------------------===//
2448//                Fast Calling Convention (tail call) implementation
2449//===----------------------------------------------------------------------===//
2450
2451//  Like std call, callee cleans arguments, convention except that ECX is
2452//  reserved for storing the tail called function address. Only 2 registers are
2453//  free for argument passing (inreg). Tail call optimization is performed
2454//  provided:
2455//                * tailcallopt is enabled
2456//                * caller/callee are fastcc
2457//  On X86_64 architecture with GOT-style position independent code only local
2458//  (within module) calls are supported at the moment.
2459//  To keep the stack aligned according to platform abi the function
2460//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2461//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2462//  If a tail called function callee has more arguments than the caller the
2463//  caller needs to make sure that there is room to move the RETADDR to. This is
2464//  achieved by reserving an area the size of the argument delta right after the
2465//  original REtADDR, but before the saved framepointer or the spilled registers
2466//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2467//  stack layout:
2468//    arg1
2469//    arg2
2470//    RETADDR
2471//    [ new RETADDR
2472//      move area ]
2473//    (possible EBP)
2474//    ESI
2475//    EDI
2476//    local1 ..
2477
2478/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2479/// for a 16 byte align requirement.
2480unsigned
2481X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2482                                               SelectionDAG& DAG) const {
2483  MachineFunction &MF = DAG.getMachineFunction();
2484  const TargetMachine &TM = MF.getTarget();
2485  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2486  unsigned StackAlignment = TFI.getStackAlignment();
2487  uint64_t AlignMask = StackAlignment - 1;
2488  int64_t Offset = StackSize;
2489  uint64_t SlotSize = TD->getPointerSize();
2490  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2491    // Number smaller than 12 so just add the difference.
2492    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2493  } else {
2494    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2495    Offset = ((~AlignMask) & Offset) + StackAlignment +
2496      (StackAlignment-SlotSize);
2497  }
2498  return Offset;
2499}
2500
2501/// MatchingStackOffset - Return true if the given stack call argument is
2502/// already available in the same position (relatively) of the caller's
2503/// incoming argument stack.
2504static
2505bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2506                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2507                         const X86InstrInfo *TII) {
2508  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2509  int FI = INT_MAX;
2510  if (Arg.getOpcode() == ISD::CopyFromReg) {
2511    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2512    if (!TargetRegisterInfo::isVirtualRegister(VR))
2513      return false;
2514    MachineInstr *Def = MRI->getVRegDef(VR);
2515    if (!Def)
2516      return false;
2517    if (!Flags.isByVal()) {
2518      if (!TII->isLoadFromStackSlot(Def, FI))
2519        return false;
2520    } else {
2521      unsigned Opcode = Def->getOpcode();
2522      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2523          Def->getOperand(1).isFI()) {
2524        FI = Def->getOperand(1).getIndex();
2525        Bytes = Flags.getByValSize();
2526      } else
2527        return false;
2528    }
2529  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2530    if (Flags.isByVal())
2531      // ByVal argument is passed in as a pointer but it's now being
2532      // dereferenced. e.g.
2533      // define @foo(%struct.X* %A) {
2534      //   tail call @bar(%struct.X* byval %A)
2535      // }
2536      return false;
2537    SDValue Ptr = Ld->getBasePtr();
2538    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2539    if (!FINode)
2540      return false;
2541    FI = FINode->getIndex();
2542  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2543    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2544    FI = FINode->getIndex();
2545    Bytes = Flags.getByValSize();
2546  } else
2547    return false;
2548
2549  assert(FI != INT_MAX);
2550  if (!MFI->isFixedObjectIndex(FI))
2551    return false;
2552  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2553}
2554
2555/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2556/// for tail call optimization. Targets which want to do tail call
2557/// optimization should implement this function.
2558bool
2559X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2560                                                     CallingConv::ID CalleeCC,
2561                                                     bool isVarArg,
2562                                                     bool isCalleeStructRet,
2563                                                     bool isCallerStructRet,
2564                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2565                                    const SmallVectorImpl<SDValue> &OutVals,
2566                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2567                                                     SelectionDAG& DAG) const {
2568  if (!IsTailCallConvention(CalleeCC) &&
2569      CalleeCC != CallingConv::C)
2570    return false;
2571
2572  // If -tailcallopt is specified, make fastcc functions tail-callable.
2573  const MachineFunction &MF = DAG.getMachineFunction();
2574  const Function *CallerF = DAG.getMachineFunction().getFunction();
2575  CallingConv::ID CallerCC = CallerF->getCallingConv();
2576  bool CCMatch = CallerCC == CalleeCC;
2577
2578  if (GuaranteedTailCallOpt) {
2579    if (IsTailCallConvention(CalleeCC) && CCMatch)
2580      return true;
2581    return false;
2582  }
2583
2584  // Look for obvious safe cases to perform tail call optimization that do not
2585  // require ABI changes. This is what gcc calls sibcall.
2586
2587  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2588  // emit a special epilogue.
2589  if (RegInfo->needsStackRealignment(MF))
2590    return false;
2591
2592  // Also avoid sibcall optimization if either caller or callee uses struct
2593  // return semantics.
2594  if (isCalleeStructRet || isCallerStructRet)
2595    return false;
2596
2597  // An stdcall caller is expected to clean up its arguments; the callee
2598  // isn't going to do that.
2599  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2600    return false;
2601
2602  // Do not sibcall optimize vararg calls unless all arguments are passed via
2603  // registers.
2604  if (isVarArg && !Outs.empty()) {
2605
2606    // Optimizing for varargs on Win64 is unlikely to be safe without
2607    // additional testing.
2608    if (Subtarget->isTargetWin64())
2609      return false;
2610
2611    SmallVector<CCValAssign, 16> ArgLocs;
2612    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2613		   getTargetMachine(), ArgLocs, *DAG.getContext());
2614
2615    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2616    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2617      if (!ArgLocs[i].isRegLoc())
2618        return false;
2619  }
2620
2621  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2622  // Therefore if it's not used by the call it is not safe to optimize this into
2623  // a sibcall.
2624  bool Unused = false;
2625  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2626    if (!Ins[i].Used) {
2627      Unused = true;
2628      break;
2629    }
2630  }
2631  if (Unused) {
2632    SmallVector<CCValAssign, 16> RVLocs;
2633    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2634		   getTargetMachine(), RVLocs, *DAG.getContext());
2635    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2636    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2637      CCValAssign &VA = RVLocs[i];
2638      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2639        return false;
2640    }
2641  }
2642
2643  // If the calling conventions do not match, then we'd better make sure the
2644  // results are returned in the same way as what the caller expects.
2645  if (!CCMatch) {
2646    SmallVector<CCValAssign, 16> RVLocs1;
2647    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2648		    getTargetMachine(), RVLocs1, *DAG.getContext());
2649    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2650
2651    SmallVector<CCValAssign, 16> RVLocs2;
2652    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2653		    getTargetMachine(), RVLocs2, *DAG.getContext());
2654    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2655
2656    if (RVLocs1.size() != RVLocs2.size())
2657      return false;
2658    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2659      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2660        return false;
2661      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2662        return false;
2663      if (RVLocs1[i].isRegLoc()) {
2664        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2665          return false;
2666      } else {
2667        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2668          return false;
2669      }
2670    }
2671  }
2672
2673  // If the callee takes no arguments then go on to check the results of the
2674  // call.
2675  if (!Outs.empty()) {
2676    // Check if stack adjustment is needed. For now, do not do this if any
2677    // argument is passed on the stack.
2678    SmallVector<CCValAssign, 16> ArgLocs;
2679    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2680		   getTargetMachine(), ArgLocs, *DAG.getContext());
2681
2682    // Allocate shadow area for Win64
2683    if (Subtarget->isTargetWin64()) {
2684      CCInfo.AllocateStack(32, 8);
2685    }
2686
2687    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2688    if (CCInfo.getNextStackOffset()) {
2689      MachineFunction &MF = DAG.getMachineFunction();
2690      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2691        return false;
2692
2693      // Check if the arguments are already laid out in the right way as
2694      // the caller's fixed stack objects.
2695      MachineFrameInfo *MFI = MF.getFrameInfo();
2696      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2697      const X86InstrInfo *TII =
2698        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2699      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2700        CCValAssign &VA = ArgLocs[i];
2701        SDValue Arg = OutVals[i];
2702        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2703        if (VA.getLocInfo() == CCValAssign::Indirect)
2704          return false;
2705        if (!VA.isRegLoc()) {
2706          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2707                                   MFI, MRI, TII))
2708            return false;
2709        }
2710      }
2711    }
2712
2713    // If the tailcall address may be in a register, then make sure it's
2714    // possible to register allocate for it. In 32-bit, the call address can
2715    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2716    // callee-saved registers are restored. These happen to be the same
2717    // registers used to pass 'inreg' arguments so watch out for those.
2718    if (!Subtarget->is64Bit() &&
2719        !isa<GlobalAddressSDNode>(Callee) &&
2720        !isa<ExternalSymbolSDNode>(Callee)) {
2721      unsigned NumInRegs = 0;
2722      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2723        CCValAssign &VA = ArgLocs[i];
2724        if (!VA.isRegLoc())
2725          continue;
2726        unsigned Reg = VA.getLocReg();
2727        switch (Reg) {
2728        default: break;
2729        case X86::EAX: case X86::EDX: case X86::ECX:
2730          if (++NumInRegs == 3)
2731            return false;
2732          break;
2733        }
2734      }
2735    }
2736  }
2737
2738  return true;
2739}
2740
2741FastISel *
2742X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2743  return X86::createFastISel(funcInfo);
2744}
2745
2746
2747//===----------------------------------------------------------------------===//
2748//                           Other Lowering Hooks
2749//===----------------------------------------------------------------------===//
2750
2751static bool MayFoldLoad(SDValue Op) {
2752  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2753}
2754
2755static bool MayFoldIntoStore(SDValue Op) {
2756  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2757}
2758
2759static bool isTargetShuffle(unsigned Opcode) {
2760  switch(Opcode) {
2761  default: return false;
2762  case X86ISD::PSHUFD:
2763  case X86ISD::PSHUFHW:
2764  case X86ISD::PSHUFLW:
2765  case X86ISD::SHUFPD:
2766  case X86ISD::PALIGN:
2767  case X86ISD::SHUFPS:
2768  case X86ISD::MOVLHPS:
2769  case X86ISD::MOVLHPD:
2770  case X86ISD::MOVHLPS:
2771  case X86ISD::MOVLPS:
2772  case X86ISD::MOVLPD:
2773  case X86ISD::MOVSHDUP:
2774  case X86ISD::MOVSLDUP:
2775  case X86ISD::MOVDDUP:
2776  case X86ISD::MOVSS:
2777  case X86ISD::MOVSD:
2778  case X86ISD::UNPCKLPS:
2779  case X86ISD::UNPCKLPD:
2780  case X86ISD::VUNPCKLPSY:
2781  case X86ISD::VUNPCKLPDY:
2782  case X86ISD::PUNPCKLWD:
2783  case X86ISD::PUNPCKLBW:
2784  case X86ISD::PUNPCKLDQ:
2785  case X86ISD::PUNPCKLQDQ:
2786  case X86ISD::UNPCKHPS:
2787  case X86ISD::UNPCKHPD:
2788  case X86ISD::VUNPCKHPSY:
2789  case X86ISD::VUNPCKHPDY:
2790  case X86ISD::PUNPCKHWD:
2791  case X86ISD::PUNPCKHBW:
2792  case X86ISD::PUNPCKHDQ:
2793  case X86ISD::PUNPCKHQDQ:
2794  case X86ISD::VPERMILPS:
2795  case X86ISD::VPERMILPSY:
2796  case X86ISD::VPERMILPD:
2797  case X86ISD::VPERMILPDY:
2798  case X86ISD::VPERM2F128:
2799    return true;
2800  }
2801  return false;
2802}
2803
2804static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2805                                               SDValue V1, SelectionDAG &DAG) {
2806  switch(Opc) {
2807  default: llvm_unreachable("Unknown x86 shuffle node");
2808  case X86ISD::MOVSHDUP:
2809  case X86ISD::MOVSLDUP:
2810  case X86ISD::MOVDDUP:
2811    return DAG.getNode(Opc, dl, VT, V1);
2812  }
2813
2814  return SDValue();
2815}
2816
2817static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2818                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2819  switch(Opc) {
2820  default: llvm_unreachable("Unknown x86 shuffle node");
2821  case X86ISD::PSHUFD:
2822  case X86ISD::PSHUFHW:
2823  case X86ISD::PSHUFLW:
2824  case X86ISD::VPERMILPS:
2825  case X86ISD::VPERMILPSY:
2826  case X86ISD::VPERMILPD:
2827  case X86ISD::VPERMILPDY:
2828    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2829  }
2830
2831  return SDValue();
2832}
2833
2834static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2835               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2836  switch(Opc) {
2837  default: llvm_unreachable("Unknown x86 shuffle node");
2838  case X86ISD::PALIGN:
2839  case X86ISD::SHUFPD:
2840  case X86ISD::SHUFPS:
2841  case X86ISD::VPERM2F128:
2842    return DAG.getNode(Opc, dl, VT, V1, V2,
2843                       DAG.getConstant(TargetMask, MVT::i8));
2844  }
2845  return SDValue();
2846}
2847
2848static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2849                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2850  switch(Opc) {
2851  default: llvm_unreachable("Unknown x86 shuffle node");
2852  case X86ISD::MOVLHPS:
2853  case X86ISD::MOVLHPD:
2854  case X86ISD::MOVHLPS:
2855  case X86ISD::MOVLPS:
2856  case X86ISD::MOVLPD:
2857  case X86ISD::MOVSS:
2858  case X86ISD::MOVSD:
2859  case X86ISD::UNPCKLPS:
2860  case X86ISD::UNPCKLPD:
2861  case X86ISD::VUNPCKLPSY:
2862  case X86ISD::VUNPCKLPDY:
2863  case X86ISD::PUNPCKLWD:
2864  case X86ISD::PUNPCKLBW:
2865  case X86ISD::PUNPCKLDQ:
2866  case X86ISD::PUNPCKLQDQ:
2867  case X86ISD::UNPCKHPS:
2868  case X86ISD::UNPCKHPD:
2869  case X86ISD::VUNPCKHPSY:
2870  case X86ISD::VUNPCKHPDY:
2871  case X86ISD::PUNPCKHWD:
2872  case X86ISD::PUNPCKHBW:
2873  case X86ISD::PUNPCKHDQ:
2874  case X86ISD::PUNPCKHQDQ:
2875    return DAG.getNode(Opc, dl, VT, V1, V2);
2876  }
2877  return SDValue();
2878}
2879
2880SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2881  MachineFunction &MF = DAG.getMachineFunction();
2882  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2883  int ReturnAddrIndex = FuncInfo->getRAIndex();
2884
2885  if (ReturnAddrIndex == 0) {
2886    // Set up a frame object for the return address.
2887    uint64_t SlotSize = TD->getPointerSize();
2888    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2889                                                           false);
2890    FuncInfo->setRAIndex(ReturnAddrIndex);
2891  }
2892
2893  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2894}
2895
2896
2897bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2898                                       bool hasSymbolicDisplacement) {
2899  // Offset should fit into 32 bit immediate field.
2900  if (!isInt<32>(Offset))
2901    return false;
2902
2903  // If we don't have a symbolic displacement - we don't have any extra
2904  // restrictions.
2905  if (!hasSymbolicDisplacement)
2906    return true;
2907
2908  // FIXME: Some tweaks might be needed for medium code model.
2909  if (M != CodeModel::Small && M != CodeModel::Kernel)
2910    return false;
2911
2912  // For small code model we assume that latest object is 16MB before end of 31
2913  // bits boundary. We may also accept pretty large negative constants knowing
2914  // that all objects are in the positive half of address space.
2915  if (M == CodeModel::Small && Offset < 16*1024*1024)
2916    return true;
2917
2918  // For kernel code model we know that all object resist in the negative half
2919  // of 32bits address space. We may not accept negative offsets, since they may
2920  // be just off and we may accept pretty large positive ones.
2921  if (M == CodeModel::Kernel && Offset > 0)
2922    return true;
2923
2924  return false;
2925}
2926
2927/// isCalleePop - Determines whether the callee is required to pop its
2928/// own arguments. Callee pop is necessary to support tail calls.
2929bool X86::isCalleePop(CallingConv::ID CallingConv,
2930                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2931  if (IsVarArg)
2932    return false;
2933
2934  switch (CallingConv) {
2935  default:
2936    return false;
2937  case CallingConv::X86_StdCall:
2938    return !is64Bit;
2939  case CallingConv::X86_FastCall:
2940    return !is64Bit;
2941  case CallingConv::X86_ThisCall:
2942    return !is64Bit;
2943  case CallingConv::Fast:
2944    return TailCallOpt;
2945  case CallingConv::GHC:
2946    return TailCallOpt;
2947  }
2948}
2949
2950/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2951/// specific condition code, returning the condition code and the LHS/RHS of the
2952/// comparison to make.
2953static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2954                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2955  if (!isFP) {
2956    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2957      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2958        // X > -1   -> X == 0, jump !sign.
2959        RHS = DAG.getConstant(0, RHS.getValueType());
2960        return X86::COND_NS;
2961      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2962        // X < 0   -> X == 0, jump on sign.
2963        return X86::COND_S;
2964      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2965        // X < 1   -> X <= 0
2966        RHS = DAG.getConstant(0, RHS.getValueType());
2967        return X86::COND_LE;
2968      }
2969    }
2970
2971    switch (SetCCOpcode) {
2972    default: llvm_unreachable("Invalid integer condition!");
2973    case ISD::SETEQ:  return X86::COND_E;
2974    case ISD::SETGT:  return X86::COND_G;
2975    case ISD::SETGE:  return X86::COND_GE;
2976    case ISD::SETLT:  return X86::COND_L;
2977    case ISD::SETLE:  return X86::COND_LE;
2978    case ISD::SETNE:  return X86::COND_NE;
2979    case ISD::SETULT: return X86::COND_B;
2980    case ISD::SETUGT: return X86::COND_A;
2981    case ISD::SETULE: return X86::COND_BE;
2982    case ISD::SETUGE: return X86::COND_AE;
2983    }
2984  }
2985
2986  // First determine if it is required or is profitable to flip the operands.
2987
2988  // If LHS is a foldable load, but RHS is not, flip the condition.
2989  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2990      !ISD::isNON_EXTLoad(RHS.getNode())) {
2991    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2992    std::swap(LHS, RHS);
2993  }
2994
2995  switch (SetCCOpcode) {
2996  default: break;
2997  case ISD::SETOLT:
2998  case ISD::SETOLE:
2999  case ISD::SETUGT:
3000  case ISD::SETUGE:
3001    std::swap(LHS, RHS);
3002    break;
3003  }
3004
3005  // On a floating point condition, the flags are set as follows:
3006  // ZF  PF  CF   op
3007  //  0 | 0 | 0 | X > Y
3008  //  0 | 0 | 1 | X < Y
3009  //  1 | 0 | 0 | X == Y
3010  //  1 | 1 | 1 | unordered
3011  switch (SetCCOpcode) {
3012  default: llvm_unreachable("Condcode should be pre-legalized away");
3013  case ISD::SETUEQ:
3014  case ISD::SETEQ:   return X86::COND_E;
3015  case ISD::SETOLT:              // flipped
3016  case ISD::SETOGT:
3017  case ISD::SETGT:   return X86::COND_A;
3018  case ISD::SETOLE:              // flipped
3019  case ISD::SETOGE:
3020  case ISD::SETGE:   return X86::COND_AE;
3021  case ISD::SETUGT:              // flipped
3022  case ISD::SETULT:
3023  case ISD::SETLT:   return X86::COND_B;
3024  case ISD::SETUGE:              // flipped
3025  case ISD::SETULE:
3026  case ISD::SETLE:   return X86::COND_BE;
3027  case ISD::SETONE:
3028  case ISD::SETNE:   return X86::COND_NE;
3029  case ISD::SETUO:   return X86::COND_P;
3030  case ISD::SETO:    return X86::COND_NP;
3031  case ISD::SETOEQ:
3032  case ISD::SETUNE:  return X86::COND_INVALID;
3033  }
3034}
3035
3036/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3037/// code. Current x86 isa includes the following FP cmov instructions:
3038/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3039static bool hasFPCMov(unsigned X86CC) {
3040  switch (X86CC) {
3041  default:
3042    return false;
3043  case X86::COND_B:
3044  case X86::COND_BE:
3045  case X86::COND_E:
3046  case X86::COND_P:
3047  case X86::COND_A:
3048  case X86::COND_AE:
3049  case X86::COND_NE:
3050  case X86::COND_NP:
3051    return true;
3052  }
3053}
3054
3055/// isFPImmLegal - Returns true if the target can instruction select the
3056/// specified FP immediate natively. If false, the legalizer will
3057/// materialize the FP immediate as a load from a constant pool.
3058bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3059  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3060    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3061      return true;
3062  }
3063  return false;
3064}
3065
3066/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3067/// the specified range (L, H].
3068static bool isUndefOrInRange(int Val, int Low, int Hi) {
3069  return (Val < 0) || (Val >= Low && Val < Hi);
3070}
3071
3072/// isUndefOrInRange - Return true if every element in Mask, begining
3073/// from position Pos and ending in Pos+Size, falls within the specified
3074/// range (L, L+Pos]. or is undef.
3075static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3076                             int Pos, int Size, int Low, int Hi) {
3077  for (int i = Pos, e = Pos+Size; i != e; ++i)
3078    if (!isUndefOrInRange(Mask[i], Low, Hi))
3079      return false;
3080  return true;
3081}
3082
3083/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3084/// specified value.
3085static bool isUndefOrEqual(int Val, int CmpVal) {
3086  if (Val < 0 || Val == CmpVal)
3087    return true;
3088  return false;
3089}
3090
3091/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3092/// from position Pos and ending in Pos+Size, falls within the specified
3093/// sequential range (L, L+Pos]. or is undef.
3094static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3095                                       int Pos, int Size, int Low) {
3096  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3097    if (!isUndefOrEqual(Mask[i], Low))
3098      return false;
3099  return true;
3100}
3101
3102/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3103/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3104/// the second operand.
3105static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3106  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3107    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3108  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3109    return (Mask[0] < 2 && Mask[1] < 2);
3110  return false;
3111}
3112
3113bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3114  SmallVector<int, 8> M;
3115  N->getMask(M);
3116  return ::isPSHUFDMask(M, N->getValueType(0));
3117}
3118
3119/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3120/// is suitable for input to PSHUFHW.
3121static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3122  if (VT != MVT::v8i16)
3123    return false;
3124
3125  // Lower quadword copied in order or undef.
3126  for (int i = 0; i != 4; ++i)
3127    if (Mask[i] >= 0 && Mask[i] != i)
3128      return false;
3129
3130  // Upper quadword shuffled.
3131  for (int i = 4; i != 8; ++i)
3132    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3133      return false;
3134
3135  return true;
3136}
3137
3138bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3139  SmallVector<int, 8> M;
3140  N->getMask(M);
3141  return ::isPSHUFHWMask(M, N->getValueType(0));
3142}
3143
3144/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3145/// is suitable for input to PSHUFLW.
3146static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3147  if (VT != MVT::v8i16)
3148    return false;
3149
3150  // Upper quadword copied in order.
3151  for (int i = 4; i != 8; ++i)
3152    if (Mask[i] >= 0 && Mask[i] != i)
3153      return false;
3154
3155  // Lower quadword shuffled.
3156  for (int i = 0; i != 4; ++i)
3157    if (Mask[i] >= 4)
3158      return false;
3159
3160  return true;
3161}
3162
3163bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3164  SmallVector<int, 8> M;
3165  N->getMask(M);
3166  return ::isPSHUFLWMask(M, N->getValueType(0));
3167}
3168
3169/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3170/// is suitable for input to PALIGNR.
3171static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3172                          bool hasSSSE3) {
3173  int i, e = VT.getVectorNumElements();
3174  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3175    return false;
3176
3177  // Do not handle v2i64 / v2f64 shuffles with palignr.
3178  if (e < 4 || !hasSSSE3)
3179    return false;
3180
3181  for (i = 0; i != e; ++i)
3182    if (Mask[i] >= 0)
3183      break;
3184
3185  // All undef, not a palignr.
3186  if (i == e)
3187    return false;
3188
3189  // Make sure we're shifting in the right direction.
3190  if (Mask[i] <= i)
3191    return false;
3192
3193  int s = Mask[i] - i;
3194
3195  // Check the rest of the elements to see if they are consecutive.
3196  for (++i; i != e; ++i) {
3197    int m = Mask[i];
3198    if (m >= 0 && m != s+i)
3199      return false;
3200  }
3201  return true;
3202}
3203
3204/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3205/// specifies a shuffle of elements that is suitable for input to 256-bit
3206/// VSHUFPSY.
3207static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3208                          const X86Subtarget *Subtarget) {
3209  int NumElems = VT.getVectorNumElements();
3210
3211  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3212    return false;
3213
3214  if (NumElems != 8)
3215    return false;
3216
3217  // VSHUFPSY divides the resulting vector into 4 chunks.
3218  // The sources are also splitted into 4 chunks, and each destination
3219  // chunk must come from a different source chunk.
3220  //
3221  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3222  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3223  //
3224  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3225  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3226  //
3227  int QuarterSize = NumElems/4;
3228  int HalfSize = QuarterSize*2;
3229  for (int i = 0; i < QuarterSize; ++i)
3230    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3231      return false;
3232  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3233    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3234      return false;
3235
3236  // The mask of the second half must be the same as the first but with
3237  // the appropriate offsets. This works in the same way as VPERMILPS
3238  // works with masks.
3239  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3240    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3241      return false;
3242    int FstHalfIdx = i-HalfSize;
3243    if (Mask[FstHalfIdx] < 0)
3244      continue;
3245    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3246      return false;
3247  }
3248  for (int i = QuarterSize*3; i < NumElems; ++i) {
3249    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3250      return false;
3251    int FstHalfIdx = i-HalfSize;
3252    if (Mask[FstHalfIdx] < 0)
3253      continue;
3254    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3255      return false;
3256
3257  }
3258
3259  return true;
3260}
3261
3262/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3263/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3264static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3265  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3266  EVT VT = SVOp->getValueType(0);
3267  int NumElems = VT.getVectorNumElements();
3268
3269  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3270         "Only supports v8i32 and v8f32 types");
3271
3272  int HalfSize = NumElems/2;
3273  unsigned Mask = 0;
3274  for (int i = 0; i != NumElems ; ++i) {
3275    if (SVOp->getMaskElt(i) < 0)
3276      continue;
3277    // The mask of the first half must be equal to the second one.
3278    unsigned Shamt = (i%HalfSize)*2;
3279    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3280    Mask |= Elt << Shamt;
3281  }
3282
3283  return Mask;
3284}
3285
3286/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3287/// specifies a shuffle of elements that is suitable for input to 256-bit
3288/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3289/// version and the mask of the second half isn't binded with the first
3290/// one.
3291static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3292                           const X86Subtarget *Subtarget) {
3293  int NumElems = VT.getVectorNumElements();
3294
3295  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3296    return false;
3297
3298  if (NumElems != 4)
3299    return false;
3300
3301  // VSHUFPSY divides the resulting vector into 4 chunks.
3302  // The sources are also splitted into 4 chunks, and each destination
3303  // chunk must come from a different source chunk.
3304  //
3305  //  SRC1 =>      X3       X2       X1       X0
3306  //  SRC2 =>      Y3       Y2       Y1       Y0
3307  //
3308  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3309  //
3310  int QuarterSize = NumElems/4;
3311  int HalfSize = QuarterSize*2;
3312  for (int i = 0; i < QuarterSize; ++i)
3313    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3314      return false;
3315  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3316    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3317      return false;
3318  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3319    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3320      return false;
3321  for (int i = QuarterSize*3; i < NumElems; ++i)
3322    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3323      return false;
3324
3325  return true;
3326}
3327
3328/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3329/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3330static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3331  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3332  EVT VT = SVOp->getValueType(0);
3333  int NumElems = VT.getVectorNumElements();
3334
3335  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3336         "Only supports v4i64 and v4f64 types");
3337
3338  int HalfSize = NumElems/2;
3339  unsigned Mask = 0;
3340  for (int i = 0; i != NumElems ; ++i) {
3341    if (SVOp->getMaskElt(i) < 0)
3342      continue;
3343    int Elt = SVOp->getMaskElt(i) % HalfSize;
3344    Mask |= Elt << i;
3345  }
3346
3347  return Mask;
3348}
3349
3350/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3351/// specifies a shuffle of elements that is suitable for input to 128-bit
3352/// SHUFPS and SHUFPD.
3353static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3354  int NumElems = VT.getVectorNumElements();
3355
3356  if (VT.getSizeInBits() != 128)
3357    return false;
3358
3359  if (NumElems != 2 && NumElems != 4)
3360    return false;
3361
3362  int Half = NumElems / 2;
3363  for (int i = 0; i < Half; ++i)
3364    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3365      return false;
3366  for (int i = Half; i < NumElems; ++i)
3367    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3368      return false;
3369
3370  return true;
3371}
3372
3373bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3374  SmallVector<int, 8> M;
3375  N->getMask(M);
3376  return ::isSHUFPMask(M, N->getValueType(0));
3377}
3378
3379/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3380/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3381/// half elements to come from vector 1 (which would equal the dest.) and
3382/// the upper half to come from vector 2.
3383static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3384  int NumElems = VT.getVectorNumElements();
3385
3386  if (NumElems != 2 && NumElems != 4)
3387    return false;
3388
3389  int Half = NumElems / 2;
3390  for (int i = 0; i < Half; ++i)
3391    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3392      return false;
3393  for (int i = Half; i < NumElems; ++i)
3394    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3395      return false;
3396  return true;
3397}
3398
3399static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3400  SmallVector<int, 8> M;
3401  N->getMask(M);
3402  return isCommutedSHUFPMask(M, N->getValueType(0));
3403}
3404
3405/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3406/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3407bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3408  EVT VT = N->getValueType(0);
3409  unsigned NumElems = VT.getVectorNumElements();
3410
3411  if (VT.getSizeInBits() != 128)
3412    return false;
3413
3414  if (NumElems != 4)
3415    return false;
3416
3417  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3418  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3419         isUndefOrEqual(N->getMaskElt(1), 7) &&
3420         isUndefOrEqual(N->getMaskElt(2), 2) &&
3421         isUndefOrEqual(N->getMaskElt(3), 3);
3422}
3423
3424/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3425/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3426/// <2, 3, 2, 3>
3427bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3428  EVT VT = N->getValueType(0);
3429  unsigned NumElems = VT.getVectorNumElements();
3430
3431  if (VT.getSizeInBits() != 128)
3432    return false;
3433
3434  if (NumElems != 4)
3435    return false;
3436
3437  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3438         isUndefOrEqual(N->getMaskElt(1), 3) &&
3439         isUndefOrEqual(N->getMaskElt(2), 2) &&
3440         isUndefOrEqual(N->getMaskElt(3), 3);
3441}
3442
3443/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3444/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3445bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3446  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3447
3448  if (NumElems != 2 && NumElems != 4)
3449    return false;
3450
3451  for (unsigned i = 0; i < NumElems/2; ++i)
3452    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3453      return false;
3454
3455  for (unsigned i = NumElems/2; i < NumElems; ++i)
3456    if (!isUndefOrEqual(N->getMaskElt(i), i))
3457      return false;
3458
3459  return true;
3460}
3461
3462/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3463/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3464bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3465  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3466
3467  if ((NumElems != 2 && NumElems != 4)
3468      || N->getValueType(0).getSizeInBits() > 128)
3469    return false;
3470
3471  for (unsigned i = 0; i < NumElems/2; ++i)
3472    if (!isUndefOrEqual(N->getMaskElt(i), i))
3473      return false;
3474
3475  for (unsigned i = 0; i < NumElems/2; ++i)
3476    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3477      return false;
3478
3479  return true;
3480}
3481
3482/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3483/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3484static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3485                         bool V2IsSplat = false) {
3486  int NumElts = VT.getVectorNumElements();
3487
3488  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3489         "Unsupported vector type for unpckh");
3490
3491  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3492    return false;
3493
3494  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3495  // independently on 128-bit lanes.
3496  unsigned NumLanes = VT.getSizeInBits()/128;
3497  unsigned NumLaneElts = NumElts/NumLanes;
3498
3499  unsigned Start = 0;
3500  unsigned End = NumLaneElts;
3501  for (unsigned s = 0; s < NumLanes; ++s) {
3502    for (unsigned i = Start, j = s * NumLaneElts;
3503         i != End;
3504         i += 2, ++j) {
3505      int BitI  = Mask[i];
3506      int BitI1 = Mask[i+1];
3507      if (!isUndefOrEqual(BitI, j))
3508        return false;
3509      if (V2IsSplat) {
3510        if (!isUndefOrEqual(BitI1, NumElts))
3511          return false;
3512      } else {
3513        if (!isUndefOrEqual(BitI1, j + NumElts))
3514          return false;
3515      }
3516    }
3517    // Process the next 128 bits.
3518    Start += NumLaneElts;
3519    End += NumLaneElts;
3520  }
3521
3522  return true;
3523}
3524
3525bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3526  SmallVector<int, 8> M;
3527  N->getMask(M);
3528  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3529}
3530
3531/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3532/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3533static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3534                         bool V2IsSplat = false) {
3535  int NumElts = VT.getVectorNumElements();
3536
3537  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3538         "Unsupported vector type for unpckh");
3539
3540  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3541    return false;
3542
3543  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3544  // independently on 128-bit lanes.
3545  unsigned NumLanes = VT.getSizeInBits()/128;
3546  unsigned NumLaneElts = NumElts/NumLanes;
3547
3548  unsigned Start = 0;
3549  unsigned End = NumLaneElts;
3550  for (unsigned l = 0; l != NumLanes; ++l) {
3551    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3552                             i != End; i += 2, ++j) {
3553      int BitI  = Mask[i];
3554      int BitI1 = Mask[i+1];
3555      if (!isUndefOrEqual(BitI, j))
3556        return false;
3557      if (V2IsSplat) {
3558        if (isUndefOrEqual(BitI1, NumElts))
3559          return false;
3560      } else {
3561        if (!isUndefOrEqual(BitI1, j+NumElts))
3562          return false;
3563      }
3564    }
3565    // Process the next 128 bits.
3566    Start += NumLaneElts;
3567    End += NumLaneElts;
3568  }
3569  return true;
3570}
3571
3572bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3573  SmallVector<int, 8> M;
3574  N->getMask(M);
3575  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3576}
3577
3578/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3579/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3580/// <0, 0, 1, 1>
3581static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3582  int NumElems = VT.getVectorNumElements();
3583  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3584    return false;
3585
3586  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3587  // FIXME: Need a better way to get rid of this, there's no latency difference
3588  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3589  // the former later. We should also remove the "_undef" special mask.
3590  if (NumElems == 4 && VT.getSizeInBits() == 256)
3591    return false;
3592
3593  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3594  // independently on 128-bit lanes.
3595  unsigned NumLanes = VT.getSizeInBits() / 128;
3596  unsigned NumLaneElts = NumElems / NumLanes;
3597
3598  for (unsigned s = 0; s < NumLanes; ++s) {
3599    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3600         i != NumLaneElts * (s + 1);
3601         i += 2, ++j) {
3602      int BitI  = Mask[i];
3603      int BitI1 = Mask[i+1];
3604
3605      if (!isUndefOrEqual(BitI, j))
3606        return false;
3607      if (!isUndefOrEqual(BitI1, j))
3608        return false;
3609    }
3610  }
3611
3612  return true;
3613}
3614
3615bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3616  SmallVector<int, 8> M;
3617  N->getMask(M);
3618  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3619}
3620
3621/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3622/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3623/// <2, 2, 3, 3>
3624static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3625  int NumElems = VT.getVectorNumElements();
3626  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3627    return false;
3628
3629  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3630    int BitI  = Mask[i];
3631    int BitI1 = Mask[i+1];
3632    if (!isUndefOrEqual(BitI, j))
3633      return false;
3634    if (!isUndefOrEqual(BitI1, j))
3635      return false;
3636  }
3637  return true;
3638}
3639
3640bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3641  SmallVector<int, 8> M;
3642  N->getMask(M);
3643  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3644}
3645
3646/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3647/// specifies a shuffle of elements that is suitable for input to MOVSS,
3648/// MOVSD, and MOVD, i.e. setting the lowest element.
3649static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3650  if (VT.getVectorElementType().getSizeInBits() < 32)
3651    return false;
3652
3653  int NumElts = VT.getVectorNumElements();
3654
3655  if (!isUndefOrEqual(Mask[0], NumElts))
3656    return false;
3657
3658  for (int i = 1; i < NumElts; ++i)
3659    if (!isUndefOrEqual(Mask[i], i))
3660      return false;
3661
3662  return true;
3663}
3664
3665bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3666  SmallVector<int, 8> M;
3667  N->getMask(M);
3668  return ::isMOVLMask(M, N->getValueType(0));
3669}
3670
3671/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3672/// as permutations between 128-bit chunks or halves. As an example: this
3673/// shuffle bellow:
3674///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3675/// The first half comes from the second half of V1 and the second half from the
3676/// the second half of V2.
3677static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3678                             const X86Subtarget *Subtarget) {
3679  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3680    return false;
3681
3682  // The shuffle result is divided into half A and half B. In total the two
3683  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3684  // B must come from C, D, E or F.
3685  int HalfSize = VT.getVectorNumElements()/2;
3686  bool MatchA = false, MatchB = false;
3687
3688  // Check if A comes from one of C, D, E, F.
3689  for (int Half = 0; Half < 4; ++Half) {
3690    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3691      MatchA = true;
3692      break;
3693    }
3694  }
3695
3696  // Check if B comes from one of C, D, E, F.
3697  for (int Half = 0; Half < 4; ++Half) {
3698    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3699      MatchB = true;
3700      break;
3701    }
3702  }
3703
3704  return MatchA && MatchB;
3705}
3706
3707/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3708/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3709static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3710  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3711  EVT VT = SVOp->getValueType(0);
3712
3713  int HalfSize = VT.getVectorNumElements()/2;
3714
3715  int FstHalf = 0, SndHalf = 0;
3716  for (int i = 0; i < HalfSize; ++i) {
3717    if (SVOp->getMaskElt(i) > 0) {
3718      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3719      break;
3720    }
3721  }
3722  for (int i = HalfSize; i < HalfSize*2; ++i) {
3723    if (SVOp->getMaskElt(i) > 0) {
3724      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3725      break;
3726    }
3727  }
3728
3729  return (FstHalf | (SndHalf << 4));
3730}
3731
3732/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3733/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3734/// Note that VPERMIL mask matching is different depending whether theunderlying
3735/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3736/// to the same elements of the low, but to the higher half of the source.
3737/// In VPERMILPD the two lanes could be shuffled independently of each other
3738/// with the same restriction that lanes can't be crossed.
3739static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3740                            const X86Subtarget *Subtarget) {
3741  int NumElts = VT.getVectorNumElements();
3742  int NumLanes = VT.getSizeInBits()/128;
3743
3744  if (!Subtarget->hasAVX())
3745    return false;
3746
3747  // Match any permutation of 128-bit vector with 64-bit types
3748  if (NumLanes == 1 && NumElts != 2)
3749    return false;
3750
3751  // Only match 256-bit with 32 types
3752  if (VT.getSizeInBits() == 256 && NumElts != 4)
3753    return false;
3754
3755  // The mask on the high lane is independent of the low. Both can match
3756  // any element in inside its own lane, but can't cross.
3757  int LaneSize = NumElts/NumLanes;
3758  for (int l = 0; l < NumLanes; ++l)
3759    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3760      int LaneStart = l*LaneSize;
3761      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3762        return false;
3763    }
3764
3765  return true;
3766}
3767
3768/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3769/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3770/// Note that VPERMIL mask matching is different depending whether theunderlying
3771/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3772/// to the same elements of the low, but to the higher half of the source.
3773/// In VPERMILPD the two lanes could be shuffled independently of each other
3774/// with the same restriction that lanes can't be crossed.
3775static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3776                            const X86Subtarget *Subtarget) {
3777  unsigned NumElts = VT.getVectorNumElements();
3778  unsigned NumLanes = VT.getSizeInBits()/128;
3779
3780  if (!Subtarget->hasAVX())
3781    return false;
3782
3783  // Match any permutation of 128-bit vector with 32-bit types
3784  if (NumLanes == 1 && NumElts != 4)
3785    return false;
3786
3787  // Only match 256-bit with 32 types
3788  if (VT.getSizeInBits() == 256 && NumElts != 8)
3789    return false;
3790
3791  // The mask on the high lane should be the same as the low. Actually,
3792  // they can differ if any of the corresponding index in a lane is undef
3793  // and the other stays in range.
3794  int LaneSize = NumElts/NumLanes;
3795  for (int i = 0; i < LaneSize; ++i) {
3796    int HighElt = i+LaneSize;
3797    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3798    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3799
3800    if (!HighValid || !LowValid)
3801      return false;
3802    if (Mask[i] < 0 || Mask[HighElt] < 0)
3803      continue;
3804    if (Mask[HighElt]-Mask[i] != LaneSize)
3805      return false;
3806  }
3807
3808  return true;
3809}
3810
3811/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3812/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3813static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3814  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3815  EVT VT = SVOp->getValueType(0);
3816
3817  int NumElts = VT.getVectorNumElements();
3818  int NumLanes = VT.getSizeInBits()/128;
3819  int LaneSize = NumElts/NumLanes;
3820
3821  // Although the mask is equal for both lanes do it twice to get the cases
3822  // where a mask will match because the same mask element is undef on the
3823  // first half but valid on the second. This would get pathological cases
3824  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3825  unsigned Mask = 0;
3826  for (int l = 0; l < NumLanes; ++l) {
3827    for (int i = 0; i < LaneSize; ++i) {
3828      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3829      if (MaskElt < 0)
3830        continue;
3831      if (MaskElt >= LaneSize)
3832        MaskElt -= LaneSize;
3833      Mask |= MaskElt << (i*2);
3834    }
3835  }
3836
3837  return Mask;
3838}
3839
3840/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3841/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3842static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3843  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3844  EVT VT = SVOp->getValueType(0);
3845
3846  int NumElts = VT.getVectorNumElements();
3847  int NumLanes = VT.getSizeInBits()/128;
3848
3849  unsigned Mask = 0;
3850  int LaneSize = NumElts/NumLanes;
3851  for (int l = 0; l < NumLanes; ++l)
3852    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3853      int MaskElt = SVOp->getMaskElt(i);
3854      if (MaskElt < 0)
3855        continue;
3856      Mask |= (MaskElt-l*LaneSize) << i;
3857    }
3858
3859  return Mask;
3860}
3861
3862/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3863/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3864/// element of vector 2 and the other elements to come from vector 1 in order.
3865static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3866                               bool V2IsSplat = false, bool V2IsUndef = false) {
3867  int NumOps = VT.getVectorNumElements();
3868  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3869    return false;
3870
3871  if (!isUndefOrEqual(Mask[0], 0))
3872    return false;
3873
3874  for (int i = 1; i < NumOps; ++i)
3875    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3876          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3877          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3878      return false;
3879
3880  return true;
3881}
3882
3883static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3884                           bool V2IsUndef = false) {
3885  SmallVector<int, 8> M;
3886  N->getMask(M);
3887  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3888}
3889
3890/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3891/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3892/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3893bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3894                         const X86Subtarget *Subtarget) {
3895  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3896    return false;
3897
3898  // The second vector must be undef
3899  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3900    return false;
3901
3902  EVT VT = N->getValueType(0);
3903  unsigned NumElems = VT.getVectorNumElements();
3904
3905  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3906      (VT.getSizeInBits() == 256 && NumElems != 8))
3907    return false;
3908
3909  // "i+1" is the value the indexed mask element must have
3910  for (unsigned i = 0; i < NumElems; i += 2)
3911    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3912        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3913      return false;
3914
3915  return true;
3916}
3917
3918/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3919/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3920/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3921bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3922                         const X86Subtarget *Subtarget) {
3923  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3924    return false;
3925
3926  // The second vector must be undef
3927  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3928    return false;
3929
3930  EVT VT = N->getValueType(0);
3931  unsigned NumElems = VT.getVectorNumElements();
3932
3933  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3934      (VT.getSizeInBits() == 256 && NumElems != 8))
3935    return false;
3936
3937  // "i" is the value the indexed mask element must have
3938  for (unsigned i = 0; i < NumElems; i += 2)
3939    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3940        !isUndefOrEqual(N->getMaskElt(i+1), i))
3941      return false;
3942
3943  return true;
3944}
3945
3946/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3947/// specifies a shuffle of elements that is suitable for input to 256-bit
3948/// version of MOVDDUP.
3949static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3950                           const X86Subtarget *Subtarget) {
3951  EVT VT = N->getValueType(0);
3952  int NumElts = VT.getVectorNumElements();
3953  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3954
3955  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3956      !V2IsUndef || NumElts != 4)
3957    return false;
3958
3959  for (int i = 0; i != NumElts/2; ++i)
3960    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3961      return false;
3962  for (int i = NumElts/2; i != NumElts; ++i)
3963    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3964      return false;
3965  return true;
3966}
3967
3968/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3969/// specifies a shuffle of elements that is suitable for input to 128-bit
3970/// version of MOVDDUP.
3971bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3972  EVT VT = N->getValueType(0);
3973
3974  if (VT.getSizeInBits() != 128)
3975    return false;
3976
3977  int e = VT.getVectorNumElements() / 2;
3978  for (int i = 0; i < e; ++i)
3979    if (!isUndefOrEqual(N->getMaskElt(i), i))
3980      return false;
3981  for (int i = 0; i < e; ++i)
3982    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3983      return false;
3984  return true;
3985}
3986
3987/// isVEXTRACTF128Index - Return true if the specified
3988/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3989/// suitable for input to VEXTRACTF128.
3990bool X86::isVEXTRACTF128Index(SDNode *N) {
3991  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3992    return false;
3993
3994  // The index should be aligned on a 128-bit boundary.
3995  uint64_t Index =
3996    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3997
3998  unsigned VL = N->getValueType(0).getVectorNumElements();
3999  unsigned VBits = N->getValueType(0).getSizeInBits();
4000  unsigned ElSize = VBits / VL;
4001  bool Result = (Index * ElSize) % 128 == 0;
4002
4003  return Result;
4004}
4005
4006/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4007/// operand specifies a subvector insert that is suitable for input to
4008/// VINSERTF128.
