X86ISelLowering.cpp revision 82205570d1017c95fef1fe10b1741ccf6d01904e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
49                       SDValue V2);
50
51X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
52  : TargetLowering(TM) {
53  Subtarget = &TM.getSubtarget<X86Subtarget>();
54  X86ScalarSSEf64 = Subtarget->hasSSE2();
55  X86ScalarSSEf32 = Subtarget->hasSSE1();
56  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
57
58  bool Fast = false;
59
60  RegInfo = TM.getRegisterInfo();
61  TD = getTargetData();
62
63  // Set up the TargetLowering object.
64
65  // X86 is weird, it always uses i8 for shift amounts and setcc results.
66  setShiftAmountType(MVT::i8);
67  setBooleanContents(ZeroOrOneBooleanContent);
68  setSchedulingPreference(SchedulingForRegPressure);
69  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
70  setStackPointerRegisterToSaveRestore(X86StackPtr);
71
72  if (Subtarget->isTargetDarwin()) {
73    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
74    setUseUnderscoreSetJmp(false);
75    setUseUnderscoreLongJmp(false);
76  } else if (Subtarget->isTargetMingw()) {
77    // MS runtime is weird: it exports _setjmp, but longjmp!
78    setUseUnderscoreSetJmp(true);
79    setUseUnderscoreLongJmp(false);
80  } else {
81    setUseUnderscoreSetJmp(true);
82    setUseUnderscoreLongJmp(true);
83  }
84
85  // Set up the register classes.
86  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
87  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
88  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
89  if (Subtarget->is64Bit())
90    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
91
92  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
93
94  // We don't accept any truncstore of integer registers.
95  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
97  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
98  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
99  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
100  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
101
102  // SETOEQ and SETUNE require checking two conditions.
103  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
105  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
108  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
109
110  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
111  // operation.
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
114  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
115
116  if (Subtarget->is64Bit()) {
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
119  } else if (!UseSoftFloat) {
120    if (X86ScalarSSEf64) {
121      // We have an impenetrably clever algorithm for ui64->double only.
122      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
123    }
124    // We have an algorithm for SSE2, and we turn this into a 64-bit
125    // FILD for other targets.
126    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
127  }
128
129  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
130  // this operation.
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
132  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
133
134  if (!UseSoftFloat && !NoImplicitFloat) {
135    // SSE has no i16 to fp conversion, only i32
136    if (X86ScalarSSEf32) {
137      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
138      // f32 and f64 cases are Legal, f80 case is not
139      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
140    } else {
141      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
142      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
143    }
144  } else {
145    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
146    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
147  }
148
149  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
150  // are Legal, f80 is custom lowered.
151  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
152  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
153
154  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
157  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
158
159  if (X86ScalarSSEf32) {
160    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
161    // f32 and f64 cases are Legal, f80 case is not
162    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
163  } else {
164    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
165    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
166  }
167
168  // Handle FP_TO_UINT by promoting the destination to a larger signed
169  // conversion.
170  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
171  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
172  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
173
174  if (Subtarget->is64Bit()) {
175    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
176    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
177  } else if (!UseSoftFloat) {
178    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
179      // Expand FP_TO_UINT into a select.
180      // FIXME: We would like to use a Custom expander here eventually to do
181      // the optimal thing for SSE vs. the default expansion in the legalizer.
182      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
183    else
184      // With SSE3 we can use fisttpll to convert to a signed i64; without
185      // SSE, we're stuck with a fistpll.
186      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
187  }
188
189  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
190  if (!X86ScalarSSEf64) {
191    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
192    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
193  }
194
195  // Scalar integer divide and remainder are lowered to use operations that
196  // produce two results, to match the available instructions. This exposes
197  // the two-result form to trivial CSE, which is able to combine x/y and x%y
198  // into a single instruction.
199  //
200  // Scalar integer multiply-high is also lowered to use two-result
201  // operations, to match the available instructions. However, plain multiply
202  // (low) operations are left as Legal, as there are single-result
203  // instructions for this in x86. Using the two-result multiply instructions
204  // when both high and low results are needed must be arranged by dagcombine.
205  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
206  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
207  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
208  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
209  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
210  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
211  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
212  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
213  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
214  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
215  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
216  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
217  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
218  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
219  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
220  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
221  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
222  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
223  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
224  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
225  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
226  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
227  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
228  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
229
230  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
231  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
232  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
233  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
234  if (Subtarget->is64Bit())
235    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
236  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
237  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
238  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
239  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
240  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
241  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
242  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
243  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
244
245  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
246  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
247  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
248  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
249  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
250  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
251  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
252  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
253  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
256    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
257    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
258  }
259
260  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
261  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
262
263  // These should be promoted to a larger select which is supported.
264  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
265  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
266  // X86 wants to expand cmov itself.
267  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
268  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
269  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
270  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
271  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
272  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
273  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
274  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
275  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
276  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
277  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
278  if (Subtarget->is64Bit()) {
279    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
280    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
281  }
282  // X86 ret instruction may pop stack.
283  setOperationAction(ISD::RET             , MVT::Other, Custom);
284  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
285
286  // Darwin ABI issue.
287  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
288  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
289  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
290  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
291  if (Subtarget->is64Bit())
292    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
293  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
294  if (Subtarget->is64Bit()) {
295    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
296    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
297    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
298    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
299  }
300  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
301  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
302  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
303  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
304  if (Subtarget->is64Bit()) {
305    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
306    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
307    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
308  }
309
310  if (Subtarget->hasSSE1())
311    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
312
313  if (!Subtarget->hasSSE2())
314    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
315
316  // Expand certain atomics
317  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
318  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
319  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
320  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
321
322  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
323  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
324  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
325  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
326
327  if (!Subtarget->is64Bit()) {
328    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
329    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
330    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
331    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
332    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
333    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
334    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
335  }
336
337  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
338  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
339  // FIXME - use subtarget debug flags
340  if (!Subtarget->isTargetDarwin() &&
341      !Subtarget->isTargetELF() &&
342      !Subtarget->isTargetCygMing()) {
343    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
344    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
345  }
346
347  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
348  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
349  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
350  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
351  if (Subtarget->is64Bit()) {
352    setExceptionPointerRegister(X86::RAX);
353    setExceptionSelectorRegister(X86::RDX);
354  } else {
355    setExceptionPointerRegister(X86::EAX);
356    setExceptionSelectorRegister(X86::EDX);
357  }
358  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
359  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
360
361  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
362
363  setOperationAction(ISD::TRAP, MVT::Other, Legal);
364
365  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
366  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
367  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
368  if (Subtarget->is64Bit()) {
369    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
370    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
371  } else {
372    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
373    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
374  }
375
376  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
377  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
378  if (Subtarget->is64Bit())
379    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
380  if (Subtarget->isTargetCygMing())
381    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
382  else
383    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
384
385  if (!UseSoftFloat && X86ScalarSSEf64) {
386    // f32 and f64 use SSE.
387    // Set up the FP register classes.
388    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
389    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
390
391    // Use ANDPD to simulate FABS.
392    setOperationAction(ISD::FABS , MVT::f64, Custom);
393    setOperationAction(ISD::FABS , MVT::f32, Custom);
394
395    // Use XORP to simulate FNEG.
396    setOperationAction(ISD::FNEG , MVT::f64, Custom);
397    setOperationAction(ISD::FNEG , MVT::f32, Custom);
398
399    // Use ANDPD and ORPD to simulate FCOPYSIGN.
400    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
401    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
402
403    // We don't support sin/cos/fmod
404    setOperationAction(ISD::FSIN , MVT::f64, Expand);
405    setOperationAction(ISD::FCOS , MVT::f64, Expand);
406    setOperationAction(ISD::FSIN , MVT::f32, Expand);
407    setOperationAction(ISD::FCOS , MVT::f32, Expand);
408
409    // Expand FP immediates into loads from the stack, except for the special
410    // cases we handle.
411    addLegalFPImmediate(APFloat(+0.0)); // xorpd
412    addLegalFPImmediate(APFloat(+0.0f)); // xorps
413
414    // Floating truncations from f80 and extensions to f80 go through memory.
415    // If optimizing, we lie about this though and handle it in
416    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
417    if (Fast) {
418      setConvertAction(MVT::f32, MVT::f80, Expand);
419      setConvertAction(MVT::f64, MVT::f80, Expand);
420      setConvertAction(MVT::f80, MVT::f32, Expand);
421      setConvertAction(MVT::f80, MVT::f64, Expand);
422    }
423  } else if (!UseSoftFloat && X86ScalarSSEf32) {
424    // Use SSE for f32, x87 for f64.
425    // Set up the FP register classes.
426    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
427    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
428
429    // Use ANDPS to simulate FABS.
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f32, Custom);
434
435    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
436
437    // Use ANDPS and ORPS to simulate FCOPYSIGN.
438    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
439    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
440
441    // We don't support sin/cos/fmod
442    setOperationAction(ISD::FSIN , MVT::f32, Expand);
443    setOperationAction(ISD::FCOS , MVT::f32, Expand);
444
445    // Special cases we handle for FP constants.
446    addLegalFPImmediate(APFloat(+0.0f)); // xorps
447    addLegalFPImmediate(APFloat(+0.0)); // FLD0
448    addLegalFPImmediate(APFloat(+1.0)); // FLD1
449    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
450    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
451
452    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
453    // this though and handle it in InstructionSelectPreprocess so that
454    // dagcombine2 can hack on these.
455    if (Fast) {
456      setConvertAction(MVT::f32, MVT::f64, Expand);
457      setConvertAction(MVT::f32, MVT::f80, Expand);
458      setConvertAction(MVT::f80, MVT::f32, Expand);
459      setConvertAction(MVT::f64, MVT::f32, Expand);
460      // And x87->x87 truncations also.
461      setConvertAction(MVT::f80, MVT::f64, Expand);
462    }
463
464    if (!UnsafeFPMath) {
465      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
466      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
467    }
468  } else if (!UseSoftFloat) {
469    // f32 and f64 in x87.
470    // Set up the FP register classes.
471    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
472    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
473
474    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
475    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
477    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
478
479    // Floating truncations go through memory.  If optimizing, we lie about
480    // this though and handle it in InstructionSelectPreprocess so that
481    // dagcombine2 can hack on these.
482    if (Fast) {
483      setConvertAction(MVT::f80, MVT::f32, Expand);
484      setConvertAction(MVT::f64, MVT::f32, Expand);
485      setConvertAction(MVT::f80, MVT::f64, Expand);
486    }
487
488    if (!UnsafeFPMath) {
489      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
490      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
491    }
492    addLegalFPImmediate(APFloat(+0.0)); // FLD0
493    addLegalFPImmediate(APFloat(+1.0)); // FLD1
494    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
495    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
496    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
497    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
498    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
499    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
500  }
501
502  // Long double always uses X87.
503  if (!UseSoftFloat) {
504    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
505    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
506    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
507    {
508      bool ignored;
509      APFloat TmpFlt(+0.0);
510      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
511                     &ignored);
512      addLegalFPImmediate(TmpFlt);  // FLD0
513      TmpFlt.changeSign();
514      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
515      APFloat TmpFlt2(+1.0);
516      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                      &ignored);
518      addLegalFPImmediate(TmpFlt2);  // FLD1
519      TmpFlt2.changeSign();
520      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
521    }
522
523    if (!UnsafeFPMath) {
524      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
525      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
526    }
527  }
528
529  // Always use a library call for pow.
530  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
531  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
532  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
533
534  setOperationAction(ISD::FLOG, MVT::f80, Expand);
535  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
536  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
537  setOperationAction(ISD::FEXP, MVT::f80, Expand);
538  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
539
540  // First set operation action for all vector types to either promote
541  // (for widening) or expand (for scalarization). Then we will selectively
542  // turn on ones that can be effectively codegen'd.
543  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
544       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
545    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
560    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
561    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
589  }
590
591  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
592  // with -msoft-float, disable use of MMX as well.
593  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
594    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
595    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
596    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
597    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
598    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
599
600    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
601    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
602    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
603    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
604
605    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
606    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
607    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
608    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
609
610    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
611    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
612
613    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
614    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
615    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
616    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
617    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
618    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
619    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
620
621    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
622    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
623    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
624    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
625    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
626    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
627    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
628
629    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
630    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
631    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
632    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
633    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
634    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
635    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
638    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
639    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
640    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
641    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
642    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
643    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
644    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
645    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
646
647    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
648    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
649    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
650    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
651    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
652
653    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
654    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
655    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
656    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
657
658    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
659    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
660    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
661    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
662
663    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
664
665    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
666    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
667    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
668    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
669    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
670    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
671  }
672
673  if (!UseSoftFloat && Subtarget->hasSSE1()) {
674    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
675
676    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
677    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
678    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
679    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
680    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
681    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
682    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
684    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
685    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
686    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
688  }
689
690  if (!UseSoftFloat && Subtarget->hasSSE2()) {
691    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
692
693    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
694    // registers cannot be used even for integer operations.
695    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
696    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
697    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
698    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
699
700    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
701    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
702    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
703    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
704    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
705    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
706    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
707    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
708    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
709    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
710    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
711    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
712    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
713    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
714    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
715    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
716
717    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
718    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
719    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
721
722    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
723    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
724    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
726    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
727
728    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
729    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
730      MVT VT = (MVT::SimpleValueType)i;
731      // Do not attempt to custom lower non-power-of-2 vectors
732      if (!isPowerOf2_32(VT.getVectorNumElements()))
733        continue;
734      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
735      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
736      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
737    }
738
739    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
740    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
741    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
742    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
743    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
744    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
745
746    if (Subtarget->is64Bit()) {
747      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
748      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
749    }
750
751    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
752    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
753      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
754      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
755      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
756      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
757      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
758      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
759      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
760      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
761      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
762      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
763    }
764
765    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
766
767    // Custom lower v2i64 and v2f64 selects.
768    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
769    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
770    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
771    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
772
773  }
774
775  if (Subtarget->hasSSE41()) {
776    // FIXME: Do we need to handle scalar-to-vector here?
777    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
778
779    // i8 and i16 vectors are custom , because the source register and source
780    // source memory operand types are not the same width.  f32 vectors are
781    // custom since the immediate controlling the insert encodes additional
782    // information.
783    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
784    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
785    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
786    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
787
788    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
790    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
791    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
792
793    if (Subtarget->is64Bit()) {
794      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
795      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
796    }
797  }
798
799  if (Subtarget->hasSSE42()) {
800    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
801  }
802
803  // We want to custom lower some of our intrinsics.
804  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
805
806  // Add/Sub/Mul with overflow operations are custom lowered.
807  setOperationAction(ISD::SADDO, MVT::i32, Custom);
808  setOperationAction(ISD::SADDO, MVT::i64, Custom);
809  setOperationAction(ISD::UADDO, MVT::i32, Custom);
810  setOperationAction(ISD::UADDO, MVT::i64, Custom);
811  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
812  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
813  setOperationAction(ISD::USUBO, MVT::i32, Custom);
814  setOperationAction(ISD::USUBO, MVT::i64, Custom);
815  setOperationAction(ISD::SMULO, MVT::i32, Custom);
816  setOperationAction(ISD::SMULO, MVT::i64, Custom);
817  setOperationAction(ISD::UMULO, MVT::i32, Custom);
818  setOperationAction(ISD::UMULO, MVT::i64, Custom);
819
820  if (!Subtarget->is64Bit()) {
821    // These libcalls are not available in 32-bit.
822    setLibcallName(RTLIB::SHL_I128, 0);
823    setLibcallName(RTLIB::SRL_I128, 0);
824    setLibcallName(RTLIB::SRA_I128, 0);
825  }
826
827  // We have target-specific dag combine patterns for the following nodes:
828  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
829  setTargetDAGCombine(ISD::BUILD_VECTOR);
830  setTargetDAGCombine(ISD::SELECT);
831  setTargetDAGCombine(ISD::SHL);
832  setTargetDAGCombine(ISD::SRA);
833  setTargetDAGCombine(ISD::SRL);
834  setTargetDAGCombine(ISD::STORE);
835  if (Subtarget->is64Bit())
836    setTargetDAGCombine(ISD::MUL);
837
838  computeRegisterProperties();
839
840  // FIXME: These should be based on subtarget info. Plus, the values should
841  // be smaller when we are in optimizing for size mode.
842  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
843  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
844  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
845  allowUnalignedMemoryAccesses = true; // x86 supports it!
846  setPrefLoopAlignment(16);
847  benefitFromCodePlacementOpt = true;
848}
849
850
851MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
852  return MVT::i8;
853}
854
855
856/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
857/// the desired ByVal argument alignment.
858static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
859  if (MaxAlign == 16)
860    return;
861  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
862    if (VTy->getBitWidth() == 128)
863      MaxAlign = 16;
864  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
865    unsigned EltAlign = 0;
866    getMaxByValAlign(ATy->getElementType(), EltAlign);
867    if (EltAlign > MaxAlign)
868      MaxAlign = EltAlign;
869  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
870    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
871      unsigned EltAlign = 0;
872      getMaxByValAlign(STy->getElementType(i), EltAlign);
873      if (EltAlign > MaxAlign)
874        MaxAlign = EltAlign;
875      if (MaxAlign == 16)
876        break;
877    }
878  }
879  return;
880}
881
882/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
883/// function arguments in the caller parameter area. For X86, aggregates
884/// that contain SSE vectors are placed at 16-byte boundaries while the rest
885/// are at 4-byte boundaries.
886unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
887  if (Subtarget->is64Bit()) {
888    // Max of 8 and alignment of type.
889    unsigned TyAlign = TD->getABITypeAlignment(Ty);
890    if (TyAlign > 8)
891      return TyAlign;
892    return 8;
893  }
894
895  unsigned Align = 4;
896  if (Subtarget->hasSSE1())
897    getMaxByValAlign(Ty, Align);
898  return Align;
899}
900
901/// getOptimalMemOpType - Returns the target specific optimal type for load
902/// and store operations as a result of memset, memcpy, and memmove
903/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
904/// determining it.
905MVT
906X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
907                                       bool isSrcConst, bool isSrcStr) const {
908  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
909  // linux.  This is because the stack realignment code can't handle certain
910  // cases like PR2962.  This should be removed when PR2962 is fixed.
911  if (!NoImplicitFloat && Subtarget->getStackAlignment() >= 16) {
912    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
913      return MVT::v4i32;
914    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
915      return MVT::v4f32;
916  }
917  if (Subtarget->is64Bit() && Size >= 8)
918    return MVT::i64;
919  return MVT::i32;
920}
921
922/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
923/// jumptable.
924SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
925                                                      SelectionDAG &DAG) const {
926  if (usesGlobalOffsetTable())
927    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
928  if (!Subtarget->isPICStyleRIPRel())
929    // This doesn't have DebugLoc associated with it, but is not really the
930    // same as a Register.
931    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
932                       getPointerTy());
933  return Table;
934}
935
936//===----------------------------------------------------------------------===//
937//               Return Value Calling Convention Implementation
938//===----------------------------------------------------------------------===//
939
940#include "X86GenCallingConv.inc"
941
942/// LowerRET - Lower an ISD::RET node.
943SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
944  DebugLoc dl = Op.getDebugLoc();
945  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
946
947  SmallVector<CCValAssign, 16> RVLocs;
948  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
949  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
950  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
951  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
952
953  // If this is the first return lowered for this function, add the regs to the
954  // liveout set for the function.
955  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
956    for (unsigned i = 0; i != RVLocs.size(); ++i)
957      if (RVLocs[i].isRegLoc())
958        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
959  }
960  SDValue Chain = Op.getOperand(0);
961
962  // Handle tail call return.
963  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
964  if (Chain.getOpcode() == X86ISD::TAILCALL) {
965    SDValue TailCall = Chain;
966    SDValue TargetAddress = TailCall.getOperand(1);
967    SDValue StackAdjustment = TailCall.getOperand(2);
968    assert(((TargetAddress.getOpcode() == ISD::Register &&
969               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
970                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
971              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
972              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
973             "Expecting an global address, external symbol, or register");
974    assert(StackAdjustment.getOpcode() == ISD::Constant &&
975           "Expecting a const value");
976
977    SmallVector<SDValue,8> Operands;
978    Operands.push_back(Chain.getOperand(0));
979    Operands.push_back(TargetAddress);
980    Operands.push_back(StackAdjustment);
981    // Copy registers used by the call. Last operand is a flag so it is not
982    // copied.
983    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
984      Operands.push_back(Chain.getOperand(i));
985    }
986    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
987                       Operands.size());
988  }
989
990  // Regular return.
991  SDValue Flag;
992
993  SmallVector<SDValue, 6> RetOps;
994  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
995  // Operand #1 = Bytes To Pop
996  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
997
998  // Copy the result values into the output registers.
999  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1000    CCValAssign &VA = RVLocs[i];
1001    assert(VA.isRegLoc() && "Can only return in registers!");
1002    SDValue ValToCopy = Op.getOperand(i*2+1);
1003
1004    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1005    // the RET instruction and handled by the FP Stackifier.
1006    if (VA.getLocReg() == X86::ST0 ||
1007        VA.getLocReg() == X86::ST1) {
1008      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1009      // change the value to the FP stack register class.
1010      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1011        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1012      RetOps.push_back(ValToCopy);
1013      // Don't emit a copytoreg.
1014      continue;
1015    }
1016
1017    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1018    // which is returned in RAX / RDX.
1019    if (Subtarget->is64Bit()) {
1020      MVT ValVT = ValToCopy.getValueType();
1021      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1022        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1023        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1024          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1025      }
1026    }
1027
1028    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1029    Flag = Chain.getValue(1);
1030  }
1031
1032  // The x86-64 ABI for returning structs by value requires that we copy
1033  // the sret argument into %rax for the return. We saved the argument into
1034  // a virtual register in the entry block, so now we copy the value out
1035  // and into %rax.
1036  if (Subtarget->is64Bit() &&
1037      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1038    MachineFunction &MF = DAG.getMachineFunction();
1039    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1040    unsigned Reg = FuncInfo->getSRetReturnReg();
1041    if (!Reg) {
1042      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1043      FuncInfo->setSRetReturnReg(Reg);
1044    }
1045    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1046
1047    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1048    Flag = Chain.getValue(1);
1049  }
1050
1051  RetOps[0] = Chain;  // Update chain.
1052
1053  // Add the flag if we have it.
1054  if (Flag.getNode())
1055    RetOps.push_back(Flag);
1056
1057  return DAG.getNode(X86ISD::RET_FLAG, dl,
1058                     MVT::Other, &RetOps[0], RetOps.size());
1059}
1060
1061
1062/// LowerCallResult - Lower the result values of an ISD::CALL into the
1063/// appropriate copies out of appropriate physical registers.  This assumes that
1064/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1065/// being lowered.  The returns a SDNode with the same number of values as the
1066/// ISD::CALL.
1067SDNode *X86TargetLowering::
1068LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1069                unsigned CallingConv, SelectionDAG &DAG) {
1070
1071  DebugLoc dl = TheCall->getDebugLoc();
1072  // Assign locations to each value returned by this call.
1073  SmallVector<CCValAssign, 16> RVLocs;
1074  bool isVarArg = TheCall->isVarArg();
1075  bool Is64Bit = Subtarget->is64Bit();
1076  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1077  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1078
1079  SmallVector<SDValue, 8> ResultVals;
1080
1081  // Copy all of the result registers out of their specified physreg.
1082  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1083    CCValAssign &VA = RVLocs[i];
1084    MVT CopyVT = VA.getValVT();
1085
1086    // If this is x86-64, and we disabled SSE, we can't return FP values
1087    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1088        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1089      cerr << "SSE register return with SSE disabled\n";
1090      exit(1);
1091    }
1092
1093    // If this is a call to a function that returns an fp value on the floating
1094    // point stack, but where we prefer to use the value in xmm registers, copy
1095    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1096    if ((VA.getLocReg() == X86::ST0 ||
1097         VA.getLocReg() == X86::ST1) &&
1098        isScalarFPTypeInSSEReg(VA.getValVT())) {
1099      CopyVT = MVT::f80;
1100    }
1101
1102    SDValue Val;
1103    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1104      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1105      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1106        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1107                                   MVT::v2i64, InFlag).getValue(1);
1108        Val = Chain.getValue(0);
1109        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1110                          Val, DAG.getConstant(0, MVT::i64));
1111      } else {
1112        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1113                                   MVT::i64, InFlag).getValue(1);
1114        Val = Chain.getValue(0);
1115      }
1116      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1117    } else {
1118      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1119                                 CopyVT, InFlag).getValue(1);
1120      Val = Chain.getValue(0);
1121    }
1122    InFlag = Chain.getValue(2);
1123
1124    if (CopyVT != VA.getValVT()) {
1125      // Round the F80 the right size, which also moves to the appropriate xmm
1126      // register.
1127      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1128                        // This truncation won't change the value.
1129                        DAG.getIntPtrConstant(1));
1130    }
1131
1132    ResultVals.push_back(Val);
1133  }
1134
1135  // Merge everything together with a MERGE_VALUES node.
1136  ResultVals.push_back(Chain);
1137  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1138                     &ResultVals[0], ResultVals.size()).getNode();
1139}
1140
1141
1142//===----------------------------------------------------------------------===//
1143//                C & StdCall & Fast Calling Convention implementation
1144//===----------------------------------------------------------------------===//
1145//  StdCall calling convention seems to be standard for many Windows' API
1146//  routines and around. It differs from C calling convention just a little:
1147//  callee should clean up the stack, not caller. Symbols should be also
1148//  decorated in some fancy way :) It doesn't support any vector arguments.
1149//  For info on fast calling convention see Fast Calling Convention (tail call)
1150//  implementation LowerX86_32FastCCCallTo.
1151
1152/// CallIsStructReturn - Determines whether a CALL node uses struct return
1153/// semantics.
1154static bool CallIsStructReturn(CallSDNode *TheCall) {
1155  unsigned NumOps = TheCall->getNumArgs();
1156  if (!NumOps)
1157    return false;
1158
1159  return TheCall->getArgFlags(0).isSRet();
1160}
1161
1162/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1163/// return semantics.
1164static bool ArgsAreStructReturn(SDValue Op) {
1165  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1166  if (!NumArgs)
1167    return false;
1168
1169  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1170}
1171
1172/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1173/// the callee to pop its own arguments. Callee pop is necessary to support tail
1174/// calls.
1175bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1176  if (IsVarArg)
1177    return false;
1178
1179  switch (CallingConv) {
1180  default:
1181    return false;
1182  case CallingConv::X86_StdCall:
1183    return !Subtarget->is64Bit();
1184  case CallingConv::X86_FastCall:
1185    return !Subtarget->is64Bit();
1186  case CallingConv::Fast:
1187    return PerformTailCallOpt;
1188  }
1189}
1190
1191/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1192/// given CallingConvention value.
1193CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1194  if (Subtarget->is64Bit()) {
1195    if (Subtarget->isTargetWin64())
1196      return CC_X86_Win64_C;
1197    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1198      return CC_X86_64_TailCall;
1199    else
1200      return CC_X86_64_C;
1201  }
1202
1203  if (CC == CallingConv::X86_FastCall)
1204    return CC_X86_32_FastCall;
1205  else if (CC == CallingConv::Fast)
1206    return CC_X86_32_FastCC;
1207  else
1208    return CC_X86_32_C;
1209}
1210
1211/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1212/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1213NameDecorationStyle
1214X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1215  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1216  if (CC == CallingConv::X86_FastCall)
1217    return FastCall;
1218  else if (CC == CallingConv::X86_StdCall)
1219    return StdCall;
1220  return None;
1221}
1222
1223
1224/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1225/// in a register before calling.
1226bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1227  return !IsTailCall && !Is64Bit &&
1228    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1229    Subtarget->isPICStyleGOT();
1230}
1231
1232/// CallRequiresFnAddressInReg - Check whether the call requires the function
1233/// address to be loaded in a register.
1234bool
1235X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1236  return !Is64Bit && IsTailCall &&
1237    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1238    Subtarget->isPICStyleGOT();
1239}
1240
1241/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1242/// by "Src" to address "Dst" with size and alignment information specified by
1243/// the specific parameter attribute. The copy will be passed as a byval
1244/// function parameter.
1245static SDValue
1246CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1247                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1248                          DebugLoc dl) {
1249  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1250  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1251                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1252}
1253
1254SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1255                                              const CCValAssign &VA,
1256                                              MachineFrameInfo *MFI,
1257                                              unsigned CC,
1258                                              SDValue Root, unsigned i) {
1259  // Create the nodes corresponding to a load from this parameter slot.
1260  ISD::ArgFlagsTy Flags =
1261    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1262  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1263  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1264
1265  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1266  // changed with more analysis.
1267  // In case of tail call optimization mark all arguments mutable. Since they
1268  // could be overwritten by lowering of arguments in case of a tail call.
1269  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1270                                  VA.getLocMemOffset(), isImmutable);
1271  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1272  if (Flags.isByVal())
1273    return FIN;
1274  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1275                     PseudoSourceValue::getFixedStack(FI), 0);
1276}
1277
1278SDValue
1279X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1280  MachineFunction &MF = DAG.getMachineFunction();
1281  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1282  DebugLoc dl = Op.getDebugLoc();
1283
1284  const Function* Fn = MF.getFunction();
1285  if (Fn->hasExternalLinkage() &&
1286      Subtarget->isTargetCygMing() &&
1287      Fn->getName() == "main")
1288    FuncInfo->setForceFramePointer(true);
1289
1290  // Decorate the function name.
1291  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1292
1293  MachineFrameInfo *MFI = MF.getFrameInfo();
1294  SDValue Root = Op.getOperand(0);
1295  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1296  unsigned CC = MF.getFunction()->getCallingConv();
1297  bool Is64Bit = Subtarget->is64Bit();
1298  bool IsWin64 = Subtarget->isTargetWin64();
1299
1300  assert(!(isVarArg && CC == CallingConv::Fast) &&
1301         "Var args not supported with calling convention fastcc");
1302
1303  // Assign locations to all of the incoming arguments.
1304  SmallVector<CCValAssign, 16> ArgLocs;
1305  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1306  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1307
1308  SmallVector<SDValue, 8> ArgValues;
1309  unsigned LastVal = ~0U;
1310  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1311    CCValAssign &VA = ArgLocs[i];
1312    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1313    // places.
1314    assert(VA.getValNo() != LastVal &&
1315           "Don't support value assigned to multiple locs yet");
1316    LastVal = VA.getValNo();
1317
1318    if (VA.isRegLoc()) {
1319      MVT RegVT = VA.getLocVT();
1320      TargetRegisterClass *RC = NULL;
1321      if (RegVT == MVT::i32)
1322        RC = X86::GR32RegisterClass;
1323      else if (Is64Bit && RegVT == MVT::i64)
1324        RC = X86::GR64RegisterClass;
1325      else if (RegVT == MVT::f32)
1326        RC = X86::FR32RegisterClass;
1327      else if (RegVT == MVT::f64)
1328        RC = X86::FR64RegisterClass;
1329      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1330        RC = X86::VR128RegisterClass;
1331      else if (RegVT.isVector()) {
1332        assert(RegVT.getSizeInBits() == 64);
1333        if (!Is64Bit)
1334          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1335        else {
1336          // Darwin calling convention passes MMX values in either GPRs or
1337          // XMMs in x86-64. Other targets pass them in memory.
1338          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1339            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1340            RegVT = MVT::v2i64;
1341          } else {
1342            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1343            RegVT = MVT::i64;
1344          }
1345        }
1346      } else {
1347        assert(0 && "Unknown argument type!");
1348      }
1349
1350      unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
1351      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1352
1353      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1354      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1355      // right size.
1356      if (VA.getLocInfo() == CCValAssign::SExt)
1357        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1358                               DAG.getValueType(VA.getValVT()));
1359      else if (VA.getLocInfo() == CCValAssign::ZExt)
1360        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1361                               DAG.getValueType(VA.getValVT()));
1362
1363      if (VA.getLocInfo() != CCValAssign::Full)
1364        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1365
1366      // Handle MMX values passed in GPRs.
1367      if (Is64Bit && RegVT != VA.getLocVT()) {
1368        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1369          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1370        else if (RC == X86::VR128RegisterClass) {
1371          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1372                                 ArgValue, DAG.getConstant(0, MVT::i64));
1373          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1374        }
1375      }
1376
1377      ArgValues.push_back(ArgValue);
1378    } else {
1379      assert(VA.isMemLoc());
1380      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1381    }
1382  }
1383
1384  // The x86-64 ABI for returning structs by value requires that we copy
1385  // the sret argument into %rax for the return. Save the argument into
1386  // a virtual register so that we can access it from the return points.