4009bool X86::isVINSERTF128Index(SDNode *N) {
4010  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4011    return false;
4012
4013  // The index should be aligned on a 128-bit boundary.
4014  uint64_t Index =
4015    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4016
4017  unsigned VL = N->getValueType(0).getVectorNumElements();
4018  unsigned VBits = N->getValueType(0).getSizeInBits();
4019  unsigned ElSize = VBits / VL;
4020  bool Result = (Index * ElSize) % 128 == 0;
4021
4022  return Result;
4023}
4024
4025/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4026/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4027unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4028  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4029  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4030
4031  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4032  unsigned Mask = 0;
4033  for (int i = 0; i < NumOperands; ++i) {
4034    int Val = SVOp->getMaskElt(NumOperands-i-1);
4035    if (Val < 0) Val = 0;
4036    if (Val >= NumOperands) Val -= NumOperands;
4037    Mask |= Val;
4038    if (i != NumOperands - 1)
4039      Mask <<= Shift;
4040  }
4041  return Mask;
4042}
4043
4044/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4045/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4046unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4047  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4048  unsigned Mask = 0;
4049  // 8 nodes, but we only care about the last 4.
4050  for (unsigned i = 7; i >= 4; --i) {
4051    int Val = SVOp->getMaskElt(i);
4052    if (Val >= 0)
4053      Mask |= (Val - 4);
4054    if (i != 4)
4055      Mask <<= 2;
4056  }
4057  return Mask;
4058}
4059
4060/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4061/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4062unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4063  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4064  unsigned Mask = 0;
4065  // 8 nodes, but we only care about the first 4.
4066  for (int i = 3; i >= 0; --i) {
4067    int Val = SVOp->getMaskElt(i);
4068    if (Val >= 0)
4069      Mask |= Val;
4070    if (i != 0)
4071      Mask <<= 2;
4072  }
4073  return Mask;
4074}
4075
4076/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4077/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4078unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4079  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4080  EVT VVT = N->getValueType(0);
4081  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4082  int Val = 0;
4083
4084  unsigned i, e;
4085  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4086    Val = SVOp->getMaskElt(i);
4087    if (Val >= 0)
4088      break;
4089  }
4090  assert(Val - i > 0 && "PALIGNR imm should be positive");
4091  return (Val - i) * EltSize;
4092}
4093
4094/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4095/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4096/// instructions.
4097unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4098  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4099    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4100
4101  uint64_t Index =
4102    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4103
4104  EVT VecVT = N->getOperand(0).getValueType();
4105  EVT ElVT = VecVT.getVectorElementType();
4106
4107  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4108  return Index / NumElemsPerChunk;
4109}
4110
4111/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4112/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4113/// instructions.
4114unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4115  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4116    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4117
4118  uint64_t Index =
4119    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4120
4121  EVT VecVT = N->getValueType(0);
4122  EVT ElVT = VecVT.getVectorElementType();
4123
4124  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4125  return Index / NumElemsPerChunk;
4126}
4127
4128/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4129/// constant +0.0.
4130bool X86::isZeroNode(SDValue Elt) {
4131  return ((isa<ConstantSDNode>(Elt) &&
4132           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4133          (isa<ConstantFPSDNode>(Elt) &&
4134           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4135}
4136
4137/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4138/// their permute mask.
4139static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4140                                    SelectionDAG &DAG) {
4141  EVT VT = SVOp->getValueType(0);
4142  unsigned NumElems = VT.getVectorNumElements();
4143  SmallVector<int, 8> MaskVec;
4144
4145  for (unsigned i = 0; i != NumElems; ++i) {
4146    int idx = SVOp->getMaskElt(i);
4147    if (idx < 0)
4148      MaskVec.push_back(idx);
4149    else if (idx < (int)NumElems)
4150      MaskVec.push_back(idx + NumElems);
4151    else
4152      MaskVec.push_back(idx - NumElems);
4153  }
4154  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4155                              SVOp->getOperand(0), &MaskVec[0]);
4156}
4157
4158/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4159/// the two vector operands have swapped position.
4160static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4161  unsigned NumElems = VT.getVectorNumElements();
4162  for (unsigned i = 0; i != NumElems; ++i) {
4163    int idx = Mask[i];
4164    if (idx < 0)
4165      continue;
4166    else if (idx < (int)NumElems)
4167      Mask[i] = idx + NumElems;
4168    else
4169      Mask[i] = idx - NumElems;
4170  }
4171}
4172
4173/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4174/// match movhlps. The lower half elements should come from upper half of
4175/// V1 (and in order), and the upper half elements should come from the upper
4176/// half of V2 (and in order).
4177static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4178  EVT VT = Op->getValueType(0);
4179  if (VT.getSizeInBits() != 128)
4180    return false;
4181  if (VT.getVectorNumElements() != 4)
4182    return false;
4183  for (unsigned i = 0, e = 2; i != e; ++i)
4184    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4185      return false;
4186  for (unsigned i = 2; i != 4; ++i)
4187    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4188      return false;
4189  return true;
4190}
4191
4192/// isScalarLoadToVector - Returns true if the node is a scalar load that
4193/// is promoted to a vector. It also returns the LoadSDNode by reference if
4194/// required.
4195static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4196  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4197    return false;
4198  N = N->getOperand(0).getNode();
4199  if (!ISD::isNON_EXTLoad(N))
4200    return false;
4201  if (LD)
4202    *LD = cast<LoadSDNode>(N);
4203  return true;
4204}
4205
4206/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4207/// match movlp{s|d}. The lower half elements should come from lower half of
4208/// V1 (and in order), and the upper half elements should come from the upper
4209/// half of V2 (and in order). And since V1 will become the source of the
4210/// MOVLP, it must be either a vector load or a scalar load to vector.
4211static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4212                               ShuffleVectorSDNode *Op) {
4213  EVT VT = Op->getValueType(0);
4214  if (VT.getSizeInBits() != 128)
4215    return false;
4216
4217  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4218    return false;
4219  // Is V2 is a vector load, don't do this transformation. We will try to use
4220  // load folding shufps op.
4221  if (ISD::isNON_EXTLoad(V2))
4222    return false;
4223
4224  unsigned NumElems = VT.getVectorNumElements();
4225
4226  if (NumElems != 2 && NumElems != 4)
4227    return false;
4228  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4229    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4230      return false;
4231  for (unsigned i = NumElems/2; i != NumElems; ++i)
4232    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4233      return false;
4234  return true;
4235}
4236
4237/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4238/// all the same.
4239static bool isSplatVector(SDNode *N) {
4240  if (N->getOpcode() != ISD::BUILD_VECTOR)
4241    return false;
4242
4243  SDValue SplatValue = N->getOperand(0);
4244  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4245    if (N->getOperand(i) != SplatValue)
4246      return false;
4247  return true;
4248}
4249
4250/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4251/// to an zero vector.
4252/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4253static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4254  SDValue V1 = N->getOperand(0);
4255  SDValue V2 = N->getOperand(1);
4256  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4257  for (unsigned i = 0; i != NumElems; ++i) {
4258    int Idx = N->getMaskElt(i);
4259    if (Idx >= (int)NumElems) {
4260      unsigned Opc = V2.getOpcode();
4261      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4262        continue;
4263      if (Opc != ISD::BUILD_VECTOR ||
4264          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4265        return false;
4266    } else if (Idx >= 0) {
4267      unsigned Opc = V1.getOpcode();
4268      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4269        continue;
4270      if (Opc != ISD::BUILD_VECTOR ||
4271          !X86::isZeroNode(V1.getOperand(Idx)))
4272        return false;
4273    }
4274  }
4275  return true;
4276}
4277
4278/// getZeroVector - Returns a vector of specified type with all zero elements.
4279///
4280static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4281                             DebugLoc dl) {
4282  assert(VT.isVector() && "Expected a vector type");
4283
4284  // Always build SSE zero vectors as <4 x i32> bitcasted
4285  // to their dest type. This ensures they get CSE'd.
4286  SDValue Vec;
4287  if (VT.getSizeInBits() == 128) {  // SSE
4288    if (HasSSE2) {  // SSE2
4289      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4290      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4291    } else { // SSE1
4292      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4293      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4294    }
4295  } else if (VT.getSizeInBits() == 256) { // AVX
4296    // 256-bit logic and arithmetic instructions in AVX are
4297    // all floating-point, no support for integer ops. Default
4298    // to emitting fp zeroed vectors then.
4299    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4300    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4301    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4302  }
4303  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4304}
4305
4306/// getOnesVector - Returns a vector of specified type with all bits set.
4307/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4308/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4309/// original type, ensuring they get CSE'd.
4310static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4311  assert(VT.isVector() && "Expected a vector type");
4312  assert((VT.is128BitVector() || VT.is256BitVector())
4313         && "Expected a 128-bit or 256-bit vector type");
4314
4315  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4316  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4317                            Cst, Cst, Cst, Cst);
4318
4319  if (VT.is256BitVector()) {
4320    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4321                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4322    Vec = Insert128BitVector(InsV, Vec,
4323                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4324  }
4325
4326  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4327}
4328
4329/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4330/// that point to V2 points to its first element.
4331static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4332  EVT VT = SVOp->getValueType(0);
4333  unsigned NumElems = VT.getVectorNumElements();
4334
4335  bool Changed = false;
4336  SmallVector<int, 8> MaskVec;
4337  SVOp->getMask(MaskVec);
4338
4339  for (unsigned i = 0; i != NumElems; ++i) {
4340    if (MaskVec[i] > (int)NumElems) {
4341      MaskVec[i] = NumElems;
4342      Changed = true;
4343    }
4344  }
4345  if (Changed)
4346    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4347                                SVOp->getOperand(1), &MaskVec[0]);
4348  return SDValue(SVOp, 0);
4349}
4350
4351/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4352/// operation of specified width.
4353static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4354                       SDValue V2) {
4355  unsigned NumElems = VT.getVectorNumElements();
4356  SmallVector<int, 8> Mask;
4357  Mask.push_back(NumElems);
4358  for (unsigned i = 1; i != NumElems; ++i)
4359    Mask.push_back(i);
4360  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4361}
4362
4363/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4364static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4365                          SDValue V2) {
4366  unsigned NumElems = VT.getVectorNumElements();
4367  SmallVector<int, 8> Mask;
4368  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4369    Mask.push_back(i);
4370    Mask.push_back(i + NumElems);
4371  }
4372  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4373}
4374
4375/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4376static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4377                          SDValue V2) {
4378  unsigned NumElems = VT.getVectorNumElements();
4379  unsigned Half = NumElems/2;
4380  SmallVector<int, 8> Mask;
4381  for (unsigned i = 0; i != Half; ++i) {
4382    Mask.push_back(i + Half);
4383    Mask.push_back(i + NumElems + Half);
4384  }
4385  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4386}
4387
4388// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4389// a generic shuffle instruction because the target has no such instructions.
4390// Generate shuffles which repeat i16 and i8 several times until they can be
4391// represented by v4f32 and then be manipulated by target suported shuffles.
4392static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4393  EVT VT = V.getValueType();
4394  int NumElems = VT.getVectorNumElements();
4395  DebugLoc dl = V.getDebugLoc();
4396
4397  while (NumElems > 4) {
4398    if (EltNo < NumElems/2) {
4399      V = getUnpackl(DAG, dl, VT, V, V);
4400    } else {
4401      V = getUnpackh(DAG, dl, VT, V, V);
4402      EltNo -= NumElems/2;
4403    }
4404    NumElems >>= 1;
4405  }
4406  return V;
4407}
4408
4409/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4410static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4411  EVT VT = V.getValueType();
4412  DebugLoc dl = V.getDebugLoc();
4413  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4414         && "Vector size not supported");
4415
4416  if (VT.getSizeInBits() == 128) {
4417    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4418    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4419    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4420                             &SplatMask[0]);
4421  } else {
4422    // To use VPERMILPS to splat scalars, the second half of indicies must
4423    // refer to the higher part, which is a duplication of the lower one,
4424    // because VPERMILPS can only handle in-lane permutations.
4425    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4426                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4427
4428    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4429    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4430                             &SplatMask[0]);
4431  }
4432
4433  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4434}
4435
4436/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4437static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4438  EVT SrcVT = SV->getValueType(0);
4439  SDValue V1 = SV->getOperand(0);
4440  DebugLoc dl = SV->getDebugLoc();
4441
4442  int EltNo = SV->getSplatIndex();
4443  int NumElems = SrcVT.getVectorNumElements();
4444  unsigned Size = SrcVT.getSizeInBits();
4445
4446  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4447          "Unknown how to promote splat for type");
4448
4449  // Extract the 128-bit part containing the splat element and update
4450  // the splat element index when it refers to the higher register.
4451  if (Size == 256) {
4452    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4453    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4454    if (Idx > 0)
4455      EltNo -= NumElems/2;
4456  }
4457
4458  // All i16 and i8 vector types can't be used directly by a generic shuffle
4459  // instruction because the target has no such instruction. Generate shuffles
4460  // which repeat i16 and i8 several times until they fit in i32, and then can
4461  // be manipulated by target suported shuffles.
4462  EVT EltVT = SrcVT.getVectorElementType();
4463  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4464    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4465
4466  // Recreate the 256-bit vector and place the same 128-bit vector
4467  // into the low and high part. This is necessary because we want
4468  // to use VPERM* to shuffle the vectors
4469  if (Size == 256) {
4470    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4471                         DAG.getConstant(0, MVT::i32), DAG, dl);
4472    V1 = Insert128BitVector(InsV, V1,
4473               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4474  }
4475
4476  return getLegalSplat(DAG, V1, EltNo);
4477}
4478
4479/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4480/// vector of zero or undef vector.  This produces a shuffle where the low
4481/// element of V2 is swizzled into the zero/undef vector, landing at element
4482/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4483static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4484                                             bool isZero, bool HasSSE2,
4485                                             SelectionDAG &DAG) {
4486  EVT VT = V2.getValueType();
4487  SDValue V1 = isZero
4488    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4489  unsigned NumElems = VT.getVectorNumElements();
4490  SmallVector<int, 16> MaskVec;
4491  for (unsigned i = 0; i != NumElems; ++i)
4492    // If this is the insertion idx, put the low elt of V2 here.
4493    MaskVec.push_back(i == Idx ? NumElems : i);
4494  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4495}
4496
4497/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4498/// element of the result of the vector shuffle.
4499static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4500                                   unsigned Depth) {
4501  if (Depth == 6)
4502    return SDValue();  // Limit search depth.
4503
4504  SDValue V = SDValue(N, 0);
4505  EVT VT = V.getValueType();
4506  unsigned Opcode = V.getOpcode();
4507
4508  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4509  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4510    Index = SV->getMaskElt(Index);
4511
4512    if (Index < 0)
4513      return DAG.getUNDEF(VT.getVectorElementType());
4514
4515    int NumElems = VT.getVectorNumElements();
4516    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4517    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4518  }
4519
4520  // Recurse into target specific vector shuffles to find scalars.
4521  if (isTargetShuffle(Opcode)) {
4522    int NumElems = VT.getVectorNumElements();
4523    SmallVector<unsigned, 16> ShuffleMask;
4524    SDValue ImmN;
4525
4526    switch(Opcode) {
4527    case X86ISD::SHUFPS:
4528    case X86ISD::SHUFPD:
4529      ImmN = N->getOperand(N->getNumOperands()-1);
4530      DecodeSHUFPSMask(NumElems,
4531                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4532                       ShuffleMask);
4533      break;
4534    case X86ISD::PUNPCKHBW:
4535    case X86ISD::PUNPCKHWD:
4536    case X86ISD::PUNPCKHDQ:
4537    case X86ISD::PUNPCKHQDQ:
4538      DecodePUNPCKHMask(NumElems, ShuffleMask);
4539      break;
4540    case X86ISD::UNPCKHPS:
4541    case X86ISD::UNPCKHPD:
4542    case X86ISD::VUNPCKHPSY:
4543    case X86ISD::VUNPCKHPDY:
4544      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4545      break;
4546    case X86ISD::PUNPCKLBW:
4547    case X86ISD::PUNPCKLWD:
4548    case X86ISD::PUNPCKLDQ:
4549    case X86ISD::PUNPCKLQDQ:
4550      DecodePUNPCKLMask(VT, ShuffleMask);
4551      break;
4552    case X86ISD::UNPCKLPS:
4553    case X86ISD::UNPCKLPD:
4554    case X86ISD::VUNPCKLPSY:
4555    case X86ISD::VUNPCKLPDY:
4556      DecodeUNPCKLPMask(VT, ShuffleMask);
4557      break;
4558    case X86ISD::MOVHLPS:
4559      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4560      break;
4561    case X86ISD::MOVLHPS:
4562      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4563      break;
4564    case X86ISD::PSHUFD:
4565      ImmN = N->getOperand(N->getNumOperands()-1);
4566      DecodePSHUFMask(NumElems,
4567                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4568                      ShuffleMask);
4569      break;
4570    case X86ISD::PSHUFHW:
4571      ImmN = N->getOperand(N->getNumOperands()-1);
4572      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4573                        ShuffleMask);
4574      break;
4575    case X86ISD::PSHUFLW:
4576      ImmN = N->getOperand(N->getNumOperands()-1);
4577      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4578                        ShuffleMask);
4579      break;
4580    case X86ISD::MOVSS:
4581    case X86ISD::MOVSD: {
4582      // The index 0 always comes from the first element of the second source,
4583      // this is why MOVSS and MOVSD are used in the first place. The other
4584      // elements come from the other positions of the first source vector.
4585      unsigned OpNum = (Index == 0) ? 1 : 0;
4586      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4587                                 Depth+1);
4588    }
4589    case X86ISD::VPERMILPS:
4590      ImmN = N->getOperand(N->getNumOperands()-1);
4591      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4592                        ShuffleMask);
4593      break;
4594    case X86ISD::VPERMILPSY:
4595      ImmN = N->getOperand(N->getNumOperands()-1);
4596      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4597                        ShuffleMask);
4598      break;
4599    case X86ISD::VPERMILPD:
4600      ImmN = N->getOperand(N->getNumOperands()-1);
4601      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4602                        ShuffleMask);
4603      break;
4604    case X86ISD::VPERMILPDY:
4605      ImmN = N->getOperand(N->getNumOperands()-1);
4606      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4607                        ShuffleMask);
4608      break;
4609    case X86ISD::VPERM2F128:
4610      ImmN = N->getOperand(N->getNumOperands()-1);
4611      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4612                           ShuffleMask);
4613      break;
4614    default:
4615      assert("not implemented for target shuffle node");
4616      return SDValue();
4617    }
4618
4619    Index = ShuffleMask[Index];
4620    if (Index < 0)
4621      return DAG.getUNDEF(VT.getVectorElementType());
4622
4623    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4624    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4625                               Depth+1);
4626  }
4627
4628  // Actual nodes that may contain scalar elements
4629  if (Opcode == ISD::BITCAST) {
4630    V = V.getOperand(0);
4631    EVT SrcVT = V.getValueType();
4632    unsigned NumElems = VT.getVectorNumElements();
4633
4634    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4635      return SDValue();
4636  }
4637
4638  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4639    return (Index == 0) ? V.getOperand(0)
4640                          : DAG.getUNDEF(VT.getVectorElementType());
4641
4642  if (V.getOpcode() == ISD::BUILD_VECTOR)
4643    return V.getOperand(Index);
4644
4645  return SDValue();
4646}
4647
4648/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4649/// shuffle operation which come from a consecutively from a zero. The
4650/// search can start in two different directions, from left or right.
4651static
4652unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4653                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4654  int i = 0;
4655
4656  while (i < NumElems) {
4657    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4658    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4659    if (!(Elt.getNode() &&
4660         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4661      break;
4662    ++i;
4663  }
4664
4665  return i;
4666}
4667
4668/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4669/// MaskE correspond consecutively to elements from one of the vector operands,
4670/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4671static
4672bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4673                              int OpIdx, int NumElems, unsigned &OpNum) {
4674  bool SeenV1 = false;
4675  bool SeenV2 = false;
4676
4677  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4678    int Idx = SVOp->getMaskElt(i);
4679    // Ignore undef indicies
4680    if (Idx < 0)
4681      continue;
4682
4683    if (Idx < NumElems)
4684      SeenV1 = true;
4685    else
4686      SeenV2 = true;
4687
4688    // Only accept consecutive elements from the same vector
4689    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4690      return false;
4691  }
4692
4693  OpNum = SeenV1 ? 0 : 1;
4694  return true;
4695}
4696
4697/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4698/// logical left shift of a vector.
4699static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4700                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4701  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4702  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4703              false /* check zeros from right */, DAG);
4704  unsigned OpSrc;
4705
4706  if (!NumZeros)
4707    return false;
4708
4709  // Considering the elements in the mask that are not consecutive zeros,
4710  // check if they consecutively come from only one of the source vectors.
4711  //
4712  //               V1 = {X, A, B, C}     0
4713  //                         \  \  \    /
4714  //   vector_shuffle V1, V2 <1, 2, 3, X>
4715  //
4716  if (!isShuffleMaskConsecutive(SVOp,
4717            0,                   // Mask Start Index
4718            NumElems-NumZeros-1, // Mask End Index
4719            NumZeros,            // Where to start looking in the src vector
4720            NumElems,            // Number of elements in vector
4721            OpSrc))              // Which source operand ?
4722    return false;
4723
4724  isLeft = false;
4725  ShAmt = NumZeros;
4726  ShVal = SVOp->getOperand(OpSrc);
4727  return true;
4728}
4729
4730/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4731/// logical left shift of a vector.
4732static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4733                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4734  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4735  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4736              true /* check zeros from left */, DAG);
4737  unsigned OpSrc;
4738
4739  if (!NumZeros)
4740    return false;
4741
4742  // Considering the elements in the mask that are not consecutive zeros,
4743  // check if they consecutively come from only one of the source vectors.
4744  //
4745  //                           0    { A, B, X, X } = V2
4746  //                          / \    /  /
4747  //   vector_shuffle V1, V2 <X, X, 4, 5>
4748  //
4749  if (!isShuffleMaskConsecutive(SVOp,
4750            NumZeros,     // Mask Start Index
4751            NumElems-1,   // Mask End Index
4752            0,            // Where to start looking in the src vector
4753            NumElems,     // Number of elements in vector
4754            OpSrc))       // Which source operand ?
4755    return false;
4756
4757  isLeft = true;
4758  ShAmt = NumZeros;
4759  ShVal = SVOp->getOperand(OpSrc);
4760  return true;
4761}
4762
4763/// isVectorShift - Returns true if the shuffle can be implemented as a
4764/// logical left or right shift of a vector.
4765static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4766                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4767  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4768      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4769    return true;
4770
4771  return false;
4772}
4773
4774/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4775///
4776static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4777                                       unsigned NumNonZero, unsigned NumZero,
4778                                       SelectionDAG &DAG,
4779                                       const TargetLowering &TLI) {
4780  if (NumNonZero > 8)
4781    return SDValue();
4782
4783  DebugLoc dl = Op.getDebugLoc();
4784  SDValue V(0, 0);
4785  bool First = true;
4786  for (unsigned i = 0; i < 16; ++i) {
4787    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4788    if (ThisIsNonZero && First) {
4789      if (NumZero)
4790        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4791      else
4792        V = DAG.getUNDEF(MVT::v8i16);
4793      First = false;
4794    }
4795
4796    if ((i & 1) != 0) {
4797      SDValue ThisElt(0, 0), LastElt(0, 0);
4798      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4799      if (LastIsNonZero) {
4800        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4801                              MVT::i16, Op.getOperand(i-1));
4802      }
4803      if (ThisIsNonZero) {
4804        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4805        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4806                              ThisElt, DAG.getConstant(8, MVT::i8));
4807        if (LastIsNonZero)
4808          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4809      } else
4810        ThisElt = LastElt;
4811
4812      if (ThisElt.getNode())
4813        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4814                        DAG.getIntPtrConstant(i/2));
4815    }
4816  }
4817
4818  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4819}
4820
4821/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4822///
4823static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4824                                     unsigned NumNonZero, unsigned NumZero,
4825                                     SelectionDAG &DAG,
4826                                     const TargetLowering &TLI) {
4827  if (NumNonZero > 4)
4828    return SDValue();
4829
4830  DebugLoc dl = Op.getDebugLoc();
4831  SDValue V(0, 0);
4832  bool First = true;
4833  for (unsigned i = 0; i < 8; ++i) {
4834    bool isNonZero = (NonZeros & (1 << i)) != 0;
4835    if (isNonZero) {
4836      if (First) {
4837        if (NumZero)
4838          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4839        else
4840          V = DAG.getUNDEF(MVT::v8i16);
4841        First = false;
4842      }
4843      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4844                      MVT::v8i16, V, Op.getOperand(i),
4845                      DAG.getIntPtrConstant(i));
4846    }
4847  }
4848
4849  return V;
4850}
4851
4852/// getVShift - Return a vector logical shift node.
4853///
4854static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4855                         unsigned NumBits, SelectionDAG &DAG,
4856                         const TargetLowering &TLI, DebugLoc dl) {
4857  EVT ShVT = MVT::v2i64;
4858  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4859  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4860  return DAG.getNode(ISD::BITCAST, dl, VT,
4861                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4862                             DAG.getConstant(NumBits,
4863                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4864}
4865
4866SDValue
4867X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4868                                          SelectionDAG &DAG) const {
4869
4870  // Check if the scalar load can be widened into a vector load. And if
4871  // the address is "base + cst" see if the cst can be "absorbed" into
4872  // the shuffle mask.
4873  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4874    SDValue Ptr = LD->getBasePtr();
4875    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4876      return SDValue();
4877    EVT PVT = LD->getValueType(0);
4878    if (PVT != MVT::i32 && PVT != MVT::f32)
4879      return SDValue();
4880
4881    int FI = -1;
4882    int64_t Offset = 0;
4883    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4884      FI = FINode->getIndex();
4885      Offset = 0;
4886    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4887               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4888      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4889      Offset = Ptr.getConstantOperandVal(1);
4890      Ptr = Ptr.getOperand(0);
4891    } else {
4892      return SDValue();
4893    }
4894
4895    // FIXME: 256-bit vector instructions don't require a strict alignment,
4896    // improve this code to support it better.
4897    unsigned RequiredAlign = VT.getSizeInBits()/8;
4898    SDValue Chain = LD->getChain();
4899    // Make sure the stack object alignment is at least 16 or 32.
4900    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4901    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4902      if (MFI->isFixedObjectIndex(FI)) {
4903        // Can't change the alignment. FIXME: It's possible to compute
4904        // the exact stack offset and reference FI + adjust offset instead.
4905        // If someone *really* cares about this. That's the way to implement it.
4906        return SDValue();
4907      } else {
4908        MFI->setObjectAlignment(FI, RequiredAlign);
4909      }
4910    }
4911
4912    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4913    // Ptr + (Offset & ~15).
4914    if (Offset < 0)
4915      return SDValue();
4916    if ((Offset % RequiredAlign) & 3)
4917      return SDValue();
4918    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4919    if (StartOffset)
4920      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4921                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4922
4923    int EltNo = (Offset - StartOffset) >> 2;
4924    int NumElems = VT.getVectorNumElements();
4925
4926    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4927    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4928    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4929                             LD->getPointerInfo().getWithOffset(StartOffset),
4930                             false, false, 0);
4931
4932    // Canonicalize it to a v4i32 or v8i32 shuffle.
4933    SmallVector<int, 8> Mask;
4934    for (int i = 0; i < NumElems; ++i)
4935      Mask.push_back(EltNo);
4936
4937    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4938    return DAG.getNode(ISD::BITCAST, dl, NVT,
4939                       DAG.getVectorShuffle(CanonVT, dl, V1,
4940                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4941  }
4942
4943  return SDValue();
4944}
4945
4946/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4947/// vector of type 'VT', see if the elements can be replaced by a single large
4948/// load which has the same value as a build_vector whose operands are 'elts'.
4949///
4950/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4951///
4952/// FIXME: we'd also like to handle the case where the last elements are zero
4953/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4954/// There's even a handy isZeroNode for that purpose.
4955static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4956                                        DebugLoc &DL, SelectionDAG &DAG) {
4957  EVT EltVT = VT.getVectorElementType();
4958  unsigned NumElems = Elts.size();
4959
4960  LoadSDNode *LDBase = NULL;
4961  unsigned LastLoadedElt = -1U;
4962
4963  // For each element in the initializer, see if we've found a load or an undef.
4964  // If we don't find an initial load element, or later load elements are
4965  // non-consecutive, bail out.
4966  for (unsigned i = 0; i < NumElems; ++i) {
4967    SDValue Elt = Elts[i];
4968
4969    if (!Elt.getNode() ||
4970        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4971      return SDValue();
4972    if (!LDBase) {
4973      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4974        return SDValue();
4975      LDBase = cast<LoadSDNode>(Elt.getNode());
4976      LastLoadedElt = i;
4977      continue;
4978    }
4979    if (Elt.getOpcode() == ISD::UNDEF)
4980      continue;
4981
4982    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4983    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4984      return SDValue();
4985    LastLoadedElt = i;
4986  }
4987
4988  // If we have found an entire vector of loads and undefs, then return a large
4989  // load of the entire vector width starting at the base pointer.  If we found
4990  // consecutive loads for the low half, generate a vzext_load node.
4991  if (LastLoadedElt == NumElems - 1) {
4992    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4993      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4994                         LDBase->getPointerInfo(),
4995                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4996    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4997                       LDBase->getPointerInfo(),
4998                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4999                       LDBase->getAlignment());
5000  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5001             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5002    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5003    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5004    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
5005                                              Ops, 2, MVT::i32,
5006                                              LDBase->getMemOperand());
5007    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5008  }
5009  return SDValue();
5010}
5011
5012SDValue
5013X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5014  DebugLoc dl = Op.getDebugLoc();
5015
5016  EVT VT = Op.getValueType();
5017  EVT ExtVT = VT.getVectorElementType();
5018  unsigned NumElems = Op.getNumOperands();
5019
5020  // Vectors containing all zeros can be matched by pxor and xorps later
5021  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5022    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5023    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5024    if (Op.getValueType() == MVT::v4i32 ||
5025        Op.getValueType() == MVT::v8i32)
5026      return Op;
5027
5028    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
5029  }
5030
5031  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5032  // vectors or broken into v4i32 operations on 256-bit vectors.
5033  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5034    if (Op.getValueType() == MVT::v4i32)
5035      return Op;
5036
5037    return getOnesVector(Op.getValueType(), DAG, dl);
5038  }
5039
5040  unsigned EVTBits = ExtVT.getSizeInBits();
5041
5042  unsigned NumZero  = 0;
5043  unsigned NumNonZero = 0;
5044  unsigned NonZeros = 0;
5045  bool IsAllConstants = true;
5046  SmallSet<SDValue, 8> Values;
5047  for (unsigned i = 0; i < NumElems; ++i) {
5048    SDValue Elt = Op.getOperand(i);
5049    if (Elt.getOpcode() == ISD::UNDEF)
5050      continue;
5051    Values.insert(Elt);
5052    if (Elt.getOpcode() != ISD::Constant &&
5053        Elt.getOpcode() != ISD::ConstantFP)
5054      IsAllConstants = false;
5055    if (X86::isZeroNode(Elt))
5056      NumZero++;
5057    else {
5058      NonZeros |= (1 << i);
5059      NumNonZero++;
5060    }
5061  }
5062
5063  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5064  if (NumNonZero == 0)
5065    return DAG.getUNDEF(VT);
5066
5067  // Special case for single non-zero, non-undef, element.
5068  if (NumNonZero == 1) {
5069    unsigned Idx = CountTrailingZeros_32(NonZeros);
5070    SDValue Item = Op.getOperand(Idx);
5071
5072    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5073    // the value are obviously zero, truncate the value to i32 and do the
5074    // insertion that way.  Only do this if the value is non-constant or if the
5075    // value is a constant being inserted into element 0.  It is cheaper to do
5076    // a constant pool load than it is to do a movd + shuffle.
5077    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5078        (!IsAllConstants || Idx == 0)) {
5079      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5080        // Handle SSE only.
5081        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5082        EVT VecVT = MVT::v4i32;
5083        unsigned VecElts = 4;
5084
5085        // Truncate the value (which may itself be a constant) to i32, and
5086        // convert it to a vector with movd (S2V+shuffle to zero extend).
5087        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5088        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5089        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5090                                           Subtarget->hasSSE2(), DAG);
5091
5092        // Now we have our 32-bit value zero extended in the low element of
5093        // a vector.  If Idx != 0, swizzle it into place.
5094        if (Idx != 0) {
5095          SmallVector<int, 4> Mask;
5096          Mask.push_back(Idx);
5097          for (unsigned i = 1; i != VecElts; ++i)
5098            Mask.push_back(i);
5099          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5100                                      DAG.getUNDEF(Item.getValueType()),
5101                                      &Mask[0]);
5102        }
5103        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5104      }
5105    }
5106
5107    // If we have a constant or non-constant insertion into the low element of
5108    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5109    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5110    // depending on what the source datatype is.
5111    if (Idx == 0) {
5112      if (NumZero == 0) {
5113        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5114      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5115          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5116        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5117        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5118        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
5119                                           DAG);
5120      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5121        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5122        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5123        EVT MiddleVT = MVT::v4i32;
5124        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5125        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5126                                           Subtarget->hasSSE2(), DAG);
5127        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5128      }
5129    }
5130
5131    // Is it a vector logical left shift?
5132    if (NumElems == 2 && Idx == 1 &&
5133        X86::isZeroNode(Op.getOperand(0)) &&
5134        !X86::isZeroNode(Op.getOperand(1))) {
5135      unsigned NumBits = VT.getSizeInBits();
5136      return getVShift(true, VT,
5137                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5138                                   VT, Op.getOperand(1)),
5139                       NumBits/2, DAG, *this, dl);
5140    }
5141
5142    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5143      return SDValue();
5144
5145    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5146    // is a non-constant being inserted into an element other than the low one,
5147    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5148    // movd/movss) to move this into the low element, then shuffle it into
5149    // place.
5150    if (EVTBits == 32) {
5151      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5152
5153      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5154      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5155                                         Subtarget->hasSSE2(), DAG);
5156      SmallVector<int, 8> MaskVec;
5157      for (unsigned i = 0; i < NumElems; i++)
5158        MaskVec.push_back(i == Idx ? 0 : 1);
5159      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5160    }
5161  }
5162
5163  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5164  if (Values.size() == 1) {
5165    if (EVTBits == 32) {
5166      // Instead of a shuffle like this:
5167      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5168      // Check if it's possible to issue this instead.
5169      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5170      unsigned Idx = CountTrailingZeros_32(NonZeros);
5171      SDValue Item = Op.getOperand(Idx);
5172      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5173        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5174    }
5175    return SDValue();
5176  }
5177
5178  // A vector full of immediates; various special cases are already
5179  // handled, so this is best done with a single constant-pool load.
5180  if (IsAllConstants)
5181    return SDValue();
5182
5183  // For AVX-length vectors, build the individual 128-bit pieces and use
5184  // shuffles to put them in place.
5185  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5186    SmallVector<SDValue, 32> V;
5187    for (unsigned i = 0; i < NumElems; ++i)
5188      V.push_back(Op.getOperand(i));
5189
5190    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5191
5192    // Build both the lower and upper subvector.
5193    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5194    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5195                                NumElems/2);
5196
5197    // Recreate the wider vector with the lower and upper part.
5198    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5199                                DAG.getConstant(0, MVT::i32), DAG, dl);
5200    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5201                              DAG, dl);
5202  }
5203
5204  // Let legalizer expand 2-wide build_vectors.
5205  if (EVTBits == 64) {
5206    if (NumNonZero == 1) {
5207      // One half is zero or undef.
5208      unsigned Idx = CountTrailingZeros_32(NonZeros);
5209      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5210                                 Op.getOperand(Idx));
5211      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5212                                         Subtarget->hasSSE2(), DAG);
5213    }
5214    return SDValue();
5215  }
5216
5217  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5218  if (EVTBits == 8 && NumElems == 16) {
5219    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5220                                        *this);
5221    if (V.getNode()) return V;
5222  }
5223
5224  if (EVTBits == 16 && NumElems == 8) {
5225    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5226                                      *this);
5227    if (V.getNode()) return V;
5228  }
5229
5230  // If element VT is == 32 bits, turn it into a number of shuffles.
5231  SmallVector<SDValue, 8> V;
5232  V.resize(NumElems);
5233  if (NumElems == 4 && NumZero > 0) {
5234    for (unsigned i = 0; i < 4; ++i) {
5235      bool isZero = !(NonZeros & (1 << i));
5236      if (isZero)
5237        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5238      else
5239        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5240    }
5241
5242    for (unsigned i = 0; i < 2; ++i) {
5243      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5244        default: break;
5245        case 0:
5246          V[i] = V[i*2];  // Must be a zero vector.
5247          break;
5248        case 1:
5249          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5250          break;
5251        case 2:
5252          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5253          break;
5254        case 3:
5255          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5256          break;
5257      }
5258    }
5259
5260    SmallVector<int, 8> MaskVec;
5261    bool Reverse = (NonZeros & 0x3) == 2;
5262    for (unsigned i = 0; i < 2; ++i)
5263      MaskVec.push_back(Reverse ? 1-i : i);
5264    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5265    for (unsigned i = 0; i < 2; ++i)
5266      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5267    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5268  }
5269
5270  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5271    // Check for a build vector of consecutive loads.
5272    for (unsigned i = 0; i < NumElems; ++i)
5273      V[i] = Op.getOperand(i);
5274
5275    // Check for elements which are consecutive loads.
5276    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5277    if (LD.getNode())
5278      return LD;
5279
5280    // For SSE 4.1, use insertps to put the high elements into the low element.
5281    if (getSubtarget()->hasSSE41()) {
5282      SDValue Result;
5283      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5284        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5285      else
5286        Result = DAG.getUNDEF(VT);
5287
5288      for (unsigned i = 1; i < NumElems; ++i) {
5289        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5290        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5291                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5292      }
5293      return Result;
5294    }
5295
5296    // Otherwise, expand into a number of unpckl*, start by extending each of
5297    // our (non-undef) elements to the full vector width with the element in the
5298    // bottom slot of the vector (which generates no code for SSE).
5299    for (unsigned i = 0; i < NumElems; ++i) {
5300      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5301        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5302      else
5303        V[i] = DAG.getUNDEF(VT);
5304    }
5305
5306    // Next, we iteratively mix elements, e.g. for v4f32:
5307    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5308    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5309    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5310    unsigned EltStride = NumElems >> 1;
5311    while (EltStride != 0) {
5312      for (unsigned i = 0; i < EltStride; ++i) {
5313        // If V[i+EltStride] is undef and this is the first round of mixing,
5314        // then it is safe to just drop this shuffle: V[i] is already in the
5315        // right place, the one element (since it's the first round) being
5316        // inserted as undef can be dropped.  This isn't safe for successive
5317        // rounds because they will permute elements within both vectors.
5318        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5319            EltStride == NumElems/2)
5320          continue;
5321
5322        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5323      }
5324      EltStride >>= 1;
5325    }
5326    return V[0];
5327  }
5328  return SDValue();
5329}
5330
5331// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5332// them in a MMX register.  This is better than doing a stack convert.
5333static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5334  DebugLoc dl = Op.getDebugLoc();
5335  EVT ResVT = Op.getValueType();
5336
5337  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5338         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5339  int Mask[2];
5340  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5341  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5342  InVec = Op.getOperand(1);
5343  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5344    unsigned NumElts = ResVT.getVectorNumElements();
5345    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5346    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5347                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5348  } else {
5349    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5350    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5351    Mask[0] = 0; Mask[1] = 2;
5352    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5353  }
5354  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5355}
5356
5357// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5358// to create 256-bit vectors from two other 128-bit ones.
5359static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5360  DebugLoc dl = Op.getDebugLoc();
5361  EVT ResVT = Op.getValueType();
5362
5363  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5364
5365  SDValue V1 = Op.getOperand(0);
5366  SDValue V2 = Op.getOperand(1);
5367  unsigned NumElems = ResVT.getVectorNumElements();
5368
5369  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5370                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5371  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5372                            DAG, dl);
5373}
5374
5375SDValue
5376X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5377  EVT ResVT = Op.getValueType();
5378
5379  assert(Op.getNumOperands() == 2);
5380  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5381         "Unsupported CONCAT_VECTORS for value type");
5382
5383  // We support concatenate two MMX registers and place them in a MMX register.
5384  // This is better than doing a stack convert.
5385  if (ResVT.is128BitVector())
5386    return LowerMMXCONCAT_VECTORS(Op, DAG);
5387
5388  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5389  // from two other 128-bit ones.
5390  return LowerAVXCONCAT_VECTORS(Op, DAG);
5391}
5392
5393// v8i16 shuffles - Prefer shuffles in the following order:
5394// 1. [all]   pshuflw, pshufhw, optional move
5395// 2. [ssse3] 1 x pshufb
5396// 3. [ssse3] 2 x pshufb + 1 x por
5397// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5398SDValue
5399X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5400                                            SelectionDAG &DAG) const {
5401  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5402  SDValue V1 = SVOp->getOperand(0);
5403  SDValue V2 = SVOp->getOperand(1);
5404  DebugLoc dl = SVOp->getDebugLoc();
5405  SmallVector<int, 8> MaskVals;
5406
5407  // Determine if more than 1 of the words in each of the low and high quadwords
5408  // of the result come from the same quadword of one of the two inputs.  Undef
5409  // mask values count as coming from any quadword, for better codegen.
5410  SmallVector<unsigned, 4> LoQuad(4);
5411  SmallVector<unsigned, 4> HiQuad(4);
5412  BitVector InputQuads(4);
5413  for (unsigned i = 0; i < 8; ++i) {
5414    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5415    int EltIdx = SVOp->getMaskElt(i);
5416    MaskVals.push_back(EltIdx);
5417    if (EltIdx < 0) {
5418      ++Quad[0];
5419      ++Quad[1];
5420      ++Quad[2];
5421      ++Quad[3];
5422      continue;
5423    }
5424    ++Quad[EltIdx / 4];
5425    InputQuads.set(EltIdx / 4);
5426  }
5427
5428  int BestLoQuad = -1;
5429  unsigned MaxQuad = 1;
5430  for (unsigned i = 0; i < 4; ++i) {
5431    if (LoQuad[i] > MaxQuad) {
5432      BestLoQuad = i;
5433      MaxQuad = LoQuad[i];
5434    }
5435  }
5436
5437  int BestHiQuad = -1;
5438  MaxQuad = 1;
5439  for (unsigned i = 0; i < 4; ++i) {
5440    if (HiQuad[i] > MaxQuad) {
5441      BestHiQuad = i;
5442      MaxQuad = HiQuad[i];
5443    }
5444  }
5445
5446  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5447  // of the two input vectors, shuffle them into one input vector so only a
5448  // single pshufb instruction is necessary. If There are more than 2 input
5449  // quads, disable the next transformation since it does not help SSSE3.
5450  bool V1Used = InputQuads[0] || InputQuads[1];
5451  bool V2Used = InputQuads[2] || InputQuads[3];
5452  if (Subtarget->hasSSSE3()) {
5453    if (InputQuads.count() == 2 && V1Used && V2Used) {
5454      BestLoQuad = InputQuads.find_first();
5455      BestHiQuad = InputQuads.find_next(BestLoQuad);
5456    }
5457    if (InputQuads.count() > 2) {
5458      BestLoQuad = -1;
5459      BestHiQuad = -1;
5460    }
5461  }
5462
5463  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5464  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5465  // words from all 4 input quadwords.
5466  SDValue NewV;
5467  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5468    SmallVector<int, 8> MaskV;
5469    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5470    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5471    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5472                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5473                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5474    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5475
5476    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5477    // source words for the shuffle, to aid later transformations.
5478    bool AllWordsInNewV = true;
5479    bool InOrder[2] = { true, true };
5480    for (unsigned i = 0; i != 8; ++i) {
5481      int idx = MaskVals[i];
5482      if (idx != (int)i)
5483        InOrder[i/4] = false;
5484      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5485        continue;
5486      AllWordsInNewV = false;
5487      break;
5488    }
5489
5490    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5491    if (AllWordsInNewV) {
5492      for (int i = 0; i != 8; ++i) {
5493        int idx = MaskVals[i];
5494        if (idx < 0)
5495          continue;
5496        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5497        if ((idx != i) && idx < 4)
5498          pshufhw = false;
5499        if ((idx != i) && idx > 3)
5500          pshuflw = false;
5501      }
5502      V1 = NewV;
5503      V2Used = false;
5504      BestLoQuad = 0;
5505      BestHiQuad = 1;
5506    }
5507
5508    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5509    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5510    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5511      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5512      unsigned TargetMask = 0;
5513      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5514                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5515      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5516                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5517      V1 = NewV.getOperand(0);
5518      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5519    }
5520  }
5521
5522  // If we have SSSE3, and all words of the result are from 1 input vector,
5523  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5524  // is present, fall back to case 4.
5525  if (Subtarget->hasSSSE3()) {
5526    SmallVector<SDValue,16> pshufbMask;
5527
5528    // If we have elements from both input vectors, set the high bit of the
5529    // shuffle mask element to zero out elements that come from V2 in the V1
5530    // mask, and elements that come from V1 in the V2 mask, so that the two
5531    // results can be OR'd together.
5532    bool TwoInputs = V1Used && V2Used;
5533    for (unsigned i = 0; i != 8; ++i) {
5534      int EltIdx = MaskVals[i] * 2;
5535      if (TwoInputs && (EltIdx >= 16)) {
5536        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5537        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5538        continue;
5539      }
5540      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5541      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5542    }
5543    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5544    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5545                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5546                                 MVT::v16i8, &pshufbMask[0], 16));
5547    if (!TwoInputs)
5548      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5549
5550    // Calculate the shuffle mask for the second input, shuffle it, and
5551    // OR it with the first shuffled input.
5552    pshufbMask.clear();
5553    for (unsigned i = 0; i != 8; ++i) {
5554      int EltIdx = MaskVals[i] * 2;
5555      if (EltIdx < 16) {
5556        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5557        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5558        continue;
5559      }
5560      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5561      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5562    }
5563    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5564    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5565                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5566                                 MVT::v16i8, &pshufbMask[0], 16));
5567    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5568    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5569  }
5570
5571  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5572  // and update MaskVals with new element order.
5573  BitVector InOrder(8);
5574  if (BestLoQuad >= 0) {
5575    SmallVector<int, 8> MaskV;
5576    for (int i = 0; i != 4; ++i) {
5577      int idx = MaskVals[i];
5578      if (idx < 0) {
5579        MaskV.push_back(-1);
5580        InOrder.set(i);
5581      } else if ((idx / 4) == BestLoQuad) {
5582        MaskV.push_back(idx & 3);
5583        InOrder.set(i);
5584      } else {
5585        MaskV.push_back(-1);
5586      }
5587    }
5588    for (unsigned i = 4; i != 8; ++i)
5589      MaskV.push_back(i);
5590    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5591                                &MaskV[0]);
5592
5593    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5594      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5595                               NewV.getOperand(0),
5596                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5597                               DAG);
5598  }
5599
5600  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5601  // and update MaskVals with the new element order.
5602  if (BestHiQuad >= 0) {
5603    SmallVector<int, 8> MaskV;
5604    for (unsigned i = 0; i != 4; ++i)
5605      MaskV.push_back(i);
5606    for (unsigned i = 4; i != 8; ++i) {
5607      int idx = MaskVals[i];
5608      if (idx < 0) {
5609        MaskV.push_back(-1);
5610        InOrder.set(i);
5611      } else if ((idx / 4) == BestHiQuad) {
5612        MaskV.push_back((idx & 3) + 4);
5613        InOrder.set(i);
5614      } else {
5615        MaskV.push_back(-1);
5616      }
5617    }
5618    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5619                                &MaskV[0]);
5620
5621    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5622      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5623                              NewV.getOperand(0),
5624                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5625                              DAG);
5626  }
5627
5628  // In case BestHi & BestLo were both -1, which means each quadword has a word
5629  // from each of the four input quadwords, calculate the InOrder bitvector now
5630  // before falling through to the insert/extract cleanup.
5631  if (BestLoQuad == -1 && BestHiQuad == -1) {
5632    NewV = V1;
5633    for (int i = 0; i != 8; ++i)
5634      if (MaskVals[i] < 0 || MaskVals[i] == i)
5635        InOrder.set(i);
5636  }
5637
5638  // The other elements are put in the right place using pextrw and pinsrw.
5639  for (unsigned i = 0; i != 8; ++i) {
5640    if (InOrder[i])
5641      continue;
5642    int EltIdx = MaskVals[i];
5643    if (EltIdx < 0)
5644      continue;
5645    SDValue ExtOp = (EltIdx < 8)
5646    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5647                  DAG.getIntPtrConstant(EltIdx))
5648    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5649                  DAG.getIntPtrConstant(EltIdx - 8));
5650    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5651                       DAG.getIntPtrConstant(i));
5652  }
5653  return NewV;
5654}
5655
5656// v16i8 shuffles - Prefer shuffles in the following order:
5657// 1. [ssse3] 1 x pshufb
5658// 2. [ssse3] 2 x pshufb + 1 x por
5659// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5660static
5661SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5662                                 SelectionDAG &DAG,
5663                                 const X86TargetLowering &TLI) {
5664  SDValue V1 = SVOp->getOperand(0);
5665  SDValue V2 = SVOp->getOperand(1);
5666  DebugLoc dl = SVOp->getDebugLoc();
5667  SmallVector<int, 16> MaskVals;
5668  SVOp->getMask(MaskVals);
5669
5670  // If we have SSSE3, case 1 is generated when all result bytes come from
5671  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5672  // present, fall back to case 3.
5673  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5674  bool V1Only = true;
5675  bool V2Only = true;
5676  for (unsigned i = 0; i < 16; ++i) {
5677    int EltIdx = MaskVals[i];
5678    if (EltIdx < 0)
5679      continue;
5680    if (EltIdx < 16)
5681      V2Only = false;
5682    else
5683      V1Only = false;
5684  }
5685
5686  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5687  if (TLI.getSubtarget()->hasSSSE3()) {
5688    SmallVector<SDValue,16> pshufbMask;
5689
5690    // If all result elements are from one input vector, then only translate
5691    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5692    //
5693    // Otherwise, we have elements from both input vectors, and must zero out
5694    // elements that come from V2 in the first mask, and V1 in the second mask
5695    // so that we can OR them together.
5696    bool TwoInputs = !(V1Only || V2Only);
5697    for (unsigned i = 0; i != 16; ++i) {
5698      int EltIdx = MaskVals[i];
5699      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5700        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5701        continue;
5702      }
5703      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5704    }
5705    // If all the elements are from V2, assign it to V1 and return after
5706    // building the first pshufb.
5707    if (V2Only)
5708      V1 = V2;
5709    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5710                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5711                                 MVT::v16i8, &pshufbMask[0], 16));
5712    if (!TwoInputs)
5713      return V1;
5714
5715    // Calculate the shuffle mask for the second input, shuffle it, and
5716    // OR it with the first shuffled input.
5717    pshufbMask.clear();
5718    for (unsigned i = 0; i != 16; ++i) {
5719      int EltIdx = MaskVals[i];
5720      if (EltIdx < 16) {
5721        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5722        continue;
5723      }
5724      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5725    }
5726    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5727                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5728                                 MVT::v16i8, &pshufbMask[0], 16));
5729    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5730  }
5731
5732  // No SSSE3 - Calculate in place words and then fix all out of place words
5733  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5734  // the 16 different words that comprise the two doublequadword input vectors.
5735  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5736  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5737  SDValue NewV = V2Only ? V2 : V1;
5738  for (int i = 0; i != 8; ++i) {
5739    int Elt0 = MaskVals[i*2];
5740    int Elt1 = MaskVals[i*2+1];
5741
5742    // This word of the result is all undef, skip it.
5743    if (Elt0 < 0 && Elt1 < 0)
5744      continue;
5745
5746    // This word of the result is already in the correct place, skip it.
5747    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5748      continue;
5749    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5750      continue;
5751
5752    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5753    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5754    SDValue InsElt;
5755
5756    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5757    // using a single extract together, load it and store it.
5758    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5759      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5760                           DAG.getIntPtrConstant(Elt1 / 2));
5761      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5762                        DAG.getIntPtrConstant(i));
5763      continue;
5764    }
5765
5766    // If Elt1 is defined, extract it from the appropriate source.  If the
5767    // source byte is not also odd, shift the extracted word left 8 bits
5768    // otherwise clear the bottom 8 bits if we need to do an or.
5769    if (Elt1 >= 0) {
5770      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5771                           DAG.getIntPtrConstant(Elt1 / 2));
5772      if ((Elt1 & 1) == 0)
5773        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5774                             DAG.getConstant(8,
5775                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5776      else if (Elt0 >= 0)
5777        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5778                             DAG.getConstant(0xFF00, MVT::i16));
5779    }
5780    // If Elt0 is defined, extract it from the appropriate source.  If the
5781    // source byte is not also even, shift the extracted word right 8 bits. If
5782    // Elt1 was also defined, OR the extracted values together before
5783    // inserting them in the result.
5784    if (Elt0 >= 0) {
5785      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5786                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5787      if ((Elt0 & 1) != 0)
5788        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5789                              DAG.getConstant(8,
5790                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5791      else if (Elt1 >= 0)
5792        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5793                             DAG.getConstant(0x00FF, MVT::i16));
5794      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5795                         : InsElt0;
5796    }
5797    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5798                       DAG.getIntPtrConstant(i));
5799  }
5800  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5801}
5802
5803/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5804/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5805/// done when every pair / quad of shuffle mask elements point to elements in
5806/// the right sequence. e.g.
5807/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5808static
5809SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5810                                 SelectionDAG &DAG, DebugLoc dl) {
5811  EVT VT = SVOp->getValueType(0);
5812  SDValue V1 = SVOp->getOperand(0);
5813  SDValue V2 = SVOp->getOperand(1);
5814  unsigned NumElems = VT.getVectorNumElements();
5815  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5816  EVT NewVT;
5817  switch (VT.getSimpleVT().SimpleTy) {
5818  default: assert(false && "Unexpected!");
5819  case MVT::v4f32: NewVT = MVT::v2f64; break;
5820  case MVT::v4i32: NewVT = MVT::v2i64; break;
5821  case MVT::v8i16: NewVT = MVT::v4i32; break;
5822  case MVT::v16i8: NewVT = MVT::v4i32; break;
5823  }
5824
5825  int Scale = NumElems / NewWidth;
5826  SmallVector<int, 8> MaskVec;
5827  for (unsigned i = 0; i < NumElems; i += Scale) {
5828    int StartIdx = -1;
5829    for (int j = 0; j < Scale; ++j) {
5830      int EltIdx = SVOp->getMaskElt(i+j);
5831      if (EltIdx < 0)
5832        continue;
5833      if (StartIdx == -1)
5834        StartIdx = EltIdx - (EltIdx % Scale);
5835      if (EltIdx != StartIdx + j)
5836        return SDValue();
5837    }
5838    if (StartIdx == -1)
5839      MaskVec.push_back(-1);
5840    else
5841      MaskVec.push_back(StartIdx / Scale);
5842  }
5843
5844  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5845  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5846  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5847}
5848
5849/// getVZextMovL - Return a zero-extending vector move low node.
5850///
5851static SDValue getVZextMovL(EVT VT, EVT OpVT,
5852                            SDValue SrcOp, SelectionDAG &DAG,
5853                            const X86Subtarget *Subtarget, DebugLoc dl) {
5854  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5855    LoadSDNode *LD = NULL;
5856    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5857      LD = dyn_cast<LoadSDNode>(SrcOp);
5858    if (!LD) {
5859      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5860      // instead.
5861      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5862      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5863          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5864          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5865          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5866        // PR2108
5867        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5868        return DAG.getNode(ISD::BITCAST, dl, VT,
5869                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5870                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5871                                                   OpVT,
5872                                                   SrcOp.getOperand(0)
5873                                                          .getOperand(0))));
5874      }
5875    }
5876  }
5877
5878  return DAG.getNode(ISD::BITCAST, dl, VT,
5879                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5880                                 DAG.getNode(ISD::BITCAST, dl,
5881                                             OpVT, SrcOp)));
5882}
5883
5884/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5885/// shuffle node referes to only one lane in the sources.
5886static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5887  EVT VT = SVOp->getValueType(0);
5888  int NumElems = VT.getVectorNumElements();
5889  int HalfSize = NumElems/2;
5890  SmallVector<int, 16> M;
5891  SVOp->getMask(M);
5892  bool MatchA = false, MatchB = false;
5893
5894  for (int l = 0; l < NumElems*2; l += HalfSize) {
5895    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5896      MatchA = true;
5897      break;
5898    }
5899  }
5900
5901  for (int l = 0; l < NumElems*2; l += HalfSize) {
5902    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5903      MatchB = true;
5904      break;
5905    }
5906  }
5907
5908  return MatchA && MatchB;
5909}
5910
5911/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5912/// which could not be matched by any known target speficic shuffle
5913static SDValue
5914LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5915  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5916    // If each half of a vector shuffle node referes to only one lane in the
5917    // source vectors, extract each used 128-bit lane and shuffle them using
5918    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5919    // the work to the legalizer.
5920    DebugLoc dl = SVOp->getDebugLoc();
5921    EVT VT = SVOp->getValueType(0);
5922    int NumElems = VT.getVectorNumElements();
5923    int HalfSize = NumElems/2;
5924
5925    // Extract the reference for each half
5926    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5927    int FstVecOpNum = 0, SndVecOpNum = 0;
5928    for (int i = 0; i < HalfSize; ++i) {
5929      int Elt = SVOp->getMaskElt(i);
5930      if (SVOp->getMaskElt(i) < 0)
5931        continue;
5932      FstVecOpNum = Elt/NumElems;
5933      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5934      break;
5935    }
5936    for (int i = HalfSize; i < NumElems; ++i) {
5937      int Elt = SVOp->getMaskElt(i);
5938      if (SVOp->getMaskElt(i) < 0)
5939        continue;
5940      SndVecOpNum = Elt/NumElems;
5941      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5942      break;
5943    }
5944
5945    // Extract the subvectors
5946    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5947                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5948    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5949                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5950
5951    // Generate 128-bit shuffles
5952    SmallVector<int, 16> MaskV1, MaskV2;
5953    for (int i = 0; i < HalfSize; ++i) {
5954      int Elt = SVOp->getMaskElt(i);
5955      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5956    }
5957    for (int i = HalfSize; i < NumElems; ++i) {
5958      int Elt = SVOp->getMaskElt(i);
5959      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5960    }
5961
5962    EVT NVT = V1.getValueType();
5963    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5964    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5965
5966    // Concatenate the result back
5967    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5968                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5969    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5970                              DAG, dl);
5971  }
5972
5973  return SDValue();
5974}
5975
5976/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5977/// 4 elements, and match them with several different shuffle types.
5978static SDValue
5979LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5980  SDValue V1 = SVOp->getOperand(0);
5981  SDValue V2 = SVOp->getOperand(1);
5982  DebugLoc dl = SVOp->getDebugLoc();
5983  EVT VT = SVOp->getValueType(0);
5984
5985  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5986
5987  SmallVector<std::pair<int, int>, 8> Locs;
5988  Locs.resize(4);
5989  SmallVector<int, 8> Mask1(4U, -1);
5990  SmallVector<int, 8> PermMask;
5991  SVOp->getMask(PermMask);
5992
5993  unsigned NumHi = 0;
5994  unsigned NumLo = 0;
5995  for (unsigned i = 0; i != 4; ++i) {
5996    int Idx = PermMask[i];
5997    if (Idx < 0) {
5998      Locs[i] = std::make_pair(-1, -1);
5999    } else {
6000      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6001      if (Idx < 4) {
6002        Locs[i] = std::make_pair(0, NumLo);
6003        Mask1[NumLo] = Idx;
6004        NumLo++;
6005      } else {
6006        Locs[i] = std::make_pair(1, NumHi);
6007        if (2+NumHi < 4)
6008          Mask1[2+NumHi] = Idx;
6009        NumHi++;
6010      }
6011    }
6012  }
6013
6014  if (NumLo <= 2 && NumHi <= 2) {
6015    // If no more than two elements come from either vector. This can be
6016    // implemented with two shuffles. First shuffle gather the elements.
6017    // The second shuffle, which takes the first shuffle as both of its
6018    // vector operands, put the elements into the right order.
6019    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6020
6021    SmallVector<int, 8> Mask2(4U, -1);
6022
6023    for (unsigned i = 0; i != 4; ++i) {
6024      if (Locs[i].first == -1)
6025        continue;
6026      else {
6027        unsigned Idx = (i < 2) ? 0 : 4;
6028        Idx += Locs[i].first * 2 + Locs[i].second;
6029        Mask2[i] = Idx;
6030      }
6031    }
6032
6033    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6034  } else if (NumLo == 3 || NumHi == 3) {
6035    // Otherwise, we must have three elements from one vector, call it X, and
6036    // one element from the other, call it Y.  First, use a shufps to build an
6037    // intermediate vector with the one element from Y and the element from X
6038    // that will be in the same half in the final destination (the indexes don't
6039    // matter). Then, use a shufps to build the final vector, taking the half
6040    // containing the element from Y from the intermediate, and the other half
6041    // from X.
6042    if (NumHi == 3) {
6043      // Normalize it so the 3 elements come from V1.
6044      CommuteVectorShuffleMask(PermMask, VT);
6045      std::swap(V1, V2);
6046    }
6047
6048    // Find the element from V2.
6049    unsigned HiIndex;
6050    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6051      int Val = PermMask[HiIndex];
6052      if (Val < 0)
6053        continue;
6054      if (Val >= 4)
6055        break;
6056    }
6057
6058    Mask1[0] = PermMask[HiIndex];
6059    Mask1[1] = -1;
6060    Mask1[2] = PermMask[HiIndex^1];
6061    Mask1[3] = -1;
6062    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6063
6064    if (HiIndex >= 2) {
6065      Mask1[0] = PermMask[0];
6066      Mask1[1] = PermMask[1];
6067      Mask1[2] = HiIndex & 1 ? 6 : 4;
6068      Mask1[3] = HiIndex & 1 ? 4 : 6;
6069      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6070    } else {
6071      Mask1[0] = HiIndex & 1 ? 2 : 0;
6072      Mask1[1] = HiIndex & 1 ? 0 : 2;
6073      Mask1[2] = PermMask[2];
6074      Mask1[3] = PermMask[3];
6075      if (Mask1[2] >= 0)
6076        Mask1[2] += 4;
6077      if (Mask1[3] >= 0)
6078        Mask1[3] += 4;
6079      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6080    }
6081  }
6082
6083  // Break it into (shuffle shuffle_hi, shuffle_lo).
6084  Locs.clear();
6085  Locs.resize(4);
6086  SmallVector<int,8> LoMask(4U, -1);
6087  SmallVector<int,8> HiMask(4U, -1);
6088
6089  SmallVector<int,8> *MaskPtr = &LoMask;
6090  unsigned MaskIdx = 0;
6091  unsigned LoIdx = 0;
6092  unsigned HiIdx = 2;
6093  for (unsigned i = 0; i != 4; ++i) {
6094    if (i == 2) {
6095      MaskPtr = &HiMask;
6096      MaskIdx = 1;
6097      LoIdx = 0;
6098      HiIdx = 2;
6099    }
6100    int Idx = PermMask[i];
6101    if (Idx < 0) {
6102      Locs[i] = std::make_pair(-1, -1);
6103    } else if (Idx < 4) {
6104      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6105      (*MaskPtr)[LoIdx] = Idx;
6106      LoIdx++;
6107    } else {
6108      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6109      (*MaskPtr)[HiIdx] = Idx;
6110      HiIdx++;
6111    }
6112  }
6113
6114  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6115  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6116  SmallVector<int, 8> MaskOps;
6117  for (unsigned i = 0; i != 4; ++i) {
6118    if (Locs[i].first == -1) {
6119      MaskOps.push_back(-1);
6120    } else {
6121      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6122      MaskOps.push_back(Idx);
6123    }
6124  }
6125  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6126}
6127
6128static bool MayFoldVectorLoad(SDValue V) {
6129  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6130    V = V.getOperand(0);
6131  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6132    V = V.getOperand(0);
6133  if (MayFoldLoad(V))
6134    return true;
6135  return false;
6136}
6137
6138// FIXME: the version above should always be used. Since there's
6139// a bug where several vector shuffles can't be folded because the
6140// DAG is not updated during lowering and a node claims to have two
6141// uses while it only has one, use this version, and let isel match
6142// another instruction if the load really happens to have more than
6143// one use. Remove this version after this bug get fixed.
6144// rdar://8434668, PR8156
6145static bool RelaxedMayFoldVectorLoad(SDValue V) {
6146  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6147    V = V.getOperand(0);
6148  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6149    V = V.getOperand(0);
6150  if (ISD::isNormalLoad(V.getNode()))
6151    return true;
6152  return false;
6153}
6154
6155/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6156/// a vector extract, and if both can be later optimized into a single load.
6157/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6158/// here because otherwise a target specific shuffle node is going to be
6159/// emitted for this shuffle, and the optimization not done.
6160/// FIXME: This is probably not the best approach, but fix the problem
6161/// until the right path is decided.
6162static
6163bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6164                                         const TargetLowering &TLI) {
6165  EVT VT = V.getValueType();
6166  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6167
6168  // Be sure that the vector shuffle is present in a pattern like this:
6169  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6170  if (!V.hasOneUse())
6171    return false;
6172
6173  SDNode *N = *V.getNode()->use_begin();
6174  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6175    return false;
6176
6177  SDValue EltNo = N->getOperand(1);
6178  if (!isa<ConstantSDNode>(EltNo))
6179    return false;
6180
6181  // If the bit convert changed the number of elements, it is unsafe
6182  // to examine the mask.
6183  bool HasShuffleIntoBitcast = false;
6184  if (V.getOpcode() == ISD::BITCAST) {
6185    EVT SrcVT = V.getOperand(0).getValueType();
6186    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6187      return false;
6188    V = V.getOperand(0);
6189    HasShuffleIntoBitcast = true;
6190  }
6191
6192  // Select the input vector, guarding against out of range extract vector.
6193  unsigned NumElems = VT.getVectorNumElements();
6194  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6195  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6196  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6197
6198  // Skip one more bit_convert if necessary
6199  if (V.getOpcode() == ISD::BITCAST)
6200    V = V.getOperand(0);
6201
6202  if (ISD::isNormalLoad(V.getNode())) {
6203    // Is the original load suitable?
6204    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6205
6206    // FIXME: avoid the multi-use bug that is preventing lots of
6207    // of foldings to be detected, this is still wrong of course, but
6208    // give the temporary desired behavior, and if it happens that
6209    // the load has real more uses, during isel it will not fold, and
6210    // will generate poor code.
6211    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6212      return false;
6213
6214    if (!HasShuffleIntoBitcast)
6215      return true;
6216
6217    // If there's a bitcast before the shuffle, check if the load type and
6218    // alignment is valid.
6219    unsigned Align = LN0->getAlignment();
6220    unsigned NewAlign =
6221      TLI.getTargetData()->getABITypeAlignment(
6222                                    VT.getTypeForEVT(*DAG.getContext()));
6223
6224    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6225      return false;
6226  }
6227
6228  return true;
6229}
6230
6231static
6232SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6233  EVT VT = Op.getValueType();
6234
6235  // Canonizalize to v2f64.
6236  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6237  return DAG.getNode(ISD::BITCAST, dl, VT,
6238                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6239                                          V1, DAG));
6240}
6241
6242static
6243SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6244                        bool HasSSE2) {
6245  SDValue V1 = Op.getOperand(0);
6246  SDValue V2 = Op.getOperand(1);
6247  EVT VT = Op.getValueType();
6248
6249  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6250
6251  if (HasSSE2 && VT == MVT::v2f64)
6252    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6253
6254  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6255  return DAG.getNode(ISD::BITCAST, dl, VT,
6256                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6257                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6258                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6259}
6260
6261static
6262SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6263  SDValue V1 = Op.getOperand(0);
6264  SDValue V2 = Op.getOperand(1);
6265  EVT VT = Op.getValueType();
6266
6267  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6268         "unsupported shuffle type");
6269
6270  if (V2.getOpcode() == ISD::UNDEF)
6271    V2 = V1;
6272
6273  // v4i32 or v4f32
6274  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6275}
6276
6277static inline unsigned getSHUFPOpcode(EVT VT) {
6278  switch(VT.getSimpleVT().SimpleTy) {
6279  case MVT::v8i32: // Use fp unit for int unpack.
6280  case MVT::v8f32:
6281  case MVT::v4i32: // Use fp unit for int unpack.
6282  case MVT::v4f32: return X86ISD::SHUFPS;
6283  case MVT::v4i64: // Use fp unit for int unpack.
6284  case MVT::v4f64:
6285  case MVT::v2i64: // Use fp unit for int unpack.
6286  case MVT::v2f64: return X86ISD::SHUFPD;
6287  default:
6288    llvm_unreachable("Unknown type for shufp*");
6289  }
6290  return 0;
6291}
6292
6293static
6294SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6295  SDValue V1 = Op.getOperand(0);
6296  SDValue V2 = Op.getOperand(1);
6297  EVT VT = Op.getValueType();
6298  unsigned NumElems = VT.getVectorNumElements();
6299
6300  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6301  // operand of these instructions is only memory, so check if there's a
6302  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6303  // same masks.
6304  bool CanFoldLoad = false;
6305
6306  // Trivial case, when V2 comes from a load.
6307  if (MayFoldVectorLoad(V2))
6308    CanFoldLoad = true;
6309
6310  // When V1 is a load, it can be folded later into a store in isel, example:
6311  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6312  //    turns into:
6313  //  (MOVLPSmr addr:$src1, VR128:$src2)
6314  // So, recognize this potential and also use MOVLPS or MOVLPD
6315  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6316    CanFoldLoad = true;
6317
6318  // Both of them can't be memory operations though.
6319  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6320    CanFoldLoad = false;
6321
6322  if (CanFoldLoad) {
6323    if (HasSSE2 && NumElems == 2)
6324      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6325
6326    if (NumElems == 4)
6327      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6328  }
6329
6330  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6331  // movl and movlp will both match v2i64, but v2i64 is never matched by
6332  // movl earlier because we make it strict to avoid messing with the movlp load
6333  // folding logic (see the code above getMOVLP call). Match it here then,
6334  // this is horrible, but will stay like this until we move all shuffle
6335  // matching to x86 specific nodes. Note that for the 1st condition all
6336  // types are matched with movsd.
6337  if (HasSSE2) {
6338    if (NumElems == 2)
6339      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6340    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6341  }
6342
6343  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6344
6345  // Invert the operand order and use SHUFPS to match it.
6346  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6347                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6348}
6349
6350static inline unsigned getUNPCKLOpcode(EVT VT) {
6351  switch(VT.getSimpleVT().SimpleTy) {
6352  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6353  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6354  case MVT::v4f32: return X86ISD::UNPCKLPS;
6355  case MVT::v2f64: return X86ISD::UNPCKLPD;
6356  case MVT::v8i32: // Use fp unit for int unpack.
6357  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6358  case MVT::v4i64: // Use fp unit for int unpack.
6359  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6360  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6361  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6362  default:
6363    llvm_unreachable("Unknown type for unpckl");
6364  }
6365  return 0;
6366}
6367
6368static inline unsigned getUNPCKHOpcode(EVT VT) {
6369  switch(VT.getSimpleVT().SimpleTy) {
6370  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6371  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6372  case MVT::v4f32: return X86ISD::UNPCKHPS;
6373  case MVT::v2f64: return X86ISD::UNPCKHPD;
6374  case MVT::v8i32: // Use fp unit for int unpack.
6375  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6376  case MVT::v4i64: // Use fp unit for int unpack.
6377  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6378  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6379  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6380  default:
6381    llvm_unreachable("Unknown type for unpckh");
6382  }
6383  return 0;
6384}
6385
6386static inline unsigned getVPERMILOpcode(EVT VT) {
6387  switch(VT.getSimpleVT().SimpleTy) {
6388  case MVT::v4i32:
6389  case MVT::v4f32: return X86ISD::VPERMILPS;
6390  case MVT::v2i64:
6391  case MVT::v2f64: return X86ISD::VPERMILPD;
6392  case MVT::v8i32:
6393  case MVT::v8f32: return X86ISD::VPERMILPSY;
6394  case MVT::v4i64:
6395  case MVT::v4f64: return X86ISD::VPERMILPDY;
6396  default:
6397    llvm_unreachable("Unknown type for vpermil");
6398  }
6399  return 0;
6400}
6401
6402/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6403/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6404/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6405static bool isVectorBroadcast(SDValue &Op) {
6406  EVT VT = Op.getValueType();
6407  bool Is256 = VT.getSizeInBits() == 256;
6408
6409  assert((VT.getSizeInBits() == 128 || Is256) &&
6410         "Unsupported type for vbroadcast node");
6411
6412  SDValue V = Op;
6413  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6414    V = V.getOperand(0);
6415
6416  if (Is256 && !(V.hasOneUse() &&
6417                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6418                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6419    return false;
6420
6421  if (Is256)
6422    V = V.getOperand(1);
6423
6424  if (!V.hasOneUse())
6425    return false;
6426
6427  // Check the source scalar_to_vector type. 256-bit broadcasts are
6428  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6429  // for 32-bit scalars.
6430  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6431    return false;
6432
6433  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6434  if (ScalarSize != 32 && ScalarSize != 64)
6435    return false;
6436  if (!Is256 && ScalarSize == 64)
6437    return false;
6438
6439  V = V.getOperand(0);
6440  if (!MayFoldLoad(V))
6441    return false;
6442
6443  // Return the load node
6444  Op = V;
6445  return true;
6446}
6447
6448static
6449SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6450                               const TargetLowering &TLI,
6451                               const X86Subtarget *Subtarget) {
6452  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6453  EVT VT = Op.getValueType();
6454  DebugLoc dl = Op.getDebugLoc();
6455  SDValue V1 = Op.getOperand(0);
6456  SDValue V2 = Op.getOperand(1);
6457
6458  if (isZeroShuffle(SVOp))
6459    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6460
6461  // Handle splat operations
6462  if (SVOp->isSplat()) {
6463    unsigned NumElem = VT.getVectorNumElements();
6464    int Size = VT.getSizeInBits();
6465    // Special case, this is the only place now where it's allowed to return
6466    // a vector_shuffle operation without using a target specific node, because
6467    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6468    // this be moved to DAGCombine instead?
6469    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6470      return Op;
6471
6472    // Use vbroadcast whenever the splat comes from a foldable load
6473    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6474      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6475
6476    // Handle splats by matching through known shuffle masks
6477    if ((Size == 128 && NumElem <= 4) ||
6478        (Size == 256 && NumElem < 8))
6479      return SDValue();
6480
6481    // All remaning splats are promoted to target supported vector shuffles.
6482    return PromoteSplat(SVOp, DAG);
6483  }
6484
6485  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6486  // do it!
6487  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6488    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6489    if (NewOp.getNode())
6490      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6491  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6492    // FIXME: Figure out a cleaner way to do this.
6493    // Try to make use of movq to zero out the top part.
6494    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6495      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6496      if (NewOp.getNode()) {
6497        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6498          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6499                              DAG, Subtarget, dl);
6500      }
6501    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6502      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6503      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6504        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6505                            DAG, Subtarget, dl);
6506    }
6507  }
6508  return SDValue();
6509}
6510
6511SDValue
6512X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6513  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6514  SDValue V1 = Op.getOperand(0);
6515  SDValue V2 = Op.getOperand(1);
6516  EVT VT = Op.getValueType();
6517  DebugLoc dl = Op.getDebugLoc();
6518  unsigned NumElems = VT.getVectorNumElements();
6519  bool isMMX = VT.getSizeInBits() == 64;
6520  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6521  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6522  bool V1IsSplat = false;
6523  bool V2IsSplat = false;
6524  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6525  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6526  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6527  MachineFunction &MF = DAG.getMachineFunction();
6528  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6529
6530  // Shuffle operations on MMX not supported.
6531  if (isMMX)
6532    return Op;
6533
6534  // Vector shuffle lowering takes 3 steps:
6535  //
6536  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6537  //    narrowing and commutation of operands should be handled.
6538  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6539  //    shuffle nodes.
6540  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6541  //    so the shuffle can be broken into other shuffles and the legalizer can
6542  //    try the lowering again.
6543  //
6544  // The general ideia is that no vector_shuffle operation should be left to
6545  // be matched during isel, all of them must be converted to a target specific
6546  // node here.
6547
6548  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6549  // narrowing and commutation of operands should be handled. The actual code
6550  // doesn't include all of those, work in progress...
6551  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6552  if (NewOp.getNode())
6553    return NewOp;
6554
6555  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6556  // unpckh_undef). Only use pshufd if speed is more important than size.
6557  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6558    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6559  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6560    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6561
6562  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6563      RelaxedMayFoldVectorLoad(V1))
6564    return getMOVDDup(Op, dl, V1, DAG);
6565
6566  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6567    return getMOVHighToLow(Op, dl, DAG);
6568
6569  // Use to match splats
6570  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6571      (VT == MVT::v2f64 || VT == MVT::v2i64))
6572    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6573
6574  if (X86::isPSHUFDMask(SVOp)) {
6575    // The actual implementation will match the mask in the if above and then
6576    // during isel it can match several different instructions, not only pshufd
6577    // as its name says, sad but true, emulate the behavior for now...
6578    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6579        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6580
6581    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6582
6583    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6584      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6585
6586    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6587                                TargetMask, DAG);
6588  }
6589
6590  // Check if this can be converted into a logical shift.
6591  bool isLeft = false;
6592  unsigned ShAmt = 0;
6593  SDValue ShVal;
6594  bool isShift = getSubtarget()->hasSSE2() &&
6595    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6596  if (isShift && ShVal.hasOneUse()) {
6597    // If the shifted value has multiple uses, it may be cheaper to use
6598    // v_set0 + movlhps or movhlps, etc.
6599    EVT EltVT = VT.getVectorElementType();
6600    ShAmt *= EltVT.getSizeInBits();
6601    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6602  }
6603
6604  if (X86::isMOVLMask(SVOp)) {
6605    if (V1IsUndef)
6606      return V2;
6607    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6608      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6609    if (!X86::isMOVLPMask(SVOp)) {
6610      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6611        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6612
6613      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6614        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6615    }
6616  }
6617
6618  // FIXME: fold these into legal mask.
6619  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6620    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6621
6622  if (X86::isMOVHLPSMask(SVOp))
6623    return getMOVHighToLow(Op, dl, DAG);
6624
6625  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6626    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6627
6628  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6629    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6630
6631  if (X86::isMOVLPMask(SVOp))
6632    return getMOVLP(Op, dl, DAG, HasSSE2);
6633
6634  if (ShouldXformToMOVHLPS(SVOp) ||
6635      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6636    return CommuteVectorShuffle(SVOp, DAG);
6637
6638  if (isShift) {
6639    // No better options. Use a vshl / vsrl.
6640    EVT EltVT = VT.getVectorElementType();
6641    ShAmt *= EltVT.getSizeInBits();
6642    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6643  }
6644
6645  bool Commuted = false;
6646  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6647  // 1,1,1,1 -> v8i16 though.
6648  V1IsSplat = isSplatVector(V1.getNode());
6649  V2IsSplat = isSplatVector(V2.getNode());
6650
6651  // Canonicalize the splat or undef, if present, to be on the RHS.
6652  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6653    Op = CommuteVectorShuffle(SVOp, DAG);
6654    SVOp = cast<ShuffleVectorSDNode>(Op);
6655    V1 = SVOp->getOperand(0);
6656    V2 = SVOp->getOperand(1);
6657    std::swap(V1IsSplat, V2IsSplat);
6658    std::swap(V1IsUndef, V2IsUndef);
6659    Commuted = true;
6660  }
6661
6662  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6663    // Shuffling low element of v1 into undef, just return v1.
6664    if (V2IsUndef)
6665      return V1;
6666    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6667    // the instruction selector will not match, so get a canonical MOVL with
6668    // swapped operands to undo the commute.
6669    return getMOVL(DAG, dl, VT, V2, V1);
6670  }
6671
6672  if (X86::isUNPCKLMask(SVOp))
6673    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6674
6675  if (X86::isUNPCKHMask(SVOp))
6676    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6677
6678  if (V2IsSplat) {
6679    // Normalize mask so all entries that point to V2 points to its first
6680    // element then try to match unpck{h|l} again. If match, return a
6681    // new vector_shuffle with the corrected mask.
6682    SDValue NewMask = NormalizeMask(SVOp, DAG);
6683    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6684    if (NSVOp != SVOp) {
6685      if (X86::isUNPCKLMask(NSVOp, true)) {
6686        return NewMask;
6687      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6688        return NewMask;
6689      }
6690    }
6691  }
6692
6693  if (Commuted) {
6694    // Commute is back and try unpck* again.
6695    // FIXME: this seems wrong.
6696    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6697    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6698
6699    if (X86::isUNPCKLMask(NewSVOp))
6700      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6701
6702    if (X86::isUNPCKHMask(NewSVOp))
6703      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6704  }
6705
6706  // Normalize the node to match x86 shuffle ops if needed
6707  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6708    return CommuteVectorShuffle(SVOp, DAG);
6709
6710  // The checks below are all present in isShuffleMaskLegal, but they are
6711  // inlined here right now to enable us to directly emit target specific
6712  // nodes, and remove one by one until they don't return Op anymore.
6713  SmallVector<int, 16> M;
6714  SVOp->getMask(M);
6715
6716  if (isPALIGNRMask(M, VT, HasSSSE3))
6717    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6718                                X86::getShufflePALIGNRImmediate(SVOp),
6719                                DAG);
6720
6721  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6722      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6723    if (VT == MVT::v2f64)
6724      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6725    if (VT == MVT::v2i64)
6726      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6727  }
6728
6729  if (isPSHUFHWMask(M, VT))
6730    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6731                                X86::getShufflePSHUFHWImmediate(SVOp),
6732                                DAG);
6733
6734  if (isPSHUFLWMask(M, VT))
6735    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6736                                X86::getShufflePSHUFLWImmediate(SVOp),
6737                                DAG);
6738
6739  if (isSHUFPMask(M, VT))
6740    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6741                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6742
6743  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6744    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6745  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6746    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6747
6748  //===--------------------------------------------------------------------===//
6749  // Generate target specific nodes for 128 or 256-bit shuffles only
6750  // supported in the AVX instruction set.
6751  //
6752
6753  // Handle VMOVDDUPY permutations
6754  if (isMOVDDUPYMask(SVOp, Subtarget))
6755    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6756
6757  // Handle VPERMILPS* permutations
6758  if (isVPERMILPSMask(M, VT, Subtarget))
6759    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6760                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6761
6762  // Handle VPERMILPD* permutations
6763  if (isVPERMILPDMask(M, VT, Subtarget))
6764    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6765                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6766
6767  // Handle VPERM2F128 permutations
6768  if (isVPERM2F128Mask(M, VT, Subtarget))
6769    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6770                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6771
6772  // Handle VSHUFPSY permutations
6773  if (isVSHUFPSYMask(M, VT, Subtarget))
6774    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6775                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6776
6777  // Handle VSHUFPDY permutations
6778  if (isVSHUFPDYMask(M, VT, Subtarget))
6779    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6780                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6781
6782  //===--------------------------------------------------------------------===//
6783  // Since no target specific shuffle was selected for this generic one,
6784  // lower it into other known shuffles. FIXME: this isn't true yet, but
6785  // this is the plan.
6786  //
6787
6788  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6789  if (VT == MVT::v8i16) {
6790    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6791    if (NewOp.getNode())
6792      return NewOp;
6793  }
6794
6795  if (VT == MVT::v16i8) {
6796    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6797    if (NewOp.getNode())
6798      return NewOp;
6799  }
6800
6801  // Handle all 128-bit wide vectors with 4 elements, and match them with
6802  // several different shuffle types.
6803  if (NumElems == 4 && VT.getSizeInBits() == 128)
6804    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6805
6806  // Handle general 256-bit shuffles
6807  if (VT.is256BitVector())
6808    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6809
6810  return SDValue();
6811}
6812
6813SDValue
6814X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6815                                                SelectionDAG &DAG) const {
6816  EVT VT = Op.getValueType();
6817  DebugLoc dl = Op.getDebugLoc();
6818
6819  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6820    return SDValue();
6821
6822  if (VT.getSizeInBits() == 8) {
6823    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6824                                    Op.getOperand(0), Op.getOperand(1));
6825    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6826                                    DAG.getValueType(VT));
6827    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6828  } else if (VT.getSizeInBits() == 16) {
6829    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6830    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6831    if (Idx == 0)
6832      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6833                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6834                                     DAG.getNode(ISD::BITCAST, dl,
6835                                                 MVT::v4i32,
6836                                                 Op.getOperand(0)),
6837                                     Op.getOperand(1)));
6838    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6839                                    Op.getOperand(0), Op.getOperand(1));
6840    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6841                                    DAG.getValueType(VT));
6842    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6843  } else if (VT == MVT::f32) {
6844    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6845    // the result back to FR32 register. It's only worth matching if the
6846    // result has a single use which is a store or a bitcast to i32.  And in
6847    // the case of a store, it's not worth it if the index is a constant 0,
6848    // because a MOVSSmr can be used instead, which is smaller and faster.
6849    if (!Op.hasOneUse())
6850      return SDValue();
6851    SDNode *User = *Op.getNode()->use_begin();
6852    if ((User->getOpcode() != ISD::STORE ||
6853         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6854          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6855        (User->getOpcode() != ISD::BITCAST ||
6856         User->getValueType(0) != MVT::i32))
6857      return SDValue();
6858    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6859                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6860                                              Op.getOperand(0)),
6861                                              Op.getOperand(1));
6862    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6863  } else if (VT == MVT::i32) {
6864    // ExtractPS works with constant index.
6865    if (isa<ConstantSDNode>(Op.getOperand(1)))
6866      return Op;
6867  }
6868  return SDValue();
6869}
6870
6871
6872SDValue
6873X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6874                                           SelectionDAG &DAG) const {
6875  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6876    return SDValue();
6877
6878  SDValue Vec = Op.getOperand(0);
6879  EVT VecVT = Vec.getValueType();
6880
6881  // If this is a 256-bit vector result, first extract the 128-bit vector and
6882  // then extract the element from the 128-bit vector.
6883  if (VecVT.getSizeInBits() == 256) {
6884    DebugLoc dl = Op.getNode()->getDebugLoc();
6885    unsigned NumElems = VecVT.getVectorNumElements();
6886    SDValue Idx = Op.getOperand(1);
6887    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6888
6889    // Get the 128-bit vector.
6890    bool Upper = IdxVal >= NumElems/2;
6891    Vec = Extract128BitVector(Vec,
6892                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6893
6894    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6895                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6896  }
6897
6898  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6899
6900  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6901    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6902    if (Res.getNode())
6903      return Res;
6904  }
6905
6906  EVT VT = Op.getValueType();
6907  DebugLoc dl = Op.getDebugLoc();
6908  // TODO: handle v16i8.
6909  if (VT.getSizeInBits() == 16) {
6910    SDValue Vec = Op.getOperand(0);
6911    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6912    if (Idx == 0)
6913      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6914                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6915                                     DAG.getNode(ISD::BITCAST, dl,
6916                                                 MVT::v4i32, Vec),
6917                                     Op.getOperand(1)));
6918    // Transform it so it match pextrw which produces a 32-bit result.
6919    EVT EltVT = MVT::i32;
6920    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6921                                    Op.getOperand(0), Op.getOperand(1));
6922    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6923                                    DAG.getValueType(VT));
6924    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6925  } else if (VT.getSizeInBits() == 32) {
6926    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6927    if (Idx == 0)
6928      return Op;
6929
6930    // SHUFPS the element to the lowest double word, then movss.
6931    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6932    EVT VVT = Op.getOperand(0).getValueType();
6933    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6934                                       DAG.getUNDEF(VVT), Mask);
6935    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6936                       DAG.getIntPtrConstant(0));
6937  } else if (VT.getSizeInBits() == 64) {
6938    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6939    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6940    //        to match extract_elt for f64.
6941    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6942    if (Idx == 0)
6943      return Op;
6944
6945    // UNPCKHPD the element to the lowest double word, then movsd.
6946    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6947    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6948    int Mask[2] = { 1, -1 };
6949    EVT VVT = Op.getOperand(0).getValueType();
6950    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6951                                       DAG.getUNDEF(VVT), Mask);
6952    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6953                       DAG.getIntPtrConstant(0));
6954  }
6955
6956  return SDValue();
6957}
6958
6959SDValue
6960X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6961                                               SelectionDAG &DAG) const {
6962  EVT VT = Op.getValueType();
6963  EVT EltVT = VT.getVectorElementType();
6964  DebugLoc dl = Op.getDebugLoc();
6965
6966  SDValue N0 = Op.getOperand(0);
6967  SDValue N1 = Op.getOperand(1);
6968  SDValue N2 = Op.getOperand(2);
6969
6970  if (VT.getSizeInBits() == 256)
6971    return SDValue();
6972
6973  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6974      isa<ConstantSDNode>(N2)) {
6975    unsigned Opc;
6976    if (VT == MVT::v8i16)
6977      Opc = X86ISD::PINSRW;
6978    else if (VT == MVT::v16i8)
6979      Opc = X86ISD::PINSRB;
6980    else
6981      Opc = X86ISD::PINSRB;
6982
6983    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6984    // argument.
6985    if (N1.getValueType() != MVT::i32)
6986      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6987    if (N2.getValueType() != MVT::i32)
6988      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6989    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6990  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6991    // Bits [7:6] of the constant are the source select.  This will always be
6992    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6993    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6994    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6995    // Bits [5:4] of the constant are the destination select.  This is the
6996    //  value of the incoming immediate.
6997    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6998    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6999    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7000    // Create this as a scalar to vector..
7001    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7002    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7003  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7004    // PINSR* works with constant index.
7005    return Op;
7006  }
7007  return SDValue();
7008}
7009
7010SDValue
7011X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7012  EVT VT = Op.getValueType();
7013  EVT EltVT = VT.getVectorElementType();
7014
7015  DebugLoc dl = Op.getDebugLoc();
7016  SDValue N0 = Op.getOperand(0);
7017  SDValue N1 = Op.getOperand(1);
7018  SDValue N2 = Op.getOperand(2);
7019
7020  // If this is a 256-bit vector result, first extract the 128-bit vector,
7021  // insert the element into the extracted half and then place it back.
7022  if (VT.getSizeInBits() == 256) {
7023    if (!isa<ConstantSDNode>(N2))
7024      return SDValue();
7025
7026    // Get the desired 128-bit vector half.
7027    unsigned NumElems = VT.getVectorNumElements();
7028    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7029    bool Upper = IdxVal >= NumElems/2;
7030    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7031    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7032
7033    // Insert the element into the desired half.
7034    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7035                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7036
7037    // Insert the changed part back to the 256-bit vector
7038    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7039  }
7040
7041  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7042    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7043
7044  if (EltVT == MVT::i8)
7045    return SDValue();
7046
7047  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7048    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7049    // as its second argument.
7050    if (N1.getValueType() != MVT::i32)
7051      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7052    if (N2.getValueType() != MVT::i32)
7053      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7054    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7055  }
7056  return SDValue();
7057}
7058
7059SDValue
7060X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7061  LLVMContext *Context = DAG.getContext();
7062  DebugLoc dl = Op.getDebugLoc();
7063  EVT OpVT = Op.getValueType();
7064
7065  // If this is a 256-bit vector result, first insert into a 128-bit
7066  // vector and then insert into the 256-bit vector.
7067  if (OpVT.getSizeInBits() > 128) {
7068    // Insert into a 128-bit vector.
7069    EVT VT128 = EVT::getVectorVT(*Context,
7070                                 OpVT.getVectorElementType(),
7071                                 OpVT.getVectorNumElements() / 2);
7072
7073    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7074
7075    // Insert the 128-bit vector.