1387  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1388    MachineFunction &MF = DAG.getMachineFunction();
1389    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1390    unsigned Reg = FuncInfo->getSRetReturnReg();
1391    if (!Reg) {
1392      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1393      FuncInfo->setSRetReturnReg(Reg);
1394    }
1395    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1396    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1397  }
1398
1399  unsigned StackSize = CCInfo.getNextStackOffset();
1400  // align stack specially for tail calls
1401  if (PerformTailCallOpt && CC == CallingConv::Fast)
1402    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1403
1404  // If the function takes variable number of arguments, make a frame index for
1405  // the start of the first vararg value... for expansion of llvm.va_start.
1406  if (isVarArg) {
1407    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1408      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1409    }
1410    if (Is64Bit) {
1411      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1412
1413      // FIXME: We should really autogenerate these arrays
1414      static const unsigned GPR64ArgRegsWin64[] = {
1415        X86::RCX, X86::RDX, X86::R8,  X86::R9
1416      };
1417      static const unsigned XMMArgRegsWin64[] = {
1418        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1419      };
1420      static const unsigned GPR64ArgRegs64Bit[] = {
1421        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1422      };
1423      static const unsigned XMMArgRegs64Bit[] = {
1424        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1425        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1426      };
1427      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1428
1429      if (IsWin64) {
1430        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1431        GPR64ArgRegs = GPR64ArgRegsWin64;
1432        XMMArgRegs = XMMArgRegsWin64;
1433      } else {
1434        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1435        GPR64ArgRegs = GPR64ArgRegs64Bit;
1436        XMMArgRegs = XMMArgRegs64Bit;
1437      }
1438      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1439                                                       TotalNumIntRegs);
1440      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1441                                                       TotalNumXMMRegs);
1442
1443      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1444             "SSE register cannot be used when SSE is disabled!");
1445      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloat) &&
1446             "SSE register cannot be used when SSE is disabled!");
1447      if (UseSoftFloat || NoImplicitFloat || !Subtarget->hasSSE1())
1448        // Kernel mode asks for SSE to be disabled, so don't push them
1449        // on the stack.
1450        TotalNumXMMRegs = 0;
1451
1452      // For X86-64, if there are vararg parameters that are passed via
1453      // registers, then we must store them to their spots on the stack so they
1454      // may be loaded by deferencing the result of va_next.
1455      VarArgsGPOffset = NumIntRegs * 8;
1456      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1457      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1458                                                 TotalNumXMMRegs * 16, 16);
1459
1460      // Store the integer parameter registers.
1461      SmallVector<SDValue, 8> MemOps;
1462      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1463      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1464                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1465      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1466        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1467                                     X86::GR64RegisterClass);
1468        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1469        SDValue Store =
1470          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1471                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1472        MemOps.push_back(Store);
1473        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1474                          DAG.getIntPtrConstant(8));
1475      }
1476
1477      // Now store the XMM (fp + vector) parameter registers.
1478      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1479                        DAG.getIntPtrConstant(VarArgsFPOffset));
1480      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1481        unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1482                                     X86::VR128RegisterClass);
1483        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1484        SDValue Store =
1485          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1486                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1487        MemOps.push_back(Store);
1488        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1489                          DAG.getIntPtrConstant(16));
1490      }
1491      if (!MemOps.empty())
1492          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1493                             &MemOps[0], MemOps.size());
1494    }
1495  }
1496
1497  ArgValues.push_back(Root);
1498
1499  // Some CCs need callee pop.
1500  if (IsCalleePop(isVarArg, CC)) {
1501    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1502    BytesCallerReserves = 0;
1503  } else {
1504    BytesToPopOnReturn  = 0; // Callee pops nothing.
1505    // If this is an sret function, the return should pop the hidden pointer.
1506    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1507      BytesToPopOnReturn = 4;
1508    BytesCallerReserves = StackSize;
1509  }
1510
1511  if (!Is64Bit) {
1512    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1513    if (CC == CallingConv::X86_FastCall)
1514      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1515  }
1516
1517  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1518
1519  // Return the new list of results.
1520  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1521                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1522}
1523
1524SDValue
1525X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1526                                    const SDValue &StackPtr,
1527                                    const CCValAssign &VA,
1528                                    SDValue Chain,
1529                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1530  DebugLoc dl = TheCall->getDebugLoc();
1531  unsigned LocMemOffset = VA.getLocMemOffset();
1532  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1533  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1534  if (Flags.isByVal()) {
1535    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1536  }
1537  return DAG.getStore(Chain, dl, Arg, PtrOff,
1538                      PseudoSourceValue::getStack(), LocMemOffset);
1539}
1540
1541/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1542/// optimization is performed and it is required.
1543SDValue
1544X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1545                                           SDValue &OutRetAddr,
1546                                           SDValue Chain,
1547                                           bool IsTailCall,
1548                                           bool Is64Bit,
1549                                           int FPDiff,
1550                                           DebugLoc dl) {
1551  if (!IsTailCall || FPDiff==0) return Chain;
1552
1553  // Adjust the Return address stack slot.
1554  MVT VT = getPointerTy();
1555  OutRetAddr = getReturnAddressFrameIndex(DAG);
1556
1557  // Load the "old" Return address.
1558  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1559  return SDValue(OutRetAddr.getNode(), 1);
1560}
1561
1562/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1563/// optimization is performed and it is required (FPDiff!=0).
1564static SDValue
1565EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1566                         SDValue Chain, SDValue RetAddrFrIdx,
1567                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1568  // Store the return address to the appropriate stack slot.
1569  if (!FPDiff) return Chain;
1570  // Calculate the new stack slot for the return address.
1571  int SlotSize = Is64Bit ? 8 : 4;
1572  int NewReturnAddrFI =
1573    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1574  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1575  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1576  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1577                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1578  return Chain;
1579}
1580
1581SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1582  MachineFunction &MF = DAG.getMachineFunction();
1583  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1584  SDValue Chain       = TheCall->getChain();
1585  unsigned CC         = TheCall->getCallingConv();
1586  bool isVarArg       = TheCall->isVarArg();
1587  bool IsTailCall     = TheCall->isTailCall() &&
1588                        CC == CallingConv::Fast && PerformTailCallOpt;
1589  SDValue Callee      = TheCall->getCallee();
1590  bool Is64Bit        = Subtarget->is64Bit();
1591  bool IsStructRet    = CallIsStructReturn(TheCall);
1592  DebugLoc dl         = TheCall->getDebugLoc();
1593
1594  assert(!(isVarArg && CC == CallingConv::Fast) &&
1595         "Var args not supported with calling convention fastcc");
1596
1597  // Analyze operands of the call, assigning locations to each operand.
1598  SmallVector<CCValAssign, 16> ArgLocs;
1599  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1600  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1601
1602  // Get a count of how many bytes are to be pushed on the stack.
1603  unsigned NumBytes = CCInfo.getNextStackOffset();
1604  if (PerformTailCallOpt && CC == CallingConv::Fast)
1605    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1606
1607  int FPDiff = 0;
1608  if (IsTailCall) {
1609    // Lower arguments at fp - stackoffset + fpdiff.
1610    unsigned NumBytesCallerPushed =
1611      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1612    FPDiff = NumBytesCallerPushed - NumBytes;
1613
1614    // Set the delta of movement of the returnaddr stackslot.
1615    // But only set if delta is greater than previous delta.
1616    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1617      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1618  }
1619
1620  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1621
1622  SDValue RetAddrFrIdx;
1623  // Load return adress for tail calls.
1624  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1625                                  FPDiff, dl);
1626
1627  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1628  SmallVector<SDValue, 8> MemOpChains;
1629  SDValue StackPtr;
1630
1631  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1632  // of tail call optimization arguments are handle later.
1633  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1634    CCValAssign &VA = ArgLocs[i];
1635    SDValue Arg = TheCall->getArg(i);
1636    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1637    bool isByVal = Flags.isByVal();
1638
1639    // Promote the value if needed.
1640    switch (VA.getLocInfo()) {
1641    default: assert(0 && "Unknown loc info!");
1642    case CCValAssign::Full: break;
1643    case CCValAssign::SExt:
1644      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1645      break;
1646    case CCValAssign::ZExt:
1647      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1648      break;
1649    case CCValAssign::AExt:
1650      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1651      break;
1652    }
1653
1654    if (VA.isRegLoc()) {
1655      if (Is64Bit) {
1656        MVT RegVT = VA.getLocVT();
1657        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1658          switch (VA.getLocReg()) {
1659          default:
1660            break;
1661          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1662          case X86::R8: {
1663            // Special case: passing MMX values in GPR registers.
1664            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1665            break;
1666          }
1667          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1668          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1669            // Special case: passing MMX values in XMM registers.
1670            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1671            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1672            Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1673            break;
1674          }
1675          }
1676      }
1677      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1678    } else {
1679      if (!IsTailCall || (IsTailCall && isByVal)) {
1680        assert(VA.isMemLoc());
1681        if (StackPtr.getNode() == 0)
1682          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1683
1684        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1685                                               Chain, Arg, Flags));
1686      }
1687    }
1688  }
1689
1690  if (!MemOpChains.empty())
1691    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1692                        &MemOpChains[0], MemOpChains.size());
1693
1694  // Build a sequence of copy-to-reg nodes chained together with token chain
1695  // and flag operands which copy the outgoing args into registers.
1696  SDValue InFlag;
1697  // Tail call byval lowering might overwrite argument registers so in case of
1698  // tail call optimization the copies to registers are lowered later.
1699  if (!IsTailCall)
1700    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1701      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1702                               RegsToPass[i].second, InFlag);
1703      InFlag = Chain.getValue(1);
1704    }
1705
1706  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1707  // GOT pointer.
1708  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1709    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1710                             DAG.getNode(X86ISD::GlobalBaseReg,
1711                                         DebugLoc::getUnknownLoc(),
1712                                         getPointerTy()),
1713                             InFlag);
1714    InFlag = Chain.getValue(1);
1715  }
1716  // If we are tail calling and generating PIC/GOT style code load the address
1717  // of the callee into ecx. The value in ecx is used as target of the tail
1718  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1719  // calls on PIC/GOT architectures. Normally we would just put the address of
1720  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1721  // restored (since ebx is callee saved) before jumping to the target@PLT.
1722  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1723    // Note: The actual moving to ecx is done further down.
1724    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1725    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1726        !G->getGlobal()->hasProtectedVisibility())
1727      Callee =  LowerGlobalAddress(Callee, DAG);
1728    else if (isa<ExternalSymbolSDNode>(Callee))
1729      Callee = LowerExternalSymbol(Callee,DAG);
1730  }
1731
1732  if (Is64Bit && isVarArg) {
1733    // From AMD64 ABI document:
1734    // For calls that may call functions that use varargs or stdargs
1735    // (prototype-less calls or calls to functions containing ellipsis (...) in
1736    // the declaration) %al is used as hidden argument to specify the number
1737    // of SSE registers used. The contents of %al do not need to match exactly
1738    // the number of registers, but must be an ubound on the number of SSE
1739    // registers used and is in the range 0 - 8 inclusive.
1740
1741    // FIXME: Verify this on Win64
1742    // Count the number of XMM registers allocated.
1743    static const unsigned XMMArgRegs[] = {
1744      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1745      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1746    };
1747    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1748    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1749           && "SSE registers cannot be used when SSE is disabled");
1750
1751    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1752                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1753    InFlag = Chain.getValue(1);
1754  }
1755
1756
1757  // For tail calls lower the arguments to the 'real' stack slot.
1758  if (IsTailCall) {
1759    SmallVector<SDValue, 8> MemOpChains2;
1760    SDValue FIN;
1761    int FI = 0;
1762    // Do not flag preceeding copytoreg stuff together with the following stuff.
1763    InFlag = SDValue();
1764    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1765      CCValAssign &VA = ArgLocs[i];
1766      if (!VA.isRegLoc()) {
1767        assert(VA.isMemLoc());
1768        SDValue Arg = TheCall->getArg(i);
1769        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1770        // Create frame index.
1771        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1772        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1773        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1774        FIN = DAG.getFrameIndex(FI, getPointerTy());
1775
1776        if (Flags.isByVal()) {
1777          // Copy relative to framepointer.
1778          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1779          if (StackPtr.getNode() == 0)
1780            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1781                                          getPointerTy());
1782          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1783
1784          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1785                                                           Flags, DAG, dl));
1786        } else {
1787          // Store relative to framepointer.
1788          MemOpChains2.push_back(
1789            DAG.getStore(Chain, dl, Arg, FIN,
1790                         PseudoSourceValue::getFixedStack(FI), 0));
1791        }
1792      }
1793    }
1794
1795    if (!MemOpChains2.empty())
1796      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1797                          &MemOpChains2[0], MemOpChains2.size());
1798
1799    // Copy arguments to their registers.
1800    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1801      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1802                               RegsToPass[i].second, InFlag);
1803      InFlag = Chain.getValue(1);
1804    }
1805    InFlag =SDValue();
1806
1807    // Store the return address to the appropriate stack slot.
1808    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1809                                     FPDiff, dl);
1810  }
1811
1812  // If the callee is a GlobalAddress node (quite common, every direct call is)
1813  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1814  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1815    // We should use extra load for direct calls to dllimported functions in
1816    // non-JIT mode.
1817    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1818                                        getTargetMachine(), true))
1819      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1820                                          G->getOffset());
1821  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1822    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1823  } else if (IsTailCall) {
1824    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1825
1826    Chain = DAG.getCopyToReg(Chain,  dl,
1827                             DAG.getRegister(Opc, getPointerTy()),
1828                             Callee,InFlag);
1829    Callee = DAG.getRegister(Opc, getPointerTy());
1830    // Add register as live out.
1831    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1832  }
1833
1834  // Returns a chain & a flag for retval copy to use.
1835  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1836  SmallVector<SDValue, 8> Ops;
1837
1838  if (IsTailCall) {
1839    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1840                           DAG.getIntPtrConstant(0, true), InFlag);
1841    InFlag = Chain.getValue(1);
1842
1843    // Returns a chain & a flag for retval copy to use.
1844    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1845    Ops.clear();
1846  }
1847
1848  Ops.push_back(Chain);
1849  Ops.push_back(Callee);
1850
1851  if (IsTailCall)
1852    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1853
1854  // Add argument registers to the end of the list so that they are known live
1855  // into the call.
1856  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1857    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1858                                  RegsToPass[i].second.getValueType()));
1859
1860  // Add an implicit use GOT pointer in EBX.
1861  if (!IsTailCall && !Is64Bit &&
1862      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1863      Subtarget->isPICStyleGOT())
1864    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1865
1866  // Add an implicit use of AL for x86 vararg functions.
1867  if (Is64Bit && isVarArg)
1868    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1869
1870  if (InFlag.getNode())
1871    Ops.push_back(InFlag);
1872
1873  if (IsTailCall) {
1874    assert(InFlag.getNode() &&
1875           "Flag must be set. Depend on flag being set in LowerRET");
1876    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1877                        TheCall->getVTList(), &Ops[0], Ops.size());
1878
1879    return SDValue(Chain.getNode(), Op.getResNo());
1880  }
1881
1882  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1883  InFlag = Chain.getValue(1);
1884
1885  // Create the CALLSEQ_END node.
1886  unsigned NumBytesForCalleeToPush;
1887  if (IsCalleePop(isVarArg, CC))
1888    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1889  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1890    // If this is is a call to a struct-return function, the callee
1891    // pops the hidden struct pointer, so we have to push it back.
1892    // This is common for Darwin/X86, Linux & Mingw32 targets.
1893    NumBytesForCalleeToPush = 4;
1894  else
1895    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1896
1897  // Returns a flag for retval copy to use.
1898  Chain = DAG.getCALLSEQ_END(Chain,
1899                             DAG.getIntPtrConstant(NumBytes, true),
1900                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1901                                                   true),
1902                             InFlag);
1903  InFlag = Chain.getValue(1);
1904
1905  // Handle result values, copying them out of physregs into vregs that we
1906  // return.
1907  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1908                 Op.getResNo());
1909}
1910
1911
1912//===----------------------------------------------------------------------===//
1913//                Fast Calling Convention (tail call) implementation
1914//===----------------------------------------------------------------------===//
1915
1916//  Like std call, callee cleans arguments, convention except that ECX is
1917//  reserved for storing the tail called function address. Only 2 registers are
1918//  free for argument passing (inreg). Tail call optimization is performed
1919//  provided:
1920//                * tailcallopt is enabled
1921//                * caller/callee are fastcc
1922//  On X86_64 architecture with GOT-style position independent code only local
1923//  (within module) calls are supported at the moment.
1924//  To keep the stack aligned according to platform abi the function
1925//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1926//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1927//  If a tail called function callee has more arguments than the caller the
1928//  caller needs to make sure that there is room to move the RETADDR to. This is
1929//  achieved by reserving an area the size of the argument delta right after the
1930//  original REtADDR, but before the saved framepointer or the spilled registers
1931//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1932//  stack layout:
1933//    arg1
1934//    arg2
1935//    RETADDR
1936//    [ new RETADDR
1937//      move area ]
1938//    (possible EBP)
1939//    ESI
1940//    EDI
1941//    local1 ..
1942
1943/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1944/// for a 16 byte align requirement.
1945unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1946                                                        SelectionDAG& DAG) {
1947  MachineFunction &MF = DAG.getMachineFunction();
1948  const TargetMachine &TM = MF.getTarget();
1949  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1950  unsigned StackAlignment = TFI.getStackAlignment();
1951  uint64_t AlignMask = StackAlignment - 1;
1952  int64_t Offset = StackSize;
1953  uint64_t SlotSize = TD->getPointerSize();
1954  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1955    // Number smaller than 12 so just add the difference.
1956    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1957  } else {
1958    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1959    Offset = ((~AlignMask) & Offset) + StackAlignment +
1960      (StackAlignment-SlotSize);
1961  }
1962  return Offset;
1963}
1964
1965/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1966/// following the call is a return. A function is eligible if caller/callee
1967/// calling conventions match, currently only fastcc supports tail calls, and
1968/// the function CALL is immediatly followed by a RET.
1969bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1970                                                      SDValue Ret,
1971                                                      SelectionDAG& DAG) const {
1972  if (!PerformTailCallOpt)
1973    return false;
1974
1975  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1976    MachineFunction &MF = DAG.getMachineFunction();
1977    unsigned CallerCC = MF.getFunction()->getCallingConv();
1978    unsigned CalleeCC= TheCall->getCallingConv();
1979    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1980      SDValue Callee = TheCall->getCallee();
1981      // On x86/32Bit PIC/GOT  tail calls are supported.
1982      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1983          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1984        return true;
1985
1986      // Can only do local tail calls (in same module, hidden or protected) on
1987      // x86_64 PIC/GOT at the moment.
1988      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1989        return G->getGlobal()->hasHiddenVisibility()
1990            || G->getGlobal()->hasProtectedVisibility();
1991    }
1992  }
1993
1994  return false;
1995}
1996
1997FastISel *
1998X86TargetLowering::createFastISel(MachineFunction &mf,
1999                                  MachineModuleInfo *mmo,
2000                                  DwarfWriter *dw,
2001                                  DenseMap<const Value *, unsigned> &vm,
2002                                  DenseMap<const BasicBlock *,
2003                                           MachineBasicBlock *> &bm,
2004                                  DenseMap<const AllocaInst *, int> &am
2005#ifndef NDEBUG
2006                                  , SmallSet<Instruction*, 8> &cil
2007#endif
2008                                  ) {
2009  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2010#ifndef NDEBUG
2011                             , cil
2012#endif
2013                             );
2014}
2015
2016
2017//===----------------------------------------------------------------------===//
2018//                           Other Lowering Hooks
2019//===----------------------------------------------------------------------===//
2020
2021
2022SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2023  MachineFunction &MF = DAG.getMachineFunction();
2024  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2025  int ReturnAddrIndex = FuncInfo->getRAIndex();
2026
2027  if (ReturnAddrIndex == 0) {
2028    // Set up a frame object for the return address.
2029    uint64_t SlotSize = TD->getPointerSize();
2030    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2031    FuncInfo->setRAIndex(ReturnAddrIndex);
2032  }
2033
2034  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2035}
2036
2037
2038/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2039/// specific condition code, returning the condition code and the LHS/RHS of the
2040/// comparison to make.
2041static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2042                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2043  if (!isFP) {
2044    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2045      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2046        // X > -1   -> X == 0, jump !sign.
2047        RHS = DAG.getConstant(0, RHS.getValueType());
2048        return X86::COND_NS;
2049      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2050        // X < 0   -> X == 0, jump on sign.
2051        return X86::COND_S;
2052      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2053        // X < 1   -> X <= 0
2054        RHS = DAG.getConstant(0, RHS.getValueType());
2055        return X86::COND_LE;
2056      }
2057    }
2058
2059    switch (SetCCOpcode) {
2060    default: assert(0 && "Invalid integer condition!");
2061    case ISD::SETEQ:  return X86::COND_E;
2062    case ISD::SETGT:  return X86::COND_G;
2063    case ISD::SETGE:  return X86::COND_GE;
2064    case ISD::SETLT:  return X86::COND_L;
2065    case ISD::SETLE:  return X86::COND_LE;
2066    case ISD::SETNE:  return X86::COND_NE;
2067    case ISD::SETULT: return X86::COND_B;
2068    case ISD::SETUGT: return X86::COND_A;
2069    case ISD::SETULE: return X86::COND_BE;
2070    case ISD::SETUGE: return X86::COND_AE;
2071    }
2072  }
2073
2074  // First determine if it is required or is profitable to flip the operands.
2075
2076  // If LHS is a foldable load, but RHS is not, flip the condition.
2077  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2078      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2079    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2080    std::swap(LHS, RHS);
2081  }
2082
2083  switch (SetCCOpcode) {
2084  default: break;
2085  case ISD::SETOLT:
2086  case ISD::SETOLE:
2087  case ISD::SETUGT:
2088  case ISD::SETUGE:
2089    std::swap(LHS, RHS);
2090    break;
2091  }
2092
2093  // On a floating point condition, the flags are set as follows:
2094  // ZF  PF  CF   op
2095  //  0 | 0 | 0 | X > Y
2096  //  0 | 0 | 1 | X < Y
2097  //  1 | 0 | 0 | X == Y
2098  //  1 | 1 | 1 | unordered
2099  switch (SetCCOpcode) {
2100  default: assert(0 && "Condcode should be pre-legalized away");
2101  case ISD::SETUEQ:
2102  case ISD::SETEQ:   return X86::COND_E;
2103  case ISD::SETOLT:              // flipped
2104  case ISD::SETOGT:
2105  case ISD::SETGT:   return X86::COND_A;
2106  case ISD::SETOLE:              // flipped
2107  case ISD::SETOGE:
2108  case ISD::SETGE:   return X86::COND_AE;
2109  case ISD::SETUGT:              // flipped
2110  case ISD::SETULT:
2111  case ISD::SETLT:   return X86::COND_B;
2112  case ISD::SETUGE:              // flipped
2113  case ISD::SETULE:
2114  case ISD::SETLE:   return X86::COND_BE;
2115  case ISD::SETONE:
2116  case ISD::SETNE:   return X86::COND_NE;
2117  case ISD::SETUO:   return X86::COND_P;
2118  case ISD::SETO:    return X86::COND_NP;
2119  }
2120}
2121
2122/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2123/// code. Current x86 isa includes the following FP cmov instructions:
2124/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2125static bool hasFPCMov(unsigned X86CC) {
2126  switch (X86CC) {
2127  default:
2128    return false;
2129  case X86::COND_B:
2130  case X86::COND_BE:
2131  case X86::COND_E:
2132  case X86::COND_P:
2133  case X86::COND_A:
2134  case X86::COND_AE:
2135  case X86::COND_NE:
2136  case X86::COND_NP:
2137    return true;
2138  }
2139}
2140
2141/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2142/// the specified range (L, H].
2143static bool isUndefOrInRange(int Val, int Low, int Hi) {
2144  return (Val < 0) || (Val >= Low && Val < Hi);
2145}
2146
2147/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2148/// specified value.
2149static bool isUndefOrEqual(int Val, int CmpVal) {
2150  if (Val < 0 || Val == CmpVal)
2151    return true;
2152  return false;
2153}
2154
2155/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2156/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2157/// the second operand.
2158static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2159  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2160    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2161  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2162    return (Mask[0] < 2 && Mask[1] < 2);
2163  return false;
2164}
2165
2166bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2167  SmallVector<int, 8> M;
2168  N->getMask(M);
2169  return ::isPSHUFDMask(M, N->getValueType(0));
2170}
2171
2172/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2173/// is suitable for input to PSHUFHW.
2174static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2175  if (VT != MVT::v8i16)
2176    return false;
2177
2178  // Lower quadword copied in order or undef.
2179  for (int i = 0; i != 4; ++i)
2180    if (Mask[i] >= 0 && Mask[i] != i)
2181      return false;
2182
2183  // Upper quadword shuffled.
2184  for (int i = 4; i != 8; ++i)
2185    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2186      return false;
2187
2188  return true;
2189}
2190
2191bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2192  SmallVector<int, 8> M;
2193  N->getMask(M);
2194  return ::isPSHUFHWMask(M, N->getValueType(0));
2195}
2196
2197/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2198/// is suitable for input to PSHUFLW.
2199static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2200  if (VT != MVT::v8i16)
2201    return false;
2202
2203  // Upper quadword copied in order.
2204  for (int i = 4; i != 8; ++i)
2205    if (Mask[i] >= 0 && Mask[i] != i)
2206      return false;
2207
2208  // Lower quadword shuffled.
2209  for (int i = 0; i != 4; ++i)
2210    if (Mask[i] >= 4)
2211      return false;
2212
2213  return true;
2214}
2215
2216bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2217  SmallVector<int, 8> M;
2218  N->getMask(M);
2219  return ::isPSHUFLWMask(M, N->getValueType(0));
2220}
2221
2222/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2223/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2224static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2225  int NumElems = VT.getVectorNumElements();
2226  if (NumElems != 2 && NumElems != 4)
2227    return false;
2228
2229  int Half = NumElems / 2;
2230  for (int i = 0; i < Half; ++i)
2231    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2232      return false;
2233  for (int i = Half; i < NumElems; ++i)
2234    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2235      return false;
2236
2237  return true;
2238}
2239
2240bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2241  SmallVector<int, 8> M;
2242  N->getMask(M);
2243  return ::isSHUFPMask(M, N->getValueType(0));
2244}
2245
2246/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2247/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2248/// half elements to come from vector 1 (which would equal the dest.) and
2249/// the upper half to come from vector 2.
2250static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2251  int NumElems = VT.getVectorNumElements();
2252
2253  if (NumElems != 2 && NumElems != 4)
2254    return false;
2255
2256  int Half = NumElems / 2;
2257  for (int i = 0; i < Half; ++i)
2258    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2259      return false;
2260  for (int i = Half; i < NumElems; ++i)
2261    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2262      return false;
2263  return true;
2264}
2265
2266static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2267  SmallVector<int, 8> M;
2268  N->getMask(M);
2269  return isCommutedSHUFPMask(M, N->getValueType(0));
2270}
2271
2272/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2273/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2274bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2275  if (N->getValueType(0).getVectorNumElements() != 4)
2276    return false;
2277
2278  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2279  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2280         isUndefOrEqual(N->getMaskElt(1), 7) &&
2281         isUndefOrEqual(N->getMaskElt(2), 2) &&
2282         isUndefOrEqual(N->getMaskElt(3), 3);
2283}
2284
2285/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2286/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2287bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2288  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2289
2290  if (NumElems != 2 && NumElems != 4)
2291    return false;
2292
2293  for (unsigned i = 0; i < NumElems/2; ++i)
2294    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2295      return false;
2296
2297  for (unsigned i = NumElems/2; i < NumElems; ++i)
2298    if (!isUndefOrEqual(N->getMaskElt(i), i))
2299      return false;
2300
2301  return true;
2302}
2303
2304/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2305/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2306/// and MOVLHPS.
2307bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2308  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2309
2310  if (NumElems != 2 && NumElems != 4)
2311    return false;
2312
2313  for (unsigned i = 0; i < NumElems/2; ++i)
2314    if (!isUndefOrEqual(N->getMaskElt(i), i))
2315      return false;
2316
2317  for (unsigned i = 0; i < NumElems/2; ++i)
2318    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2319      return false;
2320
2321  return true;
2322}
2323
2324/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2325/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2326/// <2, 3, 2, 3>
2327bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2328  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2329
2330  if (NumElems != 4)
2331    return false;
2332
2333  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2334         isUndefOrEqual(N->getMaskElt(1), 3) &&
2335         isUndefOrEqual(N->getMaskElt(2), 2) &&
2336         isUndefOrEqual(N->getMaskElt(3), 3);
2337}
2338
2339/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2340/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2341static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2342                         bool V2IsSplat = false) {
2343  int NumElts = VT.getVectorNumElements();
2344  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2345    return false;
2346
2347  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2348    int BitI  = Mask[i];
2349    int BitI1 = Mask[i+1];
2350    if (!isUndefOrEqual(BitI, j))
2351      return false;
2352    if (V2IsSplat) {
2353      if (!isUndefOrEqual(BitI1, NumElts))
2354        return false;
2355    } else {
2356      if (!isUndefOrEqual(BitI1, j + NumElts))
2357        return false;
2358    }
2359  }
2360  return true;
2361}
2362
2363bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2364  SmallVector<int, 8> M;
2365  N->getMask(M);
2366  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2367}
2368
2369/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2370/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2371static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2372                         bool V2IsSplat = false) {
2373  int NumElts = VT.getVectorNumElements();
2374  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2375    return false;
2376
2377  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2378    int BitI  = Mask[i];
2379    int BitI1 = Mask[i+1];
2380    if (!isUndefOrEqual(BitI, j + NumElts/2))
2381      return false;
2382    if (V2IsSplat) {
2383      if (isUndefOrEqual(BitI1, NumElts))
2384        return false;
2385    } else {
2386      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2387        return false;
2388    }
2389  }
2390  return true;
2391}
2392
2393bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2394  SmallVector<int, 8> M;
2395  N->getMask(M);
2396  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2397}
2398
2399/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2400/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2401/// <0, 0, 1, 1>
2402static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2403  int NumElems = VT.getVectorNumElements();
2404  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2405    return false;
2406
2407  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2408    int BitI  = Mask[i];
2409    int BitI1 = Mask[i+1];
2410    if (!isUndefOrEqual(BitI, j))
2411      return false;
2412    if (!isUndefOrEqual(BitI1, j))
2413      return false;
2414  }
2415  return true;
2416}
2417
2418bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2419  SmallVector<int, 8> M;
2420  N->getMask(M);
2421  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2422}
2423
2424/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2425/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2426/// <2, 2, 3, 3>
2427static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2428  int NumElems = VT.getVectorNumElements();
2429  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2430    return false;
2431
2432  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2433    int BitI  = Mask[i];
2434    int BitI1 = Mask[i+1];
2435    if (!isUndefOrEqual(BitI, j))
2436      return false;
2437    if (!isUndefOrEqual(BitI1, j))
2438      return false;
2439  }
2440  return true;
2441}
2442
2443bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2444  SmallVector<int, 8> M;
2445  N->getMask(M);
2446  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2447}
2448
2449/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2450/// specifies a shuffle of elements that is suitable for input to MOVSS,
2451/// MOVSD, and MOVD, i.e. setting the lowest element.
2452static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2453  int NumElts = VT.getVectorNumElements();
2454  if (NumElts != 2 && NumElts != 4)
2455    return false;
2456
2457  if (!isUndefOrEqual(Mask[0], NumElts))
2458    return false;
2459
2460  for (int i = 1; i < NumElts; ++i)
2461    if (!isUndefOrEqual(Mask[i], i))
2462      return false;
2463
2464  return true;
2465}
2466
2467bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2468  SmallVector<int, 8> M;
2469  N->getMask(M);
2470  return ::isMOVLMask(M, N->getValueType(0));
2471}
2472
2473/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2474/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2475/// element of vector 2 and the other elements to come from vector 1 in order.