7076    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7077                              DAG.getConstant(0, MVT::i32),
7078                              DAG, dl);
7079  }
7080
7081  if (Op.getValueType() == MVT::v1i64 &&
7082      Op.getOperand(0).getValueType() == MVT::i64)
7083    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7084
7085  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7086  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7087         "Expected an SSE type!");
7088  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7089                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7090}
7091
7092// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7093// a simple subregister reference or explicit instructions to grab
7094// upper bits of a vector.
7095SDValue
7096X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7097  if (Subtarget->hasAVX()) {
7098    DebugLoc dl = Op.getNode()->getDebugLoc();
7099    SDValue Vec = Op.getNode()->getOperand(0);
7100    SDValue Idx = Op.getNode()->getOperand(1);
7101
7102    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7103        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7104        return Extract128BitVector(Vec, Idx, DAG, dl);
7105    }
7106  }
7107  return SDValue();
7108}
7109
7110// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7111// simple superregister reference or explicit instructions to insert
7112// the upper bits of a vector.
7113SDValue
7114X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7115  if (Subtarget->hasAVX()) {
7116    DebugLoc dl = Op.getNode()->getDebugLoc();
7117    SDValue Vec = Op.getNode()->getOperand(0);
7118    SDValue SubVec = Op.getNode()->getOperand(1);
7119    SDValue Idx = Op.getNode()->getOperand(2);
7120
7121    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7122        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7123      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7124    }
7125  }
7126  return SDValue();
7127}
7128
7129// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7130// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7131// one of the above mentioned nodes. It has to be wrapped because otherwise
7132// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7133// be used to form addressing mode. These wrapped nodes will be selected
7134// into MOV32ri.
7135SDValue
7136X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7137  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7138
7139  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7140  // global base reg.
7141  unsigned char OpFlag = 0;
7142  unsigned WrapperKind = X86ISD::Wrapper;
7143  CodeModel::Model M = getTargetMachine().getCodeModel();
7144
7145  if (Subtarget->isPICStyleRIPRel() &&
7146      (M == CodeModel::Small || M == CodeModel::Kernel))
7147    WrapperKind = X86ISD::WrapperRIP;
7148  else if (Subtarget->isPICStyleGOT())
7149    OpFlag = X86II::MO_GOTOFF;
7150  else if (Subtarget->isPICStyleStubPIC())
7151    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7152
7153  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7154                                             CP->getAlignment(),
7155                                             CP->getOffset(), OpFlag);
7156  DebugLoc DL = CP->getDebugLoc();
7157  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7158  // With PIC, the address is actually $g + Offset.
7159  if (OpFlag) {
7160    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7161                         DAG.getNode(X86ISD::GlobalBaseReg,
7162                                     DebugLoc(), getPointerTy()),
7163                         Result);
7164  }
7165
7166  return Result;
7167}
7168
7169SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7170  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7171
7172  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7173  // global base reg.
7174  unsigned char OpFlag = 0;
7175  unsigned WrapperKind = X86ISD::Wrapper;
7176  CodeModel::Model M = getTargetMachine().getCodeModel();
7177
7178  if (Subtarget->isPICStyleRIPRel() &&
7179      (M == CodeModel::Small || M == CodeModel::Kernel))
7180    WrapperKind = X86ISD::WrapperRIP;
7181  else if (Subtarget->isPICStyleGOT())
7182    OpFlag = X86II::MO_GOTOFF;
7183  else if (Subtarget->isPICStyleStubPIC())
7184    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7185
7186  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7187                                          OpFlag);
7188  DebugLoc DL = JT->getDebugLoc();
7189  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7190
7191  // With PIC, the address is actually $g + Offset.
7192  if (OpFlag)
7193    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7194                         DAG.getNode(X86ISD::GlobalBaseReg,
7195                                     DebugLoc(), getPointerTy()),
7196                         Result);
7197
7198  return Result;
7199}
7200
7201SDValue
7202X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7203  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7204
7205  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7206  // global base reg.
7207  unsigned char OpFlag = 0;
7208  unsigned WrapperKind = X86ISD::Wrapper;
7209  CodeModel::Model M = getTargetMachine().getCodeModel();
7210
7211  if (Subtarget->isPICStyleRIPRel() &&
7212      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7213    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7214      OpFlag = X86II::MO_GOTPCREL;
7215    WrapperKind = X86ISD::WrapperRIP;
7216  } else if (Subtarget->isPICStyleGOT()) {
7217    OpFlag = X86II::MO_GOT;
7218  } else if (Subtarget->isPICStyleStubPIC()) {
7219    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7220  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7221    OpFlag = X86II::MO_DARWIN_NONLAZY;
7222  }
7223
7224  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7225
7226  DebugLoc DL = Op.getDebugLoc();
7227  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7228
7229
7230  // With PIC, the address is actually $g + Offset.
7231  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7232      !Subtarget->is64Bit()) {
7233    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7234                         DAG.getNode(X86ISD::GlobalBaseReg,
7235                                     DebugLoc(), getPointerTy()),
7236                         Result);
7237  }
7238
7239  // For symbols that require a load from a stub to get the address, emit the
7240  // load.
7241  if (isGlobalStubReference(OpFlag))
7242    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7243                         MachinePointerInfo::getGOT(), false, false, 0);
7244
7245  return Result;
7246}
7247
7248SDValue
7249X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7250  // Create the TargetBlockAddressAddress node.
7251  unsigned char OpFlags =
7252    Subtarget->ClassifyBlockAddressReference();
7253  CodeModel::Model M = getTargetMachine().getCodeModel();
7254  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7255  DebugLoc dl = Op.getDebugLoc();
7256  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7257                                       /*isTarget=*/true, OpFlags);
7258
7259  if (Subtarget->isPICStyleRIPRel() &&
7260      (M == CodeModel::Small || M == CodeModel::Kernel))
7261    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7262  else
7263    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7264
7265  // With PIC, the address is actually $g + Offset.
7266  if (isGlobalRelativeToPICBase(OpFlags)) {
7267    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7268                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7269                         Result);
7270  }
7271
7272  return Result;
7273}
7274
7275SDValue
7276X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7277                                      int64_t Offset,
7278                                      SelectionDAG &DAG) const {
7279  // Create the TargetGlobalAddress node, folding in the constant
7280  // offset if it is legal.
7281  unsigned char OpFlags =
7282    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7283  CodeModel::Model M = getTargetMachine().getCodeModel();
7284  SDValue Result;
7285  if (OpFlags == X86II::MO_NO_FLAG &&
7286      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7287    // A direct static reference to a global.
7288    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7289    Offset = 0;
7290  } else {
7291    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7292  }
7293
7294  if (Subtarget->isPICStyleRIPRel() &&
7295      (M == CodeModel::Small || M == CodeModel::Kernel))
7296    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7297  else
7298    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7299
7300  // With PIC, the address is actually $g + Offset.
7301  if (isGlobalRelativeToPICBase(OpFlags)) {
7302    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7303                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7304                         Result);
7305  }
7306
7307  // For globals that require a load from a stub to get the address, emit the
7308  // load.
7309  if (isGlobalStubReference(OpFlags))
7310    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7311                         MachinePointerInfo::getGOT(), false, false, 0);
7312
7313  // If there was a non-zero offset that we didn't fold, create an explicit
7314  // addition for it.
7315  if (Offset != 0)
7316    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7317                         DAG.getConstant(Offset, getPointerTy()));
7318
7319  return Result;
7320}
7321
7322SDValue
7323X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7324  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7325  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7326  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7327}
7328
7329static SDValue
7330GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7331           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7332           unsigned char OperandFlags) {
7333  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7334  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7335  DebugLoc dl = GA->getDebugLoc();
7336  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7337                                           GA->getValueType(0),
7338                                           GA->getOffset(),
7339                                           OperandFlags);
7340  if (InFlag) {
7341    SDValue Ops[] = { Chain,  TGA, *InFlag };
7342    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7343  } else {
7344    SDValue Ops[]  = { Chain, TGA };
7345    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7346  }
7347
7348  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7349  MFI->setAdjustsStack(true);
7350
7351  SDValue Flag = Chain.getValue(1);
7352  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7353}
7354
7355// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7356static SDValue
7357LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7358                                const EVT PtrVT) {
7359  SDValue InFlag;
7360  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7361  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7362                                     DAG.getNode(X86ISD::GlobalBaseReg,
7363                                                 DebugLoc(), PtrVT), InFlag);
7364  InFlag = Chain.getValue(1);
7365
7366  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7367}
7368
7369// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7370static SDValue
7371LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7372                                const EVT PtrVT) {
7373  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7374                    X86::RAX, X86II::MO_TLSGD);
7375}
7376
7377// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7378// "local exec" model.
7379static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7380                                   const EVT PtrVT, TLSModel::Model model,
7381                                   bool is64Bit) {
7382  DebugLoc dl = GA->getDebugLoc();
7383
7384  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7385  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7386                                                         is64Bit ? 257 : 256));
7387
7388  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7389                                      DAG.getIntPtrConstant(0),
7390                                      MachinePointerInfo(Ptr), false, false, 0);
7391
7392  unsigned char OperandFlags = 0;
7393  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7394  // initialexec.
7395  unsigned WrapperKind = X86ISD::Wrapper;
7396  if (model == TLSModel::LocalExec) {
7397    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7398  } else if (is64Bit) {
7399    assert(model == TLSModel::InitialExec);
7400    OperandFlags = X86II::MO_GOTTPOFF;
7401    WrapperKind = X86ISD::WrapperRIP;
7402  } else {
7403    assert(model == TLSModel::InitialExec);
7404    OperandFlags = X86II::MO_INDNTPOFF;
7405  }
7406
7407  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7408  // exec)
7409  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7410                                           GA->getValueType(0),
7411                                           GA->getOffset(), OperandFlags);
7412  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7413
7414  if (model == TLSModel::InitialExec)
7415    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7416                         MachinePointerInfo::getGOT(), false, false, 0);
7417
7418  // The address of the thread local variable is the add of the thread
7419  // pointer with the offset of the variable.
7420  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7421}
7422
7423SDValue
7424X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7425
7426  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7427  const GlobalValue *GV = GA->getGlobal();
7428
7429  if (Subtarget->isTargetELF()) {
7430    // TODO: implement the "local dynamic" model
7431    // TODO: implement the "initial exec"model for pic executables
7432
7433    // If GV is an alias then use the aliasee for determining
7434    // thread-localness.
7435    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7436      GV = GA->resolveAliasedGlobal(false);
7437
7438    TLSModel::Model model
7439      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7440
7441    switch (model) {
7442      case TLSModel::GeneralDynamic:
7443      case TLSModel::LocalDynamic: // not implemented
7444        if (Subtarget->is64Bit())
7445          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7446        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7447
7448      case TLSModel::InitialExec:
7449      case TLSModel::LocalExec:
7450        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7451                                   Subtarget->is64Bit());
7452    }
7453  } else if (Subtarget->isTargetDarwin()) {
7454    // Darwin only has one model of TLS.  Lower to that.
7455    unsigned char OpFlag = 0;
7456    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7457                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7458
7459    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7460    // global base reg.
7461    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7462                  !Subtarget->is64Bit();
7463    if (PIC32)
7464      OpFlag = X86II::MO_TLVP_PIC_BASE;
7465    else
7466      OpFlag = X86II::MO_TLVP;
7467    DebugLoc DL = Op.getDebugLoc();
7468    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7469                                                GA->getValueType(0),
7470                                                GA->getOffset(), OpFlag);
7471    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7472
7473    // With PIC32, the address is actually $g + Offset.
7474    if (PIC32)
7475      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7476                           DAG.getNode(X86ISD::GlobalBaseReg,
7477                                       DebugLoc(), getPointerTy()),
7478                           Offset);
7479
7480    // Lowering the machine isd will make sure everything is in the right
7481    // location.
7482    SDValue Chain = DAG.getEntryNode();
7483    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7484    SDValue Args[] = { Chain, Offset };
7485    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7486
7487    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7488    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7489    MFI->setAdjustsStack(true);
7490
7491    // And our return value (tls address) is in the standard call return value
7492    // location.
7493    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7494    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7495  }
7496
7497  assert(false &&
7498         "TLS not implemented for this target.");
7499
7500  llvm_unreachable("Unreachable");
7501  return SDValue();
7502}
7503
7504
7505/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7506/// take a 2 x i32 value to shift plus a shift amount.
7507SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7508  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7509  EVT VT = Op.getValueType();
7510  unsigned VTBits = VT.getSizeInBits();
7511  DebugLoc dl = Op.getDebugLoc();
7512  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7513  SDValue ShOpLo = Op.getOperand(0);
7514  SDValue ShOpHi = Op.getOperand(1);
7515  SDValue ShAmt  = Op.getOperand(2);
7516  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7517                                     DAG.getConstant(VTBits - 1, MVT::i8))
7518                       : DAG.getConstant(0, VT);
7519
7520  SDValue Tmp2, Tmp3;
7521  if (Op.getOpcode() == ISD::SHL_PARTS) {
7522    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7523    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7524  } else {
7525    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7526    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7527  }
7528
7529  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7530                                DAG.getConstant(VTBits, MVT::i8));
7531  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7532                             AndNode, DAG.getConstant(0, MVT::i8));
7533
7534  SDValue Hi, Lo;
7535  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7536  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7537  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7538
7539  if (Op.getOpcode() == ISD::SHL_PARTS) {
7540    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7541    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7542  } else {
7543    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7544    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7545  }
7546
7547  SDValue Ops[2] = { Lo, Hi };
7548  return DAG.getMergeValues(Ops, 2, dl);
7549}
7550
7551SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7552                                           SelectionDAG &DAG) const {
7553  EVT SrcVT = Op.getOperand(0).getValueType();
7554
7555  if (SrcVT.isVector())
7556    return SDValue();
7557
7558  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7559         "Unknown SINT_TO_FP to lower!");
7560
7561  // These are really Legal; return the operand so the caller accepts it as
7562  // Legal.
7563  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7564    return Op;
7565  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7566      Subtarget->is64Bit()) {
7567    return Op;
7568  }
7569
7570  DebugLoc dl = Op.getDebugLoc();
7571  unsigned Size = SrcVT.getSizeInBits()/8;
7572  MachineFunction &MF = DAG.getMachineFunction();
7573  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7574  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7575  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7576                               StackSlot,
7577                               MachinePointerInfo::getFixedStack(SSFI),
7578                               false, false, 0);
7579  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7580}
7581
7582SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7583                                     SDValue StackSlot,
7584                                     SelectionDAG &DAG) const {
7585  // Build the FILD
7586  DebugLoc DL = Op.getDebugLoc();
7587  SDVTList Tys;
7588  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7589  if (useSSE)
7590    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7591  else
7592    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7593
7594  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7595
7596  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7597  MachineMemOperand *MMO;
7598  if (FI) {
7599    int SSFI = FI->getIndex();
7600    MMO =
7601      DAG.getMachineFunction()
7602      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7603                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7604  } else {
7605    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7606    StackSlot = StackSlot.getOperand(1);
7607  }
7608  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7609  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7610                                           X86ISD::FILD, DL,
7611                                           Tys, Ops, array_lengthof(Ops),
7612                                           SrcVT, MMO);
7613
7614  if (useSSE) {
7615    Chain = Result.getValue(1);
7616    SDValue InFlag = Result.getValue(2);
7617
7618    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7619    // shouldn't be necessary except that RFP cannot be live across
7620    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7621    MachineFunction &MF = DAG.getMachineFunction();
7622    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7623    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7624    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7625    Tys = DAG.getVTList(MVT::Other);
7626    SDValue Ops[] = {
7627      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7628    };
7629    MachineMemOperand *MMO =
7630      DAG.getMachineFunction()
7631      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7632                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7633
7634    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7635                                    Ops, array_lengthof(Ops),
7636                                    Op.getValueType(), MMO);
7637    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7638                         MachinePointerInfo::getFixedStack(SSFI),
7639                         false, false, 0);
7640  }
7641
7642  return Result;
7643}
7644
7645// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7646SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7647                                               SelectionDAG &DAG) const {
7648  // This algorithm is not obvious. Here it is in C code, more or less:
7649  /*
7650    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7651      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7652      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7653
7654      // Copy ints to xmm registers.
7655      __m128i xh = _mm_cvtsi32_si128( hi );
7656      __m128i xl = _mm_cvtsi32_si128( lo );
7657
7658      // Combine into low half of a single xmm register.
7659      __m128i x = _mm_unpacklo_epi32( xh, xl );
7660      __m128d d;
7661      double sd;
7662
7663      // Merge in appropriate exponents to give the integer bits the right
7664      // magnitude.
7665      x = _mm_unpacklo_epi32( x, exp );
7666
7667      // Subtract away the biases to deal with the IEEE-754 double precision
7668      // implicit 1.
7669      d = _mm_sub_pd( (__m128d) x, bias );
7670
7671      // All conversions up to here are exact. The correctly rounded result is
7672      // calculated using the current rounding mode using the following
7673      // horizontal add.
7674      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7675      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7676                                // store doesn't really need to be here (except
7677                                // maybe to zero the other double)
7678      return sd;
7679    }
7680  */
7681
7682  DebugLoc dl = Op.getDebugLoc();
7683  LLVMContext *Context = DAG.getContext();
7684
7685  // Build some magic constants.
7686  std::vector<Constant*> CV0;
7687  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7688  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7689  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7690  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7691  Constant *C0 = ConstantVector::get(CV0);
7692  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7693
7694  std::vector<Constant*> CV1;
7695  CV1.push_back(
7696    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7697  CV1.push_back(
7698    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7699  Constant *C1 = ConstantVector::get(CV1);
7700  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7701
7702  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7703                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7704                                        Op.getOperand(0),
7705                                        DAG.getIntPtrConstant(1)));
7706  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7707                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7708                                        Op.getOperand(0),
7709                                        DAG.getIntPtrConstant(0)));
7710  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7711  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7712                              MachinePointerInfo::getConstantPool(),
7713                              false, false, 16);
7714  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7715  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7716  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7717                              MachinePointerInfo::getConstantPool(),
7718                              false, false, 16);
7719  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7720
7721  // Add the halves; easiest way is to swap them into another reg first.
7722  int ShufMask[2] = { 1, -1 };
7723  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7724                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7725  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7726  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7727                     DAG.getIntPtrConstant(0));
7728}
7729
7730// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7731SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7732                                               SelectionDAG &DAG) const {
7733  DebugLoc dl = Op.getDebugLoc();
7734  // FP constant to bias correct the final result.
7735  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7736                                   MVT::f64);
7737
7738  // Load the 32-bit value into an XMM register.
7739  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7740                             Op.getOperand(0));
7741
7742  // Zero out the upper parts of the register.
7743  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasSSE2(), DAG);
7744
7745  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7746                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7747                     DAG.getIntPtrConstant(0));
7748
7749  // Or the load with the bias.
7750  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7751                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7752                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7753                                                   MVT::v2f64, Load)),
7754                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7755                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7756                                                   MVT::v2f64, Bias)));
7757  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7758                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7759                   DAG.getIntPtrConstant(0));
7760
7761  // Subtract the bias.
7762  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7763
7764  // Handle final rounding.
7765  EVT DestVT = Op.getValueType();
7766
7767  if (DestVT.bitsLT(MVT::f64)) {
7768    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7769                       DAG.getIntPtrConstant(0));
7770  } else if (DestVT.bitsGT(MVT::f64)) {
7771    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7772  }
7773
7774  // Handle final rounding.
7775  return Sub;
7776}
7777
7778SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7779                                           SelectionDAG &DAG) const {
7780  SDValue N0 = Op.getOperand(0);
7781  DebugLoc dl = Op.getDebugLoc();
7782
7783  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7784  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7785  // the optimization here.
7786  if (DAG.SignBitIsZero(N0))
7787    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7788
7789  EVT SrcVT = N0.getValueType();
7790  EVT DstVT = Op.getValueType();
7791  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7792    return LowerUINT_TO_FP_i64(Op, DAG);
7793  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7794    return LowerUINT_TO_FP_i32(Op, DAG);
7795
7796  // Make a 64-bit buffer, and use it to build an FILD.
7797  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7798  if (SrcVT == MVT::i32) {
7799    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7800    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7801                                     getPointerTy(), StackSlot, WordOff);
7802    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7803                                  StackSlot, MachinePointerInfo(),
7804                                  false, false, 0);
7805    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7806                                  OffsetSlot, MachinePointerInfo(),
7807                                  false, false, 0);
7808    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7809    return Fild;
7810  }
7811
7812  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7813  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7814                                StackSlot, MachinePointerInfo(),
7815                               false, false, 0);
7816  // For i64 source, we need to add the appropriate power of 2 if the input
7817  // was negative.  This is the same as the optimization in
7818  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7819  // we must be careful to do the computation in x87 extended precision, not
7820  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7821  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7822  MachineMemOperand *MMO =
7823    DAG.getMachineFunction()
7824    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7825                          MachineMemOperand::MOLoad, 8, 8);
7826
7827  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7828  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7829  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7830                                         MVT::i64, MMO);
7831
7832  APInt FF(32, 0x5F800000ULL);
7833
7834  // Check whether the sign bit is set.
7835  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7836                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7837                                 ISD::SETLT);
7838
7839  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7840  SDValue FudgePtr = DAG.getConstantPool(
7841                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7842                                         getPointerTy());
7843
7844  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7845  SDValue Zero = DAG.getIntPtrConstant(0);
7846  SDValue Four = DAG.getIntPtrConstant(4);
7847  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7848                               Zero, Four);
7849  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7850
7851  // Load the value out, extending it from f32 to f80.
7852  // FIXME: Avoid the extend by constructing the right constant pool?
7853  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7854                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7855                                 MVT::f32, false, false, 4);
7856  // Extend everything to 80 bits to force it to be done on x87.
7857  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7858  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7859}
7860
7861std::pair<SDValue,SDValue> X86TargetLowering::
7862FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7863  DebugLoc DL = Op.getDebugLoc();
7864
7865  EVT DstTy = Op.getValueType();
7866
7867  if (!IsSigned) {
7868    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7869    DstTy = MVT::i64;
7870  }
7871
7872  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7873         DstTy.getSimpleVT() >= MVT::i16 &&
7874         "Unknown FP_TO_SINT to lower!");
7875
7876  // These are really Legal.
7877  if (DstTy == MVT::i32 &&
7878      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7879    return std::make_pair(SDValue(), SDValue());
7880  if (Subtarget->is64Bit() &&
7881      DstTy == MVT::i64 &&
7882      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7883    return std::make_pair(SDValue(), SDValue());
7884
7885  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7886  // stack slot.
7887  MachineFunction &MF = DAG.getMachineFunction();
7888  unsigned MemSize = DstTy.getSizeInBits()/8;
7889  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7890  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7891
7892
7893
7894  unsigned Opc;
7895  switch (DstTy.getSimpleVT().SimpleTy) {
7896  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7897  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7898  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7899  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7900  }
7901
7902  SDValue Chain = DAG.getEntryNode();
7903  SDValue Value = Op.getOperand(0);
7904  EVT TheVT = Op.getOperand(0).getValueType();
7905  if (isScalarFPTypeInSSEReg(TheVT)) {
7906    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7907    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7908                         MachinePointerInfo::getFixedStack(SSFI),
7909                         false, false, 0);
7910    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7911    SDValue Ops[] = {
7912      Chain, StackSlot, DAG.getValueType(TheVT)
7913    };
7914
7915    MachineMemOperand *MMO =
7916      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7917                              MachineMemOperand::MOLoad, MemSize, MemSize);
7918    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7919                                    DstTy, MMO);
7920    Chain = Value.getValue(1);
7921    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7922    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7923  }
7924
7925  MachineMemOperand *MMO =
7926    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7927                            MachineMemOperand::MOStore, MemSize, MemSize);
7928
7929  // Build the FP_TO_INT*_IN_MEM
7930  SDValue Ops[] = { Chain, Value, StackSlot };
7931  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7932                                         Ops, 3, DstTy, MMO);
7933
7934  return std::make_pair(FIST, StackSlot);
7935}
7936
7937SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7938                                           SelectionDAG &DAG) const {
7939  if (Op.getValueType().isVector())
7940    return SDValue();
7941
7942  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7943  SDValue FIST = Vals.first, StackSlot = Vals.second;
7944  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7945  if (FIST.getNode() == 0) return Op;
7946
7947  // Load the result.
7948  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7949                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7950}
7951
7952SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7953                                           SelectionDAG &DAG) const {
7954  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7955  SDValue FIST = Vals.first, StackSlot = Vals.second;
7956  assert(FIST.getNode() && "Unexpected failure");
7957
7958  // Load the result.
7959  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7960                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7961}
7962
7963SDValue X86TargetLowering::LowerFABS(SDValue Op,
7964                                     SelectionDAG &DAG) const {
7965  LLVMContext *Context = DAG.getContext();
7966  DebugLoc dl = Op.getDebugLoc();
7967  EVT VT = Op.getValueType();
7968  EVT EltVT = VT;
7969  if (VT.isVector())
7970    EltVT = VT.getVectorElementType();
7971  std::vector<Constant*> CV;
7972  if (EltVT == MVT::f64) {
7973    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7974    CV.push_back(C);
7975    CV.push_back(C);
7976  } else {
7977    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7978    CV.push_back(C);
7979    CV.push_back(C);
7980    CV.push_back(C);
7981    CV.push_back(C);
7982  }
7983  Constant *C = ConstantVector::get(CV);
7984  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7985  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7986                             MachinePointerInfo::getConstantPool(),
7987                             false, false, 16);
7988  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7989}
7990
7991SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7992  LLVMContext *Context = DAG.getContext();
7993  DebugLoc dl = Op.getDebugLoc();
7994  EVT VT = Op.getValueType();
7995  EVT EltVT = VT;
7996  if (VT.isVector())
7997    EltVT = VT.getVectorElementType();
7998  std::vector<Constant*> CV;
7999  if (EltVT == MVT::f64) {
8000    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8001    CV.push_back(C);
8002    CV.push_back(C);
8003  } else {
8004    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8005    CV.push_back(C);
8006    CV.push_back(C);
8007    CV.push_back(C);
8008    CV.push_back(C);
8009  }
8010  Constant *C = ConstantVector::get(CV);
8011  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8012  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8013                             MachinePointerInfo::getConstantPool(),
8014                             false, false, 16);
8015  if (VT.isVector()) {
8016    return DAG.getNode(ISD::BITCAST, dl, VT,
8017                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8018                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8019                                Op.getOperand(0)),
8020                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8021  } else {
8022    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8023  }
8024}
8025
8026SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8027  LLVMContext *Context = DAG.getContext();
8028  SDValue Op0 = Op.getOperand(0);
8029  SDValue Op1 = Op.getOperand(1);
8030  DebugLoc dl = Op.getDebugLoc();
8031  EVT VT = Op.getValueType();
8032  EVT SrcVT = Op1.getValueType();
8033
8034  // If second operand is smaller, extend it first.
8035  if (SrcVT.bitsLT(VT)) {
8036    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8037    SrcVT = VT;
8038  }
8039  // And if it is bigger, shrink it first.
8040  if (SrcVT.bitsGT(VT)) {
8041    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8042    SrcVT = VT;
8043  }
8044
8045  // At this point the operands and the result should have the same
8046  // type, and that won't be f80 since that is not custom lowered.
8047
8048  // First get the sign bit of second operand.
8049  std::vector<Constant*> CV;
8050  if (SrcVT == MVT::f64) {
8051    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8052    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8053  } else {
8054    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8055    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8056    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8057    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8058  }
8059  Constant *C = ConstantVector::get(CV);
8060  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8061  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8062                              MachinePointerInfo::getConstantPool(),
8063                              false, false, 16);
8064  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8065
8066  // Shift sign bit right or left if the two operands have different types.
8067  if (SrcVT.bitsGT(VT)) {
8068    // Op0 is MVT::f32, Op1 is MVT::f64.
8069    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8070    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8071                          DAG.getConstant(32, MVT::i32));
8072    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8073    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8074                          DAG.getIntPtrConstant(0));
8075  }
8076
8077  // Clear first operand sign bit.
8078  CV.clear();
8079  if (VT == MVT::f64) {
8080    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8081    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8082  } else {
8083    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8084    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8085    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8086    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8087  }
8088  C = ConstantVector::get(CV);
8089  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8090  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8091                              MachinePointerInfo::getConstantPool(),
8092                              false, false, 16);
8093  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8094
8095  // Or the value with the sign bit.
8096  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8097}
8098
8099SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8100  SDValue N0 = Op.getOperand(0);
8101  DebugLoc dl = Op.getDebugLoc();
8102  EVT VT = Op.getValueType();
8103
8104  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8105  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8106                                  DAG.getConstant(1, VT));
8107  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8108}
8109
8110/// Emit nodes that will be selected as "test Op0,Op0", or something
8111/// equivalent.
8112SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8113                                    SelectionDAG &DAG) const {
8114  DebugLoc dl = Op.getDebugLoc();
8115
8116  // CF and OF aren't always set the way we want. Determine which
8117  // of these we need.
8118  bool NeedCF = false;
8119  bool NeedOF = false;
8120  switch (X86CC) {
8121  default: break;
8122  case X86::COND_A: case X86::COND_AE:
8123  case X86::COND_B: case X86::COND_BE:
8124    NeedCF = true;
8125    break;
8126  case X86::COND_G: case X86::COND_GE:
8127  case X86::COND_L: case X86::COND_LE:
8128  case X86::COND_O: case X86::COND_NO:
8129    NeedOF = true;
8130    break;
8131  }
8132
8133  // See if we can use the EFLAGS value from the operand instead of
8134  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8135  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8136  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8137    // Emit a CMP with 0, which is the TEST pattern.
8138    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8139                       DAG.getConstant(0, Op.getValueType()));
8140
8141  unsigned Opcode = 0;
8142  unsigned NumOperands = 0;
8143  switch (Op.getNode()->getOpcode()) {
8144  case ISD::ADD:
8145    // Due to an isel shortcoming, be conservative if this add is likely to be
8146    // selected as part of a load-modify-store instruction. When the root node
8147    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8148    // uses of other nodes in the match, such as the ADD in this case. This
8149    // leads to the ADD being left around and reselected, with the result being
8150    // two adds in the output.  Alas, even if none our users are stores, that
8151    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8152    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8153    // climbing the DAG back to the root, and it doesn't seem to be worth the
8154    // effort.
8155    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8156           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8157      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8158        goto default_case;
8159
8160    if (ConstantSDNode *C =
8161        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8162      // An add of one will be selected as an INC.
8163      if (C->getAPIntValue() == 1) {
8164        Opcode = X86ISD::INC;
8165        NumOperands = 1;
8166        break;
8167      }
8168
8169      // An add of negative one (subtract of one) will be selected as a DEC.
8170      if (C->getAPIntValue().isAllOnesValue()) {
8171        Opcode = X86ISD::DEC;
8172        NumOperands = 1;
8173        break;
8174      }
8175    }
8176
8177    // Otherwise use a regular EFLAGS-setting add.
8178    Opcode = X86ISD::ADD;
8179    NumOperands = 2;
8180    break;
8181  case ISD::AND: {
8182    // If the primary and result isn't used, don't bother using X86ISD::AND,
8183    // because a TEST instruction will be better.
8184    bool NonFlagUse = false;
8185    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8186           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8187      SDNode *User = *UI;
8188      unsigned UOpNo = UI.getOperandNo();
8189      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8190        // Look pass truncate.
8191        UOpNo = User->use_begin().getOperandNo();
8192        User = *User->use_begin();
8193      }
8194
8195      if (User->getOpcode() != ISD::BRCOND &&
8196          User->getOpcode() != ISD::SETCC &&
8197          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8198        NonFlagUse = true;
8199        break;
8200      }
8201    }
8202
8203    if (!NonFlagUse)
8204      break;
8205  }
8206    // FALL THROUGH
8207  case ISD::SUB:
8208  case ISD::OR:
8209  case ISD::XOR:
8210    // Due to the ISEL shortcoming noted above, be conservative if this op is
8211    // likely to be selected as part of a load-modify-store instruction.
8212    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8213           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8214      if (UI->getOpcode() == ISD::STORE)
8215        goto default_case;
8216
8217    // Otherwise use a regular EFLAGS-setting instruction.
8218    switch (Op.getNode()->getOpcode()) {
8219    default: llvm_unreachable("unexpected operator!");
8220    case ISD::SUB: Opcode = X86ISD::SUB; break;
8221    case ISD::OR:  Opcode = X86ISD::OR;  break;
8222    case ISD::XOR: Opcode = X86ISD::XOR; break;
8223    case ISD::AND: Opcode = X86ISD::AND; break;
8224    }
8225
8226    NumOperands = 2;
8227    break;
8228  case X86ISD::ADD:
8229  case X86ISD::SUB:
8230  case X86ISD::INC:
8231  case X86ISD::DEC:
8232  case X86ISD::OR:
8233  case X86ISD::XOR:
8234  case X86ISD::AND:
8235    return SDValue(Op.getNode(), 1);
8236  default:
8237  default_case:
8238    break;
8239  }
8240
8241  if (Opcode == 0)
8242    // Emit a CMP with 0, which is the TEST pattern.
8243    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8244                       DAG.getConstant(0, Op.getValueType()));
8245
8246  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8247  SmallVector<SDValue, 4> Ops;
8248  for (unsigned i = 0; i != NumOperands; ++i)
8249    Ops.push_back(Op.getOperand(i));
8250
8251  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8252  DAG.ReplaceAllUsesWith(Op, New);
8253  return SDValue(New.getNode(), 1);
8254}
8255
8256/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8257/// equivalent.
8258SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8259                                   SelectionDAG &DAG) const {
8260  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8261    if (C->getAPIntValue() == 0)
8262      return EmitTest(Op0, X86CC, DAG);
8263
8264  DebugLoc dl = Op0.getDebugLoc();
8265  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8266}
8267
8268/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8269/// if it's possible.
8270SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8271                                     DebugLoc dl, SelectionDAG &DAG) const {
8272  SDValue Op0 = And.getOperand(0);
8273  SDValue Op1 = And.getOperand(1);
8274  if (Op0.getOpcode() == ISD::TRUNCATE)
8275    Op0 = Op0.getOperand(0);
8276  if (Op1.getOpcode() == ISD::TRUNCATE)
8277    Op1 = Op1.getOperand(0);
8278
8279  SDValue LHS, RHS;
8280  if (Op1.getOpcode() == ISD::SHL)
8281    std::swap(Op0, Op1);
8282  if (Op0.getOpcode() == ISD::SHL) {
8283    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8284      if (And00C->getZExtValue() == 1) {
8285        // If we looked past a truncate, check that it's only truncating away
8286        // known zeros.
8287        unsigned BitWidth = Op0.getValueSizeInBits();
8288        unsigned AndBitWidth = And.getValueSizeInBits();
8289        if (BitWidth > AndBitWidth) {
8290          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8291          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8292          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8293            return SDValue();
8294        }
8295        LHS = Op1;
8296        RHS = Op0.getOperand(1);
8297      }
8298  } else if (Op1.getOpcode() == ISD::Constant) {
8299    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8300    SDValue AndLHS = Op0;
8301    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8302      LHS = AndLHS.getOperand(0);
8303      RHS = AndLHS.getOperand(1);
8304    }
8305  }
8306
8307  if (LHS.getNode()) {
8308    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8309    // instruction.  Since the shift amount is in-range-or-undefined, we know
8310    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8311    // the encoding for the i16 version is larger than the i32 version.
8312    // Also promote i16 to i32 for performance / code size reason.
8313    if (LHS.getValueType() == MVT::i8 ||
8314        LHS.getValueType() == MVT::i16)
8315      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8316
8317    // If the operand types disagree, extend the shift amount to match.  Since
8318    // BT ignores high bits (like shifts) we can use anyextend.
8319    if (LHS.getValueType() != RHS.getValueType())
8320      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8321
8322    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8323    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8324    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8325                       DAG.getConstant(Cond, MVT::i8), BT);
8326  }
8327
8328  return SDValue();
8329}
8330
8331SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8332
8333  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8334
8335  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8336  SDValue Op0 = Op.getOperand(0);
8337  SDValue Op1 = Op.getOperand(1);
8338  DebugLoc dl = Op.getDebugLoc();
8339  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8340
8341  // Optimize to BT if possible.
8342  // Lower (X & (1 << N)) == 0 to BT(X, N).
8343  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8344  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8345  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8346      Op1.getOpcode() == ISD::Constant &&
8347      cast<ConstantSDNode>(Op1)->isNullValue() &&
8348      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8349    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8350    if (NewSetCC.getNode())
8351      return NewSetCC;
8352  }
8353
8354  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8355  // these.
8356  if (Op1.getOpcode() == ISD::Constant &&
8357      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8358       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8359      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8360
8361    // If the input is a setcc, then reuse the input setcc or use a new one with
8362    // the inverted condition.
8363    if (Op0.getOpcode() == X86ISD::SETCC) {
8364      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8365      bool Invert = (CC == ISD::SETNE) ^
8366        cast<ConstantSDNode>(Op1)->isNullValue();
8367      if (!Invert) return Op0;
8368
8369      CCode = X86::GetOppositeBranchCondition(CCode);
8370      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8371                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8372    }
8373  }
8374
8375  bool isFP = Op1.getValueType().isFloatingPoint();
8376  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8377  if (X86CC == X86::COND_INVALID)
8378    return SDValue();
8379
8380  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8381  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8382                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8383}
8384
8385// Lower256IntVETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8386// ones, and then concatenate the result back.
8387static SDValue Lower256IntVETCC(SDValue Op, SelectionDAG &DAG) {
8388  EVT VT = Op.getValueType();
8389
8390  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8391         "Unsupported value type for operation");
8392
8393  int NumElems = VT.getVectorNumElements();
8394  DebugLoc dl = Op.getDebugLoc();
8395  SDValue CC = Op.getOperand(2);
8396  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8397  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8398
8399  // Extract the LHS vectors
8400  SDValue LHS = Op.getOperand(0);
8401  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8402  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8403
8404  // Extract the RHS vectors
8405  SDValue RHS = Op.getOperand(1);
8406  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8407  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8408
8409  // Issue the operation on the smaller types and concatenate the result back
8410  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8411  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8412  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8413                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8414                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8415}
8416
8417
8418SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8419  SDValue Cond;
8420  SDValue Op0 = Op.getOperand(0);
8421  SDValue Op1 = Op.getOperand(1);
8422  SDValue CC = Op.getOperand(2);
8423  EVT VT = Op.getValueType();
8424  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8425  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8426  DebugLoc dl = Op.getDebugLoc();
8427
8428  if (isFP) {
8429    unsigned SSECC = 8;
8430    EVT EltVT = Op0.getValueType().getVectorElementType();
8431    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8432
8433    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8434    bool Swap = false;
8435
8436    switch (SetCCOpcode) {
8437    default: break;
8438    case ISD::SETOEQ:
8439    case ISD::SETEQ:  SSECC = 0; break;
8440    case ISD::SETOGT:
8441    case ISD::SETGT: Swap = true; // Fallthrough
8442    case ISD::SETLT:
8443    case ISD::SETOLT: SSECC = 1; break;
8444    case ISD::SETOGE:
8445    case ISD::SETGE: Swap = true; // Fallthrough
8446    case ISD::SETLE:
8447    case ISD::SETOLE: SSECC = 2; break;
8448    case ISD::SETUO:  SSECC = 3; break;
8449    case ISD::SETUNE:
8450    case ISD::SETNE:  SSECC = 4; break;
8451    case ISD::SETULE: Swap = true;
8452    case ISD::SETUGE: SSECC = 5; break;
8453    case ISD::SETULT: Swap = true;
8454    case ISD::SETUGT: SSECC = 6; break;
8455    case ISD::SETO:   SSECC = 7; break;
8456    }
8457    if (Swap)
8458      std::swap(Op0, Op1);
8459
8460    // In the two special cases we can't handle, emit two comparisons.
8461    if (SSECC == 8) {
8462      if (SetCCOpcode == ISD::SETUEQ) {
8463        SDValue UNORD, EQ;
8464        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8465        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8466        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8467      }
8468      else if (SetCCOpcode == ISD::SETONE) {
8469        SDValue ORD, NEQ;
8470        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8471        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8472        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8473      }
8474      llvm_unreachable("Illegal FP comparison");
8475    }
8476    // Handle all other FP comparisons here.
8477    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8478  }
8479
8480  // Break 256-bit integer vector compare into smaller ones.
8481  if (!isFP && VT.getSizeInBits() == 256)
8482    return Lower256IntVETCC(Op, DAG);
8483
8484  // We are handling one of the integer comparisons here.  Since SSE only has
8485  // GT and EQ comparisons for integer, swapping operands and multiple
8486  // operations may be required for some comparisons.
8487  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8488  bool Swap = false, Invert = false, FlipSigns = false;
8489
8490  switch (VT.getSimpleVT().SimpleTy) {
8491  default: break;
8492  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8493  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8494  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8495  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8496  }
8497
8498  switch (SetCCOpcode) {
8499  default: break;
8500  case ISD::SETNE:  Invert = true;
8501  case ISD::SETEQ:  Opc = EQOpc; break;
8502  case ISD::SETLT:  Swap = true;
8503  case ISD::SETGT:  Opc = GTOpc; break;
8504  case ISD::SETGE:  Swap = true;
8505  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8506  case ISD::SETULT: Swap = true;
8507  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8508  case ISD::SETUGE: Swap = true;
8509  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8510  }
8511  if (Swap)
8512    std::swap(Op0, Op1);
8513
8514  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8515  // bits of the inputs before performing those operations.
8516  if (FlipSigns) {
8517    EVT EltVT = VT.getVectorElementType();
8518    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8519                                      EltVT);
8520    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8521    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8522                                    SignBits.size());
8523    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8524    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8525  }
8526
8527  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8528
8529  // If the logical-not of the result is required, perform that now.
8530  if (Invert)
8531    Result = DAG.getNOT(dl, Result, VT);
8532
8533  return Result;
8534}
8535
8536// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8537static bool isX86LogicalCmp(SDValue Op) {
8538  unsigned Opc = Op.getNode()->getOpcode();
8539  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8540    return true;
8541  if (Op.getResNo() == 1 &&
8542      (Opc == X86ISD::ADD ||
8543       Opc == X86ISD::SUB ||
8544       Opc == X86ISD::ADC ||
8545       Opc == X86ISD::SBB ||
8546       Opc == X86ISD::SMUL ||
8547       Opc == X86ISD::UMUL ||
8548       Opc == X86ISD::INC ||
8549       Opc == X86ISD::DEC ||
8550       Opc == X86ISD::OR ||
8551       Opc == X86ISD::XOR ||
8552       Opc == X86ISD::AND))
8553    return true;
8554
8555  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8556    return true;
8557
8558  return false;
8559}
8560
8561static bool isZero(SDValue V) {
8562  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8563  return C && C->isNullValue();
8564}
8565
8566static bool isAllOnes(SDValue V) {
8567  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8568  return C && C->isAllOnesValue();
8569}
8570
8571SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8572  bool addTest = true;
8573  SDValue Cond  = Op.getOperand(0);
8574  SDValue Op1 = Op.getOperand(1);
8575  SDValue Op2 = Op.getOperand(2);
8576  DebugLoc DL = Op.getDebugLoc();
8577  SDValue CC;
8578
8579  if (Cond.getOpcode() == ISD::SETCC) {
8580    SDValue NewCond = LowerSETCC(Cond, DAG);
8581    if (NewCond.getNode())
8582      Cond = NewCond;
8583  }
8584
8585  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8586  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8587  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8588  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8589  if (Cond.getOpcode() == X86ISD::SETCC &&
8590      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8591      isZero(Cond.getOperand(1).getOperand(1))) {
8592    SDValue Cmp = Cond.getOperand(1);
8593
8594    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8595
8596    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8597        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8598      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8599
8600      SDValue CmpOp0 = Cmp.getOperand(0);
8601      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8602                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8603
8604      SDValue Res =   // Res = 0 or -1.
8605        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8606                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8607
8608      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8609        Res = DAG.getNOT(DL, Res, Res.getValueType());
8610
8611      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8612      if (N2C == 0 || !N2C->isNullValue())
8613        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8614      return Res;
8615    }
8616  }
8617
8618  // Look past (and (setcc_carry (cmp ...)), 1).
8619  if (Cond.getOpcode() == ISD::AND &&
8620      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8621    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8622    if (C && C->getAPIntValue() == 1)
8623      Cond = Cond.getOperand(0);
8624  }
8625
8626  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8627  // setting operand in place of the X86ISD::SETCC.
8628  if (Cond.getOpcode() == X86ISD::SETCC ||
8629      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8630    CC = Cond.getOperand(0);
8631
8632    SDValue Cmp = Cond.getOperand(1);
8633    unsigned Opc = Cmp.getOpcode();
8634    EVT VT = Op.getValueType();
8635
8636    bool IllegalFPCMov = false;
8637    if (VT.isFloatingPoint() && !VT.isVector() &&
8638        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8639      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8640
8641    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8642        Opc == X86ISD::BT) { // FIXME
8643      Cond = Cmp;
8644      addTest = false;
8645    }
8646  }
8647
8648  if (addTest) {
8649    // Look pass the truncate.
8650    if (Cond.getOpcode() == ISD::TRUNCATE)
8651      Cond = Cond.getOperand(0);
8652
8653    // We know the result of AND is compared against zero. Try to match
8654    // it to BT.
8655    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8656      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8657      if (NewSetCC.getNode()) {
8658        CC = NewSetCC.getOperand(0);
8659        Cond = NewSetCC.getOperand(1);
8660        addTest = false;
8661      }
8662    }
8663  }
8664
8665  if (addTest) {
8666    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8667    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8668  }
8669
8670  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8671  // a <  b ?  0 : -1 -> RES = setcc_carry
8672  // a >= b ? -1 :  0 -> RES = setcc_carry
8673  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8674  if (Cond.getOpcode() == X86ISD::CMP) {
8675    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8676
8677    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8678        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8679      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8680                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8681      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8682        return DAG.getNOT(DL, Res, Res.getValueType());
8683      return Res;
8684    }
8685  }
8686
8687  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8688  // condition is true.
8689  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8690  SDValue Ops[] = { Op2, Op1, CC, Cond };
8691  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8692}
8693
8694SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
8695  SDValue Cond  = Op.getOperand(0);
8696  SDValue Op1 = Op.getOperand(1);
8697  SDValue Op2 = Op.getOperand(2);
8698  DebugLoc DL = Op.getDebugLoc();
8699
8700  SDValue Ops[] = {Op1, Op2, Cond};
8701
8702  assert(Op1.getValueType().isVector() && "Op1 must be a vector");
8703  assert(Op2.getValueType().isVector() && "Op2 must be a vector");
8704  assert(Cond.getValueType().isVector() && "Cond must be a vector");
8705  assert(Op1.getValueType() == Op2.getValueType() && "Type mismatch");
8706
8707  switch (Op1.getValueType().getSimpleVT().SimpleTy) {
8708    default: break;
8709    case MVT::v2i64: return DAG.getNode(X86ISD::BLENDVPD, DL, Op1.getValueType(), Ops, array_lengthof(Ops));
8710    case MVT::v2f64: return DAG.getNode(X86ISD::BLENDVPD, DL, Op1.getValueType(), Ops, array_lengthof(Ops));
8711    case MVT::v4i32: return DAG.getNode(X86ISD::BLENDVPS, DL, Op1.getValueType(), Ops, array_lengthof(Ops));
8712    case MVT::v4f32: return DAG.getNode(X86ISD::BLENDVPS, DL, Op1.getValueType(), Ops, array_lengthof(Ops));
8713    case MVT::v16i8: return DAG.getNode(X86ISD::PBLENDVB, DL, Op1.getValueType(), Ops, array_lengthof(Ops));
8714  }
8715
8716  return SDValue();
8717}
8718
8719
8720// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8721// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8722// from the AND / OR.
8723static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8724  Opc = Op.getOpcode();
8725  if (Opc != ISD::OR && Opc != ISD::AND)
8726    return false;
8727  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8728          Op.getOperand(0).hasOneUse() &&
8729          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8730          Op.getOperand(1).hasOneUse());
8731}
8732
8733// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8734// 1 and that the SETCC node has a single use.
8735static bool isXor1OfSetCC(SDValue Op) {
8736  if (Op.getOpcode() != ISD::XOR)
8737    return false;
8738  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8739  if (N1C && N1C->getAPIntValue() == 1) {
8740    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8741      Op.getOperand(0).hasOneUse();
8742  }
8743  return false;
8744}
8745
8746SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8747  bool addTest = true;
8748  SDValue Chain = Op.getOperand(0);
8749  SDValue Cond  = Op.getOperand(1);
8750  SDValue Dest  = Op.getOperand(2);
8751  DebugLoc dl = Op.getDebugLoc();
8752  SDValue CC;
8753
8754  if (Cond.getOpcode() == ISD::SETCC) {
8755    SDValue NewCond = LowerSETCC(Cond, DAG);
8756    if (NewCond.getNode())
8757      Cond = NewCond;
8758  }
8759#if 0
8760  // FIXME: LowerXALUO doesn't handle these!!
8761  else if (Cond.getOpcode() == X86ISD::ADD  ||
8762           Cond.getOpcode() == X86ISD::SUB  ||
8763           Cond.getOpcode() == X86ISD::SMUL ||
8764           Cond.getOpcode() == X86ISD::UMUL)
8765    Cond = LowerXALUO(Cond, DAG);
8766#endif
8767
8768  // Look pass (and (setcc_carry (cmp ...)), 1).
8769  if (Cond.getOpcode() == ISD::AND &&
8770      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8771    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8772    if (C && C->getAPIntValue() == 1)
8773      Cond = Cond.getOperand(0);
8774  }
8775
8776  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8777  // setting operand in place of the X86ISD::SETCC.
8778  if (Cond.getOpcode() == X86ISD::SETCC ||
8779      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8780    CC = Cond.getOperand(0);
8781
8782    SDValue Cmp = Cond.getOperand(1);
8783    unsigned Opc = Cmp.getOpcode();
8784    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8785    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8786      Cond = Cmp;
8787      addTest = false;
8788    } else {
8789      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8790      default: break;
8791      case X86::COND_O:
8792      case X86::COND_B:
8793        // These can only come from an arithmetic instruction with overflow,
8794        // e.g. SADDO, UADDO.
8795        Cond = Cond.getNode()->getOperand(1);
8796        addTest = false;
8797        break;
8798      }
8799    }
8800  } else {
8801    unsigned CondOpc;
8802    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8803      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8804      if (CondOpc == ISD::OR) {
8805        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8806        // two branches instead of an explicit OR instruction with a
8807        // separate test.
8808        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8809            isX86LogicalCmp(Cmp)) {
8810          CC = Cond.getOperand(0).getOperand(0);
8811          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8812                              Chain, Dest, CC, Cmp);
8813          CC = Cond.getOperand(1).getOperand(0);
8814          Cond = Cmp;
8815          addTest = false;
8816        }
8817      } else { // ISD::AND
8818        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8819        // two branches instead of an explicit AND instruction with a
8820        // separate test. However, we only do this if this block doesn't
8821        // have a fall-through edge, because this requires an explicit
8822        // jmp when the condition is false.
8823        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8824            isX86LogicalCmp(Cmp) &&
8825            Op.getNode()->hasOneUse()) {
8826          X86::CondCode CCode =
8827            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8828          CCode = X86::GetOppositeBranchCondition(CCode);
8829          CC = DAG.getConstant(CCode, MVT::i8);
8830          SDNode *User = *Op.getNode()->use_begin();
8831          // Look for an unconditional branch following this conditional branch.
8832          // We need this because we need to reverse the successors in order
8833          // to implement FCMP_OEQ.
8834          if (User->getOpcode() == ISD::BR) {
8835            SDValue FalseBB = User->getOperand(1);
8836            SDNode *NewBR =
8837              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8838            assert(NewBR == User);
8839            (void)NewBR;
8840            Dest = FalseBB;
8841
8842            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8843                                Chain, Dest, CC, Cmp);
8844            X86::CondCode CCode =
8845              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8846            CCode = X86::GetOppositeBranchCondition(CCode);
8847            CC = DAG.getConstant(CCode, MVT::i8);
8848            Cond = Cmp;
8849            addTest = false;
8850          }
8851        }
8852      }
8853    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8854      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8855      // It should be transformed during dag combiner except when the condition
8856      // is set by a arithmetics with overflow node.
8857      X86::CondCode CCode =
8858        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8859      CCode = X86::GetOppositeBranchCondition(CCode);
8860      CC = DAG.getConstant(CCode, MVT::i8);
8861      Cond = Cond.getOperand(0).getOperand(1);
8862      addTest = false;
8863    }
8864  }
8865
8866  if (addTest) {
8867    // Look pass the truncate.
8868    if (Cond.getOpcode() == ISD::TRUNCATE)
8869      Cond = Cond.getOperand(0);
8870
8871    // We know the result of AND is compared against zero. Try to match
8872    // it to BT.
8873    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8874      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8875      if (NewSetCC.getNode()) {
8876        CC = NewSetCC.getOperand(0);
8877        Cond = NewSetCC.getOperand(1);
8878        addTest = false;
8879      }
8880    }
8881  }
8882
8883  if (addTest) {
8884    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8885    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8886  }
8887  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8888                     Chain, Dest, CC, Cond);
8889}
8890
8891
8892// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8893// Calls to _alloca is needed to probe the stack when allocating more than 4k
8894// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8895// that the guard pages used by the OS virtual memory manager are allocated in
8896// correct sequence.
8897SDValue
8898X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8899                                           SelectionDAG &DAG) const {
8900  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8901          EnableSegmentedStacks) &&
8902         "This should be used only on Windows targets or when segmented stacks "
8903         "are being used");
8904  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8905  DebugLoc dl = Op.getDebugLoc();
8906
8907  // Get the inputs.
8908  SDValue Chain = Op.getOperand(0);
8909  SDValue Size  = Op.getOperand(1);
8910  // FIXME: Ensure alignment here
8911
8912  bool Is64Bit = Subtarget->is64Bit();
8913  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8914
8915  if (EnableSegmentedStacks) {
8916    MachineFunction &MF = DAG.getMachineFunction();
8917    MachineRegisterInfo &MRI = MF.getRegInfo();
8918
8919    if (Is64Bit) {
8920      // The 64 bit implementation of segmented stacks needs to clobber both r10
8921      // r11. This makes it impossible to use it along with nested parameters.
8922      const Function *F = MF.getFunction();
8923
8924      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8925           I != E; I++)
8926        if (I->hasNestAttr())
8927          report_fatal_error("Cannot use segmented stacks with functions that "
8928                             "have nested arguments.");
8929    }
8930
8931    const TargetRegisterClass *AddrRegClass =
8932      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8933    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8934    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8935    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8936                                DAG.getRegister(Vreg, SPTy));
8937    SDValue Ops1[2] = { Value, Chain };
8938    return DAG.getMergeValues(Ops1, 2, dl);
8939  } else {
8940    SDValue Flag;
8941    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8942
8943    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8944    Flag = Chain.getValue(1);
8945    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8946
8947    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8948    Flag = Chain.getValue(1);
8949
8950    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8951
8952    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8953    return DAG.getMergeValues(Ops1, 2, dl);
8954  }
8955}
8956
8957SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8958  MachineFunction &MF = DAG.getMachineFunction();
8959  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8960
8961  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8962  DebugLoc DL = Op.getDebugLoc();
8963
8964  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8965    // vastart just stores the address of the VarArgsFrameIndex slot into the
8966    // memory location argument.
8967    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8968                                   getPointerTy());
8969    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8970                        MachinePointerInfo(SV), false, false, 0);
8971  }
8972
8973  // __va_list_tag:
8974  //   gp_offset         (0 - 6 * 8)
8975  //   fp_offset         (48 - 48 + 8 * 16)
8976  //   overflow_arg_area (point to parameters coming in memory).
8977  //   reg_save_area
8978  SmallVector<SDValue, 8> MemOps;
8979  SDValue FIN = Op.getOperand(1);
8980  // Store gp_offset
8981  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8982                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8983                                               MVT::i32),
8984                               FIN, MachinePointerInfo(SV), false, false, 0);
8985  MemOps.push_back(Store);
8986
8987  // Store fp_offset
8988  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8989                    FIN, DAG.getIntPtrConstant(4));
8990  Store = DAG.getStore(Op.getOperand(0), DL,
8991                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8992                                       MVT::i32),
8993                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8994  MemOps.push_back(Store);
8995
8996  // Store ptr to overflow_arg_area
8997  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8998                    FIN, DAG.getIntPtrConstant(4));
8999  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9000                                    getPointerTy());
9001  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9002                       MachinePointerInfo(SV, 8),
9003                       false, false, 0);
9004  MemOps.push_back(Store);
9005
9006  // Store ptr to reg_save_area.
9007  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9008                    FIN, DAG.getIntPtrConstant(8));
9009  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9010                                    getPointerTy());
9011  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9012                       MachinePointerInfo(SV, 16), false, false, 0);
9013  MemOps.push_back(Store);
9014  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9015                     &MemOps[0], MemOps.size());
9016}
9017
9018SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9019  assert(Subtarget->is64Bit() &&
9020         "LowerVAARG only handles 64-bit va_arg!");
9021  assert((Subtarget->isTargetLinux() ||
9022          Subtarget->isTargetDarwin()) &&
9023          "Unhandled target in LowerVAARG");
9024  assert(Op.getNode()->getNumOperands() == 4);
9025  SDValue Chain = Op.getOperand(0);
9026  SDValue SrcPtr = Op.getOperand(1);
9027  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9028  unsigned Align = Op.getConstantOperandVal(3);
9029  DebugLoc dl = Op.getDebugLoc();
9030
9031  EVT ArgVT = Op.getNode()->getValueType(0);
9032  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9033  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9034  uint8_t ArgMode;
9035
9036  // Decide which area this value should be read from.
9037  // TODO: Implement the AMD64 ABI in its entirety. This simple
9038  // selection mechanism works only for the basic types.
9039  if (ArgVT == MVT::f80) {
9040    llvm_unreachable("va_arg for f80 not yet implemented");
9041  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9042    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9043  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9044    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9045  } else {
9046    llvm_unreachable("Unhandled argument type in LowerVAARG");
9047  }
9048
9049  if (ArgMode == 2) {
9050    // Sanity Check: Make sure using fp_offset makes sense.
9051    assert(!UseSoftFloat &&
9052           !(DAG.getMachineFunction()
9053                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9054           Subtarget->hasXMM());
9055  }
9056
9057  // Insert VAARG_64 node into the DAG
9058  // VAARG_64 returns two values: Variable Argument Address, Chain
9059  SmallVector<SDValue, 11> InstOps;
9060  InstOps.push_back(Chain);
9061  InstOps.push_back(SrcPtr);
9062  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9063  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9064  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9065  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9066  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9067                                          VTs, &InstOps[0], InstOps.size(),
9068                                          MVT::i64,
9069                                          MachinePointerInfo(SV),
9070                                          /*Align=*/0,
9071                                          /*Volatile=*/false,
9072                                          /*ReadMem=*/true,
9073                                          /*WriteMem=*/true);
9074  Chain = VAARG.getValue(1);
9075
9076  // Load the next argument and return it
9077  return DAG.getLoad(ArgVT, dl,
9078                     Chain,
9079                     VAARG,
9080                     MachinePointerInfo(),
9081                     false, false, 0);
9082}
9083
9084SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9085  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9086  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9087  SDValue Chain = Op.getOperand(0);
9088  SDValue DstPtr = Op.getOperand(1);
9089  SDValue SrcPtr = Op.getOperand(2);
9090  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9091  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9092  DebugLoc DL = Op.getDebugLoc();
9093
9094  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9095                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9096                       false,
9097                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9098}
9099
9100SDValue
9101X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9102  DebugLoc dl = Op.getDebugLoc();
9103  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9104  switch (IntNo) {
9105  default: return SDValue();    // Don't custom lower most intrinsics.
9106  // Comparison intrinsics.
9107  case Intrinsic::x86_sse_comieq_ss:
9108  case Intrinsic::x86_sse_comilt_ss:
9109  case Intrinsic::x86_sse_comile_ss:
9110  case Intrinsic::x86_sse_comigt_ss:
9111  case Intrinsic::x86_sse_comige_ss:
9112  case Intrinsic::x86_sse_comineq_ss:
9113  case Intrinsic::x86_sse_ucomieq_ss:
9114  case Intrinsic::x86_sse_ucomilt_ss:
9115  case Intrinsic::x86_sse_ucomile_ss:
9116  case Intrinsic::x86_sse_ucomigt_ss:
9117  case Intrinsic::x86_sse_ucomige_ss:
9118  case Intrinsic::x86_sse_ucomineq_ss:
9119  case Intrinsic::x86_sse2_comieq_sd:
9120  case Intrinsic::x86_sse2_comilt_sd:
9121  case Intrinsic::x86_sse2_comile_sd:
9122  case Intrinsic::x86_sse2_comigt_sd:
9123  case Intrinsic::x86_sse2_comige_sd:
9124  case Intrinsic::x86_sse2_comineq_sd:
9125  case Intrinsic::x86_sse2_ucomieq_sd:
9126  case Intrinsic::x86_sse2_ucomilt_sd:
9127  case Intrinsic::x86_sse2_ucomile_sd:
9128  case Intrinsic::x86_sse2_ucomigt_sd:
9129  case Intrinsic::x86_sse2_ucomige_sd:
9130  case Intrinsic::x86_sse2_ucomineq_sd: {
9131    unsigned Opc = 0;
9132    ISD::CondCode CC = ISD::SETCC_INVALID;
9133    switch (IntNo) {
9134    default: break;
9135    case Intrinsic::x86_sse_comieq_ss:
9136    case Intrinsic::x86_sse2_comieq_sd:
9137      Opc = X86ISD::COMI;
9138      CC = ISD::SETEQ;
9139      break;
9140    case Intrinsic::x86_sse_comilt_ss:
9141    case Intrinsic::x86_sse2_comilt_sd:
9142      Opc = X86ISD::COMI;
9143      CC = ISD::SETLT;
9144      break;
9145    case Intrinsic::x86_sse_comile_ss:
9146    case Intrinsic::x86_sse2_comile_sd:
9147      Opc = X86ISD::COMI;
9148      CC = ISD::SETLE;
9149      break;
9150    case Intrinsic::x86_sse_comigt_ss:
9151    case Intrinsic::x86_sse2_comigt_sd:
9152      Opc = X86ISD::COMI;
9153      CC = ISD::SETGT;
9154      break;
9155    case Intrinsic::x86_sse_comige_ss:
9156    case Intrinsic::x86_sse2_comige_sd:
9157      Opc = X86ISD::COMI;
9158      CC = ISD::SETGE;
9159      break;
9160    case Intrinsic::x86_sse_comineq_ss:
9161    case Intrinsic::x86_sse2_comineq_sd:
9162      Opc = X86ISD::COMI;
9163      CC = ISD::SETNE;
9164      break;
9165    case Intrinsic::x86_sse_ucomieq_ss:
9166    case Intrinsic::x86_sse2_ucomieq_sd:
9167      Opc = X86ISD::UCOMI;
9168      CC = ISD::SETEQ;
9169      break;
9170    case Intrinsic::x86_sse_ucomilt_ss:
9171    case Intrinsic::x86_sse2_ucomilt_sd:
9172      Opc = X86ISD::UCOMI;
9173      CC = ISD::SETLT;
9174      break;
9175    case Intrinsic::x86_sse_ucomile_ss:
9176    case Intrinsic::x86_sse2_ucomile_sd:
9177      Opc = X86ISD::UCOMI;
9178      CC = ISD::SETLE;
9179      break;
9180    case Intrinsic::x86_sse_ucomigt_ss:
9181    case Intrinsic::x86_sse2_ucomigt_sd:
9182      Opc = X86ISD::UCOMI;
9183      CC = ISD::SETGT;
9184      break;
9185    case Intrinsic::x86_sse_ucomige_ss:
9186    case Intrinsic::x86_sse2_ucomige_sd:
9187      Opc = X86ISD::UCOMI;
9188      CC = ISD::SETGE;
9189      break;
9190    case Intrinsic::x86_sse_ucomineq_ss:
9191    case Intrinsic::x86_sse2_ucomineq_sd:
9192      Opc = X86ISD::UCOMI;
9193      CC = ISD::SETNE;
9194      break;
9195    }
9196
9197    SDValue LHS = Op.getOperand(1);
9198    SDValue RHS = Op.getOperand(2);
9199    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9200    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9201    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9202    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9203                                DAG.getConstant(X86CC, MVT::i8), Cond);
9204    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9205  }
9206  // ptest and testp intrinsics. The intrinsic these come from are designed to
9207  // return an integer value, not just an instruction so lower it to the ptest
9208  // or testp pattern and a setcc for the result.
9209  case Intrinsic::x86_sse41_ptestz:
9210  case Intrinsic::x86_sse41_ptestc:
9211  case Intrinsic::x86_sse41_ptestnzc:
9212  case Intrinsic::x86_avx_ptestz_256:
9213  case Intrinsic::x86_avx_ptestc_256:
9214  case Intrinsic::x86_avx_ptestnzc_256:
9215  case Intrinsic::x86_avx_vtestz_ps:
9216  case Intrinsic::x86_avx_vtestc_ps:
9217  case Intrinsic::x86_avx_vtestnzc_ps:
9218  case Intrinsic::x86_avx_vtestz_pd:
9219  case Intrinsic::x86_avx_vtestc_pd:
9220  case Intrinsic::x86_avx_vtestnzc_pd:
9221  case Intrinsic::x86_avx_vtestz_ps_256:
9222  case Intrinsic::x86_avx_vtestc_ps_256:
9223  case Intrinsic::x86_avx_vtestnzc_ps_256:
9224  case Intrinsic::x86_avx_vtestz_pd_256:
9225  case Intrinsic::x86_avx_vtestc_pd_256:
9226  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9227    bool IsTestPacked = false;
9228    unsigned X86CC = 0;
9229    switch (IntNo) {
9230    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9231    case Intrinsic::x86_avx_vtestz_ps:
9232    case Intrinsic::x86_avx_vtestz_pd:
9233    case Intrinsic::x86_avx_vtestz_ps_256:
9234    case Intrinsic::x86_avx_vtestz_pd_256:
9235      IsTestPacked = true; // Fallthrough
9236    case Intrinsic::x86_sse41_ptestz:
9237    case Intrinsic::x86_avx_ptestz_256:
9238      // ZF = 1
9239      X86CC = X86::COND_E;
9240      break;
9241    case Intrinsic::x86_avx_vtestc_ps:
9242    case Intrinsic::x86_avx_vtestc_pd:
9243    case Intrinsic::x86_avx_vtestc_ps_256:
9244    case Intrinsic::x86_avx_vtestc_pd_256:
9245      IsTestPacked = true; // Fallthrough
9246    case Intrinsic::x86_sse41_ptestc:
9247    case Intrinsic::x86_avx_ptestc_256:
9248      // CF = 1
9249      X86CC = X86::COND_B;
9250      break;
9251    case Intrinsic::x86_avx_vtestnzc_ps:
9252    case Intrinsic::x86_avx_vtestnzc_pd:
9253    case Intrinsic::x86_avx_vtestnzc_ps_256:
9254    case Intrinsic::x86_avx_vtestnzc_pd_256:
9255      IsTestPacked = true; // Fallthrough
9256    case Intrinsic::x86_sse41_ptestnzc:
9257    case Intrinsic::x86_avx_ptestnzc_256:
9258      // ZF and CF = 0
9259      X86CC = X86::COND_A;
9260      break;
9261    }
9262
9263    SDValue LHS = Op.getOperand(1);
9264    SDValue RHS = Op.getOperand(2);
9265    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9266    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9267    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9268    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9269    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9270  }
9271
9272  // Fix vector shift instructions where the last operand is a non-immediate
9273  // i32 value.
9274  case Intrinsic::x86_sse2_pslli_w:
9275  case Intrinsic::x86_sse2_pslli_d:
9276  case Intrinsic::x86_sse2_pslli_q:
9277  case Intrinsic::x86_sse2_psrli_w:
9278  case Intrinsic::x86_sse2_psrli_d:
9279  case Intrinsic::x86_sse2_psrli_q:
9280  case Intrinsic::x86_sse2_psrai_w:
9281  case Intrinsic::x86_sse2_psrai_d:
9282  case Intrinsic::x86_mmx_pslli_w:
9283  case Intrinsic::x86_mmx_pslli_d:
9284  case Intrinsic::x86_mmx_pslli_q:
9285  case Intrinsic::x86_mmx_psrli_w:
9286  case Intrinsic::x86_mmx_psrli_d:
9287  case Intrinsic::x86_mmx_psrli_q:
9288  case Intrinsic::x86_mmx_psrai_w:
9289  case Intrinsic::x86_mmx_psrai_d: {
9290    SDValue ShAmt = Op.getOperand(2);
9291    if (isa<ConstantSDNode>(ShAmt))
9292      return SDValue();
9293
9294    unsigned NewIntNo = 0;
9295    EVT ShAmtVT = MVT::v4i32;
9296    switch (IntNo) {
9297    case Intrinsic::x86_sse2_pslli_w:
9298      NewIntNo = Intrinsic::x86_sse2_psll_w;
9299      break;
9300    case Intrinsic::x86_sse2_pslli_d:
9301      NewIntNo = Intrinsic::x86_sse2_psll_d;
9302      break;
9303    case Intrinsic::x86_sse2_pslli_q:
9304      NewIntNo = Intrinsic::x86_sse2_psll_q;
9305      break;
9306    case Intrinsic::x86_sse2_psrli_w:
9307      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9308      break;
9309    case Intrinsic::x86_sse2_psrli_d:
9310      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9311      break;
9312    case Intrinsic::x86_sse2_psrli_q:
9313      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9314      break;
9315    case Intrinsic::x86_sse2_psrai_w:
9316      NewIntNo = Intrinsic::x86_sse2_psra_w;
9317      break;
9318    case Intrinsic::x86_sse2_psrai_d:
9319      NewIntNo = Intrinsic::x86_sse2_psra_d;
9320      break;
9321    default: {
9322      ShAmtVT = MVT::v2i32;
9323      switch (IntNo) {
9324      case Intrinsic::x86_mmx_pslli_w:
9325        NewIntNo = Intrinsic::x86_mmx_psll_w;
9326        break;
9327      case Intrinsic::x86_mmx_pslli_d:
9328        NewIntNo = Intrinsic::x86_mmx_psll_d;
9329        break;
9330      case Intrinsic::x86_mmx_pslli_q:
9331        NewIntNo = Intrinsic::x86_mmx_psll_q;
9332        break;
9333      case Intrinsic::x86_mmx_psrli_w:
9334        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9335        break;
9336      case Intrinsic::x86_mmx_psrli_d:
9337        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9338        break;
9339      case Intrinsic::x86_mmx_psrli_q:
9340        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9341        break;
9342      case Intrinsic::x86_mmx_psrai_w:
9343        NewIntNo = Intrinsic::x86_mmx_psra_w;
9344        break;
9345      case Intrinsic::x86_mmx_psrai_d:
9346        NewIntNo = Intrinsic::x86_mmx_psra_d;
9347        break;
9348      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9349      }
9350      break;
9351    }
9352    }
9353
9354    // The vector shift intrinsics with scalars uses 32b shift amounts but
9355    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9356    // to be zero.
9357    SDValue ShOps[4];
9358    ShOps[0] = ShAmt;
9359    ShOps[1] = DAG.getConstant(0, MVT::i32);
9360    if (ShAmtVT == MVT::v4i32) {
9361      ShOps[2] = DAG.getUNDEF(MVT::i32);
9362      ShOps[3] = DAG.getUNDEF(MVT::i32);
9363      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9364    } else {
9365      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9366// FIXME this must be lowered to get rid of the invalid type.
9367    }
9368
9369    EVT VT = Op.getValueType();
9370    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9371    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9372                       DAG.getConstant(NewIntNo, MVT::i32),
9373                       Op.getOperand(1), ShAmt);
9374  }
9375  }
9376}
9377
9378SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9379                                           SelectionDAG &DAG) const {
9380  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9381  MFI->setReturnAddressIsTaken(true);
9382
9383  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9384  DebugLoc dl = Op.getDebugLoc();
9385
9386  if (Depth > 0) {
9387    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9388    SDValue Offset =
9389      DAG.getConstant(TD->getPointerSize(),
9390                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9391    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9392                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9393                                   FrameAddr, Offset),
9394                       MachinePointerInfo(), false, false, 0);
9395  }
9396
9397  // Just load the return address.
9398  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9399  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9400                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9401}
9402
9403SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9404  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9405  MFI->setFrameAddressIsTaken(true);
9406
9407  EVT VT = Op.getValueType();
9408  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9409  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9410  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9411  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9412  while (Depth--)
9413    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9414                            MachinePointerInfo(),
9415                            false, false, 0);
9416  return FrameAddr;
9417}
9418
9419SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9420                                                     SelectionDAG &DAG) const {
9421  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9422}
9423
9424SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9425  MachineFunction &MF = DAG.getMachineFunction();
9426  SDValue Chain     = Op.getOperand(0);
9427  SDValue Offset    = Op.getOperand(1);
9428  SDValue Handler   = Op.getOperand(2);
9429  DebugLoc dl       = Op.getDebugLoc();
9430
9431  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9432                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9433                                     getPointerTy());
9434  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9435
9436  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9437                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9438  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9439  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9440                       false, false, 0);
9441  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9442  MF.getRegInfo().addLiveOut(StoreAddrReg);
9443
9444  return DAG.getNode(X86ISD::EH_RETURN, dl,
9445                     MVT::Other,
9446                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9447}
9448
9449SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9450                                                  SelectionDAG &DAG) const {
9451  return Op.getOperand(0);
9452}
9453
9454SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9455                                                SelectionDAG &DAG) const {
9456  SDValue Root = Op.getOperand(0);
9457  SDValue Trmp = Op.getOperand(1); // trampoline
9458  SDValue FPtr = Op.getOperand(2); // nested function
9459  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9460  DebugLoc dl  = Op.getDebugLoc();
9461
9462  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9463
9464  if (Subtarget->is64Bit()) {
9465    SDValue OutChains[6];
9466
9467    // Large code-model.
9468    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9469    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9470
9471    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9472    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9473
9474    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9475
9476    // Load the pointer to the nested function into R11.
9477    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9478    SDValue Addr = Trmp;
9479    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9480                                Addr, MachinePointerInfo(TrmpAddr),
9481                                false, false, 0);
9482
9483    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9484                       DAG.getConstant(2, MVT::i64));
9485    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9486                                MachinePointerInfo(TrmpAddr, 2),
9487                                false, false, 2);
9488
9489    // Load the 'nest' parameter value into R10.
9490    // R10 is specified in X86CallingConv.td
9491    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9492    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9493                       DAG.getConstant(10, MVT::i64));
9494    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9495                                Addr, MachinePointerInfo(TrmpAddr, 10),
9496                                false, false, 0);
9497
9498    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9499                       DAG.getConstant(12, MVT::i64));
9500    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9501                                MachinePointerInfo(TrmpAddr, 12),
9502                                false, false, 2);
9503
9504    // Jump to the nested function.
9505    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9506    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9507                       DAG.getConstant(20, MVT::i64));
9508    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9509                                Addr, MachinePointerInfo(TrmpAddr, 20),
9510                                false, false, 0);
9511
9512    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9513    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9514                       DAG.getConstant(22, MVT::i64));
9515    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9516                                MachinePointerInfo(TrmpAddr, 22),
9517                                false, false, 0);
9518
9519    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9520  } else {
9521    const Function *Func =
9522      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9523    CallingConv::ID CC = Func->getCallingConv();
9524    unsigned NestReg;
9525
9526    switch (CC) {
9527    default:
9528      llvm_unreachable("Unsupported calling convention");
9529    case CallingConv::C:
9530    case CallingConv::X86_StdCall: {
9531      // Pass 'nest' parameter in ECX.
9532      // Must be kept in sync with X86CallingConv.td
9533      NestReg = X86::ECX;
9534
9535      // Check that ECX wasn't needed by an 'inreg' parameter.
9536      FunctionType *FTy = Func->getFunctionType();
9537      const AttrListPtr &Attrs = Func->getAttributes();
9538
9539      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9540        unsigned InRegCount = 0;
9541        unsigned Idx = 1;
9542
9543        for (FunctionType::param_iterator I = FTy->param_begin(),
9544             E = FTy->param_end(); I != E; ++I, ++Idx)
9545          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9546            // FIXME: should only count parameters that are lowered to integers.
9547            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9548
9549        if (InRegCount > 2) {
9550          report_fatal_error("Nest register in use - reduce number of inreg"
9551                             " parameters!");
9552        }
9553      }
9554      break;
9555    }
9556    case CallingConv::X86_FastCall:
9557    case CallingConv::X86_ThisCall:
9558    case CallingConv::Fast:
9559      // Pass 'nest' parameter in EAX.
9560      // Must be kept in sync with X86CallingConv.td
9561      NestReg = X86::EAX;
9562      break;
9563    }
9564
9565    SDValue OutChains[4];
9566    SDValue Addr, Disp;
9567
9568    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9569                       DAG.getConstant(10, MVT::i32));
9570    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9571
9572    // This is storing the opcode for MOV32ri.
9573    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9574    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9575    OutChains[0] = DAG.getStore(Root, dl,
9576                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9577                                Trmp, MachinePointerInfo(TrmpAddr),
9578                                false, false, 0);
9579
9580    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9581                       DAG.getConstant(1, MVT::i32));
9582    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9583                                MachinePointerInfo(TrmpAddr, 1),
9584                                false, false, 1);
9585
9586    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9587    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9588                       DAG.getConstant(5, MVT::i32));
9589    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9590                                MachinePointerInfo(TrmpAddr, 5),
9591                                false, false, 1);
9592
9593    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9594                       DAG.getConstant(6, MVT::i32));
9595    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9596                                MachinePointerInfo(TrmpAddr, 6),
9597                                false, false, 1);
9598
9599    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9600  }
9601}
9602
9603SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9604                                            SelectionDAG &DAG) const {
9605  /*
9606   The rounding mode is in bits 11:10 of FPSR, and has the following
9607   settings:
9608     00 Round to nearest
9609     01 Round to -inf
9610     10 Round to +inf
9611     11 Round to 0
9612
9613  FLT_ROUNDS, on the other hand, expects the following:
9614    -1 Undefined
9615     0 Round to 0
9616     1 Round to nearest
9617     2 Round to +inf
9618     3 Round to -inf
9619
9620  To perform the conversion, we do:
9621    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9622  */
9623
9624  MachineFunction &MF = DAG.getMachineFunction();
9625  const TargetMachine &TM = MF.getTarget();
9626  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9627  unsigned StackAlignment = TFI.getStackAlignment();
9628  EVT VT = Op.getValueType();
9629  DebugLoc DL = Op.getDebugLoc();
9630
9631  // Save FP Control Word to stack slot
9632  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9633  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9634
9635
9636  MachineMemOperand *MMO =
9637   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9638                           MachineMemOperand::MOStore, 2, 2);
9639
9640  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9641  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9642                                          DAG.getVTList(MVT::Other),
9643                                          Ops, 2, MVT::i16, MMO);
9644
9645  // Load FP Control Word from stack slot
9646  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9647                            MachinePointerInfo(), false, false, 0);
9648
9649  // Transform as necessary
9650  SDValue CWD1 =
9651    DAG.getNode(ISD::SRL, DL, MVT::i16,
9652                DAG.getNode(ISD::AND, DL, MVT::i16,
9653                            CWD, DAG.getConstant(0x800, MVT::i16)),
9654                DAG.getConstant(11, MVT::i8));
9655  SDValue CWD2 =
9656    DAG.getNode(ISD::SRL, DL, MVT::i16,
9657                DAG.getNode(ISD::AND, DL, MVT::i16,
9658                            CWD, DAG.getConstant(0x400, MVT::i16)),
9659                DAG.getConstant(9, MVT::i8));
9660
9661  SDValue RetVal =
9662    DAG.getNode(ISD::AND, DL, MVT::i16,
9663                DAG.getNode(ISD::ADD, DL, MVT::i16,
9664                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9665                            DAG.getConstant(1, MVT::i16)),
9666                DAG.getConstant(3, MVT::i16));
9667
9668
9669  return DAG.getNode((VT.getSizeInBits() < 16 ?
9670                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9671}
9672
9673SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9674  EVT VT = Op.getValueType();
9675  EVT OpVT = VT;
9676  unsigned NumBits = VT.getSizeInBits();
9677  DebugLoc dl = Op.getDebugLoc();
9678
9679  Op = Op.getOperand(0);
9680  if (VT == MVT::i8) {
9681    // Zero extend to i32 since there is not an i8 bsr.
9682    OpVT = MVT::i32;
9683    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9684  }
9685
9686  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9687  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9688  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9689
9690  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9691  SDValue Ops[] = {
9692    Op,
9693    DAG.getConstant(NumBits+NumBits-1, OpVT),
9694    DAG.getConstant(X86::COND_E, MVT::i8),
9695    Op.getValue(1)
9696  };
9697  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9698
9699  // Finally xor with NumBits-1.
9700  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9701
9702  if (VT == MVT::i8)
9703    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9704  return Op;
9705}
9706
9707SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9708  EVT VT = Op.getValueType();
9709  EVT OpVT = VT;
9710  unsigned NumBits = VT.getSizeInBits();
9711  DebugLoc dl = Op.getDebugLoc();
9712
9713  Op = Op.getOperand(0);
9714  if (VT == MVT::i8) {
9715    OpVT = MVT::i32;
9716    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9717  }
9718
9719  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9720  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9721  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9722
9723  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9724  SDValue Ops[] = {
9725    Op,
9726    DAG.getConstant(NumBits, OpVT),
9727    DAG.getConstant(X86::COND_E, MVT::i8),
9728    Op.getValue(1)
9729  };
9730  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9731
9732  if (VT == MVT::i8)
9733    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9734  return Op;
9735}
9736
9737// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9738// ones, and then concatenate the result back.
9739static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9740  EVT VT = Op.getValueType();
9741
9742  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9743         "Unsupported value type for operation");
9744
9745  int NumElems = VT.getVectorNumElements();
9746  DebugLoc dl = Op.getDebugLoc();
9747  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9748  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9749
9750  // Extract the LHS vectors
9751  SDValue LHS = Op.getOperand(0);
9752  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9753  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9754
9755  // Extract the RHS vectors
9756  SDValue RHS = Op.getOperand(1);
9757  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9758  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9759
9760  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9761  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9762
9763  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9764                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9765                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9766}
9767
9768SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9769  assert(Op.getValueType().getSizeInBits() == 256 &&
9770         Op.getValueType().isInteger() &&
9771         "Only handle AVX 256-bit vector integer operation");
9772  return Lower256IntArith(Op, DAG);
9773}
9774
9775SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9776  assert(Op.getValueType().getSizeInBits() == 256 &&
9777         Op.getValueType().isInteger() &&
9778         "Only handle AVX 256-bit vector integer operation");
9779  return Lower256IntArith(Op, DAG);
9780}
9781
9782SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9783  EVT VT = Op.getValueType();
9784
9785  // Decompose 256-bit ops into smaller 128-bit ops.
9786  if (VT.getSizeInBits() == 256)
9787    return Lower256IntArith(Op, DAG);
9788
9789  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9790  DebugLoc dl = Op.getDebugLoc();
9791
9792  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9793  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9794  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9795  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9796  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9797  //
9798  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9799  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9800  //  return AloBlo + AloBhi + AhiBlo;
9801
9802  SDValue A = Op.getOperand(0);
9803  SDValue B = Op.getOperand(1);
9804
9805  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9806                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9807                       A, DAG.getConstant(32, MVT::i32));
9808  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9809                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9810                       B, DAG.getConstant(32, MVT::i32));
9811  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9812                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9813                       A, B);
9814  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9815                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9816                       A, Bhi);
9817  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9818                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9819                       Ahi, B);
9820  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9821                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9822                       AloBhi, DAG.getConstant(32, MVT::i32));
9823  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9824                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9825                       AhiBlo, DAG.getConstant(32, MVT::i32));
9826  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9827  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9828  return Res;
9829}
9830
9831SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9832
9833  EVT VT = Op.getValueType();
9834  DebugLoc dl = Op.getDebugLoc();
9835  SDValue R = Op.getOperand(0);
9836  SDValue Amt = Op.getOperand(1);
9837  LLVMContext *Context = DAG.getContext();
9838
9839  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9840    return SDValue();
9841
9842  // Decompose 256-bit shifts into smaller 128-bit shifts.
9843  if (VT.getSizeInBits() == 256) {
9844    int NumElems = VT.getVectorNumElements();
9845    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9846    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9847
9848    // Extract the two vectors
9849    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9850    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9851                                     DAG, dl);
9852
9853    // Recreate the shift amount vectors
9854    SDValue Amt1, Amt2;
9855    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9856      // Constant shift amount
9857      SmallVector<SDValue, 4> Amt1Csts;
9858      SmallVector<SDValue, 4> Amt2Csts;
9859      for (int i = 0; i < NumElems/2; ++i)
9860        Amt1Csts.push_back(Amt->getOperand(i));
9861      for (int i = NumElems/2; i < NumElems; ++i)
9862        Amt2Csts.push_back(Amt->getOperand(i));
9863
9864      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9865                                 &Amt1Csts[0], NumElems/2);
9866      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9867                                 &Amt2Csts[0], NumElems/2);
9868    } else {
9869      // Variable shift amount
9870      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9871      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9872                                 DAG, dl);
9873    }
9874
9875    // Issue new vector shifts for the smaller types
9876    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9877    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9878
9879    // Concatenate the result back
9880    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9881  }
9882
9883  // Optimize shl/srl/sra with constant shift amount.
9884  if (isSplatVector(Amt.getNode())) {
9885    SDValue SclrAmt = Amt->getOperand(0);
9886    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9887      uint64_t ShiftAmt = C->getZExtValue();
9888
9889      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9890       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9891                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9892                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9893
9894      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9895       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9896                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9897                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9898
9899      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9900       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9901                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9902                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9903
9904      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9905       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9906                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9907                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9908
9909      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9910       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9911                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9912                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9913
9914      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9915       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9916                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9917                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9918
9919      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9920       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9921                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9922                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9923
9924      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9925       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9926                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9927                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9928    }
9929  }
9930
9931  // Lower SHL with variable shift amount.
9932  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9933    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9934                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9935                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9936
9937    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9938
9939    std::vector<Constant*> CV(4, CI);
9940    Constant *C = ConstantVector::get(CV);
9941    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9942    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9943                                 MachinePointerInfo::getConstantPool(),
9944                                 false, false, 16);
9945
9946    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9947    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9948    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9949    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9950  }
9951  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9952    // a = a << 5;
9953    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9954                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9955                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9956
9957    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9958    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9959
9960    std::vector<Constant*> CVM1(16, CM1);
9961    std::vector<Constant*> CVM2(16, CM2);
9962    Constant *C = ConstantVector::get(CVM1);
9963    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9964    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9965                            MachinePointerInfo::getConstantPool(),
9966                            false, false, 16);
9967
9968    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9969    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9970    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9971                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9972                    DAG.getConstant(4, MVT::i32));
9973    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9974    // a += a
9975    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9976
9977    C = ConstantVector::get(CVM2);
9978    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9979    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9980                    MachinePointerInfo::getConstantPool(),
9981                    false, false, 16);
9982
9983    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9984    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9985    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9986                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9987                    DAG.getConstant(2, MVT::i32));
9988    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9989    // a += a
9990    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9991
9992    // return pblendv(r, r+r, a);
9993    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9994                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9995    return R;
9996  }
9997  return SDValue();
9998}
9999
10000SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10001  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10002  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10003  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10004  // has only one use.
10005  SDNode *N = Op.getNode();
10006  SDValue LHS = N->getOperand(0);
10007  SDValue RHS = N->getOperand(1);
10008  unsigned BaseOp = 0;
10009  unsigned Cond = 0;
10010  DebugLoc DL = Op.getDebugLoc();
10011  switch (Op.getOpcode()) {
10012  default: llvm_unreachable("Unknown ovf instruction!");
10013  case ISD::SADDO:
10014    // A subtract of one will be selected as a INC. Note that INC doesn't
10015    // set CF, so we can't do this for UADDO.
10016    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10017      if (C->isOne()) {
10018        BaseOp = X86ISD::INC;
10019        Cond = X86::COND_O;
10020        break;
10021      }
10022    BaseOp = X86ISD::ADD;
10023    Cond = X86::COND_O;
10024    break;
10025  case ISD::UADDO:
10026    BaseOp = X86ISD::ADD;
10027    Cond = X86::COND_B;
10028    break;
10029  case ISD::SSUBO:
10030    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10031    // set CF, so we can't do this for USUBO.
10032    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10033      if (C->isOne()) {
10034        BaseOp = X86ISD::DEC;
10035        Cond = X86::COND_O;
10036        break;
10037      }
10038    BaseOp = X86ISD::SUB;
10039    Cond = X86::COND_O;
10040    break;
10041  case ISD::USUBO:
10042    BaseOp = X86ISD::SUB;
10043    Cond = X86::COND_B;
10044    break;
10045  case ISD::SMULO:
10046    BaseOp = X86ISD::SMUL;
10047    Cond = X86::COND_O;
10048    break;
10049  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10050    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10051                                 MVT::i32);
10052    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10053
10054    SDValue SetCC =
10055      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10056                  DAG.getConstant(X86::COND_O, MVT::i32),
10057                  SDValue(Sum.getNode(), 2));
10058
10059    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10060  }
10061  }
10062
10063  // Also sets EFLAGS.
10064  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10065  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10066
10067  SDValue SetCC =
10068    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10069                DAG.getConstant(Cond, MVT::i32),
10070                SDValue(Sum.getNode(), 1));
10071
10072  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10073}
10074
10075SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10076  DebugLoc dl = Op.getDebugLoc();
10077  SDNode* Node = Op.getNode();
10078  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10079  EVT VT = Node->getValueType(0);
10080  if (Subtarget->hasSSE2() && VT.isVector()) {
10081    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10082                        ExtraVT.getScalarType().getSizeInBits();
10083    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10084
10085    unsigned SHLIntrinsicsID = 0;
10086    unsigned SRAIntrinsicsID = 0;
10087    switch (VT.getSimpleVT().SimpleTy) {
10088      default:
10089        return SDValue();
10090      case MVT::v2i64: {
10091        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
10092        SRAIntrinsicsID = 0;
10093        break;
10094      }
10095      case MVT::v4i32: {
10096        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10097        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10098        break;
10099      }
10100      case MVT::v8i16: {
10101        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10102        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10103        break;
10104      }
10105    }
10106
10107    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10108                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10109                         Node->getOperand(0), ShAmt);
10110
10111    // In case of 1 bit sext, no need to shr
10112    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10113
10114    if (SRAIntrinsicsID) {
10115      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10116                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10117                         Tmp1, ShAmt);
10118    }
10119    return Tmp1;
10120  }
10121
10122  return SDValue();
10123}
10124
10125
10126SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10127  DebugLoc dl = Op.getDebugLoc();
10128
10129  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10130  // There isn't any reason to disable it if the target processor supports it.
10131  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10132    SDValue Chain = Op.getOperand(0);
10133    SDValue Zero = DAG.getConstant(0, MVT::i32);
10134    SDValue Ops[] = {
10135      DAG.getRegister(X86::ESP, MVT::i32), // Base
10136      DAG.getTargetConstant(1, MVT::i8),   // Scale
10137      DAG.getRegister(0, MVT::i32),        // Index
10138      DAG.getTargetConstant(0, MVT::i32),  // Disp
10139      DAG.getRegister(0, MVT::i32),        // Segment.
10140      Zero,
10141      Chain
10142    };
10143    SDNode *Res =
10144      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10145                          array_lengthof(Ops));
10146    return SDValue(Res, 0);
10147  }
10148
10149  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10150  if (!isDev)
10151    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10152
10153  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10154  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10155  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10156  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10157
10158  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10159  if (!Op1 && !Op2 && !Op3 && Op4)
10160    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10161
10162  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10163  if (Op1 && !Op2 && !Op3 && !Op4)
10164    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10165
10166  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10167  //           (MFENCE)>;
10168  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10169}
10170
10171SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10172                                             SelectionDAG &DAG) const {
10173  DebugLoc dl = Op.getDebugLoc();
10174  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10175    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10176  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10177    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10178
10179  // The only fence that needs an instruction is a sequentially-consistent
10180  // cross-thread fence.
10181  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10182    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10183    // no-sse2). There isn't any reason to disable it if the target processor
10184    // supports it.