2476static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2477                               bool V2IsSplat = false, bool V2IsUndef = false) {
2478  int NumOps = VT.getVectorNumElements();
2479  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2480    return false;
2481
2482  if (!isUndefOrEqual(Mask[0], 0))
2483    return false;
2484
2485  for (int i = 1; i < NumOps; ++i)
2486    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2487          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2488          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2489      return false;
2490
2491  return true;
2492}
2493
2494static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2495                           bool V2IsUndef = false) {
2496  SmallVector<int, 8> M;
2497  N->getMask(M);
2498  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2499}
2500
2501/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2502/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2503bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2504  if (N->getValueType(0).getVectorNumElements() != 4)
2505    return false;
2506
2507  // Expect 1, 1, 3, 3
2508  for (unsigned i = 0; i < 2; ++i) {
2509    int Elt = N->getMaskElt(i);
2510    if (Elt >= 0 && Elt != 1)
2511      return false;
2512  }
2513
2514  bool HasHi = false;
2515  for (unsigned i = 2; i < 4; ++i) {
2516    int Elt = N->getMaskElt(i);
2517    if (Elt >= 0 && Elt != 3)
2518      return false;
2519    if (Elt == 3)
2520      HasHi = true;
2521  }
2522  // Don't use movshdup if it can be done with a shufps.
2523  // FIXME: verify that matching u, u, 3, 3 is what we want.
2524  return HasHi;
2525}
2526
2527/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2528/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2529bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2530  if (N->getValueType(0).getVectorNumElements() != 4)
2531    return false;
2532
2533  // Expect 0, 0, 2, 2
2534  for (unsigned i = 0; i < 2; ++i)
2535    if (N->getMaskElt(i) > 0)
2536      return false;
2537
2538  bool HasHi = false;
2539  for (unsigned i = 2; i < 4; ++i) {
2540    int Elt = N->getMaskElt(i);
2541    if (Elt >= 0 && Elt != 2)
2542      return false;
2543    if (Elt == 2)
2544      HasHi = true;
2545  }
2546  // Don't use movsldup if it can be done with a shufps.
2547  return HasHi;
2548}
2549
2550/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2551/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2552bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2553  int e = N->getValueType(0).getVectorNumElements() / 2;
2554
2555  for (int i = 0; i < e; ++i)
2556    if (!isUndefOrEqual(N->getMaskElt(i), i))
2557      return false;
2558  for (int i = 0; i < e; ++i)
2559    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2560      return false;
2561  return true;
2562}
2563
2564/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2565/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2566/// instructions.
2567unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2568  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2569  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2570
2571  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2572  unsigned Mask = 0;
2573  for (int i = 0; i < NumOperands; ++i) {
2574    int Val = SVOp->getMaskElt(NumOperands-i-1);
2575    if (Val < 0) Val = 0;
2576    if (Val >= NumOperands) Val -= NumOperands;
2577    Mask |= Val;
2578    if (i != NumOperands - 1)
2579      Mask <<= Shift;
2580  }
2581  return Mask;
2582}
2583
2584/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2585/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2586/// instructions.
2587unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2588  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2589  unsigned Mask = 0;
2590  // 8 nodes, but we only care about the last 4.
2591  for (unsigned i = 7; i >= 4; --i) {
2592    int Val = SVOp->getMaskElt(i);
2593    if (Val >= 0)
2594      Mask |= (Val - 4);
2595    if (i != 4)
2596      Mask <<= 2;
2597  }
2598  return Mask;
2599}
2600
2601/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2602/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2603/// instructions.
2604unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2605  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2606  unsigned Mask = 0;
2607  // 8 nodes, but we only care about the first 4.
2608  for (int i = 3; i >= 0; --i) {
2609    int Val = SVOp->getMaskElt(i);
2610    if (Val >= 0)
2611      Mask |= Val;
2612    if (i != 0)
2613      Mask <<= 2;
2614  }
2615  return Mask;
2616}
2617
2618/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2619/// their permute mask.
2620static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2621                                    SelectionDAG &DAG) {
2622  MVT VT = SVOp->getValueType(0);
2623  unsigned NumElems = VT.getVectorNumElements();
2624  SmallVector<int, 8> MaskVec;
2625
2626  for (unsigned i = 0; i != NumElems; ++i) {
2627    int idx = SVOp->getMaskElt(i);
2628    if (idx < 0)
2629      MaskVec.push_back(idx);
2630    else if (idx < (int)NumElems)
2631      MaskVec.push_back(idx + NumElems);
2632    else
2633      MaskVec.push_back(idx - NumElems);
2634  }
2635  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2636                              SVOp->getOperand(0), &MaskVec[0]);
2637}
2638
2639/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2640/// the two vector operands have swapped position.
2641static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2642  unsigned NumElems = VT.getVectorNumElements();
2643  for (unsigned i = 0; i != NumElems; ++i) {
2644    int idx = Mask[i];
2645    if (idx < 0)
2646      continue;
2647    else if (idx < (int)NumElems)
2648      Mask[i] = idx + NumElems;
2649    else
2650      Mask[i] = idx - NumElems;
2651  }
2652}
2653
2654/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2655/// match movhlps. The lower half elements should come from upper half of
2656/// V1 (and in order), and the upper half elements should come from the upper
2657/// half of V2 (and in order).
2658static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2659  if (Op->getValueType(0).getVectorNumElements() != 4)
2660    return false;
2661  for (unsigned i = 0, e = 2; i != e; ++i)
2662    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2663      return false;
2664  for (unsigned i = 2; i != 4; ++i)
2665    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2666      return false;
2667  return true;
2668}
2669
2670/// isScalarLoadToVector - Returns true if the node is a scalar load that
2671/// is promoted to a vector. It also returns the LoadSDNode by reference if
2672/// required.
2673static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2674  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2675    return false;
2676  N = N->getOperand(0).getNode();
2677  if (!ISD::isNON_EXTLoad(N))
2678    return false;
2679  if (LD)
2680    *LD = cast<LoadSDNode>(N);
2681  return true;
2682}
2683
2684/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2685/// match movlp{s|d}. The lower half elements should come from lower half of
2686/// V1 (and in order), and the upper half elements should come from the upper
2687/// half of V2 (and in order). And since V1 will become the source of the
2688/// MOVLP, it must be either a vector load or a scalar load to vector.
2689static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2690                               ShuffleVectorSDNode *Op) {
2691  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2692    return false;
2693  // Is V2 is a vector load, don't do this transformation. We will try to use
2694  // load folding shufps op.
2695  if (ISD::isNON_EXTLoad(V2))
2696    return false;
2697
2698  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2699
2700  if (NumElems != 2 && NumElems != 4)
2701    return false;
2702  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2703    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2704      return false;
2705  for (unsigned i = NumElems/2; i != NumElems; ++i)
2706    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2707      return false;
2708  return true;
2709}
2710
2711/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2712/// all the same.
2713static bool isSplatVector(SDNode *N) {
2714  if (N->getOpcode() != ISD::BUILD_VECTOR)
2715    return false;
2716
2717  SDValue SplatValue = N->getOperand(0);
2718  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2719    if (N->getOperand(i) != SplatValue)
2720      return false;
2721  return true;
2722}
2723
2724/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2725/// constant +0.0.
2726static inline bool isZeroNode(SDValue Elt) {
2727  return ((isa<ConstantSDNode>(Elt) &&
2728           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2729          (isa<ConstantFPSDNode>(Elt) &&
2730           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2731}
2732
2733/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2734/// to an zero vector.
2735/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2736static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2737  SDValue V1 = N->getOperand(0);
2738  SDValue V2 = N->getOperand(1);
2739  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2740  for (unsigned i = 0; i != NumElems; ++i) {
2741    int Idx = N->getMaskElt(i);
2742    if (Idx >= (int)NumElems) {
2743      unsigned Opc = V2.getOpcode();
2744      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2745        continue;
2746      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
2747        return false;
2748    } else if (Idx >= 0) {
2749      unsigned Opc = V1.getOpcode();
2750      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2751        continue;
2752      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
2753        return false;
2754    }
2755  }
2756  return true;
2757}
2758
2759/// getZeroVector - Returns a vector of specified type with all zero elements.
2760///
2761static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2762                             DebugLoc dl) {
2763  assert(VT.isVector() && "Expected a vector type");
2764
2765  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2766  // type.  This ensures they get CSE'd.
2767  SDValue Vec;
2768  if (VT.getSizeInBits() == 64) { // MMX
2769    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2770    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2771  } else if (HasSSE2) {  // SSE2
2772    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2773    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2774  } else { // SSE1
2775    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2776    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2777  }
2778  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2779}
2780
2781/// getOnesVector - Returns a vector of specified type with all bits set.
2782///
2783static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2784  assert(VT.isVector() && "Expected a vector type");
2785
2786  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2787  // type.  This ensures they get CSE'd.
2788  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2789  SDValue Vec;
2790  if (VT.getSizeInBits() == 64)  // MMX
2791    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2792  else                                              // SSE
2793    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2794  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2795}
2796
2797
2798/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2799/// that point to V2 points to its first element.
2800static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2801  MVT VT = SVOp->getValueType(0);
2802  unsigned NumElems = VT.getVectorNumElements();
2803
2804  bool Changed = false;
2805  SmallVector<int, 8> MaskVec;
2806  SVOp->getMask(MaskVec);
2807
2808  for (unsigned i = 0; i != NumElems; ++i) {
2809    if (MaskVec[i] > (int)NumElems) {
2810      MaskVec[i] = NumElems;
2811      Changed = true;
2812    }
2813  }
2814  if (Changed)
2815    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2816                                SVOp->getOperand(1), &MaskVec[0]);
2817  return SDValue(SVOp, 0);
2818}
2819
2820/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2821/// operation of specified width.
2822static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2823                       SDValue V2) {
2824  unsigned NumElems = VT.getVectorNumElements();
2825  SmallVector<int, 8> Mask;
2826  Mask.push_back(NumElems);
2827  for (unsigned i = 1; i != NumElems; ++i)
2828    Mask.push_back(i);
2829  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2830}
2831
2832/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2833static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2834                          SDValue V2) {
2835  unsigned NumElems = VT.getVectorNumElements();
2836  SmallVector<int, 8> Mask;
2837  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2838    Mask.push_back(i);
2839    Mask.push_back(i + NumElems);
2840  }
2841  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2842}
2843
2844/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2845static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2846                          SDValue V2) {
2847  unsigned NumElems = VT.getVectorNumElements();
2848  unsigned Half = NumElems/2;
2849  SmallVector<int, 8> Mask;
2850  for (unsigned i = 0; i != Half; ++i) {
2851    Mask.push_back(i + Half);
2852    Mask.push_back(i + NumElems + Half);
2853  }
2854  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2855}
2856
2857/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2858static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2859                            bool HasSSE2) {
2860  if (SV->getValueType(0).getVectorNumElements() <= 4)
2861    return SDValue(SV, 0);
2862
2863  MVT PVT = MVT::v4f32;
2864  MVT VT = SV->getValueType(0);
2865  DebugLoc dl = SV->getDebugLoc();
2866  SDValue V1 = SV->getOperand(0);
2867  int NumElems = VT.getVectorNumElements();
2868  int EltNo = SV->getSplatIndex();
2869
2870  // unpack elements to the correct location
2871  while (NumElems > 4) {
2872    if (EltNo < NumElems/2) {
2873      V1 = getUnpackl(DAG, dl, VT, V1, V1);
2874    } else {
2875      V1 = getUnpackh(DAG, dl, VT, V1, V1);
2876      EltNo -= NumElems/2;
2877    }
2878    NumElems >>= 1;
2879  }
2880
2881  // Perform the splat.
2882  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
2883  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
2884  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
2885  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
2886}
2887
2888/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2889/// vector of zero or undef vector.  This produces a shuffle where the low
2890/// element of V2 is swizzled into the zero/undef vector, landing at element
2891/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2892static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2893                                             bool isZero, bool HasSSE2,
2894                                             SelectionDAG &DAG) {
2895  MVT VT = V2.getValueType();
2896  SDValue V1 = isZero
2897    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
2898  unsigned NumElems = VT.getVectorNumElements();
2899  SmallVector<int, 16> MaskVec;
2900  for (unsigned i = 0; i != NumElems; ++i)
2901    // If this is the insertion idx, put the low elt of V2 here.
2902    MaskVec.push_back(i == Idx ? NumElems : i);
2903  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
2904}
2905
2906/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2907/// a shuffle that is zero.
2908static
2909unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
2910                                  bool Low, SelectionDAG &DAG) {
2911  unsigned NumZeros = 0;
2912  for (int i = 0; i < NumElems; ++i) {
2913    unsigned Index = Low ? i : NumElems-i-1;
2914    int Idx = SVOp->getMaskElt(Index);
2915    if (Idx < 0) {
2916      ++NumZeros;
2917      continue;
2918    }
2919    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
2920    if (Elt.getNode() && isZeroNode(Elt))
2921      ++NumZeros;
2922    else
2923      break;
2924  }
2925  return NumZeros;
2926}
2927
2928/// isVectorShift - Returns true if the shuffle can be implemented as a
2929/// logical left or right shift of a vector.
2930/// FIXME: split into pslldqi, psrldqi, palignr variants.
2931static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
2932                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
2933  int NumElems = SVOp->getValueType(0).getVectorNumElements();
2934
2935  isLeft = true;
2936  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
2937  if (!NumZeros) {
2938    isLeft = false;
2939    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
2940    if (!NumZeros)
2941      return false;
2942  }
2943  bool SeenV1 = false;
2944  bool SeenV2 = false;
2945  for (int i = NumZeros; i < NumElems; ++i) {
2946    int Val = isLeft ? (i - NumZeros) : i;
2947    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
2948    if (Idx < 0)
2949      continue;
2950    if (Idx < NumElems)
2951      SeenV1 = true;
2952    else {
2953      Idx -= NumElems;
2954      SeenV2 = true;
2955    }
2956    if (Idx != Val)
2957      return false;
2958  }
2959  if (SeenV1 && SeenV2)
2960    return false;
2961
2962  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
2963  ShAmt = NumZeros;
2964  return true;
2965}
2966
2967
2968/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2969///
2970static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
2971                                       unsigned NumNonZero, unsigned NumZero,
2972                                       SelectionDAG &DAG, TargetLowering &TLI) {
2973  if (NumNonZero > 8)
2974    return SDValue();
2975
2976  DebugLoc dl = Op.getDebugLoc();
2977  SDValue V(0, 0);
2978  bool First = true;
2979  for (unsigned i = 0; i < 16; ++i) {
2980    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2981    if (ThisIsNonZero && First) {
2982      if (NumZero)
2983        V = getZeroVector(MVT::v8i16, true, DAG, dl);
2984      else
2985        V = DAG.getUNDEF(MVT::v8i16);
2986      First = false;
2987    }
2988
2989    if ((i & 1) != 0) {
2990      SDValue ThisElt(0, 0), LastElt(0, 0);
2991      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2992      if (LastIsNonZero) {
2993        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
2994                              MVT::i16, Op.getOperand(i-1));
2995      }
2996      if (ThisIsNonZero) {
2997        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
2998        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
2999                              ThisElt, DAG.getConstant(8, MVT::i8));
3000        if (LastIsNonZero)
3001          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3002      } else
3003        ThisElt = LastElt;
3004
3005      if (ThisElt.getNode())
3006        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3007                        DAG.getIntPtrConstant(i/2));
3008    }
3009  }
3010
3011  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3012}
3013
3014/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3015///
3016static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3017                                       unsigned NumNonZero, unsigned NumZero,
3018                                       SelectionDAG &DAG, TargetLowering &TLI) {
3019  if (NumNonZero > 4)
3020    return SDValue();
3021
3022  DebugLoc dl = Op.getDebugLoc();
3023  SDValue V(0, 0);
3024  bool First = true;
3025  for (unsigned i = 0; i < 8; ++i) {
3026    bool isNonZero = (NonZeros & (1 << i)) != 0;
3027    if (isNonZero) {
3028      if (First) {
3029        if (NumZero)
3030          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3031        else
3032          V = DAG.getUNDEF(MVT::v8i16);
3033        First = false;
3034      }
3035      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3036                      MVT::v8i16, V, Op.getOperand(i),
3037                      DAG.getIntPtrConstant(i));
3038    }
3039  }
3040
3041  return V;
3042}
3043
3044/// getVShift - Return a vector logical shift node.
3045///
3046static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3047                         unsigned NumBits, SelectionDAG &DAG,
3048                         const TargetLowering &TLI, DebugLoc dl) {
3049  bool isMMX = VT.getSizeInBits() == 64;
3050  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3051  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3052  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3053  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3054                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3055                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3056}
3057
3058SDValue
3059X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3060  DebugLoc dl = Op.getDebugLoc();
3061  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3062  if (ISD::isBuildVectorAllZeros(Op.getNode())
3063      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3064    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3065    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3066    // eliminated on x86-32 hosts.
3067    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3068      return Op;
3069
3070    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3071      return getOnesVector(Op.getValueType(), DAG, dl);
3072    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3073  }
3074
3075  MVT VT = Op.getValueType();
3076  MVT EVT = VT.getVectorElementType();
3077  unsigned EVTBits = EVT.getSizeInBits();
3078
3079  unsigned NumElems = Op.getNumOperands();
3080  unsigned NumZero  = 0;
3081  unsigned NumNonZero = 0;
3082  unsigned NonZeros = 0;
3083  bool IsAllConstants = true;
3084  SmallSet<SDValue, 8> Values;
3085  for (unsigned i = 0; i < NumElems; ++i) {
3086    SDValue Elt = Op.getOperand(i);
3087    if (Elt.getOpcode() == ISD::UNDEF)
3088      continue;
3089    Values.insert(Elt);
3090    if (Elt.getOpcode() != ISD::Constant &&
3091        Elt.getOpcode() != ISD::ConstantFP)
3092      IsAllConstants = false;
3093    if (isZeroNode(Elt))
3094      NumZero++;
3095    else {
3096      NonZeros |= (1 << i);
3097      NumNonZero++;
3098    }
3099  }
3100
3101  if (NumNonZero == 0) {
3102    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3103    return DAG.getUNDEF(VT);
3104  }
3105
3106  // Special case for single non-zero, non-undef, element.
3107  if (NumNonZero == 1 && NumElems <= 4) {
3108    unsigned Idx = CountTrailingZeros_32(NonZeros);
3109    SDValue Item = Op.getOperand(Idx);
3110
3111    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3112    // the value are obviously zero, truncate the value to i32 and do the
3113    // insertion that way.  Only do this if the value is non-constant or if the
3114    // value is a constant being inserted into element 0.  It is cheaper to do
3115    // a constant pool load than it is to do a movd + shuffle.
3116    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3117        (!IsAllConstants || Idx == 0)) {
3118      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3119        // Handle MMX and SSE both.
3120        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3121        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3122
3123        // Truncate the value (which may itself be a constant) to i32, and
3124        // convert it to a vector with movd (S2V+shuffle to zero extend).
3125        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3126        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3127        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3128                                           Subtarget->hasSSE2(), DAG);
3129
3130        // Now we have our 32-bit value zero extended in the low element of
3131        // a vector.  If Idx != 0, swizzle it into place.
3132        if (Idx != 0) {
3133          SmallVector<int, 4> Mask;
3134          Mask.push_back(Idx);
3135          for (unsigned i = 1; i != VecElts; ++i)
3136            Mask.push_back(i);
3137          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3138                                      DAG.getUNDEF(Item.getValueType()),
3139                                      &Mask[0]);
3140        }
3141        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3142      }
3143    }
3144
3145    // If we have a constant or non-constant insertion into the low element of
3146    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3147    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3148    // depending on what the source datatype is.  Because we can only get here
3149    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3150    if (Idx == 0 &&
3151        // Don't do this for i64 values on x86-32.
3152        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3153      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3154      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3155      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3156                                         Subtarget->hasSSE2(), DAG);
3157    }
3158
3159    // Is it a vector logical left shift?
3160    if (NumElems == 2 && Idx == 1 &&
3161        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3162      unsigned NumBits = VT.getSizeInBits();
3163      return getVShift(true, VT,
3164                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3165                                   VT, Op.getOperand(1)),
3166                       NumBits/2, DAG, *this, dl);
3167    }
3168
3169    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3170      return SDValue();
3171
3172    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3173    // is a non-constant being inserted into an element other than the low one,
3174    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3175    // movd/movss) to move this into the low element, then shuffle it into
3176    // place.
3177    if (EVTBits == 32) {
3178      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3179
3180      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3181      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3182                                         Subtarget->hasSSE2(), DAG);
3183      SmallVector<int, 8> MaskVec;
3184      for (unsigned i = 0; i < NumElems; i++)
3185        MaskVec.push_back(i == Idx ? 0 : 1);
3186      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3187    }
3188  }
3189
3190  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3191  if (Values.size() == 1)
3192    return SDValue();
3193
3194  // A vector full of immediates; various special cases are already
3195  // handled, so this is best done with a single constant-pool load.
3196  if (IsAllConstants)
3197    return SDValue();
3198
3199  // Let legalizer expand 2-wide build_vectors.
3200  if (EVTBits == 64) {
3201    if (NumNonZero == 1) {
3202      // One half is zero or undef.
3203      unsigned Idx = CountTrailingZeros_32(NonZeros);
3204      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3205                                 Op.getOperand(Idx));
3206      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3207                                         Subtarget->hasSSE2(), DAG);
3208    }
3209    return SDValue();
3210  }
3211
3212  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3213  if (EVTBits == 8 && NumElems == 16) {
3214    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3215                                        *this);
3216    if (V.getNode()) return V;
3217  }
3218
3219  if (EVTBits == 16 && NumElems == 8) {
3220    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3221                                        *this);
3222    if (V.getNode()) return V;
3223  }
3224
3225  // If element VT is == 32 bits, turn it into a number of shuffles.
3226  SmallVector<SDValue, 8> V;
3227  V.resize(NumElems);
3228  if (NumElems == 4 && NumZero > 0) {
3229    for (unsigned i = 0; i < 4; ++i) {
3230      bool isZero = !(NonZeros & (1 << i));
3231      if (isZero)
3232        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3233      else
3234        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3235    }
3236
3237    for (unsigned i = 0; i < 2; ++i) {
3238      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3239        default: break;
3240        case 0:
3241          V[i] = V[i*2];  // Must be a zero vector.
3242          break;
3243        case 1:
3244          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3245          break;
3246        case 2:
3247          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3248          break;
3249        case 3:
3250          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3251          break;
3252      }
3253    }
3254
3255    SmallVector<int, 8> MaskVec;
3256    bool Reverse = (NonZeros & 0x3) == 2;
3257    for (unsigned i = 0; i < 2; ++i)
3258      MaskVec.push_back(Reverse ? 1-i : i);
3259    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3260    for (unsigned i = 0; i < 2; ++i)
3261      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3262    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3263  }
3264
3265  if (Values.size() > 2) {
3266    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3267    // values to be inserted is equal to the number of elements, in which case
3268    // use the unpack code below in the hopes of matching the consecutive elts
3269    // load merge pattern for shuffles.
3270    // FIXME: We could probably just check that here directly.
3271    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3272        getSubtarget()->hasSSE41()) {
3273      V[0] = DAG.getUNDEF(VT);
3274      for (unsigned i = 0; i < NumElems; ++i)
3275        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3276          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3277                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3278      return V[0];
3279    }
3280    // Expand into a number of unpckl*.
3281    // e.g. for v4f32
3282    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3283    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3284    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3285    for (unsigned i = 0; i < NumElems; ++i)
3286      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3287    NumElems >>= 1;
3288    while (NumElems != 0) {
3289      for (unsigned i = 0; i < NumElems; ++i)
3290        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3291      NumElems >>= 1;
3292    }
3293    return V[0];
3294  }
3295
3296  return SDValue();
3297}
3298
3299// v8i16 shuffles - Prefer shuffles in the following order:
3300// 1. [all]   pshuflw, pshufhw, optional move
3301// 2. [ssse3] 1 x pshufb
3302// 3. [ssse3] 2 x pshufb + 1 x por
3303// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3304static
3305SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3306                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3307  SDValue V1 = SVOp->getOperand(0);
3308  SDValue V2 = SVOp->getOperand(1);
3309  DebugLoc dl = SVOp->getDebugLoc();
3310  SmallVector<int, 8> MaskVals;
3311
3312  // Determine if more than 1 of the words in each of the low and high quadwords
3313  // of the result come from the same quadword of one of the two inputs.  Undef
3314  // mask values count as coming from any quadword, for better codegen.
3315  SmallVector<unsigned, 4> LoQuad(4);
3316  SmallVector<unsigned, 4> HiQuad(4);
3317  BitVector InputQuads(4);
3318  for (unsigned i = 0; i < 8; ++i) {
3319    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3320    int EltIdx = SVOp->getMaskElt(i);
3321    MaskVals.push_back(EltIdx);
3322    if (EltIdx < 0) {
3323      ++Quad[0];
3324      ++Quad[1];
3325      ++Quad[2];
3326      ++Quad[3];
3327      continue;
3328    }
3329    ++Quad[EltIdx / 4];
3330    InputQuads.set(EltIdx / 4);
3331  }
3332
3333  int BestLoQuad = -1;
3334  unsigned MaxQuad = 1;
3335  for (unsigned i = 0; i < 4; ++i) {
3336    if (LoQuad[i] > MaxQuad) {
3337      BestLoQuad = i;
3338      MaxQuad = LoQuad[i];
3339    }
3340  }
3341
3342  int BestHiQuad = -1;
3343  MaxQuad = 1;
3344  for (unsigned i = 0; i < 4; ++i) {
3345    if (HiQuad[i] > MaxQuad) {
3346      BestHiQuad = i;
3347      MaxQuad = HiQuad[i];
3348    }
3349  }
3350
3351  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3352  // of the two input vectors, shuffle them into one input vector so only a
3353  // single pshufb instruction is necessary. If There are more than 2 input
3354  // quads, disable the next transformation since it does not help SSSE3.
3355  bool V1Used = InputQuads[0] || InputQuads[1];
3356  bool V2Used = InputQuads[2] || InputQuads[3];
3357  if (TLI.getSubtarget()->hasSSSE3()) {
3358    if (InputQuads.count() == 2 && V1Used && V2Used) {
3359      BestLoQuad = InputQuads.find_first();
3360      BestHiQuad = InputQuads.find_next(BestLoQuad);
3361    }
3362    if (InputQuads.count() > 2) {
3363      BestLoQuad = -1;
3364      BestHiQuad = -1;
3365    }
3366  }
3367
3368  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3369  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3370  // words from all 4 input quadwords.
3371  SDValue NewV;
3372  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3373    SmallVector<int, 8> MaskV;
3374    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3375    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3376    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3377                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3378                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3379    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3380
3381    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3382    // source words for the shuffle, to aid later transformations.
3383    bool AllWordsInNewV = true;
3384    bool InOrder[2] = { true, true };
3385    for (unsigned i = 0; i != 8; ++i) {
3386      int idx = MaskVals[i];
3387      if (idx != (int)i)
3388        InOrder[i/4] = false;
3389      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3390        continue;
3391      AllWordsInNewV = false;
3392      break;
3393    }
3394
3395    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3396    if (AllWordsInNewV) {
3397      for (int i = 0; i != 8; ++i) {
3398        int idx = MaskVals[i];
3399        if (idx < 0)
3400          continue;
3401        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3402        if ((idx != i) && idx < 4)
3403          pshufhw = false;
3404        if ((idx != i) && idx > 3)
3405          pshuflw = false;
3406      }
3407      V1 = NewV;
3408      V2Used = false;
3409      BestLoQuad = 0;
3410      BestHiQuad = 1;
3411    }
3412
3413    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3414    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3415    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3416      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3417                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3418    }
3419  }
3420
3421  // If we have SSSE3, and all words of the result are from 1 input vector,
3422  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3423  // is present, fall back to case 4.
3424  if (TLI.getSubtarget()->hasSSSE3()) {
3425    SmallVector<SDValue,16> pshufbMask;
3426
3427    // If we have elements from both input vectors, set the high bit of the
3428    // shuffle mask element to zero out elements that come from V2 in the V1
3429    // mask, and elements that come from V1 in the V2 mask, so that the two
3430    // results can be OR'd together.
3431    bool TwoInputs = V1Used && V2Used;
3432    for (unsigned i = 0; i != 8; ++i) {
3433      int EltIdx = MaskVals[i] * 2;
3434      if (TwoInputs && (EltIdx >= 16)) {
3435        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3436        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3437        continue;
3438      }
3439      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3440      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3441    }
3442    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3443    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3444                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3445                                 MVT::v16i8, &pshufbMask[0], 16));
3446    if (!TwoInputs)
3447      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3448
3449    // Calculate the shuffle mask for the second input, shuffle it, and
3450    // OR it with the first shuffled input.
3451    pshufbMask.clear();
3452    for (unsigned i = 0; i != 8; ++i) {
3453      int EltIdx = MaskVals[i] * 2;
3454      if (EltIdx < 16) {
3455        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3456        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3457        continue;
3458      }
3459      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3460      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3461    }
3462    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3463    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3464                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3465                                 MVT::v16i8, &pshufbMask[0], 16));
3466    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3467    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3468  }
3469
3470  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3471  // and update MaskVals with new element order.
3472  BitVector InOrder(8);
3473  if (BestLoQuad >= 0) {
3474    SmallVector<int, 8> MaskV;
3475    for (int i = 0; i != 4; ++i) {
3476      int idx = MaskVals[i];
3477      if (idx < 0) {
3478        MaskV.push_back(-1);
3479        InOrder.set(i);
3480      } else if ((idx / 4) == BestLoQuad) {
3481        MaskV.push_back(idx & 3);
3482        InOrder.set(i);
3483      } else {
3484        MaskV.push_back(-1);
3485      }
3486    }
3487    for (unsigned i = 4; i != 8; ++i)
3488      MaskV.push_back(i);
3489    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3490                                &MaskV[0]);
3491  }
3492
3493  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3494  // and update MaskVals with the new element order.
3495  if (BestHiQuad >= 0) {
3496    SmallVector<int, 8> MaskV;
3497    for (unsigned i = 0; i != 4; ++i)
3498      MaskV.push_back(i);
3499    for (unsigned i = 4; i != 8; ++i) {
3500      int idx = MaskVals[i];
3501      if (idx < 0) {
3502        MaskV.push_back(-1);
3503        InOrder.set(i);
3504      } else if ((idx / 4) == BestHiQuad) {
3505        MaskV.push_back((idx & 3) + 4);
3506        InOrder.set(i);
3507      } else {
3508        MaskV.push_back(-1);
3509      }
3510    }
3511    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3512                                &MaskV[0]);
3513  }
3514
3515  // In case BestHi & BestLo were both -1, which means each quadword has a word
3516  // from each of the four input quadwords, calculate the InOrder bitvector now
3517  // before falling through to the insert/extract cleanup.
3518  if (BestLoQuad == -1 && BestHiQuad == -1) {
3519    NewV = V1;
3520    for (int i = 0; i != 8; ++i)
3521      if (MaskVals[i] < 0 || MaskVals[i] == i)
3522        InOrder.set(i);
3523  }
3524
3525  // The other elements are put in the right place using pextrw and pinsrw.
3526  for (unsigned i = 0; i != 8; ++i) {
3527    if (InOrder[i])
3528      continue;
3529    int EltIdx = MaskVals[i];
3530    if (EltIdx < 0)
3531      continue;
3532    SDValue ExtOp = (EltIdx < 8)
3533    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3534                  DAG.getIntPtrConstant(EltIdx))
3535    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3536                  DAG.getIntPtrConstant(EltIdx - 8));
3537    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3538                       DAG.getIntPtrConstant(i));
3539  }
3540  return NewV;
3541}
3542
3543// v16i8 shuffles - Prefer shuffles in the following order:
3544// 1. [ssse3] 1 x pshufb
3545// 2. [ssse3] 2 x pshufb + 1 x por
3546// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3547static
3548SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3549                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3550  SDValue V1 = SVOp->getOperand(0);
3551  SDValue V2 = SVOp->getOperand(1);
3552  DebugLoc dl = SVOp->getDebugLoc();
3553  SmallVector<int, 16> MaskVals;
3554  SVOp->getMask(MaskVals);
3555
3556  // If we have SSSE3, case 1 is generated when all result bytes come from
3557  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3558  // present, fall back to case 3.
3559  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3560  bool V1Only = true;
3561  bool V2Only = true;
3562  for (unsigned i = 0; i < 16; ++i) {
3563    int EltIdx = MaskVals[i];
3564    if (EltIdx < 0)
3565      continue;
3566    if (EltIdx < 16)
3567      V2Only = false;
3568    else
3569      V1Only = false;
3570  }
3571
3572  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3573  if (TLI.getSubtarget()->hasSSSE3()) {
3574    SmallVector<SDValue,16> pshufbMask;
3575
3576    // If all result elements are from one input vector, then only translate
3577    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3578    //
3579    // Otherwise, we have elements from both input vectors, and must zero out
3580    // elements that come from V2 in the first mask, and V1 in the second mask
3581    // so that we can OR them together.