10185    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10186      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10187
10188    SDValue Chain = Op.getOperand(0);
10189    SDValue Zero = DAG.getConstant(0, MVT::i32);
10190    SDValue Ops[] = {
10191      DAG.getRegister(X86::ESP, MVT::i32), // Base
10192      DAG.getTargetConstant(1, MVT::i8),   // Scale
10193      DAG.getRegister(0, MVT::i32),        // Index
10194      DAG.getTargetConstant(0, MVT::i32),  // Disp
10195      DAG.getRegister(0, MVT::i32),        // Segment.
10196      Zero,
10197      Chain
10198    };
10199    SDNode *Res =
10200      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10201                         array_lengthof(Ops));
10202    return SDValue(Res, 0);
10203  }
10204
10205  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10206  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10207}
10208
10209
10210SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10211  EVT T = Op.getValueType();
10212  DebugLoc DL = Op.getDebugLoc();
10213  unsigned Reg = 0;
10214  unsigned size = 0;
10215  switch(T.getSimpleVT().SimpleTy) {
10216  default:
10217    assert(false && "Invalid value type!");
10218  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10219  case MVT::i16: Reg = X86::AX;  size = 2; break;
10220  case MVT::i32: Reg = X86::EAX; size = 4; break;
10221  case MVT::i64:
10222    assert(Subtarget->is64Bit() && "Node not type legal!");
10223    Reg = X86::RAX; size = 8;
10224    break;
10225  }
10226  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10227                                    Op.getOperand(2), SDValue());
10228  SDValue Ops[] = { cpIn.getValue(0),
10229                    Op.getOperand(1),
10230                    Op.getOperand(3),
10231                    DAG.getTargetConstant(size, MVT::i8),
10232                    cpIn.getValue(1) };
10233  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10234  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10235  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10236                                           Ops, 5, T, MMO);
10237  SDValue cpOut =
10238    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10239  return cpOut;
10240}
10241
10242SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10243                                                 SelectionDAG &DAG) const {
10244  assert(Subtarget->is64Bit() && "Result not type legalized?");
10245  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10246  SDValue TheChain = Op.getOperand(0);
10247  DebugLoc dl = Op.getDebugLoc();
10248  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10249  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10250  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10251                                   rax.getValue(2));
10252  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10253                            DAG.getConstant(32, MVT::i8));
10254  SDValue Ops[] = {
10255    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10256    rdx.getValue(1)
10257  };
10258  return DAG.getMergeValues(Ops, 2, dl);
10259}
10260
10261SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10262                                            SelectionDAG &DAG) const {
10263  EVT SrcVT = Op.getOperand(0).getValueType();
10264  EVT DstVT = Op.getValueType();
10265  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10266         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10267  assert((DstVT == MVT::i64 ||
10268          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10269         "Unexpected custom BITCAST");
10270  // i64 <=> MMX conversions are Legal.
10271  if (SrcVT==MVT::i64 && DstVT.isVector())
10272    return Op;
10273  if (DstVT==MVT::i64 && SrcVT.isVector())
10274    return Op;
10275  // MMX <=> MMX conversions are Legal.
10276  if (SrcVT.isVector() && DstVT.isVector())
10277    return Op;
10278  // All other conversions need to be expanded.
10279  return SDValue();
10280}
10281
10282SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10283  SDNode *Node = Op.getNode();
10284  DebugLoc dl = Node->getDebugLoc();
10285  EVT T = Node->getValueType(0);
10286  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10287                              DAG.getConstant(0, T), Node->getOperand(2));
10288  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10289                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10290                       Node->getOperand(0),
10291                       Node->getOperand(1), negOp,
10292                       cast<AtomicSDNode>(Node)->getSrcValue(),
10293                       cast<AtomicSDNode>(Node)->getAlignment(),
10294                       cast<AtomicSDNode>(Node)->getOrdering(),
10295                       cast<AtomicSDNode>(Node)->getSynchScope());
10296}
10297
10298static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10299  SDNode *Node = Op.getNode();
10300  DebugLoc dl = Node->getDebugLoc();
10301  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10302
10303  // Convert seq_cst store -> xchg
10304  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10305  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10306  //        (The only way to get a 16-byte store is cmpxchg16b)
10307  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10308  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10309      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10310    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10311                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10312                                 Node->getOperand(0),
10313                                 Node->getOperand(1), Node->getOperand(2),
10314                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10315                                 cast<AtomicSDNode>(Node)->getOrdering(),
10316                                 cast<AtomicSDNode>(Node)->getSynchScope());
10317    return Swap.getValue(1);
10318  }
10319  // Other atomic stores have a simple pattern.
10320  return Op;
10321}
10322
10323static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10324  EVT VT = Op.getNode()->getValueType(0);
10325
10326  // Let legalize expand this if it isn't a legal type yet.
10327  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10328    return SDValue();
10329
10330  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10331
10332  unsigned Opc;
10333  bool ExtraOp = false;
10334  switch (Op.getOpcode()) {
10335  default: assert(0 && "Invalid code");
10336  case ISD::ADDC: Opc = X86ISD::ADD; break;
10337  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10338  case ISD::SUBC: Opc = X86ISD::SUB; break;
10339  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10340  }
10341
10342  if (!ExtraOp)
10343    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10344                       Op.getOperand(1));
10345  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10346                     Op.getOperand(1), Op.getOperand(2));
10347}
10348
10349/// LowerOperation - Provide custom lowering hooks for some operations.
10350///
10351SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10352  switch (Op.getOpcode()) {
10353  default: llvm_unreachable("Should not custom lower this!");
10354  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10355  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10356  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10357  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10358  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10359  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10360  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10361  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10362  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10363  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10364  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10365  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10366  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10367  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10368  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10369  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10370  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10371  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10372  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10373  case ISD::SHL_PARTS:
10374  case ISD::SRA_PARTS:
10375  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10376  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10377  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10378  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10379  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10380  case ISD::FABS:               return LowerFABS(Op, DAG);
10381  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10382  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10383  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10384  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10385  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10386  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
10387  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10388  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10389  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10390  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10391  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10392  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10393  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10394  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10395  case ISD::FRAME_TO_ARGS_OFFSET:
10396                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10397  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10398  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10399  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10400  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10401  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10402  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10403  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10404  case ISD::MUL:                return LowerMUL(Op, DAG);
10405  case ISD::SRA:
10406  case ISD::SRL:
10407  case ISD::SHL:                return LowerShift(Op, DAG);
10408  case ISD::SADDO:
10409  case ISD::UADDO:
10410  case ISD::SSUBO:
10411  case ISD::USUBO:
10412  case ISD::SMULO:
10413  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10414  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10415  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10416  case ISD::ADDC:
10417  case ISD::ADDE:
10418  case ISD::SUBC:
10419  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10420  case ISD::ADD:                return LowerADD(Op, DAG);
10421  case ISD::SUB:                return LowerSUB(Op, DAG);
10422  }
10423}
10424
10425static void ReplaceATOMIC_LOAD(SDNode *Node,
10426                                  SmallVectorImpl<SDValue> &Results,
10427                                  SelectionDAG &DAG) {
10428  DebugLoc dl = Node->getDebugLoc();
10429  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10430
10431  // Convert wide load -> cmpxchg8b/cmpxchg16b
10432  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10433  //        (The only way to get a 16-byte load is cmpxchg16b)
10434  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10435  SDValue Zero = DAG.getConstant(0, VT);
10436  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10437                               Node->getOperand(0),
10438                               Node->getOperand(1), Zero, Zero,
10439                               cast<AtomicSDNode>(Node)->getMemOperand(),
10440                               cast<AtomicSDNode>(Node)->getOrdering(),
10441                               cast<AtomicSDNode>(Node)->getSynchScope());
10442  Results.push_back(Swap.getValue(0));
10443  Results.push_back(Swap.getValue(1));
10444}
10445
10446void X86TargetLowering::
10447ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10448                        SelectionDAG &DAG, unsigned NewOp) const {
10449  EVT T = Node->getValueType(0);
10450  DebugLoc dl = Node->getDebugLoc();
10451  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10452
10453  SDValue Chain = Node->getOperand(0);
10454  SDValue In1 = Node->getOperand(1);
10455  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10456                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10457  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10458                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10459  SDValue Ops[] = { Chain, In1, In2L, In2H };
10460  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10461  SDValue Result =
10462    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10463                            cast<MemSDNode>(Node)->getMemOperand());
10464  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10465  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10466  Results.push_back(Result.getValue(2));
10467}
10468
10469/// ReplaceNodeResults - Replace a node with an illegal result type
10470/// with a new node built out of custom code.
10471void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10472                                           SmallVectorImpl<SDValue>&Results,
10473                                           SelectionDAG &DAG) const {
10474  DebugLoc dl = N->getDebugLoc();
10475  switch (N->getOpcode()) {
10476  default:
10477    assert(false && "Do not know how to custom type legalize this operation!");
10478    return;
10479  case ISD::SIGN_EXTEND_INREG:
10480  case ISD::ADDC:
10481  case ISD::ADDE:
10482  case ISD::SUBC:
10483  case ISD::SUBE:
10484    // We don't want to expand or promote these.
10485    return;
10486  case ISD::FP_TO_SINT: {
10487    std::pair<SDValue,SDValue> Vals =
10488        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10489    SDValue FIST = Vals.first, StackSlot = Vals.second;
10490    if (FIST.getNode() != 0) {
10491      EVT VT = N->getValueType(0);
10492      // Return a load from the stack slot.
10493      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10494                                    MachinePointerInfo(), false, false, 0));
10495    }
10496    return;
10497  }
10498  case ISD::READCYCLECOUNTER: {
10499    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10500    SDValue TheChain = N->getOperand(0);
10501    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10502    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10503                                     rd.getValue(1));
10504    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10505                                     eax.getValue(2));
10506    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10507    SDValue Ops[] = { eax, edx };
10508    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10509    Results.push_back(edx.getValue(1));
10510    return;
10511  }
10512  case ISD::ATOMIC_CMP_SWAP: {
10513    EVT T = N->getValueType(0);
10514    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10515    bool Regs64bit = T == MVT::i128;
10516    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10517    SDValue cpInL, cpInH;
10518    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10519                        DAG.getConstant(0, HalfT));
10520    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10521                        DAG.getConstant(1, HalfT));
10522    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10523                             Regs64bit ? X86::RAX : X86::EAX,
10524                             cpInL, SDValue());
10525    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10526                             Regs64bit ? X86::RDX : X86::EDX,
10527                             cpInH, cpInL.getValue(1));
10528    SDValue swapInL, swapInH;
10529    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10530                          DAG.getConstant(0, HalfT));
10531    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10532                          DAG.getConstant(1, HalfT));
10533    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10534                               Regs64bit ? X86::RBX : X86::EBX,
10535                               swapInL, cpInH.getValue(1));
10536    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10537                               Regs64bit ? X86::RCX : X86::ECX,
10538                               swapInH, swapInL.getValue(1));
10539    SDValue Ops[] = { swapInH.getValue(0),
10540                      N->getOperand(1),
10541                      swapInH.getValue(1) };
10542    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10543    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10544    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10545                                  X86ISD::LCMPXCHG8_DAG;
10546    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10547                                             Ops, 3, T, MMO);
10548    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10549                                        Regs64bit ? X86::RAX : X86::EAX,
10550                                        HalfT, Result.getValue(1));
10551    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10552                                        Regs64bit ? X86::RDX : X86::EDX,
10553                                        HalfT, cpOutL.getValue(2));
10554    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10555    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10556    Results.push_back(cpOutH.getValue(1));
10557    return;
10558  }
10559  case ISD::ATOMIC_LOAD_ADD:
10560    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10561    return;
10562  case ISD::ATOMIC_LOAD_AND:
10563    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10564    return;
10565  case ISD::ATOMIC_LOAD_NAND:
10566    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10567    return;
10568  case ISD::ATOMIC_LOAD_OR:
10569    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10570    return;
10571  case ISD::ATOMIC_LOAD_SUB:
10572    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10573    return;
10574  case ISD::ATOMIC_LOAD_XOR:
10575    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10576    return;
10577  case ISD::ATOMIC_SWAP:
10578    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10579    return;
10580  case ISD::ATOMIC_LOAD:
10581    ReplaceATOMIC_LOAD(N, Results, DAG);
10582  }
10583}
10584
10585const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10586  switch (Opcode) {
10587  default: return NULL;
10588  case X86ISD::BSF:                return "X86ISD::BSF";
10589  case X86ISD::BSR:                return "X86ISD::BSR";
10590  case X86ISD::SHLD:               return "X86ISD::SHLD";
10591  case X86ISD::SHRD:               return "X86ISD::SHRD";
10592  case X86ISD::FAND:               return "X86ISD::FAND";
10593  case X86ISD::FOR:                return "X86ISD::FOR";
10594  case X86ISD::FXOR:               return "X86ISD::FXOR";
10595  case X86ISD::FSRL:               return "X86ISD::FSRL";
10596  case X86ISD::FILD:               return "X86ISD::FILD";
10597  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10598  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10599  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10600  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10601  case X86ISD::FLD:                return "X86ISD::FLD";
10602  case X86ISD::FST:                return "X86ISD::FST";
10603  case X86ISD::CALL:               return "X86ISD::CALL";
10604  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10605  case X86ISD::BT:                 return "X86ISD::BT";
10606  case X86ISD::CMP:                return "X86ISD::CMP";
10607  case X86ISD::COMI:               return "X86ISD::COMI";
10608  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10609  case X86ISD::SETCC:              return "X86ISD::SETCC";
10610  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10611  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10612  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10613  case X86ISD::CMOV:               return "X86ISD::CMOV";
10614  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10615  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10616  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10617  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10618  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10619  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10620  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10621  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10622  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10623  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10624  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10625  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10626  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10627  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10628  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10629  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10630  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10631  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
10632  case X86ISD::FMAX:               return "X86ISD::FMAX";
10633  case X86ISD::FMIN:               return "X86ISD::FMIN";
10634  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10635  case X86ISD::FRCP:               return "X86ISD::FRCP";
10636  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10637  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10638  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10639  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10640  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10641  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10642  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10643  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10644  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10645  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10646  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10647  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10648  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10649  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10650  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10651  case X86ISD::VSHL:               return "X86ISD::VSHL";
10652  case X86ISD::VSRL:               return "X86ISD::VSRL";
10653  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10654  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10655  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10656  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10657  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10658  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10659  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10660  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10661  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10662  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10663  case X86ISD::ADD:                return "X86ISD::ADD";
10664  case X86ISD::SUB:                return "X86ISD::SUB";
10665  case X86ISD::ADC:                return "X86ISD::ADC";
10666  case X86ISD::SBB:                return "X86ISD::SBB";
10667  case X86ISD::SMUL:               return "X86ISD::SMUL";
10668  case X86ISD::UMUL:               return "X86ISD::UMUL";
10669  case X86ISD::INC:                return "X86ISD::INC";
10670  case X86ISD::DEC:                return "X86ISD::DEC";
10671  case X86ISD::OR:                 return "X86ISD::OR";
10672  case X86ISD::XOR:                return "X86ISD::XOR";
10673  case X86ISD::AND:                return "X86ISD::AND";
10674  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10675  case X86ISD::PTEST:              return "X86ISD::PTEST";
10676  case X86ISD::TESTP:              return "X86ISD::TESTP";
10677  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10678  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10679  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10680  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10681  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10682  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10683  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10684  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10685  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10686  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10687  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10688  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10689  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10690  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10691  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10692  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10693  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10694  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10695  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10696  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10697  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10698  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10699  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10700  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10701  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10702  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10703  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10704  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10705  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10706  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10707  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10708  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10709  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10710  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10711  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10712  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10713  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10714  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10715  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10716  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10717  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10718  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10719  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10720  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10721  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10722  }
10723}
10724
10725// isLegalAddressingMode - Return true if the addressing mode represented
10726// by AM is legal for this target, for a load/store of the specified type.
10727bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10728                                              Type *Ty) const {
10729  // X86 supports extremely general addressing modes.
10730  CodeModel::Model M = getTargetMachine().getCodeModel();
10731  Reloc::Model R = getTargetMachine().getRelocationModel();
10732
10733  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10734  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10735    return false;
10736
10737  if (AM.BaseGV) {
10738    unsigned GVFlags =
10739      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10740
10741    // If a reference to this global requires an extra load, we can't fold it.
10742    if (isGlobalStubReference(GVFlags))
10743      return false;
10744
10745    // If BaseGV requires a register for the PIC base, we cannot also have a
10746    // BaseReg specified.
10747    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10748      return false;
10749
10750    // If lower 4G is not available, then we must use rip-relative addressing.
10751    if ((M != CodeModel::Small || R != Reloc::Static) &&
10752        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10753      return false;
10754  }
10755
10756  switch (AM.Scale) {
10757  case 0:
10758  case 1:
10759  case 2:
10760  case 4:
10761  case 8:
10762    // These scales always work.
10763    break;
10764  case 3:
10765  case 5:
10766  case 9:
10767    // These scales are formed with basereg+scalereg.  Only accept if there is
10768    // no basereg yet.
10769    if (AM.HasBaseReg)
10770      return false;
10771    break;
10772  default:  // Other stuff never works.
10773    return false;
10774  }
10775
10776  return true;
10777}
10778
10779
10780bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10781  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10782    return false;
10783  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10784  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10785  if (NumBits1 <= NumBits2)
10786    return false;
10787  return true;
10788}
10789
10790bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10791  if (!VT1.isInteger() || !VT2.isInteger())
10792    return false;
10793  unsigned NumBits1 = VT1.getSizeInBits();
10794  unsigned NumBits2 = VT2.getSizeInBits();
10795  if (NumBits1 <= NumBits2)
10796    return false;
10797  return true;
10798}
10799
10800bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10801  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10802  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10803}
10804
10805bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10806  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10807  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10808}
10809
10810bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10811  // i16 instructions are longer (0x66 prefix) and potentially slower.
10812  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10813}
10814
10815/// isShuffleMaskLegal - Targets can use this to indicate that they only
10816/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10817/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10818/// are assumed to be legal.
10819bool
10820X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10821                                      EVT VT) const {
10822  // Very little shuffling can be done for 64-bit vectors right now.
10823  if (VT.getSizeInBits() == 64)
10824    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10825
10826  // FIXME: pshufb, blends, shifts.
10827  return (VT.getVectorNumElements() == 2 ||
10828          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10829          isMOVLMask(M, VT) ||
10830          isSHUFPMask(M, VT) ||
10831          isPSHUFDMask(M, VT) ||
10832          isPSHUFHWMask(M, VT) ||
10833          isPSHUFLWMask(M, VT) ||
10834          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10835          isUNPCKLMask(M, VT) ||
10836          isUNPCKHMask(M, VT) ||
10837          isUNPCKL_v_undef_Mask(M, VT) ||
10838          isUNPCKH_v_undef_Mask(M, VT));
10839}
10840
10841bool
10842X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10843                                          EVT VT) const {
10844  unsigned NumElts = VT.getVectorNumElements();
10845  // FIXME: This collection of masks seems suspect.
10846  if (NumElts == 2)
10847    return true;
10848  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10849    return (isMOVLMask(Mask, VT)  ||
10850            isCommutedMOVLMask(Mask, VT, true) ||
10851            isSHUFPMask(Mask, VT) ||
10852            isCommutedSHUFPMask(Mask, VT));
10853  }
10854  return false;
10855}
10856
10857//===----------------------------------------------------------------------===//
10858//                           X86 Scheduler Hooks
10859//===----------------------------------------------------------------------===//
10860
10861// private utility function
10862MachineBasicBlock *
10863X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10864                                                       MachineBasicBlock *MBB,
10865                                                       unsigned regOpc,
10866                                                       unsigned immOpc,
10867                                                       unsigned LoadOpc,
10868                                                       unsigned CXchgOpc,
10869                                                       unsigned notOpc,
10870                                                       unsigned EAXreg,
10871                                                       TargetRegisterClass *RC,
10872                                                       bool invSrc) const {
10873  // For the atomic bitwise operator, we generate
10874  //   thisMBB:
10875  //   newMBB:
10876  //     ld  t1 = [bitinstr.addr]
10877  //     op  t2 = t1, [bitinstr.val]
10878  //     mov EAX = t1
10879  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10880  //     bz  newMBB
10881  //     fallthrough -->nextMBB
10882  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10883  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10884  MachineFunction::iterator MBBIter = MBB;
10885  ++MBBIter;
10886
10887  /// First build the CFG
10888  MachineFunction *F = MBB->getParent();
10889  MachineBasicBlock *thisMBB = MBB;
10890  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10891  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10892  F->insert(MBBIter, newMBB);
10893  F->insert(MBBIter, nextMBB);
10894
10895  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10896  nextMBB->splice(nextMBB->begin(), thisMBB,
10897                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10898                  thisMBB->end());
10899  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10900
10901  // Update thisMBB to fall through to newMBB
10902  thisMBB->addSuccessor(newMBB);
10903
10904  // newMBB jumps to itself and fall through to nextMBB
10905  newMBB->addSuccessor(nextMBB);
10906  newMBB->addSuccessor(newMBB);
10907
10908  // Insert instructions into newMBB based on incoming instruction
10909  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10910         "unexpected number of operands");
10911  DebugLoc dl = bInstr->getDebugLoc();
10912  MachineOperand& destOper = bInstr->getOperand(0);
10913  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10914  int numArgs = bInstr->getNumOperands() - 1;
10915  for (int i=0; i < numArgs; ++i)
10916    argOpers[i] = &bInstr->getOperand(i+1);
10917
10918  // x86 address has 4 operands: base, index, scale, and displacement
10919  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10920  int valArgIndx = lastAddrIndx + 1;
10921
10922  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10923  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10924  for (int i=0; i <= lastAddrIndx; ++i)
10925    (*MIB).addOperand(*argOpers[i]);
10926
10927  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10928  if (invSrc) {
10929    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10930  }
10931  else
10932    tt = t1;
10933
10934  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10935  assert((argOpers[valArgIndx]->isReg() ||
10936          argOpers[valArgIndx]->isImm()) &&
10937         "invalid operand");
10938  if (argOpers[valArgIndx]->isReg())
10939    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10940  else
10941    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10942  MIB.addReg(tt);
10943  (*MIB).addOperand(*argOpers[valArgIndx]);
10944
10945  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10946  MIB.addReg(t1);
10947
10948  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10949  for (int i=0; i <= lastAddrIndx; ++i)
10950    (*MIB).addOperand(*argOpers[i]);
10951  MIB.addReg(t2);
10952  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10953  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10954                    bInstr->memoperands_end());
10955
10956  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10957  MIB.addReg(EAXreg);
10958
10959  // insert branch
10960  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10961
10962  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10963  return nextMBB;
10964}
10965
10966// private utility function:  64 bit atomics on 32 bit host.
10967MachineBasicBlock *
10968X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10969                                                       MachineBasicBlock *MBB,
10970                                                       unsigned regOpcL,
10971                                                       unsigned regOpcH,
10972                                                       unsigned immOpcL,
10973                                                       unsigned immOpcH,
10974                                                       bool invSrc) const {
10975  // For the atomic bitwise operator, we generate
10976  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10977  //     ld t1,t2 = [bitinstr.addr]
10978  //   newMBB:
10979  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10980  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10981  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10982  //     mov ECX, EBX <- t5, t6
10983  //     mov EAX, EDX <- t1, t2
10984  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10985  //     mov t3, t4 <- EAX, EDX
10986  //     bz  newMBB
10987  //     result in out1, out2
10988  //     fallthrough -->nextMBB
10989
10990  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10991  const unsigned LoadOpc = X86::MOV32rm;
10992  const unsigned NotOpc = X86::NOT32r;
10993  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10994  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10995  MachineFunction::iterator MBBIter = MBB;
10996  ++MBBIter;
10997
10998  /// First build the CFG
10999  MachineFunction *F = MBB->getParent();
11000  MachineBasicBlock *thisMBB = MBB;
11001  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11002  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11003  F->insert(MBBIter, newMBB);
11004  F->insert(MBBIter, nextMBB);
11005
11006  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11007  nextMBB->splice(nextMBB->begin(), thisMBB,
11008                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11009                  thisMBB->end());
11010  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11011
11012  // Update thisMBB to fall through to newMBB
11013  thisMBB->addSuccessor(newMBB);
11014
11015  // newMBB jumps to itself and fall through to nextMBB
11016  newMBB->addSuccessor(nextMBB);
11017  newMBB->addSuccessor(newMBB);
11018
11019  DebugLoc dl = bInstr->getDebugLoc();
11020  // Insert instructions into newMBB based on incoming instruction
11021  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11022  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11023         "unexpected number of operands");
11024  MachineOperand& dest1Oper = bInstr->getOperand(0);
11025  MachineOperand& dest2Oper = bInstr->getOperand(1);
11026  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11027  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11028    argOpers[i] = &bInstr->getOperand(i+2);
11029
11030    // We use some of the operands multiple times, so conservatively just
11031    // clear any kill flags that might be present.
11032    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11033      argOpers[i]->setIsKill(false);
11034  }
11035
11036  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11037  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11038
11039  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11040  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11041  for (int i=0; i <= lastAddrIndx; ++i)
11042    (*MIB).addOperand(*argOpers[i]);
11043  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11044  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11045  // add 4 to displacement.
11046  for (int i=0; i <= lastAddrIndx-2; ++i)
11047    (*MIB).addOperand(*argOpers[i]);
11048  MachineOperand newOp3 = *(argOpers[3]);
11049  if (newOp3.isImm())
11050    newOp3.setImm(newOp3.getImm()+4);
11051  else
11052    newOp3.setOffset(newOp3.getOffset()+4);
11053  (*MIB).addOperand(newOp3);
11054  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11055
11056  // t3/4 are defined later, at the bottom of the loop
11057  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11058  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11059  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11060    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11061  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11062    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11063
11064  // The subsequent operations should be using the destination registers of
11065  //the PHI instructions.
11066  if (invSrc) {
11067    t1 = F->getRegInfo().createVirtualRegister(RC);
11068    t2 = F->getRegInfo().createVirtualRegister(RC);
11069    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11070    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11071  } else {
11072    t1 = dest1Oper.getReg();
11073    t2 = dest2Oper.getReg();
11074  }
11075
11076  int valArgIndx = lastAddrIndx + 1;
11077  assert((argOpers[valArgIndx]->isReg() ||
11078          argOpers[valArgIndx]->isImm()) &&
11079         "invalid operand");
11080  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11081  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11082  if (argOpers[valArgIndx]->isReg())
11083    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11084  else
11085    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11086  if (regOpcL != X86::MOV32rr)
11087    MIB.addReg(t1);
11088  (*MIB).addOperand(*argOpers[valArgIndx]);
11089  assert(argOpers[valArgIndx + 1]->isReg() ==
11090         argOpers[valArgIndx]->isReg());
11091  assert(argOpers[valArgIndx + 1]->isImm() ==
11092         argOpers[valArgIndx]->isImm());
11093  if (argOpers[valArgIndx + 1]->isReg())
11094    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11095  else
11096    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11097  if (regOpcH != X86::MOV32rr)
11098    MIB.addReg(t2);
11099  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11100
11101  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11102  MIB.addReg(t1);
11103  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11104  MIB.addReg(t2);
11105
11106  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11107  MIB.addReg(t5);
11108  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11109  MIB.addReg(t6);
11110
11111  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11112  for (int i=0; i <= lastAddrIndx; ++i)
11113    (*MIB).addOperand(*argOpers[i]);
11114
11115  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11116  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11117                    bInstr->memoperands_end());
11118
11119  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11120  MIB.addReg(X86::EAX);
11121  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11122  MIB.addReg(X86::EDX);
11123
11124  // insert branch
11125  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11126
11127  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11128  return nextMBB;
11129}
11130
11131// private utility function
11132MachineBasicBlock *
11133X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11134                                                      MachineBasicBlock *MBB,
11135                                                      unsigned cmovOpc) const {
11136  // For the atomic min/max operator, we generate
11137  //   thisMBB:
11138  //   newMBB:
11139  //     ld t1 = [min/max.addr]
11140  //     mov t2 = [min/max.val]
11141  //     cmp  t1, t2
11142  //     cmov[cond] t2 = t1
11143  //     mov EAX = t1
11144  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11145  //     bz   newMBB
11146  //     fallthrough -->nextMBB
11147  //
11148  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11149  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11150  MachineFunction::iterator MBBIter = MBB;
11151  ++MBBIter;
11152
11153  /// First build the CFG
11154  MachineFunction *F = MBB->getParent();
11155  MachineBasicBlock *thisMBB = MBB;
11156  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11157  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11158  F->insert(MBBIter, newMBB);
11159  F->insert(MBBIter, nextMBB);
11160
11161  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11162  nextMBB->splice(nextMBB->begin(), thisMBB,
11163                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11164                  thisMBB->end());
11165  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11166
11167  // Update thisMBB to fall through to newMBB
11168  thisMBB->addSuccessor(newMBB);
11169
11170  // newMBB jumps to newMBB and fall through to nextMBB
11171  newMBB->addSuccessor(nextMBB);
11172  newMBB->addSuccessor(newMBB);
11173
11174  DebugLoc dl = mInstr->getDebugLoc();
11175  // Insert instructions into newMBB based on incoming instruction
11176  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11177         "unexpected number of operands");
11178  MachineOperand& destOper = mInstr->getOperand(0);
11179  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11180  int numArgs = mInstr->getNumOperands() - 1;
11181  for (int i=0; i < numArgs; ++i)
11182    argOpers[i] = &mInstr->getOperand(i+1);
11183
11184  // x86 address has 4 operands: base, index, scale, and displacement
11185  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11186  int valArgIndx = lastAddrIndx + 1;
11187
11188  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11189  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11190  for (int i=0; i <= lastAddrIndx; ++i)
11191    (*MIB).addOperand(*argOpers[i]);
11192
11193  // We only support register and immediate values
11194  assert((argOpers[valArgIndx]->isReg() ||
11195          argOpers[valArgIndx]->isImm()) &&
11196         "invalid operand");
11197
11198  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11199  if (argOpers[valArgIndx]->isReg())
11200    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11201  else
11202    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11203  (*MIB).addOperand(*argOpers[valArgIndx]);
11204
11205  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11206  MIB.addReg(t1);
11207
11208  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11209  MIB.addReg(t1);
11210  MIB.addReg(t2);
11211
11212  // Generate movc
11213  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11214  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11215  MIB.addReg(t2);
11216  MIB.addReg(t1);
11217
11218  // Cmp and exchange if none has modified the memory location
11219  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11220  for (int i=0; i <= lastAddrIndx; ++i)
11221    (*MIB).addOperand(*argOpers[i]);
11222  MIB.addReg(t3);
11223  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11224  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11225                    mInstr->memoperands_end());
11226
11227  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11228  MIB.addReg(X86::EAX);
11229
11230  // insert branch
11231  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11232
11233  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11234  return nextMBB;
11235}
11236
11237// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11238// or XMM0_V32I8 in AVX all of this code can be replaced with that
11239// in the .td file.
11240MachineBasicBlock *
11241X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11242                            unsigned numArgs, bool memArg) const {
11243  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11244         "Target must have SSE4.2 or AVX features enabled");
11245
11246  DebugLoc dl = MI->getDebugLoc();
11247  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11248  unsigned Opc;
11249  if (!Subtarget->hasAVX()) {
11250    if (memArg)
11251      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11252    else
11253      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11254  } else {
11255    if (memArg)
11256      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11257    else
11258      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11259  }
11260
11261  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11262  for (unsigned i = 0; i < numArgs; ++i) {
11263    MachineOperand &Op = MI->getOperand(i+1);
11264    if (!(Op.isReg() && Op.isImplicit()))
11265      MIB.addOperand(Op);
11266  }
11267  BuildMI(*BB, MI, dl,
11268    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11269             MI->getOperand(0).getReg())
11270    .addReg(X86::XMM0);
11271
11272  MI->eraseFromParent();
11273  return BB;
11274}
11275
11276MachineBasicBlock *
11277X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11278  DebugLoc dl = MI->getDebugLoc();
11279  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11280
11281  // Address into RAX/EAX, other two args into ECX, EDX.
11282  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11283  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11284  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11285  for (int i = 0; i < X86::AddrNumOperands; ++i)
11286    MIB.addOperand(MI->getOperand(i));
11287
11288  unsigned ValOps = X86::AddrNumOperands;
11289  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11290    .addReg(MI->getOperand(ValOps).getReg());
11291  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11292    .addReg(MI->getOperand(ValOps+1).getReg());
11293
11294  // The instruction doesn't actually take any operands though.
11295  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11296
11297  MI->eraseFromParent(); // The pseudo is gone now.
11298  return BB;
11299}
11300
11301MachineBasicBlock *
11302X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11303  DebugLoc dl = MI->getDebugLoc();
11304  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11305
11306  // First arg in ECX, the second in EAX.
11307  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11308    .addReg(MI->getOperand(0).getReg());
11309  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11310    .addReg(MI->getOperand(1).getReg());
11311
11312  // The instruction doesn't actually take any operands though.
11313  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11314
11315  MI->eraseFromParent(); // The pseudo is gone now.
11316  return BB;
11317}
11318
11319MachineBasicBlock *
11320X86TargetLowering::EmitVAARG64WithCustomInserter(
11321                   MachineInstr *MI,
11322                   MachineBasicBlock *MBB) const {
11323  // Emit va_arg instruction on X86-64.
11324
11325  // Operands to this pseudo-instruction:
11326  // 0  ) Output        : destination address (reg)
11327  // 1-5) Input         : va_list address (addr, i64mem)
11328  // 6  ) ArgSize       : Size (in bytes) of vararg type
11329  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11330  // 8  ) Align         : Alignment of type
11331  // 9  ) EFLAGS (implicit-def)
11332
11333  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11334  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11335
11336  unsigned DestReg = MI->getOperand(0).getReg();
11337  MachineOperand &Base = MI->getOperand(1);
11338  MachineOperand &Scale = MI->getOperand(2);
11339  MachineOperand &Index = MI->getOperand(3);
11340  MachineOperand &Disp = MI->getOperand(4);
11341  MachineOperand &Segment = MI->getOperand(5);
11342  unsigned ArgSize = MI->getOperand(6).getImm();
11343  unsigned ArgMode = MI->getOperand(7).getImm();
11344  unsigned Align = MI->getOperand(8).getImm();
11345
11346  // Memory Reference
11347  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11348  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11349  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11350
11351  // Machine Information
11352  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11353  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11354  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11355  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11356  DebugLoc DL = MI->getDebugLoc();
11357
11358  // struct va_list {
11359  //   i32   gp_offset
11360  //   i32   fp_offset
11361  //   i64   overflow_area (address)
11362  //   i64   reg_save_area (address)
11363  // }
11364  // sizeof(va_list) = 24
11365  // alignment(va_list) = 8
11366
11367  unsigned TotalNumIntRegs = 6;
11368  unsigned TotalNumXMMRegs = 8;
11369  bool UseGPOffset = (ArgMode == 1);
11370  bool UseFPOffset = (ArgMode == 2);
11371  unsigned MaxOffset = TotalNumIntRegs * 8 +
11372                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11373
11374  /* Align ArgSize to a multiple of 8 */
11375  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11376  bool NeedsAlign = (Align > 8);
11377
11378  MachineBasicBlock *thisMBB = MBB;
11379  MachineBasicBlock *overflowMBB;
11380  MachineBasicBlock *offsetMBB;
11381  MachineBasicBlock *endMBB;
11382
11383  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11384  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11385  unsigned OffsetReg = 0;
11386
11387  if (!UseGPOffset && !UseFPOffset) {
11388    // If we only pull from the overflow region, we don't create a branch.
11389    // We don't need to alter control flow.
11390    OffsetDestReg = 0; // unused
11391    OverflowDestReg = DestReg;
11392
11393    offsetMBB = NULL;
11394    overflowMBB = thisMBB;
11395    endMBB = thisMBB;
11396  } else {
11397    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11398    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11399    // If not, pull from overflow_area. (branch to overflowMBB)
11400    //
11401    //       thisMBB
11402    //         |     .
11403    //         |        .
11404    //     offsetMBB   overflowMBB
11405    //         |        .
11406    //         |     .
11407    //        endMBB
11408
11409    // Registers for the PHI in endMBB
11410    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11411    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11412
11413    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11414    MachineFunction *MF = MBB->getParent();
11415    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11416    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11417    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11418
11419    MachineFunction::iterator MBBIter = MBB;
11420    ++MBBIter;
11421
11422    // Insert the new basic blocks
11423    MF->insert(MBBIter, offsetMBB);
11424    MF->insert(MBBIter, overflowMBB);
11425    MF->insert(MBBIter, endMBB);
11426
11427    // Transfer the remainder of MBB and its successor edges to endMBB.
11428    endMBB->splice(endMBB->begin(), thisMBB,
11429                    llvm::next(MachineBasicBlock::iterator(MI)),
11430                    thisMBB->end());
11431    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11432
11433    // Make offsetMBB and overflowMBB successors of thisMBB
11434    thisMBB->addSuccessor(offsetMBB);
11435    thisMBB->addSuccessor(overflowMBB);
11436
11437    // endMBB is a successor of both offsetMBB and overflowMBB
11438    offsetMBB->addSuccessor(endMBB);
11439    overflowMBB->addSuccessor(endMBB);
11440
11441    // Load the offset value into a register
11442    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11443    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11444      .addOperand(Base)
11445      .addOperand(Scale)
11446      .addOperand(Index)
11447      .addDisp(Disp, UseFPOffset ? 4 : 0)
11448      .addOperand(Segment)
11449      .setMemRefs(MMOBegin, MMOEnd);
11450
11451    // Check if there is enough room left to pull this argument.
11452    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11453      .addReg(OffsetReg)
11454      .addImm(MaxOffset + 8 - ArgSizeA8);
11455
11456    // Branch to "overflowMBB" if offset >= max
11457    // Fall through to "offsetMBB" otherwise
11458    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11459      .addMBB(overflowMBB);
11460  }
11461
11462  // In offsetMBB, emit code to use the reg_save_area.
11463  if (offsetMBB) {
11464    assert(OffsetReg != 0);
11465
11466    // Read the reg_save_area address.
11467    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11468    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11469      .addOperand(Base)
11470      .addOperand(Scale)
11471      .addOperand(Index)
11472      .addDisp(Disp, 16)
11473      .addOperand(Segment)
11474      .setMemRefs(MMOBegin, MMOEnd);
11475
11476    // Zero-extend the offset
11477    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11478      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11479        .addImm(0)
11480        .addReg(OffsetReg)
11481        .addImm(X86::sub_32bit);
11482
11483    // Add the offset to the reg_save_area to get the final address.
11484    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11485      .addReg(OffsetReg64)
11486      .addReg(RegSaveReg);
11487
11488    // Compute the offset for the next argument
11489    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11490    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11491      .addReg(OffsetReg)
11492      .addImm(UseFPOffset ? 16 : 8);
11493
11494    // Store it back into the va_list.
11495    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11496      .addOperand(Base)
11497      .addOperand(Scale)
11498      .addOperand(Index)
11499      .addDisp(Disp, UseFPOffset ? 4 : 0)
11500      .addOperand(Segment)
11501      .addReg(NextOffsetReg)
11502      .setMemRefs(MMOBegin, MMOEnd);
11503
11504    // Jump to endMBB
11505    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11506      .addMBB(endMBB);
11507  }
11508
11509  //
11510  // Emit code to use overflow area
11511  //
11512
11513  // Load the overflow_area address into a register.
11514  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11515  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11516    .addOperand(Base)
11517    .addOperand(Scale)
11518    .addOperand(Index)
11519    .addDisp(Disp, 8)
11520    .addOperand(Segment)
11521    .setMemRefs(MMOBegin, MMOEnd);
11522
11523  // If we need to align it, do so. Otherwise, just copy the address
11524  // to OverflowDestReg.
11525  if (NeedsAlign) {
11526    // Align the overflow address
11527    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11528    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11529
11530    // aligned_addr = (addr + (align-1)) & ~(align-1)
11531    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11532      .addReg(OverflowAddrReg)
11533      .addImm(Align-1);
11534
11535    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11536      .addReg(TmpReg)
11537      .addImm(~(uint64_t)(Align-1));
11538  } else {
11539    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11540      .addReg(OverflowAddrReg);
11541  }
11542
11543  // Compute the next overflow address after this argument.
11544  // (the overflow address should be kept 8-byte aligned)
11545  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11546  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11547    .addReg(OverflowDestReg)
11548    .addImm(ArgSizeA8);
11549
11550  // Store the new overflow address.
11551  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11552    .addOperand(Base)
11553    .addOperand(Scale)
11554    .addOperand(Index)
11555    .addDisp(Disp, 8)
11556    .addOperand(Segment)
11557    .addReg(NextAddrReg)
11558    .setMemRefs(MMOBegin, MMOEnd);
11559
11560  // If we branched, emit the PHI to the front of endMBB.
11561  if (offsetMBB) {
11562    BuildMI(*endMBB, endMBB->begin(), DL,
11563            TII->get(X86::PHI), DestReg)
11564      .addReg(OffsetDestReg).addMBB(offsetMBB)
11565      .addReg(OverflowDestReg).addMBB(overflowMBB);
11566  }
11567
11568  // Erase the pseudo instruction
11569  MI->eraseFromParent();
11570
11571  return endMBB;
11572}
11573
11574MachineBasicBlock *
11575X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11576                                                 MachineInstr *MI,
11577                                                 MachineBasicBlock *MBB) const {
11578  // Emit code to save XMM registers to the stack. The ABI says that the
11579  // number of registers to save is given in %al, so it's theoretically
11580  // possible to do an indirect jump trick to avoid saving all of them,
11581  // however this code takes a simpler approach and just executes all
11582  // of the stores if %al is non-zero. It's less code, and it's probably
11583  // easier on the hardware branch predictor, and stores aren't all that
11584  // expensive anyway.
11585
11586  // Create the new basic blocks. One block contains all the XMM stores,
11587  // and one block is the final destination regardless of whether any
11588  // stores were performed.
11589  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11590  MachineFunction *F = MBB->getParent();
11591  MachineFunction::iterator MBBIter = MBB;
11592  ++MBBIter;
11593  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11594  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11595  F->insert(MBBIter, XMMSaveMBB);
11596  F->insert(MBBIter, EndMBB);
11597
11598  // Transfer the remainder of MBB and its successor edges to EndMBB.
11599  EndMBB->splice(EndMBB->begin(), MBB,
11600                 llvm::next(MachineBasicBlock::iterator(MI)),
11601                 MBB->end());
11602  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11603
11604  // The original block will now fall through to the XMM save block.
11605  MBB->addSuccessor(XMMSaveMBB);
11606  // The XMMSaveMBB will fall through to the end block.
11607  XMMSaveMBB->addSuccessor(EndMBB);
11608
11609  // Now add the instructions.
11610  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11611  DebugLoc DL = MI->getDebugLoc();
11612
11613  unsigned CountReg = MI->getOperand(0).getReg();
11614  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11615  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11616
11617  if (!Subtarget->isTargetWin64()) {
11618    // If %al is 0, branch around the XMM save block.
11619    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11620    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11621    MBB->addSuccessor(EndMBB);
11622  }
11623
11624  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11625  // In the XMM save block, save all the XMM argument registers.
11626  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11627    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11628    MachineMemOperand *MMO =
11629      F->getMachineMemOperand(
11630          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11631        MachineMemOperand::MOStore,
11632        /*Size=*/16, /*Align=*/16);
11633    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11634      .addFrameIndex(RegSaveFrameIndex)
11635      .addImm(/*Scale=*/1)
11636      .addReg(/*IndexReg=*/0)
11637      .addImm(/*Disp=*/Offset)
11638      .addReg(/*Segment=*/0)
11639      .addReg(MI->getOperand(i).getReg())
11640      .addMemOperand(MMO);
11641  }
11642
11643  MI->eraseFromParent();   // The pseudo instruction is gone now.
11644
11645  return EndMBB;
11646}
11647
11648MachineBasicBlock *
11649X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11650                                     MachineBasicBlock *BB) const {
11651  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11652  DebugLoc DL = MI->getDebugLoc();
11653
11654  // To "insert" a SELECT_CC instruction, we actually have to insert the
11655  // diamond control-flow pattern.  The incoming instruction knows the
11656  // destination vreg to set, the condition code register to branch on, the
11657  // true/false values to select between, and a branch opcode to use.
11658  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11659  MachineFunction::iterator It = BB;
11660  ++It;
11661
11662  //  thisMBB:
11663  //  ...
11664  //   TrueVal = ...
11665  //   cmpTY ccX, r1, r2
11666  //   bCC copy1MBB
11667  //   fallthrough --> copy0MBB
11668  MachineBasicBlock *thisMBB = BB;
11669  MachineFunction *F = BB->getParent();
11670  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11671  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11672  F->insert(It, copy0MBB);
11673  F->insert(It, sinkMBB);
11674
11675  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11676  // live into the sink and copy blocks.
11677  if (!MI->killsRegister(X86::EFLAGS)) {
11678    copy0MBB->addLiveIn(X86::EFLAGS);
11679    sinkMBB->addLiveIn(X86::EFLAGS);
11680  }
11681
11682  // Transfer the remainder of BB and its successor edges to sinkMBB.
11683  sinkMBB->splice(sinkMBB->begin(), BB,
11684                  llvm::next(MachineBasicBlock::iterator(MI)),
11685                  BB->end());
11686  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11687
11688  // Add the true and fallthrough blocks as its successors.
11689  BB->addSuccessor(copy0MBB);
11690  BB->addSuccessor(sinkMBB);
11691
11692  // Create the conditional branch instruction.
11693  unsigned Opc =
11694    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11695  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11696
11697  //  copy0MBB:
11698  //   %FalseValue = ...
11699  //   # fallthrough to sinkMBB
11700  copy0MBB->addSuccessor(sinkMBB);
11701
11702  //  sinkMBB:
11703  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11704  //  ...
11705  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11706          TII->get(X86::PHI), MI->getOperand(0).getReg())
11707    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11708    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11709
11710  MI->eraseFromParent();   // The pseudo instruction is gone now.
11711  return sinkMBB;
11712}
11713
11714MachineBasicBlock *
11715X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11716                                        bool Is64Bit) const {
11717  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11718  DebugLoc DL = MI->getDebugLoc();
11719  MachineFunction *MF = BB->getParent();
11720  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11721
11722  assert(EnableSegmentedStacks);
11723
11724  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11725  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11726
11727  // BB:
11728  //  ... [Till the alloca]
11729  // If stacklet is not large enough, jump to mallocMBB
11730  //
11731  // bumpMBB:
11732  //  Allocate by subtracting from RSP
11733  //  Jump to continueMBB
11734  //
11735  // mallocMBB:
11736  //  Allocate by call to runtime
11737  //
11738  // continueMBB:
11739  //  ...
11740  //  [rest of original BB]
11741  //
11742
11743  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11744  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11745  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11746
11747  MachineRegisterInfo &MRI = MF->getRegInfo();
11748  const TargetRegisterClass *AddrRegClass =
11749    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11750
11751  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11752    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11753    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11754    sizeVReg = MI->getOperand(1).getReg(),
11755    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11756
11757  MachineFunction::iterator MBBIter = BB;
11758  ++MBBIter;
11759
11760  MF->insert(MBBIter, bumpMBB);
11761  MF->insert(MBBIter, mallocMBB);
11762  MF->insert(MBBIter, continueMBB);
11763
11764  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11765                      (MachineBasicBlock::iterator(MI)), BB->end());
11766  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11767
11768  // Add code to the main basic block to check if the stack limit has been hit,
11769  // and if so, jump to mallocMBB otherwise to bumpMBB.
11770  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11771  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11772    .addReg(tmpSPVReg).addReg(sizeVReg);
11773  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11774    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11775    .addReg(tmpSPVReg);
11776  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11777
11778  // bumpMBB simply decreases the stack pointer, since we know the current
11779  // stacklet has enough space.
11780  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11781    .addReg(tmpSPVReg);
11782  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11783    .addReg(tmpSPVReg);
11784  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11785
11786  // Calls into a routine in libgcc to allocate more space from the heap.
11787  if (Is64Bit) {
11788    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11789      .addReg(sizeVReg);
11790    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11791    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11792  } else {
11793    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11794      .addImm(12);
11795    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11796    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11797      .addExternalSymbol("__morestack_allocate_stack_space");
11798  }
11799
11800  if (!Is64Bit)
11801    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11802      .addImm(16);
11803
11804  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11805    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11806  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11807
11808  // Set up the CFG correctly.
11809  BB->addSuccessor(bumpMBB);
11810  BB->addSuccessor(mallocMBB);
11811  mallocMBB->addSuccessor(continueMBB);
11812  bumpMBB->addSuccessor(continueMBB);
11813
11814  // Take care of the PHI nodes.
11815  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11816          MI->getOperand(0).getReg())
11817    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11818    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11819
11820  // Delete the original pseudo instruction.
11821  MI->eraseFromParent();
11822
11823  // And we're done.
11824  return continueMBB;
11825}
11826
11827MachineBasicBlock *
11828X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11829                                          MachineBasicBlock *BB) const {
11830  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11831  DebugLoc DL = MI->getDebugLoc();
11832
11833  assert(!Subtarget->isTargetEnvMacho());
11834
11835  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11836  // non-trivial part is impdef of ESP.
11837
11838  if (Subtarget->isTargetWin64()) {
11839    if (Subtarget->isTargetCygMing()) {
11840      // ___chkstk(Mingw64):
11841      // Clobbers R10, R11, RAX and EFLAGS.
11842      // Updates RSP.
11843      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11844        .addExternalSymbol("___chkstk")
11845        .addReg(X86::RAX, RegState::Implicit)
11846        .addReg(X86::RSP, RegState::Implicit)
11847        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11848        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11849        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11850    } else {
11851      // __chkstk(MSVCRT): does not update stack pointer.
11852      // Clobbers R10, R11 and EFLAGS.
11853      // FIXME: RAX(allocated size) might be reused and not killed.
11854      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11855        .addExternalSymbol("__chkstk")
11856        .addReg(X86::RAX, RegState::Implicit)
11857        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11858      // RAX has the offset to subtracted from RSP.
11859      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11860        .addReg(X86::RSP)
11861        .addReg(X86::RAX);
11862    }
11863  } else {
11864    const char *StackProbeSymbol =
11865      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11866
11867    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11868      .addExternalSymbol(StackProbeSymbol)
11869      .addReg(X86::EAX, RegState::Implicit)
11870      .addReg(X86::ESP, RegState::Implicit)
11871      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11872      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11873      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11874  }
11875
11876  MI->eraseFromParent();   // The pseudo instruction is gone now.
11877  return BB;
11878}
11879
11880MachineBasicBlock *
11881X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11882                                      MachineBasicBlock *BB) const {
11883  // This is pretty easy.  We're taking the value that we received from
11884  // our load from the relocation, sticking it in either RDI (x86-64)
11885  // or EAX and doing an indirect call.  The return value will then
11886  // be in the normal return register.
11887  const X86InstrInfo *TII
11888    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11889  DebugLoc DL = MI->getDebugLoc();
11890  MachineFunction *F = BB->getParent();
11891
11892  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11893  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11894
11895  if (Subtarget->is64Bit()) {
11896    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11897                                      TII->get(X86::MOV64rm), X86::RDI)
11898    .addReg(X86::RIP)
11899    .addImm(0).addReg(0)
11900    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11901                      MI->getOperand(3).getTargetFlags())
11902    .addReg(0);
11903    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11904    addDirectMem(MIB, X86::RDI);
11905  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11906    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11907                                      TII->get(X86::MOV32rm), X86::EAX)
11908    .addReg(0)
11909    .addImm(0).addReg(0)
11910    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11911                      MI->getOperand(3).getTargetFlags())
11912    .addReg(0);
11913    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11914    addDirectMem(MIB, X86::EAX);
11915  } else {
11916    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11917                                      TII->get(X86::MOV32rm), X86::EAX)
11918    .addReg(TII->getGlobalBaseReg(F))
11919    .addImm(0).addReg(0)
11920    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11921                      MI->getOperand(3).getTargetFlags())
11922    .addReg(0);
11923    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11924    addDirectMem(MIB, X86::EAX);
11925  }
11926
11927  MI->eraseFromParent(); // The pseudo instruction is gone now.
11928  return BB;
11929}
11930
11931MachineBasicBlock *
11932X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11933                                               MachineBasicBlock *BB) const {
11934  switch (MI->getOpcode()) {
11935  default: assert(false && "Unexpected instr type to insert");
11936  case X86::TAILJMPd64:
11937  case X86::TAILJMPr64:
11938  case X86::TAILJMPm64:
11939    assert(!"TAILJMP64 would not be touched here.");
11940  case X86::TCRETURNdi64:
11941  case X86::TCRETURNri64:
11942  case X86::TCRETURNmi64:
11943    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11944    // On AMD64, additional defs should be added before register allocation.
11945    if (!Subtarget->isTargetWin64()) {
11946      MI->addRegisterDefined(X86::RSI);
11947      MI->addRegisterDefined(X86::RDI);
11948      MI->addRegisterDefined(X86::XMM6);
11949      MI->addRegisterDefined(X86::XMM7);
11950      MI->addRegisterDefined(X86::XMM8);
11951      MI->addRegisterDefined(X86::XMM9);
11952      MI->addRegisterDefined(X86::XMM10);
11953      MI->addRegisterDefined(X86::XMM11);
11954      MI->addRegisterDefined(X86::XMM12);
11955      MI->addRegisterDefined(X86::XMM13);
11956      MI->addRegisterDefined(X86::XMM14);
11957      MI->addRegisterDefined(X86::XMM15);
11958    }
11959    return BB;
11960  case X86::WIN_ALLOCA:
11961    return EmitLoweredWinAlloca(MI, BB);
11962  case X86::SEG_ALLOCA_32:
11963    return EmitLoweredSegAlloca(MI, BB, false);
11964  case X86::SEG_ALLOCA_64:
11965    return EmitLoweredSegAlloca(MI, BB, true);
11966  case X86::TLSCall_32:
11967  case X86::TLSCall_64:
11968    return EmitLoweredTLSCall(MI, BB);
11969  case X86::CMOV_GR8:
11970  case X86::CMOV_FR32:
11971  case X86::CMOV_FR64:
11972  case X86::CMOV_V4F32:
11973  case X86::CMOV_V2F64:
11974  case X86::CMOV_V2I64:
11975  case X86::CMOV_V8F32:
11976  case X86::CMOV_V4F64:
11977  case X86::CMOV_V4I64:
11978  case X86::CMOV_GR16:
11979  case X86::CMOV_GR32:
11980  case X86::CMOV_RFP32:
11981  case X86::CMOV_RFP64:
11982  case X86::CMOV_RFP80:
11983    return EmitLoweredSelect(MI, BB);
11984
11985  case X86::FP32_TO_INT16_IN_MEM:
11986  case X86::FP32_TO_INT32_IN_MEM:
11987  case X86::FP32_TO_INT64_IN_MEM:
11988  case X86::FP64_TO_INT16_IN_MEM:
11989  case X86::FP64_TO_INT32_IN_MEM:
11990  case X86::FP64_TO_INT64_IN_MEM:
11991  case X86::FP80_TO_INT16_IN_MEM:
11992  case X86::FP80_TO_INT32_IN_MEM:
11993  case X86::FP80_TO_INT64_IN_MEM: {
11994    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11995    DebugLoc DL = MI->getDebugLoc();
11996
11997    // Change the floating point control register to use "round towards zero"
11998    // mode when truncating to an integer value.
11999    MachineFunction *F = BB->getParent();
12000    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12001    addFrameReference(BuildMI(*BB, MI, DL,
12002                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12003
12004    // Load the old value of the high byte of the control word...
12005    unsigned OldCW =
12006      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12007    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12008                      CWFrameIdx);
12009
12010    // Set the high part to be round to zero...
12011    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12012      .addImm(0xC7F);
12013
12014    // Reload the modified control word now...
12015    addFrameReference(BuildMI(*BB, MI, DL,
12016                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12017
12018    // Restore the memory image of control word to original value
12019    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12020      .addReg(OldCW);
12021
12022    // Get the X86 opcode to use.
12023    unsigned Opc;
12024    switch (MI->getOpcode()) {
12025    default: llvm_unreachable("illegal opcode!");
12026    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12027    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12028    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12029    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12030    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12031    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12032    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12033    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12034    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12035    }
12036
12037    X86AddressMode AM;
12038    MachineOperand &Op = MI->getOperand(0);
12039    if (Op.isReg()) {
12040      AM.BaseType = X86AddressMode::RegBase;
12041      AM.Base.Reg = Op.getReg();
12042    } else {
12043      AM.BaseType = X86AddressMode::FrameIndexBase;
12044      AM.Base.FrameIndex = Op.getIndex();
12045    }
12046    Op = MI->getOperand(1);
12047    if (Op.isImm())
12048      AM.Scale = Op.getImm();
12049    Op = MI->getOperand(2);
12050    if (Op.isImm())
12051      AM.IndexReg = Op.getImm();
12052    Op = MI->getOperand(3);
12053    if (Op.isGlobal()) {
12054      AM.GV = Op.getGlobal();
12055    } else {
12056      AM.Disp = Op.getImm();
12057    }
12058    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12059                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12060
12061    // Reload the original control word now.
12062    addFrameReference(BuildMI(*BB, MI, DL,
12063                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12064
12065    MI->eraseFromParent();   // The pseudo instruction is gone now.
12066    return BB;
12067  }
12068    // String/text processing lowering.
12069  case X86::PCMPISTRM128REG:
12070  case X86::VPCMPISTRM128REG:
12071    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12072  case X86::PCMPISTRM128MEM:
12073  case X86::VPCMPISTRM128MEM:
12074    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12075  case X86::PCMPESTRM128REG:
12076  case X86::VPCMPESTRM128REG:
12077    return EmitPCMP(MI, BB, 5, false /* in mem */);
12078  case X86::PCMPESTRM128MEM:
12079  case X86::VPCMPESTRM128MEM:
12080    return EmitPCMP(MI, BB, 5, true /* in mem */);
12081
12082    // Thread synchronization.
12083  case X86::MONITOR:
12084    return EmitMonitor(MI, BB);
12085  case X86::MWAIT:
12086    return EmitMwait(MI, BB);
12087
12088    // Atomic Lowering.
12089  case X86::ATOMAND32:
12090    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12091                                               X86::AND32ri, X86::MOV32rm,
12092                                               X86::LCMPXCHG32,
12093                                               X86::NOT32r, X86::EAX,
12094                                               X86::GR32RegisterClass);
12095  case X86::ATOMOR32:
12096    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12097                                               X86::OR32ri, X86::MOV32rm,
12098                                               X86::LCMPXCHG32,
12099                                               X86::NOT32r, X86::EAX,
12100                                               X86::GR32RegisterClass);
12101  case X86::ATOMXOR32:
12102    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12103                                               X86::XOR32ri, X86::MOV32rm,
12104                                               X86::LCMPXCHG32,
12105                                               X86::NOT32r, X86::EAX,
12106                                               X86::GR32RegisterClass);
12107  case X86::ATOMNAND32:
12108    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12109                                               X86::AND32ri, X86::MOV32rm,
12110                                               X86::LCMPXCHG32,
12111                                               X86::NOT32r, X86::EAX,
12112                                               X86::GR32RegisterClass, true);
12113  case X86::ATOMMIN32:
12114    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12115  case X86::ATOMMAX32:
12116    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12117  case X86::ATOMUMIN32:
12118    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12119  case X86::ATOMUMAX32:
12120    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12121
12122  case X86::ATOMAND16:
12123    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12124                                               X86::AND16ri, X86::MOV16rm,
12125                                               X86::LCMPXCHG16,
12126                                               X86::NOT16r, X86::AX,
12127                                               X86::GR16RegisterClass);
12128  case X86::ATOMOR16:
12129    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12130                                               X86::OR16ri, X86::MOV16rm,
12131                                               X86::LCMPXCHG16,
12132                                               X86::NOT16r, X86::AX,
12133                                               X86::GR16RegisterClass);
12134  case X86::ATOMXOR16:
12135    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12136                                               X86::XOR16ri, X86::MOV16rm,
12137                                               X86::LCMPXCHG16,
12138                                               X86::NOT16r, X86::AX,
12139                                               X86::GR16RegisterClass);
12140  case X86::ATOMNAND16:
12141    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12142                                               X86::AND16ri, X86::MOV16rm,
12143                                               X86::LCMPXCHG16,
12144                                               X86::NOT16r, X86::AX,
12145                                               X86::GR16RegisterClass, true);
12146  case X86::ATOMMIN16:
12147    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12148  case X86::ATOMMAX16:
12149    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12150  case X86::ATOMUMIN16:
12151    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12152  case X86::ATOMUMAX16:
12153    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12154
12155  case X86::ATOMAND8:
12156    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12157                                               X86::AND8ri, X86::MOV8rm,
12158                                               X86::LCMPXCHG8,
12159                                               X86::NOT8r, X86::AL,
12160                                               X86::GR8RegisterClass);
12161  case X86::ATOMOR8:
12162    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12163                                               X86::OR8ri, X86::MOV8rm,
12164                                               X86::LCMPXCHG8,
12165                                               X86::NOT8r, X86::AL,
12166                                               X86::GR8RegisterClass);
12167  case X86::ATOMXOR8:
12168    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12169                                               X86::XOR8ri, X86::MOV8rm,
12170                                               X86::LCMPXCHG8,
12171                                               X86::NOT8r, X86::AL,
12172                                               X86::GR8RegisterClass);
12173  case X86::ATOMNAND8:
12174    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12175                                               X86::AND8ri, X86::MOV8rm,
12176                                               X86::LCMPXCHG8,
12177                                               X86::NOT8r, X86::AL,
12178                                               X86::GR8RegisterClass, true);
12179  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12180  // This group is for 64-bit host.
12181  case X86::ATOMAND64:
12182    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12183                                               X86::AND64ri32, X86::MOV64rm,
12184                                               X86::LCMPXCHG64,
12185                                               X86::NOT64r, X86::RAX,
12186                                               X86::GR64RegisterClass);
12187  case X86::ATOMOR64:
12188    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12189                                               X86::OR64ri32, X86::MOV64rm,
12190                                               X86::LCMPXCHG64,
12191                                               X86::NOT64r, X86::RAX,
12192                                               X86::GR64RegisterClass);
12193  case X86::ATOMXOR64:
12194    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12195                                               X86::XOR64ri32, X86::MOV64rm,
12196                                               X86::LCMPXCHG64,
12197                                               X86::NOT64r, X86::RAX,
12198                                               X86::GR64RegisterClass);
12199  case X86::ATOMNAND64:
12200    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12201                                               X86::AND64ri32, X86::MOV64rm,
12202                                               X86::LCMPXCHG64,
12203                                               X86::NOT64r, X86::RAX,
12204                                               X86::GR64RegisterClass, true);
12205  case X86::ATOMMIN64:
12206    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12207  case X86::ATOMMAX64:
12208    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12209  case X86::ATOMUMIN64:
12210    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12211  case X86::ATOMUMAX64:
12212    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12213
12214  // This group does 64-bit operations on a 32-bit host.
12215  case X86::ATOMAND6432:
12216    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12217                                               X86::AND32rr, X86::AND32rr,
12218                                               X86::AND32ri, X86::AND32ri,
12219                                               false);
12220  case X86::ATOMOR6432:
12221    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12222                                               X86::OR32rr, X86::OR32rr,
12223                                               X86::OR32ri, X86::OR32ri,
12224                                               false);
12225  case X86::ATOMXOR6432:
12226    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12227                                               X86::XOR32rr, X86::XOR32rr,
12228                                               X86::XOR32ri, X86::XOR32ri,
12229                                               false);
12230  case X86::ATOMNAND6432:
12231    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12232                                               X86::AND32rr, X86::AND32rr,
12233                                               X86::AND32ri, X86::AND32ri,
12234                                               true);
12235  case X86::ATOMADD6432:
12236    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12237                                               X86::ADD32rr, X86::ADC32rr,
12238                                               X86::ADD32ri, X86::ADC32ri,
12239                                               false);
12240  case X86::ATOMSUB6432:
12241    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12242                                               X86::SUB32rr, X86::SBB32rr,
12243                                               X86::SUB32ri, X86::SBB32ri,
12244                                               false);
12245  case X86::ATOMSWAP6432:
12246    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12247                                               X86::MOV32rr, X86::MOV32rr,
12248                                               X86::MOV32ri, X86::MOV32ri,
12249                                               false);
12250  case X86::VASTART_SAVE_XMM_REGS:
12251    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12252
12253  case X86::VAARG_64:
12254    return EmitVAARG64WithCustomInserter(MI, BB);
12255  }
12256}
12257
12258//===----------------------------------------------------------------------===//
12259//                           X86 Optimization Hooks
12260//===----------------------------------------------------------------------===//
12261
12262void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12263                                                       const APInt &Mask,
12264                                                       APInt &KnownZero,
12265                                                       APInt &KnownOne,
12266                                                       const SelectionDAG &DAG,
12267                                                       unsigned Depth) const {
12268  unsigned Opc = Op.getOpcode();
12269  assert((Opc >= ISD::BUILTIN_OP_END ||
12270          Opc == ISD::INTRINSIC_WO_CHAIN ||
12271          Opc == ISD::INTRINSIC_W_CHAIN ||
12272          Opc == ISD::INTRINSIC_VOID) &&
12273         "Should use MaskedValueIsZero if you don't know whether Op"
12274         " is a target node!");
12275
12276  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12277  switch (Opc) {
12278  default: break;
12279  case X86ISD::ADD:
12280  case X86ISD::SUB:
12281  case X86ISD::ADC:
12282  case X86ISD::SBB:
12283  case X86ISD::SMUL:
12284  case X86ISD::UMUL:
12285  case X86ISD::INC:
12286  case X86ISD::DEC:
12287  case X86ISD::OR:
12288  case X86ISD::XOR:
12289  case X86ISD::AND:
12290    // These nodes' second result is a boolean.
12291    if (Op.getResNo() == 0)
12292      break;
12293    // Fallthrough
12294  case X86ISD::SETCC:
12295    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12296                                       Mask.getBitWidth() - 1);
12297    break;
12298  }
12299}
12300
12301unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12302                                                         unsigned Depth) const {
12303  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12304  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12305    return Op.getValueType().getScalarType().getSizeInBits();
12306
12307  // Fallback case.
12308  return 1;
12309}
12310
12311/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12312/// node is a GlobalAddress + offset.
12313bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12314                                       const GlobalValue* &GA,
12315                                       int64_t &Offset) const {
12316  if (N->getOpcode() == X86ISD::Wrapper) {
12317    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12318      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12319      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12320      return true;
12321    }
12322  }
12323  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12324}
12325
12326/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12327/// same as extracting the high 128-bit part of 256-bit vector and then
12328/// inserting the result into the low part of a new 256-bit vector
12329static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12330  EVT VT = SVOp->getValueType(0);
12331  int NumElems = VT.getVectorNumElements();
12332
12333  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12334  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12335    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12336        SVOp->getMaskElt(j) >= 0)
12337      return false;
12338
12339  return true;
12340}
12341
12342/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12343/// same as extracting the low 128-bit part of 256-bit vector and then
12344/// inserting the result into the high part of a new 256-bit vector
12345static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12346  EVT VT = SVOp->getValueType(0);
12347  int NumElems = VT.getVectorNumElements();
12348
12349  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12350  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12351    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12352        SVOp->getMaskElt(j) >= 0)
12353      return false;
12354
12355  return true;
12356}
12357
12358/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12359static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12360                                        TargetLowering::DAGCombinerInfo &DCI) {
12361  DebugLoc dl = N->getDebugLoc();
12362  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12363  SDValue V1 = SVOp->getOperand(0);
12364  SDValue V2 = SVOp->getOperand(1);
12365  EVT VT = SVOp->getValueType(0);
12366  int NumElems = VT.getVectorNumElements();
12367
12368  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12369      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12370    //
12371    //                   0,0,0,...
12372    //                      |
12373    //    V      UNDEF    BUILD_VECTOR    UNDEF
12374    //     \      /           \           /
12375    //  CONCAT_VECTOR         CONCAT_VECTOR
12376    //         \                  /
12377    //          \                /
12378    //          RESULT: V + zero extended
12379    //
12380    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12381        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12382        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12383      return SDValue();
12384
12385    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12386      return SDValue();
12387
12388    // To match the shuffle mask, the first half of the mask should
12389    // be exactly the first vector, and all the rest a splat with the
12390    // first element of the second one.
12391    for (int i = 0; i < NumElems/2; ++i)
12392      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12393          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12394        return SDValue();
12395
12396    // Emit a zeroed vector and insert the desired subvector on its
12397    // first half.
12398    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12399    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12400                         DAG.getConstant(0, MVT::i32), DAG, dl);
12401    return DCI.CombineTo(N, InsV);
12402  }
12403
12404  //===--------------------------------------------------------------------===//
12405  // Combine some shuffles into subvector extracts and inserts:
12406  //
12407
12408  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12409  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12410    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12411                                    DAG, dl);
12412    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12413                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12414    return DCI.CombineTo(N, InsV);
12415  }
12416
12417  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12418  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12419    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12420    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12421                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12422    return DCI.CombineTo(N, InsV);
12423  }
12424
12425  return SDValue();
12426}
12427
12428/// PerformShuffleCombine - Performs several different shuffle combines.
12429static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12430                                     TargetLowering::DAGCombinerInfo &DCI,
12431                                     const X86Subtarget *Subtarget) {
12432  DebugLoc dl = N->getDebugLoc();
12433  EVT VT = N->getValueType(0);
12434
12435  // Don't create instructions with illegal types after legalize types has run.
12436  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12437  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12438    return SDValue();
12439
12440  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12441  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12442      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12443    return PerformShuffleCombine256(N, DAG, DCI);
12444
12445  // Only handle 128 wide vector from here on.
12446  if (VT.getSizeInBits() != 128)
12447    return SDValue();
12448
12449  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12450  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12451  // consecutive, non-overlapping, and in the right order.
12452  SmallVector<SDValue, 16> Elts;
12453  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12454    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12455
12456  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12457}
12458
12459/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12460/// generation and convert it from being a bunch of shuffles and extracts
12461/// to a simple store and scalar loads to extract the elements.
12462static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12463                                                const TargetLowering &TLI) {
12464  SDValue InputVector = N->getOperand(0);
12465
12466  // Only operate on vectors of 4 elements, where the alternative shuffling
12467  // gets to be more expensive.
12468  if (InputVector.getValueType() != MVT::v4i32)
12469    return SDValue();
12470
12471  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12472  // single use which is a sign-extend or zero-extend, and all elements are
12473  // used.
12474  SmallVector<SDNode *, 4> Uses;
12475  unsigned ExtractedElements = 0;
12476  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12477       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12478    if (UI.getUse().getResNo() != InputVector.getResNo())
12479      return SDValue();
12480
12481    SDNode *Extract = *UI;
12482    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12483      return SDValue();
12484
12485    if (Extract->getValueType(0) != MVT::i32)
12486      return SDValue();
12487    if (!Extract->hasOneUse())
12488      return SDValue();
12489    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12490        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12491      return SDValue();
12492    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12493      return SDValue();
12494
12495    // Record which element was extracted.
12496    ExtractedElements |=
12497      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12498
12499    Uses.push_back(Extract);
12500  }
12501
12502  // If not all the elements were used, this may not be worthwhile.
12503  if (ExtractedElements != 15)
12504    return SDValue();
12505
12506  // Ok, we've now decided to do the transformation.
12507  DebugLoc dl = InputVector.getDebugLoc();
12508
12509  // Store the value to a temporary stack slot.
12510  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12511  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12512                            MachinePointerInfo(), false, false, 0);
12513
12514  // Replace each use (extract) with a load of the appropriate element.
12515  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12516       UE = Uses.end(); UI != UE; ++UI) {
12517    SDNode *Extract = *UI;
12518
12519    // cOMpute the element's address.
12520    SDValue Idx = Extract->getOperand(1);
12521    unsigned EltSize =
12522        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12523    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12524    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12525
12526    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12527                                     StackPtr, OffsetVal);
12528
12529    // Load the scalar.
12530    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12531                                     ScalarAddr, MachinePointerInfo(),
12532                                     false, false, 0);
12533
12534    // Replace the exact with the load.
12535    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12536  }
12537
12538  // The replacement was made in place; don't return anything.
12539  return SDValue();
12540}
12541
12542/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
12543static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12544                                    const X86Subtarget *Subtarget) {
12545  DebugLoc DL = N->getDebugLoc();
12546  SDValue Cond = N->getOperand(0);
12547  // Get the LHS/RHS of the select.
12548  SDValue LHS = N->getOperand(1);
12549  SDValue RHS = N->getOperand(2);
12550
12551  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12552  // instructions match the semantics of the common C idiom x<y?x:y but not
12553  // x<=y?x:y, because of how they handle negative zero (which can be
12554  // ignored in unsafe-math mode).
12555  if (Subtarget->hasSSE2() &&
12556      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
12557      Cond.getOpcode() == ISD::SETCC) {
12558    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12559
12560    unsigned Opcode = 0;
12561    // Check for x CC y ? x : y.
12562    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12563        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12564      switch (CC) {
12565      default: break;
12566      case ISD::SETULT:
12567        // Converting this to a min would handle NaNs incorrectly, and swapping
12568        // the operands would cause it to handle comparisons between positive
12569        // and negative zero incorrectly.
12570        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12571          if (!UnsafeFPMath &&
12572              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12573            break;
12574          std::swap(LHS, RHS);
12575        }
12576        Opcode = X86ISD::FMIN;
12577        break;
12578      case ISD::SETOLE:
12579        // Converting this to a min would handle comparisons between positive
12580        // and negative zero incorrectly.
12581        if (!UnsafeFPMath &&
12582            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12583          break;
12584        Opcode = X86ISD::FMIN;
12585        break;
12586      case ISD::SETULE:
12587        // Converting this to a min would handle both negative zeros and NaNs
12588        // incorrectly, but we can swap the operands to fix both.
12589        std::swap(LHS, RHS);
12590      case ISD::SETOLT:
12591      case ISD::SETLT:
12592      case ISD::SETLE:
12593        Opcode = X86ISD::FMIN;
12594        break;
12595
12596      case ISD::SETOGE:
12597        // Converting this to a max would handle comparisons between positive
12598        // and negative zero incorrectly.
12599        if (!UnsafeFPMath &&
12600            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12601          break;
12602        Opcode = X86ISD::FMAX;
12603        break;
12604      case ISD::SETUGT:
12605        // Converting this to a max would handle NaNs incorrectly, and swapping
12606        // the operands would cause it to handle comparisons between positive
12607        // and negative zero incorrectly.
12608        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12609          if (!UnsafeFPMath &&
12610              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12611            break;
12612          std::swap(LHS, RHS);
12613        }
12614        Opcode = X86ISD::FMAX;
12615        break;
12616      case ISD::SETUGE:
12617        // Converting this to a max would handle both negative zeros and NaNs
12618        // incorrectly, but we can swap the operands to fix both.
12619        std::swap(LHS, RHS);
12620      case ISD::SETOGT:
12621      case ISD::SETGT:
12622      case ISD::SETGE:
12623        Opcode = X86ISD::FMAX;
12624        break;
12625      }
12626    // Check for x CC y ? y : x -- a min/max with reversed arms.
12627    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12628               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12629      switch (CC) {
12630      default: break;
12631      case ISD::SETOGE:
12632        // Converting this to a min would handle comparisons between positive
12633        // and negative zero incorrectly, and swapping the operands would
12634        // cause it to handle NaNs incorrectly.
12635        if (!UnsafeFPMath &&
12636            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12637          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12638            break;
12639          std::swap(LHS, RHS);
12640        }
12641        Opcode = X86ISD::FMIN;
12642        break;
12643      case ISD::SETUGT:
12644        // Converting this to a min would handle NaNs incorrectly.
12645        if (!UnsafeFPMath &&
12646            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12647          break;
12648        Opcode = X86ISD::FMIN;
12649        break;
12650      case ISD::SETUGE:
12651        // Converting this to a min would handle both negative zeros and NaNs
12652        // incorrectly, but we can swap the operands to fix both.
12653        std::swap(LHS, RHS);
12654      case ISD::SETOGT:
12655      case ISD::SETGT:
12656      case ISD::SETGE:
12657        Opcode = X86ISD::FMIN;
12658        break;
12659
12660      case ISD::SETULT:
12661        // Converting this to a max would handle NaNs incorrectly.
12662        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12663          break;
12664        Opcode = X86ISD::FMAX;
12665        break;
12666      case ISD::SETOLE:
12667        // Converting this to a max would handle comparisons between positive
12668        // and negative zero incorrectly, and swapping the operands would
12669        // cause it to handle NaNs incorrectly.
12670        if (!UnsafeFPMath &&
12671            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12672          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12673            break;
12674          std::swap(LHS, RHS);
12675        }
12676        Opcode = X86ISD::FMAX;
12677        break;
12678      case ISD::SETULE:
12679        // Converting this to a max would handle both negative zeros and NaNs
12680        // incorrectly, but we can swap the operands to fix both.
12681        std::swap(LHS, RHS);
12682      case ISD::SETOLT:
12683      case ISD::SETLT:
12684      case ISD::SETLE:
12685        Opcode = X86ISD::FMAX;
12686        break;
12687      }
12688    }
12689
12690    if (Opcode)
12691      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12692  }
12693
12694  // If this is a select between two integer constants, try to do some
12695  // optimizations.
12696  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12697    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12698      // Don't do this for crazy integer types.
12699      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12700        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12701        // so that TrueC (the true value) is larger than FalseC.
12702        bool NeedsCondInvert = false;
12703
12704        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12705            // Efficiently invertible.
12706            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12707             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12708              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12709          NeedsCondInvert = true;
12710          std::swap(TrueC, FalseC);
12711        }
12712
12713        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12714        if (FalseC->getAPIntValue() == 0 &&
12715            TrueC->getAPIntValue().isPowerOf2()) {
12716          if (NeedsCondInvert) // Invert the condition if needed.
12717            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12718                               DAG.getConstant(1, Cond.getValueType()));
12719
12720          // Zero extend the condition if needed.
12721          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12722
12723          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12724          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12725                             DAG.getConstant(ShAmt, MVT::i8));
12726        }
12727
12728        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12729        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12730          if (NeedsCondInvert) // Invert the condition if needed.
12731            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12732                               DAG.getConstant(1, Cond.getValueType()));
12733
12734          // Zero extend the condition if needed.
12735          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12736                             FalseC->getValueType(0), Cond);
12737          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12738                             SDValue(FalseC, 0));
12739        }
12740
12741        // Optimize cases that will turn into an LEA instruction.  This requires
12742        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12743        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12744          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12745          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12746
12747          bool isFastMultiplier = false;
12748          if (Diff < 10) {
12749            switch ((unsigned char)Diff) {
12750              default: break;
12751              case 1:  // result = add base, cond
12752              case 2:  // result = lea base(    , cond*2)
12753              case 3:  // result = lea base(cond, cond*2)
12754              case 4:  // result = lea base(    , cond*4)
12755              case 5:  // result = lea base(cond, cond*4)
12756              case 8:  // result = lea base(    , cond*8)
12757              case 9:  // result = lea base(cond, cond*8)
12758                isFastMultiplier = true;
12759                break;
12760            }
12761          }
12762
12763          if (isFastMultiplier) {
12764            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12765            if (NeedsCondInvert) // Invert the condition if needed.
12766              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12767                                 DAG.getConstant(1, Cond.getValueType()));
12768
12769            // Zero extend the condition if needed.
12770            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12771                               Cond);
12772            // Scale the condition by the difference.
12773            if (Diff != 1)
12774              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12775                                 DAG.getConstant(Diff, Cond.getValueType()));
12776
12777            // Add the base if non-zero.
12778            if (FalseC->getAPIntValue() != 0)
12779              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12780                                 SDValue(FalseC, 0));
12781            return Cond;
12782          }
12783        }
12784      }
12785  }
12786
12787  return SDValue();
12788}
12789
12790/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12791static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12792                                  TargetLowering::DAGCombinerInfo &DCI) {
12793  DebugLoc DL = N->getDebugLoc();
12794
12795  // If the flag operand isn't dead, don't touch this CMOV.
12796  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12797    return SDValue();
12798
12799  SDValue FalseOp = N->getOperand(0);
12800  SDValue TrueOp = N->getOperand(1);
12801  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12802  SDValue Cond = N->getOperand(3);
12803  if (CC == X86::COND_E || CC == X86::COND_NE) {
12804    switch (Cond.getOpcode()) {
12805    default: break;
12806    case X86ISD::BSR:
12807    case X86ISD::BSF:
12808      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12809      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12810        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12811    }
12812  }
12813
12814  // If this is a select between two integer constants, try to do some
12815  // optimizations.  Note that the operands are ordered the opposite of SELECT
12816  // operands.
12817  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12818    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12819      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12820      // larger than FalseC (the false value).
12821      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12822        CC = X86::GetOppositeBranchCondition(CC);
12823        std::swap(TrueC, FalseC);
12824      }
12825
12826      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12827      // This is efficient for any integer data type (including i8/i16) and
12828      // shift amount.
12829      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12830        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12831                           DAG.getConstant(CC, MVT::i8), Cond);
12832
12833        // Zero extend the condition if needed.
12834        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12835
12836        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12837        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12838                           DAG.getConstant(ShAmt, MVT::i8));
12839        if (N->getNumValues() == 2)  // Dead flag value?
12840          return DCI.CombineTo(N, Cond, SDValue());
12841        return Cond;
12842      }
12843
12844      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12845      // for any integer data type, including i8/i16.
12846      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12847        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12848                           DAG.getConstant(CC, MVT::i8), Cond);
12849
12850        // Zero extend the condition if needed.
12851        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12852                           FalseC->getValueType(0), Cond);
12853        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12854                           SDValue(FalseC, 0));
12855
12856        if (N->getNumValues() == 2)  // Dead flag value?
12857          return DCI.CombineTo(N, Cond, SDValue());
12858        return Cond;
12859      }
12860
12861      // Optimize cases that will turn into an LEA instruction.  This requires
12862      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12863      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12864        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12865        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12866
12867        bool isFastMultiplier = false;
12868        if (Diff < 10) {
12869          switch ((unsigned char)Diff) {
12870          default: break;
12871          case 1:  // result = add base, cond
12872          case 2:  // result = lea base(    , cond*2)
12873          case 3:  // result = lea base(cond, cond*2)
12874          case 4:  // result = lea base(    , cond*4)
12875          case 5:  // result = lea base(cond, cond*4)
12876          case 8:  // result = lea base(    , cond*8)
12877          case 9:  // result = lea base(cond, cond*8)
12878            isFastMultiplier = true;
12879            break;
12880          }
12881        }
12882
12883        if (isFastMultiplier) {
12884          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12885          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12886                             DAG.getConstant(CC, MVT::i8), Cond);
12887          // Zero extend the condition if needed.
12888          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12889                             Cond);
12890          // Scale the condition by the difference.
12891          if (Diff != 1)
12892            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12893                               DAG.getConstant(Diff, Cond.getValueType()));
12894
12895          // Add the base if non-zero.
12896          if (FalseC->getAPIntValue() != 0)
12897            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12898                               SDValue(FalseC, 0));
12899          if (N->getNumValues() == 2)  // Dead flag value?
12900            return DCI.CombineTo(N, Cond, SDValue());
12901          return Cond;
12902        }
12903      }
12904    }
12905  }
12906  return SDValue();
12907}
12908
12909
12910/// PerformMulCombine - Optimize a single multiply with constant into two
12911/// in order to implement it with two cheaper instructions, e.g.
12912/// LEA + SHL, LEA + LEA.
12913static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12914                                 TargetLowering::DAGCombinerInfo &DCI) {
12915  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12916    return SDValue();
12917
12918  EVT VT = N->getValueType(0);
12919  if (VT != MVT::i64)
12920    return SDValue();
12921
12922  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12923  if (!C)
12924    return SDValue();
12925  uint64_t MulAmt = C->getZExtValue();
12926  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12927    return SDValue();
12928
12929  uint64_t MulAmt1 = 0;
12930  uint64_t MulAmt2 = 0;
12931  if ((MulAmt % 9) == 0) {
12932    MulAmt1 = 9;
12933    MulAmt2 = MulAmt / 9;
12934  } else if ((MulAmt % 5) == 0) {
12935    MulAmt1 = 5;
12936    MulAmt2 = MulAmt / 5;
12937  } else if ((MulAmt % 3) == 0) {
12938    MulAmt1 = 3;
12939    MulAmt2 = MulAmt / 3;
12940  }
12941  if (MulAmt2 &&
12942      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12943    DebugLoc DL = N->getDebugLoc();
12944
12945    if (isPowerOf2_64(MulAmt2) &&
12946        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12947      // If second multiplifer is pow2, issue it first. We want the multiply by
12948      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12949      // is an add.
12950      std::swap(MulAmt1, MulAmt2);
12951
12952    SDValue NewMul;
12953    if (isPowerOf2_64(MulAmt1))
12954      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12955                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12956    else
12957      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12958                           DAG.getConstant(MulAmt1, VT));
12959
12960    if (isPowerOf2_64(MulAmt2))
12961      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12962                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12963    else
12964      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12965                           DAG.getConstant(MulAmt2, VT));
12966
12967    // Do not add new nodes to DAG combiner worklist.
12968    DCI.CombineTo(N, NewMul, false);
12969  }
12970  return SDValue();
12971}
12972
12973static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12974  SDValue N0 = N->getOperand(0);
12975  SDValue N1 = N->getOperand(1);
12976  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12977  EVT VT = N0.getValueType();
12978
12979  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12980  // since the result of setcc_c is all zero's or all ones.
12981  if (N1C && N0.getOpcode() == ISD::AND &&
12982      N0.getOperand(1).getOpcode() == ISD::Constant) {
12983    SDValue N00 = N0.getOperand(0);
12984    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12985        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12986          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12987         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12988      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12989      APInt ShAmt = N1C->getAPIntValue();
12990      Mask = Mask.shl(ShAmt);
12991      if (Mask != 0)
12992        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12993                           N00, DAG.getConstant(Mask, VT));
12994    }
12995  }
12996
12997  return SDValue();
12998}
12999
13000/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13001///                       when possible.
13002static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13003                                   const X86Subtarget *Subtarget) {
13004  EVT VT = N->getValueType(0);
13005  if (!VT.isVector() && VT.isInteger() &&
13006      N->getOpcode() == ISD::SHL)
13007    return PerformSHLCombine(N, DAG);
13008
13009  // On X86 with SSE2 support, we can transform this to a vector shift if
13010  // all elements are shifted by the same amount.  We can't do this in legalize
13011  // because the a constant vector is typically transformed to a constant pool
13012  // so we have no knowledge of the shift amount.
13013  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
13014    return SDValue();
13015
13016  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13017    return SDValue();
13018
13019  SDValue ShAmtOp = N->getOperand(1);
13020  EVT EltVT = VT.getVectorElementType();
13021  DebugLoc DL = N->getDebugLoc();
13022  SDValue BaseShAmt = SDValue();
13023  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13024    unsigned NumElts = VT.getVectorNumElements();
13025    unsigned i = 0;
13026    for (; i != NumElts; ++i) {
13027      SDValue Arg = ShAmtOp.getOperand(i);
13028      if (Arg.getOpcode() == ISD::UNDEF) continue;
13029      BaseShAmt = Arg;
13030      break;
13031    }
13032    for (; i != NumElts; ++i) {
13033      SDValue Arg = ShAmtOp.getOperand(i);
13034      if (Arg.getOpcode() == ISD::UNDEF) continue;
13035      if (Arg != BaseShAmt) {
13036        return SDValue();
13037      }
13038    }
13039  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13040             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13041    SDValue InVec = ShAmtOp.getOperand(0);
13042    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13043      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13044      unsigned i = 0;
13045      for (; i != NumElts; ++i) {
13046        SDValue Arg = InVec.getOperand(i);
13047        if (Arg.getOpcode() == ISD::UNDEF) continue;
13048        BaseShAmt = Arg;
13049        break;
13050      }
13051    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13052       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13053         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13054         if (C->getZExtValue() == SplatIdx)
13055           BaseShAmt = InVec.getOperand(1);
13056       }
13057    }
13058    if (BaseShAmt.getNode() == 0)
13059      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13060                              DAG.getIntPtrConstant(0));
13061  } else
13062    return SDValue();
13063
13064  // The shift amount is an i32.
13065  if (EltVT.bitsGT(MVT::i32))
13066    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13067  else if (EltVT.bitsLT(MVT::i32))
13068    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13069
13070  // The shift amount is identical so we can do a vector shift.
13071  SDValue  ValOp = N->getOperand(0);
13072  switch (N->getOpcode()) {
13073  default:
13074    llvm_unreachable("Unknown shift opcode!");
13075    break;
13076  case ISD::SHL:
13077    if (VT == MVT::v2i64)
13078      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13079                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13080                         ValOp, BaseShAmt);
13081    if (VT == MVT::v4i32)
13082      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13083                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13084                         ValOp, BaseShAmt);
13085    if (VT == MVT::v8i16)
13086      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13087                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13088                         ValOp, BaseShAmt);
13089    break;
13090  case ISD::SRA:
13091    if (VT == MVT::v4i32)
13092      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13093                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13094                         ValOp, BaseShAmt);
13095    if (VT == MVT::v8i16)
13096      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13097                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13098                         ValOp, BaseShAmt);
13099    break;
13100  case ISD::SRL:
13101    if (VT == MVT::v2i64)
13102      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13103                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13104                         ValOp, BaseShAmt);
13105    if (VT == MVT::v4i32)
13106      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13107                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13108                         ValOp, BaseShAmt);
13109    if (VT ==  MVT::v8i16)
13110      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13111                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13112                         ValOp, BaseShAmt);
13113    break;
13114  }
13115  return SDValue();
13116}
13117
13118
13119// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13120// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13121// and friends.  Likewise for OR -> CMPNEQSS.
13122static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13123                            TargetLowering::DAGCombinerInfo &DCI,
13124                            const X86Subtarget *Subtarget) {
13125  unsigned opcode;
13126
13127  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13128  // we're requiring SSE2 for both.
13129  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13130    SDValue N0 = N->getOperand(0);
13131    SDValue N1 = N->getOperand(1);
13132    SDValue CMP0 = N0->getOperand(1);
13133    SDValue CMP1 = N1->getOperand(1);
13134    DebugLoc DL = N->getDebugLoc();
13135
13136    // The SETCCs should both refer to the same CMP.
13137    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13138      return SDValue();
13139
13140    SDValue CMP00 = CMP0->getOperand(0);
13141    SDValue CMP01 = CMP0->getOperand(1);
13142    EVT     VT    = CMP00.getValueType();
13143
13144    if (VT == MVT::f32 || VT == MVT::f64) {
13145      bool ExpectingFlags = false;
13146      // Check for any users that want flags:
13147      for (SDNode::use_iterator UI = N->use_begin(),
13148             UE = N->use_end();
13149           !ExpectingFlags && UI != UE; ++UI)
13150        switch (UI->getOpcode()) {
13151        default:
13152        case ISD::BR_CC:
13153        case ISD::BRCOND:
13154        case ISD::SELECT:
13155          ExpectingFlags = true;
13156          break;
13157        case ISD::CopyToReg:
13158        case ISD::SIGN_EXTEND:
13159        case ISD::ZERO_EXTEND:
13160        case ISD::ANY_EXTEND:
13161          break;
13162        }
13163
13164      if (!ExpectingFlags) {
13165        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13166        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13167
13168        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13169          X86::CondCode tmp = cc0;
13170          cc0 = cc1;
13171          cc1 = tmp;
13172        }
13173
13174        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13175            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13176          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13177          X86ISD::NodeType NTOperator = is64BitFP ?
13178            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13179          // FIXME: need symbolic constants for these magic numbers.
13180          // See X86ATTInstPrinter.cpp:printSSECC().
13181          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13182          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13183                                              DAG.getConstant(x86cc, MVT::i8));
13184          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13185                                              OnesOrZeroesF);
13186          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13187                                      DAG.getConstant(1, MVT::i32));
13188          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13189          return OneBitOfTruth;
13190        }
13191      }
13192    }
13193  }
13194  return SDValue();
13195}
13196
13197/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13198/// so it can be folded inside ANDNP.
13199static bool CanFoldXORWithAllOnes(const SDNode *N) {
13200  EVT VT = N->getValueType(0);
13201
13202  // Match direct AllOnes for 128 and 256-bit vectors
13203  if (ISD::isBuildVectorAllOnes(N))
13204    return true;
13205
13206  // Look through a bit convert.