3582    bool TwoInputs = !(V1Only || V2Only);
3583    for (unsigned i = 0; i != 16; ++i) {
3584      int EltIdx = MaskVals[i];
3585      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3586        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3587        continue;
3588      }
3589      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3590    }
3591    // If all the elements are from V2, assign it to V1 and return after
3592    // building the first pshufb.
3593    if (V2Only)
3594      V1 = V2;
3595    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3596                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3597                                 MVT::v16i8, &pshufbMask[0], 16));
3598    if (!TwoInputs)
3599      return V1;
3600
3601    // Calculate the shuffle mask for the second input, shuffle it, and
3602    // OR it with the first shuffled input.
3603    pshufbMask.clear();
3604    for (unsigned i = 0; i != 16; ++i) {
3605      int EltIdx = MaskVals[i];
3606      if (EltIdx < 16) {
3607        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3608        continue;
3609      }
3610      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3611    }
3612    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3613                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3614                                 MVT::v16i8, &pshufbMask[0], 16));
3615    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3616  }
3617
3618  // No SSSE3 - Calculate in place words and then fix all out of place words
3619  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3620  // the 16 different words that comprise the two doublequadword input vectors.
3621  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3622  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3623  SDValue NewV = V2Only ? V2 : V1;
3624  for (int i = 0; i != 8; ++i) {
3625    int Elt0 = MaskVals[i*2];
3626    int Elt1 = MaskVals[i*2+1];
3627
3628    // This word of the result is all undef, skip it.
3629    if (Elt0 < 0 && Elt1 < 0)
3630      continue;
3631
3632    // This word of the result is already in the correct place, skip it.
3633    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3634      continue;
3635    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3636      continue;
3637
3638    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3639    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3640    SDValue InsElt;
3641
3642    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3643    // using a single extract together, load it and store it.
3644    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3645      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3646                           DAG.getIntPtrConstant(Elt1 / 2));
3647      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3648                        DAG.getIntPtrConstant(i));
3649      continue;
3650    }
3651
3652    // If Elt1 is defined, extract it from the appropriate source.  If the
3653    // source byte is not also odd, shift the extracted word left 8 bits
3654    // otherwise clear the bottom 8 bits if we need to do an or.
3655    if (Elt1 >= 0) {
3656      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3657                           DAG.getIntPtrConstant(Elt1 / 2));
3658      if ((Elt1 & 1) == 0)
3659        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3660                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3661      else if (Elt0 >= 0)
3662        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3663                             DAG.getConstant(0xFF00, MVT::i16));
3664    }
3665    // If Elt0 is defined, extract it from the appropriate source.  If the
3666    // source byte is not also even, shift the extracted word right 8 bits. If
3667    // Elt1 was also defined, OR the extracted values together before
3668    // inserting them in the result.
3669    if (Elt0 >= 0) {
3670      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3671                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3672      if ((Elt0 & 1) != 0)
3673        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3674                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3675      else if (Elt1 >= 0)
3676        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3677                             DAG.getConstant(0x00FF, MVT::i16));
3678      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3679                         : InsElt0;
3680    }
3681    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3682                       DAG.getIntPtrConstant(i));
3683  }
3684  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3685}
3686
3687/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3688/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3689/// done when every pair / quad of shuffle mask elements point to elements in
3690/// the right sequence. e.g.
3691/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3692static
3693SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3694                                 SelectionDAG &DAG,
3695                                 TargetLowering &TLI, DebugLoc dl) {
3696  MVT VT = SVOp->getValueType(0);
3697  SDValue V1 = SVOp->getOperand(0);
3698  SDValue V2 = SVOp->getOperand(1);
3699  unsigned NumElems = VT.getVectorNumElements();
3700  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3701  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3702  MVT MaskEltVT = MaskVT.getVectorElementType();
3703  MVT NewVT = MaskVT;
3704  switch (VT.getSimpleVT()) {
3705  default: assert(false && "Unexpected!");
3706  case MVT::v4f32: NewVT = MVT::v2f64; break;
3707  case MVT::v4i32: NewVT = MVT::v2i64; break;
3708  case MVT::v8i16: NewVT = MVT::v4i32; break;
3709  case MVT::v16i8: NewVT = MVT::v4i32; break;
3710  }
3711
3712  if (NewWidth == 2) {
3713    if (VT.isInteger())
3714      NewVT = MVT::v2i64;
3715    else
3716      NewVT = MVT::v2f64;
3717  }
3718  int Scale = NumElems / NewWidth;
3719  SmallVector<int, 8> MaskVec;
3720  for (unsigned i = 0; i < NumElems; i += Scale) {
3721    int StartIdx = -1;
3722    for (int j = 0; j < Scale; ++j) {
3723      int EltIdx = SVOp->getMaskElt(i+j);
3724      if (EltIdx < 0)
3725        continue;
3726      if (StartIdx == -1)
3727        StartIdx = EltIdx - (EltIdx % Scale);
3728      if (EltIdx != StartIdx + j)
3729        return SDValue();
3730    }
3731    if (StartIdx == -1)
3732      MaskVec.push_back(-1);
3733    else
3734      MaskVec.push_back(StartIdx / Scale);
3735  }
3736
3737  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3738  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3739  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3740}
3741
3742/// getVZextMovL - Return a zero-extending vector move low node.
3743///
3744static SDValue getVZextMovL(MVT VT, MVT OpVT,
3745                            SDValue SrcOp, SelectionDAG &DAG,
3746                            const X86Subtarget *Subtarget, DebugLoc dl) {
3747  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3748    LoadSDNode *LD = NULL;
3749    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3750      LD = dyn_cast<LoadSDNode>(SrcOp);
3751    if (!LD) {
3752      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3753      // instead.
3754      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3755      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3756          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3757          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3758          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3759        // PR2108
3760        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3761        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3762                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3763                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3764                                                   OpVT,
3765                                                   SrcOp.getOperand(0)
3766                                                          .getOperand(0))));
3767      }
3768    }
3769  }
3770
3771  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3772                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3773                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3774                                             OpVT, SrcOp)));
3775}
3776
3777/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3778/// shuffles.
3779static SDValue
3780LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3781  SDValue V1 = SVOp->getOperand(0);
3782  SDValue V2 = SVOp->getOperand(1);
3783  DebugLoc dl = SVOp->getDebugLoc();
3784  MVT VT = SVOp->getValueType(0);
3785
3786  SmallVector<std::pair<int, int>, 8> Locs;
3787  Locs.resize(4);
3788  SmallVector<int, 8> Mask1(4U, -1);
3789  SmallVector<int, 8> PermMask;
3790  SVOp->getMask(PermMask);
3791
3792  unsigned NumHi = 0;
3793  unsigned NumLo = 0;
3794  for (unsigned i = 0; i != 4; ++i) {
3795    int Idx = PermMask[i];
3796    if (Idx < 0) {
3797      Locs[i] = std::make_pair(-1, -1);
3798    } else {
3799      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3800      if (Idx < 4) {
3801        Locs[i] = std::make_pair(0, NumLo);
3802        Mask1[NumLo] = Idx;
3803        NumLo++;
3804      } else {
3805        Locs[i] = std::make_pair(1, NumHi);
3806        if (2+NumHi < 4)
3807          Mask1[2+NumHi] = Idx;
3808        NumHi++;
3809      }
3810    }
3811  }
3812
3813  if (NumLo <= 2 && NumHi <= 2) {
3814    // If no more than two elements come from either vector. This can be
3815    // implemented with two shuffles. First shuffle gather the elements.
3816    // The second shuffle, which takes the first shuffle as both of its
3817    // vector operands, put the elements into the right order.
3818    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3819
3820    SmallVector<int, 8> Mask2(4U, -1);
3821
3822    for (unsigned i = 0; i != 4; ++i) {
3823      if (Locs[i].first == -1)
3824        continue;
3825      else {
3826        unsigned Idx = (i < 2) ? 0 : 4;
3827        Idx += Locs[i].first * 2 + Locs[i].second;
3828        Mask2[i] = Idx;
3829      }
3830    }
3831
3832    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3833  } else if (NumLo == 3 || NumHi == 3) {
3834    // Otherwise, we must have three elements from one vector, call it X, and
3835    // one element from the other, call it Y.  First, use a shufps to build an
3836    // intermediate vector with the one element from Y and the element from X
3837    // that will be in the same half in the final destination (the indexes don't
3838    // matter). Then, use a shufps to build the final vector, taking the half
3839    // containing the element from Y from the intermediate, and the other half
3840    // from X.
3841    if (NumHi == 3) {
3842      // Normalize it so the 3 elements come from V1.
3843      CommuteVectorShuffleMask(PermMask, VT);
3844      std::swap(V1, V2);
3845    }
3846
3847    // Find the element from V2.
3848    unsigned HiIndex;
3849    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3850      int Val = PermMask[HiIndex];
3851      if (Val < 0)
3852        continue;
3853      if (Val >= 4)
3854        break;
3855    }
3856
3857    Mask1[0] = PermMask[HiIndex];
3858    Mask1[1] = -1;
3859    Mask1[2] = PermMask[HiIndex^1];
3860    Mask1[3] = -1;
3861    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3862
3863    if (HiIndex >= 2) {
3864      Mask1[0] = PermMask[0];
3865      Mask1[1] = PermMask[1];
3866      Mask1[2] = HiIndex & 1 ? 6 : 4;
3867      Mask1[3] = HiIndex & 1 ? 4 : 6;
3868      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3869    } else {
3870      Mask1[0] = HiIndex & 1 ? 2 : 0;
3871      Mask1[1] = HiIndex & 1 ? 0 : 2;
3872      Mask1[2] = PermMask[2];
3873      Mask1[3] = PermMask[3];
3874      if (Mask1[2] >= 0)
3875        Mask1[2] += 4;
3876      if (Mask1[3] >= 0)
3877        Mask1[3] += 4;
3878      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
3879    }
3880  }
3881
3882  // Break it into (shuffle shuffle_hi, shuffle_lo).
3883  Locs.clear();
3884  SmallVector<int,8> LoMask(4U, -1);
3885  SmallVector<int,8> HiMask(4U, -1);
3886
3887  SmallVector<int,8> *MaskPtr = &LoMask;
3888  unsigned MaskIdx = 0;
3889  unsigned LoIdx = 0;
3890  unsigned HiIdx = 2;
3891  for (unsigned i = 0; i != 4; ++i) {
3892    if (i == 2) {
3893      MaskPtr = &HiMask;
3894      MaskIdx = 1;
3895      LoIdx = 0;
3896      HiIdx = 2;
3897    }
3898    int Idx = PermMask[i];
3899    if (Idx < 0) {
3900      Locs[i] = std::make_pair(-1, -1);
3901    } else if (Idx < 4) {
3902      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3903      (*MaskPtr)[LoIdx] = Idx;
3904      LoIdx++;
3905    } else {
3906      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3907      (*MaskPtr)[HiIdx] = Idx;
3908      HiIdx++;
3909    }
3910  }
3911
3912  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
3913  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
3914  SmallVector<int, 8> MaskOps;
3915  for (unsigned i = 0; i != 4; ++i) {
3916    if (Locs[i].first == -1) {
3917      MaskOps.push_back(-1);
3918    } else {
3919      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3920      MaskOps.push_back(Idx);
3921    }
3922  }
3923  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
3924}
3925
3926SDValue
3927X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3928  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3929  SDValue V1 = Op.getOperand(0);
3930  SDValue V2 = Op.getOperand(1);
3931  MVT VT = Op.getValueType();
3932  DebugLoc dl = Op.getDebugLoc();
3933  unsigned NumElems = VT.getVectorNumElements();
3934  bool isMMX = VT.getSizeInBits() == 64;
3935  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3936  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3937  bool V1IsSplat = false;
3938  bool V2IsSplat = false;
3939
3940  if (isZeroShuffle(SVOp))
3941    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3942
3943  // Promote splats to v4f32.
3944  if (SVOp->isSplat()) {
3945    if (isMMX || NumElems < 4)
3946      return Op;
3947    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
3948  }
3949
3950  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3951  // do it!
3952  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3953    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3954    if (NewOp.getNode())
3955      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3956                         LowerVECTOR_SHUFFLE(NewOp, DAG));
3957  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3958    // FIXME: Figure out a cleaner way to do this.
3959    // Try to make use of movq to zero out the top part.
3960    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
3961      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3962      if (NewOp.getNode()) {
3963        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
3964          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
3965                              DAG, Subtarget, dl);
3966      }
3967    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
3968      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3969      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
3970        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3971                            DAG, Subtarget, dl);
3972    }
3973  }
3974
3975  if (X86::isPSHUFDMask(SVOp))
3976    return Op;
3977
3978  // Check if this can be converted into a logical shift.
3979  bool isLeft = false;
3980  unsigned ShAmt = 0;
3981  SDValue ShVal;
3982  bool isShift = getSubtarget()->hasSSE2() &&
3983  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
3984  if (isShift && ShVal.hasOneUse()) {
3985    // If the shifted value has multiple uses, it may be cheaper to use
3986    // v_set0 + movlhps or movhlps, etc.
3987    MVT EVT = VT.getVectorElementType();
3988    ShAmt *= EVT.getSizeInBits();
3989    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
3990  }
3991
3992  if (X86::isMOVLMask(SVOp)) {
3993    if (V1IsUndef)
3994      return V2;
3995    if (ISD::isBuildVectorAllZeros(V1.getNode()))
3996      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
3997    if (!isMMX)
3998      return Op;
3999  }
4000
4001  // FIXME: fold these into legal mask.
4002  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4003                 X86::isMOVSLDUPMask(SVOp) ||
4004                 X86::isMOVHLPSMask(SVOp) ||
4005                 X86::isMOVHPMask(SVOp) ||
4006                 X86::isMOVLPMask(SVOp)))
4007    return Op;
4008
4009  if (ShouldXformToMOVHLPS(SVOp) ||
4010      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4011    return CommuteVectorShuffle(SVOp, DAG);
4012
4013  if (isShift) {
4014    // No better options. Use a vshl / vsrl.
4015    MVT EVT = VT.getVectorElementType();
4016    ShAmt *= EVT.getSizeInBits();
4017    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4018  }
4019
4020  bool Commuted = false;
4021  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4022  // 1,1,1,1 -> v8i16 though.
4023  V1IsSplat = isSplatVector(V1.getNode());
4024  V2IsSplat = isSplatVector(V2.getNode());
4025
4026  // Canonicalize the splat or undef, if present, to be on the RHS.
4027  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4028    Op = CommuteVectorShuffle(SVOp, DAG);
4029    SVOp = cast<ShuffleVectorSDNode>(Op);
4030    V1 = SVOp->getOperand(0);
4031    V2 = SVOp->getOperand(1);
4032    std::swap(V1IsSplat, V2IsSplat);
4033    std::swap(V1IsUndef, V2IsUndef);
4034    Commuted = true;
4035  }
4036
4037  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4038    // Shuffling low element of v1 into undef, just return v1.
4039    if (V2IsUndef)
4040      return V1;
4041    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4042    // the instruction selector will not match, so get a canonical MOVL with
4043    // swapped operands to undo the commute.
4044    return getMOVL(DAG, dl, VT, V2, V1);
4045  }
4046
4047  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4048      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4049      X86::isUNPCKLMask(SVOp) ||
4050      X86::isUNPCKHMask(SVOp))
4051    return Op;
4052
4053  if (V2IsSplat) {
4054    // Normalize mask so all entries that point to V2 points to its first
4055    // element then try to match unpck{h|l} again. If match, return a
4056    // new vector_shuffle with the corrected mask.
4057    SDValue NewMask = NormalizeMask(SVOp, DAG);
4058    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4059    if (NSVOp != SVOp) {
4060      if (X86::isUNPCKLMask(NSVOp, true)) {
4061        return NewMask;
4062      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4063        return NewMask;
4064      }
4065    }
4066  }
4067
4068  if (Commuted) {
4069    // Commute is back and try unpck* again.
4070    // FIXME: this seems wrong.
4071    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4072    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4073    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4074        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4075        X86::isUNPCKLMask(NewSVOp) ||
4076        X86::isUNPCKHMask(NewSVOp))
4077      return NewOp;
4078  }
4079
4080  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4081
4082  // Normalize the node to match x86 shuffle ops if needed
4083  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4084    return CommuteVectorShuffle(SVOp, DAG);
4085
4086  // Check for legal shuffle and return?
4087  SmallVector<int, 16> PermMask;
4088  SVOp->getMask(PermMask);
4089  if (isShuffleMaskLegal(PermMask, VT))
4090    return Op;
4091
4092  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4093  if (VT == MVT::v8i16) {
4094    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4095    if (NewOp.getNode())
4096      return NewOp;
4097  }
4098
4099  if (VT == MVT::v16i8) {
4100    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4101    if (NewOp.getNode())
4102      return NewOp;
4103  }
4104
4105  // Handle all 4 wide cases with a number of shuffles except for MMX.
4106  if (NumElems == 4 && !isMMX)
4107    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4108
4109  return SDValue();
4110}
4111
4112SDValue
4113X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4114                                                SelectionDAG &DAG) {
4115  MVT VT = Op.getValueType();
4116  DebugLoc dl = Op.getDebugLoc();
4117  if (VT.getSizeInBits() == 8) {
4118    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4119                                    Op.getOperand(0), Op.getOperand(1));
4120    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4121                                    DAG.getValueType(VT));
4122    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4123  } else if (VT.getSizeInBits() == 16) {
4124    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4125    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4126    if (Idx == 0)
4127      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4128                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4129                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4130                                                 MVT::v4i32,
4131                                                 Op.getOperand(0)),
4132                                     Op.getOperand(1)));
4133    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4134                                    Op.getOperand(0), Op.getOperand(1));
4135    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4136                                    DAG.getValueType(VT));
4137    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4138  } else if (VT == MVT::f32) {
4139    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4140    // the result back to FR32 register. It's only worth matching if the
4141    // result has a single use which is a store or a bitcast to i32.  And in
4142    // the case of a store, it's not worth it if the index is a constant 0,
4143    // because a MOVSSmr can be used instead, which is smaller and faster.
4144    if (!Op.hasOneUse())
4145      return SDValue();
4146    SDNode *User = *Op.getNode()->use_begin();
4147    if ((User->getOpcode() != ISD::STORE ||
4148         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4149          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4150        (User->getOpcode() != ISD::BIT_CONVERT ||
4151         User->getValueType(0) != MVT::i32))
4152      return SDValue();
4153    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4154                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4155                                              Op.getOperand(0)),
4156                                              Op.getOperand(1));
4157    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4158  } else if (VT == MVT::i32) {
4159    // ExtractPS works with constant index.
4160    if (isa<ConstantSDNode>(Op.getOperand(1)))
4161      return Op;
4162  }
4163  return SDValue();
4164}
4165
4166
4167SDValue
4168X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4169  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4170    return SDValue();
4171
4172  if (Subtarget->hasSSE41()) {
4173    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4174    if (Res.getNode())
4175      return Res;
4176  }
4177
4178  MVT VT = Op.getValueType();
4179  DebugLoc dl = Op.getDebugLoc();
4180  // TODO: handle v16i8.
4181  if (VT.getSizeInBits() == 16) {
4182    SDValue Vec = Op.getOperand(0);
4183    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4184    if (Idx == 0)
4185      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4186                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4187                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4188                                                 MVT::v4i32, Vec),
4189                                     Op.getOperand(1)));
4190    // Transform it so it match pextrw which produces a 32-bit result.
4191    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4192    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4193                                    Op.getOperand(0), Op.getOperand(1));
4194    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4195                                    DAG.getValueType(VT));
4196    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4197  } else if (VT.getSizeInBits() == 32) {
4198    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4199    if (Idx == 0)
4200      return Op;
4201
4202    // SHUFPS the element to the lowest double word, then movss.
4203    int Mask[4] = { Idx, -1, -1, -1 };
4204    MVT VVT = Op.getOperand(0).getValueType();
4205    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4206                                       DAG.getUNDEF(VVT), Mask);
4207    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4208                       DAG.getIntPtrConstant(0));
4209  } else if (VT.getSizeInBits() == 64) {
4210    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4211    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4212    //        to match extract_elt for f64.
4213    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4214    if (Idx == 0)
4215      return Op;
4216
4217    // UNPCKHPD the element to the lowest double word, then movsd.
4218    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4219    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4220    int Mask[2] = { 1, -1 };
4221    MVT VVT = Op.getOperand(0).getValueType();
4222    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4223                                       DAG.getUNDEF(VVT), Mask);
4224    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4225                       DAG.getIntPtrConstant(0));
4226  }
4227
4228  return SDValue();
4229}
4230
4231SDValue
4232X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4233  MVT VT = Op.getValueType();
4234  MVT EVT = VT.getVectorElementType();
4235  DebugLoc dl = Op.getDebugLoc();
4236
4237  SDValue N0 = Op.getOperand(0);
4238  SDValue N1 = Op.getOperand(1);
4239  SDValue N2 = Op.getOperand(2);
4240
4241  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4242      isa<ConstantSDNode>(N2)) {
4243    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4244                                              : X86ISD::PINSRW;
4245    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4246    // argument.
4247    if (N1.getValueType() != MVT::i32)
4248      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4249    if (N2.getValueType() != MVT::i32)
4250      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4251    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4252  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4253    // Bits [7:6] of the constant are the source select.  This will always be
4254    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4255    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4256    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4257    // Bits [5:4] of the constant are the destination select.  This is the
4258    //  value of the incoming immediate.
4259    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4260    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4261    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4262    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4263  } else if (EVT == MVT::i32) {
4264    // InsertPS works with constant index.
4265    if (isa<ConstantSDNode>(N2))
4266      return Op;
4267  }
4268  return SDValue();
4269}
4270
4271SDValue
4272X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4273  MVT VT = Op.getValueType();
4274  MVT EVT = VT.getVectorElementType();
4275
4276  if (Subtarget->hasSSE41())
4277    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4278
4279  if (EVT == MVT::i8)
4280    return SDValue();
4281
4282  DebugLoc dl = Op.getDebugLoc();
4283  SDValue N0 = Op.getOperand(0);
4284  SDValue N1 = Op.getOperand(1);
4285  SDValue N2 = Op.getOperand(2);
4286
4287  if (EVT.getSizeInBits() == 16) {
4288    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4289    // as its second argument.
4290    if (N1.getValueType() != MVT::i32)
4291      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4292    if (N2.getValueType() != MVT::i32)
4293      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4294    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4295  }
4296  return SDValue();
4297}
4298
4299SDValue
4300X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4301  DebugLoc dl = Op.getDebugLoc();
4302  if (Op.getValueType() == MVT::v2f32)
4303    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4304                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4305                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4306                                               Op.getOperand(0))));
4307
4308  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4309  MVT VT = MVT::v2i32;
4310  switch (Op.getValueType().getSimpleVT()) {
4311  default: break;
4312  case MVT::v16i8:
4313  case MVT::v8i16:
4314    VT = MVT::v4i32;
4315    break;
4316  }
4317  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4318                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4319}
4320
4321// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4322// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4323// one of the above mentioned nodes. It has to be wrapped because otherwise
4324// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4325// be used to form addressing mode. These wrapped nodes will be selected
4326// into MOV32ri.
4327SDValue
4328X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4329  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4330  // FIXME there isn't really any debug info here, should come from the parent
4331  DebugLoc dl = CP->getDebugLoc();
4332  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4333                                             CP->getAlignment());
4334  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4335  // With PIC, the address is actually $g + Offset.
4336  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4337      !Subtarget->isPICStyleRIPRel()) {
4338    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4339                         DAG.getNode(X86ISD::GlobalBaseReg,
4340                                     DebugLoc::getUnknownLoc(),
4341                                     getPointerTy()),
4342                         Result);
4343  }
4344
4345  return Result;
4346}
4347
4348SDValue
4349X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4350                                      int64_t Offset,
4351                                      SelectionDAG &DAG) const {
4352  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4353  bool ExtraLoadRequired =
4354    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4355
4356  // Create the TargetGlobalAddress node, folding in the constant
4357  // offset if it is legal.
4358  SDValue Result;
4359  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4360    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4361    Offset = 0;
4362  } else
4363    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4364  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4365
4366  // With PIC, the address is actually $g + Offset.
4367  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4368    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4369                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4370                         Result);
4371  }
4372
4373  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4374  // load the value at address GV, not the value of GV itself. This means that
4375  // the GlobalAddress must be in the base or index register of the address, not
4376  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4377  // The same applies for external symbols during PIC codegen
4378  if (ExtraLoadRequired)
4379    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4380                         PseudoSourceValue::getGOT(), 0);
4381
4382  // If there was a non-zero offset that we didn't fold, create an explicit
4383  // addition for it.
4384  if (Offset != 0)
4385    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4386                         DAG.getConstant(Offset, getPointerTy()));
4387
4388  return Result;
4389}
4390
4391SDValue
4392X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4393  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4394  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4395  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4396}
4397
4398static SDValue
4399GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4400           SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg) {
4401  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4402  DebugLoc dl = GA->getDebugLoc();
4403  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4404                                           GA->getValueType(0),
4405                                           GA->getOffset());
4406  if (InFlag) {
4407    SDValue Ops[] = { Chain,  TGA, *InFlag };
4408    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4409  } else {
4410    SDValue Ops[]  = { Chain, TGA };
4411    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4412  }
4413  SDValue Flag = Chain.getValue(1);
4414  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4415}
4416
4417// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4418static SDValue
4419LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4420                                const MVT PtrVT) {
4421  SDValue InFlag;
4422  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4423  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4424                                     DAG.getNode(X86ISD::GlobalBaseReg,
4425                                                 DebugLoc::getUnknownLoc(),
4426                                                 PtrVT), InFlag);
4427  InFlag = Chain.getValue(1);
4428
4429  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX);
4430}
4431
4432// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4433static SDValue
4434LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4435                                const MVT PtrVT) {
4436  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX);
4437}
4438
4439// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4440// "local exec" model.
4441static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4442                                   const MVT PtrVT, TLSModel::Model model,
4443                                   bool is64Bit) {
4444  DebugLoc dl = GA->getDebugLoc();
4445  // Get the Thread Pointer
4446  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4447                             DebugLoc::getUnknownLoc(), PtrVT,
4448                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4449                                             MVT::i32));
4450
4451  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4452                                      NULL, 0);
4453
4454  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4455  // exec)
4456  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4457                                             GA->getValueType(0),
4458                                             GA->getOffset());
4459  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4460
4461  if (model == TLSModel::InitialExec)
4462    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4463                         PseudoSourceValue::getGOT(), 0);
4464
4465  // The address of the thread local variable is the add of the thread
4466  // pointer with the offset of the variable.
4467  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4468}
4469
4470SDValue
4471X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4472  // TODO: implement the "local dynamic" model
4473  // TODO: implement the "initial exec"model for pic executables
4474  assert(Subtarget->isTargetELF() &&
4475         "TLS not implemented for non-ELF targets");
4476  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4477  GlobalValue *GV = GA->getGlobal();
4478  TLSModel::Model model =
4479    getTLSModel (GV, getTargetMachine().getRelocationModel());
4480  if (Subtarget->is64Bit()) {
4481    switch (model) {
4482    case TLSModel::GeneralDynamic:
4483    case TLSModel::LocalDynamic: // not implemented
4484      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4485
4486    case TLSModel::InitialExec:
4487    case TLSModel::LocalExec:
4488      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, true);
4489    }
4490  } else {
4491    switch (model) {
4492    case TLSModel::GeneralDynamic:
4493    case TLSModel::LocalDynamic: // not implemented
4494      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4495
4496    case TLSModel::InitialExec:
4497    case TLSModel::LocalExec:
4498      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, false);
4499    }
4500  }
4501  assert(0 && "Unreachable");
4502  return SDValue();
4503}
4504
4505SDValue
4506X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4507  // FIXME there isn't really any debug info here
4508  DebugLoc dl = Op.getDebugLoc();
4509  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4510  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4511  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4512  // With PIC, the address is actually $g + Offset.
4513  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4514      !Subtarget->isPICStyleRIPRel()) {
4515    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4516                         DAG.getNode(X86ISD::GlobalBaseReg,
4517                                     DebugLoc::getUnknownLoc(),
4518                                     getPointerTy()),
4519                         Result);
4520  }
4521
4522  return Result;
4523}
4524
4525SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4526  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4527  // FIXME there isn't really any debug into here
4528  DebugLoc dl = JT->getDebugLoc();
4529  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4530  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4531  // With PIC, the address is actually $g + Offset.
4532  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4533      !Subtarget->isPICStyleRIPRel()) {
4534    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4535                         DAG.getNode(X86ISD::GlobalBaseReg,
4536                                     DebugLoc::getUnknownLoc(),
4537                                     getPointerTy()),
4538                         Result);
4539  }
4540
4541  return Result;
4542}
4543
4544/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4545/// take a 2 x i32 value to shift plus a shift amount.
4546SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4547  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4548  MVT VT = Op.getValueType();
4549  unsigned VTBits = VT.getSizeInBits();
4550  DebugLoc dl = Op.getDebugLoc();
4551  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4552  SDValue ShOpLo = Op.getOperand(0);
4553  SDValue ShOpHi = Op.getOperand(1);
4554  SDValue ShAmt  = Op.getOperand(2);
4555  SDValue Tmp1 = isSRA ?
4556    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4557                DAG.getConstant(VTBits - 1, MVT::i8)) :
4558    DAG.getConstant(0, VT);
4559
4560  SDValue Tmp2, Tmp3;
4561  if (Op.getOpcode() == ISD::SHL_PARTS) {
4562    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4563    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4564  } else {
4565    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4566    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4567  }
4568
4569  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4570                                  DAG.getConstant(VTBits, MVT::i8));
4571  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4572                               AndNode, DAG.getConstant(0, MVT::i8));
4573
4574  SDValue Hi, Lo;
4575  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4576  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4577  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4578
4579  if (Op.getOpcode() == ISD::SHL_PARTS) {
4580    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4581    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4582  } else {
4583    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4584    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4585  }
4586
4587  SDValue Ops[2] = { Lo, Hi };
4588  return DAG.getMergeValues(Ops, 2, dl);
4589}
4590
4591SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4592  MVT SrcVT = Op.getOperand(0).getValueType();
4593  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4594         "Unknown SINT_TO_FP to lower!");
4595
4596  // These are really Legal; caller falls through into that case.
4597  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4598    return SDValue();
4599  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4600      Subtarget->is64Bit())
4601    return SDValue();
4602
4603  DebugLoc dl = Op.getDebugLoc();
4604  unsigned Size = SrcVT.getSizeInBits()/8;
4605  MachineFunction &MF = DAG.getMachineFunction();
4606  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4607  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4608  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4609                               StackSlot,
4610                               PseudoSourceValue::getFixedStack(SSFI), 0);
4611  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4612}
4613
4614SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4615                                     SDValue StackSlot,
4616                                     SelectionDAG &DAG) {
4617  // Build the FILD
4618  DebugLoc dl = Op.getDebugLoc();
4619  SDVTList Tys;
4620  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4621  if (useSSE)
4622    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4623  else
4624    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4625  SmallVector<SDValue, 8> Ops;
4626  Ops.push_back(Chain);
4627  Ops.push_back(StackSlot);
4628  Ops.push_back(DAG.getValueType(SrcVT));
4629  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4630                                 Tys, &Ops[0], Ops.size());
4631
4632  if (useSSE) {
4633    Chain = Result.getValue(1);
4634    SDValue InFlag = Result.getValue(2);
4635
4636    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4637    // shouldn't be necessary except that RFP cannot be live across
4638    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4639    MachineFunction &MF = DAG.getMachineFunction();
4640    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4641    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4642    Tys = DAG.getVTList(MVT::Other);
4643    SmallVector<SDValue, 8> Ops;
4644    Ops.push_back(Chain);
4645    Ops.push_back(Result);
4646    Ops.push_back(StackSlot);
4647    Ops.push_back(DAG.getValueType(Op.getValueType()));
4648    Ops.push_back(InFlag);
4649    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4650    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4651                         PseudoSourceValue::getFixedStack(SSFI), 0);
4652  }
4653
4654  return Result;
4655}
4656
4657// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4658SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4659  // This algorithm is not obvious. Here it is in C code, more or less:
4660  /*
4661    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4662      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4663      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4664
4665      // Copy ints to xmm registers.
4666      __m128i xh = _mm_cvtsi32_si128( hi );
4667      __m128i xl = _mm_cvtsi32_si128( lo );
4668
4669      // Combine into low half of a single xmm register.
4670      __m128i x = _mm_unpacklo_epi32( xh, xl );
4671      __m128d d;
4672      double sd;
4673
4674      // Merge in appropriate exponents to give the integer bits the right
4675      // magnitude.
4676      x = _mm_unpacklo_epi32( x, exp );
4677
4678      // Subtract away the biases to deal with the IEEE-754 double precision
4679      // implicit 1.
4680      d = _mm_sub_pd( (__m128d) x, bias );
4681
4682      // All conversions up to here are exact. The correctly rounded result is
4683      // calculated using the current rounding mode using the following
4684      // horizontal add.
4685      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4686      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4687                                // store doesn't really need to be here (except
4688                                // maybe to zero the other double)
4689      return sd;
4690    }
4691  */
4692
4693  DebugLoc dl = Op.getDebugLoc();
4694
4695  // Build some magic constants.
4696  std::vector<Constant*> CV0;
4697  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4698  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4699  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4700  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4701  Constant *C0 = ConstantVector::get(CV0);
4702  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4703
4704  std::vector<Constant*> CV1;
4705  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4706  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4707  Constant *C1 = ConstantVector::get(CV1);
4708  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4709
4710  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4711                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4712                                        Op.getOperand(0),
4713                                        DAG.getIntPtrConstant(1)));
4714  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4715                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4716                                        Op.getOperand(0),
4717                                        DAG.getIntPtrConstant(0)));
4718  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4719  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4720                              PseudoSourceValue::getConstantPool(), 0,
4721                              false, 16);
4722  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4723  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4724  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4725                              PseudoSourceValue::getConstantPool(), 0,
4726                              false, 16);
4727  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4728
4729  // Add the halves; easiest way is to swap them into another reg first.
4730  int ShufMask[2] = { 1, -1 };
4731  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4732                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4733  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4734  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4735                     DAG.getIntPtrConstant(0));
4736}
4737
4738// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4739SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4740  DebugLoc dl = Op.getDebugLoc();
4741  // FP constant to bias correct the final result.
4742  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4743                                   MVT::f64);
4744
4745  // Load the 32-bit value into an XMM register.
4746  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4747                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4748                                         Op.getOperand(0),
4749                                         DAG.getIntPtrConstant(0)));
4750
4751  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4752                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4753                     DAG.getIntPtrConstant(0));
4754
4755  // Or the load with the bias.
4756  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4757                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4758                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4759                                                   MVT::v2f64, Load)),
4760                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4761                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4762                                                   MVT::v2f64, Bias)));
4763  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4764                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4765                   DAG.getIntPtrConstant(0));
4766
4767  // Subtract the bias.
4768  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4769
4770  // Handle final rounding.
4771  MVT DestVT = Op.getValueType();
4772
4773  if (DestVT.bitsLT(MVT::f64)) {
4774    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4775                       DAG.getIntPtrConstant(0));
4776  } else if (DestVT.bitsGT(MVT::f64)) {
4777    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4778  }
4779
4780  // Handle final rounding.
4781  return Sub;
4782}
4783
4784SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4785  SDValue N0 = Op.getOperand(0);
4786  DebugLoc dl = Op.getDebugLoc();
4787
4788  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4789  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4790  // the optimization here.
4791  if (DAG.SignBitIsZero(N0))
4792    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4793
4794  MVT SrcVT = N0.getValueType();
4795  if (SrcVT == MVT::i64) {
4796    // We only handle SSE2 f64 target here; caller can handle the rest.
4797    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4798      return SDValue();
4799
4800    return LowerUINT_TO_FP_i64(Op, DAG);
4801  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
4802    return LowerUINT_TO_FP_i32(Op, DAG);
4803  }
4804
4805  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
4806
4807  // Make a 64-bit buffer, and use it to build an FILD.
4808  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
4809  SDValue WordOff = DAG.getConstant(4, getPointerTy());
4810  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
4811                                   getPointerTy(), StackSlot, WordOff);
4812  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4813                                StackSlot, NULL, 0);
4814  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
4815                                OffsetSlot, NULL, 0);
4816  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
4817}
4818
4819std::pair<SDValue,SDValue> X86TargetLowering::
4820FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
4821  DebugLoc dl = Op.getDebugLoc();
4822
4823  MVT DstTy = Op.getValueType();
4824
4825  if (!IsSigned) {
4826    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
4827    DstTy = MVT::i64;
4828  }
4829
4830  assert(DstTy.getSimpleVT() <= MVT::i64 &&
4831         DstTy.getSimpleVT() >= MVT::i16 &&
4832         "Unknown FP_TO_SINT to lower!");
4833
4834  // These are really Legal.
4835  if (DstTy == MVT::i32 &&
4836      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4837    return std::make_pair(SDValue(), SDValue());
4838  if (Subtarget->is64Bit() &&
4839      DstTy == MVT::i64 &&
4840      Op.getOperand(0).getValueType() != MVT::f80)
4841    return std::make_pair(SDValue(), SDValue());
4842
4843  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4844  // stack slot.
4845  MachineFunction &MF = DAG.getMachineFunction();
4846  unsigned MemSize = DstTy.getSizeInBits()/8;
4847  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4848  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4849
4850  unsigned Opc;
4851  switch (DstTy.getSimpleVT()) {
4852  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4853  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4854  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4855  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4856  }
4857
4858  SDValue Chain = DAG.getEntryNode();
4859  SDValue Value = Op.getOperand(0);
4860  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4861    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4862    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
4863                         PseudoSourceValue::getFixedStack(SSFI), 0);
4864    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4865    SDValue Ops[] = {
4866      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4867    };
4868    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
4869    Chain = Value.getValue(1);
4870    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4871    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4872  }
4873
4874  // Build the FP_TO_INT*_IN_MEM
4875  SDValue Ops[] = { Chain, Value, StackSlot };
4876  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
4877
4878  return std::make_pair(FIST, StackSlot);
4879}
4880
4881SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4882  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
4883  SDValue FIST = Vals.first, StackSlot = Vals.second;
4884  if (FIST.getNode() == 0) return SDValue();
4885
4886  // Load the result.
4887  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4888                     FIST, StackSlot, NULL, 0);
4889}
4890
4891SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
4892  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
4893  SDValue FIST = Vals.first, StackSlot = Vals.second;
4894  assert(FIST.getNode() && "Unexpected failure");
4895
4896  // Load the result.
4897  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4898                     FIST, StackSlot, NULL, 0);
4899}
4900
4901SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4902  DebugLoc dl = Op.getDebugLoc();
4903  MVT VT = Op.getValueType();
4904  MVT EltVT = VT;
4905  if (VT.isVector())
4906    EltVT = VT.getVectorElementType();
4907  std::vector<Constant*> CV;
4908  if (EltVT == MVT::f64) {
4909    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4910    CV.push_back(C);
4911    CV.push_back(C);
4912  } else {
4913    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4914    CV.push_back(C);
4915    CV.push_back(C);
4916    CV.push_back(C);
4917    CV.push_back(C);
4918  }
4919  Constant *C = ConstantVector::get(CV);
4920  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4921  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4922                               PseudoSourceValue::getConstantPool(), 0,
4923                               false, 16);
4924  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
4925}
4926
4927SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4928  DebugLoc dl = Op.getDebugLoc();
4929  MVT VT = Op.getValueType();
4930  MVT EltVT = VT;
4931  unsigned EltNum = 1;
4932  if (VT.isVector()) {
4933    EltVT = VT.getVectorElementType();
4934    EltNum = VT.getVectorNumElements();
4935  }
4936  std::vector<Constant*> CV;
4937  if (EltVT == MVT::f64) {
4938    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4939    CV.push_back(C);
4940    CV.push_back(C);
4941  } else {
4942    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4943    CV.push_back(C);
4944    CV.push_back(C);
4945    CV.push_back(C);
4946    CV.push_back(C);
4947  }
4948  Constant *C = ConstantVector::get(CV);
4949  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4950  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4951                               PseudoSourceValue::getConstantPool(), 0,
4952                               false, 16);
4953  if (VT.isVector()) {
4954    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4955                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
4956                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4957                                Op.getOperand(0)),
4958                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
4959  } else {
4960    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
4961  }
4962}
4963
4964SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4965  SDValue Op0 = Op.getOperand(0);
4966  SDValue Op1 = Op.getOperand(1);
4967  DebugLoc dl = Op.getDebugLoc();
4968  MVT VT = Op.getValueType();
4969  MVT SrcVT = Op1.getValueType();
4970
4971  // If second operand is smaller, extend it first.
4972  if (SrcVT.bitsLT(VT)) {
4973    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
4974    SrcVT = VT;
4975  }
4976  // And if it is bigger, shrink it first.
4977  if (SrcVT.bitsGT(VT)) {
4978    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
4979    SrcVT = VT;
4980  }
4981
4982  // At this point the operands and the result should have the same
4983  // type, and that won't be f80 since that is not custom lowered.
4984
4985  // First get the sign bit of second operand.
4986  std::vector<Constant*> CV;
4987  if (SrcVT == MVT::f64) {
4988    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4989    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4990  } else {
4991    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4992    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4993    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4994    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4995  }
4996  Constant *C = ConstantVector::get(CV);
4997  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4998  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
4999                                PseudoSourceValue::getConstantPool(), 0,
5000                                false, 16);
5001  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5002
5003  // Shift sign bit right or left if the two operands have different types.
5004  if (SrcVT.bitsGT(VT)) {
5005    // Op0 is MVT::f32, Op1 is MVT::f64.
5006    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5007    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5008                          DAG.getConstant(32, MVT::i32));
5009    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5010    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5011                          DAG.getIntPtrConstant(0));
5012  }
5013
5014  // Clear first operand sign bit.
5015  CV.clear();
5016  if (VT == MVT::f64) {
5017    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5018    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5019  } else {
5020    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5021    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5022    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5023    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5024  }
5025  C = ConstantVector::get(CV);
5026  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5027  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5028                                PseudoSourceValue::getConstantPool(), 0,
5029                                false, 16);
5030  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5031
5032  // Or the value with the sign bit.
5033  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5034}
5035
5036/// Emit nodes that will be selected as "test Op0,Op0", or something
5037/// equivalent.
5038SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5039                                    SelectionDAG &DAG) {
5040  DebugLoc dl = Op.getDebugLoc();
5041
5042  // CF and OF aren't always set the way we want. Determine which
5043  // of these we need.
5044  bool NeedCF = false;
5045  bool NeedOF = false;
5046  switch (X86CC) {
5047  case X86::COND_A: case X86::COND_AE:
5048  case X86::COND_B: case X86::COND_BE:
5049    NeedCF = true;
5050    break;
5051  case X86::COND_G: case X86::COND_GE:
5052  case X86::COND_L: case X86::COND_LE:
5053  case X86::COND_O: case X86::COND_NO:
5054    NeedOF = true;
5055    break;
5056  default: break;
5057  }
5058
5059  // See if we can use the EFLAGS value from the operand instead of
5060  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5061  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5062  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5063    unsigned Opcode = 0;
5064    unsigned NumOperands = 0;
5065    switch (Op.getNode()->getOpcode()) {
5066    case ISD::ADD:
5067      // Due to an isel shortcoming, be conservative if this add is likely to
5068      // be selected as part of a load-modify-store instruction. When the root
5069      // node in a match is a store, isel doesn't know how to remap non-chain
5070      // non-flag uses of other nodes in the match, such as the ADD in this
5071      // case. This leads to the ADD being left around and reselected, with
5072      // the result being two adds in the output.
5073      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5074           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5075        if (UI->getOpcode() == ISD::STORE)
5076          goto default_case;
5077      if (ConstantSDNode *C =
5078            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5079        // An add of one will be selected as an INC.
5080        if (C->getAPIntValue() == 1) {
5081          Opcode = X86ISD::INC;
5082          NumOperands = 1;
5083          break;
5084        }
5085        // An add of negative one (subtract of one) will be selected as a DEC.
5086        if (C->getAPIntValue().isAllOnesValue()) {
5087          Opcode = X86ISD::DEC;
5088          NumOperands = 1;
5089          break;
5090        }
5091      }
5092      // Otherwise use a regular EFLAGS-setting add.
5093      Opcode = X86ISD::ADD;
5094      NumOperands = 2;
5095      break;
5096    case ISD::SUB:
5097      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5098      // likely to be selected as part of a load-modify-store instruction.
5099      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5100           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5101        if (UI->getOpcode() == ISD::STORE)
5102          goto default_case;
5103      // Otherwise use a regular EFLAGS-setting sub.
5104      Opcode = X86ISD::SUB;
5105      NumOperands = 2;
5106      break;
5107    case X86ISD::ADD:
5108    case X86ISD::SUB:
5109    case X86ISD::INC:
5110    case X86ISD::DEC:
5111      return SDValue(Op.getNode(), 1);
5112    default:
5113    default_case:
5114      break;
5115    }
5116    if (Opcode != 0) {
5117      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5118      SmallVector<SDValue, 4> Ops;
5119      for (unsigned i = 0; i != NumOperands; ++i)
5120        Ops.push_back(Op.getOperand(i));
5121      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5122      DAG.ReplaceAllUsesWith(Op, New);
5123      return SDValue(New.getNode(), 1);
5124    }
5125  }
5126
5127  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5128  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5129                     DAG.getConstant(0, Op.getValueType()));
5130}
5131
5132/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5133/// equivalent.
5134SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5135                                   SelectionDAG &DAG) {
5136  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5137    if (C->getAPIntValue() == 0)
5138      return EmitTest(Op0, X86CC, DAG);
5139
5140  DebugLoc dl = Op0.getDebugLoc();
5141  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5142}
5143
5144SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5145  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5146  SDValue Op0 = Op.getOperand(0);
5147  SDValue Op1 = Op.getOperand(1);
5148  DebugLoc dl = Op.getDebugLoc();
5149  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5150
5151  // Lower (X & (1 << N)) == 0 to BT(X, N).
5152  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5153  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5154  if (Op0.getOpcode() == ISD::AND &&
5155      Op0.hasOneUse() &&
5156      Op1.getOpcode() == ISD::Constant &&
5157      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5158      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5159    SDValue LHS, RHS;
5160    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5161      if (ConstantSDNode *Op010C =
5162            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5163        if (Op010C->getZExtValue() == 1) {
5164          LHS = Op0.getOperand(0);
5165          RHS = Op0.getOperand(1).getOperand(1);
5166        }
5167    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5168      if (ConstantSDNode *Op000C =
5169            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5170        if (Op000C->getZExtValue() == 1) {
5171          LHS = Op0.getOperand(1);
5172          RHS = Op0.getOperand(0).getOperand(1);
5173        }
5174    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5175      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5176      SDValue AndLHS = Op0.getOperand(0);
5177      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5178        LHS = AndLHS.getOperand(0);
5179        RHS = AndLHS.getOperand(1);
5180      }
5181    }
5182
5183    if (LHS.getNode()) {
5184      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5185      // instruction.  Since the shift amount is in-range-or-undefined, we know
5186      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5187      // the encoding for the i16 version is larger than the i32 version.
5188      if (LHS.getValueType() == MVT::i8)
5189        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5190
5191      // If the operand types disagree, extend the shift amount to match.  Since
5192      // BT ignores high bits (like shifts) we can use anyextend.
5193      if (LHS.getValueType() != RHS.getValueType())
5194        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5195
5196      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5197      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5198      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5199                         DAG.getConstant(Cond, MVT::i8), BT);
5200    }
5201  }
5202
5203  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5204  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5205
5206  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5207  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5208                     DAG.getConstant(X86CC, MVT::i8), Cond);
5209}
5210
5211SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5212  SDValue Cond;
5213  SDValue Op0 = Op.getOperand(0);
5214  SDValue Op1 = Op.getOperand(1);
5215  SDValue CC = Op.getOperand(2);
5216  MVT VT = Op.getValueType();
5217  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5218  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5219  DebugLoc dl = Op.getDebugLoc();
5220
5221  if (isFP) {
5222    unsigned SSECC = 8;
5223    MVT VT0 = Op0.getValueType();
5224    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5225    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5226    bool Swap = false;
5227
5228    switch (SetCCOpcode) {
5229    default: break;
5230    case ISD::SETOEQ:
5231    case ISD::SETEQ:  SSECC = 0; break;
5232    case ISD::SETOGT:
5233    case ISD::SETGT: Swap = true; // Fallthrough
5234    case ISD::SETLT:
5235    case ISD::SETOLT: SSECC = 1; break;
5236    case ISD::SETOGE:
5237    case ISD::SETGE: Swap = true; // Fallthrough
5238    case ISD::SETLE:
5239    case ISD::SETOLE: SSECC = 2; break;
5240    case ISD::SETUO:  SSECC = 3; break;
5241    case ISD::SETUNE:
5242    case ISD::SETNE:  SSECC = 4; break;
5243    case ISD::SETULE: Swap = true;
5244    case ISD::SETUGE: SSECC = 5; break;
5245    case ISD::SETULT: Swap = true;
5246    case ISD::SETUGT: SSECC = 6; break;
5247    case ISD::SETO:   SSECC = 7; break;
5248    }
5249    if (Swap)
5250      std::swap(Op0, Op1);
5251
5252    // In the two special cases we can't handle, emit two comparisons.
5253    if (SSECC == 8) {
5254      if (SetCCOpcode == ISD::SETUEQ) {
5255        SDValue UNORD, EQ;
5256        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5257        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5258        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5259      }
5260      else if (SetCCOpcode == ISD::SETONE) {
5261        SDValue ORD, NEQ;
5262        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5263        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5264        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5265      }
5266      assert(0 && "Illegal FP comparison");
5267    }
5268    // Handle all other FP comparisons here.
5269    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5270  }
5271
5272  // We are handling one of the integer comparisons here.  Since SSE only has
5273  // GT and EQ comparisons for integer, swapping operands and multiple
5274  // operations may be required for some comparisons.
5275  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5276  bool Swap = false, Invert = false, FlipSigns = false;
5277
5278  switch (VT.getSimpleVT()) {
5279  default: break;
5280  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5281  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5282  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5283  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5284  }
5285
5286  switch (SetCCOpcode) {
5287  default: break;
5288  case ISD::SETNE:  Invert = true;
5289  case ISD::SETEQ:  Opc = EQOpc; break;
5290  case ISD::SETLT:  Swap = true;
5291  case ISD::SETGT:  Opc = GTOpc; break;
5292  case ISD::SETGE:  Swap = true;
5293  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5294  case ISD::SETULT: Swap = true;
5295  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5296  case ISD::SETUGE: Swap = true;
5297  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5298  }
5299  if (Swap)
5300    std::swap(Op0, Op1);
5301
5302  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5303  // bits of the inputs before performing those operations.
5304  if (FlipSigns) {
5305    MVT EltVT = VT.getVectorElementType();
5306    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5307                                      EltVT);
5308    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5309    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5310                                    SignBits.size());
5311    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5312    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5313  }
5314
5315  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5316
5317  // If the logical-not of the result is required, perform that now.
5318  if (Invert)
5319    Result = DAG.getNOT(dl, Result, VT);
5320
5321  return Result;
5322}
5323
5324// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5325static bool isX86LogicalCmp(SDValue Op) {
5326  unsigned Opc = Op.getNode()->getOpcode();
5327  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5328    return true;
5329  if (Op.getResNo() == 1 &&
5330      (Opc == X86ISD::ADD ||
5331       Opc == X86ISD::SUB ||
5332       Opc == X86ISD::SMUL ||
5333       Opc == X86ISD::UMUL ||
5334       Opc == X86ISD::INC ||
5335       Opc == X86ISD::DEC))
5336    return true;
5337
5338  return false;
5339}
5340
5341SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5342  bool addTest = true;
5343  SDValue Cond  = Op.getOperand(0);
5344  DebugLoc dl = Op.getDebugLoc();
5345  SDValue CC;
5346
5347  if (Cond.getOpcode() == ISD::SETCC)
5348    Cond = LowerSETCC(Cond, DAG);
5349
5350  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5351  // setting operand in place of the X86ISD::SETCC.
5352  if (Cond.getOpcode() == X86ISD::SETCC) {
5353    CC = Cond.getOperand(0);
5354
5355    SDValue Cmp = Cond.getOperand(1);
5356    unsigned Opc = Cmp.getOpcode();
5357    MVT VT = Op.getValueType();
5358
5359    bool IllegalFPCMov = false;
5360    if (VT.isFloatingPoint() && !VT.isVector() &&
5361        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5362      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5363
5364    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5365        Opc == X86ISD::BT) { // FIXME
5366      Cond = Cmp;
5367      addTest = false;
5368    }
5369  }
5370
5371  if (addTest) {
5372    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5373    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5374  }
5375
5376  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5377  SmallVector<SDValue, 4> Ops;
5378  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5379  // condition is true.
5380  Ops.push_back(Op.getOperand(2));
5381  Ops.push_back(Op.getOperand(1));
5382  Ops.push_back(CC);
5383  Ops.push_back(Cond);
5384  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5385}
5386
5387// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5388// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5389// from the AND / OR.
5390static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5391  Opc = Op.getOpcode();
5392  if (Opc != ISD::OR && Opc != ISD::AND)
5393    return false;
5394  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5395          Op.getOperand(0).hasOneUse() &&
5396          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5397          Op.getOperand(1).hasOneUse());
5398}
5399
5400// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5401// 1 and that the SETCC node has a single use.
5402static bool isXor1OfSetCC(SDValue Op) {
5403  if (Op.getOpcode() != ISD::XOR)
5404    return false;
5405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5406  if (N1C && N1C->getAPIntValue() == 1) {
5407    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5408      Op.getOperand(0).hasOneUse();
5409  }
5410  return false;
5411}
5412
5413SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5414  bool addTest = true;
5415  SDValue Chain = Op.getOperand(0);
5416  SDValue Cond  = Op.getOperand(1);
5417  SDValue Dest  = Op.getOperand(2);
5418  DebugLoc dl = Op.getDebugLoc();
5419  SDValue CC;
5420
5421  if (Cond.getOpcode() == ISD::SETCC)
5422    Cond = LowerSETCC(Cond, DAG);
5423#if 0
5424  // FIXME: LowerXALUO doesn't handle these!!
5425  else if (Cond.getOpcode() == X86ISD::ADD  ||
5426           Cond.getOpcode() == X86ISD::SUB  ||
5427           Cond.getOpcode() == X86ISD::SMUL ||
5428           Cond.getOpcode() == X86ISD::UMUL)
5429    Cond = LowerXALUO(Cond, DAG);
5430#endif
5431
5432  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5433  // setting operand in place of the X86ISD::SETCC.
5434  if (Cond.getOpcode() == X86ISD::SETCC) {
5435    CC = Cond.getOperand(0);
5436
5437    SDValue Cmp = Cond.getOperand(1);
5438    unsigned Opc = Cmp.getOpcode();
5439    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5440    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5441      Cond = Cmp;
5442      addTest = false;
5443    } else {
5444      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5445      default: break;
5446      case X86::COND_O:
5447      case X86::COND_B:
5448        // These can only come from an arithmetic instruction with overflow,
5449        // e.g. SADDO, UADDO.
5450        Cond = Cond.getNode()->getOperand(1);
5451        addTest = false;
5452        break;
5453      }
5454    }
5455  } else {
5456    unsigned CondOpc;
5457    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5458      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5459      if (CondOpc == ISD::OR) {
5460        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5461        // two branches instead of an explicit OR instruction with a
5462        // separate test.
5463        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5464            isX86LogicalCmp(Cmp)) {
5465          CC = Cond.getOperand(0).getOperand(0);
5466          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5467                              Chain, Dest, CC, Cmp);
5468          CC = Cond.getOperand(1).getOperand(0);
5469          Cond = Cmp;
5470          addTest = false;
5471        }
5472      } else { // ISD::AND
5473        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5474        // two branches instead of an explicit AND instruction with a
5475        // separate test. However, we only do this if this block doesn't
5476        // have a fall-through edge, because this requires an explicit
5477        // jmp when the condition is false.
5478        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5479            isX86LogicalCmp(Cmp) &&
5480            Op.getNode()->hasOneUse()) {
5481          X86::CondCode CCode =
5482            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5483          CCode = X86::GetOppositeBranchCondition(CCode);
5484          CC = DAG.getConstant(CCode, MVT::i8);
5485          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5486          // Look for an unconditional branch following this conditional branch.
5487          // We need this because we need to reverse the successors in order
5488          // to implement FCMP_OEQ.
5489          if (User.getOpcode() == ISD::BR) {
5490            SDValue FalseBB = User.getOperand(1);
5491            SDValue NewBR =
5492              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5493            assert(NewBR == User);
5494            Dest = FalseBB;
5495
5496            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5497                                Chain, Dest, CC, Cmp);
5498            X86::CondCode CCode =
5499              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5500            CCode = X86::GetOppositeBranchCondition(CCode);
5501            CC = DAG.getConstant(CCode, MVT::i8);
5502            Cond = Cmp;
5503            addTest = false;
5504          }
5505        }
5506      }
5507    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5508      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5509      // It should be transformed during dag combiner except when the condition
5510      // is set by a arithmetics with overflow node.
5511      X86::CondCode CCode =
5512        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5513      CCode = X86::GetOppositeBranchCondition(CCode);
5514      CC = DAG.getConstant(CCode, MVT::i8);
5515      Cond = Cond.getOperand(0).getOperand(1);
5516      addTest = false;
5517    }
5518  }
5519
5520  if (addTest) {
5521    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5522    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5523  }
5524  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5525                     Chain, Dest, CC, Cond);
5526}
5527
5528
5529// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5530// Calls to _alloca is needed to probe the stack when allocating more than 4k
5531// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5532// that the guard pages used by the OS virtual memory manager are allocated in
5533// correct sequence.
5534SDValue
5535X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5536                                           SelectionDAG &DAG) {
5537  assert(Subtarget->isTargetCygMing() &&
5538         "This should be used only on Cygwin/Mingw targets");
5539  DebugLoc dl = Op.getDebugLoc();
5540
5541  // Get the inputs.
5542  SDValue Chain = Op.getOperand(0);
5543  SDValue Size  = Op.getOperand(1);
5544  // FIXME: Ensure alignment here
5545
5546  SDValue Flag;
5547
5548  MVT IntPtr = getPointerTy();
5549  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5550
5551  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5552
5553  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5554  Flag = Chain.getValue(1);
5555
5556  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5557  SDValue Ops[] = { Chain,
5558                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5559                      DAG.getRegister(X86::EAX, IntPtr),
5560                      DAG.getRegister(X86StackPtr, SPTy),
5561                      Flag };
5562  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5563  Flag = Chain.getValue(1);
5564
5565  Chain = DAG.getCALLSEQ_END(Chain,
5566                             DAG.getIntPtrConstant(0, true),
5567                             DAG.getIntPtrConstant(0, true),
5568                             Flag);
5569
5570  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5571
5572  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5573  return DAG.getMergeValues(Ops1, 2, dl);
5574}
5575
5576SDValue
5577X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5578                                           SDValue Chain,
5579                                           SDValue Dst, SDValue Src,
5580                                           SDValue Size, unsigned Align,
5581                                           const Value *DstSV,
5582                                           uint64_t DstSVOff) {
5583  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5584
5585  // If not DWORD aligned or size is more than the threshold, call the library.
5586  // The libc version is likely to be faster for these cases. It can use the
5587  // address value and run time information about the CPU.
5588  if ((Align & 3) != 0 ||
5589      !ConstantSize ||
5590      ConstantSize->getZExtValue() >
5591        getSubtarget()->getMaxInlineSizeThreshold()) {
5592    SDValue InFlag(0, 0);
5593
5594    // Check to see if there is a specialized entry-point for memory zeroing.
5595    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5596
5597    if (const char *bzeroEntry =  V &&
5598        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5599      MVT IntPtr = getPointerTy();
5600      const Type *IntPtrTy = TD->getIntPtrType();
5601      TargetLowering::ArgListTy Args;
5602      TargetLowering::ArgListEntry Entry;
5603      Entry.Node = Dst;
5604      Entry.Ty = IntPtrTy;
5605      Args.push_back(Entry);
5606      Entry.Node = Size;
5607      Args.push_back(Entry);
5608      std::pair<SDValue,SDValue> CallResult =
5609        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5610                    CallingConv::C, false,
5611                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5612      return CallResult.second;
5613    }
5614
5615    // Otherwise have the target-independent code call memset.
5616    return SDValue();
5617  }
5618
5619  uint64_t SizeVal = ConstantSize->getZExtValue();
5620  SDValue InFlag(0, 0);
5621  MVT AVT;
5622  SDValue Count;
5623  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5624  unsigned BytesLeft = 0;
5625  bool TwoRepStos = false;
5626  if (ValC) {
5627    unsigned ValReg;
5628    uint64_t Val = ValC->getZExtValue() & 255;
5629
5630    // If the value is a constant, then we can potentially use larger sets.
5631    switch (Align & 3) {
5632    case 2:   // WORD aligned
5633      AVT = MVT::i16;
5634      ValReg = X86::AX;
5635      Val = (Val << 8) | Val;
5636      break;
5637    case 0:  // DWORD aligned
5638      AVT = MVT::i32;
5639      ValReg = X86::EAX;
5640      Val = (Val << 8)  | Val;
5641      Val = (Val << 16) | Val;
5642      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5643        AVT = MVT::i64;
5644        ValReg = X86::RAX;
5645        Val = (Val << 32) | Val;
5646      }
5647      break;
5648    default:  // Byte aligned
5649      AVT = MVT::i8;
5650      ValReg = X86::AL;
5651      Count = DAG.getIntPtrConstant(SizeVal);
5652      break;
5653    }
5654
5655    if (AVT.bitsGT(MVT::i8)) {
5656      unsigned UBytes = AVT.getSizeInBits() / 8;
5657      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5658      BytesLeft = SizeVal % UBytes;
5659    }
5660
5661    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5662                              InFlag);
5663    InFlag = Chain.getValue(1);
5664  } else {
5665    AVT = MVT::i8;
5666    Count  = DAG.getIntPtrConstant(SizeVal);
5667    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5668    InFlag = Chain.getValue(1);
5669  }
5670
5671  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5672                                                              X86::ECX,
5673                            Count, InFlag);
5674  InFlag = Chain.getValue(1);
5675  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5676                                                              X86::EDI,
5677                            Dst, InFlag);
5678  InFlag = Chain.getValue(1);
5679
5680  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5681  SmallVector<SDValue, 8> Ops;
5682  Ops.push_back(Chain);
5683  Ops.push_back(DAG.getValueType(AVT));
5684  Ops.push_back(InFlag);
5685  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5686
5687  if (TwoRepStos) {
5688    InFlag = Chain.getValue(1);
5689    Count  = Size;
5690    MVT CVT = Count.getValueType();
5691    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5692                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5693    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5694                                                             X86::ECX,
5695                              Left, InFlag);
5696    InFlag = Chain.getValue(1);
5697    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5698    Ops.clear();
5699    Ops.push_back(Chain);
5700    Ops.push_back(DAG.getValueType(MVT::i8));
5701    Ops.push_back(InFlag);
5702    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5703  } else if (BytesLeft) {
5704    // Handle the last 1 - 7 bytes.
5705    unsigned Offset = SizeVal - BytesLeft;
5706    MVT AddrVT = Dst.getValueType();
5707    MVT SizeVT = Size.getValueType();
5708
5709    Chain = DAG.getMemset(Chain, dl,
5710                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5711                                      DAG.getConstant(Offset, AddrVT)),
5712                          Src,
5713                          DAG.getConstant(BytesLeft, SizeVT),
5714                          Align, DstSV, DstSVOff + Offset);
5715  }
5716
5717  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5718  return Chain;
5719}
5720
5721SDValue
5722X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5723                                      SDValue Chain, SDValue Dst, SDValue Src,
5724                                      SDValue Size, unsigned Align,
5725                                      bool AlwaysInline,
5726                                      const Value *DstSV, uint64_t DstSVOff,
5727                                      const Value *SrcSV, uint64_t SrcSVOff) {
5728  // This requires the copy size to be a constant, preferrably
5729  // within a subtarget-specific limit.
5730  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5731  if (!ConstantSize)
5732    return SDValue();
5733  uint64_t SizeVal = ConstantSize->getZExtValue();
5734  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5735    return SDValue();
5736
5737  /// If not DWORD aligned, call the library.