13207  if (N->getOpcode() == ISD::BITCAST)
13208    N = N->getOperand(0).getNode();
13209
13210  // Sometimes the operand may come from a insert_subvector building a 256-bit
13211  // allones vector
13212  if (VT.getSizeInBits() == 256 &&
13213      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13214    SDValue V1 = N->getOperand(0);
13215    SDValue V2 = N->getOperand(1);
13216
13217    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13218        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13219        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13220        ISD::isBuildVectorAllOnes(V2.getNode()))
13221      return true;
13222  }
13223
13224  return false;
13225}
13226
13227static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13228                                 TargetLowering::DAGCombinerInfo &DCI,
13229                                 const X86Subtarget *Subtarget) {
13230  if (DCI.isBeforeLegalizeOps())
13231    return SDValue();
13232
13233  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13234  if (R.getNode())
13235    return R;
13236
13237  // Want to form ANDNP nodes:
13238  // 1) In the hopes of then easily combining them with OR and AND nodes
13239  //    to form PBLEND/PSIGN.
13240  // 2) To match ANDN packed intrinsics
13241  EVT VT = N->getValueType(0);
13242  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13243    return SDValue();
13244
13245  SDValue N0 = N->getOperand(0);
13246  SDValue N1 = N->getOperand(1);
13247  DebugLoc DL = N->getDebugLoc();
13248
13249  // Check LHS for vnot
13250  if (N0.getOpcode() == ISD::XOR &&
13251      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13252      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13253    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13254
13255  // Check RHS for vnot
13256  if (N1.getOpcode() == ISD::XOR &&
13257      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13258      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13259    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13260
13261  return SDValue();
13262}
13263
13264static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13265                                TargetLowering::DAGCombinerInfo &DCI,
13266                                const X86Subtarget *Subtarget) {
13267  if (DCI.isBeforeLegalizeOps())
13268    return SDValue();
13269
13270  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13271  if (R.getNode())
13272    return R;
13273
13274  EVT VT = N->getValueType(0);
13275  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13276    return SDValue();
13277
13278  SDValue N0 = N->getOperand(0);
13279  SDValue N1 = N->getOperand(1);
13280
13281  // look for psign/blend
13282  if (Subtarget->hasSSSE3()) {
13283    if (VT == MVT::v2i64) {
13284      // Canonicalize pandn to RHS
13285      if (N0.getOpcode() == X86ISD::ANDNP)
13286        std::swap(N0, N1);
13287      // or (and (m, x), (pandn m, y))
13288      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13289        SDValue Mask = N1.getOperand(0);
13290        SDValue X    = N1.getOperand(1);
13291        SDValue Y;
13292        if (N0.getOperand(0) == Mask)
13293          Y = N0.getOperand(1);
13294        if (N0.getOperand(1) == Mask)
13295          Y = N0.getOperand(0);
13296
13297        // Check to see if the mask appeared in both the AND and ANDNP and
13298        if (!Y.getNode())
13299          return SDValue();
13300
13301        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13302        if (Mask.getOpcode() != ISD::BITCAST ||
13303            X.getOpcode() != ISD::BITCAST ||
13304            Y.getOpcode() != ISD::BITCAST)
13305          return SDValue();
13306
13307        // Look through mask bitcast.
13308        Mask = Mask.getOperand(0);
13309        EVT MaskVT = Mask.getValueType();
13310
13311        // Validate that the Mask operand is a vector sra node.  The sra node
13312        // will be an intrinsic.
13313        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13314          return SDValue();
13315
13316        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13317        // there is no psrai.b
13318        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13319        case Intrinsic::x86_sse2_psrai_w:
13320        case Intrinsic::x86_sse2_psrai_d:
13321          break;
13322        default: return SDValue();
13323        }
13324
13325        // Check that the SRA is all signbits.
13326        SDValue SraC = Mask.getOperand(2);
13327        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13328        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13329        if ((SraAmt + 1) != EltBits)
13330          return SDValue();
13331
13332        DebugLoc DL = N->getDebugLoc();
13333
13334        // Now we know we at least have a plendvb with the mask val.  See if
13335        // we can form a psignb/w/d.
13336        // psign = x.type == y.type == mask.type && y = sub(0, x);
13337        X = X.getOperand(0);
13338        Y = Y.getOperand(0);
13339        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13340            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13341            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13342          unsigned Opc = 0;
13343          switch (EltBits) {
13344          case 8: Opc = X86ISD::PSIGNB; break;
13345          case 16: Opc = X86ISD::PSIGNW; break;
13346          case 32: Opc = X86ISD::PSIGND; break;
13347          default: break;
13348          }
13349          if (Opc) {
13350            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13351            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13352          }
13353        }
13354        // PBLENDVB only available on SSE 4.1
13355        if (!Subtarget->hasSSE41())
13356          return SDValue();
13357
13358        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13359        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13360        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13361        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
13362        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13363      }
13364    }
13365  }
13366
13367  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13368  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13369    std::swap(N0, N1);
13370  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13371    return SDValue();
13372  if (!N0.hasOneUse() || !N1.hasOneUse())
13373    return SDValue();
13374
13375  SDValue ShAmt0 = N0.getOperand(1);
13376  if (ShAmt0.getValueType() != MVT::i8)
13377    return SDValue();
13378  SDValue ShAmt1 = N1.getOperand(1);
13379  if (ShAmt1.getValueType() != MVT::i8)
13380    return SDValue();
13381  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13382    ShAmt0 = ShAmt0.getOperand(0);
13383  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13384    ShAmt1 = ShAmt1.getOperand(0);
13385
13386  DebugLoc DL = N->getDebugLoc();
13387  unsigned Opc = X86ISD::SHLD;
13388  SDValue Op0 = N0.getOperand(0);
13389  SDValue Op1 = N1.getOperand(0);
13390  if (ShAmt0.getOpcode() == ISD::SUB) {
13391    Opc = X86ISD::SHRD;
13392    std::swap(Op0, Op1);
13393    std::swap(ShAmt0, ShAmt1);
13394  }
13395
13396  unsigned Bits = VT.getSizeInBits();
13397  if (ShAmt1.getOpcode() == ISD::SUB) {
13398    SDValue Sum = ShAmt1.getOperand(0);
13399    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13400      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13401      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13402        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13403      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13404        return DAG.getNode(Opc, DL, VT,
13405                           Op0, Op1,
13406                           DAG.getNode(ISD::TRUNCATE, DL,
13407                                       MVT::i8, ShAmt0));
13408    }
13409  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13410    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13411    if (ShAmt0C &&
13412        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13413      return DAG.getNode(Opc, DL, VT,
13414                         N0.getOperand(0), N1.getOperand(0),
13415                         DAG.getNode(ISD::TRUNCATE, DL,
13416                                       MVT::i8, ShAmt0));
13417  }
13418
13419  return SDValue();
13420}
13421
13422/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13423static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13424                                   const X86Subtarget *Subtarget) {
13425  StoreSDNode *St = cast<StoreSDNode>(N);
13426  EVT VT = St->getValue().getValueType();
13427  EVT StVT = St->getMemoryVT();
13428  DebugLoc dl = St->getDebugLoc();
13429  SDValue StoredVal = St->getOperand(1);
13430  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13431
13432  // If we are saving a concatination of two XMM registers, perform two stores.
13433  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13434  // 128-bit ones. If in the future the cost becomes only one memory access the
13435  // first version would be better.
13436  if (VT.getSizeInBits() == 256 &&
13437    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13438    StoredVal.getNumOperands() == 2) {
13439
13440    SDValue Value0 = StoredVal.getOperand(0);
13441    SDValue Value1 = StoredVal.getOperand(1);
13442
13443    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13444    SDValue Ptr0 = St->getBasePtr();
13445    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13446
13447    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13448                                St->getPointerInfo(), St->isVolatile(),
13449                                St->isNonTemporal(), St->getAlignment());
13450    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13451                                St->getPointerInfo(), St->isVolatile(),
13452                                St->isNonTemporal(), St->getAlignment());
13453    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13454  }
13455
13456  // Optimize trunc store (of multiple scalars) to shuffle and store.
13457  // First, pack all of the elements in one place. Next, store to memory
13458  // in fewer chunks.
13459  if (St->isTruncatingStore() && VT.isVector()) {
13460    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13461    unsigned NumElems = VT.getVectorNumElements();
13462    assert(StVT != VT && "Cannot truncate to the same type");
13463    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13464    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13465
13466    // From, To sizes and ElemCount must be pow of two
13467    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13468    // We are going to use the original vector elt for storing.
13469    // accumulated smaller vector elements must be a multiple of bigger size.
13470    if (0 != (NumElems * ToSz) % FromSz) return SDValue();
13471    unsigned SizeRatio  = FromSz / ToSz;
13472
13473    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13474
13475    // Create a type on which we perform the shuffle
13476    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13477            StVT.getScalarType(), NumElems*SizeRatio);
13478
13479    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13480
13481    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13482    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13483    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13484
13485    // Can't shuffle using an illegal type
13486    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13487
13488    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13489                                DAG.getUNDEF(WideVec.getValueType()),
13490                                ShuffleVec.data());
13491    // At this point all of the data is stored at the bottom of the
13492    // register. We now need to save it to mem.
13493
13494    // Find the largest store unit
13495    MVT StoreType = MVT::i8;
13496    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13497         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13498      MVT Tp = (MVT::SimpleValueType)tp;
13499      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13500        StoreType = Tp;
13501    }
13502
13503    // Bitcast the original vector into a vector of store-size units
13504    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13505            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13506    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13507    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13508    SmallVector<SDValue, 8> Chains;
13509    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13510                                        TLI.getPointerTy());
13511    SDValue Ptr = St->getBasePtr();
13512
13513    // Perform one or more big stores into memory.
13514    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13515      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13516                                   StoreType, ShuffWide,
13517                                   DAG.getIntPtrConstant(i));
13518      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13519                                St->getPointerInfo(), St->isVolatile(),
13520                                St->isNonTemporal(), St->getAlignment());
13521      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13522      Chains.push_back(Ch);
13523    }
13524
13525    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13526                               Chains.size());
13527  }
13528
13529
13530  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13531  // the FP state in cases where an emms may be missing.
13532  // A preferable solution to the general problem is to figure out the right
13533  // places to insert EMMS.  This qualifies as a quick hack.
13534
13535  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13536  if (VT.getSizeInBits() != 64)
13537    return SDValue();
13538
13539  const Function *F = DAG.getMachineFunction().getFunction();
13540  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13541  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13542    && Subtarget->hasSSE2();
13543  if ((VT.isVector() ||
13544       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13545      isa<LoadSDNode>(St->getValue()) &&
13546      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13547      St->getChain().hasOneUse() && !St->isVolatile()) {
13548    SDNode* LdVal = St->getValue().getNode();
13549    LoadSDNode *Ld = 0;
13550    int TokenFactorIndex = -1;
13551    SmallVector<SDValue, 8> Ops;
13552    SDNode* ChainVal = St->getChain().getNode();
13553    // Must be a store of a load.  We currently handle two cases:  the load
13554    // is a direct child, and it's under an intervening TokenFactor.  It is
13555    // possible to dig deeper under nested TokenFactors.
13556    if (ChainVal == LdVal)
13557      Ld = cast<LoadSDNode>(St->getChain());
13558    else if (St->getValue().hasOneUse() &&
13559             ChainVal->getOpcode() == ISD::TokenFactor) {
13560      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13561        if (ChainVal->getOperand(i).getNode() == LdVal) {
13562          TokenFactorIndex = i;
13563          Ld = cast<LoadSDNode>(St->getValue());
13564        } else
13565          Ops.push_back(ChainVal->getOperand(i));
13566      }
13567    }
13568
13569    if (!Ld || !ISD::isNormalLoad(Ld))
13570      return SDValue();
13571
13572    // If this is not the MMX case, i.e. we are just turning i64 load/store
13573    // into f64 load/store, avoid the transformation if there are multiple
13574    // uses of the loaded value.
13575    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13576      return SDValue();
13577
13578    DebugLoc LdDL = Ld->getDebugLoc();
13579    DebugLoc StDL = N->getDebugLoc();
13580    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13581    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13582    // pair instead.
13583    if (Subtarget->is64Bit() || F64IsLegal) {
13584      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13585      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13586                                  Ld->getPointerInfo(), Ld->isVolatile(),
13587                                  Ld->isNonTemporal(), Ld->getAlignment());
13588      SDValue NewChain = NewLd.getValue(1);
13589      if (TokenFactorIndex != -1) {
13590        Ops.push_back(NewChain);
13591        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13592                               Ops.size());
13593      }
13594      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13595                          St->getPointerInfo(),
13596                          St->isVolatile(), St->isNonTemporal(),
13597                          St->getAlignment());
13598    }
13599
13600    // Otherwise, lower to two pairs of 32-bit loads / stores.
13601    SDValue LoAddr = Ld->getBasePtr();
13602    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13603                                 DAG.getConstant(4, MVT::i32));
13604
13605    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13606                               Ld->getPointerInfo(),
13607                               Ld->isVolatile(), Ld->isNonTemporal(),
13608                               Ld->getAlignment());
13609    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13610                               Ld->getPointerInfo().getWithOffset(4),
13611                               Ld->isVolatile(), Ld->isNonTemporal(),
13612                               MinAlign(Ld->getAlignment(), 4));
13613
13614    SDValue NewChain = LoLd.getValue(1);
13615    if (TokenFactorIndex != -1) {
13616      Ops.push_back(LoLd);
13617      Ops.push_back(HiLd);
13618      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13619                             Ops.size());
13620    }
13621
13622    LoAddr = St->getBasePtr();
13623    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13624                         DAG.getConstant(4, MVT::i32));
13625
13626    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13627                                St->getPointerInfo(),
13628                                St->isVolatile(), St->isNonTemporal(),
13629                                St->getAlignment());
13630    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13631                                St->getPointerInfo().getWithOffset(4),
13632                                St->isVolatile(),
13633                                St->isNonTemporal(),
13634                                MinAlign(St->getAlignment(), 4));
13635    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13636  }
13637  return SDValue();
13638}
13639
13640/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13641/// X86ISD::FXOR nodes.
13642static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13643  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13644  // F[X]OR(0.0, x) -> x
13645  // F[X]OR(x, 0.0) -> x
13646  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13647    if (C->getValueAPF().isPosZero())
13648      return N->getOperand(1);
13649  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13650    if (C->getValueAPF().isPosZero())
13651      return N->getOperand(0);
13652  return SDValue();
13653}
13654
13655/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13656static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13657  // FAND(0.0, x) -> 0.0
13658  // FAND(x, 0.0) -> 0.0
13659  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13660    if (C->getValueAPF().isPosZero())
13661      return N->getOperand(0);
13662  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13663    if (C->getValueAPF().isPosZero())
13664      return N->getOperand(1);
13665  return SDValue();
13666}
13667
13668static SDValue PerformBTCombine(SDNode *N,
13669                                SelectionDAG &DAG,
13670                                TargetLowering::DAGCombinerInfo &DCI) {
13671  // BT ignores high bits in the bit index operand.
13672  SDValue Op1 = N->getOperand(1);
13673  if (Op1.hasOneUse()) {
13674    unsigned BitWidth = Op1.getValueSizeInBits();
13675    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13676    APInt KnownZero, KnownOne;
13677    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13678                                          !DCI.isBeforeLegalizeOps());
13679    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13680    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13681        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13682      DCI.CommitTargetLoweringOpt(TLO);
13683  }
13684  return SDValue();
13685}
13686
13687static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13688  SDValue Op = N->getOperand(0);
13689  if (Op.getOpcode() == ISD::BITCAST)
13690    Op = Op.getOperand(0);
13691  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13692  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13693      VT.getVectorElementType().getSizeInBits() ==
13694      OpVT.getVectorElementType().getSizeInBits()) {
13695    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13696  }
13697  return SDValue();
13698}
13699
13700static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13701  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13702  //           (and (i32 x86isd::setcc_carry), 1)
13703  // This eliminates the zext. This transformation is necessary because
13704  // ISD::SETCC is always legalized to i8.
13705  DebugLoc dl = N->getDebugLoc();
13706  SDValue N0 = N->getOperand(0);
13707  EVT VT = N->getValueType(0);
13708  if (N0.getOpcode() == ISD::AND &&
13709      N0.hasOneUse() &&
13710      N0.getOperand(0).hasOneUse()) {
13711    SDValue N00 = N0.getOperand(0);
13712    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13713      return SDValue();
13714    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13715    if (!C || C->getZExtValue() != 1)
13716      return SDValue();
13717    return DAG.getNode(ISD::AND, dl, VT,
13718                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13719                                   N00.getOperand(0), N00.getOperand(1)),
13720                       DAG.getConstant(1, VT));
13721  }
13722
13723  return SDValue();
13724}
13725
13726// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
13727static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
13728  unsigned X86CC = N->getConstantOperandVal(0);
13729  SDValue EFLAG = N->getOperand(1);
13730  DebugLoc DL = N->getDebugLoc();
13731
13732  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
13733  // a zext and produces an all-ones bit which is more useful than 0/1 in some
13734  // cases.
13735  if (X86CC == X86::COND_B)
13736    return DAG.getNode(ISD::AND, DL, MVT::i8,
13737                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
13738                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
13739                       DAG.getConstant(1, MVT::i8));
13740
13741  return SDValue();
13742}
13743
13744static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
13745                                        const X86TargetLowering *XTLI) {
13746  SDValue Op0 = N->getOperand(0);
13747  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
13748  // a 32-bit target where SSE doesn't support i64->FP operations.
13749  if (Op0.getOpcode() == ISD::LOAD) {
13750    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
13751    EVT VT = Ld->getValueType(0);
13752    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
13753        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
13754        !XTLI->getSubtarget()->is64Bit() &&
13755        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13756      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
13757                                          Ld->getChain(), Op0, DAG);
13758      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
13759      return FILDChain;
13760    }
13761  }
13762  return SDValue();
13763}
13764
13765// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
13766static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
13767                                 X86TargetLowering::DAGCombinerInfo &DCI) {
13768  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
13769  // the result is either zero or one (depending on the input carry bit).
13770  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
13771  if (X86::isZeroNode(N->getOperand(0)) &&
13772      X86::isZeroNode(N->getOperand(1)) &&
13773      // We don't have a good way to replace an EFLAGS use, so only do this when
13774      // dead right now.
13775      SDValue(N, 1).use_empty()) {
13776    DebugLoc DL = N->getDebugLoc();
13777    EVT VT = N->getValueType(0);
13778    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
13779    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
13780                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
13781                                           DAG.getConstant(X86::COND_B,MVT::i8),
13782                                           N->getOperand(2)),
13783                               DAG.getConstant(1, VT));
13784    return DCI.CombineTo(N, Res1, CarryOut);
13785  }
13786
13787  return SDValue();
13788}
13789
13790// fold (add Y, (sete  X, 0)) -> adc  0, Y
13791//      (add Y, (setne X, 0)) -> sbb -1, Y
13792//      (sub (sete  X, 0), Y) -> sbb  0, Y
13793//      (sub (setne X, 0), Y) -> adc -1, Y
13794static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
13795  DebugLoc DL = N->getDebugLoc();
13796
13797  // Look through ZExts.
13798  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
13799  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
13800    return SDValue();
13801
13802  SDValue SetCC = Ext.getOperand(0);
13803  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
13804    return SDValue();
13805
13806  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
13807  if (CC != X86::COND_E && CC != X86::COND_NE)
13808    return SDValue();
13809
13810  SDValue Cmp = SetCC.getOperand(1);
13811  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
13812      !X86::isZeroNode(Cmp.getOperand(1)) ||
13813      !Cmp.getOperand(0).getValueType().isInteger())
13814    return SDValue();
13815
13816  SDValue CmpOp0 = Cmp.getOperand(0);
13817  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
13818                               DAG.getConstant(1, CmpOp0.getValueType()));
13819
13820  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
13821  if (CC == X86::COND_NE)
13822    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
13823                       DL, OtherVal.getValueType(), OtherVal,
13824                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
13825  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
13826                     DL, OtherVal.getValueType(), OtherVal,
13827                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
13828}
13829
13830static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
13831  SDValue Op0 = N->getOperand(0);
13832  SDValue Op1 = N->getOperand(1);
13833
13834  // X86 can't encode an immediate LHS of a sub. See if we can push the
13835  // negation into a preceding instruction.
13836  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
13837    // If the RHS of the sub is a XOR with one use and a constant, invert the
13838    // immediate. Then add one to the LHS of the sub so we can turn
13839    // X-Y -> X+~Y+1, saving one register.
13840    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
13841        isa<ConstantSDNode>(Op1.getOperand(1))) {
13842      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
13843      EVT VT = Op0.getValueType();
13844      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
13845                                   Op1.getOperand(0),
13846                                   DAG.getConstant(~XorC, VT));
13847      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
13848                         DAG.getConstant(C->getAPIntValue()+1, VT));
13849    }
13850  }
13851
13852  return OptimizeConditionalInDecrement(N, DAG);
13853}
13854
13855SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
13856                                             DAGCombinerInfo &DCI) const {
13857  SelectionDAG &DAG = DCI.DAG;
13858  switch (N->getOpcode()) {
13859  default: break;
13860  case ISD::EXTRACT_VECTOR_ELT:
13861    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13862  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13863  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13864  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13865  case ISD::SUB:            return PerformSubCombine(N, DAG);
13866  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13867  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13868  case ISD::SHL:
13869  case ISD::SRA:
13870  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13871  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13872  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13873  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13874  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13875  case X86ISD::FXOR:
13876  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13877  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13878  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13879  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13880  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13881  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13882  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13883  case X86ISD::SHUFPD:
13884  case X86ISD::PALIGN:
13885  case X86ISD::PUNPCKHBW:
13886  case X86ISD::PUNPCKHWD:
13887  case X86ISD::PUNPCKHDQ:
13888  case X86ISD::PUNPCKHQDQ:
13889  case X86ISD::UNPCKHPS:
13890  case X86ISD::UNPCKHPD:
13891  case X86ISD::VUNPCKHPSY:
13892  case X86ISD::VUNPCKHPDY:
13893  case X86ISD::PUNPCKLBW:
13894  case X86ISD::PUNPCKLWD:
13895  case X86ISD::PUNPCKLDQ:
13896  case X86ISD::PUNPCKLQDQ:
13897  case X86ISD::UNPCKLPS:
13898  case X86ISD::UNPCKLPD:
13899  case X86ISD::VUNPCKLPSY:
13900  case X86ISD::VUNPCKLPDY:
13901  case X86ISD::MOVHLPS:
13902  case X86ISD::MOVLHPS:
13903  case X86ISD::PSHUFD:
13904  case X86ISD::PSHUFHW:
13905  case X86ISD::PSHUFLW:
13906  case X86ISD::MOVSS:
13907  case X86ISD::MOVSD:
13908  case X86ISD::VPERMILPS:
13909  case X86ISD::VPERMILPSY:
13910  case X86ISD::VPERMILPD:
13911  case X86ISD::VPERMILPDY:
13912  case X86ISD::VPERM2F128:
13913  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
13914  }
13915
13916  return SDValue();
13917}
13918
13919/// isTypeDesirableForOp - Return true if the target has native support for
13920/// the specified value type and it is 'desirable' to use the type for the
13921/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
13922/// instruction encodings are longer and some i16 instructions are slow.
13923bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
13924  if (!isTypeLegal(VT))
13925    return false;
13926  if (VT != MVT::i16)
13927    return true;
13928
13929  switch (Opc) {
13930  default:
13931    return true;
13932  case ISD::LOAD:
13933  case ISD::SIGN_EXTEND:
13934  case ISD::ZERO_EXTEND:
13935  case ISD::ANY_EXTEND:
13936  case ISD::SHL:
13937  case ISD::SRL:
13938  case ISD::SUB:
13939  case ISD::ADD:
13940  case ISD::MUL:
13941  case ISD::AND:
13942  case ISD::OR:
13943  case ISD::XOR:
13944    return false;
13945  }
13946}
13947
13948/// IsDesirableToPromoteOp - This method query the target whether it is
13949/// beneficial for dag combiner to promote the specified node. If true, it
13950/// should return the desired promotion type by reference.
13951bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13952  EVT VT = Op.getValueType();
13953  if (VT != MVT::i16)
13954    return false;
13955
13956  bool Promote = false;
13957  bool Commute = false;
13958  switch (Op.getOpcode()) {
13959  default: break;
13960  case ISD::LOAD: {
13961    LoadSDNode *LD = cast<LoadSDNode>(Op);
13962    // If the non-extending load has a single use and it's not live out, then it
13963    // might be folded.
13964    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13965                                                     Op.hasOneUse()*/) {
13966      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13967             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13968        // The only case where we'd want to promote LOAD (rather then it being
13969        // promoted as an operand is when it's only use is liveout.
13970        if (UI->getOpcode() != ISD::CopyToReg)
13971          return false;
13972      }
13973    }
13974    Promote = true;
13975    break;
13976  }
13977  case ISD::SIGN_EXTEND:
13978  case ISD::ZERO_EXTEND:
13979  case ISD::ANY_EXTEND:
13980    Promote = true;
13981    break;
13982  case ISD::SHL:
13983  case ISD::SRL: {
13984    SDValue N0 = Op.getOperand(0);
13985    // Look out for (store (shl (load), x)).
13986    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13987      return false;
13988    Promote = true;
13989    break;
13990  }
13991  case ISD::ADD:
13992  case ISD::MUL:
13993  case ISD::AND:
13994  case ISD::OR:
13995  case ISD::XOR:
13996    Commute = true;
13997    // fallthrough
13998  case ISD::SUB: {
13999    SDValue N0 = Op.getOperand(0);
14000    SDValue N1 = Op.getOperand(1);
14001    if (!Commute && MayFoldLoad(N1))
14002      return false;
14003    // Avoid disabling potential load folding opportunities.
14004    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14005      return false;
14006    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14007      return false;
14008    Promote = true;
14009  }
14010  }
14011
14012  PVT = MVT::i32;
14013  return Promote;
14014}
14015
14016//===----------------------------------------------------------------------===//
14017//                           X86 Inline Assembly Support
14018//===----------------------------------------------------------------------===//
14019
14020bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14021  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14022
14023  std::string AsmStr = IA->getAsmString();
14024
14025  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14026  SmallVector<StringRef, 4> AsmPieces;
14027  SplitString(AsmStr, AsmPieces, ";\n");
14028
14029  switch (AsmPieces.size()) {
14030  default: return false;
14031  case 1:
14032    AsmStr = AsmPieces[0];
14033    AsmPieces.clear();
14034    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14035
14036    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14037    // we will turn this bswap into something that will be lowered to logical ops
14038    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14039    // so don't worry about this.
14040    // bswap $0
14041    if (AsmPieces.size() == 2 &&
14042        (AsmPieces[0] == "bswap" ||
14043         AsmPieces[0] == "bswapq" ||
14044         AsmPieces[0] == "bswapl") &&
14045        (AsmPieces[1] == "$0" ||
14046         AsmPieces[1] == "${0:q}")) {
14047      // No need to check constraints, nothing other than the equivalent of
14048      // "=r,0" would be valid here.
14049      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14050      if (!Ty || Ty->getBitWidth() % 16 != 0)
14051        return false;
14052      return IntrinsicLowering::LowerToByteSwap(CI);
14053    }
14054    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14055    if (CI->getType()->isIntegerTy(16) &&
14056        AsmPieces.size() == 3 &&
14057        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14058        AsmPieces[1] == "$$8," &&
14059        AsmPieces[2] == "${0:w}" &&
14060        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14061      AsmPieces.clear();
14062      const std::string &ConstraintsStr = IA->getConstraintString();
14063      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14064      std::sort(AsmPieces.begin(), AsmPieces.end());
14065      if (AsmPieces.size() == 4 &&
14066          AsmPieces[0] == "~{cc}" &&
14067          AsmPieces[1] == "~{dirflag}" &&
14068          AsmPieces[2] == "~{flags}" &&
14069          AsmPieces[3] == "~{fpsr}") {
14070        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14071        if (!Ty || Ty->getBitWidth() % 16 != 0)
14072          return false;
14073        return IntrinsicLowering::LowerToByteSwap(CI);
14074      }
14075    }
14076    break;
14077  case 3:
14078    if (CI->getType()->isIntegerTy(32) &&
14079        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14080      SmallVector<StringRef, 4> Words;
14081      SplitString(AsmPieces[0], Words, " \t,");
14082      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14083          Words[2] == "${0:w}") {
14084        Words.clear();
14085        SplitString(AsmPieces[1], Words, " \t,");
14086        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14087            Words[2] == "$0") {
14088          Words.clear();
14089          SplitString(AsmPieces[2], Words, " \t,");
14090          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14091              Words[2] == "${0:w}") {
14092            AsmPieces.clear();
14093            const std::string &ConstraintsStr = IA->getConstraintString();
14094            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14095            std::sort(AsmPieces.begin(), AsmPieces.end());
14096            if (AsmPieces.size() == 4 &&
14097                AsmPieces[0] == "~{cc}" &&
14098                AsmPieces[1] == "~{dirflag}" &&
14099                AsmPieces[2] == "~{flags}" &&
14100                AsmPieces[3] == "~{fpsr}") {
14101              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14102              if (!Ty || Ty->getBitWidth() % 16 != 0)
14103                return false;
14104              return IntrinsicLowering::LowerToByteSwap(CI);
14105            }
14106          }
14107        }
14108      }
14109    }
14110
14111    if (CI->getType()->isIntegerTy(64)) {
14112      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14113      if (Constraints.size() >= 2 &&
14114          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14115          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14116        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14117        SmallVector<StringRef, 4> Words;
14118        SplitString(AsmPieces[0], Words, " \t");
14119        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14120          Words.clear();
14121          SplitString(AsmPieces[1], Words, " \t");
14122          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14123            Words.clear();
14124            SplitString(AsmPieces[2], Words, " \t,");
14125            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14126                Words[2] == "%edx") {
14127              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14128              if (!Ty || Ty->getBitWidth() % 16 != 0)
14129                return false;
14130              return IntrinsicLowering::LowerToByteSwap(CI);
14131            }
14132          }
14133        }
14134      }
14135    }
14136    break;
14137  }
14138  return false;
14139}
14140
14141
14142
14143/// getConstraintType - Given a constraint letter, return the type of
14144/// constraint it is for this target.
14145X86TargetLowering::ConstraintType
14146X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14147  if (Constraint.size() == 1) {
14148    switch (Constraint[0]) {
14149    case 'R':
14150    case 'q':
14151    case 'Q':
14152    case 'f':
14153    case 't':
14154    case 'u':
14155    case 'y':
14156    case 'x':
14157    case 'Y':
14158    case 'l':
14159      return C_RegisterClass;
14160    case 'a':
14161    case 'b':
14162    case 'c':
14163    case 'd':
14164    case 'S':
14165    case 'D':
14166    case 'A':
14167      return C_Register;
14168    case 'I':
14169    case 'J':
14170    case 'K':
14171    case 'L':
14172    case 'M':
14173    case 'N':
14174    case 'G':
14175    case 'C':
14176    case 'e':
14177    case 'Z':
14178      return C_Other;
14179    default:
14180      break;
14181    }
14182  }
14183  return TargetLowering::getConstraintType(Constraint);
14184}
14185
14186/// Examine constraint type and operand type and determine a weight value.
14187/// This object must already have been set up with the operand type
14188/// and the current alternative constraint selected.
14189TargetLowering::ConstraintWeight
14190  X86TargetLowering::getSingleConstraintMatchWeight(
14191    AsmOperandInfo &info, const char *constraint) const {
14192  ConstraintWeight weight = CW_Invalid;
14193  Value *CallOperandVal = info.CallOperandVal;
14194    // If we don't have a value, we can't do a match,
14195    // but allow it at the lowest weight.
14196  if (CallOperandVal == NULL)
14197    return CW_Default;
14198  Type *type = CallOperandVal->getType();
14199  // Look at the constraint type.
14200  switch (*constraint) {
14201  default:
14202    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14203  case 'R':
14204  case 'q':
14205  case 'Q':
14206  case 'a':
14207  case 'b':
14208  case 'c':
14209  case 'd':
14210  case 'S':
14211  case 'D':
14212  case 'A':
14213    if (CallOperandVal->getType()->isIntegerTy())
14214      weight = CW_SpecificReg;
14215    break;
14216  case 'f':
14217  case 't':
14218  case 'u':
14219      if (type->isFloatingPointTy())
14220        weight = CW_SpecificReg;
14221      break;
14222  case 'y':
14223      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14224        weight = CW_SpecificReg;
14225      break;
14226  case 'x':
14227  case 'Y':
14228    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14229      weight = CW_Register;
14230    break;
14231  case 'I':
14232    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14233      if (C->getZExtValue() <= 31)
14234        weight = CW_Constant;
14235    }
14236    break;
14237  case 'J':
14238    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14239      if (C->getZExtValue() <= 63)
14240        weight = CW_Constant;
14241    }
14242    break;
14243  case 'K':
14244    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14245      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14246        weight = CW_Constant;
14247    }
14248    break;
14249  case 'L':
14250    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14251      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14252        weight = CW_Constant;
14253    }
14254    break;
14255  case 'M':
14256    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14257      if (C->getZExtValue() <= 3)
14258        weight = CW_Constant;
14259    }
14260    break;
14261  case 'N':
14262    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14263      if (C->getZExtValue() <= 0xff)
14264        weight = CW_Constant;
14265    }
14266    break;
14267  case 'G':
14268  case 'C':
14269    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14270      weight = CW_Constant;
14271    }
14272    break;
14273  case 'e':
14274    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14275      if ((C->getSExtValue() >= -0x80000000LL) &&
14276          (C->getSExtValue() <= 0x7fffffffLL))
14277        weight = CW_Constant;
14278    }
14279    break;
14280  case 'Z':
14281    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14282      if (C->getZExtValue() <= 0xffffffff)
14283        weight = CW_Constant;
14284    }
14285    break;
14286  }
14287  return weight;
14288}
14289
14290/// LowerXConstraint - try to replace an X constraint, which matches anything,
14291/// with another that has more specific requirements based on the type of the
14292/// corresponding operand.
14293const char *X86TargetLowering::
14294LowerXConstraint(EVT ConstraintVT) const {
14295  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14296  // 'f' like normal targets.
14297  if (ConstraintVT.isFloatingPoint()) {
14298    if (Subtarget->hasXMMInt())
14299      return "Y";
14300    if (Subtarget->hasXMM())
14301      return "x";
14302  }
14303
14304  return TargetLowering::LowerXConstraint(ConstraintVT);
14305}
14306
14307/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14308/// vector.  If it is invalid, don't add anything to Ops.
14309void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14310                                                     std::string &Constraint,
14311                                                     std::vector<SDValue>&Ops,
14312                                                     SelectionDAG &DAG) const {
14313  SDValue Result(0, 0);
14314
14315  // Only support length 1 constraints for now.
14316  if (Constraint.length() > 1) return;
14317
14318  char ConstraintLetter = Constraint[0];
14319  switch (ConstraintLetter) {
14320  default: break;
14321  case 'I':
14322    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14323      if (C->getZExtValue() <= 31) {
14324        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14325        break;
14326      }
14327    }
14328    return;
14329  case 'J':
14330    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14331      if (C->getZExtValue() <= 63) {
14332        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14333        break;
14334      }
14335    }
14336    return;
14337  case 'K':
14338    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14339      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14340        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14341        break;
14342      }
14343    }
14344    return;
14345  case 'N':
14346    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14347      if (C->getZExtValue() <= 255) {
14348        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14349        break;
14350      }
14351    }
14352    return;
14353  case 'e': {
14354    // 32-bit signed value
14355    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14356      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14357                                           C->getSExtValue())) {
14358        // Widen to 64 bits here to get it sign extended.
14359        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14360        break;
14361      }
14362    // FIXME gcc accepts some relocatable values here too, but only in certain
14363    // memory models; it's complicated.
14364    }
14365    return;
14366  }
14367  case 'Z': {
14368    // 32-bit unsigned value
14369    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14370      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14371                                           C->getZExtValue())) {
14372        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14373        break;
14374      }
14375    }
14376    // FIXME gcc accepts some relocatable values here too, but only in certain
14377    // memory models; it's complicated.
14378    return;
14379  }
14380  case 'i': {
14381    // Literal immediates are always ok.
14382    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14383      // Widen to 64 bits here to get it sign extended.
14384      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14385      break;
14386    }
14387
14388    // In any sort of PIC mode addresses need to be computed at runtime by
14389    // adding in a register or some sort of table lookup.  These can't
14390    // be used as immediates.
14391    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14392      return;
14393
14394    // If we are in non-pic codegen mode, we allow the address of a global (with
14395    // an optional displacement) to be used with 'i'.
14396    GlobalAddressSDNode *GA = 0;
14397    int64_t Offset = 0;
14398
14399    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14400    while (1) {
14401      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14402        Offset += GA->getOffset();
14403        break;
14404      } else if (Op.getOpcode() == ISD::ADD) {
14405        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14406          Offset += C->getZExtValue();
14407          Op = Op.getOperand(0);
14408          continue;
14409        }
14410      } else if (Op.getOpcode() == ISD::SUB) {
14411        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14412          Offset += -C->getZExtValue();
14413          Op = Op.getOperand(0);
14414          continue;
14415        }
14416      }
14417
14418      // Otherwise, this isn't something we can handle, reject it.
14419      return;
14420    }
14421
14422    const GlobalValue *GV = GA->getGlobal();
14423    // If we require an extra load to get this address, as in PIC mode, we
14424    // can't accept it.
14425    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14426                                                        getTargetMachine())))
14427      return;
14428
14429    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14430                                        GA->getValueType(0), Offset);
14431    break;
14432  }
14433  }
14434
14435  if (Result.getNode()) {
14436    Ops.push_back(Result);
14437    return;
14438  }
14439  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14440}
14441
14442std::pair<unsigned, const TargetRegisterClass*>
14443X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14444                                                EVT VT) const {
14445  // First, see if this is a constraint that directly corresponds to an LLVM
14446  // register class.
14447  if (Constraint.size() == 1) {
14448    // GCC Constraint Letters
14449    switch (Constraint[0]) {
14450    default: break;
14451      // TODO: Slight differences here in allocation order and leaving
14452      // RIP in the class. Do they matter any more here than they do
14453      // in the normal allocation?
14454    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14455      if (Subtarget->is64Bit()) {
14456	if (VT == MVT::i32 || VT == MVT::f32)
14457	  return std::make_pair(0U, X86::GR32RegisterClass);
14458	else if (VT == MVT::i16)
14459	  return std::make_pair(0U, X86::GR16RegisterClass);
14460	else if (VT == MVT::i8 || VT == MVT::i1)
14461	  return std::make_pair(0U, X86::GR8RegisterClass);
14462	else if (VT == MVT::i64 || VT == MVT::f64)
14463	  return std::make_pair(0U, X86::GR64RegisterClass);
14464	break;
14465      }
14466      // 32-bit fallthrough
14467    case 'Q':   // Q_REGS
14468      if (VT == MVT::i32 || VT == MVT::f32)
14469	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14470      else if (VT == MVT::i16)
14471	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14472      else if (VT == MVT::i8 || VT == MVT::i1)
14473	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14474      else if (VT == MVT::i64)
14475	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14476      break;
14477    case 'r':   // GENERAL_REGS
14478    case 'l':   // INDEX_REGS
14479      if (VT == MVT::i8 || VT == MVT::i1)
14480        return std::make_pair(0U, X86::GR8RegisterClass);
14481      if (VT == MVT::i16)
14482        return std::make_pair(0U, X86::GR16RegisterClass);
14483      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14484        return std::make_pair(0U, X86::GR32RegisterClass);
14485      return std::make_pair(0U, X86::GR64RegisterClass);
14486    case 'R':   // LEGACY_REGS
14487      if (VT == MVT::i8 || VT == MVT::i1)
14488        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14489      if (VT == MVT::i16)
14490        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14491      if (VT == MVT::i32 || !Subtarget->is64Bit())
14492        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14493      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14494    case 'f':  // FP Stack registers.
14495      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14496      // value to the correct fpstack register class.
14497      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14498        return std::make_pair(0U, X86::RFP32RegisterClass);
14499      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14500        return std::make_pair(0U, X86::RFP64RegisterClass);
14501      return std::make_pair(0U, X86::RFP80RegisterClass);
14502    case 'y':   // MMX_REGS if MMX allowed.
14503      if (!Subtarget->hasMMX()) break;
14504      return std::make_pair(0U, X86::VR64RegisterClass);
14505    case 'Y':   // SSE_REGS if SSE2 allowed
14506      if (!Subtarget->hasXMMInt()) break;
14507      // FALL THROUGH.
14508    case 'x':   // SSE_REGS if SSE1 allowed
14509      if (!Subtarget->hasXMM()) break;
14510
14511      switch (VT.getSimpleVT().SimpleTy) {
14512      default: break;
14513      // Scalar SSE types.
14514      case MVT::f32:
14515      case MVT::i32:
14516        return std::make_pair(0U, X86::FR32RegisterClass);
14517      case MVT::f64:
14518      case MVT::i64:
14519        return std::make_pair(0U, X86::FR64RegisterClass);
14520      // Vector types.
14521      case MVT::v16i8:
14522      case MVT::v8i16:
14523      case MVT::v4i32:
14524      case MVT::v2i64:
14525      case MVT::v4f32:
14526      case MVT::v2f64:
14527        return std::make_pair(0U, X86::VR128RegisterClass);
14528      }
14529      break;
14530    }
14531  }
14532
14533  // Use the default implementation in TargetLowering to convert the register
14534  // constraint into a member of a register class.
14535  std::pair<unsigned, const TargetRegisterClass*> Res;
14536  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14537
14538  // Not found as a standard register?
14539  if (Res.second == 0) {
14540    // Map st(0) -> st(7) -> ST0
14541    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14542        tolower(Constraint[1]) == 's' &&
14543        tolower(Constraint[2]) == 't' &&
14544        Constraint[3] == '(' &&
14545        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14546        Constraint[5] == ')' &&
14547        Constraint[6] == '}') {
14548
14549      Res.first = X86::ST0+Constraint[4]-'0';
14550      Res.second = X86::RFP80RegisterClass;
14551      return Res;
14552    }
14553
14554    // GCC allows "st(0)" to be called just plain "st".
14555    if (StringRef("{st}").equals_lower(Constraint)) {
14556      Res.first = X86::ST0;
14557      Res.second = X86::RFP80RegisterClass;
14558      return Res;
14559    }
14560
14561    // flags -> EFLAGS
14562    if (StringRef("{flags}").equals_lower(Constraint)) {
14563      Res.first = X86::EFLAGS;
14564      Res.second = X86::CCRRegisterClass;
14565      return Res;
14566    }
14567
14568    // 'A' means EAX + EDX.
14569    if (Constraint == "A") {
14570      Res.first = X86::EAX;
14571      Res.second = X86::GR32_ADRegisterClass;
14572      return Res;
14573    }
14574    return Res;
14575  }
14576
14577  // Otherwise, check to see if this is a register class of the wrong value
14578  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14579  // turn into {ax},{dx}.
14580  if (Res.second->hasType(VT))
14581    return Res;   // Correct type already, nothing to do.
14582
14583  // All of the single-register GCC register classes map their values onto
14584  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14585  // really want an 8-bit or 32-bit register, map to the appropriate register
14586  // class and return the appropriate register.
14587  if (Res.second == X86::GR16RegisterClass) {
14588    if (VT == MVT::i8) {
14589      unsigned DestReg = 0;
14590      switch (Res.first) {
14591      default: break;
14592      case X86::AX: DestReg = X86::AL; break;
14593      case X86::DX: DestReg = X86::DL; break;
14594      case X86::CX: DestReg = X86::CL; break;
14595      case X86::BX: DestReg = X86::BL; break;
14596      }
14597      if (DestReg) {
14598        Res.first = DestReg;
14599        Res.second = X86::GR8RegisterClass;
14600      }
14601    } else if (VT == MVT::i32) {
14602      unsigned DestReg = 0;
14603      switch (Res.first) {
14604      default: break;
14605      case X86::AX: DestReg = X86::EAX; break;
14606      case X86::DX: DestReg = X86::EDX; break;
14607      case X86::CX: DestReg = X86::ECX; break;
14608      case X86::BX: DestReg = X86::EBX; break;
14609      case X86::SI: DestReg = X86::ESI; break;
14610      case X86::DI: DestReg = X86::EDI; break;
14611      case X86::BP: DestReg = X86::EBP; break;
14612      case X86::SP: DestReg = X86::ESP; break;
14613      }
14614      if (DestReg) {
14615        Res.first = DestReg;
14616        Res.second = X86::GR32RegisterClass;
14617      }
14618    } else if (VT == MVT::i64) {
14619      unsigned DestReg = 0;
14620      switch (Res.first) {
14621      default: break;
14622      case X86::AX: DestReg = X86::RAX; break;
14623      case X86::DX: DestReg = X86::RDX; break;
14624      case X86::CX: DestReg = X86::RCX; break;
14625      case X86::BX: DestReg = X86::RBX; break;
14626      case X86::SI: DestReg = X86::RSI; break;
14627      case X86::DI: DestReg = X86::RDI; break;
14628      case X86::BP: DestReg = X86::RBP; break;
14629      case X86::SP: DestReg = X86::RSP; break;
14630      }
14631      if (DestReg) {
14632        Res.first = DestReg;
14633        Res.second = X86::GR64RegisterClass;
14634      }
14635    }
14636  } else if (Res.second == X86::FR32RegisterClass ||
14637             Res.second == X86::FR64RegisterClass ||
14638             Res.second == X86::VR128RegisterClass) {
14639    // Handle references to XMM physical registers that got mapped into the
14640    // wrong class.  This can happen with constraints like {xmm0} where the
14641    // target independent register mapper will just pick the first match it can
14642    // find, ignoring the required type.
14643    if (VT == MVT::f32)
14644      Res.second = X86::FR32RegisterClass;
14645    else if (VT == MVT::f64)
14646      Res.second = X86::FR64RegisterClass;
14647    else if (X86::VR128RegisterClass->hasType(VT))
14648      Res.second = X86::VR128RegisterClass;
14649  }
14650
14651  return Res;
14652}
14653