5738  if ((Align & 3) != 0)
5739    return SDValue();
5740
5741  // DWORD aligned
5742  MVT AVT = MVT::i32;
5743  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5744    AVT = MVT::i64;
5745
5746  unsigned UBytes = AVT.getSizeInBits() / 8;
5747  unsigned CountVal = SizeVal / UBytes;
5748  SDValue Count = DAG.getIntPtrConstant(CountVal);
5749  unsigned BytesLeft = SizeVal % UBytes;
5750
5751  SDValue InFlag(0, 0);
5752  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5753                                                              X86::ECX,
5754                            Count, InFlag);
5755  InFlag = Chain.getValue(1);
5756  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5757                                                             X86::EDI,
5758                            Dst, InFlag);
5759  InFlag = Chain.getValue(1);
5760  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5761                                                              X86::ESI,
5762                            Src, InFlag);
5763  InFlag = Chain.getValue(1);
5764
5765  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5766  SmallVector<SDValue, 8> Ops;
5767  Ops.push_back(Chain);
5768  Ops.push_back(DAG.getValueType(AVT));
5769  Ops.push_back(InFlag);
5770  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5771
5772  SmallVector<SDValue, 4> Results;
5773  Results.push_back(RepMovs);
5774  if (BytesLeft) {
5775    // Handle the last 1 - 7 bytes.
5776    unsigned Offset = SizeVal - BytesLeft;
5777    MVT DstVT = Dst.getValueType();
5778    MVT SrcVT = Src.getValueType();
5779    MVT SizeVT = Size.getValueType();
5780    Results.push_back(DAG.getMemcpy(Chain, dl,
5781                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5782                                                DAG.getConstant(Offset, DstVT)),
5783                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5784                                                DAG.getConstant(Offset, SrcVT)),
5785                                    DAG.getConstant(BytesLeft, SizeVT),
5786                                    Align, AlwaysInline,
5787                                    DstSV, DstSVOff + Offset,
5788                                    SrcSV, SrcSVOff + Offset));
5789  }
5790
5791  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5792                     &Results[0], Results.size());
5793}
5794
5795SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5796  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5797  DebugLoc dl = Op.getDebugLoc();
5798
5799  if (!Subtarget->is64Bit()) {
5800    // vastart just stores the address of the VarArgsFrameIndex slot into the
5801    // memory location argument.
5802    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5803    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
5804  }
5805
5806  // __va_list_tag:
5807  //   gp_offset         (0 - 6 * 8)
5808  //   fp_offset         (48 - 48 + 8 * 16)
5809  //   overflow_arg_area (point to parameters coming in memory).
5810  //   reg_save_area
5811  SmallVector<SDValue, 8> MemOps;
5812  SDValue FIN = Op.getOperand(1);
5813  // Store gp_offset
5814  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
5815                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5816                                 FIN, SV, 0);
5817  MemOps.push_back(Store);
5818
5819  // Store fp_offset
5820  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5821                    FIN, DAG.getIntPtrConstant(4));
5822  Store = DAG.getStore(Op.getOperand(0), dl,
5823                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5824                       FIN, SV, 0);
5825  MemOps.push_back(Store);
5826
5827  // Store ptr to overflow_arg_area
5828  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5829                    FIN, DAG.getIntPtrConstant(4));
5830  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5831  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
5832  MemOps.push_back(Store);
5833
5834  // Store ptr to reg_save_area.
5835  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5836                    FIN, DAG.getIntPtrConstant(8));
5837  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5838  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
5839  MemOps.push_back(Store);
5840  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5841                     &MemOps[0], MemOps.size());
5842}
5843
5844SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5845  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5846  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5847  SDValue Chain = Op.getOperand(0);
5848  SDValue SrcPtr = Op.getOperand(1);
5849  SDValue SrcSV = Op.getOperand(2);
5850
5851  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5852  abort();
5853  return SDValue();
5854}
5855
5856SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5857  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5858  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5859  SDValue Chain = Op.getOperand(0);
5860  SDValue DstPtr = Op.getOperand(1);
5861  SDValue SrcPtr = Op.getOperand(2);
5862  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5863  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5864  DebugLoc dl = Op.getDebugLoc();
5865
5866  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
5867                       DAG.getIntPtrConstant(24), 8, false,
5868                       DstSV, 0, SrcSV, 0);
5869}
5870
5871SDValue
5872X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5873  DebugLoc dl = Op.getDebugLoc();
5874  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5875  switch (IntNo) {
5876  default: return SDValue();    // Don't custom lower most intrinsics.
5877  // Comparison intrinsics.
5878  case Intrinsic::x86_sse_comieq_ss:
5879  case Intrinsic::x86_sse_comilt_ss:
5880  case Intrinsic::x86_sse_comile_ss:
5881  case Intrinsic::x86_sse_comigt_ss:
5882  case Intrinsic::x86_sse_comige_ss:
5883  case Intrinsic::x86_sse_comineq_ss:
5884  case Intrinsic::x86_sse_ucomieq_ss:
5885  case Intrinsic::x86_sse_ucomilt_ss:
5886  case Intrinsic::x86_sse_ucomile_ss:
5887  case Intrinsic::x86_sse_ucomigt_ss:
5888  case Intrinsic::x86_sse_ucomige_ss:
5889  case Intrinsic::x86_sse_ucomineq_ss:
5890  case Intrinsic::x86_sse2_comieq_sd:
5891  case Intrinsic::x86_sse2_comilt_sd:
5892  case Intrinsic::x86_sse2_comile_sd:
5893  case Intrinsic::x86_sse2_comigt_sd:
5894  case Intrinsic::x86_sse2_comige_sd:
5895  case Intrinsic::x86_sse2_comineq_sd:
5896  case Intrinsic::x86_sse2_ucomieq_sd:
5897  case Intrinsic::x86_sse2_ucomilt_sd:
5898  case Intrinsic::x86_sse2_ucomile_sd:
5899  case Intrinsic::x86_sse2_ucomigt_sd:
5900  case Intrinsic::x86_sse2_ucomige_sd:
5901  case Intrinsic::x86_sse2_ucomineq_sd: {
5902    unsigned Opc = 0;
5903    ISD::CondCode CC = ISD::SETCC_INVALID;
5904    switch (IntNo) {
5905    default: break;
5906    case Intrinsic::x86_sse_comieq_ss:
5907    case Intrinsic::x86_sse2_comieq_sd:
5908      Opc = X86ISD::COMI;
5909      CC = ISD::SETEQ;
5910      break;
5911    case Intrinsic::x86_sse_comilt_ss:
5912    case Intrinsic::x86_sse2_comilt_sd:
5913      Opc = X86ISD::COMI;
5914      CC = ISD::SETLT;
5915      break;
5916    case Intrinsic::x86_sse_comile_ss:
5917    case Intrinsic::x86_sse2_comile_sd:
5918      Opc = X86ISD::COMI;
5919      CC = ISD::SETLE;
5920      break;
5921    case Intrinsic::x86_sse_comigt_ss:
5922    case Intrinsic::x86_sse2_comigt_sd:
5923      Opc = X86ISD::COMI;
5924      CC = ISD::SETGT;
5925      break;
5926    case Intrinsic::x86_sse_comige_ss:
5927    case Intrinsic::x86_sse2_comige_sd:
5928      Opc = X86ISD::COMI;
5929      CC = ISD::SETGE;
5930      break;
5931    case Intrinsic::x86_sse_comineq_ss:
5932    case Intrinsic::x86_sse2_comineq_sd:
5933      Opc = X86ISD::COMI;
5934      CC = ISD::SETNE;
5935      break;
5936    case Intrinsic::x86_sse_ucomieq_ss:
5937    case Intrinsic::x86_sse2_ucomieq_sd:
5938      Opc = X86ISD::UCOMI;
5939      CC = ISD::SETEQ;
5940      break;
5941    case Intrinsic::x86_sse_ucomilt_ss:
5942    case Intrinsic::x86_sse2_ucomilt_sd:
5943      Opc = X86ISD::UCOMI;
5944      CC = ISD::SETLT;
5945      break;
5946    case Intrinsic::x86_sse_ucomile_ss:
5947    case Intrinsic::x86_sse2_ucomile_sd:
5948      Opc = X86ISD::UCOMI;
5949      CC = ISD::SETLE;
5950      break;
5951    case Intrinsic::x86_sse_ucomigt_ss:
5952    case Intrinsic::x86_sse2_ucomigt_sd:
5953      Opc = X86ISD::UCOMI;
5954      CC = ISD::SETGT;
5955      break;
5956    case Intrinsic::x86_sse_ucomige_ss:
5957    case Intrinsic::x86_sse2_ucomige_sd:
5958      Opc = X86ISD::UCOMI;
5959      CC = ISD::SETGE;
5960      break;
5961    case Intrinsic::x86_sse_ucomineq_ss:
5962    case Intrinsic::x86_sse2_ucomineq_sd:
5963      Opc = X86ISD::UCOMI;
5964      CC = ISD::SETNE;
5965      break;
5966    }
5967
5968    SDValue LHS = Op.getOperand(1);
5969    SDValue RHS = Op.getOperand(2);
5970    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5971    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
5972    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5973                                DAG.getConstant(X86CC, MVT::i8), Cond);
5974    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
5975  }
5976
5977  // Fix vector shift instructions where the last operand is a non-immediate
5978  // i32 value.
5979  case Intrinsic::x86_sse2_pslli_w:
5980  case Intrinsic::x86_sse2_pslli_d:
5981  case Intrinsic::x86_sse2_pslli_q:
5982  case Intrinsic::x86_sse2_psrli_w:
5983  case Intrinsic::x86_sse2_psrli_d:
5984  case Intrinsic::x86_sse2_psrli_q:
5985  case Intrinsic::x86_sse2_psrai_w:
5986  case Intrinsic::x86_sse2_psrai_d:
5987  case Intrinsic::x86_mmx_pslli_w:
5988  case Intrinsic::x86_mmx_pslli_d:
5989  case Intrinsic::x86_mmx_pslli_q:
5990  case Intrinsic::x86_mmx_psrli_w:
5991  case Intrinsic::x86_mmx_psrli_d:
5992  case Intrinsic::x86_mmx_psrli_q:
5993  case Intrinsic::x86_mmx_psrai_w:
5994  case Intrinsic::x86_mmx_psrai_d: {
5995    SDValue ShAmt = Op.getOperand(2);
5996    if (isa<ConstantSDNode>(ShAmt))
5997      return SDValue();
5998
5999    unsigned NewIntNo = 0;
6000    MVT ShAmtVT = MVT::v4i32;
6001    switch (IntNo) {
6002    case Intrinsic::x86_sse2_pslli_w:
6003      NewIntNo = Intrinsic::x86_sse2_psll_w;
6004      break;
6005    case Intrinsic::x86_sse2_pslli_d:
6006      NewIntNo = Intrinsic::x86_sse2_psll_d;
6007      break;
6008    case Intrinsic::x86_sse2_pslli_q:
6009      NewIntNo = Intrinsic::x86_sse2_psll_q;
6010      break;
6011    case Intrinsic::x86_sse2_psrli_w:
6012      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6013      break;
6014    case Intrinsic::x86_sse2_psrli_d:
6015      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6016      break;
6017    case Intrinsic::x86_sse2_psrli_q:
6018      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6019      break;
6020    case Intrinsic::x86_sse2_psrai_w:
6021      NewIntNo = Intrinsic::x86_sse2_psra_w;
6022      break;
6023    case Intrinsic::x86_sse2_psrai_d:
6024      NewIntNo = Intrinsic::x86_sse2_psra_d;
6025      break;
6026    default: {
6027      ShAmtVT = MVT::v2i32;
6028      switch (IntNo) {
6029      case Intrinsic::x86_mmx_pslli_w:
6030        NewIntNo = Intrinsic::x86_mmx_psll_w;
6031        break;
6032      case Intrinsic::x86_mmx_pslli_d:
6033        NewIntNo = Intrinsic::x86_mmx_psll_d;
6034        break;
6035      case Intrinsic::x86_mmx_pslli_q:
6036        NewIntNo = Intrinsic::x86_mmx_psll_q;
6037        break;
6038      case Intrinsic::x86_mmx_psrli_w:
6039        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6040        break;
6041      case Intrinsic::x86_mmx_psrli_d:
6042        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6043        break;
6044      case Intrinsic::x86_mmx_psrli_q:
6045        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6046        break;
6047      case Intrinsic::x86_mmx_psrai_w:
6048        NewIntNo = Intrinsic::x86_mmx_psra_w;
6049        break;
6050      case Intrinsic::x86_mmx_psrai_d:
6051        NewIntNo = Intrinsic::x86_mmx_psra_d;
6052        break;
6053      default: abort();  // Can't reach here.
6054      }
6055      break;
6056    }
6057    }
6058    MVT VT = Op.getValueType();
6059    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6060                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6061    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6062                       DAG.getConstant(NewIntNo, MVT::i32),
6063                       Op.getOperand(1), ShAmt);
6064  }
6065  }
6066}
6067
6068SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6069  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6070  DebugLoc dl = Op.getDebugLoc();
6071
6072  if (Depth > 0) {
6073    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6074    SDValue Offset =
6075      DAG.getConstant(TD->getPointerSize(),
6076                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6077    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6078                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6079                                   FrameAddr, Offset),
6080                       NULL, 0);
6081  }
6082
6083  // Just load the return address.
6084  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6085  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6086                     RetAddrFI, NULL, 0);
6087}
6088
6089SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6090  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6091  MFI->setFrameAddressIsTaken(true);
6092  MVT VT = Op.getValueType();
6093  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6094  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6095  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6096  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6097  while (Depth--)
6098    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6099  return FrameAddr;
6100}
6101
6102SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6103                                                     SelectionDAG &DAG) {
6104  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6105}
6106
6107SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6108{
6109  MachineFunction &MF = DAG.getMachineFunction();
6110  SDValue Chain     = Op.getOperand(0);
6111  SDValue Offset    = Op.getOperand(1);
6112  SDValue Handler   = Op.getOperand(2);
6113  DebugLoc dl       = Op.getDebugLoc();
6114
6115  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6116                                  getPointerTy());
6117  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6118
6119  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6120                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6121  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6122  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6123  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6124  MF.getRegInfo().addLiveOut(StoreAddrReg);
6125
6126  return DAG.getNode(X86ISD::EH_RETURN, dl,
6127                     MVT::Other,
6128                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6129}
6130
6131SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6132                                             SelectionDAG &DAG) {
6133  SDValue Root = Op.getOperand(0);
6134  SDValue Trmp = Op.getOperand(1); // trampoline
6135  SDValue FPtr = Op.getOperand(2); // nested function
6136  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6137  DebugLoc dl  = Op.getDebugLoc();
6138
6139  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6140
6141  const X86InstrInfo *TII =
6142    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6143
6144  if (Subtarget->is64Bit()) {
6145    SDValue OutChains[6];
6146
6147    // Large code-model.
6148
6149    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6150    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6151
6152    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6153    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6154
6155    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6156
6157    // Load the pointer to the nested function into R11.
6158    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6159    SDValue Addr = Trmp;
6160    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6161                                Addr, TrmpAddr, 0);
6162
6163    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6164                       DAG.getConstant(2, MVT::i64));
6165    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6166
6167    // Load the 'nest' parameter value into R10.
6168    // R10 is specified in X86CallingConv.td
6169    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6170    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6171                       DAG.getConstant(10, MVT::i64));
6172    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6173                                Addr, TrmpAddr, 10);
6174
6175    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6176                       DAG.getConstant(12, MVT::i64));
6177    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6178
6179    // Jump to the nested function.
6180    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6181    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6182                       DAG.getConstant(20, MVT::i64));
6183    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6184                                Addr, TrmpAddr, 20);
6185
6186    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6187    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6188                       DAG.getConstant(22, MVT::i64));
6189    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6190                                TrmpAddr, 22);
6191
6192    SDValue Ops[] =
6193      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6194    return DAG.getMergeValues(Ops, 2, dl);
6195  } else {
6196    const Function *Func =
6197      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6198    unsigned CC = Func->getCallingConv();
6199    unsigned NestReg;
6200
6201    switch (CC) {
6202    default:
6203      assert(0 && "Unsupported calling convention");
6204    case CallingConv::C:
6205    case CallingConv::X86_StdCall: {
6206      // Pass 'nest' parameter in ECX.
6207      // Must be kept in sync with X86CallingConv.td
6208      NestReg = X86::ECX;
6209
6210      // Check that ECX wasn't needed by an 'inreg' parameter.
6211      const FunctionType *FTy = Func->getFunctionType();
6212      const AttrListPtr &Attrs = Func->getAttributes();
6213
6214      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6215        unsigned InRegCount = 0;
6216        unsigned Idx = 1;
6217
6218        for (FunctionType::param_iterator I = FTy->param_begin(),
6219             E = FTy->param_end(); I != E; ++I, ++Idx)
6220          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6221            // FIXME: should only count parameters that are lowered to integers.
6222            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6223
6224        if (InRegCount > 2) {
6225          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6226          abort();
6227        }
6228      }
6229      break;
6230    }
6231    case CallingConv::X86_FastCall:
6232    case CallingConv::Fast:
6233      // Pass 'nest' parameter in EAX.
6234      // Must be kept in sync with X86CallingConv.td
6235      NestReg = X86::EAX;
6236      break;
6237    }
6238
6239    SDValue OutChains[4];
6240    SDValue Addr, Disp;
6241
6242    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6243                       DAG.getConstant(10, MVT::i32));
6244    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6245
6246    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6247    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6248    OutChains[0] = DAG.getStore(Root, dl,
6249                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6250                                Trmp, TrmpAddr, 0);
6251
6252    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6253                       DAG.getConstant(1, MVT::i32));
6254    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6255
6256    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6257    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6258                       DAG.getConstant(5, MVT::i32));
6259    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6260                                TrmpAddr, 5, false, 1);
6261
6262    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6263                       DAG.getConstant(6, MVT::i32));
6264    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6265
6266    SDValue Ops[] =
6267      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6268    return DAG.getMergeValues(Ops, 2, dl);
6269  }
6270}
6271
6272SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6273  /*
6274   The rounding mode is in bits 11:10 of FPSR, and has the following
6275   settings:
6276     00 Round to nearest
6277     01 Round to -inf
6278     10 Round to +inf
6279     11 Round to 0
6280
6281  FLT_ROUNDS, on the other hand, expects the following:
6282    -1 Undefined
6283     0 Round to 0
6284     1 Round to nearest
6285     2 Round to +inf
6286     3 Round to -inf
6287
6288  To perform the conversion, we do:
6289    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6290  */
6291
6292  MachineFunction &MF = DAG.getMachineFunction();
6293  const TargetMachine &TM = MF.getTarget();
6294  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6295  unsigned StackAlignment = TFI.getStackAlignment();
6296  MVT VT = Op.getValueType();
6297  DebugLoc dl = Op.getDebugLoc();
6298
6299  // Save FP Control Word to stack slot
6300  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6301  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6302
6303  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6304                              DAG.getEntryNode(), StackSlot);
6305
6306  // Load FP Control Word from stack slot
6307  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6308
6309  // Transform as necessary
6310  SDValue CWD1 =
6311    DAG.getNode(ISD::SRL, dl, MVT::i16,
6312                DAG.getNode(ISD::AND, dl, MVT::i16,
6313                            CWD, DAG.getConstant(0x800, MVT::i16)),
6314                DAG.getConstant(11, MVT::i8));
6315  SDValue CWD2 =
6316    DAG.getNode(ISD::SRL, dl, MVT::i16,
6317                DAG.getNode(ISD::AND, dl, MVT::i16,
6318                            CWD, DAG.getConstant(0x400, MVT::i16)),
6319                DAG.getConstant(9, MVT::i8));
6320
6321  SDValue RetVal =
6322    DAG.getNode(ISD::AND, dl, MVT::i16,
6323                DAG.getNode(ISD::ADD, dl, MVT::i16,
6324                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6325                            DAG.getConstant(1, MVT::i16)),
6326                DAG.getConstant(3, MVT::i16));
6327
6328
6329  return DAG.getNode((VT.getSizeInBits() < 16 ?
6330                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6331}
6332
6333SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6334  MVT VT = Op.getValueType();
6335  MVT OpVT = VT;
6336  unsigned NumBits = VT.getSizeInBits();
6337  DebugLoc dl = Op.getDebugLoc();
6338
6339  Op = Op.getOperand(0);
6340  if (VT == MVT::i8) {
6341    // Zero extend to i32 since there is not an i8 bsr.
6342    OpVT = MVT::i32;
6343    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6344  }
6345
6346  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6347  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6348  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6349
6350  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6351  SmallVector<SDValue, 4> Ops;
6352  Ops.push_back(Op);
6353  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6354  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6355  Ops.push_back(Op.getValue(1));
6356  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6357
6358  // Finally xor with NumBits-1.
6359  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6360
6361  if (VT == MVT::i8)
6362    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6363  return Op;
6364}
6365
6366SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6367  MVT VT = Op.getValueType();
6368  MVT OpVT = VT;
6369  unsigned NumBits = VT.getSizeInBits();
6370  DebugLoc dl = Op.getDebugLoc();
6371
6372  Op = Op.getOperand(0);
6373  if (VT == MVT::i8) {
6374    OpVT = MVT::i32;
6375    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6376  }
6377
6378  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6379  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6380  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6381
6382  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6383  SmallVector<SDValue, 4> Ops;
6384  Ops.push_back(Op);
6385  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6386  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6387  Ops.push_back(Op.getValue(1));
6388  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6389
6390  if (VT == MVT::i8)
6391    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6392  return Op;
6393}
6394
6395SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6396  MVT VT = Op.getValueType();
6397  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6398  DebugLoc dl = Op.getDebugLoc();
6399
6400  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6401  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6402  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6403  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6404  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6405  //
6406  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6407  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6408  //  return AloBlo + AloBhi + AhiBlo;
6409
6410  SDValue A = Op.getOperand(0);
6411  SDValue B = Op.getOperand(1);
6412
6413  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6414                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6415                       A, DAG.getConstant(32, MVT::i32));
6416  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6417                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6418                       B, DAG.getConstant(32, MVT::i32));
6419  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6420                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6421                       A, B);
6422  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6423                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6424                       A, Bhi);
6425  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6426                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6427                       Ahi, B);
6428  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6429                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6430                       AloBhi, DAG.getConstant(32, MVT::i32));
6431  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6432                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6433                       AhiBlo, DAG.getConstant(32, MVT::i32));
6434  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6435  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6436  return Res;
6437}
6438
6439
6440SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6441  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6442  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6443  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6444  // has only one use.
6445  SDNode *N = Op.getNode();
6446  SDValue LHS = N->getOperand(0);
6447  SDValue RHS = N->getOperand(1);
6448  unsigned BaseOp = 0;
6449  unsigned Cond = 0;
6450  DebugLoc dl = Op.getDebugLoc();
6451
6452  switch (Op.getOpcode()) {
6453  default: assert(0 && "Unknown ovf instruction!");
6454  case ISD::SADDO:
6455    // A subtract of one will be selected as a INC. Note that INC doesn't
6456    // set CF, so we can't do this for UADDO.
6457    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6458      if (C->getAPIntValue() == 1) {
6459        BaseOp = X86ISD::INC;
6460        Cond = X86::COND_O;
6461        break;
6462      }
6463    BaseOp = X86ISD::ADD;
6464    Cond = X86::COND_O;
6465    break;
6466  case ISD::UADDO:
6467    BaseOp = X86ISD::ADD;
6468    Cond = X86::COND_B;
6469    break;
6470  case ISD::SSUBO:
6471    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6472    // set CF, so we can't do this for USUBO.
6473    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6474      if (C->getAPIntValue() == 1) {
6475        BaseOp = X86ISD::DEC;
6476        Cond = X86::COND_O;
6477        break;
6478      }
6479    BaseOp = X86ISD::SUB;
6480    Cond = X86::COND_O;
6481    break;
6482  case ISD::USUBO:
6483    BaseOp = X86ISD::SUB;
6484    Cond = X86::COND_B;
6485    break;
6486  case ISD::SMULO:
6487    BaseOp = X86ISD::SMUL;
6488    Cond = X86::COND_O;
6489    break;
6490  case ISD::UMULO:
6491    BaseOp = X86ISD::UMUL;
6492    Cond = X86::COND_B;
6493    break;
6494  }
6495
6496  // Also sets EFLAGS.
6497  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6498  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6499
6500  SDValue SetCC =
6501    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6502                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6503
6504  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6505  return Sum;
6506}
6507
6508SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6509  MVT T = Op.getValueType();
6510  DebugLoc dl = Op.getDebugLoc();
6511  unsigned Reg = 0;
6512  unsigned size = 0;
6513  switch(T.getSimpleVT()) {
6514  default:
6515    assert(false && "Invalid value type!");
6516  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6517  case MVT::i16: Reg = X86::AX;  size = 2; break;
6518  case MVT::i32: Reg = X86::EAX; size = 4; break;
6519  case MVT::i64:
6520    assert(Subtarget->is64Bit() && "Node not type legal!");
6521    Reg = X86::RAX; size = 8;
6522    break;
6523  }
6524  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6525                                    Op.getOperand(2), SDValue());
6526  SDValue Ops[] = { cpIn.getValue(0),
6527                    Op.getOperand(1),
6528                    Op.getOperand(3),
6529                    DAG.getTargetConstant(size, MVT::i8),
6530                    cpIn.getValue(1) };
6531  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6532  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6533  SDValue cpOut =
6534    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6535  return cpOut;
6536}
6537
6538SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6539                                                 SelectionDAG &DAG) {
6540  assert(Subtarget->is64Bit() && "Result not type legalized?");
6541  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6542  SDValue TheChain = Op.getOperand(0);
6543  DebugLoc dl = Op.getDebugLoc();
6544  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6545  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6546  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6547                                   rax.getValue(2));
6548  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6549                            DAG.getConstant(32, MVT::i8));
6550  SDValue Ops[] = {
6551    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6552    rdx.getValue(1)
6553  };
6554  return DAG.getMergeValues(Ops, 2, dl);
6555}
6556
6557SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6558  SDNode *Node = Op.getNode();
6559  DebugLoc dl = Node->getDebugLoc();
6560  MVT T = Node->getValueType(0);
6561  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6562                              DAG.getConstant(0, T), Node->getOperand(2));
6563  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6564                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6565                       Node->getOperand(0),
6566                       Node->getOperand(1), negOp,
6567                       cast<AtomicSDNode>(Node)->getSrcValue(),
6568                       cast<AtomicSDNode>(Node)->getAlignment());
6569}
6570
6571/// LowerOperation - Provide custom lowering hooks for some operations.
6572///
6573SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6574  switch (Op.getOpcode()) {
6575  default: assert(0 && "Should not custom lower this!");
6576  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6577  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6578  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6579  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6580  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6581  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6582  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6583  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6584  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6585  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6586  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6587  case ISD::SHL_PARTS:
6588  case ISD::SRA_PARTS:
6589  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6590  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6591  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6592  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6593  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6594  case ISD::FABS:               return LowerFABS(Op, DAG);
6595  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6596  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6597  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6598  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6599  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6600  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6601  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6602  case ISD::CALL:               return LowerCALL(Op, DAG);
6603  case ISD::RET:                return LowerRET(Op, DAG);
6604  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6605  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6606  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6607  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6608  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6609  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6610  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6611  case ISD::FRAME_TO_ARGS_OFFSET:
6612                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6613  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6614  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6615  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6616  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6617  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6618  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6619  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6620  case ISD::SADDO:
6621  case ISD::UADDO:
6622  case ISD::SSUBO:
6623  case ISD::USUBO:
6624  case ISD::SMULO:
6625  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6626  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6627  }
6628}
6629
6630void X86TargetLowering::
6631ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6632                        SelectionDAG &DAG, unsigned NewOp) {
6633  MVT T = Node->getValueType(0);
6634  DebugLoc dl = Node->getDebugLoc();
6635  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6636
6637  SDValue Chain = Node->getOperand(0);
6638  SDValue In1 = Node->getOperand(1);
6639  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6640                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6641  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6642                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6643  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6644  // have a MemOperand.  Pass the info through as a normal operand.
6645  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6646  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6647  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6648  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6649  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6650  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6651  Results.push_back(Result.getValue(2));
6652}
6653
6654/// ReplaceNodeResults - Replace a node with an illegal result type
6655/// with a new node built out of custom code.
6656void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6657                                           SmallVectorImpl<SDValue>&Results,
6658                                           SelectionDAG &DAG) {
6659  DebugLoc dl = N->getDebugLoc();
6660  switch (N->getOpcode()) {
6661  default:
6662    assert(false && "Do not know how to custom type legalize this operation!");
6663    return;
6664  case ISD::FP_TO_SINT: {
6665    std::pair<SDValue,SDValue> Vals =
6666        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6667    SDValue FIST = Vals.first, StackSlot = Vals.second;
6668    if (FIST.getNode() != 0) {
6669      MVT VT = N->getValueType(0);
6670      // Return a load from the stack slot.
6671      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6672    }
6673    return;
6674  }
6675  case ISD::READCYCLECOUNTER: {
6676    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6677    SDValue TheChain = N->getOperand(0);
6678    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6679    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6680                                     rd.getValue(1));
6681    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6682                                     eax.getValue(2));
6683    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6684    SDValue Ops[] = { eax, edx };
6685    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6686    Results.push_back(edx.getValue(1));
6687    return;
6688  }
6689  case ISD::ATOMIC_CMP_SWAP: {
6690    MVT T = N->getValueType(0);
6691    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6692    SDValue cpInL, cpInH;
6693    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6694                        DAG.getConstant(0, MVT::i32));
6695    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6696                        DAG.getConstant(1, MVT::i32));
6697    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6698    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6699                             cpInL.getValue(1));
6700    SDValue swapInL, swapInH;
6701    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6702                          DAG.getConstant(0, MVT::i32));
6703    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6704                          DAG.getConstant(1, MVT::i32));
6705    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6706                               cpInH.getValue(1));
6707    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6708                               swapInL.getValue(1));
6709    SDValue Ops[] = { swapInH.getValue(0),
6710                      N->getOperand(1),
6711                      swapInH.getValue(1) };
6712    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6713    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6714    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6715                                        MVT::i32, Result.getValue(1));
6716    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6717                                        MVT::i32, cpOutL.getValue(2));
6718    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6719    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6720    Results.push_back(cpOutH.getValue(1));
6721    return;
6722  }
6723  case ISD::ATOMIC_LOAD_ADD:
6724    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6725    return;
6726  case ISD::ATOMIC_LOAD_AND:
6727    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6728    return;
6729  case ISD::ATOMIC_LOAD_NAND:
6730    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6731    return;
6732  case ISD::ATOMIC_LOAD_OR:
6733    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6734    return;
6735  case ISD::ATOMIC_LOAD_SUB:
6736    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6737    return;
6738  case ISD::ATOMIC_LOAD_XOR:
6739    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6740    return;
6741  case ISD::ATOMIC_SWAP:
6742    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6743    return;
6744  }
6745}
6746
6747const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6748  switch (Opcode) {
6749  default: return NULL;
6750  case X86ISD::BSF:                return "X86ISD::BSF";
6751  case X86ISD::BSR:                return "X86ISD::BSR";
6752  case X86ISD::SHLD:               return "X86ISD::SHLD";
6753  case X86ISD::SHRD:               return "X86ISD::SHRD";
6754  case X86ISD::FAND:               return "X86ISD::FAND";
6755  case X86ISD::FOR:                return "X86ISD::FOR";
6756  case X86ISD::FXOR:               return "X86ISD::FXOR";
6757  case X86ISD::FSRL:               return "X86ISD::FSRL";
6758  case X86ISD::FILD:               return "X86ISD::FILD";
6759  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6760  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6761  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6762  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6763  case X86ISD::FLD:                return "X86ISD::FLD";
6764  case X86ISD::FST:                return "X86ISD::FST";
6765  case X86ISD::CALL:               return "X86ISD::CALL";
6766  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6767  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6768  case X86ISD::BT:                 return "X86ISD::BT";
6769  case X86ISD::CMP:                return "X86ISD::CMP";
6770  case X86ISD::COMI:               return "X86ISD::COMI";
6771  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6772  case X86ISD::SETCC:              return "X86ISD::SETCC";
6773  case X86ISD::CMOV:               return "X86ISD::CMOV";
6774  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6775  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6776  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6777  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6778  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6779  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6780  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6781  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6782  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6783  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6784  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6785  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
6786  case X86ISD::FMAX:               return "X86ISD::FMAX";
6787  case X86ISD::FMIN:               return "X86ISD::FMIN";
6788  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6789  case X86ISD::FRCP:               return "X86ISD::FRCP";
6790  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6791  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
6792  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6793  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6794  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6795  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6796  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6797  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6798  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6799  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6800  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6801  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6802  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6803  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6804  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6805  case X86ISD::VSHL:               return "X86ISD::VSHL";
6806  case X86ISD::VSRL:               return "X86ISD::VSRL";
6807  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6808  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6809  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6810  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6811  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6812  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6813  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6814  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6815  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6816  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6817  case X86ISD::ADD:                return "X86ISD::ADD";
6818  case X86ISD::SUB:                return "X86ISD::SUB";
6819  case X86ISD::SMUL:               return "X86ISD::SMUL";
6820  case X86ISD::UMUL:               return "X86ISD::UMUL";
6821  case X86ISD::INC:                return "X86ISD::INC";
6822  case X86ISD::DEC:                return "X86ISD::DEC";
6823  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
6824  }
6825}
6826
6827// isLegalAddressingMode - Return true if the addressing mode represented
6828// by AM is legal for this target, for a load/store of the specified type.
6829bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6830                                              const Type *Ty) const {
6831  // X86 supports extremely general addressing modes.
6832
6833  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6834  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6835    return false;
6836
6837  if (AM.BaseGV) {
6838    // We can only fold this if we don't need an extra load.
6839    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6840      return false;
6841    // If BaseGV requires a register, we cannot also have a BaseReg.
6842    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6843        AM.HasBaseReg)
6844      return false;
6845
6846    // X86-64 only supports addr of globals in small code model.
6847    if (Subtarget->is64Bit()) {
6848      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6849        return false;
6850      // If lower 4G is not available, then we must use rip-relative addressing.
6851      if (AM.BaseOffs || AM.Scale > 1)
6852        return false;
6853    }
6854  }
6855
6856  switch (AM.Scale) {
6857  case 0:
6858  case 1:
6859  case 2:
6860  case 4:
6861  case 8:
6862    // These scales always work.
6863    break;
6864  case 3:
6865  case 5:
6866  case 9:
6867    // These scales are formed with basereg+scalereg.  Only accept if there is
6868    // no basereg yet.
6869    if (AM.HasBaseReg)
6870      return false;
6871    break;
6872  default:  // Other stuff never works.
6873    return false;
6874  }
6875
6876  return true;
6877}
6878
6879
6880bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6881  if (!Ty1->isInteger() || !Ty2->isInteger())
6882    return false;
6883  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6884  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6885  if (NumBits1 <= NumBits2)
6886    return false;
6887  return Subtarget->is64Bit() || NumBits1 < 64;
6888}
6889
6890bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6891  if (!VT1.isInteger() || !VT2.isInteger())
6892    return false;
6893  unsigned NumBits1 = VT1.getSizeInBits();
6894  unsigned NumBits2 = VT2.getSizeInBits();
6895  if (NumBits1 <= NumBits2)
6896    return false;
6897  return Subtarget->is64Bit() || NumBits1 < 64;
6898}
6899
6900bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
6901  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6902  return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
6903}
6904
6905bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
6906  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6907  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
6908}
6909
6910/// isShuffleMaskLegal - Targets can use this to indicate that they only
6911/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6912/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6913/// are assumed to be legal.
6914bool
6915X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6916                                      MVT VT) const {
6917  // Only do shuffles on 128-bit vector types for now.
6918  if (VT.getSizeInBits() == 64)
6919    return false;
6920
6921  // FIXME: pshufb, blends, palignr, shifts.
6922  return (VT.getVectorNumElements() == 2 ||
6923          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6924          isMOVLMask(M, VT) ||
6925          isSHUFPMask(M, VT) ||
6926          isPSHUFDMask(M, VT) ||
6927          isPSHUFHWMask(M, VT) ||
6928          isPSHUFLWMask(M, VT) ||
6929          isUNPCKLMask(M, VT) ||
6930          isUNPCKHMask(M, VT) ||
6931          isUNPCKL_v_undef_Mask(M, VT) ||
6932          isUNPCKH_v_undef_Mask(M, VT));
6933}
6934
6935bool
6936X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
6937                                          MVT VT) const {
6938  unsigned NumElts = VT.getVectorNumElements();
6939  // FIXME: This collection of masks seems suspect.
6940  if (NumElts == 2)
6941    return true;
6942  if (NumElts == 4 && VT.getSizeInBits() == 128) {
6943    return (isMOVLMask(Mask, VT)  ||
6944            isCommutedMOVLMask(Mask, VT, true) ||
6945            isSHUFPMask(Mask, VT) ||
6946            isCommutedSHUFPMask(Mask, VT));
6947  }
6948  return false;
6949}
6950
6951//===----------------------------------------------------------------------===//
6952//                           X86 Scheduler Hooks
6953//===----------------------------------------------------------------------===//
6954
6955// private utility function
6956MachineBasicBlock *
6957X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6958                                                       MachineBasicBlock *MBB,
6959                                                       unsigned regOpc,
6960                                                       unsigned immOpc,
6961                                                       unsigned LoadOpc,
6962                                                       unsigned CXchgOpc,
6963                                                       unsigned copyOpc,
6964                                                       unsigned notOpc,
6965                                                       unsigned EAXreg,
6966                                                       TargetRegisterClass *RC,
6967                                                       bool invSrc) const {
6968  // For the atomic bitwise operator, we generate
6969  //   thisMBB:
6970  //   newMBB:
6971  //     ld  t1 = [bitinstr.addr]
6972  //     op  t2 = t1, [bitinstr.val]
6973  //     mov EAX = t1
6974  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6975  //     bz  newMBB
6976  //     fallthrough -->nextMBB
6977  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6978  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6979  MachineFunction::iterator MBBIter = MBB;
6980  ++MBBIter;
6981
6982  /// First build the CFG
6983  MachineFunction *F = MBB->getParent();
6984  MachineBasicBlock *thisMBB = MBB;
6985  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6986  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6987  F->insert(MBBIter, newMBB);
6988  F->insert(MBBIter, nextMBB);
6989
6990  // Move all successors to thisMBB to nextMBB
6991  nextMBB->transferSuccessors(thisMBB);
6992
6993  // Update thisMBB to fall through to newMBB
6994  thisMBB->addSuccessor(newMBB);
6995
6996  // newMBB jumps to itself and fall through to nextMBB
6997  newMBB->addSuccessor(nextMBB);
6998  newMBB->addSuccessor(newMBB);
6999
7000  // Insert instructions into newMBB based on incoming instruction
7001  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7002	 "unexpected number of operands");
7003  DebugLoc dl = bInstr->getDebugLoc();
7004  MachineOperand& destOper = bInstr->getOperand(0);
7005  MachineOperand* argOpers[2 + X86AddrNumOperands];
7006  int numArgs = bInstr->getNumOperands() - 1;
7007  for (int i=0; i < numArgs; ++i)
7008    argOpers[i] = &bInstr->getOperand(i+1);
7009
7010  // x86 address has 4 operands: base, index, scale, and displacement
7011  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7012  int valArgIndx = lastAddrIndx + 1;
7013
7014  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7015  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7016  for (int i=0; i <= lastAddrIndx; ++i)
7017    (*MIB).addOperand(*argOpers[i]);
7018
7019  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7020  if (invSrc) {
7021    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7022  }
7023  else
7024    tt = t1;
7025
7026  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7027  assert((argOpers[valArgIndx]->isReg() ||
7028          argOpers[valArgIndx]->isImm()) &&
7029         "invalid operand");
7030  if (argOpers[valArgIndx]->isReg())
7031    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7032  else
7033    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7034  MIB.addReg(tt);
7035  (*MIB).addOperand(*argOpers[valArgIndx]);
7036
7037  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7038  MIB.addReg(t1);
7039
7040  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7041  for (int i=0; i <= lastAddrIndx; ++i)
7042    (*MIB).addOperand(*argOpers[i]);
7043  MIB.addReg(t2);
7044  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7045  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7046
7047  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7048  MIB.addReg(EAXreg);
7049
7050  // insert branch
7051  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7052
7053  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7054  return nextMBB;
7055}
7056
7057// private utility function:  64 bit atomics on 32 bit host.
7058MachineBasicBlock *
7059X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7060                                                       MachineBasicBlock *MBB,
7061                                                       unsigned regOpcL,
7062                                                       unsigned regOpcH,
7063                                                       unsigned immOpcL,
7064                                                       unsigned immOpcH,
7065                                                       bool invSrc) const {
7066  // For the atomic bitwise operator, we generate
7067  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7068  //     ld t1,t2 = [bitinstr.addr]
7069  //   newMBB:
7070  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7071  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7072  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7073  //     mov ECX, EBX <- t5, t6
7074  //     mov EAX, EDX <- t1, t2
7075  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7076  //     mov t3, t4 <- EAX, EDX
7077  //     bz  newMBB
7078  //     result in out1, out2
7079  //     fallthrough -->nextMBB
7080
7081  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7082  const unsigned LoadOpc = X86::MOV32rm;
7083  const unsigned copyOpc = X86::MOV32rr;
7084  const unsigned NotOpc = X86::NOT32r;
7085  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7086  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7087  MachineFunction::iterator MBBIter = MBB;
7088  ++MBBIter;
7089
7090  /// First build the CFG
7091  MachineFunction *F = MBB->getParent();
7092  MachineBasicBlock *thisMBB = MBB;
7093  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7094  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7095  F->insert(MBBIter, newMBB);
7096  F->insert(MBBIter, nextMBB);
7097
7098  // Move all successors to thisMBB to nextMBB
7099  nextMBB->transferSuccessors(thisMBB);
7100
7101  // Update thisMBB to fall through to newMBB
7102  thisMBB->addSuccessor(newMBB);
7103
7104  // newMBB jumps to itself and fall through to nextMBB
7105  newMBB->addSuccessor(nextMBB);
7106  newMBB->addSuccessor(newMBB);
7107
7108  DebugLoc dl = bInstr->getDebugLoc();
7109  // Insert instructions into newMBB based on incoming instruction
7110  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7111  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7112	 "unexpected number of operands");
7113  MachineOperand& dest1Oper = bInstr->getOperand(0);
7114  MachineOperand& dest2Oper = bInstr->getOperand(1);
7115  MachineOperand* argOpers[2 + X86AddrNumOperands];
7116  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7117    argOpers[i] = &bInstr->getOperand(i+2);
7118
7119  // x86 address has 4 operands: base, index, scale, and displacement
7120  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7121
7122  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7123  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7124  for (int i=0; i <= lastAddrIndx; ++i)
7125    (*MIB).addOperand(*argOpers[i]);
7126  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7127  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7128  // add 4 to displacement.
7129  for (int i=0; i <= lastAddrIndx-2; ++i)
7130    (*MIB).addOperand(*argOpers[i]);
7131  MachineOperand newOp3 = *(argOpers[3]);
7132  if (newOp3.isImm())
7133    newOp3.setImm(newOp3.getImm()+4);
7134  else
7135    newOp3.setOffset(newOp3.getOffset()+4);
7136  (*MIB).addOperand(newOp3);
7137  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7138
7139  // t3/4 are defined later, at the bottom of the loop
7140  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7141  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7142  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7143    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7144  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7145    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7146
7147  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7148  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7149  if (invSrc) {
7150    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7151    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7152  } else {
7153    tt1 = t1;
7154    tt2 = t2;
7155  }
7156
7157  int valArgIndx = lastAddrIndx + 1;
7158  assert((argOpers[valArgIndx]->isReg() ||
7159	  argOpers[valArgIndx]->isImm()) &&
7160         "invalid operand");
7161  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7162  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7163  if (argOpers[valArgIndx]->isReg())
7164    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7165  else
7166    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7167  if (regOpcL != X86::MOV32rr)
7168    MIB.addReg(tt1);
7169  (*MIB).addOperand(*argOpers[valArgIndx]);
7170  assert(argOpers[valArgIndx + 1]->isReg() ==
7171	 argOpers[valArgIndx]->isReg());
7172  assert(argOpers[valArgIndx + 1]->isImm() ==
7173	 argOpers[valArgIndx]->isImm());
7174  if (argOpers[valArgIndx + 1]->isReg())
7175    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7176  else
7177    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7178  if (regOpcH != X86::MOV32rr)
7179    MIB.addReg(tt2);
7180  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7181
7182  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7183  MIB.addReg(t1);
7184  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7185  MIB.addReg(t2);
7186
7187  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7188  MIB.addReg(t5);
7189  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7190  MIB.addReg(t6);
7191
7192  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7193  for (int i=0; i <= lastAddrIndx; ++i)
7194    (*MIB).addOperand(*argOpers[i]);
7195
7196  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7197  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7198
7199  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7200  MIB.addReg(X86::EAX);
7201  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7202  MIB.addReg(X86::EDX);
7203
7204  // insert branch
7205  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7206
7207  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7208  return nextMBB;
7209}
7210
7211// private utility function
7212MachineBasicBlock *
7213X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7214                                                      MachineBasicBlock *MBB,
7215                                                      unsigned cmovOpc) const {
7216  // For the atomic min/max operator, we generate
7217  //   thisMBB:
7218  //   newMBB:
7219  //     ld t1 = [min/max.addr]
7220  //     mov t2 = [min/max.val]
7221  //     cmp  t1, t2
7222  //     cmov[cond] t2 = t1
7223  //     mov EAX = t1
7224  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7225  //     bz   newMBB
7226  //     fallthrough -->nextMBB
7227  //
7228  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7229  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7230  MachineFunction::iterator MBBIter = MBB;
7231  ++MBBIter;
7232
7233  /// First build the CFG
7234  MachineFunction *F = MBB->getParent();
7235  MachineBasicBlock *thisMBB = MBB;
7236  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7237  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7238  F->insert(MBBIter, newMBB);
7239  F->insert(MBBIter, nextMBB);
7240
7241  // Move all successors to thisMBB to nextMBB
7242  nextMBB->transferSuccessors(thisMBB);
7243
7244  // Update thisMBB to fall through to newMBB
7245  thisMBB->addSuccessor(newMBB);
7246
7247  // newMBB jumps to newMBB and fall through to nextMBB
7248  newMBB->addSuccessor(nextMBB);
7249  newMBB->addSuccessor(newMBB);
7250
7251  DebugLoc dl = mInstr->getDebugLoc();
7252  // Insert instructions into newMBB based on incoming instruction
7253  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7254	 "unexpected number of operands");
7255  MachineOperand& destOper = mInstr->getOperand(0);
7256  MachineOperand* argOpers[2 + X86AddrNumOperands];
7257  int numArgs = mInstr->getNumOperands() - 1;
7258  for (int i=0; i < numArgs; ++i)
7259    argOpers[i] = &mInstr->getOperand(i+1);
7260
7261  // x86 address has 4 operands: base, index, scale, and displacement
7262  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7263  int valArgIndx = lastAddrIndx + 1;
7264
7265  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7266  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7267  for (int i=0; i <= lastAddrIndx; ++i)
7268    (*MIB).addOperand(*argOpers[i]);
7269
7270  // We only support register and immediate values
7271  assert((argOpers[valArgIndx]->isReg() ||
7272          argOpers[valArgIndx]->isImm()) &&
7273         "invalid operand");
7274
7275  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7276  if (argOpers[valArgIndx]->isReg())
7277    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7278  else
7279    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7280  (*MIB).addOperand(*argOpers[valArgIndx]);
7281
7282  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7283  MIB.addReg(t1);
7284
7285  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7286  MIB.addReg(t1);
7287  MIB.addReg(t2);
7288
7289  // Generate movc
7290  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7291  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7292  MIB.addReg(t2);
7293  MIB.addReg(t1);
7294
7295  // Cmp and exchange if none has modified the memory location
7296  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7297  for (int i=0; i <= lastAddrIndx; ++i)
7298    (*MIB).addOperand(*argOpers[i]);
7299  MIB.addReg(t3);
7300  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7301  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7302
7303  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7304  MIB.addReg(X86::EAX);
7305
7306  // insert branch
7307  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7308
7309  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7310  return nextMBB;
7311}
7312
7313
7314MachineBasicBlock *
7315X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7316                                               MachineBasicBlock *BB) const {
7317  DebugLoc dl = MI->getDebugLoc();
7318  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7319  switch (MI->getOpcode()) {
7320  default: assert(false && "Unexpected instr type to insert");
7321  case X86::CMOV_V1I64:
7322  case X86::CMOV_FR32:
7323  case X86::CMOV_FR64:
7324  case X86::CMOV_V4F32:
7325  case X86::CMOV_V2F64:
7326  case X86::CMOV_V2I64: {
7327    // To "insert" a SELECT_CC instruction, we actually have to insert the
7328    // diamond control-flow pattern.  The incoming instruction knows the
7329    // destination vreg to set, the condition code register to branch on, the
7330    // true/false values to select between, and a branch opcode to use.
7331    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7332    MachineFunction::iterator It = BB;
7333    ++It;
7334
7335    //  thisMBB:
7336    //  ...
7337    //   TrueVal = ...
7338    //   cmpTY ccX, r1, r2
7339    //   bCC copy1MBB
7340    //   fallthrough --> copy0MBB
7341    MachineBasicBlock *thisMBB = BB;
7342    MachineFunction *F = BB->getParent();
7343    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7344    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7345    unsigned Opc =
7346      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7347    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7348    F->insert(It, copy0MBB);
7349    F->insert(It, sinkMBB);
7350    // Update machine-CFG edges by transferring all successors of the current
7351    // block to the new block which will contain the Phi node for the select.
7352    sinkMBB->transferSuccessors(BB);
7353
7354    // Add the true and fallthrough blocks as its successors.
7355    BB->addSuccessor(copy0MBB);
7356    BB->addSuccessor(sinkMBB);
7357
7358    //  copy0MBB:
7359    //   %FalseValue = ...
7360    //   # fallthrough to sinkMBB
7361    BB = copy0MBB;
7362
7363    // Update machine-CFG edges
7364    BB->addSuccessor(sinkMBB);
7365
7366    //  sinkMBB:
7367    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7368    //  ...
7369    BB = sinkMBB;
7370    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7371      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7372      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7373
7374    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7375    return BB;
7376  }
7377
7378  case X86::FP32_TO_INT16_IN_MEM:
7379  case X86::FP32_TO_INT32_IN_MEM:
7380  case X86::FP32_TO_INT64_IN_MEM:
7381  case X86::FP64_TO_INT16_IN_MEM:
7382  case X86::FP64_TO_INT32_IN_MEM:
7383  case X86::FP64_TO_INT64_IN_MEM:
7384  case X86::FP80_TO_INT16_IN_MEM:
7385  case X86::FP80_TO_INT32_IN_MEM:
7386  case X86::FP80_TO_INT64_IN_MEM: {
7387    // Change the floating point control register to use "round towards zero"
7388    // mode when truncating to an integer value.
7389    MachineFunction *F = BB->getParent();
7390    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7391    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7392
7393    // Load the old value of the high byte of the control word...
7394    unsigned OldCW =
7395      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7396    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7397                      CWFrameIdx);
7398
7399    // Set the high part to be round to zero...
7400    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7401      .addImm(0xC7F);
7402
7403    // Reload the modified control word now...
7404    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7405
7406    // Restore the memory image of control word to original value
7407    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7408      .addReg(OldCW);
7409
7410    // Get the X86 opcode to use.
7411    unsigned Opc;
7412    switch (MI->getOpcode()) {
7413    default: assert(0 && "illegal opcode!");
7414    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7415    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7416    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7417    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7418    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7419    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7420    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7421    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7422    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7423    }
7424
7425    X86AddressMode AM;
7426    MachineOperand &Op = MI->getOperand(0);
7427    if (Op.isReg()) {
7428      AM.BaseType = X86AddressMode::RegBase;
7429      AM.Base.Reg = Op.getReg();
7430    } else {
7431      AM.BaseType = X86AddressMode::FrameIndexBase;
7432      AM.Base.FrameIndex = Op.getIndex();
7433    }
7434    Op = MI->getOperand(1);
7435    if (Op.isImm())
7436      AM.Scale = Op.getImm();
7437    Op = MI->getOperand(2);
7438    if (Op.isImm())
7439      AM.IndexReg = Op.getImm();
7440    Op = MI->getOperand(3);
7441    if (Op.isGlobal()) {
7442      AM.GV = Op.getGlobal();
7443    } else {
7444      AM.Disp = Op.getImm();
7445    }
7446    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7447                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7448
7449    // Reload the original control word now.
7450    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7451
7452    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7453    return BB;
7454  }
7455  case X86::ATOMAND32:
7456    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7457                                               X86::AND32ri, X86::MOV32rm,
7458                                               X86::LCMPXCHG32, X86::MOV32rr,
7459                                               X86::NOT32r, X86::EAX,
7460                                               X86::GR32RegisterClass);
7461  case X86::ATOMOR32:
7462    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7463                                               X86::OR32ri, X86::MOV32rm,
7464                                               X86::LCMPXCHG32, X86::MOV32rr,
7465                                               X86::NOT32r, X86::EAX,
7466                                               X86::GR32RegisterClass);
7467  case X86::ATOMXOR32:
7468    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7469                                               X86::XOR32ri, X86::MOV32rm,
7470                                               X86::LCMPXCHG32, X86::MOV32rr,
7471                                               X86::NOT32r, X86::EAX,
7472                                               X86::GR32RegisterClass);
7473  case X86::ATOMNAND32:
7474    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7475                                               X86::AND32ri, X86::MOV32rm,
7476                                               X86::LCMPXCHG32, X86::MOV32rr,
7477                                               X86::NOT32r, X86::EAX,
7478                                               X86::GR32RegisterClass, true);
7479  case X86::ATOMMIN32:
7480    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7481  case X86::ATOMMAX32:
7482    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7483  case X86::ATOMUMIN32:
7484    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7485  case X86::ATOMUMAX32:
7486    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7487
7488  case X86::ATOMAND16:
7489    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7490                                               X86::AND16ri, X86::MOV16rm,
7491                                               X86::LCMPXCHG16, X86::MOV16rr,
7492                                               X86::NOT16r, X86::AX,
7493                                               X86::GR16RegisterClass);
7494  case X86::ATOMOR16:
7495    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7496                                               X86::OR16ri, X86::MOV16rm,
7497                                               X86::LCMPXCHG16, X86::MOV16rr,
7498                                               X86::NOT16r, X86::AX,
7499                                               X86::GR16RegisterClass);
7500  case X86::ATOMXOR16:
7501    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7502                                               X86::XOR16ri, X86::MOV16rm,
7503                                               X86::LCMPXCHG16, X86::MOV16rr,
7504                                               X86::NOT16r, X86::AX,
7505                                               X86::GR16RegisterClass);
7506  case X86::ATOMNAND16:
7507    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7508                                               X86::AND16ri, X86::MOV16rm,
7509                                               X86::LCMPXCHG16, X86::MOV16rr,
7510                                               X86::NOT16r, X86::AX,
7511                                               X86::GR16RegisterClass, true);
7512  case X86::ATOMMIN16:
7513    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7514  case X86::ATOMMAX16:
7515    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7516  case X86::ATOMUMIN16:
7517    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7518  case X86::ATOMUMAX16:
7519    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7520
7521  case X86::ATOMAND8:
7522    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7523                                               X86::AND8ri, X86::MOV8rm,
7524                                               X86::LCMPXCHG8, X86::MOV8rr,
7525                                               X86::NOT8r, X86::AL,
7526                                               X86::GR8RegisterClass);
7527  case X86::ATOMOR8:
7528    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7529                                               X86::OR8ri, X86::MOV8rm,
7530                                               X86::LCMPXCHG8, X86::MOV8rr,
7531                                               X86::NOT8r, X86::AL,
7532                                               X86::GR8RegisterClass);
7533  case X86::ATOMXOR8:
7534    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7535                                               X86::XOR8ri, X86::MOV8rm,
7536                                               X86::LCMPXCHG8, X86::MOV8rr,
7537                                               X86::NOT8r, X86::AL,
7538                                               X86::GR8RegisterClass);
7539  case X86::ATOMNAND8:
7540    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7541                                               X86::AND8ri, X86::MOV8rm,
7542                                               X86::LCMPXCHG8, X86::MOV8rr,
7543                                               X86::NOT8r, X86::AL,
7544                                               X86::GR8RegisterClass, true);
7545  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7546  // This group is for 64-bit host.
7547  case X86::ATOMAND64:
7548    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7549                                               X86::AND64ri32, X86::MOV64rm,
7550                                               X86::LCMPXCHG64, X86::MOV64rr,
7551                                               X86::NOT64r, X86::RAX,
7552                                               X86::GR64RegisterClass);
7553  case X86::ATOMOR64:
7554    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7555                                               X86::OR64ri32, X86::MOV64rm,
7556                                               X86::LCMPXCHG64, X86::MOV64rr,
7557                                               X86::NOT64r, X86::RAX,
7558                                               X86::GR64RegisterClass);
7559  case X86::ATOMXOR64:
7560    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7561                                               X86::XOR64ri32, X86::MOV64rm,
7562                                               X86::LCMPXCHG64, X86::MOV64rr,
7563                                               X86::NOT64r, X86::RAX,
7564                                               X86::GR64RegisterClass);
7565  case X86::ATOMNAND64:
7566    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7567                                               X86::AND64ri32, X86::MOV64rm,
7568                                               X86::LCMPXCHG64, X86::MOV64rr,
7569                                               X86::NOT64r, X86::RAX,
7570                                               X86::GR64RegisterClass, true);
7571  case X86::ATOMMIN64:
7572    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7573  case X86::ATOMMAX64:
7574    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7575  case X86::ATOMUMIN64:
7576    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7577  case X86::ATOMUMAX64:
7578    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7579
7580  // This group does 64-bit operations on a 32-bit host.
7581  case X86::ATOMAND6432:
7582    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7583                                               X86::AND32rr, X86::AND32rr,
7584                                               X86::AND32ri, X86::AND32ri,
7585                                               false);
7586  case X86::ATOMOR6432:
7587    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7588                                               X86::OR32rr, X86::OR32rr,
7589                                               X86::OR32ri, X86::OR32ri,
7590                                               false);
7591  case X86::ATOMXOR6432:
7592    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7593                                               X86::XOR32rr, X86::XOR32rr,
7594                                               X86::XOR32ri, X86::XOR32ri,
7595                                               false);
7596  case X86::ATOMNAND6432:
7597    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7598                                               X86::AND32rr, X86::AND32rr,
7599                                               X86::AND32ri, X86::AND32ri,
7600                                               true);
7601  case X86::ATOMADD6432:
7602    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7603                                               X86::ADD32rr, X86::ADC32rr,
7604                                               X86::ADD32ri, X86::ADC32ri,
7605                                               false);
7606  case X86::ATOMSUB6432:
7607    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7608                                               X86::SUB32rr, X86::SBB32rr,
7609                                               X86::SUB32ri, X86::SBB32ri,
7610                                               false);
7611  case X86::ATOMSWAP6432:
7612    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7613                                               X86::MOV32rr, X86::MOV32rr,
7614                                               X86::MOV32ri, X86::MOV32ri,
7615                                               false);
7616  }
7617}
7618
7619//===----------------------------------------------------------------------===//
7620//                           X86 Optimization Hooks
7621//===----------------------------------------------------------------------===//
7622
7623void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7624                                                       const APInt &Mask,
7625                                                       APInt &KnownZero,
7626                                                       APInt &KnownOne,
7627                                                       const SelectionDAG &DAG,
7628                                                       unsigned Depth) const {
7629  unsigned Opc = Op.getOpcode();
7630  assert((Opc >= ISD::BUILTIN_OP_END ||
7631          Opc == ISD::INTRINSIC_WO_CHAIN ||
7632          Opc == ISD::INTRINSIC_W_CHAIN ||
7633          Opc == ISD::INTRINSIC_VOID) &&
7634         "Should use MaskedValueIsZero if you don't know whether Op"
7635         " is a target node!");
7636
7637  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7638  switch (Opc) {
7639  default: break;
7640  case X86ISD::ADD:
7641  case X86ISD::SUB:
7642  case X86ISD::SMUL:
7643  case X86ISD::UMUL:
7644  case X86ISD::INC:
7645  case X86ISD::DEC:
7646    // These nodes' second result is a boolean.
7647    if (Op.getResNo() == 0)
7648      break;
7649    // Fallthrough
7650  case X86ISD::SETCC:
7651    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7652                                       Mask.getBitWidth() - 1);
7653    break;
7654  }
7655}
7656
7657/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7658/// node is a GlobalAddress + offset.
7659bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7660                                       GlobalValue* &GA, int64_t &Offset) const{
7661  if (N->getOpcode() == X86ISD::Wrapper) {
7662    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7663      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7664      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7665      return true;
7666    }
7667  }
7668  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7669}
7670
7671static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7672                               const TargetLowering &TLI) {
7673  GlobalValue *GV;
7674  int64_t Offset = 0;
7675  if (TLI.isGAPlusOffset(Base, GV, Offset))
7676    return (GV->getAlignment() >= N && (Offset % N) == 0);
7677  // DAG combine handles the stack object case.
7678  return false;
7679}
7680
7681static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7682                                     MVT EVT, SDNode *&Base,
7683                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7684                                     const TargetLowering &TLI) {
7685  Base = NULL;
7686  for (unsigned i = 0; i < NumElems; ++i) {
7687    if (N->getMaskElt(i) < 0) {
7688      if (!Base)
7689        return false;
7690      continue;
7691    }
7692
7693    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7694    if (!Elt.getNode() ||
7695        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7696      return false;
7697    if (!Base) {
7698      Base = Elt.getNode();
7699      if (Base->getOpcode() == ISD::UNDEF)
7700        return false;
7701      continue;
7702    }
7703    if (Elt.getOpcode() == ISD::UNDEF)
7704      continue;
7705
7706    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7707                               EVT.getSizeInBits()/8, i, MFI))
7708      return false;
7709  }
7710  return true;
7711}
7712
7713/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7714/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7715/// if the load addresses are consecutive, non-overlapping, and in the right
7716/// order.  In the case of v2i64, it will see if it can rewrite the
7717/// shuffle to be an appropriate build vector so it can take advantage of
7718// performBuildVectorCombine.
7719static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7720                                     const TargetLowering &TLI) {
7721  DebugLoc dl = N->getDebugLoc();
7722  MVT VT = N->getValueType(0);
7723  MVT EVT = VT.getVectorElementType();
7724  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7725  unsigned NumElems = VT.getVectorNumElements();
7726
7727  // For x86-32 machines, if we see an insert and then a shuffle in a v2i64
7728  // where the upper half is 0, it is advantageous to rewrite it as a build
7729  // vector of (0, val) so it can use movq.
7730  if (VT == MVT::v2i64) {
7731    SDValue In[2];
7732    In[0] = N->getOperand(0);
7733    In[1] = N->getOperand(1);
7734    int Idx0 = SVN->getMaskElt(0);
7735    int Idx1 = SVN->getMaskElt(1);
7736    // FIXME: can we take advantage of undef index?
7737    if (Idx0 >= 0 && Idx1 >= 0 &&
7738        In[Idx0/2].getOpcode() == ISD::INSERT_VECTOR_ELT &&
7739        In[Idx1/2].getOpcode() == ISD::BUILD_VECTOR) {
7740      ConstantSDNode* InsertVecIdx =
7741                             dyn_cast<ConstantSDNode>(In[Idx0/2].getOperand(2));
7742      if (InsertVecIdx &&
7743          InsertVecIdx->getZExtValue() == (unsigned)(Idx0 % 2) &&
7744          isZeroNode(In[Idx1/2].getOperand(Idx1 % 2))) {
7745        return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7746                           In[Idx0/2].getOperand(1),
7747                           In[Idx1/2].getOperand(Idx1 % 2));
7748      }
7749    }
7750  }
7751
7752  // Try to combine a vector_shuffle into a 128-bit load.
7753  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7754  SDNode *Base = NULL;
7755  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, Base, DAG, MFI, TLI))
7756    return SDValue();
7757
7758  LoadSDNode *LD = cast<LoadSDNode>(Base);
7759  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7760    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7761                       LD->getSrcValue(), LD->getSrcValueOffset(),
7762                       LD->isVolatile());
7763  return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7764                     LD->getSrcValue(), LD->getSrcValueOffset(),
7765                     LD->isVolatile(), LD->getAlignment());
7766}
7767
7768/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7769static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7770                                         TargetLowering::DAGCombinerInfo &DCI,
7771                                         const X86Subtarget *Subtarget,
7772                                         const TargetLowering &TLI) {
7773  unsigned NumOps = N->getNumOperands();
7774  DebugLoc dl = N->getDebugLoc();
7775
7776  // Ignore single operand BUILD_VECTOR.
7777  if (NumOps == 1)
7778    return SDValue();
7779
7780  MVT VT = N->getValueType(0);
7781  MVT EVT = VT.getVectorElementType();
7782  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7783    // We are looking for load i64 and zero extend. We want to transform
7784    // it before legalizer has a chance to expand it. Also look for i64
7785    // BUILD_PAIR bit casted to f64.
7786    return SDValue();
7787  // This must be an insertion into a zero vector.
7788  SDValue HighElt = N->getOperand(1);
7789  if (!isZeroNode(HighElt))
7790    return SDValue();
7791
7792  // Value must be a load.
7793  SDNode *Base = N->getOperand(0).getNode();
7794  if (!isa<LoadSDNode>(Base)) {
7795    if (Base->getOpcode() != ISD::BIT_CONVERT)
7796      return SDValue();
7797    Base = Base->getOperand(0).getNode();
7798    if (!isa<LoadSDNode>(Base))
7799      return SDValue();
7800  }
7801
7802  // Transform it into VZEXT_LOAD addr.
7803  LoadSDNode *LD = cast<LoadSDNode>(Base);
7804
7805  // Load must not be an extload.
7806  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7807    return SDValue();
7808
7809  // Load type should legal type so we don't have to legalize it.
7810  if (!TLI.isTypeLegal(VT))
7811    return SDValue();
7812
7813  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7814  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7815  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7816  TargetLowering::TargetLoweringOpt TLO(DAG);
7817  TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
7818  DCI.CommitTargetLoweringOpt(TLO);
7819  return ResNode;
7820}
7821
7822/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7823static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7824                                    const X86Subtarget *Subtarget) {
7825  DebugLoc DL = N->getDebugLoc();
7826  SDValue Cond = N->getOperand(0);
7827  // Get the LHS/RHS of the select.
7828  SDValue LHS = N->getOperand(1);
7829  SDValue RHS = N->getOperand(2);
7830
7831  // If we have SSE[12] support, try to form min/max nodes.
7832  if (Subtarget->hasSSE2() &&
7833      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
7834      Cond.getOpcode() == ISD::SETCC) {
7835    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7836
7837    unsigned Opcode = 0;
7838    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7839      switch (CC) {
7840      default: break;
7841      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7842      case ISD::SETULE:
7843      case ISD::SETLE:
7844        if (!UnsafeFPMath) break;
7845        // FALL THROUGH.
7846      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7847      case ISD::SETLT:
7848        Opcode = X86ISD::FMIN;
7849        break;
7850
7851      case ISD::SETOGT: // (X > Y) ? X : Y -> max
7852      case ISD::SETUGT:
7853      case ISD::SETGT:
7854        if (!UnsafeFPMath) break;
7855        // FALL THROUGH.
7856      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7857      case ISD::SETGE:
7858        Opcode = X86ISD::FMAX;
7859        break;
7860      }
7861    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7862      switch (CC) {
7863      default: break;
7864      case ISD::SETOGT: // (X > Y) ? Y : X -> min
7865      case ISD::SETUGT:
7866      case ISD::SETGT:
7867        if (!UnsafeFPMath) break;
7868        // FALL THROUGH.
7869      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7870      case ISD::SETGE:
7871        Opcode = X86ISD::FMIN;
7872        break;
7873
7874      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7875      case ISD::SETULE:
7876      case ISD::SETLE:
7877        if (!UnsafeFPMath) break;
7878        // FALL THROUGH.
7879      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7880      case ISD::SETLT:
7881        Opcode = X86ISD::FMAX;
7882        break;
7883      }
7884    }
7885
7886    if (Opcode)
7887      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
7888  }
7889
7890  // If this is a select between two integer constants, try to do some
7891  // optimizations.
7892  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
7893    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
7894      // Don't do this for crazy integer types.
7895      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
7896        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
7897        // so that TrueC (the true value) is larger than FalseC.
7898        bool NeedsCondInvert = false;
7899
7900        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
7901            // Efficiently invertible.
7902            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
7903             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
7904              isa<ConstantSDNode>(Cond.getOperand(1))))) {
7905          NeedsCondInvert = true;
7906          std::swap(TrueC, FalseC);
7907        }
7908
7909        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
7910        if (FalseC->getAPIntValue() == 0 &&
7911            TrueC->getAPIntValue().isPowerOf2()) {
7912          if (NeedsCondInvert) // Invert the condition if needed.
7913            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7914                               DAG.getConstant(1, Cond.getValueType()));
7915
7916          // Zero extend the condition if needed.
7917          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
7918
7919          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7920          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
7921                             DAG.getConstant(ShAmt, MVT::i8));
7922        }
7923
7924        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
7925        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
7926          if (NeedsCondInvert) // Invert the condition if needed.
7927            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7928                               DAG.getConstant(1, Cond.getValueType()));
7929
7930          // Zero extend the condition if needed.
7931          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
7932                             FalseC->getValueType(0), Cond);
7933          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7934                             SDValue(FalseC, 0));
7935        }
7936
7937        // Optimize cases that will turn into an LEA instruction.  This requires
7938        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7939        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
7940          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
7941          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
7942
7943          bool isFastMultiplier = false;
7944          if (Diff < 10) {
7945            switch ((unsigned char)Diff) {
7946              default: break;
7947              case 1:  // result = add base, cond
7948              case 2:  // result = lea base(    , cond*2)
7949              case 3:  // result = lea base(cond, cond*2)
7950              case 4:  // result = lea base(    , cond*4)
7951              case 5:  // result = lea base(cond, cond*4)
7952              case 8:  // result = lea base(    , cond*8)
7953              case 9:  // result = lea base(cond, cond*8)
7954                isFastMultiplier = true;
7955                break;
7956            }
7957          }
7958
7959          if (isFastMultiplier) {
7960            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
7961            if (NeedsCondInvert) // Invert the condition if needed.
7962              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7963                                 DAG.getConstant(1, Cond.getValueType()));
7964
7965            // Zero extend the condition if needed.
7966            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
7967                               Cond);
7968            // Scale the condition by the difference.
7969            if (Diff != 1)
7970              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
7971                                 DAG.getConstant(Diff, Cond.getValueType()));
7972
7973            // Add the base if non-zero.
7974            if (FalseC->getAPIntValue() != 0)
7975              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7976                                 SDValue(FalseC, 0));
7977            return Cond;
7978          }
7979        }
7980      }
7981  }
7982
7983  return SDValue();
7984}
7985
7986/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
7987static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
7988                                  TargetLowering::DAGCombinerInfo &DCI) {
7989  DebugLoc DL = N->getDebugLoc();
7990
7991  // If the flag operand isn't dead, don't touch this CMOV.
7992  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
7993    return SDValue();
7994
7995  // If this is a select between two integer constants, try to do some
7996  // optimizations.  Note that the operands are ordered the opposite of SELECT
7997  // operands.
7998  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7999    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8000      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8001      // larger than FalseC (the false value).
8002      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8003
8004      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8005        CC = X86::GetOppositeBranchCondition(CC);
8006        std::swap(TrueC, FalseC);
8007      }
8008
8009      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8010      // This is efficient for any integer data type (including i8/i16) and
8011      // shift amount.
8012      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8013        SDValue Cond = N->getOperand(3);
8014        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8015                           DAG.getConstant(CC, MVT::i8), Cond);
8016
8017        // Zero extend the condition if needed.
8018        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8019
8020        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8021        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8022                           DAG.getConstant(ShAmt, MVT::i8));
8023        if (N->getNumValues() == 2)  // Dead flag value?
8024          return DCI.CombineTo(N, Cond, SDValue());
8025        return Cond;
8026      }
8027
8028      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8029      // for any integer data type, including i8/i16.
8030      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8031        SDValue Cond = N->getOperand(3);
8032        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8033                           DAG.getConstant(CC, MVT::i8), Cond);
8034
8035        // Zero extend the condition if needed.
8036        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8037                           FalseC->getValueType(0), Cond);
8038        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8039                           SDValue(FalseC, 0));
8040
8041        if (N->getNumValues() == 2)  // Dead flag value?
8042          return DCI.CombineTo(N, Cond, SDValue());
8043        return Cond;
8044      }
8045
8046      // Optimize cases that will turn into an LEA instruction.  This requires
8047      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8048      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8049        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8050        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8051
8052        bool isFastMultiplier = false;
8053        if (Diff < 10) {
8054          switch ((unsigned char)Diff) {
8055          default: break;
8056          case 1:  // result = add base, cond
8057          case 2:  // result = lea base(    , cond*2)
8058          case 3:  // result = lea base(cond, cond*2)
8059          case 4:  // result = lea base(    , cond*4)
8060          case 5:  // result = lea base(cond, cond*4)
8061          case 8:  // result = lea base(    , cond*8)
8062          case 9:  // result = lea base(cond, cond*8)
8063            isFastMultiplier = true;
8064            break;
8065          }
8066        }
8067
8068        if (isFastMultiplier) {
8069          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8070          SDValue Cond = N->getOperand(3);
8071          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8072                             DAG.getConstant(CC, MVT::i8), Cond);
8073          // Zero extend the condition if needed.
8074          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8075                             Cond);
8076          // Scale the condition by the difference.
8077          if (Diff != 1)
8078            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8079                               DAG.getConstant(Diff, Cond.getValueType()));
8080
8081          // Add the base if non-zero.
8082          if (FalseC->getAPIntValue() != 0)
8083            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8084                               SDValue(FalseC, 0));
8085          if (N->getNumValues() == 2)  // Dead flag value?
8086            return DCI.CombineTo(N, Cond, SDValue());
8087          return Cond;
8088        }
8089      }
8090    }
8091  }
8092  return SDValue();
8093}
8094
8095
8096/// PerformMulCombine - Optimize a single multiply with constant into two
8097/// in order to implement it with two cheaper instructions, e.g.
8098/// LEA + SHL, LEA + LEA.
8099static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8100                                 TargetLowering::DAGCombinerInfo &DCI) {
8101  if (DAG.getMachineFunction().
8102      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8103    return SDValue();
8104
8105  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8106    return SDValue();
8107
8108  MVT VT = N->getValueType(0);
8109  if (VT != MVT::i64)
8110    return SDValue();
8111
8112  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8113  if (!C)
8114    return SDValue();
8115  uint64_t MulAmt = C->getZExtValue();
8116  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8117    return SDValue();
8118
8119  uint64_t MulAmt1 = 0;
8120  uint64_t MulAmt2 = 0;
8121  if ((MulAmt % 9) == 0) {
8122    MulAmt1 = 9;
8123    MulAmt2 = MulAmt / 9;
8124  } else if ((MulAmt % 5) == 0) {
8125    MulAmt1 = 5;
8126    MulAmt2 = MulAmt / 5;
8127  } else if ((MulAmt % 3) == 0) {
8128    MulAmt1 = 3;
8129    MulAmt2 = MulAmt / 3;
8130  }
8131  if (MulAmt2 &&
8132      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8133    DebugLoc DL = N->getDebugLoc();
8134
8135    if (isPowerOf2_64(MulAmt2) &&
8136        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8137      // If second multiplifer is pow2, issue it first. We want the multiply by
8138      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8139      // is an add.
8140      std::swap(MulAmt1, MulAmt2);
8141
8142    SDValue NewMul;
8143    if (isPowerOf2_64(MulAmt1))
8144      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8145                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8146    else
8147      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8148                           DAG.getConstant(MulAmt1, VT));
8149
8150    if (isPowerOf2_64(MulAmt2))
8151      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8152                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8153    else
8154      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8155                           DAG.getConstant(MulAmt2, VT));
8156
8157    // Do not add new nodes to DAG combiner worklist.
8158    DCI.CombineTo(N, NewMul, false);
8159  }
8160  return SDValue();
8161}
8162
8163
8164/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8165///                       when possible.
8166static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8167                                   const X86Subtarget *Subtarget) {
8168  // On X86 with SSE2 support, we can transform this to a vector shift if
8169  // all elements are shifted by the same amount.  We can't do this in legalize
8170  // because the a constant vector is typically transformed to a constant pool
8171  // so we have no knowledge of the shift amount.
8172  if (!Subtarget->hasSSE2())
8173    return SDValue();
8174
8175  MVT VT = N->getValueType(0);
8176  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8177    return SDValue();
8178
8179  SDValue ShAmtOp = N->getOperand(1);
8180  MVT EltVT = VT.getVectorElementType();
8181  DebugLoc DL = N->getDebugLoc();
8182  SDValue BaseShAmt;
8183  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8184    unsigned NumElts = VT.getVectorNumElements();
8185    unsigned i = 0;
8186    for (; i != NumElts; ++i) {
8187      SDValue Arg = ShAmtOp.getOperand(i);
8188      if (Arg.getOpcode() == ISD::UNDEF) continue;
8189      BaseShAmt = Arg;
8190      break;
8191    }
8192    for (; i != NumElts; ++i) {
8193      SDValue Arg = ShAmtOp.getOperand(i);
8194      if (Arg.getOpcode() == ISD::UNDEF) continue;
8195      if (Arg != BaseShAmt) {
8196        return SDValue();
8197      }
8198    }
8199  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8200             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8201    BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8202                            DAG.getIntPtrConstant(0));
8203  } else
8204    return SDValue();
8205
8206  if (EltVT.bitsGT(MVT::i32))
8207    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8208  else if (EltVT.bitsLT(MVT::i32))
8209    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8210
8211  // The shift amount is identical so we can do a vector shift.
8212  SDValue  ValOp = N->getOperand(0);
8213  switch (N->getOpcode()) {
8214  default:
8215    assert(0 && "Unknown shift opcode!");
8216    break;
8217  case ISD::SHL:
8218    if (VT == MVT::v2i64)
8219      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8220                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8221                         ValOp, BaseShAmt);
8222    if (VT == MVT::v4i32)
8223      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8224                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8225                         ValOp, BaseShAmt);
8226    if (VT == MVT::v8i16)
8227      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8228                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8229                         ValOp, BaseShAmt);
8230    break;
8231  case ISD::SRA:
8232    if (VT == MVT::v4i32)
8233      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8234                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8235                         ValOp, BaseShAmt);
8236    if (VT == MVT::v8i16)
8237      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8238                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8239                         ValOp, BaseShAmt);
8240    break;
8241  case ISD::SRL:
8242    if (VT == MVT::v2i64)
8243      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8244                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8245                         ValOp, BaseShAmt);
8246    if (VT == MVT::v4i32)
8247      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8248                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8249                         ValOp, BaseShAmt);
8250    if (VT ==  MVT::v8i16)
8251      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8252                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8253                         ValOp, BaseShAmt);
8254    break;
8255  }
8256  return SDValue();
8257}
8258
8259/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8260static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8261                                   const X86Subtarget *Subtarget) {
8262  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8263  // the FP state in cases where an emms may be missing.
8264  // A preferable solution to the general problem is to figure out the right
8265  // places to insert EMMS.  This qualifies as a quick hack.
8266
8267  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8268  StoreSDNode *St = cast<StoreSDNode>(N);
8269  MVT VT = St->getValue().getValueType();
8270  if (VT.getSizeInBits() != 64)
8271    return SDValue();
8272
8273  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE2();
8274  if ((VT.isVector() ||
8275       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8276      isa<LoadSDNode>(St->getValue()) &&
8277      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8278      St->getChain().hasOneUse() && !St->isVolatile()) {
8279    SDNode* LdVal = St->getValue().getNode();
8280    LoadSDNode *Ld = 0;
8281    int TokenFactorIndex = -1;
8282    SmallVector<SDValue, 8> Ops;
8283    SDNode* ChainVal = St->getChain().getNode();
8284    // Must be a store of a load.  We currently handle two cases:  the load
8285    // is a direct child, and it's under an intervening TokenFactor.  It is
8286    // possible to dig deeper under nested TokenFactors.
8287    if (ChainVal == LdVal)
8288      Ld = cast<LoadSDNode>(St->getChain());
8289    else if (St->getValue().hasOneUse() &&
8290             ChainVal->getOpcode() == ISD::TokenFactor) {
8291      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8292        if (ChainVal->getOperand(i).getNode() == LdVal) {
8293          TokenFactorIndex = i;
8294          Ld = cast<LoadSDNode>(St->getValue());
8295        } else
8296          Ops.push_back(ChainVal->getOperand(i));
8297      }
8298    }
8299
8300    if (!Ld || !ISD::isNormalLoad(Ld))
8301      return SDValue();
8302
8303    // If this is not the MMX case, i.e. we are just turning i64 load/store
8304    // into f64 load/store, avoid the transformation if there are multiple
8305    // uses of the loaded value.
8306    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8307      return SDValue();
8308
8309    DebugLoc LdDL = Ld->getDebugLoc();
8310    DebugLoc StDL = N->getDebugLoc();
8311    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8312    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8313    // pair instead.
8314    if (Subtarget->is64Bit() || F64IsLegal) {
8315      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8316      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8317                                  Ld->getBasePtr(), Ld->getSrcValue(),
8318                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8319                                  Ld->getAlignment());
8320      SDValue NewChain = NewLd.getValue(1);
8321      if (TokenFactorIndex != -1) {
8322        Ops.push_back(NewChain);
8323        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8324                               Ops.size());
8325      }
8326      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8327                          St->getSrcValue(), St->getSrcValueOffset(),
8328                          St->isVolatile(), St->getAlignment());
8329    }
8330
8331    // Otherwise, lower to two pairs of 32-bit loads / stores.
8332    SDValue LoAddr = Ld->getBasePtr();
8333    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8334                                 DAG.getConstant(4, MVT::i32));
8335
8336    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8337                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8338                               Ld->isVolatile(), Ld->getAlignment());
8339    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8340                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8341                               Ld->isVolatile(),
8342                               MinAlign(Ld->getAlignment(), 4));
8343
8344    SDValue NewChain = LoLd.getValue(1);
8345    if (TokenFactorIndex != -1) {
8346      Ops.push_back(LoLd);
8347      Ops.push_back(HiLd);
8348      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8349                             Ops.size());
8350    }
8351
8352    LoAddr = St->getBasePtr();
8353    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8354                         DAG.getConstant(4, MVT::i32));
8355
8356    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8357                                St->getSrcValue(), St->getSrcValueOffset(),
8358                                St->isVolatile(), St->getAlignment());
8359    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8360                                St->getSrcValue(),
8361                                St->getSrcValueOffset() + 4,
8362                                St->isVolatile(),
8363                                MinAlign(St->getAlignment(), 4));
8364    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8365  }
8366  return SDValue();
8367}
8368
8369/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8370/// X86ISD::FXOR nodes.
8371static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8372  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8373  // F[X]OR(0.0, x) -> x
8374  // F[X]OR(x, 0.0) -> x
8375  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8376    if (C->getValueAPF().isPosZero())
8377      return N->getOperand(1);
8378  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8379    if (C->getValueAPF().isPosZero())
8380      return N->getOperand(0);
8381  return SDValue();
8382}
8383
8384/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8385static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8386  // FAND(0.0, x) -> 0.0
8387  // FAND(x, 0.0) -> 0.0
8388  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8389    if (C->getValueAPF().isPosZero())
8390      return N->getOperand(0);
8391  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8392    if (C->getValueAPF().isPosZero())
8393      return N->getOperand(1);
8394  return SDValue();
8395}
8396
8397static SDValue PerformBTCombine(SDNode *N,
8398                                SelectionDAG &DAG,
8399                                TargetLowering::DAGCombinerInfo &DCI) {
8400  // BT ignores high bits in the bit index operand.
8401  SDValue Op1 = N->getOperand(1);
8402  if (Op1.hasOneUse()) {
8403    unsigned BitWidth = Op1.getValueSizeInBits();
8404    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8405    APInt KnownZero, KnownOne;
8406    TargetLowering::TargetLoweringOpt TLO(DAG);
8407    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8408    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8409        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8410      DCI.CommitTargetLoweringOpt(TLO);
8411  }
8412  return SDValue();
8413}
8414
8415SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8416                                             DAGCombinerInfo &DCI) const {
8417  SelectionDAG &DAG = DCI.DAG;
8418  switch (N->getOpcode()) {
8419  default: break;
8420  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8421  case ISD::BUILD_VECTOR:
8422    return PerformBuildVectorCombine(N, DAG, DCI, Subtarget, *this);
8423  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8424  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8425  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
8426  case ISD::SHL:
8427  case ISD::SRA:
8428  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8429  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8430  case X86ISD::FXOR:
8431  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8432  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8433  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8434  }
8435
8436  return SDValue();
8437}
8438
8439//===----------------------------------------------------------------------===//
8440//                           X86 Inline Assembly Support
8441//===----------------------------------------------------------------------===//
8442
8443/// getConstraintType - Given a constraint letter, return the type of
8444/// constraint it is for this target.
8445X86TargetLowering::ConstraintType
8446X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8447  if (Constraint.size() == 1) {
8448    switch (Constraint[0]) {
8449    case 'A':
8450      return C_Register;
8451    case 'f':
8452    case 'r':
8453    case 'R':
8454    case 'l':
8455    case 'q':
8456    case 'Q':
8457    case 'x':
8458    case 'y':
8459    case 'Y':
8460      return C_RegisterClass;
8461    case 'e':
8462    case 'Z':
8463      return C_Other;
8464    default:
8465      break;
8466    }
8467  }
8468  return TargetLowering::getConstraintType(Constraint);
8469}
8470
8471/// LowerXConstraint - try to replace an X constraint, which matches anything,
8472/// with another that has more specific requirements based on the type of the
8473/// corresponding operand.
8474const char *X86TargetLowering::
8475LowerXConstraint(MVT ConstraintVT) const {
8476  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8477  // 'f' like normal targets.
8478  if (ConstraintVT.isFloatingPoint()) {
8479    if (Subtarget->hasSSE2())
8480      return "Y";
8481    if (Subtarget->hasSSE1())
8482      return "x";
8483  }
8484
8485  return TargetLowering::LowerXConstraint(ConstraintVT);
8486}
8487
8488/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8489/// vector.  If it is invalid, don't add anything to Ops.
8490void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8491                                                     char Constraint,
8492                                                     bool hasMemory,
8493                                                     std::vector<SDValue>&Ops,
8494                                                     SelectionDAG &DAG) const {
8495  SDValue Result(0, 0);
8496
8497  switch (Constraint) {
8498  default: break;
8499  case 'I':
8500    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8501      if (C->getZExtValue() <= 31) {
8502        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8503        break;
8504      }
8505    }
8506    return;
8507  case 'J':
8508    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8509      if (C->getZExtValue() <= 63) {
8510        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8511        break;
8512      }
8513    }
8514    return;
8515  case 'N':
8516    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8517      if (C->getZExtValue() <= 255) {
8518        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8519        break;
8520      }
8521    }
8522    return;
8523  case 'e': {
8524    // 32-bit signed value
8525    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8526      const ConstantInt *CI = C->getConstantIntValue();
8527      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8528        // Widen to 64 bits here to get it sign extended.
8529        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8530        break;
8531      }
8532    // FIXME gcc accepts some relocatable values here too, but only in certain
8533    // memory models; it's complicated.
8534    }
8535    return;
8536  }
8537  case 'Z': {
8538    // 32-bit unsigned value
8539    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8540      const ConstantInt *CI = C->getConstantIntValue();
8541      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8542        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8543        break;
8544      }
8545    }
8546    // FIXME gcc accepts some relocatable values here too, but only in certain
8547    // memory models; it's complicated.
8548    return;
8549  }
8550  case 'i': {
8551    // Literal immediates are always ok.
8552    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8553      // Widen to 64 bits here to get it sign extended.
8554      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8555      break;
8556    }
8557
8558    // If we are in non-pic codegen mode, we allow the address of a global (with
8559    // an optional displacement) to be used with 'i'.
8560    GlobalAddressSDNode *GA = 0;
8561    int64_t Offset = 0;
8562
8563    // Match either (GA), (GA+C), (GA+C1+C2), etc.
8564    while (1) {
8565      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8566        Offset += GA->getOffset();
8567        break;
8568      } else if (Op.getOpcode() == ISD::ADD) {
8569        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8570          Offset += C->getZExtValue();
8571          Op = Op.getOperand(0);
8572          continue;
8573        }
8574      } else if (Op.getOpcode() == ISD::SUB) {
8575        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8576          Offset += -C->getZExtValue();
8577          Op = Op.getOperand(0);
8578          continue;
8579        }
8580      }
8581
8582      // Otherwise, this isn't something we can handle, reject it.
8583      return;
8584    }
8585
8586    if (hasMemory)
8587      Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), Offset, DAG);
8588    else
8589      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8590                                      Offset);
8591    Result = Op;
8592    break;
8593  }
8594  }
8595
8596  if (Result.getNode()) {
8597    Ops.push_back(Result);
8598    return;
8599  }
8600  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8601                                                      Ops, DAG);
8602}
8603
8604std::vector<unsigned> X86TargetLowering::
8605getRegClassForInlineAsmConstraint(const std::string &Constraint,
8606                                  MVT VT) const {
8607  if (Constraint.size() == 1) {
8608    // FIXME: not handling fp-stack yet!
8609    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8610    default: break;  // Unknown constraint letter
8611    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8612    case 'Q':   // Q_REGS
8613      if (VT == MVT::i32)
8614        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8615      else if (VT == MVT::i16)
8616        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8617      else if (VT == MVT::i8)
8618        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8619      else if (VT == MVT::i64)
8620        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8621      break;
8622    }
8623  }
8624
8625  return std::vector<unsigned>();
8626}
8627
8628std::pair<unsigned, const TargetRegisterClass*>
8629X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8630                                                MVT VT) const {
8631  // First, see if this is a constraint that directly corresponds to an LLVM
8632  // register class.
8633  if (Constraint.size() == 1) {
8634    // GCC Constraint Letters
8635    switch (Constraint[0]) {
8636    default: break;
8637    case 'r':   // GENERAL_REGS
8638    case 'R':   // LEGACY_REGS
8639    case 'l':   // INDEX_REGS
8640      if (VT == MVT::i8)
8641        return std::make_pair(0U, X86::GR8RegisterClass);
8642      if (VT == MVT::i16)
8643        return std::make_pair(0U, X86::GR16RegisterClass);
8644      if (VT == MVT::i32 || !Subtarget->is64Bit())
8645        return std::make_pair(0U, X86::GR32RegisterClass);
8646      return std::make_pair(0U, X86::GR64RegisterClass);
8647    case 'f':  // FP Stack registers.
8648      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8649      // value to the correct fpstack register class.
8650      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8651        return std::make_pair(0U, X86::RFP32RegisterClass);
8652      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8653        return std::make_pair(0U, X86::RFP64RegisterClass);
8654      return std::make_pair(0U, X86::RFP80RegisterClass);
8655    case 'y':   // MMX_REGS if MMX allowed.
8656      if (!Subtarget->hasMMX()) break;
8657      return std::make_pair(0U, X86::VR64RegisterClass);
8658    case 'Y':   // SSE_REGS if SSE2 allowed
8659      if (!Subtarget->hasSSE2()) break;
8660      // FALL THROUGH.
8661    case 'x':   // SSE_REGS if SSE1 allowed
8662      if (!Subtarget->hasSSE1()) break;
8663
8664      switch (VT.getSimpleVT()) {
8665      default: break;
8666      // Scalar SSE types.
8667      case MVT::f32:
8668      case MVT::i32:
8669        return std::make_pair(0U, X86::FR32RegisterClass);
8670      case MVT::f64:
8671      case MVT::i64:
8672        return std::make_pair(0U, X86::FR64RegisterClass);
8673      // Vector types.
8674      case MVT::v16i8:
8675      case MVT::v8i16:
8676      case MVT::v4i32:
8677      case MVT::v2i64:
8678      case MVT::v4f32:
8679      case MVT::v2f64:
8680        return std::make_pair(0U, X86::VR128RegisterClass);
8681      }
8682      break;
8683    }
8684  }
8685
8686  // Use the default implementation in TargetLowering to convert the register
8687  // constraint into a member of a register class.
8688  std::pair<unsigned, const TargetRegisterClass*> Res;
8689  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8690
8691  // Not found as a standard register?
8692  if (Res.second == 0) {
8693    // GCC calls "st(0)" just plain "st".
8694    if (StringsEqualNoCase("{st}", Constraint)) {
8695      Res.first = X86::ST0;
8696      Res.second = X86::RFP80RegisterClass;
8697    }
8698    // 'A' means EAX + EDX.
8699    if (Constraint == "A") {
8700      Res.first = X86::EAX;
8701      Res.second = X86::GRADRegisterClass;
8702    }
8703    return Res;
8704  }
8705
8706  // Otherwise, check to see if this is a register class of the wrong value
8707  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8708  // turn into {ax},{dx}.
8709  if (Res.second->hasType(VT))
8710    return Res;   // Correct type already, nothing to do.
8711
8712  // All of the single-register GCC register classes map their values onto
8713  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8714  // really want an 8-bit or 32-bit register, map to the appropriate register
8715  // class and return the appropriate register.
8716  if (Res.second == X86::GR16RegisterClass) {
8717    if (VT == MVT::i8) {
8718      unsigned DestReg = 0;
8719      switch (Res.first) {
8720      default: break;
8721      case X86::AX: DestReg = X86::AL; break;
8722      case X86::DX: DestReg = X86::DL; break;
8723      case X86::CX: DestReg = X86::CL; break;
8724      case X86::BX: DestReg = X86::BL; break;
8725      }
8726      if (DestReg) {
8727        Res.first = DestReg;
8728        Res.second = X86::GR8RegisterClass;
8729      }
8730    } else if (VT == MVT::i32) {
8731      unsigned DestReg = 0;
8732      switch (Res.first) {
8733      default: break;
8734      case X86::AX: DestReg = X86::EAX; break;
8735      case X86::DX: DestReg = X86::EDX; break;
8736      case X86::CX: DestReg = X86::ECX; break;
8737      case X86::BX: DestReg = X86::EBX; break;
8738      case X86::SI: DestReg = X86::ESI; break;
8739      case X86::DI: DestReg = X86::EDI; break;
8740      case X86::BP: DestReg = X86::EBP; break;
8741      case X86::SP: DestReg = X86::ESP; break;
8742      }
8743      if (DestReg) {
8744        Res.first = DestReg;
8745        Res.second = X86::GR32RegisterClass;
8746      }
8747    } else if (VT == MVT::i64) {
8748      unsigned DestReg = 0;
8749      switch (Res.first) {
8750      default: break;
8751      case X86::AX: DestReg = X86::RAX; break;
8752      case X86::DX: DestReg = X86::RDX; break;
8753      case X86::CX: DestReg = X86::RCX; break;
8754      case X86::BX: DestReg = X86::RBX; break;
8755      case X86::SI: DestReg = X86::RSI; break;
8756      case X86::DI: DestReg = X86::RDI; break;
8757      case X86::BP: DestReg = X86::RBP; break;
8758      case X86::SP: DestReg = X86::RSP; break;
8759      }
8760      if (DestReg) {
8761        Res.first = DestReg;
8762        Res.second = X86::GR64RegisterClass;
8763      }
8764    }
8765  } else if (Res.second == X86::FR32RegisterClass ||
8766             Res.second == X86::FR64RegisterClass ||
8767             Res.second == X86::VR128RegisterClass) {
8768    // Handle references to XMM physical registers that got mapped into the
8769    // wrong class.  This can happen with constraints like {xmm0} where the
8770    // target independent register mapper will just pick the first match it can
8771    // find, ignoring the required type.
8772    if (VT == MVT::f32)
8773      Res.second = X86::FR32RegisterClass;
8774    else if (VT == MVT::f64)
8775      Res.second = X86::FR64RegisterClass;
8776    else if (X86::VR128RegisterClass->hasType(VT))
8777      Res.second = X86::VR128RegisterClass;
8778  }
8779
8780  return Res;
8781}
8782
8783//===----------------------------------------------------------------------===//
8784//                           X86 Widen vector type
8785//===----------------------------------------------------------------------===//
8786
8787/// getWidenVectorType: given a vector type, returns the type to widen
8788/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8789/// If there is no vector type that we want to widen to, returns MVT::Other
8790/// When and where to widen is target dependent based on the cost of
8791/// scalarizing vs using the wider vector type.
8792
8793MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8794  assert(VT.isVector());
8795  if (isTypeLegal(VT))
8796    return VT;
8797
8798  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8799  //       type based on element type.  This would speed up our search (though
8800  //       it may not be worth it since the size of the list is relatively
8801  //       small).
8802  MVT EltVT = VT.getVectorElementType();
8803  unsigned NElts = VT.getVectorNumElements();
8804
8805  // On X86, it make sense to widen any vector wider than 1
8806  if (NElts <= 1)
8807    return MVT::Other;
8808
8809  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8810       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8811    MVT SVT = (MVT::SimpleValueType)nVT;
8812
8813    if (isTypeLegal(SVT) &&
8814        SVT.getVectorElementType() == EltVT &&
8815        SVT.getVectorNumElements() > NElts)
8816      return SVT;
8817  }
8818  return MVT::Other;
8819}
8820